1 /* nfa - NFA construction routines */
2
3 /* Copyright (c) 1990 The Regents of the University of California. */
4 /* All rights reserved. */
5
6 /* This code is derived from software contributed to Berkeley by */
7 /* Vern Paxson. */
8
9 /* The United States Government has rights in this work pursuant */
10 /* to contract no. DE-AC03-76SF00098 between the United States */
11 /* Department of Energy and the University of California. */
12
13 /* This file is part of flex. */
14
15 /* Redistribution and use in source and binary forms, with or without */
16 /* modification, are permitted provided that the following conditions */
17 /* are met: */
18
19 /* 1. Redistributions of source code must retain the above copyright */
20 /* notice, this list of conditions and the following disclaimer. */
21 /* 2. Redistributions in binary form must reproduce the above copyright */
22 /* notice, this list of conditions and the following disclaimer in the */
23 /* documentation and/or other materials provided with the distribution. */
24
25 /* Neither the name of the University nor the names of its contributors */
26 /* may be used to endorse or promote products derived from this software */
27 /* without specific prior written permission. */
28
29 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32 /* PURPOSE. */
33
34 #include "flexdef.h"
35
36
37 /* declare functions that have forward references */
38
39 int dupmachine(int);
40 void mkxtion(int, int);
41
42
43 /* add_accept - add an accepting state to a machine
44 *
45 * accepting_number becomes mach's accepting number.
46 */
47
add_accept(int mach,int accepting_number)48 void add_accept (int mach, int accepting_number)
49 {
50 /* Hang the accepting number off an epsilon state. if it is associated
51 * with a state that has a non-epsilon out-transition, then the state
52 * will accept BEFORE it makes that transition, i.e., one character
53 * too soon.
54 */
55
56 if (transchar[finalst[mach]] == SYM_EPSILON)
57 accptnum[finalst[mach]] = accepting_number;
58
59 else {
60 int astate = mkstate (SYM_EPSILON);
61
62 accptnum[astate] = accepting_number;
63 (void) link_machines (mach, astate);
64 }
65 }
66
67
68 /* copysingl - make a given number of copies of a singleton machine
69 *
70 * synopsis
71 *
72 * newsng = copysingl( singl, num );
73 *
74 * newsng - a new singleton composed of num copies of singl
75 * singl - a singleton machine
76 * num - the number of copies of singl to be present in newsng
77 */
78
copysingl(int singl,int num)79 int copysingl (int singl, int num)
80 {
81 int copy, i;
82
83 copy = mkstate (SYM_EPSILON);
84
85 for (i = 1; i <= num; ++i)
86 copy = link_machines (copy, dupmachine (singl));
87
88 return copy;
89 }
90
91
92 /* dumpnfa - debugging routine to write out an nfa */
93
dumpnfa(int state1)94 void dumpnfa (int state1)
95 {
96 int sym, tsp1, tsp2, anum, ns;
97
98 fprintf (stderr,
99 _
100 ("\n\n********** beginning dump of nfa with start state %d\n"),
101 state1);
102
103 /* We probably should loop starting at firstst[state1] and going to
104 * lastst[state1], but they're not maintained properly when we "or"
105 * all of the rules together. So we use our knowledge that the machine
106 * starts at state 1 and ends at lastnfa.
107 */
108
109 /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
110 for (ns = 1; ns <= lastnfa; ++ns) {
111 fprintf (stderr, _("state # %4d\t"), ns);
112
113 sym = transchar[ns];
114 tsp1 = trans1[ns];
115 tsp2 = trans2[ns];
116 anum = accptnum[ns];
117
118 fprintf (stderr, "%3d: %4d, %4d", sym, tsp1, tsp2);
119
120 if (anum != NIL)
121 fprintf (stderr, " [%d]", anum);
122
123 fprintf (stderr, "\n");
124 }
125
126 fprintf (stderr, _("********** end of dump\n"));
127 }
128
129
130 /* dupmachine - make a duplicate of a given machine
131 *
132 * synopsis
133 *
134 * copy = dupmachine( mach );
135 *
136 * copy - holds duplicate of mach
137 * mach - machine to be duplicated
138 *
139 * note that the copy of mach is NOT an exact duplicate; rather, all the
140 * transition states values are adjusted so that the copy is self-contained,
141 * as the original should have been.
142 *
143 * also note that the original MUST be contiguous, with its low and high
144 * states accessible by the arrays firstst and lastst
145 */
146
dupmachine(int mach)147 int dupmachine (int mach)
148 {
149 int i, init, state_offset;
150 int state = 0;
151 int last = lastst[mach];
152
153 for (i = firstst[mach]; i <= last; ++i) {
154 state = mkstate (transchar[i]);
155
156 if (trans1[i] != NO_TRANSITION) {
157 mkxtion (finalst[state], trans1[i] + state - i);
158
159 if (transchar[i] == SYM_EPSILON &&
160 trans2[i] != NO_TRANSITION)
161 mkxtion (finalst[state],
162 trans2[i] + state - i);
163 }
164
165 accptnum[state] = accptnum[i];
166 }
167
168 if (state == 0)
169 flexfatal (_("empty machine in dupmachine()"));
170
171 state_offset = state - i + 1;
172
173 init = mach + state_offset;
174 firstst[init] = firstst[mach] + state_offset;
175 finalst[init] = finalst[mach] + state_offset;
176 lastst[init] = lastst[mach] + state_offset;
177
178 return init;
179 }
180
181
182 /* finish_rule - finish up the processing for a rule
183 *
184 * An accepting number is added to the given machine. If variable_trail_rule
185 * is true then the rule has trailing context and both the head and trail
186 * are variable size. Otherwise if headcnt or trailcnt is non-zero then
187 * the machine recognizes a pattern with trailing context and headcnt is
188 * the number of characters in the matched part of the pattern, or zero
189 * if the matched part has variable length. trailcnt is the number of
190 * trailing context characters in the pattern, or zero if the trailing
191 * context has variable length.
192 */
193
finish_rule(int mach,int variable_trail_rule,int headcnt,int trailcnt,int pcont_act)194 void finish_rule (int mach, int variable_trail_rule, int headcnt, int trailcnt,
195 int pcont_act)
196 {
197 char action_text[MAXLINE];
198
199 add_accept (mach, num_rules);
200
201 /* We did this in new_rule(), but it often gets the wrong
202 * number because we do it before we start parsing the current rule.
203 */
204 rule_linenum[num_rules] = linenum;
205
206 /* If this is a continued action, then the line-number has already
207 * been updated, giving us the wrong number.
208 */
209 if (continued_action)
210 --rule_linenum[num_rules];
211
212
213 /* If the previous rule was continued action, then we inherit the
214 * previous newline flag, possibly overriding the current one.
215 */
216 if (pcont_act && rule_has_nl[num_rules - 1])
217 rule_has_nl[num_rules] = true;
218
219 snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
220 add_action (action_text);
221 if (rule_has_nl[num_rules]) {
222 snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
223 num_rules);
224 add_action (action_text);
225 }
226
227
228 if (variable_trail_rule) {
229 rule_type[num_rules] = RULE_VARIABLE;
230
231 if (performance_report > 0)
232 fprintf (stderr,
233 _
234 ("Variable trailing context rule at line %d\n"),
235 rule_linenum[num_rules]);
236
237 variable_trailing_context_rules = true;
238 }
239
240 else {
241 rule_type[num_rules] = RULE_NORMAL;
242
243 if (headcnt > 0 || trailcnt > 0) {
244 /* Do trailing context magic to not match the trailing
245 * characters.
246 */
247 char *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
248 char *scanner_bp = "yy_bp";
249
250 add_action
251 ("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
252
253 if (headcnt > 0) {
254 if (rule_has_nl[num_rules]) {
255 snprintf (action_text, sizeof(action_text),
256 "YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
257 add_action (action_text);
258 }
259 snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
260 scanner_cp, scanner_bp, headcnt);
261 add_action (action_text);
262 }
263
264 else {
265 if (rule_has_nl[num_rules]) {
266 snprintf (action_text, sizeof(action_text),
267 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
268 add_action (action_text);
269 }
270
271 snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
272 scanner_cp, trailcnt);
273 add_action (action_text);
274 }
275
276 add_action
277 ("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
278 }
279 }
280
281 /* Okay, in the action code at this point yytext and yyleng have
282 * their proper final values for this rule, so here's the point
283 * to do any user action. But don't do it for continued actions,
284 * as that'll result in multiple YY_RULE_SETUP's.
285 */
286 if (!continued_action)
287 add_action ("YY_RULE_SETUP\n");
288
289 line_directive_out(NULL, 1);
290 add_action("[[");
291 }
292
293
294 /* link_machines - connect two machines together
295 *
296 * synopsis
297 *
298 * new = link_machines( first, last );
299 *
300 * new - a machine constructed by connecting first to last
301 * first - the machine whose successor is to be last
302 * last - the machine whose predecessor is to be first
303 *
304 * note: this routine concatenates the machine first with the machine
305 * last to produce a machine new which will pattern-match first first
306 * and then last, and will fail if either of the sub-patterns fails.
307 * FIRST is set to new by the operation. last is unmolested.
308 */
309
link_machines(int first,int last)310 int link_machines (int first, int last)
311 {
312 if (first == NIL)
313 return last;
314
315 else if (last == NIL)
316 return first;
317
318 else {
319 mkxtion (finalst[first], last);
320 finalst[first] = finalst[last];
321 lastst[first] = MAX (lastst[first], lastst[last]);
322 firstst[first] = MIN (firstst[first], firstst[last]);
323
324 return first;
325 }
326 }
327
328
329 /* mark_beginning_as_normal - mark each "beginning" state in a machine
330 * as being a "normal" (i.e., not trailing context-
331 * associated) states
332 *
333 * The "beginning" states are the epsilon closure of the first state
334 */
335
mark_beginning_as_normal(int mach)336 void mark_beginning_as_normal (int mach)
337 {
338 switch (state_type[mach]) {
339 case STATE_NORMAL:
340 /* Oh, we've already visited here. */
341 return;
342
343 case STATE_TRAILING_CONTEXT:
344 state_type[mach] = STATE_NORMAL;
345
346 if (transchar[mach] == SYM_EPSILON) {
347 if (trans1[mach] != NO_TRANSITION)
348 mark_beginning_as_normal (trans1[mach]);
349
350 if (trans2[mach] != NO_TRANSITION)
351 mark_beginning_as_normal (trans2[mach]);
352 }
353 break;
354
355 default:
356 flexerror (_
357 ("bad state type in mark_beginning_as_normal()"));
358 break;
359 }
360 }
361
362
363 /* mkbranch - make a machine that branches to two machines
364 *
365 * synopsis
366 *
367 * branch = mkbranch( first, second );
368 *
369 * branch - a machine which matches either first's pattern or second's
370 * first, second - machines whose patterns are to be or'ed (the | operator)
371 *
372 * Note that first and second are NEITHER destroyed by the operation. Also,
373 * the resulting machine CANNOT be used with any other "mk" operation except
374 * more mkbranch's. Compare with mkor()
375 */
376
mkbranch(int first,int second)377 int mkbranch (int first, int second)
378 {
379 int eps;
380
381 if (first == NO_TRANSITION)
382 return second;
383
384 else if (second == NO_TRANSITION)
385 return first;
386
387 eps = mkstate (SYM_EPSILON);
388
389 mkxtion (eps, first);
390 mkxtion (eps, second);
391
392 return eps;
393 }
394
395
396 /* mkclos - convert a machine into a closure
397 *
398 * synopsis
399 * new = mkclos( state );
400 *
401 * new - a new state which matches the closure of "state"
402 */
403
mkclos(int state)404 int mkclos (int state)
405 {
406 return mkopt (mkposcl (state));
407 }
408
409
410 /* mkopt - make a machine optional
411 *
412 * synopsis
413 *
414 * new = mkopt( mach );
415 *
416 * new - a machine which optionally matches whatever mach matched
417 * mach - the machine to make optional
418 *
419 * notes:
420 * 1. mach must be the last machine created
421 * 2. mach is destroyed by the call
422 */
423
mkopt(int mach)424 int mkopt (int mach)
425 {
426 int eps;
427
428 if (!SUPER_FREE_EPSILON (finalst[mach])) {
429 eps = mkstate (SYM_EPSILON);
430 mach = link_machines (mach, eps);
431 }
432
433 /* Can't skimp on the following if FREE_EPSILON(mach) is true because
434 * some state interior to "mach" might point back to the beginning
435 * for a closure.
436 */
437 eps = mkstate (SYM_EPSILON);
438 mach = link_machines (eps, mach);
439
440 mkxtion (mach, finalst[mach]);
441
442 return mach;
443 }
444
445
446 /* mkor - make a machine that matches either one of two machines
447 *
448 * synopsis
449 *
450 * new = mkor( first, second );
451 *
452 * new - a machine which matches either first's pattern or second's
453 * first, second - machines whose patterns are to be or'ed (the | operator)
454 *
455 * note that first and second are both destroyed by the operation
456 * the code is rather convoluted because an attempt is made to minimize
457 * the number of epsilon states needed
458 */
459
mkor(int first,int second)460 int mkor (int first, int second)
461 {
462 int eps, orend;
463
464 if (first == NIL)
465 return second;
466
467 else if (second == NIL)
468 return first;
469
470 else {
471 /* See comment in mkopt() about why we can't use the first
472 * state of "first" or "second" if they satisfy "FREE_EPSILON".
473 */
474 eps = mkstate (SYM_EPSILON);
475
476 first = link_machines (eps, first);
477
478 mkxtion (first, second);
479
480 if (SUPER_FREE_EPSILON (finalst[first]) &&
481 accptnum[finalst[first]] == NIL) {
482 orend = finalst[first];
483 mkxtion (finalst[second], orend);
484 }
485
486 else if (SUPER_FREE_EPSILON (finalst[second]) &&
487 accptnum[finalst[second]] == NIL) {
488 orend = finalst[second];
489 mkxtion (finalst[first], orend);
490 }
491
492 else {
493 eps = mkstate (SYM_EPSILON);
494
495 first = link_machines (first, eps);
496 orend = finalst[first];
497
498 mkxtion (finalst[second], orend);
499 }
500 }
501
502 finalst[first] = orend;
503 return first;
504 }
505
506
507 /* mkposcl - convert a machine into a positive closure
508 *
509 * synopsis
510 * new = mkposcl( state );
511 *
512 * new - a machine matching the positive closure of "state"
513 */
514
mkposcl(int state)515 int mkposcl (int state)
516 {
517 int eps;
518
519 if (SUPER_FREE_EPSILON (finalst[state])) {
520 mkxtion (finalst[state], state);
521 return state;
522 }
523
524 else {
525 eps = mkstate (SYM_EPSILON);
526 mkxtion (eps, state);
527 return link_machines (state, eps);
528 }
529 }
530
531
532 /* mkrep - make a replicated machine
533 *
534 * synopsis
535 * new = mkrep( mach, lb, ub );
536 *
537 * new - a machine that matches whatever "mach" matched from "lb"
538 * number of times to "ub" number of times
539 *
540 * note
541 * if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
542 */
543
mkrep(int mach,int lb,int ub)544 int mkrep (int mach, int lb, int ub)
545 {
546 int base_mach, tail, copy, i;
547
548 base_mach = copysingl (mach, lb - 1);
549
550 if (ub == INFINITE_REPEAT) {
551 copy = dupmachine (mach);
552 mach = link_machines (mach,
553 link_machines (base_mach,
554 mkclos (copy)));
555 }
556
557 else {
558 tail = mkstate (SYM_EPSILON);
559
560 for (i = lb; i < ub; ++i) {
561 copy = dupmachine (mach);
562 tail = mkopt (link_machines (copy, tail));
563 }
564
565 mach =
566 link_machines (mach,
567 link_machines (base_mach, tail));
568 }
569
570 return mach;
571 }
572
573
574 /* mkstate - create a state with a transition on a given symbol
575 *
576 * synopsis
577 *
578 * state = mkstate( sym );
579 *
580 * state - a new state matching sym
581 * sym - the symbol the new state is to have an out-transition on
582 *
583 * note that this routine makes new states in ascending order through the
584 * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
585 * relies on machines being made in ascending order and that they are
586 * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
587 * that it admittedly is)
588 */
589
mkstate(int sym)590 int mkstate (int sym)
591 {
592 if (++lastnfa >= current_mns) {
593 if ((current_mns += MNS_INCREMENT) >= maximum_mns)
594 lerr(_
595 ("input rules are too complicated (>= %d NFA states)"),
596 current_mns);
597
598 ++num_reallocs;
599
600 firstst = reallocate_integer_array (firstst, current_mns);
601 lastst = reallocate_integer_array (lastst, current_mns);
602 finalst = reallocate_integer_array (finalst, current_mns);
603 transchar =
604 reallocate_integer_array (transchar, current_mns);
605 trans1 = reallocate_integer_array (trans1, current_mns);
606 trans2 = reallocate_integer_array (trans2, current_mns);
607 accptnum =
608 reallocate_integer_array (accptnum, current_mns);
609 assoc_rule =
610 reallocate_integer_array (assoc_rule, current_mns);
611 state_type =
612 reallocate_integer_array (state_type, current_mns);
613 }
614
615 firstst[lastnfa] = lastnfa;
616 finalst[lastnfa] = lastnfa;
617 lastst[lastnfa] = lastnfa;
618 transchar[lastnfa] = sym;
619 trans1[lastnfa] = NO_TRANSITION;
620 trans2[lastnfa] = NO_TRANSITION;
621 accptnum[lastnfa] = NIL;
622 assoc_rule[lastnfa] = num_rules;
623 state_type[lastnfa] = current_state_type;
624
625 /* Fix up equivalence classes base on this transition. Note that any
626 * character which has its own transition gets its own equivalence
627 * class. Thus only characters which are only in character classes
628 * have a chance at being in the same equivalence class. E.g. "a|b"
629 * puts 'a' and 'b' into two different equivalence classes. "[ab]"
630 * puts them in the same equivalence class (barring other differences
631 * elsewhere in the input).
632 */
633
634 if (sym < 0) {
635 /* We don't have to update the equivalence classes since
636 * that was already done when the ccl was created for the
637 * first time.
638 */
639 }
640
641 else if (sym == SYM_EPSILON)
642 ++numeps;
643
644 else {
645 check_char (sym);
646
647 if (useecs)
648 /* Map NUL's to csize. */
649 mkechar (sym ? sym : csize, nextecm, ecgroup);
650 }
651
652 return lastnfa;
653 }
654
655
656 /* mkxtion - make a transition from one state to another
657 *
658 * synopsis
659 *
660 * mkxtion( statefrom, stateto );
661 *
662 * statefrom - the state from which the transition is to be made
663 * stateto - the state to which the transition is to be made
664 */
665
mkxtion(int statefrom,int stateto)666 void mkxtion (int statefrom, int stateto)
667 {
668 if (trans1[statefrom] == NO_TRANSITION)
669 trans1[statefrom] = stateto;
670
671 else if ((transchar[statefrom] != SYM_EPSILON) ||
672 (trans2[statefrom] != NO_TRANSITION))
673 flexfatal (_("found too many transitions in mkxtion()"));
674
675 else { /* second out-transition for an epsilon state */
676 ++eps2;
677 trans2[statefrom] = stateto;
678 }
679 }
680
681 /* new_rule - initialize for a new rule */
682
new_rule(void)683 void new_rule (void)
684 {
685 if (++num_rules >= current_max_rules) {
686 ++num_reallocs;
687 current_max_rules += MAX_RULES_INCREMENT;
688 rule_type = reallocate_integer_array (rule_type,
689 current_max_rules);
690 rule_linenum = reallocate_integer_array (rule_linenum,
691 current_max_rules);
692 rule_useful = reallocate_integer_array (rule_useful,
693 current_max_rules);
694 rule_has_nl = reallocate_bool_array (rule_has_nl,
695 current_max_rules);
696 }
697
698 if (num_rules > MAX_RULE)
699 lerr (_("too many rules (> %d)!"), MAX_RULE);
700
701 rule_linenum[num_rules] = linenum;
702 rule_useful[num_rules] = false;
703 rule_has_nl[num_rules] = false;
704 }
705