xref: /freebsd/contrib/gdtoa/gdtoa.c (revision 830940567b49bb0c08dfaed40418999e76616909)
1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998, 1999 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* Please send bug reports to David M. Gay (dmg at acm dot org,
30  * with " at " changed at "@" and " dot " changed to ".").	*/
31 
32 #include "gdtoaimp.h"
33 
34  static Bigint *
35 #ifdef KR_headers
36 bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits;
37 #else
38 bitstob(ULong *bits, int nbits, int *bbits)
39 #endif
40 {
41 	int i, k;
42 	Bigint *b;
43 	ULong *be, *x, *x0;
44 
45 	i = ULbits;
46 	k = 0;
47 	while(i < nbits) {
48 		i <<= 1;
49 		k++;
50 		}
51 #ifndef Pack_32
52 	if (!k)
53 		k = 1;
54 #endif
55 	b = Balloc(k);
56 	be = bits + ((nbits - 1) >> kshift);
57 	x = x0 = b->x;
58 	do {
59 		*x++ = *bits & ALL_ON;
60 #ifdef Pack_16
61 		*x++ = (*bits >> 16) & ALL_ON;
62 #endif
63 		} while(++bits <= be);
64 	i = x - x0;
65 	while(!x0[--i])
66 		if (!i) {
67 			b->wds = 0;
68 			*bbits = 0;
69 			goto ret;
70 			}
71 	b->wds = i + 1;
72 	*bbits = i*ULbits + 32 - hi0bits(b->x[i]);
73  ret:
74 	return b;
75 	}
76 
77 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
78  *
79  * Inspired by "How to Print Floating-Point Numbers Accurately" by
80  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
81  *
82  * Modifications:
83  *	1. Rather than iterating, we use a simple numeric overestimate
84  *	   to determine k = floor(log10(d)).  We scale relevant
85  *	   quantities using O(log2(k)) rather than O(k) multiplications.
86  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
87  *	   try to generate digits strictly left to right.  Instead, we
88  *	   compute with fewer bits and propagate the carry if necessary
89  *	   when rounding the final digit up.  This is often faster.
90  *	3. Under the assumption that input will be rounded nearest,
91  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
92  *	   That is, we allow equality in stopping tests when the
93  *	   round-nearest rule will give the same floating-point value
94  *	   as would satisfaction of the stopping test with strict
95  *	   inequality.
96  *	4. We remove common factors of powers of 2 from relevant
97  *	   quantities.
98  *	5. When converting floating-point integers less than 1e16,
99  *	   we use floating-point arithmetic rather than resorting
100  *	   to multiple-precision integers.
101  *	6. When asked to produce fewer than 15 digits, we first try
102  *	   to get by with floating-point arithmetic; we resort to
103  *	   multiple-precision integer arithmetic only if we cannot
104  *	   guarantee that the floating-point calculation has given
105  *	   the correctly rounded result.  For k requested digits and
106  *	   "uniformly" distributed input, the probability is
107  *	   something like 10^(k-15) that we must resort to the Long
108  *	   calculation.
109  */
110 
111  char *
112 gdtoa
113 #ifdef KR_headers
114 	(fpi, be, bits, kindp, mode, ndigits, decpt, rve)
115 	FPI *fpi; int be; ULong *bits;
116 	int *kindp, mode, ndigits, *decpt; char **rve;
117 #else
118 	(FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)
119 #endif
120 {
121  /*	Arguments ndigits and decpt are similar to the second and third
122 	arguments of ecvt and fcvt; trailing zeros are suppressed from
123 	the returned string.  If not null, *rve is set to point
124 	to the end of the return value.  If d is +-Infinity or NaN,
125 	then *decpt is set to 9999.
126 
127 	mode:
128 		0 ==> shortest string that yields d when read in
129 			and rounded to nearest.
130 		1 ==> like 0, but with Steele & White stopping rule;
131 			e.g. with IEEE P754 arithmetic , mode 0 gives
132 			1e23 whereas mode 1 gives 9.999999999999999e22.
133 		2 ==> max(1,ndigits) significant digits.  This gives a
134 			return value similar to that of ecvt, except
135 			that trailing zeros are suppressed.
136 		3 ==> through ndigits past the decimal point.  This
137 			gives a return value similar to that from fcvt,
138 			except that trailing zeros are suppressed, and
139 			ndigits can be negative.
140 		4-9 should give the same return values as 2-3, i.e.,
141 			4 <= mode <= 9 ==> same return as mode
142 			2 + (mode & 1).  These modes are mainly for
143 			debugging; often they run slower but sometimes
144 			faster than modes 2-3.
145 		4,5,8,9 ==> left-to-right digit generation.
146 		6-9 ==> don't try fast floating-point estimate
147 			(if applicable).
148 
149 		Values of mode other than 0-9 are treated as mode 0.
150 
151 		Sufficient space is allocated to the return value
152 		to hold the suppressed trailing zeros.
153 	*/
154 
155 	int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex;
156 	int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits;
157 	int rdir, s2, s5, spec_case, try_quick;
158 	Long L;
159 	Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
160 	double d, d2, ds, eps;
161 	char *s, *s0;
162 
163 #ifndef MULTIPLE_THREADS
164 	if (dtoa_result) {
165 		freedtoa(dtoa_result);
166 		dtoa_result = 0;
167 		}
168 #endif
169 	inex = 0;
170 	kind = *kindp &= ~STRTOG_Inexact;
171 	switch(kind & STRTOG_Retmask) {
172 	  case STRTOG_Zero:
173 		goto ret_zero;
174 	  case STRTOG_Normal:
175 	  case STRTOG_Denormal:
176 		break;
177 	  case STRTOG_Infinite:
178 		*decpt = -32768;
179 		return nrv_alloc("Infinity", rve, 8);
180 	  case STRTOG_NaN:
181 		*decpt = -32768;
182 		return nrv_alloc("NaN", rve, 3);
183 	  default:
184 		return 0;
185 	  }
186 	b = bitstob(bits, nbits = fpi->nbits, &bbits);
187 	be0 = be;
188 	if ( (i = trailz(b)) !=0) {
189 		rshift(b, i);
190 		be += i;
191 		bbits -= i;
192 		}
193 	if (!b->wds) {
194 		Bfree(b);
195  ret_zero:
196 		*decpt = 1;
197 		return nrv_alloc("0", rve, 1);
198 		}
199 
200 	dval(d) = b2d(b, &i);
201 	i = be + bbits - 1;
202 	word0(d) &= Frac_mask1;
203 	word0(d) |= Exp_11;
204 #ifdef IBM
205 	if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
206 		dval(d) /= 1 << j;
207 #endif
208 
209 	/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
210 	 * log10(x)	 =  log(x) / log(10)
211 	 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
212 	 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
213 	 *
214 	 * This suggests computing an approximation k to log10(d) by
215 	 *
216 	 * k = (i - Bias)*0.301029995663981
217 	 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
218 	 *
219 	 * We want k to be too large rather than too small.
220 	 * The error in the first-order Taylor series approximation
221 	 * is in our favor, so we just round up the constant enough
222 	 * to compensate for any error in the multiplication of
223 	 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
224 	 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
225 	 * adding 1e-13 to the constant term more than suffices.
226 	 * Hence we adjust the constant term to 0.1760912590558.
227 	 * (We could get a more accurate k by invoking log10,
228 	 *  but this is probably not worthwhile.)
229 	 */
230 #ifdef IBM
231 	i <<= 2;
232 	i += j;
233 #endif
234 	ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
235 
236 	/* correct assumption about exponent range */
237 	if ((j = i) < 0)
238 		j = -j;
239 	if ((j -= 1077) > 0)
240 		ds += j * 7e-17;
241 
242 	k = (int)ds;
243 	if (ds < 0. && ds != k)
244 		k--;	/* want k = floor(ds) */
245 	k_check = 1;
246 #ifdef IBM
247 	j = be + bbits - 1;
248 	if ( (j1 = j & 3) !=0)
249 		dval(d) *= 1 << j1;
250 	word0(d) += j << Exp_shift - 2 & Exp_mask;
251 #else
252 	word0(d) += (be + bbits - 1) << Exp_shift;
253 #endif
254 	if (k >= 0 && k <= Ten_pmax) {
255 		if (dval(d) < tens[k])
256 			k--;
257 		k_check = 0;
258 		}
259 	j = bbits - i - 1;
260 	if (j >= 0) {
261 		b2 = 0;
262 		s2 = j;
263 		}
264 	else {
265 		b2 = -j;
266 		s2 = 0;
267 		}
268 	if (k >= 0) {
269 		b5 = 0;
270 		s5 = k;
271 		s2 += k;
272 		}
273 	else {
274 		b2 -= k;
275 		b5 = -k;
276 		s5 = 0;
277 		}
278 	if (mode < 0 || mode > 9)
279 		mode = 0;
280 	try_quick = 1;
281 	if (mode > 5) {
282 		mode -= 4;
283 		try_quick = 0;
284 		}
285 	leftright = 1;
286 	switch(mode) {
287 		case 0:
288 		case 1:
289 			ilim = ilim1 = -1;
290 			i = (int)(nbits * .30103) + 3;
291 			ndigits = 0;
292 			break;
293 		case 2:
294 			leftright = 0;
295 			/* no break */
296 		case 4:
297 			if (ndigits <= 0)
298 				ndigits = 1;
299 			ilim = ilim1 = i = ndigits;
300 			break;
301 		case 3:
302 			leftright = 0;
303 			/* no break */
304 		case 5:
305 			i = ndigits + k + 1;
306 			ilim = i;
307 			ilim1 = i - 1;
308 			if (i <= 0)
309 				i = 1;
310 		}
311 	s = s0 = rv_alloc(i);
312 
313 	if ( (rdir = fpi->rounding - 1) !=0) {
314 		if (rdir < 0)
315 			rdir = 2;
316 		if (kind & STRTOG_Neg)
317 			rdir = 3 - rdir;
318 		}
319 
320 	/* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
321 
322 	if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
323 #ifndef IMPRECISE_INEXACT
324 		&& k == 0
325 #endif
326 								) {
327 
328 		/* Try to get by with floating-point arithmetic. */
329 
330 		i = 0;
331 		d2 = dval(d);
332 #ifdef IBM
333 		if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
334 			dval(d) /= 1 << j;
335 #endif
336 		k0 = k;
337 		ilim0 = ilim;
338 		ieps = 2; /* conservative */
339 		if (k > 0) {
340 			ds = tens[k&0xf];
341 			j = k >> 4;
342 			if (j & Bletch) {
343 				/* prevent overflows */
344 				j &= Bletch - 1;
345 				dval(d) /= bigtens[n_bigtens-1];
346 				ieps++;
347 				}
348 			for(; j; j >>= 1, i++)
349 				if (j & 1) {
350 					ieps++;
351 					ds *= bigtens[i];
352 					}
353 			}
354 		else  {
355 			ds = 1.;
356 			if ( (j1 = -k) !=0) {
357 				dval(d) *= tens[j1 & 0xf];
358 				for(j = j1 >> 4; j; j >>= 1, i++)
359 					if (j & 1) {
360 						ieps++;
361 						dval(d) *= bigtens[i];
362 						}
363 				}
364 			}
365 		if (k_check && dval(d) < 1. && ilim > 0) {
366 			if (ilim1 <= 0)
367 				goto fast_failed;
368 			ilim = ilim1;
369 			k--;
370 			dval(d) *= 10.;
371 			ieps++;
372 			}
373 		dval(eps) = ieps*dval(d) + 7.;
374 		word0(eps) -= (P-1)*Exp_msk1;
375 		if (ilim == 0) {
376 			S = mhi = 0;
377 			dval(d) -= 5.;
378 			if (dval(d) > dval(eps))
379 				goto one_digit;
380 			if (dval(d) < -dval(eps))
381 				goto no_digits;
382 			goto fast_failed;
383 			}
384 #ifndef No_leftright
385 		if (leftright) {
386 			/* Use Steele & White method of only
387 			 * generating digits needed.
388 			 */
389 			dval(eps) = ds*0.5/tens[ilim-1] - dval(eps);
390 			for(i = 0;;) {
391 				L = (Long)(dval(d)/ds);
392 				dval(d) -= L*ds;
393 				*s++ = '0' + (int)L;
394 				if (dval(d) < dval(eps)) {
395 					if (dval(d))
396 						inex = STRTOG_Inexlo;
397 					goto ret1;
398 					}
399 				if (ds - dval(d) < dval(eps))
400 					goto bump_up;
401 				if (++i >= ilim)
402 					break;
403 				dval(eps) *= 10.;
404 				dval(d) *= 10.;
405 				}
406 			}
407 		else {
408 #endif
409 			/* Generate ilim digits, then fix them up. */
410 			dval(eps) *= tens[ilim-1];
411 			for(i = 1;; i++, dval(d) *= 10.) {
412 				if ( (L = (Long)(dval(d)/ds)) !=0)
413 					dval(d) -= L*ds;
414 				*s++ = '0' + (int)L;
415 				if (i == ilim) {
416 					ds *= 0.5;
417 					if (dval(d) > ds + dval(eps))
418 						goto bump_up;
419 					else if (dval(d) < ds - dval(eps)) {
420 						if (dval(d))
421 							inex = STRTOG_Inexlo;
422 						goto clear_trailing0;
423 						}
424 					break;
425 					}
426 				}
427 #ifndef No_leftright
428 			}
429 #endif
430  fast_failed:
431 		s = s0;
432 		dval(d) = d2;
433 		k = k0;
434 		ilim = ilim0;
435 		}
436 
437 	/* Do we have a "small" integer? */
438 
439 	if (be >= 0 && k <= Int_max) {
440 		/* Yes. */
441 		ds = tens[k];
442 		if (ndigits < 0 && ilim <= 0) {
443 			S = mhi = 0;
444 			if (ilim < 0 || dval(d) <= 5*ds)
445 				goto no_digits;
446 			goto one_digit;
447 			}
448 		for(i = 1;; i++, dval(d) *= 10.) {
449 			L = dval(d) / ds;
450 			dval(d) -= L*ds;
451 #ifdef Check_FLT_ROUNDS
452 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
453 			if (dval(d) < 0) {
454 				L--;
455 				dval(d) += ds;
456 				}
457 #endif
458 			*s++ = '0' + (int)L;
459 			if (dval(d) == 0.)
460 				break;
461 			if (i == ilim) {
462 				if (rdir) {
463 					if (rdir == 1)
464 						goto bump_up;
465 					inex = STRTOG_Inexlo;
466 					goto ret1;
467 					}
468 				dval(d) += dval(d);
469 				if (dval(d) > ds || dval(d) == ds && L & 1) {
470  bump_up:
471 					inex = STRTOG_Inexhi;
472 					while(*--s == '9')
473 						if (s == s0) {
474 							k++;
475 							*s = '0';
476 							break;
477 							}
478 					++*s++;
479 					}
480 				else {
481 					inex = STRTOG_Inexlo;
482  clear_trailing0:
483 					while(*--s == '0'){}
484 					++s;
485 					}
486 				break;
487 				}
488 			}
489 		goto ret1;
490 		}
491 
492 	m2 = b2;
493 	m5 = b5;
494 	mhi = mlo = 0;
495 	if (leftright) {
496 		if (mode < 2) {
497 			i = nbits - bbits;
498 			if (be - i++ < fpi->emin)
499 				/* denormal */
500 				i = be - fpi->emin + 1;
501 			}
502 		else {
503 			j = ilim - 1;
504 			if (m5 >= j)
505 				m5 -= j;
506 			else {
507 				s5 += j -= m5;
508 				b5 += j;
509 				m5 = 0;
510 				}
511 			if ((i = ilim) < 0) {
512 				m2 -= i;
513 				i = 0;
514 				}
515 			}
516 		b2 += i;
517 		s2 += i;
518 		mhi = i2b(1);
519 		}
520 	if (m2 > 0 && s2 > 0) {
521 		i = m2 < s2 ? m2 : s2;
522 		b2 -= i;
523 		m2 -= i;
524 		s2 -= i;
525 		}
526 	if (b5 > 0) {
527 		if (leftright) {
528 			if (m5 > 0) {
529 				mhi = pow5mult(mhi, m5);
530 				b1 = mult(mhi, b);
531 				Bfree(b);
532 				b = b1;
533 				}
534 			if ( (j = b5 - m5) !=0)
535 				b = pow5mult(b, j);
536 			}
537 		else
538 			b = pow5mult(b, b5);
539 		}
540 	S = i2b(1);
541 	if (s5 > 0)
542 		S = pow5mult(S, s5);
543 
544 	/* Check for special case that d is a normalized power of 2. */
545 
546 	spec_case = 0;
547 	if (mode < 2) {
548 		if (bbits == 1 && be0 > fpi->emin + 1) {
549 			/* The special case */
550 			b2++;
551 			s2++;
552 			spec_case = 1;
553 			}
554 		}
555 
556 	/* Arrange for convenient computation of quotients:
557 	 * shift left if necessary so divisor has 4 leading 0 bits.
558 	 *
559 	 * Perhaps we should just compute leading 28 bits of S once
560 	 * and for all and pass them and a shift to quorem, so it
561 	 * can do shifts and ors to compute the numerator for q.
562 	 */
563 #ifdef Pack_32
564 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) !=0)
565 		i = 32 - i;
566 #else
567 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) !=0)
568 		i = 16 - i;
569 #endif
570 	if (i > 4) {
571 		i -= 4;
572 		b2 += i;
573 		m2 += i;
574 		s2 += i;
575 		}
576 	else if (i < 4) {
577 		i += 28;
578 		b2 += i;
579 		m2 += i;
580 		s2 += i;
581 		}
582 	if (b2 > 0)
583 		b = lshift(b, b2);
584 	if (s2 > 0)
585 		S = lshift(S, s2);
586 	if (k_check) {
587 		if (cmp(b,S) < 0) {
588 			k--;
589 			b = multadd(b, 10, 0);	/* we botched the k estimate */
590 			if (leftright)
591 				mhi = multadd(mhi, 10, 0);
592 			ilim = ilim1;
593 			}
594 		}
595 	if (ilim <= 0 && mode > 2) {
596 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
597 			/* no digits, fcvt style */
598  no_digits:
599 			k = -1 - ndigits;
600 			inex = STRTOG_Inexlo;
601 			goto ret;
602 			}
603  one_digit:
604 		inex = STRTOG_Inexhi;
605 		*s++ = '1';
606 		k++;
607 		goto ret;
608 		}
609 	if (leftright) {
610 		if (m2 > 0)
611 			mhi = lshift(mhi, m2);
612 
613 		/* Compute mlo -- check for special case
614 		 * that d is a normalized power of 2.
615 		 */
616 
617 		mlo = mhi;
618 		if (spec_case) {
619 			mhi = Balloc(mhi->k);
620 			Bcopy(mhi, mlo);
621 			mhi = lshift(mhi, 1);
622 			}
623 
624 		for(i = 1;;i++) {
625 			dig = quorem(b,S) + '0';
626 			/* Do we yet have the shortest decimal string
627 			 * that will round to d?
628 			 */
629 			j = cmp(b, mlo);
630 			delta = diff(S, mhi);
631 			j1 = delta->sign ? 1 : cmp(b, delta);
632 			Bfree(delta);
633 #ifndef ROUND_BIASED
634 			if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
635 				if (dig == '9')
636 					goto round_9_up;
637 				if (j <= 0) {
638 					if (b->wds > 1 || b->x[0])
639 						inex = STRTOG_Inexlo;
640 					}
641 				else {
642 					dig++;
643 					inex = STRTOG_Inexhi;
644 					}
645 				*s++ = dig;
646 				goto ret;
647 				}
648 #endif
649 			if (j < 0 || j == 0 && !mode
650 #ifndef ROUND_BIASED
651 							&& !(bits[0] & 1)
652 #endif
653 					) {
654 				if (rdir && (b->wds > 1 || b->x[0])) {
655 					if (rdir == 2) {
656 						inex = STRTOG_Inexlo;
657 						goto accept;
658 						}
659 					while (cmp(S,mhi) > 0) {
660 						*s++ = dig;
661 						mhi1 = multadd(mhi, 10, 0);
662 						if (mlo == mhi)
663 							mlo = mhi1;
664 						mhi = mhi1;
665 						b = multadd(b, 10, 0);
666 						dig = quorem(b,S) + '0';
667 						}
668 					if (dig++ == '9')
669 						goto round_9_up;
670 					inex = STRTOG_Inexhi;
671 					goto accept;
672 					}
673 				if (j1 > 0) {
674 					b = lshift(b, 1);
675 					j1 = cmp(b, S);
676 					if ((j1 > 0 || j1 == 0 && dig & 1)
677 					&& dig++ == '9')
678 						goto round_9_up;
679 					inex = STRTOG_Inexhi;
680 					}
681 				if (b->wds > 1 || b->x[0])
682 					inex = STRTOG_Inexlo;
683  accept:
684 				*s++ = dig;
685 				goto ret;
686 				}
687 			if (j1 > 0 && rdir != 2) {
688 				if (dig == '9') { /* possible if i == 1 */
689  round_9_up:
690 					*s++ = '9';
691 					inex = STRTOG_Inexhi;
692 					goto roundoff;
693 					}
694 				inex = STRTOG_Inexhi;
695 				*s++ = dig + 1;
696 				goto ret;
697 				}
698 			*s++ = dig;
699 			if (i == ilim)
700 				break;
701 			b = multadd(b, 10, 0);
702 			if (mlo == mhi)
703 				mlo = mhi = multadd(mhi, 10, 0);
704 			else {
705 				mlo = multadd(mlo, 10, 0);
706 				mhi = multadd(mhi, 10, 0);
707 				}
708 			}
709 		}
710 	else
711 		for(i = 1;; i++) {
712 			*s++ = dig = quorem(b,S) + '0';
713 			if (i >= ilim)
714 				break;
715 			b = multadd(b, 10, 0);
716 			}
717 
718 	/* Round off last digit */
719 
720 	if (rdir) {
721 		if (rdir == 2 || b->wds <= 1 && !b->x[0])
722 			goto chopzeros;
723 		goto roundoff;
724 		}
725 	b = lshift(b, 1);
726 	j = cmp(b, S);
727 	if (j > 0 || j == 0 && dig & 1) {
728  roundoff:
729 		inex = STRTOG_Inexhi;
730 		while(*--s == '9')
731 			if (s == s0) {
732 				k++;
733 				*s++ = '1';
734 				goto ret;
735 				}
736 		++*s++;
737 		}
738 	else {
739  chopzeros:
740 		if (b->wds > 1 || b->x[0])
741 			inex = STRTOG_Inexlo;
742 		while(*--s == '0'){}
743 		++s;
744 		}
745  ret:
746 	Bfree(S);
747 	if (mhi) {
748 		if (mlo && mlo != mhi)
749 			Bfree(mlo);
750 		Bfree(mhi);
751 		}
752  ret1:
753 	Bfree(b);
754 	*s = 0;
755 	*decpt = k + 1;
756 	if (rve)
757 		*rve = s;
758 	*kindp |= inex;
759 	return s0;
760 	}
761