xref: /freebsd/contrib/gdtoa/README (revision 50dad48bb740a8e56d185d9e8c165e0758f46e25)
1cc36ccd1SDavid SchultzThis directory contains source for a library of binary -> decimal
2cc36ccd1SDavid Schultzand decimal -> binary conversion routines, for single-, double-,
3cc36ccd1SDavid Schultzand extended-precision IEEE binary floating-point arithmetic, and
4cc36ccd1SDavid Schultzother IEEE-like binary floating-point, including "double double",
5cc36ccd1SDavid Schultzas in
6cc36ccd1SDavid Schultz
7cc36ccd1SDavid Schultz	T. J. Dekker, "A Floating-Point Technique for Extending the
8cc36ccd1SDavid Schultz	Available Precision", Numer. Math. 18 (1971), pp. 224-242
9cc36ccd1SDavid Schultz
10cc36ccd1SDavid Schultzand
11cc36ccd1SDavid Schultz
12cc36ccd1SDavid Schultz	"Inside Macintosh: PowerPC Numerics", Addison-Wesley, 1994
13cc36ccd1SDavid Schultz
14cc36ccd1SDavid SchultzThe conversion routines use double-precision floating-point arithmetic
15cc36ccd1SDavid Schultzand, where necessary, high precision integer arithmetic.  The routines
16cc36ccd1SDavid Schultzare generalizations of the strtod and dtoa routines described in
17cc36ccd1SDavid Schultz
18cc36ccd1SDavid Schultz	David M. Gay, "Correctly Rounded Binary-Decimal and
19cc36ccd1SDavid Schultz	Decimal-Binary Conversions", Numerical Analysis Manuscript
20cc36ccd1SDavid Schultz	No. 90-10, Bell Labs, Murray Hill, 1990;
21cc36ccd1SDavid Schultz	http://cm.bell-labs.com/cm/cs/what/ampl/REFS/rounding.ps.gz
22cc36ccd1SDavid Schultz
23cc36ccd1SDavid Schultz(based in part on papers by Clinger and Steele & White: see the
24cc36ccd1SDavid Schultzreferences in the above paper).
25cc36ccd1SDavid Schultz
26cc36ccd1SDavid SchultzThe present conversion routines should be able to use any of IEEE binary,
27cc36ccd1SDavid SchultzVAX, or IBM-mainframe double-precision arithmetic internally, but I (dmg)
28cc36ccd1SDavid Schultzhave so far only had a chance to test them with IEEE double precision
29cc36ccd1SDavid Schultzarithmetic.
30cc36ccd1SDavid Schultz
31cc36ccd1SDavid SchultzThe core conversion routines are strtodg for decimal -> binary conversions
32cc36ccd1SDavid Schultzand gdtoa for binary -> decimal conversions.  These routines operate
33cc36ccd1SDavid Schultzon arrays of unsigned 32-bit integers of type ULong, a signed 32-bit
34cc36ccd1SDavid Schultzexponent of type Long, and arithmetic characteristics described in
35cc36ccd1SDavid Schultzstruct FPI; FPI, Long, and ULong are defined in gdtoa.h.  File arith.h
36cc36ccd1SDavid Schultzis supposed to provide #defines that cause gdtoa.h to define its
37cc36ccd1SDavid Schultztypes correctly.  File arithchk.c is source for a program that
38cc36ccd1SDavid Schultzgenerates a suitable arith.h on all systems where I've been able to
39cc36ccd1SDavid Schultztest it.
40cc36ccd1SDavid Schultz
41cc36ccd1SDavid SchultzThe core conversion routines are meant to be called by helper routines
42cc36ccd1SDavid Schultzthat know details of the particular binary arithmetic of interest and
43cc36ccd1SDavid Schultzconvert.  The present directory provides helper routines for 5 variants
44cc36ccd1SDavid Schultzof IEEE binary floating-point arithmetic, each indicated by one or
45cc36ccd1SDavid Schultztwo letters:
46cc36ccd1SDavid Schultz
47cc36ccd1SDavid Schultz	f	IEEE single precision
48cc36ccd1SDavid Schultz	d	IEEE double precision
49cc36ccd1SDavid Schultz	x	IEEE extended precision, as on Intel 80x87
50cc36ccd1SDavid Schultz		and software emulations of Motorola 68xxx chips
51cc36ccd1SDavid Schultz		that do not pad the way the 68xxx does, but
52cc36ccd1SDavid Schultz		only store 80 bits
53cc36ccd1SDavid Schultz	xL	IEEE extended precision, as on Motorola 68xxx chips
54cc36ccd1SDavid Schultz	Q	quad precision, as on Sun Sparc chips
55cc36ccd1SDavid Schultz	dd	double double, pairs of IEEE double numbers
56cc36ccd1SDavid Schultz		whose sum is the desired value
57cc36ccd1SDavid Schultz
58cc36ccd1SDavid SchultzFor decimal -> binary conversions, there are three families of
594848dd08SDavid Schultzhelper routines: one for round-nearest (or the current rounding
604848dd08SDavid Schultzmode on IEEE-arithmetic systems that provide the C99 fegetround()
614848dd08SDavid Schultzfunction, if compiled with -DHonor_FLT_ROUNDS):
62cc36ccd1SDavid Schultz
63cc36ccd1SDavid Schultz	strtof
64cc36ccd1SDavid Schultz	strtod
65cc36ccd1SDavid Schultz	strtodd
66cc36ccd1SDavid Schultz	strtopd
67cc36ccd1SDavid Schultz	strtopf
68cc36ccd1SDavid Schultz	strtopx
69cc36ccd1SDavid Schultz	strtopxL
70cc36ccd1SDavid Schultz	strtopQ
71cc36ccd1SDavid Schultz
72cc36ccd1SDavid Schultzone with rounding direction specified:
73cc36ccd1SDavid Schultz
74cc36ccd1SDavid Schultz	strtorf
75cc36ccd1SDavid Schultz	strtord
76cc36ccd1SDavid Schultz	strtordd
77cc36ccd1SDavid Schultz	strtorx
78cc36ccd1SDavid Schultz	strtorxL
79cc36ccd1SDavid Schultz	strtorQ
80cc36ccd1SDavid Schultz
81cc36ccd1SDavid Schultzand one for computing an interval (at most one bit wide) that contains
82cc36ccd1SDavid Schultzthe decimal number:
83cc36ccd1SDavid Schultz
84cc36ccd1SDavid Schultz	strtoIf
85cc36ccd1SDavid Schultz	strtoId
86cc36ccd1SDavid Schultz	strtoIdd
87cc36ccd1SDavid Schultz	strtoIx
88cc36ccd1SDavid Schultz	strtoIxL
89cc36ccd1SDavid Schultz	strtoIQ
90cc36ccd1SDavid Schultz
91cc36ccd1SDavid SchultzThe latter call strtoIg, which makes one call on strtodg and adjusts
92cc36ccd1SDavid Schultzthe result to provide the desired interval.  On systems where native
93cc36ccd1SDavid Schultzarithmetic can easily make one-ulp adjustments on values in the
94cc36ccd1SDavid Schultzdesired floating-point format, it might be more efficient to use the
95cc36ccd1SDavid Schultznative arithmetic.  Routine strtodI is a variant of strtoId that
96cc36ccd1SDavid Schultzillustrates one way to do this for IEEE binary double-precision
97cc36ccd1SDavid Schultzarithmetic -- but whether this is more efficient remains to be seen.
98cc36ccd1SDavid Schultz
99cc36ccd1SDavid SchultzFunctions strtod and strtof have "natural" return types, float and
100cc36ccd1SDavid Schultzdouble -- strtod is specified by the C standard, and strtof appears
101cc36ccd1SDavid Schultzin the stdlib.h of some systems, such as (at least some) Linux systems.
102cc36ccd1SDavid SchultzThe other functions write their results to their final argument(s):
103cc36ccd1SDavid Schultzto the final two argument for the strtoI... (interval) functions,
104cc36ccd1SDavid Schultzand to the final argument for the others (strtop... and strtor...).
105cc36ccd1SDavid SchultzWhere possible, these arguments have "natural" return types (double*
106cc36ccd1SDavid Schultzor float*), to permit at least some type checking.  In reality, they
107cc36ccd1SDavid Schultzare viewed as arrays of ULong (or, for the "x" functions, UShort)
108cc36ccd1SDavid Schultzvalues. On systems where long double is the appropriate type, one can
109cc36ccd1SDavid Schultzpass long double* final argument(s) to these routines.  The int value
110cc36ccd1SDavid Schultzthat these routines return is the return value from the call they make
111cc36ccd1SDavid Schultzon strtodg; see the enum of possible return values in gdtoa.h.
112cc36ccd1SDavid Schultz
113cc36ccd1SDavid SchultzSource files g_ddfmt.c, misc.c, smisc.c, strtod.c, strtodg.c, and ulp.c
114cc36ccd1SDavid Schultzshould use true IEEE double arithmetic (not, e.g., double extended),
115cc36ccd1SDavid Schultzat least for storing (and viewing the bits of) the variables declared
116cc36ccd1SDavid Schultz"double" within them.
117cc36ccd1SDavid Schultz
118cc36ccd1SDavid SchultzOne detail indicated in struct FPI is whether the target binary
119cc36ccd1SDavid Schultzarithmetic departs from the IEEE standard by flushing denormalized
120cc36ccd1SDavid Schultznumbers to 0.  On systems that do this, the helper routines for
121cc36ccd1SDavid Schultzconversion to double-double format (when compiled with
122cc36ccd1SDavid SchultzSudden_Underflow #defined) penalize the bottom of the exponent
123cc36ccd1SDavid Schultzrange so that they return a nonzero result only when the least
124cc36ccd1SDavid Schultzsignificant bit of the less significant member of the pair of
125cc36ccd1SDavid Schultzdouble values returned can be expressed as a normalized double
126cc36ccd1SDavid Schultzvalue.  An alternative would be to drop to 53-bit precision near
127cc36ccd1SDavid Schultzthe bottom of the exponent range.  To get correct rounding, this
128cc36ccd1SDavid Schultzwould (in general) require two calls on strtodg (one specifying
129cc36ccd1SDavid Schultz126-bit arithmetic, then, if necessary, one specifying 53-bit
130cc36ccd1SDavid Schultzarithmetic).
131cc36ccd1SDavid Schultz
132cc36ccd1SDavid SchultzBy default, the core routine strtodg and strtod set errno to ERANGE
133cc36ccd1SDavid Schultzif the result overflows to +Infinity or underflows to 0.  Compile
134cc36ccd1SDavid Schultzthese routines with NO_ERRNO #defined to inhibit errno assignments.
135cc36ccd1SDavid Schultz
136cc36ccd1SDavid SchultzRoutine strtod is based on netlib's "dtoa.c from fp", and
137cc36ccd1SDavid Schultz(f = strtod(s,se)) is more efficient for some conversions than, say,
138cc36ccd1SDavid Schultzstrtord(s,se,1,&f).  Parts of strtod require true IEEE double
139cc36ccd1SDavid Schultzarithmetic with the default rounding mode (round-to-nearest) and, on
140cc36ccd1SDavid Schultzsystems with IEEE extended-precision registers, double-precision
141cc36ccd1SDavid Schultz(53-bit) rounding precision.  If the machine uses (the equivalent of)
142cc36ccd1SDavid SchultzIntel 80x87 arithmetic, the call
143cc36ccd1SDavid Schultz	_control87(PC_53, MCW_PC);
144cc36ccd1SDavid Schultzdoes this with many compilers.  Whether this or another call is
145cc36ccd1SDavid Schultzappropriate depends on the compiler; for this to work, it may be
146cc36ccd1SDavid Schultznecessary to #include "float.h" or another system-dependent header
147cc36ccd1SDavid Schultzfile.
148cc36ccd1SDavid Schultz
149c88250a5SDavid SchultzSource file strtodnrp.c gives a strtod that does not require 53-bit
150c88250a5SDavid Schultzrounding precision on systems (such as Intel IA32 systems) that may
151c88250a5SDavid Schultzsuffer double rounding due to use of extended-precision registers.
152c88250a5SDavid SchultzFor some conversions this variant of strtod is less efficient than the
153c88250a5SDavid Schultzone in strtod.c when the latter is run with 53-bit rounding precision.
154c88250a5SDavid Schultz
155c88250a5SDavid SchultzThe values that the strto* routines return for NaNs are determined by
156c88250a5SDavid Schultzgd_qnan.h, which the makefile generates by running the program whose
157c88250a5SDavid Schultzsource is qnan.c.  Note that the rules for distinguishing signaling
158c88250a5SDavid Schultzfrom quiet NaNs are system-dependent.  For cross-compilation, you need
159c88250a5SDavid Schultzto determine arith.h and gd_qnan.h suitably, e.g., using the
160c88250a5SDavid Schultzarithmetic of the target machine.
161cc36ccd1SDavid Schultz
162cc36ccd1SDavid SchultzC99's hexadecimal floating-point constants are recognized by the
163cc36ccd1SDavid Schultzstrto* routines (but this feature has not yet been heavily tested).
164cc36ccd1SDavid SchultzCompiling with NO_HEX_FP #defined disables this feature.
165cc36ccd1SDavid Schultz
166c88250a5SDavid SchultzWhen compiled with -DINFNAN_CHECK, the strto* routines recognize C99's
167c88250a5SDavid SchultzNaN and Infinity syntax.  Moreover, unless No_Hex_NaN is #defined, the
168c88250a5SDavid Schultzstrto* routines also recognize C99's NaN(...) syntax: they accept
169c88250a5SDavid Schultz(case insensitively) strings of the form NaN(x), where x is a string
170c88250a5SDavid Schultzof hexadecimal digits and spaces; if there is only one string of
171c88250a5SDavid Schultzhexadecimal digits, it is taken for the fraction bits of the resulting
172c88250a5SDavid SchultzNaN; if there are two or more strings of hexadecimal digits, each
173c88250a5SDavid Schultzstring is assigned to the next available sequence of 32-bit words of
174c88250a5SDavid Schultzfractions bits (starting with the most significant), right-aligned in
175c88250a5SDavid Schultzeach sequence.
176cc36ccd1SDavid Schultz
177cc36ccd1SDavid SchultzFor binary -> decimal conversions, I've provided just one family
178cc36ccd1SDavid Schultzof helper routines:
179cc36ccd1SDavid Schultz
180cc36ccd1SDavid Schultz	g_ffmt
181cc36ccd1SDavid Schultz	g_dfmt
182cc36ccd1SDavid Schultz	g_ddfmt
183cc36ccd1SDavid Schultz	g_xfmt
184cc36ccd1SDavid Schultz	g_xLfmt
185cc36ccd1SDavid Schultz	g_Qfmt
186cc36ccd1SDavid Schultz
187cc36ccd1SDavid Schultzwhich do a "%g" style conversion either to a specified number of decimal
188cc36ccd1SDavid Schultzplaces (if their ndig argument is positive), or to the shortest
189cc36ccd1SDavid Schultzdecimal string that rounds to the given binary floating-point value
190cc36ccd1SDavid Schultz(if ndig <= 0).  They write into a buffer supplied as an argument
191cc36ccd1SDavid Schultzand return either a pointer to the end of the string (a null character)
192cc36ccd1SDavid Schultzin the buffer, if the buffer was long enough, or 0.  Other forms of
193cc36ccd1SDavid Schultzconversion are easily done with the help of gdtoa(), such as %e or %f
194cc36ccd1SDavid Schultzstyle and conversions with direction of rounding specified (so that, if
195cc36ccd1SDavid Schultzdesired, the decimal value is either >= or <= the binary value).
1964848dd08SDavid SchultzOn IEEE-arithmetic systems that provide the C99 fegetround() function,
1974848dd08SDavid Schultzif compiled with -DHonor_FLT_ROUNDS, these routines honor the current
1984848dd08SDavid Schultzrounding mode.
199cc36ccd1SDavid Schultz
200cc36ccd1SDavid SchultzFor an example of more general conversions based on dtoa(), see
201cc36ccd1SDavid Schultznetlib's "printf.c from ampl/solvers".
202cc36ccd1SDavid Schultz
203cc36ccd1SDavid SchultzFor double-double -> decimal, g_ddfmt() assumes IEEE-like arithmetic
204cc36ccd1SDavid Schultzof precision max(126, #bits(input)) bits, where #bits(input) is the
205cc36ccd1SDavid Schultznumber of mantissa bits needed to represent the sum of the two double
206cc36ccd1SDavid Schultzvalues in the input.
207cc36ccd1SDavid Schultz
208cc36ccd1SDavid SchultzThe makefile creates a library, gdtoa.a.  To use the helper
209cc36ccd1SDavid Schultzroutines, a program only needs to include gdtoa.h.  All the
210cc36ccd1SDavid Schultzsource files for gdtoa.a include a more extensive gdtoaimp.h;
211cc36ccd1SDavid Schultzamong other things, gdtoaimp.h has #defines that make "internal"
212cc36ccd1SDavid Schultznames end in _D2A.  To make a "system" library, one could modify
213cc36ccd1SDavid Schultzthese #defines to make the names start with __.
214cc36ccd1SDavid Schultz
215cc36ccd1SDavid SchultzVarious comments about possible #defines appear in gdtoaimp.h,
216cc36ccd1SDavid Schultzbut for most purposes, arith.h should set suitable #defines.
217cc36ccd1SDavid Schultz
218cc36ccd1SDavid SchultzSystems with preemptive scheduling of multiple threads require some
219cc36ccd1SDavid Schultzmanual intervention.  On such systems, it's necessary to compile
220cc36ccd1SDavid Schultzdmisc.c, dtoa.c gdota.c, and misc.c with MULTIPLE_THREADS #defined,
221cc36ccd1SDavid Schultzand to provide (or suitably #define) two locks, acquired by
222cc36ccd1SDavid SchultzACQUIRE_DTOA_LOCK(n) and freed by FREE_DTOA_LOCK(n) for n = 0 or 1.
223cc36ccd1SDavid Schultz(The second lock, accessed in pow5mult, ensures lazy evaluation of
224cc36ccd1SDavid Schultzonly one copy of high powers of 5; omitting this lock would introduce
225cc36ccd1SDavid Schultza small probability of wasting memory, but would otherwise be harmless.)
226cc36ccd1SDavid SchultzRoutines that call dtoa or gdtoa directly must also invoke freedtoa(s)
227cc36ccd1SDavid Schultzto free the value s returned by dtoa or gdtoa.  It's OK to do so whether
228cc36ccd1SDavid Schultzor not MULTIPLE_THREADS is #defined, and the helper g_*fmt routines
229cc36ccd1SDavid Schultzlisted above all do this indirectly (in gfmt_D2A(), which they all call).
230cc36ccd1SDavid Schultz
231cc36ccd1SDavid SchultzBy default, there is a private pool of memory of length 2000 bytes
232cc36ccd1SDavid Schultzfor intermediate quantities, and MALLOC (see gdtoaimp.h) is called only
233cc36ccd1SDavid Schultzif the private pool does not suffice.   2000 is large enough that MALLOC
234cc36ccd1SDavid Schultzis called only under very unusual circumstances (decimal -> binary
235cc36ccd1SDavid Schultzconversion of very long strings) for conversions to and from double
236c88250a5SDavid Schultzprecision.  For systems with preemptively scheduled multiple threads
237cc36ccd1SDavid Schultzor for conversions to extended or quad, it may be appropriate to
238cc36ccd1SDavid Schultz#define PRIVATE_MEM nnnn, where nnnn is a suitable value > 2000.
239cc36ccd1SDavid SchultzFor extended and quad precisions, -DPRIVATE_MEM=20000 is probably
240cc36ccd1SDavid Schultzplenty even for many digits at the ends of the exponent range.
241cc36ccd1SDavid SchultzUse of the private pool avoids some overhead.
242cc36ccd1SDavid Schultz
243cc36ccd1SDavid SchultzDirectory test provides some test routines.  See its README.
244cc36ccd1SDavid SchultzI've also tested this stuff (except double double conversions)
245cc36ccd1SDavid Schultzwith Vern Paxson's testbase program: see
246cc36ccd1SDavid Schultz
247cc36ccd1SDavid Schultz	V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal
248cc36ccd1SDavid Schultz	Conversion", manuscript, May 1991,
249cc36ccd1SDavid Schultz	ftp://ftp.ee.lbl.gov/testbase-report.ps.Z .
250cc36ccd1SDavid Schultz
251cc36ccd1SDavid Schultz(The same ftp directory has source for testbase.)
252cc36ccd1SDavid Schultz
253cc36ccd1SDavid SchultzSome system-dependent additions to CFLAGS in the makefile:
254cc36ccd1SDavid Schultz
255cc36ccd1SDavid Schultz	HU-UX: -Aa -Ae
256cc36ccd1SDavid Schultz	OSF (DEC Unix): -ieee_with_no_inexact
257cc36ccd1SDavid Schultz	SunOS 4.1x: -DKR_headers -DBad_float_h
258cc36ccd1SDavid Schultz
259cc36ccd1SDavid SchultzIf you want to put this stuff into a shared library and your
260cc36ccd1SDavid Schultzoperating system requires export lists for shared libraries,
261cc36ccd1SDavid Schultzthe following would be an appropriate export list:
262cc36ccd1SDavid Schultz
263cc36ccd1SDavid Schultz	dtoa
264cc36ccd1SDavid Schultz	freedtoa
265cc36ccd1SDavid Schultz	g_Qfmt
266cc36ccd1SDavid Schultz	g_ddfmt
267cc36ccd1SDavid Schultz	g_dfmt
268cc36ccd1SDavid Schultz	g_ffmt
269cc36ccd1SDavid Schultz	g_xLfmt
270cc36ccd1SDavid Schultz	g_xfmt
271cc36ccd1SDavid Schultz	gdtoa
272cc36ccd1SDavid Schultz	strtoIQ
273cc36ccd1SDavid Schultz	strtoId
274cc36ccd1SDavid Schultz	strtoIdd
275cc36ccd1SDavid Schultz	strtoIf
276cc36ccd1SDavid Schultz	strtoIx
277cc36ccd1SDavid Schultz	strtoIxL
278cc36ccd1SDavid Schultz	strtod
279cc36ccd1SDavid Schultz	strtodI
280cc36ccd1SDavid Schultz	strtodg
281cc36ccd1SDavid Schultz	strtof
282cc36ccd1SDavid Schultz	strtopQ
283cc36ccd1SDavid Schultz	strtopd
284cc36ccd1SDavid Schultz	strtopdd
285cc36ccd1SDavid Schultz	strtopf
286cc36ccd1SDavid Schultz	strtopx
287cc36ccd1SDavid Schultz	strtopxL
288cc36ccd1SDavid Schultz	strtorQ
289cc36ccd1SDavid Schultz	strtord
290cc36ccd1SDavid Schultz	strtordd
291cc36ccd1SDavid Schultz	strtorf
292cc36ccd1SDavid Schultz	strtorx
293cc36ccd1SDavid Schultz	strtorxL
294cc36ccd1SDavid Schultz
295cc36ccd1SDavid SchultzWhen time permits, I (dmg) hope to write in more detail about the
296cc36ccd1SDavid Schultzpresent conversion routines; for now, this README file must suffice.
297cc36ccd1SDavid SchultzMeanwhile, if you wish to write helper functions for other kinds of
298cc36ccd1SDavid SchultzIEEE-like arithmetic, some explanation of struct FPI and the bits
299cc36ccd1SDavid Schultzarray may be helpful.  Both gdtoa and strtodg operate on a bits array
300cc36ccd1SDavid Schultzdescribed by FPI *fpi.  The bits array is of type ULong, a 32-bit
301cc36ccd1SDavid Schultzunsigned integer type.  Floating-point numbers have fpi->nbits bits,
302cc36ccd1SDavid Schultzwith the least significant 32 bits in bits[0], the next 32 bits in
303cc36ccd1SDavid Schultzbits[1], etc.  These numbers are regarded as integers multiplied by
304cc36ccd1SDavid Schultz2^e (i.e., 2 to the power of the exponent e), where e is the second
305cc36ccd1SDavid Schultzargument (be) to gdtoa and is stored in *exp by strtodg.  The minimum
306cc36ccd1SDavid Schultzand maximum exponent values fpi->emin and fpi->emax for normalized
307cc36ccd1SDavid Schultzfloating-point numbers reflect this arrangement.  For example, the
308cc36ccd1SDavid SchultzP754 standard for binary IEEE arithmetic specifies doubles as having
309cc36ccd1SDavid Schultz53 bits, with normalized values of the form 1.xxxxx... times 2^(b-1023),
310cc36ccd1SDavid Schultzwith 52 bits (the x's) and the biased exponent b represented explicitly;
311cc36ccd1SDavid Schultzb is an unsigned integer in the range 1 <= b <= 2046 for normalized
312cc36ccd1SDavid Schultzfinite doubles, b = 0 for denormals, and b = 2047 for Infinities and NaNs.
313cc36ccd1SDavid SchultzTo turn an IEEE double into the representation used by strtodg and gdtoa,
314cc36ccd1SDavid Schultzwe multiply 1.xxxx... by 2^52 (to make it an integer) and reduce the
315cc36ccd1SDavid Schultzexponent e = (b-1023) by 52:
316cc36ccd1SDavid Schultz
317cc36ccd1SDavid Schultz	fpi->emin = 1 - 1023 - 52
318cc36ccd1SDavid Schultz	fpi->emax = 1046 - 1023 - 52
319cc36ccd1SDavid Schultz
320cc36ccd1SDavid SchultzIn various wrappers for IEEE double, we actually write -53 + 1 rather
321cc36ccd1SDavid Schultzthan -52, to emphasize that there are 53 bits including one implicit bit.
322cc36ccd1SDavid SchultzField fpi->rounding indicates the desired rounding direction, with
323cc36ccd1SDavid Schultzpossible values
324cc36ccd1SDavid Schultz	FPI_Round_zero = toward 0,
325cc36ccd1SDavid Schultz	FPI_Round_near = unbiased rounding -- the IEEE default,
326cc36ccd1SDavid Schultz	FPI_Round_up = toward +Infinity, and
327cc36ccd1SDavid Schultz	FPI_Round_down = toward -Infinity
328cc36ccd1SDavid Schultzgiven in gdtoa.h.
329cc36ccd1SDavid Schultz
330cc36ccd1SDavid SchultzField fpi->sudden_underflow indicates whether strtodg should return
331cc36ccd1SDavid Schultzdenormals or flush them to zero.  Normal floating-point numbers have
332cc36ccd1SDavid Schultzbit fpi->nbits in the bits array on.  Denormals have it off, with
333cc36ccd1SDavid Schultzexponent = fpi->emin.  Strtodg provides distinct return values for normals
334cc36ccd1SDavid Schultzand denormals; see gdtoa.h.
335cc36ccd1SDavid Schultz
33684781d47SDavid SchultzCompiling g__fmt.c, strtod.c, and strtodg.c with -DUSE_LOCALE causes
33784781d47SDavid Schultzthe decimal-point character to be taken from the current locale; otherwise
33884781d47SDavid Schultzit is '.'.
33984781d47SDavid Schultz
340ae2cbf4cSDavid SchultzSource files dtoa.c and strtod.c in this directory are derived from
341ae2cbf4cSDavid Schultznetlib's "dtoa.c from fp" and are meant to function equivalently.
342ae2cbf4cSDavid SchultzWhen compiled with Honor_FLT_ROUNDS #defined (on systems that provide
343ae2cbf4cSDavid SchultzFLT_ROUNDS and fegetround() as specified in the C99 standard), they
344ae2cbf4cSDavid Schultzhonor the current rounding mode.  Because FLT_ROUNDS is buggy on some
345ae2cbf4cSDavid Schultz(Linux) systems -- not reflecting calls on fesetround(), as the C99
346ae2cbf4cSDavid Schultzstandard says it should -- when Honor_FLT_ROUNDS is #defined, the
347ae2cbf4cSDavid Schultzcurrent rounding mode is obtained from fegetround() rather than from
348ae2cbf4cSDavid SchultzFLT_ROUNDS, unless Trust_FLT_ROUNDS is also #defined.
349ae2cbf4cSDavid Schultz
3504848dd08SDavid SchultzCompile with -DUSE_LOCALE to use the current locale; otherwise
3514848dd08SDavid Schultzdecimal points are assumed to be '.'.  With -DUSE_LOCALE, unless
3524848dd08SDavid Schultzyou also compile with -DNO_LOCALE_CACHE, the details about the
3534848dd08SDavid Schultzcurrent "decimal point" character string are cached and assumed not
3544848dd08SDavid Schultzto change during the program's execution.
3554848dd08SDavid Schultz
356*50dad48bSDavid SchultzOn machines with a 64-bit long double and perhaps a 113-bit "quad"
357*50dad48bSDavid Schultztype, you can invoke "make Printf" to add Printf (and variants, such
358*50dad48bSDavid Schultzas Fprintf) to gdtoa.a.  These are analogs, declared in stdio1.h, of
359*50dad48bSDavid Schultzprintf and fprintf, etc. in which %La, %Le, %Lf, and %Lg are for long
360*50dad48bSDavid Schultzdouble and (if appropriate) %Lqa, %Lqe, %Lqf, and %Lqg are for quad
361*50dad48bSDavid Schultzprecision printing.
362*50dad48bSDavid Schultz
363c88250a5SDavid SchultzPlease send comments to	David M. Gay (dmg at acm dot org, with " at "
364c88250a5SDavid Schultzchanged at "@" and " dot " changed to ".").
365