1cc36ccd1SDavid SchultzThis directory contains source for a library of binary -> decimal 2cc36ccd1SDavid Schultzand decimal -> binary conversion routines, for single-, double-, 3cc36ccd1SDavid Schultzand extended-precision IEEE binary floating-point arithmetic, and 4cc36ccd1SDavid Schultzother IEEE-like binary floating-point, including "double double", 5cc36ccd1SDavid Schultzas in 6cc36ccd1SDavid Schultz 7cc36ccd1SDavid Schultz T. J. Dekker, "A Floating-Point Technique for Extending the 8cc36ccd1SDavid Schultz Available Precision", Numer. Math. 18 (1971), pp. 224-242 9cc36ccd1SDavid Schultz 10cc36ccd1SDavid Schultzand 11cc36ccd1SDavid Schultz 12cc36ccd1SDavid Schultz "Inside Macintosh: PowerPC Numerics", Addison-Wesley, 1994 13cc36ccd1SDavid Schultz 14cc36ccd1SDavid SchultzThe conversion routines use double-precision floating-point arithmetic 15cc36ccd1SDavid Schultzand, where necessary, high precision integer arithmetic. The routines 16cc36ccd1SDavid Schultzare generalizations of the strtod and dtoa routines described in 17cc36ccd1SDavid Schultz 18cc36ccd1SDavid Schultz David M. Gay, "Correctly Rounded Binary-Decimal and 19cc36ccd1SDavid Schultz Decimal-Binary Conversions", Numerical Analysis Manuscript 20cc36ccd1SDavid Schultz No. 90-10, Bell Labs, Murray Hill, 1990; 21cc36ccd1SDavid Schultz http://cm.bell-labs.com/cm/cs/what/ampl/REFS/rounding.ps.gz 22cc36ccd1SDavid Schultz 23cc36ccd1SDavid Schultz(based in part on papers by Clinger and Steele & White: see the 24cc36ccd1SDavid Schultzreferences in the above paper). 25cc36ccd1SDavid Schultz 26cc36ccd1SDavid SchultzThe present conversion routines should be able to use any of IEEE binary, 27cc36ccd1SDavid SchultzVAX, or IBM-mainframe double-precision arithmetic internally, but I (dmg) 28cc36ccd1SDavid Schultzhave so far only had a chance to test them with IEEE double precision 29cc36ccd1SDavid Schultzarithmetic. 30cc36ccd1SDavid Schultz 31cc36ccd1SDavid SchultzThe core conversion routines are strtodg for decimal -> binary conversions 32cc36ccd1SDavid Schultzand gdtoa for binary -> decimal conversions. These routines operate 33cc36ccd1SDavid Schultzon arrays of unsigned 32-bit integers of type ULong, a signed 32-bit 34cc36ccd1SDavid Schultzexponent of type Long, and arithmetic characteristics described in 35cc36ccd1SDavid Schultzstruct FPI; FPI, Long, and ULong are defined in gdtoa.h. File arith.h 36cc36ccd1SDavid Schultzis supposed to provide #defines that cause gdtoa.h to define its 37cc36ccd1SDavid Schultztypes correctly. File arithchk.c is source for a program that 38cc36ccd1SDavid Schultzgenerates a suitable arith.h on all systems where I've been able to 39cc36ccd1SDavid Schultztest it. 40cc36ccd1SDavid Schultz 41cc36ccd1SDavid SchultzThe core conversion routines are meant to be called by helper routines 42cc36ccd1SDavid Schultzthat know details of the particular binary arithmetic of interest and 43cc36ccd1SDavid Schultzconvert. The present directory provides helper routines for 5 variants 44cc36ccd1SDavid Schultzof IEEE binary floating-point arithmetic, each indicated by one or 45cc36ccd1SDavid Schultztwo letters: 46cc36ccd1SDavid Schultz 47cc36ccd1SDavid Schultz f IEEE single precision 48cc36ccd1SDavid Schultz d IEEE double precision 49cc36ccd1SDavid Schultz x IEEE extended precision, as on Intel 80x87 50cc36ccd1SDavid Schultz and software emulations of Motorola 68xxx chips 51cc36ccd1SDavid Schultz that do not pad the way the 68xxx does, but 52cc36ccd1SDavid Schultz only store 80 bits 53cc36ccd1SDavid Schultz xL IEEE extended precision, as on Motorola 68xxx chips 54cc36ccd1SDavid Schultz Q quad precision, as on Sun Sparc chips 55cc36ccd1SDavid Schultz dd double double, pairs of IEEE double numbers 56cc36ccd1SDavid Schultz whose sum is the desired value 57cc36ccd1SDavid Schultz 58cc36ccd1SDavid SchultzFor decimal -> binary conversions, there are three families of 594848dd08SDavid Schultzhelper routines: one for round-nearest (or the current rounding 604848dd08SDavid Schultzmode on IEEE-arithmetic systems that provide the C99 fegetround() 614848dd08SDavid Schultzfunction, if compiled with -DHonor_FLT_ROUNDS): 62cc36ccd1SDavid Schultz 63cc36ccd1SDavid Schultz strtof 64cc36ccd1SDavid Schultz strtod 65cc36ccd1SDavid Schultz strtodd 66cc36ccd1SDavid Schultz strtopd 67cc36ccd1SDavid Schultz strtopf 68cc36ccd1SDavid Schultz strtopx 69cc36ccd1SDavid Schultz strtopxL 70cc36ccd1SDavid Schultz strtopQ 71cc36ccd1SDavid Schultz 72cc36ccd1SDavid Schultzone with rounding direction specified: 73cc36ccd1SDavid Schultz 74cc36ccd1SDavid Schultz strtorf 75cc36ccd1SDavid Schultz strtord 76cc36ccd1SDavid Schultz strtordd 77cc36ccd1SDavid Schultz strtorx 78cc36ccd1SDavid Schultz strtorxL 79cc36ccd1SDavid Schultz strtorQ 80cc36ccd1SDavid Schultz 81cc36ccd1SDavid Schultzand one for computing an interval (at most one bit wide) that contains 82cc36ccd1SDavid Schultzthe decimal number: 83cc36ccd1SDavid Schultz 84cc36ccd1SDavid Schultz strtoIf 85cc36ccd1SDavid Schultz strtoId 86cc36ccd1SDavid Schultz strtoIdd 87cc36ccd1SDavid Schultz strtoIx 88cc36ccd1SDavid Schultz strtoIxL 89cc36ccd1SDavid Schultz strtoIQ 90cc36ccd1SDavid Schultz 91cc36ccd1SDavid SchultzThe latter call strtoIg, which makes one call on strtodg and adjusts 92cc36ccd1SDavid Schultzthe result to provide the desired interval. On systems where native 93cc36ccd1SDavid Schultzarithmetic can easily make one-ulp adjustments on values in the 94cc36ccd1SDavid Schultzdesired floating-point format, it might be more efficient to use the 95cc36ccd1SDavid Schultznative arithmetic. Routine strtodI is a variant of strtoId that 96cc36ccd1SDavid Schultzillustrates one way to do this for IEEE binary double-precision 97cc36ccd1SDavid Schultzarithmetic -- but whether this is more efficient remains to be seen. 98cc36ccd1SDavid Schultz 99cc36ccd1SDavid SchultzFunctions strtod and strtof have "natural" return types, float and 100cc36ccd1SDavid Schultzdouble -- strtod is specified by the C standard, and strtof appears 101cc36ccd1SDavid Schultzin the stdlib.h of some systems, such as (at least some) Linux systems. 102cc36ccd1SDavid SchultzThe other functions write their results to their final argument(s): 103cc36ccd1SDavid Schultzto the final two argument for the strtoI... (interval) functions, 104cc36ccd1SDavid Schultzand to the final argument for the others (strtop... and strtor...). 105cc36ccd1SDavid SchultzWhere possible, these arguments have "natural" return types (double* 106cc36ccd1SDavid Schultzor float*), to permit at least some type checking. In reality, they 107cc36ccd1SDavid Schultzare viewed as arrays of ULong (or, for the "x" functions, UShort) 108cc36ccd1SDavid Schultzvalues. On systems where long double is the appropriate type, one can 109cc36ccd1SDavid Schultzpass long double* final argument(s) to these routines. The int value 110cc36ccd1SDavid Schultzthat these routines return is the return value from the call they make 111cc36ccd1SDavid Schultzon strtodg; see the enum of possible return values in gdtoa.h. 112cc36ccd1SDavid Schultz 113cc36ccd1SDavid SchultzSource files g_ddfmt.c, misc.c, smisc.c, strtod.c, strtodg.c, and ulp.c 114cc36ccd1SDavid Schultzshould use true IEEE double arithmetic (not, e.g., double extended), 115cc36ccd1SDavid Schultzat least for storing (and viewing the bits of) the variables declared 116cc36ccd1SDavid Schultz"double" within them. 117cc36ccd1SDavid Schultz 118cc36ccd1SDavid SchultzOne detail indicated in struct FPI is whether the target binary 119cc36ccd1SDavid Schultzarithmetic departs from the IEEE standard by flushing denormalized 120cc36ccd1SDavid Schultznumbers to 0. On systems that do this, the helper routines for 121cc36ccd1SDavid Schultzconversion to double-double format (when compiled with 122cc36ccd1SDavid SchultzSudden_Underflow #defined) penalize the bottom of the exponent 123cc36ccd1SDavid Schultzrange so that they return a nonzero result only when the least 124cc36ccd1SDavid Schultzsignificant bit of the less significant member of the pair of 125cc36ccd1SDavid Schultzdouble values returned can be expressed as a normalized double 126cc36ccd1SDavid Schultzvalue. An alternative would be to drop to 53-bit precision near 127cc36ccd1SDavid Schultzthe bottom of the exponent range. To get correct rounding, this 128cc36ccd1SDavid Schultzwould (in general) require two calls on strtodg (one specifying 129cc36ccd1SDavid Schultz126-bit arithmetic, then, if necessary, one specifying 53-bit 130cc36ccd1SDavid Schultzarithmetic). 131cc36ccd1SDavid Schultz 132cc36ccd1SDavid SchultzBy default, the core routine strtodg and strtod set errno to ERANGE 133cc36ccd1SDavid Schultzif the result overflows to +Infinity or underflows to 0. Compile 134cc36ccd1SDavid Schultzthese routines with NO_ERRNO #defined to inhibit errno assignments. 135cc36ccd1SDavid Schultz 136cc36ccd1SDavid SchultzRoutine strtod is based on netlib's "dtoa.c from fp", and 137cc36ccd1SDavid Schultz(f = strtod(s,se)) is more efficient for some conversions than, say, 138cc36ccd1SDavid Schultzstrtord(s,se,1,&f). Parts of strtod require true IEEE double 139cc36ccd1SDavid Schultzarithmetic with the default rounding mode (round-to-nearest) and, on 140cc36ccd1SDavid Schultzsystems with IEEE extended-precision registers, double-precision 141cc36ccd1SDavid Schultz(53-bit) rounding precision. If the machine uses (the equivalent of) 142cc36ccd1SDavid SchultzIntel 80x87 arithmetic, the call 143cc36ccd1SDavid Schultz _control87(PC_53, MCW_PC); 144cc36ccd1SDavid Schultzdoes this with many compilers. Whether this or another call is 145cc36ccd1SDavid Schultzappropriate depends on the compiler; for this to work, it may be 146cc36ccd1SDavid Schultznecessary to #include "float.h" or another system-dependent header 147cc36ccd1SDavid Schultzfile. 148cc36ccd1SDavid Schultz 149c88250a5SDavid SchultzSource file strtodnrp.c gives a strtod that does not require 53-bit 150c88250a5SDavid Schultzrounding precision on systems (such as Intel IA32 systems) that may 151c88250a5SDavid Schultzsuffer double rounding due to use of extended-precision registers. 152c88250a5SDavid SchultzFor some conversions this variant of strtod is less efficient than the 153c88250a5SDavid Schultzone in strtod.c when the latter is run with 53-bit rounding precision. 154c88250a5SDavid Schultz 155c88250a5SDavid SchultzThe values that the strto* routines return for NaNs are determined by 156c88250a5SDavid Schultzgd_qnan.h, which the makefile generates by running the program whose 157c88250a5SDavid Schultzsource is qnan.c. Note that the rules for distinguishing signaling 158c88250a5SDavid Schultzfrom quiet NaNs are system-dependent. For cross-compilation, you need 159c88250a5SDavid Schultzto determine arith.h and gd_qnan.h suitably, e.g., using the 160c88250a5SDavid Schultzarithmetic of the target machine. 161cc36ccd1SDavid Schultz 162cc36ccd1SDavid SchultzC99's hexadecimal floating-point constants are recognized by the 163cc36ccd1SDavid Schultzstrto* routines (but this feature has not yet been heavily tested). 164cc36ccd1SDavid SchultzCompiling with NO_HEX_FP #defined disables this feature. 165cc36ccd1SDavid Schultz 166c88250a5SDavid SchultzWhen compiled with -DINFNAN_CHECK, the strto* routines recognize C99's 167c88250a5SDavid SchultzNaN and Infinity syntax. Moreover, unless No_Hex_NaN is #defined, the 168c88250a5SDavid Schultzstrto* routines also recognize C99's NaN(...) syntax: they accept 169c88250a5SDavid Schultz(case insensitively) strings of the form NaN(x), where x is a string 170c88250a5SDavid Schultzof hexadecimal digits and spaces; if there is only one string of 171c88250a5SDavid Schultzhexadecimal digits, it is taken for the fraction bits of the resulting 172c88250a5SDavid SchultzNaN; if there are two or more strings of hexadecimal digits, each 173c88250a5SDavid Schultzstring is assigned to the next available sequence of 32-bit words of 174c88250a5SDavid Schultzfractions bits (starting with the most significant), right-aligned in 175c88250a5SDavid Schultzeach sequence. 176cc36ccd1SDavid Schultz 177cc36ccd1SDavid SchultzFor binary -> decimal conversions, I've provided just one family 178cc36ccd1SDavid Schultzof helper routines: 179cc36ccd1SDavid Schultz 180cc36ccd1SDavid Schultz g_ffmt 181cc36ccd1SDavid Schultz g_dfmt 182cc36ccd1SDavid Schultz g_ddfmt 183cc36ccd1SDavid Schultz g_xfmt 184cc36ccd1SDavid Schultz g_xLfmt 185cc36ccd1SDavid Schultz g_Qfmt 186cc36ccd1SDavid Schultz 187cc36ccd1SDavid Schultzwhich do a "%g" style conversion either to a specified number of decimal 188cc36ccd1SDavid Schultzplaces (if their ndig argument is positive), or to the shortest 189cc36ccd1SDavid Schultzdecimal string that rounds to the given binary floating-point value 190cc36ccd1SDavid Schultz(if ndig <= 0). They write into a buffer supplied as an argument 191cc36ccd1SDavid Schultzand return either a pointer to the end of the string (a null character) 192cc36ccd1SDavid Schultzin the buffer, if the buffer was long enough, or 0. Other forms of 193cc36ccd1SDavid Schultzconversion are easily done with the help of gdtoa(), such as %e or %f 194cc36ccd1SDavid Schultzstyle and conversions with direction of rounding specified (so that, if 195cc36ccd1SDavid Schultzdesired, the decimal value is either >= or <= the binary value). 1964848dd08SDavid SchultzOn IEEE-arithmetic systems that provide the C99 fegetround() function, 1974848dd08SDavid Schultzif compiled with -DHonor_FLT_ROUNDS, these routines honor the current 1984848dd08SDavid Schultzrounding mode. 199cc36ccd1SDavid Schultz 200cc36ccd1SDavid SchultzFor an example of more general conversions based on dtoa(), see 201cc36ccd1SDavid Schultznetlib's "printf.c from ampl/solvers". 202cc36ccd1SDavid Schultz 203cc36ccd1SDavid SchultzFor double-double -> decimal, g_ddfmt() assumes IEEE-like arithmetic 204cc36ccd1SDavid Schultzof precision max(126, #bits(input)) bits, where #bits(input) is the 205cc36ccd1SDavid Schultznumber of mantissa bits needed to represent the sum of the two double 206cc36ccd1SDavid Schultzvalues in the input. 207cc36ccd1SDavid Schultz 208cc36ccd1SDavid SchultzThe makefile creates a library, gdtoa.a. To use the helper 209cc36ccd1SDavid Schultzroutines, a program only needs to include gdtoa.h. All the 210cc36ccd1SDavid Schultzsource files for gdtoa.a include a more extensive gdtoaimp.h; 211cc36ccd1SDavid Schultzamong other things, gdtoaimp.h has #defines that make "internal" 212cc36ccd1SDavid Schultznames end in _D2A. To make a "system" library, one could modify 213cc36ccd1SDavid Schultzthese #defines to make the names start with __. 214cc36ccd1SDavid Schultz 215cc36ccd1SDavid SchultzVarious comments about possible #defines appear in gdtoaimp.h, 216cc36ccd1SDavid Schultzbut for most purposes, arith.h should set suitable #defines. 217cc36ccd1SDavid Schultz 218cc36ccd1SDavid SchultzSystems with preemptive scheduling of multiple threads require some 219cc36ccd1SDavid Schultzmanual intervention. On such systems, it's necessary to compile 220cc36ccd1SDavid Schultzdmisc.c, dtoa.c gdota.c, and misc.c with MULTIPLE_THREADS #defined, 221cc36ccd1SDavid Schultzand to provide (or suitably #define) two locks, acquired by 222cc36ccd1SDavid SchultzACQUIRE_DTOA_LOCK(n) and freed by FREE_DTOA_LOCK(n) for n = 0 or 1. 223cc36ccd1SDavid Schultz(The second lock, accessed in pow5mult, ensures lazy evaluation of 224cc36ccd1SDavid Schultzonly one copy of high powers of 5; omitting this lock would introduce 225cc36ccd1SDavid Schultza small probability of wasting memory, but would otherwise be harmless.) 226cc36ccd1SDavid SchultzRoutines that call dtoa or gdtoa directly must also invoke freedtoa(s) 227cc36ccd1SDavid Schultzto free the value s returned by dtoa or gdtoa. It's OK to do so whether 228cc36ccd1SDavid Schultzor not MULTIPLE_THREADS is #defined, and the helper g_*fmt routines 229cc36ccd1SDavid Schultzlisted above all do this indirectly (in gfmt_D2A(), which they all call). 230cc36ccd1SDavid Schultz 231cc36ccd1SDavid SchultzBy default, there is a private pool of memory of length 2000 bytes 232cc36ccd1SDavid Schultzfor intermediate quantities, and MALLOC (see gdtoaimp.h) is called only 233cc36ccd1SDavid Schultzif the private pool does not suffice. 2000 is large enough that MALLOC 234cc36ccd1SDavid Schultzis called only under very unusual circumstances (decimal -> binary 235cc36ccd1SDavid Schultzconversion of very long strings) for conversions to and from double 236c88250a5SDavid Schultzprecision. For systems with preemptively scheduled multiple threads 237cc36ccd1SDavid Schultzor for conversions to extended or quad, it may be appropriate to 238cc36ccd1SDavid Schultz#define PRIVATE_MEM nnnn, where nnnn is a suitable value > 2000. 239cc36ccd1SDavid SchultzFor extended and quad precisions, -DPRIVATE_MEM=20000 is probably 240cc36ccd1SDavid Schultzplenty even for many digits at the ends of the exponent range. 241cc36ccd1SDavid SchultzUse of the private pool avoids some overhead. 242cc36ccd1SDavid Schultz 243cc36ccd1SDavid SchultzDirectory test provides some test routines. See its README. 244cc36ccd1SDavid SchultzI've also tested this stuff (except double double conversions) 245cc36ccd1SDavid Schultzwith Vern Paxson's testbase program: see 246cc36ccd1SDavid Schultz 247cc36ccd1SDavid Schultz V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal 248cc36ccd1SDavid Schultz Conversion", manuscript, May 1991, 249cc36ccd1SDavid Schultz ftp://ftp.ee.lbl.gov/testbase-report.ps.Z . 250cc36ccd1SDavid Schultz 251cc36ccd1SDavid Schultz(The same ftp directory has source for testbase.) 252cc36ccd1SDavid Schultz 253cc36ccd1SDavid SchultzSome system-dependent additions to CFLAGS in the makefile: 254cc36ccd1SDavid Schultz 255cc36ccd1SDavid Schultz HU-UX: -Aa -Ae 256cc36ccd1SDavid Schultz OSF (DEC Unix): -ieee_with_no_inexact 257cc36ccd1SDavid Schultz SunOS 4.1x: -DKR_headers -DBad_float_h 258cc36ccd1SDavid Schultz 259cc36ccd1SDavid SchultzIf you want to put this stuff into a shared library and your 260cc36ccd1SDavid Schultzoperating system requires export lists for shared libraries, 261cc36ccd1SDavid Schultzthe following would be an appropriate export list: 262cc36ccd1SDavid Schultz 263cc36ccd1SDavid Schultz dtoa 264cc36ccd1SDavid Schultz freedtoa 265cc36ccd1SDavid Schultz g_Qfmt 266cc36ccd1SDavid Schultz g_ddfmt 267cc36ccd1SDavid Schultz g_dfmt 268cc36ccd1SDavid Schultz g_ffmt 269cc36ccd1SDavid Schultz g_xLfmt 270cc36ccd1SDavid Schultz g_xfmt 271cc36ccd1SDavid Schultz gdtoa 272cc36ccd1SDavid Schultz strtoIQ 273cc36ccd1SDavid Schultz strtoId 274cc36ccd1SDavid Schultz strtoIdd 275cc36ccd1SDavid Schultz strtoIf 276cc36ccd1SDavid Schultz strtoIx 277cc36ccd1SDavid Schultz strtoIxL 278cc36ccd1SDavid Schultz strtod 279cc36ccd1SDavid Schultz strtodI 280cc36ccd1SDavid Schultz strtodg 281cc36ccd1SDavid Schultz strtof 282cc36ccd1SDavid Schultz strtopQ 283cc36ccd1SDavid Schultz strtopd 284cc36ccd1SDavid Schultz strtopdd 285cc36ccd1SDavid Schultz strtopf 286cc36ccd1SDavid Schultz strtopx 287cc36ccd1SDavid Schultz strtopxL 288cc36ccd1SDavid Schultz strtorQ 289cc36ccd1SDavid Schultz strtord 290cc36ccd1SDavid Schultz strtordd 291cc36ccd1SDavid Schultz strtorf 292cc36ccd1SDavid Schultz strtorx 293cc36ccd1SDavid Schultz strtorxL 294cc36ccd1SDavid Schultz 295cc36ccd1SDavid SchultzWhen time permits, I (dmg) hope to write in more detail about the 296cc36ccd1SDavid Schultzpresent conversion routines; for now, this README file must suffice. 297cc36ccd1SDavid SchultzMeanwhile, if you wish to write helper functions for other kinds of 298cc36ccd1SDavid SchultzIEEE-like arithmetic, some explanation of struct FPI and the bits 299cc36ccd1SDavid Schultzarray may be helpful. Both gdtoa and strtodg operate on a bits array 300cc36ccd1SDavid Schultzdescribed by FPI *fpi. The bits array is of type ULong, a 32-bit 301cc36ccd1SDavid Schultzunsigned integer type. Floating-point numbers have fpi->nbits bits, 302cc36ccd1SDavid Schultzwith the least significant 32 bits in bits[0], the next 32 bits in 303cc36ccd1SDavid Schultzbits[1], etc. These numbers are regarded as integers multiplied by 304cc36ccd1SDavid Schultz2^e (i.e., 2 to the power of the exponent e), where e is the second 305cc36ccd1SDavid Schultzargument (be) to gdtoa and is stored in *exp by strtodg. The minimum 306cc36ccd1SDavid Schultzand maximum exponent values fpi->emin and fpi->emax for normalized 307cc36ccd1SDavid Schultzfloating-point numbers reflect this arrangement. For example, the 308cc36ccd1SDavid SchultzP754 standard for binary IEEE arithmetic specifies doubles as having 309cc36ccd1SDavid Schultz53 bits, with normalized values of the form 1.xxxxx... times 2^(b-1023), 310cc36ccd1SDavid Schultzwith 52 bits (the x's) and the biased exponent b represented explicitly; 311cc36ccd1SDavid Schultzb is an unsigned integer in the range 1 <= b <= 2046 for normalized 312cc36ccd1SDavid Schultzfinite doubles, b = 0 for denormals, and b = 2047 for Infinities and NaNs. 313cc36ccd1SDavid SchultzTo turn an IEEE double into the representation used by strtodg and gdtoa, 314cc36ccd1SDavid Schultzwe multiply 1.xxxx... by 2^52 (to make it an integer) and reduce the 315cc36ccd1SDavid Schultzexponent e = (b-1023) by 52: 316cc36ccd1SDavid Schultz 317cc36ccd1SDavid Schultz fpi->emin = 1 - 1023 - 52 318cc36ccd1SDavid Schultz fpi->emax = 1046 - 1023 - 52 319cc36ccd1SDavid Schultz 320cc36ccd1SDavid SchultzIn various wrappers for IEEE double, we actually write -53 + 1 rather 321cc36ccd1SDavid Schultzthan -52, to emphasize that there are 53 bits including one implicit bit. 322cc36ccd1SDavid SchultzField fpi->rounding indicates the desired rounding direction, with 323cc36ccd1SDavid Schultzpossible values 324cc36ccd1SDavid Schultz FPI_Round_zero = toward 0, 325cc36ccd1SDavid Schultz FPI_Round_near = unbiased rounding -- the IEEE default, 326cc36ccd1SDavid Schultz FPI_Round_up = toward +Infinity, and 327cc36ccd1SDavid Schultz FPI_Round_down = toward -Infinity 328cc36ccd1SDavid Schultzgiven in gdtoa.h. 329cc36ccd1SDavid Schultz 330cc36ccd1SDavid SchultzField fpi->sudden_underflow indicates whether strtodg should return 331cc36ccd1SDavid Schultzdenormals or flush them to zero. Normal floating-point numbers have 332cc36ccd1SDavid Schultzbit fpi->nbits in the bits array on. Denormals have it off, with 333cc36ccd1SDavid Schultzexponent = fpi->emin. Strtodg provides distinct return values for normals 334cc36ccd1SDavid Schultzand denormals; see gdtoa.h. 335cc36ccd1SDavid Schultz 33684781d47SDavid SchultzCompiling g__fmt.c, strtod.c, and strtodg.c with -DUSE_LOCALE causes 33784781d47SDavid Schultzthe decimal-point character to be taken from the current locale; otherwise 33884781d47SDavid Schultzit is '.'. 33984781d47SDavid Schultz 340ae2cbf4cSDavid SchultzSource files dtoa.c and strtod.c in this directory are derived from 341ae2cbf4cSDavid Schultznetlib's "dtoa.c from fp" and are meant to function equivalently. 342ae2cbf4cSDavid SchultzWhen compiled with Honor_FLT_ROUNDS #defined (on systems that provide 343ae2cbf4cSDavid SchultzFLT_ROUNDS and fegetround() as specified in the C99 standard), they 344ae2cbf4cSDavid Schultzhonor the current rounding mode. Because FLT_ROUNDS is buggy on some 345ae2cbf4cSDavid Schultz(Linux) systems -- not reflecting calls on fesetround(), as the C99 346ae2cbf4cSDavid Schultzstandard says it should -- when Honor_FLT_ROUNDS is #defined, the 347ae2cbf4cSDavid Schultzcurrent rounding mode is obtained from fegetround() rather than from 348ae2cbf4cSDavid SchultzFLT_ROUNDS, unless Trust_FLT_ROUNDS is also #defined. 349ae2cbf4cSDavid Schultz 3504848dd08SDavid SchultzCompile with -DUSE_LOCALE to use the current locale; otherwise 3514848dd08SDavid Schultzdecimal points are assumed to be '.'. With -DUSE_LOCALE, unless 3524848dd08SDavid Schultzyou also compile with -DNO_LOCALE_CACHE, the details about the 3534848dd08SDavid Schultzcurrent "decimal point" character string are cached and assumed not 3544848dd08SDavid Schultzto change during the program's execution. 3554848dd08SDavid Schultz 356*50dad48bSDavid SchultzOn machines with a 64-bit long double and perhaps a 113-bit "quad" 357*50dad48bSDavid Schultztype, you can invoke "make Printf" to add Printf (and variants, such 358*50dad48bSDavid Schultzas Fprintf) to gdtoa.a. These are analogs, declared in stdio1.h, of 359*50dad48bSDavid Schultzprintf and fprintf, etc. in which %La, %Le, %Lf, and %Lg are for long 360*50dad48bSDavid Schultzdouble and (if appropriate) %Lqa, %Lqe, %Lqf, and %Lqg are for quad 361*50dad48bSDavid Schultzprecision printing. 362*50dad48bSDavid Schultz 363c88250a5SDavid SchultzPlease send comments to David M. Gay (dmg at acm dot org, with " at " 364c88250a5SDavid Schultzchanged at "@" and " dot " changed to "."). 365