1 /*- 2 * Copyright (c) 2009-2014 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 #include <sys/param.h> 29 #include <sys/queue.h> 30 #include <ar.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3155 2015-02-15 19:15:57Z emaste $"); 51 52 /* 53 * readelf(1) options. 54 */ 55 #define RE_AA 0x00000001 56 #define RE_C 0x00000002 57 #define RE_DD 0x00000004 58 #define RE_D 0x00000008 59 #define RE_G 0x00000010 60 #define RE_H 0x00000020 61 #define RE_II 0x00000040 62 #define RE_I 0x00000080 63 #define RE_L 0x00000100 64 #define RE_NN 0x00000200 65 #define RE_N 0x00000400 66 #define RE_P 0x00000800 67 #define RE_R 0x00001000 68 #define RE_SS 0x00002000 69 #define RE_S 0x00004000 70 #define RE_T 0x00008000 71 #define RE_U 0x00010000 72 #define RE_VV 0x00020000 73 #define RE_WW 0x00040000 74 #define RE_W 0x00080000 75 #define RE_X 0x00100000 76 77 /* 78 * dwarf dump options. 79 */ 80 #define DW_A 0x00000001 81 #define DW_FF 0x00000002 82 #define DW_F 0x00000004 83 #define DW_I 0x00000008 84 #define DW_LL 0x00000010 85 #define DW_L 0x00000020 86 #define DW_M 0x00000040 87 #define DW_O 0x00000080 88 #define DW_P 0x00000100 89 #define DW_RR 0x00000200 90 #define DW_R 0x00000400 91 #define DW_S 0x00000800 92 93 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 94 DW_R | DW_RR | DW_S) 95 96 /* 97 * readelf(1) run control flags. 98 */ 99 #define DISPLAY_FILENAME 0x0001 100 101 /* 102 * Internal data structure for sections. 103 */ 104 struct section { 105 const char *name; /* section name */ 106 Elf_Scn *scn; /* section scn */ 107 uint64_t off; /* section offset */ 108 uint64_t sz; /* section size */ 109 uint64_t entsize; /* section entsize */ 110 uint64_t align; /* section alignment */ 111 uint64_t type; /* section type */ 112 uint64_t flags; /* section flags */ 113 uint64_t addr; /* section virtual addr */ 114 uint32_t link; /* section link ndx */ 115 uint32_t info; /* section info ndx */ 116 }; 117 118 struct dumpop { 119 union { 120 size_t si; /* section index */ 121 const char *sn; /* section name */ 122 } u; 123 enum { 124 DUMP_BY_INDEX = 0, 125 DUMP_BY_NAME 126 } type; /* dump type */ 127 #define HEX_DUMP 0x0001 128 #define STR_DUMP 0x0002 129 int op; /* dump operation */ 130 STAILQ_ENTRY(dumpop) dumpop_list; 131 }; 132 133 struct symver { 134 const char *name; 135 int type; 136 }; 137 138 /* 139 * Structure encapsulates the global data for readelf(1). 140 */ 141 struct readelf { 142 const char *filename; /* current processing file. */ 143 int options; /* command line options. */ 144 int flags; /* run control flags. */ 145 int dop; /* dwarf dump options. */ 146 Elf *elf; /* underlying ELF descriptor. */ 147 Elf *ar; /* archive ELF descriptor. */ 148 Dwarf_Debug dbg; /* DWARF handle. */ 149 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 150 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 151 Dwarf_Half cu_ver; /* DWARF CU version. */ 152 GElf_Ehdr ehdr; /* ELF header. */ 153 int ec; /* ELF class. */ 154 size_t shnum; /* #sections. */ 155 struct section *vd_s; /* Verdef section. */ 156 struct section *vn_s; /* Verneed section. */ 157 struct section *vs_s; /* Versym section. */ 158 uint16_t *vs; /* Versym array. */ 159 int vs_sz; /* Versym array size. */ 160 struct symver *ver; /* Version array. */ 161 int ver_sz; /* Size of version array. */ 162 struct section *sl; /* list of sections. */ 163 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 164 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 165 uint64_t (*dw_decode)(uint8_t **, int); 166 }; 167 168 enum options 169 { 170 OPTION_DEBUG_DUMP 171 }; 172 173 static struct option longopts[] = { 174 {"all", no_argument, NULL, 'a'}, 175 {"arch-specific", no_argument, NULL, 'A'}, 176 {"archive-index", no_argument, NULL, 'c'}, 177 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 178 {"dynamic", no_argument, NULL, 'd'}, 179 {"file-header", no_argument, NULL, 'h'}, 180 {"full-section-name", no_argument, NULL, 'N'}, 181 {"headers", no_argument, NULL, 'e'}, 182 {"help", no_argument, 0, 'H'}, 183 {"hex-dump", required_argument, NULL, 'x'}, 184 {"histogram", no_argument, NULL, 'I'}, 185 {"notes", no_argument, NULL, 'n'}, 186 {"program-headers", no_argument, NULL, 'l'}, 187 {"relocs", no_argument, NULL, 'r'}, 188 {"sections", no_argument, NULL, 'S'}, 189 {"section-headers", no_argument, NULL, 'S'}, 190 {"section-groups", no_argument, NULL, 'g'}, 191 {"section-details", no_argument, NULL, 't'}, 192 {"segments", no_argument, NULL, 'l'}, 193 {"string-dump", required_argument, NULL, 'p'}, 194 {"symbols", no_argument, NULL, 's'}, 195 {"syms", no_argument, NULL, 's'}, 196 {"unwind", no_argument, NULL, 'u'}, 197 {"use-dynamic", no_argument, NULL, 'D'}, 198 {"version-info", no_argument, 0, 'V'}, 199 {"version", no_argument, 0, 'v'}, 200 {"wide", no_argument, 0, 'W'}, 201 {NULL, 0, NULL, 0} 202 }; 203 204 struct eflags_desc { 205 uint64_t flag; 206 const char *desc; 207 }; 208 209 struct mips_option { 210 uint64_t flag; 211 const char *desc; 212 }; 213 214 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 215 int t); 216 static const char *aeabi_adv_simd_arch(uint64_t simd); 217 static const char *aeabi_align_needed(uint64_t an); 218 static const char *aeabi_align_preserved(uint64_t ap); 219 static const char *aeabi_arm_isa(uint64_t ai); 220 static const char *aeabi_cpu_arch(uint64_t arch); 221 static const char *aeabi_cpu_arch_profile(uint64_t pf); 222 static const char *aeabi_div(uint64_t du); 223 static const char *aeabi_enum_size(uint64_t es); 224 static const char *aeabi_fp_16bit_format(uint64_t fp16); 225 static const char *aeabi_fp_arch(uint64_t fp); 226 static const char *aeabi_fp_denormal(uint64_t fd); 227 static const char *aeabi_fp_exceptions(uint64_t fe); 228 static const char *aeabi_fp_hpext(uint64_t fh); 229 static const char *aeabi_fp_number_model(uint64_t fn); 230 static const char *aeabi_fp_optm_goal(uint64_t fog); 231 static const char *aeabi_fp_rounding(uint64_t fr); 232 static const char *aeabi_hardfp(uint64_t hfp); 233 static const char *aeabi_mpext(uint64_t mp); 234 static const char *aeabi_optm_goal(uint64_t og); 235 static const char *aeabi_pcs_config(uint64_t pcs); 236 static const char *aeabi_pcs_got(uint64_t got); 237 static const char *aeabi_pcs_r9(uint64_t r9); 238 static const char *aeabi_pcs_ro(uint64_t ro); 239 static const char *aeabi_pcs_rw(uint64_t rw); 240 static const char *aeabi_pcs_wchar_t(uint64_t wt); 241 static const char *aeabi_t2ee(uint64_t t2ee); 242 static const char *aeabi_thumb_isa(uint64_t ti); 243 static const char *aeabi_fp_user_exceptions(uint64_t fu); 244 static const char *aeabi_unaligned_access(uint64_t ua); 245 static const char *aeabi_vfp_args(uint64_t va); 246 static const char *aeabi_virtual(uint64_t vt); 247 static const char *aeabi_wmmx_arch(uint64_t wmmx); 248 static const char *aeabi_wmmx_args(uint64_t wa); 249 static const char *elf_class(unsigned int class); 250 static const char *elf_endian(unsigned int endian); 251 static const char *elf_machine(unsigned int mach); 252 static const char *elf_osabi(unsigned int abi); 253 static const char *elf_type(unsigned int type); 254 static const char *elf_ver(unsigned int ver); 255 static const char *dt_type(unsigned int mach, unsigned int dtype); 256 static void dump_ar(struct readelf *re, int); 257 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 258 static void dump_attributes(struct readelf *re); 259 static uint8_t *dump_compatibility_tag(uint8_t *p); 260 static void dump_dwarf(struct readelf *re); 261 static void dump_dwarf_abbrev(struct readelf *re); 262 static void dump_dwarf_aranges(struct readelf *re); 263 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 264 Dwarf_Unsigned len); 265 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 266 static void dump_dwarf_frame(struct readelf *re, int alt); 267 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 268 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 269 Dwarf_Addr pc, Dwarf_Debug dbg); 270 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 271 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 272 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 273 int alt); 274 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 275 static void dump_dwarf_macinfo(struct readelf *re); 276 static void dump_dwarf_line(struct readelf *re); 277 static void dump_dwarf_line_decoded(struct readelf *re); 278 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 279 static void dump_dwarf_loclist(struct readelf *re); 280 static void dump_dwarf_pubnames(struct readelf *re); 281 static void dump_dwarf_ranges(struct readelf *re); 282 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 283 Dwarf_Addr base); 284 static void dump_dwarf_str(struct readelf *re); 285 static void dump_eflags(struct readelf *re, uint64_t e_flags); 286 static void dump_elf(struct readelf *re); 287 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 288 static void dump_dynamic(struct readelf *re); 289 static void dump_liblist(struct readelf *re); 290 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 291 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 292 static void dump_mips_options(struct readelf *re, struct section *s); 293 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 294 uint64_t info); 295 static void dump_mips_reginfo(struct readelf *re, struct section *s); 296 static void dump_mips_specific_info(struct readelf *re); 297 static void dump_notes(struct readelf *re); 298 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 299 off_t off); 300 static void dump_svr4_hash(struct section *s); 301 static void dump_svr4_hash64(struct readelf *re, struct section *s); 302 static void dump_gnu_hash(struct readelf *re, struct section *s); 303 static void dump_hash(struct readelf *re); 304 static void dump_phdr(struct readelf *re); 305 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 306 static void dump_symtab(struct readelf *re, int i); 307 static void dump_symtabs(struct readelf *re); 308 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p); 309 static void dump_ver(struct readelf *re); 310 static void dump_verdef(struct readelf *re, int dump); 311 static void dump_verneed(struct readelf *re, int dump); 312 static void dump_versym(struct readelf *re); 313 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 314 static const char *dwarf_regname(struct readelf *re, unsigned int num); 315 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 316 const char *sn, int op, int t); 317 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 318 Dwarf_Addr off); 319 static const char *get_string(struct readelf *re, int strtab, size_t off); 320 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 321 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 322 static void load_sections(struct readelf *re); 323 static const char *mips_abi_fp(uint64_t fp); 324 static const char *note_type(const char *note_name, unsigned int et, 325 unsigned int nt); 326 static const char *note_type_freebsd(unsigned int nt); 327 static const char *note_type_freebsd_core(unsigned int nt); 328 static const char *note_type_linux_core(unsigned int nt); 329 static const char *note_type_gnu(unsigned int nt); 330 static const char *note_type_netbsd(unsigned int nt); 331 static const char *note_type_openbsd(unsigned int nt); 332 static const char *note_type_unknown(unsigned int nt); 333 static const char *option_kind(uint8_t kind); 334 static const char *phdr_type(unsigned int ptype); 335 static const char *ppc_abi_fp(uint64_t fp); 336 static const char *ppc_abi_vector(uint64_t vec); 337 static const char *r_type(unsigned int mach, unsigned int type); 338 static void readelf_usage(void); 339 static void readelf_version(void); 340 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 341 Dwarf_Unsigned lowpc); 342 static void search_ver(struct readelf *re); 343 static const char *section_type(unsigned int mach, unsigned int stype); 344 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 345 Dwarf_Half osize, Dwarf_Half ver); 346 static const char *st_bind(unsigned int sbind); 347 static const char *st_shndx(unsigned int shndx); 348 static const char *st_type(unsigned int stype); 349 static const char *st_vis(unsigned int svis); 350 static const char *top_tag(unsigned int tag); 351 static void unload_sections(struct readelf *re); 352 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 353 int bytes_to_read); 354 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 355 int bytes_to_read); 356 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 357 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 358 static int64_t _decode_sleb128(uint8_t **dp); 359 static uint64_t _decode_uleb128(uint8_t **dp); 360 361 static struct eflags_desc arm_eflags_desc[] = { 362 {EF_ARM_RELEXEC, "relocatable executable"}, 363 {EF_ARM_HASENTRY, "has entry point"}, 364 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 365 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 366 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 367 {EF_ARM_BE8, "BE8"}, 368 {EF_ARM_LE8, "LE8"}, 369 {EF_ARM_INTERWORK, "interworking enabled"}, 370 {EF_ARM_APCS_26, "uses APCS/26"}, 371 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 372 {EF_ARM_PIC, "position independent"}, 373 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 374 {EF_ARM_NEW_ABI, "uses new ABI"}, 375 {EF_ARM_OLD_ABI, "uses old ABI"}, 376 {EF_ARM_SOFT_FLOAT, "software FP"}, 377 {EF_ARM_VFP_FLOAT, "VFP"}, 378 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 379 {0, NULL} 380 }; 381 382 static struct eflags_desc mips_eflags_desc[] = { 383 {EF_MIPS_NOREORDER, "noreorder"}, 384 {EF_MIPS_PIC, "pic"}, 385 {EF_MIPS_CPIC, "cpic"}, 386 {EF_MIPS_UCODE, "ugen_reserved"}, 387 {EF_MIPS_ABI2, "abi2"}, 388 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 389 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 390 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 391 {0, NULL} 392 }; 393 394 static struct eflags_desc powerpc_eflags_desc[] = { 395 {EF_PPC_EMB, "emb"}, 396 {EF_PPC_RELOCATABLE, "relocatable"}, 397 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 398 {0, NULL} 399 }; 400 401 static struct eflags_desc sparc_eflags_desc[] = { 402 {EF_SPARC_32PLUS, "v8+"}, 403 {EF_SPARC_SUN_US1, "ultrasparcI"}, 404 {EF_SPARC_HAL_R1, "halr1"}, 405 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 406 {0, NULL} 407 }; 408 409 static const char * 410 elf_osabi(unsigned int abi) 411 { 412 static char s_abi[32]; 413 414 switch(abi) { 415 case ELFOSABI_SYSV: return "SYSV"; 416 case ELFOSABI_HPUX: return "HPUS"; 417 case ELFOSABI_NETBSD: return "NetBSD"; 418 case ELFOSABI_GNU: return "GNU"; 419 case ELFOSABI_HURD: return "HURD"; 420 case ELFOSABI_86OPEN: return "86OPEN"; 421 case ELFOSABI_SOLARIS: return "Solaris"; 422 case ELFOSABI_AIX: return "AIX"; 423 case ELFOSABI_IRIX: return "IRIX"; 424 case ELFOSABI_FREEBSD: return "FreeBSD"; 425 case ELFOSABI_TRU64: return "TRU64"; 426 case ELFOSABI_MODESTO: return "MODESTO"; 427 case ELFOSABI_OPENBSD: return "OpenBSD"; 428 case ELFOSABI_OPENVMS: return "OpenVMS"; 429 case ELFOSABI_NSK: return "NSK"; 430 case ELFOSABI_ARM: return "ARM"; 431 case ELFOSABI_STANDALONE: return "StandAlone"; 432 default: 433 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 434 return (s_abi); 435 } 436 }; 437 438 static const char * 439 elf_machine(unsigned int mach) 440 { 441 static char s_mach[32]; 442 443 switch (mach) { 444 case EM_NONE: return "Unknown machine"; 445 case EM_M32: return "AT&T WE32100"; 446 case EM_SPARC: return "Sun SPARC"; 447 case EM_386: return "Intel i386"; 448 case EM_68K: return "Motorola 68000"; 449 case EM_88K: return "Motorola 88000"; 450 case EM_860: return "Intel i860"; 451 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 452 case EM_S370: return "IBM System/370"; 453 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 454 case EM_PARISC: return "HP PA-RISC"; 455 case EM_VPP500: return "Fujitsu VPP500"; 456 case EM_SPARC32PLUS: return "SPARC v8plus"; 457 case EM_960: return "Intel 80960"; 458 case EM_PPC: return "PowerPC 32-bit"; 459 case EM_PPC64: return "PowerPC 64-bit"; 460 case EM_S390: return "IBM System/390"; 461 case EM_V800: return "NEC V800"; 462 case EM_FR20: return "Fujitsu FR20"; 463 case EM_RH32: return "TRW RH-32"; 464 case EM_RCE: return "Motorola RCE"; 465 case EM_ARM: return "ARM"; 466 case EM_SH: return "Hitachi SH"; 467 case EM_SPARCV9: return "SPARC v9 64-bit"; 468 case EM_TRICORE: return "Siemens TriCore embedded processor"; 469 case EM_ARC: return "Argonaut RISC Core"; 470 case EM_H8_300: return "Hitachi H8/300"; 471 case EM_H8_300H: return "Hitachi H8/300H"; 472 case EM_H8S: return "Hitachi H8S"; 473 case EM_H8_500: return "Hitachi H8/500"; 474 case EM_IA_64: return "Intel IA-64 Processor"; 475 case EM_MIPS_X: return "Stanford MIPS-X"; 476 case EM_COLDFIRE: return "Motorola ColdFire"; 477 case EM_68HC12: return "Motorola M68HC12"; 478 case EM_MMA: return "Fujitsu MMA"; 479 case EM_PCP: return "Siemens PCP"; 480 case EM_NCPU: return "Sony nCPU"; 481 case EM_NDR1: return "Denso NDR1 microprocessor"; 482 case EM_STARCORE: return "Motorola Star*Core processor"; 483 case EM_ME16: return "Toyota ME16 processor"; 484 case EM_ST100: return "STMicroelectronics ST100 processor"; 485 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 486 case EM_X86_64: return "Advanced Micro Devices x86-64"; 487 case EM_PDSP: return "Sony DSP Processor"; 488 case EM_FX66: return "Siemens FX66 microcontroller"; 489 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 490 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 491 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 492 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 493 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 494 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 495 case EM_SVX: return "Silicon Graphics SVx"; 496 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 497 case EM_VAX: return "Digital VAX"; 498 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 499 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 500 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 501 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 502 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 503 case EM_HUANY: return "Harvard University MI object files"; 504 case EM_PRISM: return "SiTera Prism"; 505 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 506 case EM_FR30: return "Fujitsu FR30"; 507 case EM_D10V: return "Mitsubishi D10V"; 508 case EM_D30V: return "Mitsubishi D30V"; 509 case EM_V850: return "NEC v850"; 510 case EM_M32R: return "Mitsubishi M32R"; 511 case EM_MN10300: return "Matsushita MN10300"; 512 case EM_MN10200: return "Matsushita MN10200"; 513 case EM_PJ: return "picoJava"; 514 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 515 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 516 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 517 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 518 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 519 case EM_NS32K: return "National Semiconductor 32000 series"; 520 case EM_TPC: return "Tenor Network TPC processor"; 521 case EM_SNP1K: return "Trebia SNP 1000 processor"; 522 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 523 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 524 case EM_MAX: return "MAX Processor"; 525 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 526 case EM_F2MC16: return "Fujitsu F2MC16"; 527 case EM_MSP430: return "TI embedded microcontroller msp430"; 528 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 529 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 530 case EM_SEP: return "Sharp embedded microprocessor"; 531 case EM_ARCA: return "Arca RISC Microprocessor"; 532 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 533 case EM_AARCH64: return "AArch64"; 534 default: 535 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 536 return (s_mach); 537 } 538 539 } 540 541 static const char * 542 elf_class(unsigned int class) 543 { 544 static char s_class[32]; 545 546 switch (class) { 547 case ELFCLASSNONE: return "none"; 548 case ELFCLASS32: return "ELF32"; 549 case ELFCLASS64: return "ELF64"; 550 default: 551 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 552 return (s_class); 553 } 554 } 555 556 static const char * 557 elf_endian(unsigned int endian) 558 { 559 static char s_endian[32]; 560 561 switch (endian) { 562 case ELFDATANONE: return "none"; 563 case ELFDATA2LSB: return "2's complement, little endian"; 564 case ELFDATA2MSB: return "2's complement, big endian"; 565 default: 566 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 567 return (s_endian); 568 } 569 } 570 571 static const char * 572 elf_type(unsigned int type) 573 { 574 static char s_type[32]; 575 576 switch (type) { 577 case ET_NONE: return "NONE (None)"; 578 case ET_REL: return "REL (Relocatable file)"; 579 case ET_EXEC: return "EXEC (Executable file)"; 580 case ET_DYN: return "DYN (Shared object file)"; 581 case ET_CORE: return "CORE (Core file)"; 582 default: 583 if (type >= ET_LOPROC) 584 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 585 else if (type >= ET_LOOS && type <= ET_HIOS) 586 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 587 else 588 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 589 type); 590 return (s_type); 591 } 592 } 593 594 static const char * 595 elf_ver(unsigned int ver) 596 { 597 static char s_ver[32]; 598 599 switch (ver) { 600 case EV_CURRENT: return "(current)"; 601 case EV_NONE: return "(none)"; 602 default: 603 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 604 ver); 605 return (s_ver); 606 } 607 } 608 609 static const char * 610 phdr_type(unsigned int ptype) 611 { 612 static char s_ptype[32]; 613 614 switch (ptype) { 615 case PT_NULL: return "NULL"; 616 case PT_LOAD: return "LOAD"; 617 case PT_DYNAMIC: return "DYNAMIC"; 618 case PT_INTERP: return "INTERP"; 619 case PT_NOTE: return "NOTE"; 620 case PT_SHLIB: return "SHLIB"; 621 case PT_PHDR: return "PHDR"; 622 case PT_TLS: return "TLS"; 623 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 624 case PT_GNU_STACK: return "GNU_STACK"; 625 case PT_GNU_RELRO: return "GNU_RELRO"; 626 default: 627 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) 628 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 629 ptype - PT_LOPROC); 630 else if (ptype >= PT_LOOS && ptype <= PT_HIOS) 631 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 632 ptype - PT_LOOS); 633 else 634 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 635 ptype); 636 return (s_ptype); 637 } 638 } 639 640 static const char * 641 section_type(unsigned int mach, unsigned int stype) 642 { 643 static char s_stype[32]; 644 645 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 646 switch (mach) { 647 case EM_X86_64: 648 switch (stype) { 649 case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; 650 default: 651 break; 652 } 653 break; 654 case EM_MIPS: 655 case EM_MIPS_RS3_LE: 656 switch (stype) { 657 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 658 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 659 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 660 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 661 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 662 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 663 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 664 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 665 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 666 case SHT_MIPS_RELD: return "MIPS_RELD"; 667 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 668 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 669 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 670 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 671 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 672 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 673 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 674 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 675 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 676 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 677 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 678 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 679 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 680 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 681 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 682 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 683 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 684 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 685 default: 686 break; 687 } 688 break; 689 default: 690 break; 691 } 692 693 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 694 stype - SHT_LOPROC); 695 return (s_stype); 696 } 697 698 switch (stype) { 699 case SHT_NULL: return "NULL"; 700 case SHT_PROGBITS: return "PROGBITS"; 701 case SHT_SYMTAB: return "SYMTAB"; 702 case SHT_STRTAB: return "STRTAB"; 703 case SHT_RELA: return "RELA"; 704 case SHT_HASH: return "HASH"; 705 case SHT_DYNAMIC: return "DYNAMIC"; 706 case SHT_NOTE: return "NOTE"; 707 case SHT_NOBITS: return "NOBITS"; 708 case SHT_REL: return "REL"; 709 case SHT_SHLIB: return "SHLIB"; 710 case SHT_DYNSYM: return "DYNSYM"; 711 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 712 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 713 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 714 case SHT_GROUP: return "GROUP"; 715 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 716 case SHT_SUNW_dof: return "SUNW_dof"; 717 case SHT_SUNW_cap: return "SUNW_cap"; 718 case SHT_GNU_HASH: return "GNU_HASH"; 719 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 720 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 721 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 722 case SHT_SUNW_move: return "SUNW_move"; 723 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 724 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 725 case SHT_SUNW_verdef: return "SUNW_verdef"; 726 case SHT_SUNW_verneed: return "SUNW_verneed"; 727 case SHT_SUNW_versym: return "SUNW_versym"; 728 default: 729 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 730 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 731 stype - SHT_LOOS); 732 else if (stype >= SHT_LOUSER) 733 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 734 stype - SHT_LOUSER); 735 else 736 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 737 stype); 738 return (s_stype); 739 } 740 } 741 742 static const char * 743 dt_type(unsigned int mach, unsigned int dtype) 744 { 745 static char s_dtype[32]; 746 747 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 748 switch (mach) { 749 case EM_ARM: 750 switch (dtype) { 751 case DT_ARM_SYMTABSZ: 752 return "ARM_SYMTABSZ"; 753 default: 754 break; 755 } 756 break; 757 case EM_MIPS: 758 case EM_MIPS_RS3_LE: 759 switch (dtype) { 760 case DT_MIPS_RLD_VERSION: 761 return "MIPS_RLD_VERSION"; 762 case DT_MIPS_TIME_STAMP: 763 return "MIPS_TIME_STAMP"; 764 case DT_MIPS_ICHECKSUM: 765 return "MIPS_ICHECKSUM"; 766 case DT_MIPS_IVERSION: 767 return "MIPS_IVERSION"; 768 case DT_MIPS_FLAGS: 769 return "MIPS_FLAGS"; 770 case DT_MIPS_BASE_ADDRESS: 771 return "MIPS_BASE_ADDRESS"; 772 case DT_MIPS_CONFLICT: 773 return "MIPS_CONFLICT"; 774 case DT_MIPS_LIBLIST: 775 return "MIPS_LIBLIST"; 776 case DT_MIPS_LOCAL_GOTNO: 777 return "MIPS_LOCAL_GOTNO"; 778 case DT_MIPS_CONFLICTNO: 779 return "MIPS_CONFLICTNO"; 780 case DT_MIPS_LIBLISTNO: 781 return "MIPS_LIBLISTNO"; 782 case DT_MIPS_SYMTABNO: 783 return "MIPS_SYMTABNO"; 784 case DT_MIPS_UNREFEXTNO: 785 return "MIPS_UNREFEXTNO"; 786 case DT_MIPS_GOTSYM: 787 return "MIPS_GOTSYM"; 788 case DT_MIPS_HIPAGENO: 789 return "MIPS_HIPAGENO"; 790 case DT_MIPS_RLD_MAP: 791 return "MIPS_RLD_MAP"; 792 case DT_MIPS_DELTA_CLASS: 793 return "MIPS_DELTA_CLASS"; 794 case DT_MIPS_DELTA_CLASS_NO: 795 return "MIPS_DELTA_CLASS_NO"; 796 case DT_MIPS_DELTA_INSTANCE: 797 return "MIPS_DELTA_INSTANCE"; 798 case DT_MIPS_DELTA_INSTANCE_NO: 799 return "MIPS_DELTA_INSTANCE_NO"; 800 case DT_MIPS_DELTA_RELOC: 801 return "MIPS_DELTA_RELOC"; 802 case DT_MIPS_DELTA_RELOC_NO: 803 return "MIPS_DELTA_RELOC_NO"; 804 case DT_MIPS_DELTA_SYM: 805 return "MIPS_DELTA_SYM"; 806 case DT_MIPS_DELTA_SYM_NO: 807 return "MIPS_DELTA_SYM_NO"; 808 case DT_MIPS_DELTA_CLASSSYM: 809 return "MIPS_DELTA_CLASSSYM"; 810 case DT_MIPS_DELTA_CLASSSYM_NO: 811 return "MIPS_DELTA_CLASSSYM_NO"; 812 case DT_MIPS_CXX_FLAGS: 813 return "MIPS_CXX_FLAGS"; 814 case DT_MIPS_PIXIE_INIT: 815 return "MIPS_PIXIE_INIT"; 816 case DT_MIPS_SYMBOL_LIB: 817 return "MIPS_SYMBOL_LIB"; 818 case DT_MIPS_LOCALPAGE_GOTIDX: 819 return "MIPS_LOCALPAGE_GOTIDX"; 820 case DT_MIPS_LOCAL_GOTIDX: 821 return "MIPS_LOCAL_GOTIDX"; 822 case DT_MIPS_HIDDEN_GOTIDX: 823 return "MIPS_HIDDEN_GOTIDX"; 824 case DT_MIPS_PROTECTED_GOTIDX: 825 return "MIPS_PROTECTED_GOTIDX"; 826 case DT_MIPS_OPTIONS: 827 return "MIPS_OPTIONS"; 828 case DT_MIPS_INTERFACE: 829 return "MIPS_INTERFACE"; 830 case DT_MIPS_DYNSTR_ALIGN: 831 return "MIPS_DYNSTR_ALIGN"; 832 case DT_MIPS_INTERFACE_SIZE: 833 return "MIPS_INTERFACE_SIZE"; 834 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 835 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 836 case DT_MIPS_PERF_SUFFIX: 837 return "MIPS_PERF_SUFFIX"; 838 case DT_MIPS_COMPACT_SIZE: 839 return "MIPS_COMPACT_SIZE"; 840 case DT_MIPS_GP_VALUE: 841 return "MIPS_GP_VALUE"; 842 case DT_MIPS_AUX_DYNAMIC: 843 return "MIPS_AUX_DYNAMIC"; 844 case DT_MIPS_PLTGOT: 845 return "MIPS_PLTGOT"; 846 case DT_MIPS_RLD_OBJ_UPDATE: 847 return "MIPS_RLD_OBJ_UPDATE"; 848 case DT_MIPS_RWPLT: 849 return "MIPS_RWPLT"; 850 default: 851 break; 852 } 853 break; 854 case EM_SPARC: 855 case EM_SPARC32PLUS: 856 case EM_SPARCV9: 857 switch (dtype) { 858 case DT_SPARC_REGISTER: 859 return "DT_SPARC_REGISTER"; 860 default: 861 break; 862 } 863 break; 864 default: 865 break; 866 } 867 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 868 return (s_dtype); 869 } 870 871 switch (dtype) { 872 case DT_NULL: return "NULL"; 873 case DT_NEEDED: return "NEEDED"; 874 case DT_PLTRELSZ: return "PLTRELSZ"; 875 case DT_PLTGOT: return "PLTGOT"; 876 case DT_HASH: return "HASH"; 877 case DT_STRTAB: return "STRTAB"; 878 case DT_SYMTAB: return "SYMTAB"; 879 case DT_RELA: return "RELA"; 880 case DT_RELASZ: return "RELASZ"; 881 case DT_RELAENT: return "RELAENT"; 882 case DT_STRSZ: return "STRSZ"; 883 case DT_SYMENT: return "SYMENT"; 884 case DT_INIT: return "INIT"; 885 case DT_FINI: return "FINI"; 886 case DT_SONAME: return "SONAME"; 887 case DT_RPATH: return "RPATH"; 888 case DT_SYMBOLIC: return "SYMBOLIC"; 889 case DT_REL: return "REL"; 890 case DT_RELSZ: return "RELSZ"; 891 case DT_RELENT: return "RELENT"; 892 case DT_PLTREL: return "PLTREL"; 893 case DT_DEBUG: return "DEBUG"; 894 case DT_TEXTREL: return "TEXTREL"; 895 case DT_JMPREL: return "JMPREL"; 896 case DT_BIND_NOW: return "BIND_NOW"; 897 case DT_INIT_ARRAY: return "INIT_ARRAY"; 898 case DT_FINI_ARRAY: return "FINI_ARRAY"; 899 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 900 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 901 case DT_RUNPATH: return "RUNPATH"; 902 case DT_FLAGS: return "FLAGS"; 903 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 904 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 905 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 906 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 907 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 908 case DT_SUNW_FILTER: return "SUNW_FILTER"; 909 case DT_SUNW_CAP: return "SUNW_CAP"; 910 case DT_CHECKSUM: return "CHECKSUM"; 911 case DT_PLTPADSZ: return "PLTPADSZ"; 912 case DT_MOVEENT: return "MOVEENT"; 913 case DT_MOVESZ: return "MOVESZ"; 914 case DT_FEATURE: return "FEATURE"; 915 case DT_POSFLAG_1: return "POSFLAG_1"; 916 case DT_SYMINSZ: return "SYMINSZ"; 917 case DT_SYMINENT: return "SYMINENT"; 918 case DT_GNU_HASH: return "GNU_HASH"; 919 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 920 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 921 case DT_CONFIG: return "CONFIG"; 922 case DT_DEPAUDIT: return "DEPAUDIT"; 923 case DT_AUDIT: return "AUDIT"; 924 case DT_PLTPAD: return "PLTPAD"; 925 case DT_MOVETAB: return "MOVETAB"; 926 case DT_SYMINFO: return "SYMINFO"; 927 case DT_VERSYM: return "VERSYM"; 928 case DT_RELACOUNT: return "RELACOUNT"; 929 case DT_RELCOUNT: return "RELCOUNT"; 930 case DT_FLAGS_1: return "FLAGS_1"; 931 case DT_VERDEF: return "VERDEF"; 932 case DT_VERDEFNUM: return "VERDEFNUM"; 933 case DT_VERNEED: return "VERNEED"; 934 case DT_VERNEEDNUM: return "VERNEEDNUM"; 935 case DT_AUXILIARY: return "AUXILIARY"; 936 case DT_USED: return "USED"; 937 case DT_FILTER: return "FILTER"; 938 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 939 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 940 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 941 default: 942 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 943 return (s_dtype); 944 } 945 } 946 947 static const char * 948 st_bind(unsigned int sbind) 949 { 950 static char s_sbind[32]; 951 952 switch (sbind) { 953 case STB_LOCAL: return "LOCAL"; 954 case STB_GLOBAL: return "GLOBAL"; 955 case STB_WEAK: return "WEAK"; 956 default: 957 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 958 return "OS"; 959 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 960 return "PROC"; 961 else 962 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 963 sbind); 964 return (s_sbind); 965 } 966 } 967 968 static const char * 969 st_type(unsigned int stype) 970 { 971 static char s_stype[32]; 972 973 switch (stype) { 974 case STT_NOTYPE: return "NOTYPE"; 975 case STT_OBJECT: return "OBJECT"; 976 case STT_FUNC: return "FUNC"; 977 case STT_SECTION: return "SECTION"; 978 case STT_FILE: return "FILE"; 979 case STT_COMMON: return "COMMON"; 980 case STT_TLS: return "TLS"; 981 default: 982 if (stype >= STT_LOOS && stype <= STT_HIOS) 983 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 984 stype - STT_LOOS); 985 else if (stype >= STT_LOPROC && stype <= STT_HIPROC) 986 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 987 stype - STT_LOPROC); 988 else 989 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 990 stype); 991 return (s_stype); 992 } 993 } 994 995 static const char * 996 st_vis(unsigned int svis) 997 { 998 static char s_svis[32]; 999 1000 switch(svis) { 1001 case STV_DEFAULT: return "DEFAULT"; 1002 case STV_INTERNAL: return "INTERNAL"; 1003 case STV_HIDDEN: return "HIDDEN"; 1004 case STV_PROTECTED: return "PROTECTED"; 1005 default: 1006 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1007 return (s_svis); 1008 } 1009 } 1010 1011 static const char * 1012 st_shndx(unsigned int shndx) 1013 { 1014 static char s_shndx[32]; 1015 1016 switch (shndx) { 1017 case SHN_UNDEF: return "UND"; 1018 case SHN_ABS: return "ABS"; 1019 case SHN_COMMON: return "COM"; 1020 default: 1021 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1022 return "PRC"; 1023 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1024 return "OS"; 1025 else 1026 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1027 return (s_shndx); 1028 } 1029 } 1030 1031 static struct { 1032 const char *ln; 1033 char sn; 1034 int value; 1035 } section_flag[] = { 1036 {"WRITE", 'W', SHF_WRITE}, 1037 {"ALLOC", 'A', SHF_ALLOC}, 1038 {"EXEC", 'X', SHF_EXECINSTR}, 1039 {"MERGE", 'M', SHF_MERGE}, 1040 {"STRINGS", 'S', SHF_STRINGS}, 1041 {"INFO LINK", 'I', SHF_INFO_LINK}, 1042 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1043 {"GROUP", 'G', SHF_GROUP}, 1044 {"TLS", 'T', SHF_TLS}, 1045 {NULL, 0, 0} 1046 }; 1047 1048 static const char * 1049 r_type(unsigned int mach, unsigned int type) 1050 { 1051 switch(mach) { 1052 case EM_NONE: return ""; 1053 case EM_386: 1054 switch(type) { 1055 case 0: return "R_386_NONE"; 1056 case 1: return "R_386_32"; 1057 case 2: return "R_386_PC32"; 1058 case 3: return "R_386_GOT32"; 1059 case 4: return "R_386_PLT32"; 1060 case 5: return "R_386_COPY"; 1061 case 6: return "R_386_GLOB_DAT"; 1062 case 7: return "R_386_JMP_SLOT"; 1063 case 8: return "R_386_RELATIVE"; 1064 case 9: return "R_386_GOTOFF"; 1065 case 10: return "R_386_GOTPC"; 1066 case 14: return "R_386_TLS_TPOFF"; 1067 case 15: return "R_386_TLS_IE"; 1068 case 16: return "R_386_TLS_GOTIE"; 1069 case 17: return "R_386_TLS_LE"; 1070 case 18: return "R_386_TLS_GD"; 1071 case 19: return "R_386_TLS_LDM"; 1072 case 24: return "R_386_TLS_GD_32"; 1073 case 25: return "R_386_TLS_GD_PUSH"; 1074 case 26: return "R_386_TLS_GD_CALL"; 1075 case 27: return "R_386_TLS_GD_POP"; 1076 case 28: return "R_386_TLS_LDM_32"; 1077 case 29: return "R_386_TLS_LDM_PUSH"; 1078 case 30: return "R_386_TLS_LDM_CALL"; 1079 case 31: return "R_386_TLS_LDM_POP"; 1080 case 32: return "R_386_TLS_LDO_32"; 1081 case 33: return "R_386_TLS_IE_32"; 1082 case 34: return "R_386_TLS_LE_32"; 1083 case 35: return "R_386_TLS_DTPMOD32"; 1084 case 36: return "R_386_TLS_DTPOFF32"; 1085 case 37: return "R_386_TLS_TPOFF32"; 1086 default: return ""; 1087 } 1088 case EM_AARCH64: 1089 switch(type) { 1090 case 0: return "R_AARCH64_NONE"; 1091 case 257: return "R_AARCH64_ABS64"; 1092 case 258: return "R_AARCH64_ABS32"; 1093 case 259: return "R_AARCH64_ABS16"; 1094 case 260: return "R_AARCH64_PREL64"; 1095 case 261: return "R_AARCH64_PREL32"; 1096 case 262: return "R_AARCH64_PREL16"; 1097 case 263: return "R_AARCH64_MOVW_UABS_G0"; 1098 case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; 1099 case 265: return "R_AARCH64_MOVW_UABS_G1"; 1100 case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; 1101 case 267: return "R_AARCH64_MOVW_UABS_G2"; 1102 case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; 1103 case 269: return "R_AARCH64_MOVW_UABS_G3"; 1104 case 270: return "R_AARCH64_MOVW_SABS_G0"; 1105 case 271: return "R_AARCH64_MOVW_SABS_G1"; 1106 case 272: return "R_AARCH64_MOVW_SABS_G2"; 1107 case 273: return "R_AARCH64_LD_PREL_LO19"; 1108 case 274: return "R_AARCH64_ADR_PREL_LO21"; 1109 case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; 1110 case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; 1111 case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; 1112 case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; 1113 case 279: return "R_AARCH64_TSTBR14"; 1114 case 280: return "R_AARCH64_CONDBR19"; 1115 case 282: return "R_AARCH64_JUMP26"; 1116 case 283: return "R_AARCH64_CALL26"; 1117 case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; 1118 case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; 1119 case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; 1120 case 287: return "R_AARCH64_MOVW_PREL_G0"; 1121 case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; 1122 case 289: return "R_AARCH64_MOVW_PREL_G1"; 1123 case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; 1124 case 291: return "R_AARCH64_MOVW_PREL_G2"; 1125 case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; 1126 case 293: return "R_AARCH64_MOVW_PREL_G3"; 1127 case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; 1128 case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; 1129 case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; 1130 case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; 1131 case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; 1132 case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; 1133 case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; 1134 case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; 1135 case 307: return "R_AARCH64_GOTREL64"; 1136 case 308: return "R_AARCH64_GOTREL32"; 1137 case 309: return "R_AARCH64_GOT_LD_PREL19"; 1138 case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; 1139 case 311: return "R_AARCH64_ADR_GOT_PAGE"; 1140 case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; 1141 case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; 1142 case 1024: return "R_AARCH64_COPY"; 1143 case 1025: return "R_AARCH64_GLOB_DAT"; 1144 case 1026: return "R_AARCH64_JUMP_SLOT"; 1145 case 1027: return "R_AARCH64_RELATIVE"; 1146 case 1031: return "R_AARCH64_TLSDESC"; 1147 default: return ""; 1148 } 1149 case EM_ARM: 1150 switch(type) { 1151 case 0: return "R_ARM_NONE"; 1152 case 1: return "R_ARM_PC24"; 1153 case 2: return "R_ARM_ABS32"; 1154 case 3: return "R_ARM_REL32"; 1155 case 4: return "R_ARM_PC13"; 1156 case 5: return "R_ARM_ABS16"; 1157 case 6: return "R_ARM_ABS12"; 1158 case 7: return "R_ARM_THM_ABS5"; 1159 case 8: return "R_ARM_ABS8"; 1160 case 9: return "R_ARM_SBREL32"; 1161 case 10: return "R_ARM_THM_PC22"; 1162 case 11: return "R_ARM_THM_PC8"; 1163 case 12: return "R_ARM_AMP_VCALL9"; 1164 case 13: return "R_ARM_SWI24"; 1165 case 14: return "R_ARM_THM_SWI8"; 1166 case 15: return "R_ARM_XPC25"; 1167 case 16: return "R_ARM_THM_XPC22"; 1168 case 20: return "R_ARM_COPY"; 1169 case 21: return "R_ARM_GLOB_DAT"; 1170 case 22: return "R_ARM_JUMP_SLOT"; 1171 case 23: return "R_ARM_RELATIVE"; 1172 case 24: return "R_ARM_GOTOFF"; 1173 case 25: return "R_ARM_GOTPC"; 1174 case 26: return "R_ARM_GOT32"; 1175 case 27: return "R_ARM_PLT32"; 1176 case 100: return "R_ARM_GNU_VTENTRY"; 1177 case 101: return "R_ARM_GNU_VTINHERIT"; 1178 case 250: return "R_ARM_RSBREL32"; 1179 case 251: return "R_ARM_THM_RPC22"; 1180 case 252: return "R_ARM_RREL32"; 1181 case 253: return "R_ARM_RABS32"; 1182 case 254: return "R_ARM_RPC24"; 1183 case 255: return "R_ARM_RBASE"; 1184 default: return ""; 1185 } 1186 case EM_IA_64: 1187 switch(type) { 1188 case 0: return "R_IA_64_NONE"; 1189 case 33: return "R_IA_64_IMM14"; 1190 case 34: return "R_IA_64_IMM22"; 1191 case 35: return "R_IA_64_IMM64"; 1192 case 36: return "R_IA_64_DIR32MSB"; 1193 case 37: return "R_IA_64_DIR32LSB"; 1194 case 38: return "R_IA_64_DIR64MSB"; 1195 case 39: return "R_IA_64_DIR64LSB"; 1196 case 42: return "R_IA_64_GPREL22"; 1197 case 43: return "R_IA_64_GPREL64I"; 1198 case 44: return "R_IA_64_GPREL32MSB"; 1199 case 45: return "R_IA_64_GPREL32LSB"; 1200 case 46: return "R_IA_64_GPREL64MSB"; 1201 case 47: return "R_IA_64_GPREL64LSB"; 1202 case 50: return "R_IA_64_LTOFF22"; 1203 case 51: return "R_IA_64_LTOFF64I"; 1204 case 58: return "R_IA_64_PLTOFF22"; 1205 case 59: return "R_IA_64_PLTOFF64I"; 1206 case 62: return "R_IA_64_PLTOFF64MSB"; 1207 case 63: return "R_IA_64_PLTOFF64LSB"; 1208 case 67: return "R_IA_64_FPTR64I"; 1209 case 68: return "R_IA_64_FPTR32MSB"; 1210 case 69: return "R_IA_64_FPTR32LSB"; 1211 case 70: return "R_IA_64_FPTR64MSB"; 1212 case 71: return "R_IA_64_FPTR64LSB"; 1213 case 72: return "R_IA_64_PCREL60B"; 1214 case 73: return "R_IA_64_PCREL21B"; 1215 case 74: return "R_IA_64_PCREL21M"; 1216 case 75: return "R_IA_64_PCREL21F"; 1217 case 76: return "R_IA_64_PCREL32MSB"; 1218 case 77: return "R_IA_64_PCREL32LSB"; 1219 case 78: return "R_IA_64_PCREL64MSB"; 1220 case 79: return "R_IA_64_PCREL64LSB"; 1221 case 82: return "R_IA_64_LTOFF_FPTR22"; 1222 case 83: return "R_IA_64_LTOFF_FPTR64I"; 1223 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 1224 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 1225 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 1226 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 1227 case 92: return "R_IA_64_SEGREL32MSB"; 1228 case 93: return "R_IA_64_SEGREL32LSB"; 1229 case 94: return "R_IA_64_SEGREL64MSB"; 1230 case 95: return "R_IA_64_SEGREL64LSB"; 1231 case 100: return "R_IA_64_SECREL32MSB"; 1232 case 101: return "R_IA_64_SECREL32LSB"; 1233 case 102: return "R_IA_64_SECREL64MSB"; 1234 case 103: return "R_IA_64_SECREL64LSB"; 1235 case 108: return "R_IA_64_REL32MSB"; 1236 case 109: return "R_IA_64_REL32LSB"; 1237 case 110: return "R_IA_64_REL64MSB"; 1238 case 111: return "R_IA_64_REL64LSB"; 1239 case 116: return "R_IA_64_LTV32MSB"; 1240 case 117: return "R_IA_64_LTV32LSB"; 1241 case 118: return "R_IA_64_LTV64MSB"; 1242 case 119: return "R_IA_64_LTV64LSB"; 1243 case 121: return "R_IA_64_PCREL21BI"; 1244 case 122: return "R_IA_64_PCREL22"; 1245 case 123: return "R_IA_64_PCREL64I"; 1246 case 128: return "R_IA_64_IPLTMSB"; 1247 case 129: return "R_IA_64_IPLTLSB"; 1248 case 133: return "R_IA_64_SUB"; 1249 case 134: return "R_IA_64_LTOFF22X"; 1250 case 135: return "R_IA_64_LDXMOV"; 1251 case 145: return "R_IA_64_TPREL14"; 1252 case 146: return "R_IA_64_TPREL22"; 1253 case 147: return "R_IA_64_TPREL64I"; 1254 case 150: return "R_IA_64_TPREL64MSB"; 1255 case 151: return "R_IA_64_TPREL64LSB"; 1256 case 154: return "R_IA_64_LTOFF_TPREL22"; 1257 case 166: return "R_IA_64_DTPMOD64MSB"; 1258 case 167: return "R_IA_64_DTPMOD64LSB"; 1259 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 1260 case 177: return "R_IA_64_DTPREL14"; 1261 case 178: return "R_IA_64_DTPREL22"; 1262 case 179: return "R_IA_64_DTPREL64I"; 1263 case 180: return "R_IA_64_DTPREL32MSB"; 1264 case 181: return "R_IA_64_DTPREL32LSB"; 1265 case 182: return "R_IA_64_DTPREL64MSB"; 1266 case 183: return "R_IA_64_DTPREL64LSB"; 1267 case 186: return "R_IA_64_LTOFF_DTPREL22"; 1268 default: return ""; 1269 } 1270 case EM_MIPS: 1271 switch(type) { 1272 case 0: return "R_MIPS_NONE"; 1273 case 1: return "R_MIPS_16"; 1274 case 2: return "R_MIPS_32"; 1275 case 3: return "R_MIPS_REL32"; 1276 case 4: return "R_MIPS_26"; 1277 case 5: return "R_MIPS_HI16"; 1278 case 6: return "R_MIPS_LO16"; 1279 case 7: return "R_MIPS_GPREL16"; 1280 case 8: return "R_MIPS_LITERAL"; 1281 case 9: return "R_MIPS_GOT16"; 1282 case 10: return "R_MIPS_PC16"; 1283 case 11: return "R_MIPS_CALL16"; 1284 case 12: return "R_MIPS_GPREL32"; 1285 case 21: return "R_MIPS_GOTHI16"; 1286 case 22: return "R_MIPS_GOTLO16"; 1287 case 30: return "R_MIPS_CALLHI16"; 1288 case 31: return "R_MIPS_CALLLO16"; 1289 default: return ""; 1290 } 1291 case EM_PPC: 1292 switch(type) { 1293 case 0: return "R_PPC_NONE"; 1294 case 1: return "R_PPC_ADDR32"; 1295 case 2: return "R_PPC_ADDR24"; 1296 case 3: return "R_PPC_ADDR16"; 1297 case 4: return "R_PPC_ADDR16_LO"; 1298 case 5: return "R_PPC_ADDR16_HI"; 1299 case 6: return "R_PPC_ADDR16_HA"; 1300 case 7: return "R_PPC_ADDR14"; 1301 case 8: return "R_PPC_ADDR14_BRTAKEN"; 1302 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 1303 case 10: return "R_PPC_REL24"; 1304 case 11: return "R_PPC_REL14"; 1305 case 12: return "R_PPC_REL14_BRTAKEN"; 1306 case 13: return "R_PPC_REL14_BRNTAKEN"; 1307 case 14: return "R_PPC_GOT16"; 1308 case 15: return "R_PPC_GOT16_LO"; 1309 case 16: return "R_PPC_GOT16_HI"; 1310 case 17: return "R_PPC_GOT16_HA"; 1311 case 18: return "R_PPC_PLTREL24"; 1312 case 19: return "R_PPC_COPY"; 1313 case 20: return "R_PPC_GLOB_DAT"; 1314 case 21: return "R_PPC_JMP_SLOT"; 1315 case 22: return "R_PPC_RELATIVE"; 1316 case 23: return "R_PPC_LOCAL24PC"; 1317 case 24: return "R_PPC_UADDR32"; 1318 case 25: return "R_PPC_UADDR16"; 1319 case 26: return "R_PPC_REL32"; 1320 case 27: return "R_PPC_PLT32"; 1321 case 28: return "R_PPC_PLTREL32"; 1322 case 29: return "R_PPC_PLT16_LO"; 1323 case 30: return "R_PPC_PLT16_HI"; 1324 case 31: return "R_PPC_PLT16_HA"; 1325 case 32: return "R_PPC_SDAREL16"; 1326 case 33: return "R_PPC_SECTOFF"; 1327 case 34: return "R_PPC_SECTOFF_LO"; 1328 case 35: return "R_PPC_SECTOFF_HI"; 1329 case 36: return "R_PPC_SECTOFF_HA"; 1330 case 67: return "R_PPC_TLS"; 1331 case 68: return "R_PPC_DTPMOD32"; 1332 case 69: return "R_PPC_TPREL16"; 1333 case 70: return "R_PPC_TPREL16_LO"; 1334 case 71: return "R_PPC_TPREL16_HI"; 1335 case 72: return "R_PPC_TPREL16_HA"; 1336 case 73: return "R_PPC_TPREL32"; 1337 case 74: return "R_PPC_DTPREL16"; 1338 case 75: return "R_PPC_DTPREL16_LO"; 1339 case 76: return "R_PPC_DTPREL16_HI"; 1340 case 77: return "R_PPC_DTPREL16_HA"; 1341 case 78: return "R_PPC_DTPREL32"; 1342 case 79: return "R_PPC_GOT_TLSGD16"; 1343 case 80: return "R_PPC_GOT_TLSGD16_LO"; 1344 case 81: return "R_PPC_GOT_TLSGD16_HI"; 1345 case 82: return "R_PPC_GOT_TLSGD16_HA"; 1346 case 83: return "R_PPC_GOT_TLSLD16"; 1347 case 84: return "R_PPC_GOT_TLSLD16_LO"; 1348 case 85: return "R_PPC_GOT_TLSLD16_HI"; 1349 case 86: return "R_PPC_GOT_TLSLD16_HA"; 1350 case 87: return "R_PPC_GOT_TPREL16"; 1351 case 88: return "R_PPC_GOT_TPREL16_LO"; 1352 case 89: return "R_PPC_GOT_TPREL16_HI"; 1353 case 90: return "R_PPC_GOT_TPREL16_HA"; 1354 case 101: return "R_PPC_EMB_NADDR32"; 1355 case 102: return "R_PPC_EMB_NADDR16"; 1356 case 103: return "R_PPC_EMB_NADDR16_LO"; 1357 case 104: return "R_PPC_EMB_NADDR16_HI"; 1358 case 105: return "R_PPC_EMB_NADDR16_HA"; 1359 case 106: return "R_PPC_EMB_SDAI16"; 1360 case 107: return "R_PPC_EMB_SDA2I16"; 1361 case 108: return "R_PPC_EMB_SDA2REL"; 1362 case 109: return "R_PPC_EMB_SDA21"; 1363 case 110: return "R_PPC_EMB_MRKREF"; 1364 case 111: return "R_PPC_EMB_RELSEC16"; 1365 case 112: return "R_PPC_EMB_RELST_LO"; 1366 case 113: return "R_PPC_EMB_RELST_HI"; 1367 case 114: return "R_PPC_EMB_RELST_HA"; 1368 case 115: return "R_PPC_EMB_BIT_FLD"; 1369 case 116: return "R_PPC_EMB_RELSDA"; 1370 default: return ""; 1371 } 1372 case EM_SPARC: 1373 case EM_SPARCV9: 1374 switch(type) { 1375 case 0: return "R_SPARC_NONE"; 1376 case 1: return "R_SPARC_8"; 1377 case 2: return "R_SPARC_16"; 1378 case 3: return "R_SPARC_32"; 1379 case 4: return "R_SPARC_DISP8"; 1380 case 5: return "R_SPARC_DISP16"; 1381 case 6: return "R_SPARC_DISP32"; 1382 case 7: return "R_SPARC_WDISP30"; 1383 case 8: return "R_SPARC_WDISP22"; 1384 case 9: return "R_SPARC_HI22"; 1385 case 10: return "R_SPARC_22"; 1386 case 11: return "R_SPARC_13"; 1387 case 12: return "R_SPARC_LO10"; 1388 case 13: return "R_SPARC_GOT10"; 1389 case 14: return "R_SPARC_GOT13"; 1390 case 15: return "R_SPARC_GOT22"; 1391 case 16: return "R_SPARC_PC10"; 1392 case 17: return "R_SPARC_PC22"; 1393 case 18: return "R_SPARC_WPLT30"; 1394 case 19: return "R_SPARC_COPY"; 1395 case 20: return "R_SPARC_GLOB_DAT"; 1396 case 21: return "R_SPARC_JMP_SLOT"; 1397 case 22: return "R_SPARC_RELATIVE"; 1398 case 23: return "R_SPARC_UA32"; 1399 case 24: return "R_SPARC_PLT32"; 1400 case 25: return "R_SPARC_HIPLT22"; 1401 case 26: return "R_SPARC_LOPLT10"; 1402 case 27: return "R_SPARC_PCPLT32"; 1403 case 28: return "R_SPARC_PCPLT22"; 1404 case 29: return "R_SPARC_PCPLT10"; 1405 case 30: return "R_SPARC_10"; 1406 case 31: return "R_SPARC_11"; 1407 case 32: return "R_SPARC_64"; 1408 case 33: return "R_SPARC_OLO10"; 1409 case 34: return "R_SPARC_HH22"; 1410 case 35: return "R_SPARC_HM10"; 1411 case 36: return "R_SPARC_LM22"; 1412 case 37: return "R_SPARC_PC_HH22"; 1413 case 38: return "R_SPARC_PC_HM10"; 1414 case 39: return "R_SPARC_PC_LM22"; 1415 case 40: return "R_SPARC_WDISP16"; 1416 case 41: return "R_SPARC_WDISP19"; 1417 case 42: return "R_SPARC_GLOB_JMP"; 1418 case 43: return "R_SPARC_7"; 1419 case 44: return "R_SPARC_5"; 1420 case 45: return "R_SPARC_6"; 1421 case 46: return "R_SPARC_DISP64"; 1422 case 47: return "R_SPARC_PLT64"; 1423 case 48: return "R_SPARC_HIX22"; 1424 case 49: return "R_SPARC_LOX10"; 1425 case 50: return "R_SPARC_H44"; 1426 case 51: return "R_SPARC_M44"; 1427 case 52: return "R_SPARC_L44"; 1428 case 53: return "R_SPARC_REGISTER"; 1429 case 54: return "R_SPARC_UA64"; 1430 case 55: return "R_SPARC_UA16"; 1431 case 56: return "R_SPARC_TLS_GD_HI22"; 1432 case 57: return "R_SPARC_TLS_GD_LO10"; 1433 case 58: return "R_SPARC_TLS_GD_ADD"; 1434 case 59: return "R_SPARC_TLS_GD_CALL"; 1435 case 60: return "R_SPARC_TLS_LDM_HI22"; 1436 case 61: return "R_SPARC_TLS_LDM_LO10"; 1437 case 62: return "R_SPARC_TLS_LDM_ADD"; 1438 case 63: return "R_SPARC_TLS_LDM_CALL"; 1439 case 64: return "R_SPARC_TLS_LDO_HIX22"; 1440 case 65: return "R_SPARC_TLS_LDO_LOX10"; 1441 case 66: return "R_SPARC_TLS_LDO_ADD"; 1442 case 67: return "R_SPARC_TLS_IE_HI22"; 1443 case 68: return "R_SPARC_TLS_IE_LO10"; 1444 case 69: return "R_SPARC_TLS_IE_LD"; 1445 case 70: return "R_SPARC_TLS_IE_LDX"; 1446 case 71: return "R_SPARC_TLS_IE_ADD"; 1447 case 72: return "R_SPARC_TLS_LE_HIX22"; 1448 case 73: return "R_SPARC_TLS_LE_LOX10"; 1449 case 74: return "R_SPARC_TLS_DTPMOD32"; 1450 case 75: return "R_SPARC_TLS_DTPMOD64"; 1451 case 76: return "R_SPARC_TLS_DTPOFF32"; 1452 case 77: return "R_SPARC_TLS_DTPOFF64"; 1453 case 78: return "R_SPARC_TLS_TPOFF32"; 1454 case 79: return "R_SPARC_TLS_TPOFF64"; 1455 default: return ""; 1456 } 1457 case EM_X86_64: 1458 switch(type) { 1459 case 0: return "R_X86_64_NONE"; 1460 case 1: return "R_X86_64_64"; 1461 case 2: return "R_X86_64_PC32"; 1462 case 3: return "R_X86_64_GOT32"; 1463 case 4: return "R_X86_64_PLT32"; 1464 case 5: return "R_X86_64_COPY"; 1465 case 6: return "R_X86_64_GLOB_DAT"; 1466 case 7: return "R_X86_64_JMP_SLOT"; 1467 case 8: return "R_X86_64_RELATIVE"; 1468 case 9: return "R_X86_64_GOTPCREL"; 1469 case 10: return "R_X86_64_32"; 1470 case 11: return "R_X86_64_32S"; 1471 case 12: return "R_X86_64_16"; 1472 case 13: return "R_X86_64_PC16"; 1473 case 14: return "R_X86_64_8"; 1474 case 15: return "R_X86_64_PC8"; 1475 case 16: return "R_X86_64_DTPMOD64"; 1476 case 17: return "R_X86_64_DTPOFF64"; 1477 case 18: return "R_X86_64_TPOFF64"; 1478 case 19: return "R_X86_64_TLSGD"; 1479 case 20: return "R_X86_64_TLSLD"; 1480 case 21: return "R_X86_64_DTPOFF32"; 1481 case 22: return "R_X86_64_GOTTPOFF"; 1482 case 23: return "R_X86_64_TPOFF32"; 1483 case 24: return "R_X86_64_PC64"; 1484 case 25: return "R_X86_64_GOTOFF64"; 1485 case 26: return "R_X86_64_GOTPC32"; 1486 case 27: return "R_X86_64_GOT64"; 1487 case 28: return "R_X86_64_GOTPCREL64"; 1488 case 29: return "R_X86_64_GOTPC64"; 1489 case 30: return "R_X86_64_GOTPLT64"; 1490 case 31: return "R_X86_64_PLTOFF64"; 1491 case 32: return "R_X86_64_SIZE32"; 1492 case 33: return "R_X86_64_SIZE64"; 1493 case 34: return "R_X86_64_GOTPC32_TLSDESC"; 1494 case 35: return "R_X86_64_TLSDESC_CALL"; 1495 case 36: return "R_X86_64_TLSDESC"; 1496 case 37: return "R_X86_64_IRELATIVE"; 1497 default: return ""; 1498 } 1499 default: return ""; 1500 } 1501 } 1502 1503 static const char * 1504 note_type(const char *name, unsigned int et, unsigned int nt) 1505 { 1506 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1507 et == ET_CORE) 1508 return note_type_linux_core(nt); 1509 else if (strcmp(name, "FreeBSD") == 0) 1510 if (et == ET_CORE) 1511 return note_type_freebsd_core(nt); 1512 else 1513 return note_type_freebsd(nt); 1514 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1515 return note_type_gnu(nt); 1516 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1517 return note_type_netbsd(nt); 1518 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1519 return note_type_openbsd(nt); 1520 return note_type_unknown(nt); 1521 } 1522 1523 static const char * 1524 note_type_freebsd(unsigned int nt) 1525 { 1526 switch (nt) { 1527 case 1: return "NT_FREEBSD_ABI_TAG"; 1528 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1529 case 3: return "NT_FREEBSD_ARCH_TAG"; 1530 default: return (note_type_unknown(nt)); 1531 } 1532 } 1533 1534 static const char * 1535 note_type_freebsd_core(unsigned int nt) 1536 { 1537 switch (nt) { 1538 case 1: return "NT_PRSTATUS"; 1539 case 2: return "NT_FPREGSET"; 1540 case 3: return "NT_PRPSINFO"; 1541 case 7: return "NT_THRMISC"; 1542 case 8: return "NT_PROCSTAT_PROC"; 1543 case 9: return "NT_PROCSTAT_FILES"; 1544 case 10: return "NT_PROCSTAT_VMMAP"; 1545 case 11: return "NT_PROCSTAT_GROUPS"; 1546 case 12: return "NT_PROCSTAT_UMASK"; 1547 case 13: return "NT_PROCSTAT_RLIMIT"; 1548 case 14: return "NT_PROCSTAT_OSREL"; 1549 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1550 case 16: return "NT_PROCSTAT_AUXV"; 1551 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1552 default: return (note_type_unknown(nt)); 1553 } 1554 } 1555 1556 static const char * 1557 note_type_linux_core(unsigned int nt) 1558 { 1559 switch (nt) { 1560 case 1: return "NT_PRSTATUS (Process status)"; 1561 case 2: return "NT_FPREGSET (Floating point information)"; 1562 case 3: return "NT_PRPSINFO (Process information)"; 1563 case 4: return "NT_TASKSTRUCT (Task structure)"; 1564 case 6: return "NT_AUXV (Auxiliary vector)"; 1565 case 10: return "NT_PSTATUS (Linux process status)"; 1566 case 12: return "NT_FPREGS (Linux floating point regset)"; 1567 case 13: return "NT_PSINFO (Linux process information)"; 1568 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1569 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1570 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1571 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1572 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1573 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1574 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1575 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1576 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1577 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1578 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1579 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1580 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1581 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1582 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1583 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1584 default: return (note_type_unknown(nt)); 1585 } 1586 } 1587 1588 static const char * 1589 note_type_gnu(unsigned int nt) 1590 { 1591 switch (nt) { 1592 case 1: return "NT_GNU_ABI_TAG"; 1593 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1594 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1595 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1596 default: return (note_type_unknown(nt)); 1597 } 1598 } 1599 1600 static const char * 1601 note_type_netbsd(unsigned int nt) 1602 { 1603 switch (nt) { 1604 case 1: return "NT_NETBSD_IDENT"; 1605 default: return (note_type_unknown(nt)); 1606 } 1607 } 1608 1609 static const char * 1610 note_type_openbsd(unsigned int nt) 1611 { 1612 switch (nt) { 1613 case 1: return "NT_OPENBSD_IDENT"; 1614 default: return (note_type_unknown(nt)); 1615 } 1616 } 1617 1618 static const char * 1619 note_type_unknown(unsigned int nt) 1620 { 1621 static char s_nt[32]; 1622 1623 snprintf(s_nt, sizeof(s_nt), 1624 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1625 return (s_nt); 1626 } 1627 1628 static struct { 1629 const char *name; 1630 int value; 1631 } l_flag[] = { 1632 {"EXACT_MATCH", LL_EXACT_MATCH}, 1633 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1634 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1635 {"EXPORTS", LL_EXPORTS}, 1636 {"DELAY_LOAD", LL_DELAY_LOAD}, 1637 {"DELTA", LL_DELTA}, 1638 {NULL, 0} 1639 }; 1640 1641 static struct mips_option mips_exceptions_option[] = { 1642 {OEX_PAGE0, "PAGE0"}, 1643 {OEX_SMM, "SMM"}, 1644 {OEX_PRECISEFP, "PRECISEFP"}, 1645 {OEX_DISMISS, "DISMISS"}, 1646 {0, NULL} 1647 }; 1648 1649 static struct mips_option mips_pad_option[] = { 1650 {OPAD_PREFIX, "PREFIX"}, 1651 {OPAD_POSTFIX, "POSTFIX"}, 1652 {OPAD_SYMBOL, "SYMBOL"}, 1653 {0, NULL} 1654 }; 1655 1656 static struct mips_option mips_hwpatch_option[] = { 1657 {OHW_R4KEOP, "R4KEOP"}, 1658 {OHW_R8KPFETCH, "R8KPFETCH"}, 1659 {OHW_R5KEOP, "R5KEOP"}, 1660 {OHW_R5KCVTL, "R5KCVTL"}, 1661 {0, NULL} 1662 }; 1663 1664 static struct mips_option mips_hwa_option[] = { 1665 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1666 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1667 {0, NULL} 1668 }; 1669 1670 static struct mips_option mips_hwo_option[] = { 1671 {OHWO0_FIXADE, "FIXADE"}, 1672 {0, NULL} 1673 }; 1674 1675 static const char * 1676 option_kind(uint8_t kind) 1677 { 1678 static char s_kind[32]; 1679 1680 switch (kind) { 1681 case ODK_NULL: return "NULL"; 1682 case ODK_REGINFO: return "REGINFO"; 1683 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1684 case ODK_PAD: return "PAD"; 1685 case ODK_HWPATCH: return "HWPATCH"; 1686 case ODK_FILL: return "FILL"; 1687 case ODK_TAGS: return "TAGS"; 1688 case ODK_HWAND: return "HWAND"; 1689 case ODK_HWOR: return "HWOR"; 1690 case ODK_GP_GROUP: return "GP_GROUP"; 1691 case ODK_IDENT: return "IDENT"; 1692 default: 1693 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1694 return (s_kind); 1695 } 1696 } 1697 1698 static const char * 1699 top_tag(unsigned int tag) 1700 { 1701 static char s_top_tag[32]; 1702 1703 switch (tag) { 1704 case 1: return "File Attributes"; 1705 case 2: return "Section Attributes"; 1706 case 3: return "Symbol Attributes"; 1707 default: 1708 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1709 return (s_top_tag); 1710 } 1711 } 1712 1713 static const char * 1714 aeabi_cpu_arch(uint64_t arch) 1715 { 1716 static char s_cpu_arch[32]; 1717 1718 switch (arch) { 1719 case 0: return "Pre-V4"; 1720 case 1: return "ARM v4"; 1721 case 2: return "ARM v4T"; 1722 case 3: return "ARM v5T"; 1723 case 4: return "ARM v5TE"; 1724 case 5: return "ARM v5TEJ"; 1725 case 6: return "ARM v6"; 1726 case 7: return "ARM v6KZ"; 1727 case 8: return "ARM v6T2"; 1728 case 9: return "ARM v6K"; 1729 case 10: return "ARM v7"; 1730 case 11: return "ARM v6-M"; 1731 case 12: return "ARM v6S-M"; 1732 case 13: return "ARM v7E-M"; 1733 default: 1734 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1735 "Unknown (%ju)", (uintmax_t) arch); 1736 return (s_cpu_arch); 1737 } 1738 } 1739 1740 static const char * 1741 aeabi_cpu_arch_profile(uint64_t pf) 1742 { 1743 static char s_arch_profile[32]; 1744 1745 switch (pf) { 1746 case 0: 1747 return "Not applicable"; 1748 case 0x41: /* 'A' */ 1749 return "Application Profile"; 1750 case 0x52: /* 'R' */ 1751 return "Real-Time Profile"; 1752 case 0x4D: /* 'M' */ 1753 return "Microcontroller Profile"; 1754 case 0x53: /* 'S' */ 1755 return "Application or Real-Time Profile"; 1756 default: 1757 snprintf(s_arch_profile, sizeof(s_arch_profile), 1758 "Unknown (%ju)\n", (uintmax_t) pf); 1759 return (s_arch_profile); 1760 } 1761 } 1762 1763 static const char * 1764 aeabi_arm_isa(uint64_t ai) 1765 { 1766 static char s_ai[32]; 1767 1768 switch (ai) { 1769 case 0: return "No"; 1770 case 1: return "Yes"; 1771 default: 1772 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1773 (uintmax_t) ai); 1774 return (s_ai); 1775 } 1776 } 1777 1778 static const char * 1779 aeabi_thumb_isa(uint64_t ti) 1780 { 1781 static char s_ti[32]; 1782 1783 switch (ti) { 1784 case 0: return "No"; 1785 case 1: return "16-bit Thumb"; 1786 case 2: return "32-bit Thumb"; 1787 default: 1788 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1789 (uintmax_t) ti); 1790 return (s_ti); 1791 } 1792 } 1793 1794 static const char * 1795 aeabi_fp_arch(uint64_t fp) 1796 { 1797 static char s_fp_arch[32]; 1798 1799 switch (fp) { 1800 case 0: return "No"; 1801 case 1: return "VFPv1"; 1802 case 2: return "VFPv2"; 1803 case 3: return "VFPv3"; 1804 case 4: return "VFPv3-D16"; 1805 case 5: return "VFPv4"; 1806 case 6: return "VFPv4-D16"; 1807 default: 1808 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1809 (uintmax_t) fp); 1810 return (s_fp_arch); 1811 } 1812 } 1813 1814 static const char * 1815 aeabi_wmmx_arch(uint64_t wmmx) 1816 { 1817 static char s_wmmx[32]; 1818 1819 switch (wmmx) { 1820 case 0: return "No"; 1821 case 1: return "WMMXv1"; 1822 case 2: return "WMMXv2"; 1823 default: 1824 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1825 (uintmax_t) wmmx); 1826 return (s_wmmx); 1827 } 1828 } 1829 1830 static const char * 1831 aeabi_adv_simd_arch(uint64_t simd) 1832 { 1833 static char s_simd[32]; 1834 1835 switch (simd) { 1836 case 0: return "No"; 1837 case 1: return "NEONv1"; 1838 case 2: return "NEONv2"; 1839 default: 1840 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1841 (uintmax_t) simd); 1842 return (s_simd); 1843 } 1844 } 1845 1846 static const char * 1847 aeabi_pcs_config(uint64_t pcs) 1848 { 1849 static char s_pcs[32]; 1850 1851 switch (pcs) { 1852 case 0: return "None"; 1853 case 1: return "Bare platform"; 1854 case 2: return "Linux"; 1855 case 3: return "Linux DSO"; 1856 case 4: return "Palm OS 2004"; 1857 case 5: return "Palm OS (future)"; 1858 case 6: return "Symbian OS 2004"; 1859 case 7: return "Symbian OS (future)"; 1860 default: 1861 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1862 (uintmax_t) pcs); 1863 return (s_pcs); 1864 } 1865 } 1866 1867 static const char * 1868 aeabi_pcs_r9(uint64_t r9) 1869 { 1870 static char s_r9[32]; 1871 1872 switch (r9) { 1873 case 0: return "V6"; 1874 case 1: return "SB"; 1875 case 2: return "TLS pointer"; 1876 case 3: return "Unused"; 1877 default: 1878 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1879 return (s_r9); 1880 } 1881 } 1882 1883 static const char * 1884 aeabi_pcs_rw(uint64_t rw) 1885 { 1886 static char s_rw[32]; 1887 1888 switch (rw) { 1889 case 0: return "Absolute"; 1890 case 1: return "PC-relative"; 1891 case 2: return "SB-relative"; 1892 case 3: return "None"; 1893 default: 1894 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1895 return (s_rw); 1896 } 1897 } 1898 1899 static const char * 1900 aeabi_pcs_ro(uint64_t ro) 1901 { 1902 static char s_ro[32]; 1903 1904 switch (ro) { 1905 case 0: return "Absolute"; 1906 case 1: return "PC-relative"; 1907 case 2: return "None"; 1908 default: 1909 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1910 return (s_ro); 1911 } 1912 } 1913 1914 static const char * 1915 aeabi_pcs_got(uint64_t got) 1916 { 1917 static char s_got[32]; 1918 1919 switch (got) { 1920 case 0: return "None"; 1921 case 1: return "direct"; 1922 case 2: return "indirect via GOT"; 1923 default: 1924 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1925 (uintmax_t) got); 1926 return (s_got); 1927 } 1928 } 1929 1930 static const char * 1931 aeabi_pcs_wchar_t(uint64_t wt) 1932 { 1933 static char s_wt[32]; 1934 1935 switch (wt) { 1936 case 0: return "None"; 1937 case 2: return "wchar_t size 2"; 1938 case 4: return "wchar_t size 4"; 1939 default: 1940 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1941 return (s_wt); 1942 } 1943 } 1944 1945 static const char * 1946 aeabi_enum_size(uint64_t es) 1947 { 1948 static char s_es[32]; 1949 1950 switch (es) { 1951 case 0: return "None"; 1952 case 1: return "smallest"; 1953 case 2: return "32-bit"; 1954 case 3: return "visible 32-bit"; 1955 default: 1956 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1957 return (s_es); 1958 } 1959 } 1960 1961 static const char * 1962 aeabi_align_needed(uint64_t an) 1963 { 1964 static char s_align_n[64]; 1965 1966 switch (an) { 1967 case 0: return "No"; 1968 case 1: return "8-byte align"; 1969 case 2: return "4-byte align"; 1970 case 3: return "Reserved"; 1971 default: 1972 if (an >= 4 && an <= 12) 1973 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1974 " and up to 2^%ju-byte extended align", 1975 (uintmax_t) an); 1976 else 1977 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1978 (uintmax_t) an); 1979 return (s_align_n); 1980 } 1981 } 1982 1983 static const char * 1984 aeabi_align_preserved(uint64_t ap) 1985 { 1986 static char s_align_p[128]; 1987 1988 switch (ap) { 1989 case 0: return "No"; 1990 case 1: return "8-byte align"; 1991 case 2: return "8-byte align and SP % 8 == 0"; 1992 case 3: return "Reserved"; 1993 default: 1994 if (ap >= 4 && ap <= 12) 1995 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1996 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1997 " align", (uintmax_t) ap); 1998 else 1999 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 2000 (uintmax_t) ap); 2001 return (s_align_p); 2002 } 2003 } 2004 2005 static const char * 2006 aeabi_fp_rounding(uint64_t fr) 2007 { 2008 static char s_fp_r[32]; 2009 2010 switch (fr) { 2011 case 0: return "Unused"; 2012 case 1: return "Needed"; 2013 default: 2014 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 2015 (uintmax_t) fr); 2016 return (s_fp_r); 2017 } 2018 } 2019 2020 static const char * 2021 aeabi_fp_denormal(uint64_t fd) 2022 { 2023 static char s_fp_d[32]; 2024 2025 switch (fd) { 2026 case 0: return "Unused"; 2027 case 1: return "Needed"; 2028 case 2: return "Sign Only"; 2029 default: 2030 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 2031 (uintmax_t) fd); 2032 return (s_fp_d); 2033 } 2034 } 2035 2036 static const char * 2037 aeabi_fp_exceptions(uint64_t fe) 2038 { 2039 static char s_fp_e[32]; 2040 2041 switch (fe) { 2042 case 0: return "Unused"; 2043 case 1: return "Needed"; 2044 default: 2045 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 2046 (uintmax_t) fe); 2047 return (s_fp_e); 2048 } 2049 } 2050 2051 static const char * 2052 aeabi_fp_user_exceptions(uint64_t fu) 2053 { 2054 static char s_fp_u[32]; 2055 2056 switch (fu) { 2057 case 0: return "Unused"; 2058 case 1: return "Needed"; 2059 default: 2060 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 2061 (uintmax_t) fu); 2062 return (s_fp_u); 2063 } 2064 } 2065 2066 static const char * 2067 aeabi_fp_number_model(uint64_t fn) 2068 { 2069 static char s_fp_n[32]; 2070 2071 switch (fn) { 2072 case 0: return "Unused"; 2073 case 1: return "IEEE 754 normal"; 2074 case 2: return "RTABI"; 2075 case 3: return "IEEE 754"; 2076 default: 2077 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 2078 (uintmax_t) fn); 2079 return (s_fp_n); 2080 } 2081 } 2082 2083 static const char * 2084 aeabi_fp_16bit_format(uint64_t fp16) 2085 { 2086 static char s_fp_16[64]; 2087 2088 switch (fp16) { 2089 case 0: return "None"; 2090 case 1: return "IEEE 754"; 2091 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 2092 default: 2093 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 2094 (uintmax_t) fp16); 2095 return (s_fp_16); 2096 } 2097 } 2098 2099 static const char * 2100 aeabi_mpext(uint64_t mp) 2101 { 2102 static char s_mp[32]; 2103 2104 switch (mp) { 2105 case 0: return "Not allowed"; 2106 case 1: return "Allowed"; 2107 default: 2108 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 2109 (uintmax_t) mp); 2110 return (s_mp); 2111 } 2112 } 2113 2114 static const char * 2115 aeabi_div(uint64_t du) 2116 { 2117 static char s_du[32]; 2118 2119 switch (du) { 2120 case 0: return "Yes (V7-R/V7-M)"; 2121 case 1: return "No"; 2122 case 2: return "Yes (V7-A)"; 2123 default: 2124 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 2125 (uintmax_t) du); 2126 return (s_du); 2127 } 2128 } 2129 2130 static const char * 2131 aeabi_t2ee(uint64_t t2ee) 2132 { 2133 static char s_t2ee[32]; 2134 2135 switch (t2ee) { 2136 case 0: return "Not allowed"; 2137 case 1: return "Allowed"; 2138 default: 2139 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 2140 (uintmax_t) t2ee); 2141 return (s_t2ee); 2142 } 2143 2144 } 2145 2146 static const char * 2147 aeabi_hardfp(uint64_t hfp) 2148 { 2149 static char s_hfp[32]; 2150 2151 switch (hfp) { 2152 case 0: return "Tag_FP_arch"; 2153 case 1: return "only SP"; 2154 case 2: return "only DP"; 2155 case 3: return "both SP and DP"; 2156 default: 2157 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 2158 (uintmax_t) hfp); 2159 return (s_hfp); 2160 } 2161 } 2162 2163 static const char * 2164 aeabi_vfp_args(uint64_t va) 2165 { 2166 static char s_va[32]; 2167 2168 switch (va) { 2169 case 0: return "AAPCS (base variant)"; 2170 case 1: return "AAPCS (VFP variant)"; 2171 case 2: return "toolchain-specific"; 2172 default: 2173 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 2174 return (s_va); 2175 } 2176 } 2177 2178 static const char * 2179 aeabi_wmmx_args(uint64_t wa) 2180 { 2181 static char s_wa[32]; 2182 2183 switch (wa) { 2184 case 0: return "AAPCS (base variant)"; 2185 case 1: return "Intel WMMX"; 2186 case 2: return "toolchain-specific"; 2187 default: 2188 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 2189 return (s_wa); 2190 } 2191 } 2192 2193 static const char * 2194 aeabi_unaligned_access(uint64_t ua) 2195 { 2196 static char s_ua[32]; 2197 2198 switch (ua) { 2199 case 0: return "Not allowed"; 2200 case 1: return "Allowed"; 2201 default: 2202 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 2203 return (s_ua); 2204 } 2205 } 2206 2207 static const char * 2208 aeabi_fp_hpext(uint64_t fh) 2209 { 2210 static char s_fh[32]; 2211 2212 switch (fh) { 2213 case 0: return "Not allowed"; 2214 case 1: return "Allowed"; 2215 default: 2216 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 2217 return (s_fh); 2218 } 2219 } 2220 2221 static const char * 2222 aeabi_optm_goal(uint64_t og) 2223 { 2224 static char s_og[32]; 2225 2226 switch (og) { 2227 case 0: return "None"; 2228 case 1: return "Speed"; 2229 case 2: return "Speed aggressive"; 2230 case 3: return "Space"; 2231 case 4: return "Space aggressive"; 2232 case 5: return "Debugging"; 2233 case 6: return "Best Debugging"; 2234 default: 2235 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 2236 return (s_og); 2237 } 2238 } 2239 2240 static const char * 2241 aeabi_fp_optm_goal(uint64_t fog) 2242 { 2243 static char s_fog[32]; 2244 2245 switch (fog) { 2246 case 0: return "None"; 2247 case 1: return "Speed"; 2248 case 2: return "Speed aggressive"; 2249 case 3: return "Space"; 2250 case 4: return "Space aggressive"; 2251 case 5: return "Accurary"; 2252 case 6: return "Best Accurary"; 2253 default: 2254 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 2255 (uintmax_t) fog); 2256 return (s_fog); 2257 } 2258 } 2259 2260 static const char * 2261 aeabi_virtual(uint64_t vt) 2262 { 2263 static char s_virtual[64]; 2264 2265 switch (vt) { 2266 case 0: return "No"; 2267 case 1: return "TrustZone"; 2268 case 2: return "Virtualization extension"; 2269 case 3: return "TrustZone and virtualization extension"; 2270 default: 2271 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 2272 (uintmax_t) vt); 2273 return (s_virtual); 2274 } 2275 } 2276 2277 static struct { 2278 uint64_t tag; 2279 const char *s_tag; 2280 const char *(*get_desc)(uint64_t val); 2281 } aeabi_tags[] = { 2282 {4, "Tag_CPU_raw_name", NULL}, 2283 {5, "Tag_CPU_name", NULL}, 2284 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 2285 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 2286 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 2287 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 2288 {10, "Tag_FP_arch", aeabi_fp_arch}, 2289 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 2290 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 2291 {13, "Tag_PCS_config", aeabi_pcs_config}, 2292 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 2293 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 2294 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 2295 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 2296 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 2297 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 2298 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 2299 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 2300 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 2301 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 2302 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 2303 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 2304 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 2305 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 2306 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 2307 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 2308 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 2309 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 2310 {32, "Tag_compatibility", NULL}, 2311 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 2312 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 2313 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 2314 {42, "Tag_MPextension_use", aeabi_mpext}, 2315 {44, "Tag_DIV_use", aeabi_div}, 2316 {64, "Tag_nodefaults", NULL}, 2317 {65, "Tag_also_compatible_with", NULL}, 2318 {66, "Tag_T2EE_use", aeabi_t2ee}, 2319 {67, "Tag_conformance", NULL}, 2320 {68, "Tag_Virtualization_use", aeabi_virtual}, 2321 {70, "Tag_MPextension_use", aeabi_mpext}, 2322 }; 2323 2324 static const char * 2325 mips_abi_fp(uint64_t fp) 2326 { 2327 static char s_mips_abi_fp[64]; 2328 2329 switch (fp) { 2330 case 0: return "N/A"; 2331 case 1: return "Hard float (double precision)"; 2332 case 2: return "Hard float (single precision)"; 2333 case 3: return "Soft float"; 2334 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2335 default: 2336 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2337 (uintmax_t) fp); 2338 return (s_mips_abi_fp); 2339 } 2340 } 2341 2342 static const char * 2343 ppc_abi_fp(uint64_t fp) 2344 { 2345 static char s_ppc_abi_fp[64]; 2346 2347 switch (fp) { 2348 case 0: return "N/A"; 2349 case 1: return "Hard float (double precision)"; 2350 case 2: return "Soft float"; 2351 case 3: return "Hard float (single precision)"; 2352 default: 2353 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2354 (uintmax_t) fp); 2355 return (s_ppc_abi_fp); 2356 } 2357 } 2358 2359 static const char * 2360 ppc_abi_vector(uint64_t vec) 2361 { 2362 static char s_vec[64]; 2363 2364 switch (vec) { 2365 case 0: return "N/A"; 2366 case 1: return "Generic purpose registers"; 2367 case 2: return "AltiVec registers"; 2368 case 3: return "SPE registers"; 2369 default: 2370 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2371 return (s_vec); 2372 } 2373 } 2374 2375 static const char * 2376 dwarf_reg(unsigned int mach, unsigned int reg) 2377 { 2378 2379 switch (mach) { 2380 case EM_386: 2381 switch (reg) { 2382 case 0: return "eax"; 2383 case 1: return "ecx"; 2384 case 2: return "edx"; 2385 case 3: return "ebx"; 2386 case 4: return "esp"; 2387 case 5: return "ebp"; 2388 case 6: return "esi"; 2389 case 7: return "edi"; 2390 case 8: return "eip"; 2391 case 9: return "eflags"; 2392 case 11: return "st0"; 2393 case 12: return "st1"; 2394 case 13: return "st2"; 2395 case 14: return "st3"; 2396 case 15: return "st4"; 2397 case 16: return "st5"; 2398 case 17: return "st6"; 2399 case 18: return "st7"; 2400 case 21: return "xmm0"; 2401 case 22: return "xmm1"; 2402 case 23: return "xmm2"; 2403 case 24: return "xmm3"; 2404 case 25: return "xmm4"; 2405 case 26: return "xmm5"; 2406 case 27: return "xmm6"; 2407 case 28: return "xmm7"; 2408 case 29: return "mm0"; 2409 case 30: return "mm1"; 2410 case 31: return "mm2"; 2411 case 32: return "mm3"; 2412 case 33: return "mm4"; 2413 case 34: return "mm5"; 2414 case 35: return "mm6"; 2415 case 36: return "mm7"; 2416 case 37: return "fcw"; 2417 case 38: return "fsw"; 2418 case 39: return "mxcsr"; 2419 case 40: return "es"; 2420 case 41: return "cs"; 2421 case 42: return "ss"; 2422 case 43: return "ds"; 2423 case 44: return "fs"; 2424 case 45: return "gs"; 2425 case 48: return "tr"; 2426 case 49: return "ldtr"; 2427 default: return (NULL); 2428 } 2429 case EM_X86_64: 2430 switch (reg) { 2431 case 0: return "rax"; 2432 case 1: return "rdx"; 2433 case 2: return "rcx"; 2434 case 3: return "rbx"; 2435 case 4: return "rsi"; 2436 case 5: return "rdi"; 2437 case 6: return "rbp"; 2438 case 7: return "rsp"; 2439 case 16: return "rip"; 2440 case 17: return "xmm0"; 2441 case 18: return "xmm1"; 2442 case 19: return "xmm2"; 2443 case 20: return "xmm3"; 2444 case 21: return "xmm4"; 2445 case 22: return "xmm5"; 2446 case 23: return "xmm6"; 2447 case 24: return "xmm7"; 2448 case 25: return "xmm8"; 2449 case 26: return "xmm9"; 2450 case 27: return "xmm10"; 2451 case 28: return "xmm11"; 2452 case 29: return "xmm12"; 2453 case 30: return "xmm13"; 2454 case 31: return "xmm14"; 2455 case 32: return "xmm15"; 2456 case 33: return "st0"; 2457 case 34: return "st1"; 2458 case 35: return "st2"; 2459 case 36: return "st3"; 2460 case 37: return "st4"; 2461 case 38: return "st5"; 2462 case 39: return "st6"; 2463 case 40: return "st7"; 2464 case 41: return "mm0"; 2465 case 42: return "mm1"; 2466 case 43: return "mm2"; 2467 case 44: return "mm3"; 2468 case 45: return "mm4"; 2469 case 46: return "mm5"; 2470 case 47: return "mm6"; 2471 case 48: return "mm7"; 2472 case 49: return "rflags"; 2473 case 50: return "es"; 2474 case 51: return "cs"; 2475 case 52: return "ss"; 2476 case 53: return "ds"; 2477 case 54: return "fs"; 2478 case 55: return "gs"; 2479 case 58: return "fs.base"; 2480 case 59: return "gs.base"; 2481 case 62: return "tr"; 2482 case 63: return "ldtr"; 2483 case 64: return "mxcsr"; 2484 case 65: return "fcw"; 2485 case 66: return "fsw"; 2486 default: return (NULL); 2487 } 2488 default: 2489 return (NULL); 2490 } 2491 } 2492 2493 static void 2494 dump_ehdr(struct readelf *re) 2495 { 2496 size_t shnum, shstrndx; 2497 int i; 2498 2499 printf("ELF Header:\n"); 2500 2501 /* e_ident[]. */ 2502 printf(" Magic: "); 2503 for (i = 0; i < EI_NIDENT; i++) 2504 printf("%.2x ", re->ehdr.e_ident[i]); 2505 putchar('\n'); 2506 2507 /* EI_CLASS. */ 2508 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2509 2510 /* EI_DATA. */ 2511 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2512 2513 /* EI_VERSION. */ 2514 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2515 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2516 2517 /* EI_OSABI. */ 2518 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2519 2520 /* EI_ABIVERSION. */ 2521 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2522 2523 /* e_type. */ 2524 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2525 2526 /* e_machine. */ 2527 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2528 2529 /* e_version. */ 2530 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2531 2532 /* e_entry. */ 2533 printf("%-37s%#jx\n", " Entry point address:", 2534 (uintmax_t)re->ehdr.e_entry); 2535 2536 /* e_phoff. */ 2537 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2538 (uintmax_t)re->ehdr.e_phoff); 2539 2540 /* e_shoff. */ 2541 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2542 (uintmax_t)re->ehdr.e_shoff); 2543 2544 /* e_flags. */ 2545 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2546 dump_eflags(re, re->ehdr.e_flags); 2547 putchar('\n'); 2548 2549 /* e_ehsize. */ 2550 printf("%-37s%u (bytes)\n", " Size of this header:", 2551 re->ehdr.e_ehsize); 2552 2553 /* e_phentsize. */ 2554 printf("%-37s%u (bytes)\n", " Size of program headers:", 2555 re->ehdr.e_phentsize); 2556 2557 /* e_phnum. */ 2558 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2559 2560 /* e_shentsize. */ 2561 printf("%-37s%u (bytes)\n", " Size of section headers:", 2562 re->ehdr.e_shentsize); 2563 2564 /* e_shnum. */ 2565 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2566 if (re->ehdr.e_shnum == SHN_UNDEF) { 2567 /* Extended section numbering is in use. */ 2568 if (elf_getshnum(re->elf, &shnum)) 2569 printf(" (%ju)", (uintmax_t)shnum); 2570 } 2571 putchar('\n'); 2572 2573 /* e_shstrndx. */ 2574 printf("%-37s%u", " Section header string table index:", 2575 re->ehdr.e_shstrndx); 2576 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2577 /* Extended section numbering is in use. */ 2578 if (elf_getshstrndx(re->elf, &shstrndx)) 2579 printf(" (%ju)", (uintmax_t)shstrndx); 2580 } 2581 putchar('\n'); 2582 } 2583 2584 static void 2585 dump_eflags(struct readelf *re, uint64_t e_flags) 2586 { 2587 struct eflags_desc *edesc; 2588 int arm_eabi; 2589 2590 edesc = NULL; 2591 switch (re->ehdr.e_machine) { 2592 case EM_ARM: 2593 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2594 if (arm_eabi == 0) 2595 printf(", GNU EABI"); 2596 else if (arm_eabi <= 5) 2597 printf(", Version%d EABI", arm_eabi); 2598 edesc = arm_eflags_desc; 2599 break; 2600 case EM_MIPS: 2601 case EM_MIPS_RS3_LE: 2602 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2603 case 0: printf(", mips1"); break; 2604 case 1: printf(", mips2"); break; 2605 case 2: printf(", mips3"); break; 2606 case 3: printf(", mips4"); break; 2607 case 4: printf(", mips5"); break; 2608 case 5: printf(", mips32"); break; 2609 case 6: printf(", mips64"); break; 2610 case 7: printf(", mips32r2"); break; 2611 case 8: printf(", mips64r2"); break; 2612 default: break; 2613 } 2614 switch ((e_flags & 0x00FF0000) >> 16) { 2615 case 0x81: printf(", 3900"); break; 2616 case 0x82: printf(", 4010"); break; 2617 case 0x83: printf(", 4100"); break; 2618 case 0x85: printf(", 4650"); break; 2619 case 0x87: printf(", 4120"); break; 2620 case 0x88: printf(", 4111"); break; 2621 case 0x8a: printf(", sb1"); break; 2622 case 0x8b: printf(", octeon"); break; 2623 case 0x8c: printf(", xlr"); break; 2624 case 0x91: printf(", 5400"); break; 2625 case 0x98: printf(", 5500"); break; 2626 case 0x99: printf(", 9000"); break; 2627 case 0xa0: printf(", loongson-2e"); break; 2628 case 0xa1: printf(", loongson-2f"); break; 2629 default: break; 2630 } 2631 switch ((e_flags & 0x0000F000) >> 12) { 2632 case 1: printf(", o32"); break; 2633 case 2: printf(", o64"); break; 2634 case 3: printf(", eabi32"); break; 2635 case 4: printf(", eabi64"); break; 2636 default: break; 2637 } 2638 edesc = mips_eflags_desc; 2639 break; 2640 case EM_PPC: 2641 case EM_PPC64: 2642 edesc = powerpc_eflags_desc; 2643 break; 2644 case EM_SPARC: 2645 case EM_SPARC32PLUS: 2646 case EM_SPARCV9: 2647 switch ((e_flags & EF_SPARCV9_MM)) { 2648 case EF_SPARCV9_TSO: printf(", tso"); break; 2649 case EF_SPARCV9_PSO: printf(", pso"); break; 2650 case EF_SPARCV9_MM: printf(", rmo"); break; 2651 default: break; 2652 } 2653 edesc = sparc_eflags_desc; 2654 break; 2655 default: 2656 break; 2657 } 2658 2659 if (edesc != NULL) { 2660 while (edesc->desc != NULL) { 2661 if (e_flags & edesc->flag) 2662 printf(", %s", edesc->desc); 2663 edesc++; 2664 } 2665 } 2666 } 2667 2668 static void 2669 dump_phdr(struct readelf *re) 2670 { 2671 const char *rawfile; 2672 GElf_Phdr phdr; 2673 size_t phnum; 2674 int i, j; 2675 2676 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2677 "MemSiz", "Flg", "Align" 2678 #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ 2679 (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ 2680 (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ 2681 phdr.p_flags & PF_R ? 'R' : ' ', \ 2682 phdr.p_flags & PF_W ? 'W' : ' ', \ 2683 phdr.p_flags & PF_X ? 'E' : ' ', \ 2684 (uintmax_t)phdr.p_align 2685 2686 if (elf_getphnum(re->elf, &phnum) == 0) { 2687 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2688 return; 2689 } 2690 if (phnum == 0) { 2691 printf("\nThere are no program headers in this file.\n"); 2692 return; 2693 } 2694 2695 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2696 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2697 printf("There are %ju program headers, starting at offset %ju\n", 2698 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2699 2700 /* Dump program headers. */ 2701 printf("\nProgram Headers:\n"); 2702 if (re->ec == ELFCLASS32) 2703 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2704 else if (re->options & RE_WW) 2705 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2706 else 2707 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2708 "%-7s%s\n", PH_HDR); 2709 for (i = 0; (size_t) i < phnum; i++) { 2710 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2711 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2712 continue; 2713 } 2714 /* TODO: Add arch-specific segment type dump. */ 2715 if (re->ec == ELFCLASS32) 2716 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2717 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2718 else if (re->options & RE_WW) 2719 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2720 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2721 else 2722 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2723 " 0x%16.16jx 0x%16.16jx %c%c%c" 2724 " %#jx\n", PH_CT); 2725 if (phdr.p_type == PT_INTERP) { 2726 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 2727 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2728 continue; 2729 } 2730 printf(" [Requesting program interpreter: %s]\n", 2731 rawfile + phdr.p_offset); 2732 } 2733 } 2734 2735 /* Dump section to segment mapping. */ 2736 if (re->shnum == 0) 2737 return; 2738 printf("\n Section to Segment mapping:\n"); 2739 printf(" Segment Sections...\n"); 2740 for (i = 0; (size_t)i < phnum; i++) { 2741 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2742 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2743 continue; 2744 } 2745 printf(" %2.2d ", i); 2746 /* skip NULL section. */ 2747 for (j = 1; (size_t)j < re->shnum; j++) 2748 if (re->sl[j].off >= phdr.p_offset && 2749 re->sl[j].off + re->sl[j].sz <= 2750 phdr.p_offset + phdr.p_memsz) 2751 printf("%s ", re->sl[j].name); 2752 printf("\n"); 2753 } 2754 #undef PH_HDR 2755 #undef PH_CT 2756 } 2757 2758 static char * 2759 section_flags(struct readelf *re, struct section *s) 2760 { 2761 #define BUF_SZ 256 2762 static char buf[BUF_SZ]; 2763 int i, p, nb; 2764 2765 p = 0; 2766 nb = re->ec == ELFCLASS32 ? 8 : 16; 2767 if (re->options & RE_T) { 2768 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2769 (uintmax_t)s->flags); 2770 p += nb + 4; 2771 } 2772 for (i = 0; section_flag[i].ln != NULL; i++) { 2773 if ((s->flags & section_flag[i].value) == 0) 2774 continue; 2775 if (re->options & RE_T) { 2776 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2777 section_flag[i].ln); 2778 p += strlen(section_flag[i].ln) + 2; 2779 } else 2780 buf[p++] = section_flag[i].sn; 2781 } 2782 if (re->options & RE_T && p > nb + 4) 2783 p -= 2; 2784 buf[p] = '\0'; 2785 2786 return (buf); 2787 } 2788 2789 static void 2790 dump_shdr(struct readelf *re) 2791 { 2792 struct section *s; 2793 int i; 2794 2795 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2796 "Flg", "Lk", "Inf", "Al" 2797 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2798 "EntSize", "Flags", "Link", "Info", "Align" 2799 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2800 "Lk", "Inf", "Al", "Flags" 2801 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2802 "Size", "EntSize", "Info", "Align", "Flags" 2803 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2804 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2805 (uintmax_t)s->entsize, section_flags(re, s), \ 2806 s->link, s->info, (uintmax_t)s->align 2807 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2808 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2809 (uintmax_t)s->entsize, s->link, s->info, \ 2810 (uintmax_t)s->align, section_flags(re, s) 2811 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2812 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2813 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2814 (uintmax_t)s->align, section_flags(re, s) 2815 2816 if (re->shnum == 0) { 2817 printf("\nThere are no sections in this file.\n"); 2818 return; 2819 } 2820 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2821 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2822 printf("\nSection Headers:\n"); 2823 if (re->ec == ELFCLASS32) { 2824 if (re->options & RE_T) 2825 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2826 "%12s\n", ST_HDR); 2827 else 2828 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2829 S_HDR); 2830 } else if (re->options & RE_WW) { 2831 if (re->options & RE_T) 2832 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2833 "%12s\n", ST_HDR); 2834 else 2835 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2836 S_HDR); 2837 } else { 2838 if (re->options & RE_T) 2839 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2840 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2841 else 2842 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2843 "-6s%-6s%s\n", S_HDRL); 2844 } 2845 for (i = 0; (size_t)i < re->shnum; i++) { 2846 s = &re->sl[i]; 2847 if (re->ec == ELFCLASS32) { 2848 if (re->options & RE_T) 2849 printf(" [%2d] %s\n %-15.15s %8.8jx" 2850 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2851 " %s\n", ST_CT); 2852 else 2853 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2854 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2855 S_CT); 2856 } else if (re->options & RE_WW) { 2857 if (re->options & RE_T) 2858 printf(" [%2d] %s\n %-15.15s %16.16jx" 2859 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2860 " %s\n", ST_CT); 2861 else 2862 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2863 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2864 S_CT); 2865 } else { 2866 if (re->options & RE_T) 2867 printf(" [%2d] %s\n %-15.15s %16.16jx" 2868 " %16.16jx %u\n %16.16jx %16.16jx" 2869 " %-16u %ju\n %s\n", ST_CTL); 2870 else 2871 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2872 " %8.8jx\n %16.16jx %16.16jx " 2873 "%3s %2u %3u %ju\n", S_CT); 2874 } 2875 } 2876 if ((re->options & RE_T) == 0) 2877 printf("Key to Flags:\n W (write), A (alloc)," 2878 " X (execute), M (merge), S (strings)\n" 2879 " I (info), L (link order), G (group), x (unknown)\n" 2880 " O (extra OS processing required)" 2881 " o (OS specific), p (processor specific)\n"); 2882 2883 #undef S_HDR 2884 #undef S_HDRL 2885 #undef ST_HDR 2886 #undef ST_HDRL 2887 #undef S_CT 2888 #undef ST_CT 2889 #undef ST_CTL 2890 } 2891 2892 static void 2893 dump_dynamic(struct readelf *re) 2894 { 2895 GElf_Dyn dyn; 2896 Elf_Data *d; 2897 struct section *s; 2898 int elferr, i, is_dynamic, j, jmax, nentries; 2899 2900 is_dynamic = 0; 2901 2902 for (i = 0; (size_t)i < re->shnum; i++) { 2903 s = &re->sl[i]; 2904 if (s->type != SHT_DYNAMIC) 2905 continue; 2906 (void) elf_errno(); 2907 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2908 elferr = elf_errno(); 2909 if (elferr != 0) 2910 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2911 continue; 2912 } 2913 if (d->d_size <= 0) 2914 continue; 2915 2916 is_dynamic = 1; 2917 2918 /* Determine the actual number of table entries. */ 2919 nentries = 0; 2920 jmax = (int) (s->sz / s->entsize); 2921 2922 for (j = 0; j < jmax; j++) { 2923 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2924 warnx("gelf_getdyn failed: %s", 2925 elf_errmsg(-1)); 2926 continue; 2927 } 2928 nentries ++; 2929 if (dyn.d_tag == DT_NULL) 2930 break; 2931 } 2932 2933 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2934 printf(" contains %u entries:\n", nentries); 2935 2936 if (re->ec == ELFCLASS32) 2937 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2938 else 2939 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2940 2941 for (j = 0; j < nentries; j++) { 2942 if (gelf_getdyn(d, j, &dyn) != &dyn) 2943 continue; 2944 /* Dump dynamic entry type. */ 2945 if (re->ec == ELFCLASS32) 2946 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2947 else 2948 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2949 printf(" %-20s", dt_type(re->ehdr.e_machine, 2950 dyn.d_tag)); 2951 /* Dump dynamic entry value. */ 2952 dump_dyn_val(re, &dyn, s->link); 2953 } 2954 } 2955 2956 if (!is_dynamic) 2957 printf("\nThere is no dynamic section in this file.\n"); 2958 } 2959 2960 static char * 2961 timestamp(time_t ti) 2962 { 2963 static char ts[32]; 2964 struct tm *t; 2965 2966 t = gmtime(&ti); 2967 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2968 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2969 t->tm_min, t->tm_sec); 2970 2971 return (ts); 2972 } 2973 2974 static const char * 2975 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2976 { 2977 const char *name; 2978 2979 if (stab == SHN_UNDEF) 2980 name = "ERROR"; 2981 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2982 (void) elf_errno(); /* clear error */ 2983 name = "ERROR"; 2984 } 2985 2986 return (name); 2987 } 2988 2989 static void 2990 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2991 { 2992 const char *name; 2993 2994 switch (re->ehdr.e_machine) { 2995 case EM_MIPS: 2996 case EM_MIPS_RS3_LE: 2997 switch (dyn->d_tag) { 2998 case DT_MIPS_RLD_VERSION: 2999 case DT_MIPS_LOCAL_GOTNO: 3000 case DT_MIPS_CONFLICTNO: 3001 case DT_MIPS_LIBLISTNO: 3002 case DT_MIPS_SYMTABNO: 3003 case DT_MIPS_UNREFEXTNO: 3004 case DT_MIPS_GOTSYM: 3005 case DT_MIPS_HIPAGENO: 3006 case DT_MIPS_DELTA_CLASS_NO: 3007 case DT_MIPS_DELTA_INSTANCE_NO: 3008 case DT_MIPS_DELTA_RELOC_NO: 3009 case DT_MIPS_DELTA_SYM_NO: 3010 case DT_MIPS_DELTA_CLASSSYM_NO: 3011 case DT_MIPS_LOCALPAGE_GOTIDX: 3012 case DT_MIPS_LOCAL_GOTIDX: 3013 case DT_MIPS_HIDDEN_GOTIDX: 3014 case DT_MIPS_PROTECTED_GOTIDX: 3015 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3016 break; 3017 case DT_MIPS_ICHECKSUM: 3018 case DT_MIPS_FLAGS: 3019 case DT_MIPS_BASE_ADDRESS: 3020 case DT_MIPS_CONFLICT: 3021 case DT_MIPS_LIBLIST: 3022 case DT_MIPS_RLD_MAP: 3023 case DT_MIPS_DELTA_CLASS: 3024 case DT_MIPS_DELTA_INSTANCE: 3025 case DT_MIPS_DELTA_RELOC: 3026 case DT_MIPS_DELTA_SYM: 3027 case DT_MIPS_DELTA_CLASSSYM: 3028 case DT_MIPS_CXX_FLAGS: 3029 case DT_MIPS_PIXIE_INIT: 3030 case DT_MIPS_SYMBOL_LIB: 3031 case DT_MIPS_OPTIONS: 3032 case DT_MIPS_INTERFACE: 3033 case DT_MIPS_DYNSTR_ALIGN: 3034 case DT_MIPS_INTERFACE_SIZE: 3035 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 3036 case DT_MIPS_COMPACT_SIZE: 3037 case DT_MIPS_GP_VALUE: 3038 case DT_MIPS_AUX_DYNAMIC: 3039 case DT_MIPS_PLTGOT: 3040 case DT_MIPS_RLD_OBJ_UPDATE: 3041 case DT_MIPS_RWPLT: 3042 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3043 break; 3044 case DT_MIPS_IVERSION: 3045 case DT_MIPS_PERF_SUFFIX: 3046 case DT_AUXILIARY: 3047 case DT_FILTER: 3048 name = dyn_str(re, stab, dyn->d_un.d_val); 3049 printf(" %s\n", name); 3050 break; 3051 case DT_MIPS_TIME_STAMP: 3052 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3053 break; 3054 } 3055 break; 3056 default: 3057 printf("\n"); 3058 break; 3059 } 3060 } 3061 3062 static void 3063 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3064 { 3065 const char *name; 3066 3067 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 3068 dump_arch_dyn_val(re, dyn, stab); 3069 return; 3070 } 3071 3072 /* These entry values are index into the string table. */ 3073 name = NULL; 3074 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 3075 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 3076 name = dyn_str(re, stab, dyn->d_un.d_val); 3077 3078 switch(dyn->d_tag) { 3079 case DT_NULL: 3080 case DT_PLTGOT: 3081 case DT_HASH: 3082 case DT_STRTAB: 3083 case DT_SYMTAB: 3084 case DT_RELA: 3085 case DT_INIT: 3086 case DT_SYMBOLIC: 3087 case DT_REL: 3088 case DT_DEBUG: 3089 case DT_TEXTREL: 3090 case DT_JMPREL: 3091 case DT_FINI: 3092 case DT_VERDEF: 3093 case DT_VERNEED: 3094 case DT_VERSYM: 3095 case DT_GNU_HASH: 3096 case DT_GNU_LIBLIST: 3097 case DT_GNU_CONFLICT: 3098 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3099 break; 3100 case DT_PLTRELSZ: 3101 case DT_RELASZ: 3102 case DT_RELAENT: 3103 case DT_STRSZ: 3104 case DT_SYMENT: 3105 case DT_RELSZ: 3106 case DT_RELENT: 3107 case DT_INIT_ARRAYSZ: 3108 case DT_FINI_ARRAYSZ: 3109 case DT_GNU_CONFLICTSZ: 3110 case DT_GNU_LIBLISTSZ: 3111 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 3112 break; 3113 case DT_RELACOUNT: 3114 case DT_RELCOUNT: 3115 case DT_VERDEFNUM: 3116 case DT_VERNEEDNUM: 3117 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3118 break; 3119 case DT_NEEDED: 3120 printf(" Shared library: [%s]\n", name); 3121 break; 3122 case DT_SONAME: 3123 printf(" Library soname: [%s]\n", name); 3124 break; 3125 case DT_RPATH: 3126 printf(" Library rpath: [%s]\n", name); 3127 break; 3128 case DT_RUNPATH: 3129 printf(" Library runpath: [%s]\n", name); 3130 break; 3131 case DT_PLTREL: 3132 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 3133 break; 3134 case DT_GNU_PRELINKED: 3135 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3136 break; 3137 default: 3138 printf("\n"); 3139 } 3140 } 3141 3142 static void 3143 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3144 { 3145 GElf_Rel r; 3146 const char *symname; 3147 uint64_t symval; 3148 int i, len; 3149 3150 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3151 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3152 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3153 (uintmax_t)symval, symname 3154 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3155 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3156 (uintmax_t)symval, symname 3157 3158 printf("\nRelocation section (%s):\n", s->name); 3159 if (re->ec == ELFCLASS32) 3160 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3161 else { 3162 if (re->options & RE_WW) 3163 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3164 else 3165 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3166 } 3167 len = d->d_size / s->entsize; 3168 for (i = 0; i < len; i++) { 3169 if (gelf_getrel(d, i, &r) != &r) { 3170 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3171 continue; 3172 } 3173 if (s->link >= re->shnum) { 3174 warnx("invalid section link index %u", s->link); 3175 continue; 3176 } 3177 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3178 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3179 if (re->ec == ELFCLASS32) { 3180 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3181 ELF64_R_TYPE(r.r_info)); 3182 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3183 } else { 3184 if (re->options & RE_WW) 3185 printf("%16.16jx %16.16jx %-24.24s" 3186 " %16.16jx %s\n", REL_CT64); 3187 else 3188 printf("%12.12jx %12.12jx %-19.19s" 3189 " %16.16jx %s\n", REL_CT64); 3190 } 3191 } 3192 3193 #undef REL_HDR 3194 #undef REL_CT 3195 } 3196 3197 static void 3198 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3199 { 3200 GElf_Rela r; 3201 const char *symname; 3202 uint64_t symval; 3203 int i, len; 3204 3205 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3206 "st_name + r_addend" 3207 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3208 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3209 (uintmax_t)symval, symname 3210 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3211 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3212 (uintmax_t)symval, symname 3213 3214 printf("\nRelocation section with addend (%s):\n", s->name); 3215 if (re->ec == ELFCLASS32) 3216 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3217 else { 3218 if (re->options & RE_WW) 3219 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3220 else 3221 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3222 } 3223 len = d->d_size / s->entsize; 3224 for (i = 0; i < len; i++) { 3225 if (gelf_getrela(d, i, &r) != &r) { 3226 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3227 continue; 3228 } 3229 if (s->link >= re->shnum) { 3230 warnx("invalid section link index %u", s->link); 3231 continue; 3232 } 3233 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3234 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3235 if (re->ec == ELFCLASS32) { 3236 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3237 ELF64_R_TYPE(r.r_info)); 3238 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3239 printf(" + %x\n", (uint32_t) r.r_addend); 3240 } else { 3241 if (re->options & RE_WW) 3242 printf("%16.16jx %16.16jx %-24.24s" 3243 " %16.16jx %s", RELA_CT64); 3244 else 3245 printf("%12.12jx %12.12jx %-19.19s" 3246 " %16.16jx %s", RELA_CT64); 3247 printf(" + %jx\n", (uintmax_t) r.r_addend); 3248 } 3249 } 3250 3251 #undef RELA_HDR 3252 #undef RELA_CT 3253 } 3254 3255 static void 3256 dump_reloc(struct readelf *re) 3257 { 3258 struct section *s; 3259 Elf_Data *d; 3260 int i, elferr; 3261 3262 for (i = 0; (size_t)i < re->shnum; i++) { 3263 s = &re->sl[i]; 3264 if (s->type == SHT_REL || s->type == SHT_RELA) { 3265 (void) elf_errno(); 3266 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3267 elferr = elf_errno(); 3268 if (elferr != 0) 3269 warnx("elf_getdata failed: %s", 3270 elf_errmsg(elferr)); 3271 continue; 3272 } 3273 if (s->type == SHT_REL) 3274 dump_rel(re, s, d); 3275 else 3276 dump_rela(re, s, d); 3277 } 3278 } 3279 } 3280 3281 static void 3282 dump_symtab(struct readelf *re, int i) 3283 { 3284 struct section *s; 3285 Elf_Data *d; 3286 GElf_Sym sym; 3287 const char *name; 3288 int elferr, stab, j; 3289 3290 s = &re->sl[i]; 3291 stab = s->link; 3292 (void) elf_errno(); 3293 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3294 elferr = elf_errno(); 3295 if (elferr != 0) 3296 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3297 return; 3298 } 3299 if (d->d_size <= 0) 3300 return; 3301 printf("Symbol table (%s)", s->name); 3302 printf(" contains %ju entries:\n", s->sz / s->entsize); 3303 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3304 "Bind", "Vis", "Ndx", "Name"); 3305 3306 for (j = 0; (uint64_t)j < s->sz / s->entsize; j++) { 3307 if (gelf_getsym(d, j, &sym) != &sym) { 3308 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3309 continue; 3310 } 3311 printf("%6d:", j); 3312 printf(" %16.16jx", (uintmax_t)sym.st_value); 3313 printf(" %5ju", sym.st_size); 3314 printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info))); 3315 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3316 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3317 printf(" %3s", st_shndx(sym.st_shndx)); 3318 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3319 printf(" %s", name); 3320 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3321 if (s->type == SHT_DYNSYM && re->ver != NULL && 3322 re->vs != NULL && re->vs[j] > 1) { 3323 if (re->vs[j] & 0x8000 || 3324 re->ver[re->vs[j] & 0x7fff].type == 0) 3325 printf("@%s (%d)", 3326 re->ver[re->vs[j] & 0x7fff].name, 3327 re->vs[j] & 0x7fff); 3328 else 3329 printf("@@%s (%d)", re->ver[re->vs[j]].name, 3330 re->vs[j]); 3331 } 3332 putchar('\n'); 3333 } 3334 3335 } 3336 3337 static void 3338 dump_symtabs(struct readelf *re) 3339 { 3340 GElf_Dyn dyn; 3341 Elf_Data *d; 3342 struct section *s; 3343 uint64_t dyn_off; 3344 int elferr, i; 3345 3346 /* 3347 * If -D is specified, only dump the symbol table specified by 3348 * the DT_SYMTAB entry in the .dynamic section. 3349 */ 3350 dyn_off = 0; 3351 if (re->options & RE_DD) { 3352 s = NULL; 3353 for (i = 0; (size_t)i < re->shnum; i++) 3354 if (re->sl[i].type == SHT_DYNAMIC) { 3355 s = &re->sl[i]; 3356 break; 3357 } 3358 if (s == NULL) 3359 return; 3360 (void) elf_errno(); 3361 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3362 elferr = elf_errno(); 3363 if (elferr != 0) 3364 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3365 return; 3366 } 3367 if (d->d_size <= 0) 3368 return; 3369 3370 for (i = 0; (uint64_t)i < s->sz / s->entsize; i++) { 3371 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3372 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3373 continue; 3374 } 3375 if (dyn.d_tag == DT_SYMTAB) { 3376 dyn_off = dyn.d_un.d_val; 3377 break; 3378 } 3379 } 3380 } 3381 3382 /* Find and dump symbol tables. */ 3383 for (i = 0; (size_t)i < re->shnum; i++) { 3384 s = &re->sl[i]; 3385 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3386 if (re->options & RE_DD) { 3387 if (dyn_off == s->addr) { 3388 dump_symtab(re, i); 3389 break; 3390 } 3391 } else 3392 dump_symtab(re, i); 3393 } 3394 } 3395 } 3396 3397 static void 3398 dump_svr4_hash(struct section *s) 3399 { 3400 Elf_Data *d; 3401 uint32_t *buf; 3402 uint32_t nbucket, nchain; 3403 uint32_t *bucket, *chain; 3404 uint32_t *bl, *c, maxl, total; 3405 int elferr, i, j; 3406 3407 /* Read and parse the content of .hash section. */ 3408 (void) elf_errno(); 3409 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3410 elferr = elf_errno(); 3411 if (elferr != 0) 3412 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3413 return; 3414 } 3415 if (d->d_size < 2 * sizeof(uint32_t)) { 3416 warnx(".hash section too small"); 3417 return; 3418 } 3419 buf = d->d_buf; 3420 nbucket = buf[0]; 3421 nchain = buf[1]; 3422 if (nbucket <= 0 || nchain <= 0) { 3423 warnx("Malformed .hash section"); 3424 return; 3425 } 3426 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3427 warnx("Malformed .hash section"); 3428 return; 3429 } 3430 bucket = &buf[2]; 3431 chain = &buf[2 + nbucket]; 3432 3433 maxl = 0; 3434 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3435 errx(EXIT_FAILURE, "calloc failed"); 3436 for (i = 0; (uint32_t)i < nbucket; i++) 3437 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3438 if (++bl[i] > maxl) 3439 maxl = bl[i]; 3440 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3441 errx(EXIT_FAILURE, "calloc failed"); 3442 for (i = 0; (uint32_t)i < nbucket; i++) 3443 c[bl[i]]++; 3444 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3445 nbucket); 3446 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3447 total = 0; 3448 for (i = 0; (uint32_t)i <= maxl; i++) { 3449 total += c[i] * i; 3450 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3451 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3452 } 3453 free(c); 3454 free(bl); 3455 } 3456 3457 static void 3458 dump_svr4_hash64(struct readelf *re, struct section *s) 3459 { 3460 Elf_Data *d, dst; 3461 uint64_t *buf; 3462 uint64_t nbucket, nchain; 3463 uint64_t *bucket, *chain; 3464 uint64_t *bl, *c, maxl, total; 3465 int elferr, i, j; 3466 3467 /* 3468 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3469 * .hash section contains only 32-bit entry, an explicit 3470 * gelf_xlatetom is needed here. 3471 */ 3472 (void) elf_errno(); 3473 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3474 elferr = elf_errno(); 3475 if (elferr != 0) 3476 warnx("elf_rawdata failed: %s", 3477 elf_errmsg(elferr)); 3478 return; 3479 } 3480 d->d_type = ELF_T_XWORD; 3481 memcpy(&dst, d, sizeof(Elf_Data)); 3482 if (gelf_xlatetom(re->elf, &dst, d, 3483 re->ehdr.e_ident[EI_DATA]) != &dst) { 3484 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3485 return; 3486 } 3487 if (dst.d_size < 2 * sizeof(uint64_t)) { 3488 warnx(".hash section too small"); 3489 return; 3490 } 3491 buf = dst.d_buf; 3492 nbucket = buf[0]; 3493 nchain = buf[1]; 3494 if (nbucket <= 0 || nchain <= 0) { 3495 warnx("Malformed .hash section"); 3496 return; 3497 } 3498 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3499 warnx("Malformed .hash section"); 3500 return; 3501 } 3502 bucket = &buf[2]; 3503 chain = &buf[2 + nbucket]; 3504 3505 maxl = 0; 3506 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3507 errx(EXIT_FAILURE, "calloc failed"); 3508 for (i = 0; (uint32_t)i < nbucket; i++) 3509 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3510 if (++bl[i] > maxl) 3511 maxl = bl[i]; 3512 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3513 errx(EXIT_FAILURE, "calloc failed"); 3514 for (i = 0; (uint64_t)i < nbucket; i++) 3515 c[bl[i]]++; 3516 printf("Histogram for bucket list length (total of %ju buckets):\n", 3517 (uintmax_t)nbucket); 3518 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3519 total = 0; 3520 for (i = 0; (uint64_t)i <= maxl; i++) { 3521 total += c[i] * i; 3522 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3523 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3524 } 3525 free(c); 3526 free(bl); 3527 } 3528 3529 static void 3530 dump_gnu_hash(struct readelf *re, struct section *s) 3531 { 3532 struct section *ds; 3533 Elf_Data *d; 3534 uint32_t *buf; 3535 uint32_t *bucket, *chain; 3536 uint32_t nbucket, nchain, symndx, maskwords; 3537 uint32_t *bl, *c, maxl, total; 3538 int elferr, dynsymcount, i, j; 3539 3540 (void) elf_errno(); 3541 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3542 elferr = elf_errno(); 3543 if (elferr != 0) 3544 warnx("elf_getdata failed: %s", 3545 elf_errmsg(elferr)); 3546 return; 3547 } 3548 if (d->d_size < 4 * sizeof(uint32_t)) { 3549 warnx(".gnu.hash section too small"); 3550 return; 3551 } 3552 buf = d->d_buf; 3553 nbucket = buf[0]; 3554 symndx = buf[1]; 3555 maskwords = buf[2]; 3556 buf += 4; 3557 ds = &re->sl[s->link]; 3558 dynsymcount = ds->sz / ds->entsize; 3559 nchain = dynsymcount - symndx; 3560 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3561 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3562 (nbucket + nchain) * sizeof(uint32_t)) { 3563 warnx("Malformed .gnu.hash section"); 3564 return; 3565 } 3566 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3567 chain = bucket + nbucket; 3568 3569 maxl = 0; 3570 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3571 errx(EXIT_FAILURE, "calloc failed"); 3572 for (i = 0; (uint32_t)i < nbucket; i++) 3573 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3574 j++) { 3575 if (++bl[i] > maxl) 3576 maxl = bl[i]; 3577 if (chain[j - symndx] & 1) 3578 break; 3579 } 3580 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3581 errx(EXIT_FAILURE, "calloc failed"); 3582 for (i = 0; (uint32_t)i < nbucket; i++) 3583 c[bl[i]]++; 3584 printf("Histogram for bucket list length (total of %u buckets):\n", 3585 nbucket); 3586 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3587 total = 0; 3588 for (i = 0; (uint32_t)i <= maxl; i++) { 3589 total += c[i] * i; 3590 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3591 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3592 } 3593 free(c); 3594 free(bl); 3595 } 3596 3597 static void 3598 dump_hash(struct readelf *re) 3599 { 3600 struct section *s; 3601 int i; 3602 3603 for (i = 0; (size_t) i < re->shnum; i++) { 3604 s = &re->sl[i]; 3605 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3606 if (s->type == SHT_GNU_HASH) 3607 dump_gnu_hash(re, s); 3608 else if (re->ehdr.e_machine == EM_ALPHA && 3609 s->entsize == 8) 3610 dump_svr4_hash64(re, s); 3611 else 3612 dump_svr4_hash(s); 3613 } 3614 } 3615 } 3616 3617 static void 3618 dump_notes(struct readelf *re) 3619 { 3620 struct section *s; 3621 const char *rawfile; 3622 GElf_Phdr phdr; 3623 Elf_Data *d; 3624 size_t phnum; 3625 int i, elferr; 3626 3627 if (re->ehdr.e_type == ET_CORE) { 3628 /* 3629 * Search program headers in the core file for 3630 * PT_NOTE entry. 3631 */ 3632 if (elf_getphnum(re->elf, &phnum) == 0) { 3633 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3634 return; 3635 } 3636 if (phnum == 0) 3637 return; 3638 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 3639 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3640 return; 3641 } 3642 for (i = 0; (size_t) i < phnum; i++) { 3643 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3644 warnx("gelf_getphdr failed: %s", 3645 elf_errmsg(-1)); 3646 continue; 3647 } 3648 if (phdr.p_type == PT_NOTE) 3649 dump_notes_content(re, rawfile + phdr.p_offset, 3650 phdr.p_filesz, phdr.p_offset); 3651 } 3652 3653 } else { 3654 /* 3655 * For objects other than core files, Search for 3656 * SHT_NOTE sections. 3657 */ 3658 for (i = 0; (size_t) i < re->shnum; i++) { 3659 s = &re->sl[i]; 3660 if (s->type == SHT_NOTE) { 3661 (void) elf_errno(); 3662 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3663 elferr = elf_errno(); 3664 if (elferr != 0) 3665 warnx("elf_getdata failed: %s", 3666 elf_errmsg(elferr)); 3667 continue; 3668 } 3669 dump_notes_content(re, d->d_buf, d->d_size, 3670 s->off); 3671 } 3672 } 3673 } 3674 } 3675 3676 static void 3677 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3678 { 3679 Elf_Note *note; 3680 const char *end, *name; 3681 3682 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3683 (uintmax_t) off, (uintmax_t) sz); 3684 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3685 end = buf + sz; 3686 while (buf < end) { 3687 if (buf + sizeof(*note) > end) { 3688 warnx("invalid note header"); 3689 return; 3690 } 3691 note = (Elf_Note *)(uintptr_t) buf; 3692 name = (char *)(uintptr_t)(note + 1); 3693 /* 3694 * The name field is required to be nul-terminated, and 3695 * n_namesz includes the terminating nul in observed 3696 * implementations (contrary to the ELF-64 spec). A special 3697 * case is needed for cores generated by some older Linux 3698 * versions, which write a note named "CORE" without a nul 3699 * terminator and n_namesz = 4. 3700 */ 3701 if (note->n_namesz == 0) 3702 name = ""; 3703 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3704 name = "CORE"; 3705 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3706 name = "<invalid>"; 3707 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3708 printf(" %s\n", note_type(name, re->ehdr.e_type, 3709 note->n_type)); 3710 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3711 roundup2(note->n_descsz, 4); 3712 } 3713 } 3714 3715 /* 3716 * Symbol versioning sections are the same for 32bit and 64bit 3717 * ELF objects. 3718 */ 3719 #define Elf_Verdef Elf32_Verdef 3720 #define Elf_Verdaux Elf32_Verdaux 3721 #define Elf_Verneed Elf32_Verneed 3722 #define Elf_Vernaux Elf32_Vernaux 3723 3724 #define SAVE_VERSION_NAME(x, n, t) \ 3725 do { \ 3726 while (x >= re->ver_sz) { \ 3727 nv = realloc(re->ver, \ 3728 sizeof(*re->ver) * re->ver_sz * 2); \ 3729 if (nv == NULL) { \ 3730 warn("realloc failed"); \ 3731 free(re->ver); \ 3732 return; \ 3733 } \ 3734 re->ver = nv; \ 3735 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3736 re->ver[i].name = NULL; \ 3737 re->ver[i].type = 0; \ 3738 } \ 3739 re->ver_sz *= 2; \ 3740 } \ 3741 if (x > 1) { \ 3742 re->ver[x].name = n; \ 3743 re->ver[x].type = t; \ 3744 } \ 3745 } while (0) 3746 3747 3748 static void 3749 dump_verdef(struct readelf *re, int dump) 3750 { 3751 struct section *s; 3752 struct symver *nv; 3753 Elf_Data *d; 3754 Elf_Verdef *vd; 3755 Elf_Verdaux *vda; 3756 uint8_t *buf, *end, *buf2; 3757 const char *name; 3758 int elferr, i, j; 3759 3760 if ((s = re->vd_s) == NULL) 3761 return; 3762 3763 if (re->ver == NULL) { 3764 re->ver_sz = 16; 3765 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3766 NULL) { 3767 warn("calloc failed"); 3768 return; 3769 } 3770 re->ver[0].name = "*local*"; 3771 re->ver[1].name = "*global*"; 3772 } 3773 3774 if (dump) 3775 printf("\nVersion definition section (%s):\n", s->name); 3776 (void) elf_errno(); 3777 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3778 elferr = elf_errno(); 3779 if (elferr != 0) 3780 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3781 return; 3782 } 3783 if (d->d_size == 0) 3784 return; 3785 3786 buf = d->d_buf; 3787 end = buf + d->d_size; 3788 while (buf + sizeof(Elf_Verdef) <= end) { 3789 vd = (Elf_Verdef *) (uintptr_t) buf; 3790 if (dump) { 3791 printf(" 0x%4.4lx", (unsigned long) 3792 (buf - (uint8_t *)d->d_buf)); 3793 printf(" vd_version: %u vd_flags: %d" 3794 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3795 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3796 } 3797 buf2 = buf + vd->vd_aux; 3798 j = 0; 3799 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3800 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3801 name = get_string(re, s->link, vda->vda_name); 3802 if (j == 0) { 3803 if (dump) 3804 printf(" vda_name: %s\n", name); 3805 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3806 } else if (dump) 3807 printf(" 0x%4.4lx parent: %s\n", 3808 (unsigned long) (buf2 - 3809 (uint8_t *)d->d_buf), name); 3810 if (vda->vda_next == 0) 3811 break; 3812 buf2 += vda->vda_next; 3813 j++; 3814 } 3815 if (vd->vd_next == 0) 3816 break; 3817 buf += vd->vd_next; 3818 } 3819 } 3820 3821 static void 3822 dump_verneed(struct readelf *re, int dump) 3823 { 3824 struct section *s; 3825 struct symver *nv; 3826 Elf_Data *d; 3827 Elf_Verneed *vn; 3828 Elf_Vernaux *vna; 3829 uint8_t *buf, *end, *buf2; 3830 const char *name; 3831 int elferr, i, j; 3832 3833 if ((s = re->vn_s) == NULL) 3834 return; 3835 3836 if (re->ver == NULL) { 3837 re->ver_sz = 16; 3838 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3839 NULL) { 3840 warn("calloc failed"); 3841 return; 3842 } 3843 re->ver[0].name = "*local*"; 3844 re->ver[1].name = "*global*"; 3845 } 3846 3847 if (dump) 3848 printf("\nVersion needed section (%s):\n", s->name); 3849 (void) elf_errno(); 3850 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3851 elferr = elf_errno(); 3852 if (elferr != 0) 3853 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3854 return; 3855 } 3856 if (d->d_size == 0) 3857 return; 3858 3859 buf = d->d_buf; 3860 end = buf + d->d_size; 3861 while (buf + sizeof(Elf_Verneed) <= end) { 3862 vn = (Elf_Verneed *) (uintptr_t) buf; 3863 if (dump) { 3864 printf(" 0x%4.4lx", (unsigned long) 3865 (buf - (uint8_t *)d->d_buf)); 3866 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3867 vn->vn_version, 3868 get_string(re, s->link, vn->vn_file), 3869 vn->vn_cnt); 3870 } 3871 buf2 = buf + vn->vn_aux; 3872 j = 0; 3873 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3874 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3875 if (dump) 3876 printf(" 0x%4.4lx", (unsigned long) 3877 (buf2 - (uint8_t *)d->d_buf)); 3878 name = get_string(re, s->link, vna->vna_name); 3879 if (dump) 3880 printf(" vna_name: %s vna_flags: %u" 3881 " vna_other: %u\n", name, 3882 vna->vna_flags, vna->vna_other); 3883 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3884 if (vna->vna_next == 0) 3885 break; 3886 buf2 += vna->vna_next; 3887 j++; 3888 } 3889 if (vn->vn_next == 0) 3890 break; 3891 buf += vn->vn_next; 3892 } 3893 } 3894 3895 static void 3896 dump_versym(struct readelf *re) 3897 { 3898 int i; 3899 3900 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3901 return; 3902 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3903 for (i = 0; i < re->vs_sz; i++) { 3904 if ((i & 3) == 0) { 3905 if (i > 0) 3906 putchar('\n'); 3907 printf(" %03x:", i); 3908 } 3909 if (re->vs[i] & 0x8000) 3910 printf(" %3xh %-12s ", re->vs[i] & 0x7fff, 3911 re->ver[re->vs[i] & 0x7fff].name); 3912 else 3913 printf(" %3x %-12s ", re->vs[i], 3914 re->ver[re->vs[i]].name); 3915 } 3916 putchar('\n'); 3917 } 3918 3919 static void 3920 dump_ver(struct readelf *re) 3921 { 3922 3923 if (re->vs_s && re->ver && re->vs) 3924 dump_versym(re); 3925 if (re->vd_s) 3926 dump_verdef(re, 1); 3927 if (re->vn_s) 3928 dump_verneed(re, 1); 3929 } 3930 3931 static void 3932 search_ver(struct readelf *re) 3933 { 3934 struct section *s; 3935 Elf_Data *d; 3936 int elferr, i; 3937 3938 for (i = 0; (size_t) i < re->shnum; i++) { 3939 s = &re->sl[i]; 3940 if (s->type == SHT_SUNW_versym) 3941 re->vs_s = s; 3942 if (s->type == SHT_SUNW_verneed) 3943 re->vn_s = s; 3944 if (s->type == SHT_SUNW_verdef) 3945 re->vd_s = s; 3946 } 3947 if (re->vd_s) 3948 dump_verdef(re, 0); 3949 if (re->vn_s) 3950 dump_verneed(re, 0); 3951 if (re->vs_s && re->ver != NULL) { 3952 (void) elf_errno(); 3953 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3954 elferr = elf_errno(); 3955 if (elferr != 0) 3956 warnx("elf_getdata failed: %s", 3957 elf_errmsg(elferr)); 3958 return; 3959 } 3960 if (d->d_size == 0) 3961 return; 3962 re->vs = d->d_buf; 3963 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3964 } 3965 } 3966 3967 #undef Elf_Verdef 3968 #undef Elf_Verdaux 3969 #undef Elf_Verneed 3970 #undef Elf_Vernaux 3971 #undef SAVE_VERSION_NAME 3972 3973 /* 3974 * Elf32_Lib and Elf64_Lib are identical. 3975 */ 3976 #define Elf_Lib Elf32_Lib 3977 3978 static void 3979 dump_liblist(struct readelf *re) 3980 { 3981 struct section *s; 3982 struct tm *t; 3983 time_t ti; 3984 char tbuf[20]; 3985 Elf_Data *d; 3986 Elf_Lib *lib; 3987 int i, j, k, elferr, first; 3988 3989 for (i = 0; (size_t) i < re->shnum; i++) { 3990 s = &re->sl[i]; 3991 if (s->type != SHT_GNU_LIBLIST) 3992 continue; 3993 (void) elf_errno(); 3994 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3995 elferr = elf_errno(); 3996 if (elferr != 0) 3997 warnx("elf_getdata failed: %s", 3998 elf_errmsg(elferr)); 3999 continue; 4000 } 4001 if (d->d_size <= 0) 4002 continue; 4003 lib = d->d_buf; 4004 printf("\nLibrary list section '%s' ", s->name); 4005 printf("contains %ju entries:\n", s->sz / s->entsize); 4006 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 4007 "Checksum", "Version", "Flags"); 4008 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 4009 printf("%3d: ", j); 4010 printf("%-20.20s ", 4011 get_string(re, s->link, lib->l_name)); 4012 ti = lib->l_time_stamp; 4013 t = gmtime(&ti); 4014 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 4015 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 4016 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 4017 printf("%-19.19s ", tbuf); 4018 printf("0x%08x ", lib->l_checksum); 4019 printf("%-7d %#x", lib->l_version, lib->l_flags); 4020 if (lib->l_flags != 0) { 4021 first = 1; 4022 putchar('('); 4023 for (k = 0; l_flag[k].name != NULL; k++) { 4024 if ((l_flag[k].value & lib->l_flags) == 4025 0) 4026 continue; 4027 if (!first) 4028 putchar(','); 4029 else 4030 first = 0; 4031 printf("%s", l_flag[k].name); 4032 } 4033 putchar(')'); 4034 } 4035 putchar('\n'); 4036 lib++; 4037 } 4038 } 4039 } 4040 4041 #undef Elf_Lib 4042 4043 static uint8_t * 4044 dump_unknown_tag(uint64_t tag, uint8_t *p) 4045 { 4046 uint64_t val; 4047 4048 /* 4049 * According to ARM EABI: For tags > 32, even numbered tags have 4050 * a ULEB128 param and odd numbered ones have NUL-terminated 4051 * string param. This rule probably also applies for tags <= 32 4052 * if the object arch is not ARM. 4053 */ 4054 4055 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4056 4057 if (tag & 1) { 4058 printf("%s\n", (char *) p); 4059 p += strlen((char *) p) + 1; 4060 } else { 4061 val = _decode_uleb128(&p); 4062 printf("%ju\n", (uintmax_t) val); 4063 } 4064 4065 return (p); 4066 } 4067 4068 static uint8_t * 4069 dump_compatibility_tag(uint8_t *p) 4070 { 4071 uint64_t val; 4072 4073 val = _decode_uleb128(&p); 4074 printf("flag = %ju, vendor = %s\n", val, p); 4075 p += strlen((char *) p) + 1; 4076 4077 return (p); 4078 } 4079 4080 static void 4081 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4082 { 4083 uint64_t tag, val; 4084 size_t i; 4085 int found, desc; 4086 4087 (void) re; 4088 4089 while (p < pe) { 4090 tag = _decode_uleb128(&p); 4091 found = desc = 0; 4092 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4093 i++) { 4094 if (tag == aeabi_tags[i].tag) { 4095 found = 1; 4096 printf(" %s: ", aeabi_tags[i].s_tag); 4097 if (aeabi_tags[i].get_desc) { 4098 desc = 1; 4099 val = _decode_uleb128(&p); 4100 printf("%s\n", 4101 aeabi_tags[i].get_desc(val)); 4102 } 4103 break; 4104 } 4105 if (tag < aeabi_tags[i].tag) 4106 break; 4107 } 4108 if (!found) { 4109 p = dump_unknown_tag(tag, p); 4110 continue; 4111 } 4112 if (desc) 4113 continue; 4114 4115 switch (tag) { 4116 case 4: /* Tag_CPU_raw_name */ 4117 case 5: /* Tag_CPU_name */ 4118 case 67: /* Tag_conformance */ 4119 printf("%s\n", (char *) p); 4120 p += strlen((char *) p) + 1; 4121 break; 4122 case 32: /* Tag_compatibility */ 4123 p = dump_compatibility_tag(p); 4124 break; 4125 case 64: /* Tag_nodefaults */ 4126 /* ignored, written as 0. */ 4127 (void) _decode_uleb128(&p); 4128 printf("True\n"); 4129 break; 4130 case 65: /* Tag_also_compatible_with */ 4131 val = _decode_uleb128(&p); 4132 /* Must be Tag_CPU_arch */ 4133 if (val != 6) { 4134 printf("unknown\n"); 4135 break; 4136 } 4137 val = _decode_uleb128(&p); 4138 printf("%s\n", aeabi_cpu_arch(val)); 4139 /* Skip NUL terminator. */ 4140 p++; 4141 break; 4142 default: 4143 putchar('\n'); 4144 break; 4145 } 4146 } 4147 } 4148 4149 #ifndef Tag_GNU_MIPS_ABI_FP 4150 #define Tag_GNU_MIPS_ABI_FP 4 4151 #endif 4152 4153 static void 4154 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4155 { 4156 uint64_t tag, val; 4157 4158 (void) re; 4159 4160 while (p < pe) { 4161 tag = _decode_uleb128(&p); 4162 switch (tag) { 4163 case Tag_GNU_MIPS_ABI_FP: 4164 val = _decode_uleb128(&p); 4165 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4166 break; 4167 case 32: /* Tag_compatibility */ 4168 p = dump_compatibility_tag(p); 4169 break; 4170 default: 4171 p = dump_unknown_tag(tag, p); 4172 break; 4173 } 4174 } 4175 } 4176 4177 #ifndef Tag_GNU_Power_ABI_FP 4178 #define Tag_GNU_Power_ABI_FP 4 4179 #endif 4180 4181 #ifndef Tag_GNU_Power_ABI_Vector 4182 #define Tag_GNU_Power_ABI_Vector 8 4183 #endif 4184 4185 static void 4186 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4187 { 4188 uint64_t tag, val; 4189 4190 while (p < pe) { 4191 tag = _decode_uleb128(&p); 4192 switch (tag) { 4193 case Tag_GNU_Power_ABI_FP: 4194 val = _decode_uleb128(&p); 4195 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4196 break; 4197 case Tag_GNU_Power_ABI_Vector: 4198 val = _decode_uleb128(&p); 4199 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4200 ppc_abi_vector(val)); 4201 break; 4202 case 32: /* Tag_compatibility */ 4203 p = dump_compatibility_tag(p); 4204 break; 4205 default: 4206 p = dump_unknown_tag(tag, p); 4207 break; 4208 } 4209 } 4210 } 4211 4212 static void 4213 dump_attributes(struct readelf *re) 4214 { 4215 struct section *s; 4216 Elf_Data *d; 4217 uint8_t *p, *sp; 4218 size_t len, seclen, nlen, sublen; 4219 uint64_t val; 4220 int tag, i, elferr; 4221 4222 for (i = 0; (size_t) i < re->shnum; i++) { 4223 s = &re->sl[i]; 4224 if (s->type != SHT_GNU_ATTRIBUTES && 4225 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4226 continue; 4227 (void) elf_errno(); 4228 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4229 elferr = elf_errno(); 4230 if (elferr != 0) 4231 warnx("elf_rawdata failed: %s", 4232 elf_errmsg(elferr)); 4233 continue; 4234 } 4235 if (d->d_size <= 0) 4236 continue; 4237 p = d->d_buf; 4238 if (*p != 'A') { 4239 printf("Unknown Attribute Section Format: %c\n", 4240 (char) *p); 4241 continue; 4242 } 4243 len = d->d_size - 1; 4244 p++; 4245 while (len > 0) { 4246 if (len < 4) { 4247 warnx("truncated attribute section length"); 4248 break; 4249 } 4250 seclen = re->dw_decode(&p, 4); 4251 if (seclen > len) { 4252 warnx("invalid attribute section length"); 4253 break; 4254 } 4255 len -= seclen; 4256 nlen = strlen((char *) p) + 1; 4257 if (nlen + 4 > seclen) { 4258 warnx("invalid attribute section name"); 4259 break; 4260 } 4261 printf("Attribute Section: %s\n", (char *) p); 4262 p += nlen; 4263 seclen -= nlen + 4; 4264 while (seclen > 0) { 4265 sp = p; 4266 tag = *p++; 4267 sublen = re->dw_decode(&p, 4); 4268 if (sublen > seclen) { 4269 warnx("invalid attribute sub-section" 4270 " length"); 4271 break; 4272 } 4273 seclen -= sublen; 4274 printf("%s", top_tag(tag)); 4275 if (tag == 2 || tag == 3) { 4276 putchar(':'); 4277 for (;;) { 4278 val = _decode_uleb128(&p); 4279 if (val == 0) 4280 break; 4281 printf(" %ju", (uintmax_t) val); 4282 } 4283 } 4284 putchar('\n'); 4285 if (re->ehdr.e_machine == EM_ARM && 4286 s->type == SHT_LOPROC + 3) 4287 dump_arm_attributes(re, p, sp + sublen); 4288 else if (re->ehdr.e_machine == EM_MIPS || 4289 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4290 dump_mips_attributes(re, p, 4291 sp + sublen); 4292 else if (re->ehdr.e_machine == EM_PPC) 4293 dump_ppc_attributes(p, sp + sublen); 4294 p = sp + sublen; 4295 } 4296 } 4297 } 4298 } 4299 4300 static void 4301 dump_mips_specific_info(struct readelf *re) 4302 { 4303 struct section *s; 4304 int i, options_found; 4305 4306 options_found = 0; 4307 s = NULL; 4308 for (i = 0; (size_t) i < re->shnum; i++) { 4309 s = &re->sl[i]; 4310 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4311 (s->type == SHT_MIPS_OPTIONS))) { 4312 dump_mips_options(re, s); 4313 options_found = 1; 4314 } 4315 } 4316 4317 /* 4318 * According to SGI mips64 spec, .reginfo should be ignored if 4319 * .MIPS.options section is present. 4320 */ 4321 if (!options_found) { 4322 for (i = 0; (size_t) i < re->shnum; i++) { 4323 s = &re->sl[i]; 4324 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4325 (s->type == SHT_MIPS_REGINFO))) 4326 dump_mips_reginfo(re, s); 4327 } 4328 } 4329 } 4330 4331 static void 4332 dump_mips_reginfo(struct readelf *re, struct section *s) 4333 { 4334 Elf_Data *d; 4335 int elferr; 4336 4337 (void) elf_errno(); 4338 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4339 elferr = elf_errno(); 4340 if (elferr != 0) 4341 warnx("elf_rawdata failed: %s", 4342 elf_errmsg(elferr)); 4343 return; 4344 } 4345 if (d->d_size <= 0) 4346 return; 4347 4348 printf("\nSection '%s' contains %ju entries:\n", s->name, 4349 s->sz / s->entsize); 4350 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4351 } 4352 4353 static void 4354 dump_mips_options(struct readelf *re, struct section *s) 4355 { 4356 Elf_Data *d; 4357 uint32_t info; 4358 uint16_t sndx; 4359 uint8_t *p, *pe; 4360 uint8_t kind, size; 4361 int elferr; 4362 4363 (void) elf_errno(); 4364 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4365 elferr = elf_errno(); 4366 if (elferr != 0) 4367 warnx("elf_rawdata failed: %s", 4368 elf_errmsg(elferr)); 4369 return; 4370 } 4371 if (d->d_size == 0) 4372 return; 4373 4374 printf("\nSection %s contains:\n", s->name); 4375 p = d->d_buf; 4376 pe = p + d->d_size; 4377 while (p < pe) { 4378 kind = re->dw_decode(&p, 1); 4379 size = re->dw_decode(&p, 1); 4380 sndx = re->dw_decode(&p, 2); 4381 info = re->dw_decode(&p, 4); 4382 switch (kind) { 4383 case ODK_REGINFO: 4384 dump_mips_odk_reginfo(re, p, size - 8); 4385 break; 4386 case ODK_EXCEPTIONS: 4387 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4388 info & OEX_FPU_MIN); 4389 printf("%11.11s FPU_MAX: %#x\n", "", 4390 info & OEX_FPU_MAX); 4391 dump_mips_option_flags("", mips_exceptions_option, 4392 info); 4393 break; 4394 case ODK_PAD: 4395 printf(" %-10.10s section: %ju\n", "OPAD", 4396 (uintmax_t) sndx); 4397 dump_mips_option_flags("", mips_pad_option, info); 4398 break; 4399 case ODK_HWPATCH: 4400 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4401 info); 4402 break; 4403 case ODK_HWAND: 4404 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4405 break; 4406 case ODK_HWOR: 4407 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4408 break; 4409 case ODK_FILL: 4410 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4411 break; 4412 case ODK_TAGS: 4413 printf(" %-10.10s\n", "TAGS"); 4414 break; 4415 case ODK_GP_GROUP: 4416 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4417 info & 0xFFFF); 4418 if (info & 0x10000) 4419 printf(" %-10.10s GP group is " 4420 "self-contained\n", ""); 4421 break; 4422 case ODK_IDENT: 4423 printf(" %-10.10s default GP group number: %#x\n", 4424 "IDENT", info & 0xFFFF); 4425 if (info & 0x10000) 4426 printf(" %-10.10s default GP group is " 4427 "self-contained\n", ""); 4428 break; 4429 case ODK_PAGESIZE: 4430 printf(" %-10.10s\n", "PAGESIZE"); 4431 break; 4432 default: 4433 break; 4434 } 4435 p += size - 8; 4436 } 4437 } 4438 4439 static void 4440 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4441 { 4442 int first; 4443 4444 first = 1; 4445 for (; opt->desc != NULL; opt++) { 4446 if (info & opt->flag) { 4447 printf(" %-10.10s %s\n", first ? name : "", 4448 opt->desc); 4449 first = 0; 4450 } 4451 } 4452 } 4453 4454 static void 4455 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4456 { 4457 uint32_t ri_gprmask; 4458 uint32_t ri_cprmask[4]; 4459 uint64_t ri_gp_value; 4460 uint8_t *pe; 4461 int i; 4462 4463 pe = p + sz; 4464 while (p < pe) { 4465 ri_gprmask = re->dw_decode(&p, 4); 4466 /* Skip ri_pad padding field for mips64. */ 4467 if (re->ec == ELFCLASS64) 4468 re->dw_decode(&p, 4); 4469 for (i = 0; i < 4; i++) 4470 ri_cprmask[i] = re->dw_decode(&p, 4); 4471 if (re->ec == ELFCLASS32) 4472 ri_gp_value = re->dw_decode(&p, 4); 4473 else 4474 ri_gp_value = re->dw_decode(&p, 8); 4475 printf(" %s ", option_kind(ODK_REGINFO)); 4476 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4477 for (i = 0; i < 4; i++) 4478 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4479 (uintmax_t) ri_cprmask[i]); 4480 printf("%12.12s", ""); 4481 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4482 } 4483 } 4484 4485 static void 4486 dump_arch_specific_info(struct readelf *re) 4487 { 4488 4489 dump_liblist(re); 4490 dump_attributes(re); 4491 4492 switch (re->ehdr.e_machine) { 4493 case EM_MIPS: 4494 case EM_MIPS_RS3_LE: 4495 dump_mips_specific_info(re); 4496 default: 4497 break; 4498 } 4499 } 4500 4501 static const char * 4502 dwarf_regname(struct readelf *re, unsigned int num) 4503 { 4504 static char rx[32]; 4505 const char *rn; 4506 4507 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4508 return (rn); 4509 4510 snprintf(rx, sizeof(rx), "r%u", num); 4511 4512 return (rx); 4513 } 4514 4515 static void 4516 dump_dwarf_line(struct readelf *re) 4517 { 4518 struct section *s; 4519 Dwarf_Die die; 4520 Dwarf_Error de; 4521 Dwarf_Half tag, version, pointer_size; 4522 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4523 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4524 Elf_Data *d; 4525 char *pn; 4526 uint64_t address, file, line, column, isa, opsize, udelta; 4527 int64_t sdelta; 4528 uint8_t *p, *pe; 4529 int8_t lbase; 4530 int i, is_stmt, dwarf_size, elferr, ret; 4531 4532 printf("\nDump of debug contents of section .debug_line:\n"); 4533 4534 s = NULL; 4535 for (i = 0; (size_t) i < re->shnum; i++) { 4536 s = &re->sl[i]; 4537 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4538 break; 4539 } 4540 if ((size_t) i >= re->shnum) 4541 return; 4542 4543 (void) elf_errno(); 4544 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4545 elferr = elf_errno(); 4546 if (elferr != 0) 4547 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4548 return; 4549 } 4550 if (d->d_size <= 0) 4551 return; 4552 4553 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4554 NULL, &de)) == DW_DLV_OK) { 4555 die = NULL; 4556 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4557 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4558 warnx("dwarf_tag failed: %s", 4559 dwarf_errmsg(de)); 4560 return; 4561 } 4562 /* XXX: What about DW_TAG_partial_unit? */ 4563 if (tag == DW_TAG_compile_unit) 4564 break; 4565 } 4566 if (die == NULL) { 4567 warnx("could not find DW_TAG_compile_unit die"); 4568 return; 4569 } 4570 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4571 &de) != DW_DLV_OK) 4572 continue; 4573 4574 length = re->dw_read(d, &offset, 4); 4575 if (length == 0xffffffff) { 4576 dwarf_size = 8; 4577 length = re->dw_read(d, &offset, 8); 4578 } else 4579 dwarf_size = 4; 4580 4581 if (length > d->d_size - offset) { 4582 warnx("invalid .dwarf_line section"); 4583 continue; 4584 } 4585 4586 endoff = offset + length; 4587 version = re->dw_read(d, &offset, 2); 4588 hdrlen = re->dw_read(d, &offset, dwarf_size); 4589 minlen = re->dw_read(d, &offset, 1); 4590 defstmt = re->dw_read(d, &offset, 1); 4591 lbase = re->dw_read(d, &offset, 1); 4592 lrange = re->dw_read(d, &offset, 1); 4593 opbase = re->dw_read(d, &offset, 1); 4594 4595 printf("\n"); 4596 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4597 printf(" DWARF version:\t\t%u\n", version); 4598 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4599 printf(" Minimum Instruction Length:\t%u\n", minlen); 4600 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4601 printf(" Line Base:\t\t\t%d\n", lbase); 4602 printf(" Line Range:\t\t\t%u\n", lrange); 4603 printf(" Opcode Base:\t\t\t%u\n", opbase); 4604 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4605 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4606 4607 printf("\n"); 4608 printf(" Opcodes:\n"); 4609 for (i = 1; i < opbase; i++) { 4610 oplen = re->dw_read(d, &offset, 1); 4611 printf(" Opcode %d has %u args\n", i, oplen); 4612 } 4613 4614 printf("\n"); 4615 printf(" The Directory Table:\n"); 4616 p = (uint8_t *) d->d_buf + offset; 4617 while (*p != '\0') { 4618 printf(" %s\n", (char *) p); 4619 p += strlen((char *) p) + 1; 4620 } 4621 4622 p++; 4623 printf("\n"); 4624 printf(" The File Name Table:\n"); 4625 printf(" Entry\tDir\tTime\tSize\tName\n"); 4626 i = 0; 4627 while (*p != '\0') { 4628 i++; 4629 pn = (char *) p; 4630 p += strlen(pn) + 1; 4631 dirndx = _decode_uleb128(&p); 4632 mtime = _decode_uleb128(&p); 4633 fsize = _decode_uleb128(&p); 4634 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4635 (uintmax_t) dirndx, (uintmax_t) mtime, 4636 (uintmax_t) fsize, pn); 4637 } 4638 4639 #define RESET_REGISTERS \ 4640 do { \ 4641 address = 0; \ 4642 file = 1; \ 4643 line = 1; \ 4644 column = 0; \ 4645 is_stmt = defstmt; \ 4646 } while(0) 4647 4648 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4649 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4650 4651 p++; 4652 pe = (uint8_t *) d->d_buf + endoff; 4653 printf("\n"); 4654 printf(" Line Number Statements:\n"); 4655 4656 RESET_REGISTERS; 4657 4658 while (p < pe) { 4659 4660 if (*p == 0) { 4661 /* 4662 * Extended Opcodes. 4663 */ 4664 p++; 4665 opsize = _decode_uleb128(&p); 4666 printf(" Extended opcode %u: ", *p); 4667 switch (*p) { 4668 case DW_LNE_end_sequence: 4669 p++; 4670 RESET_REGISTERS; 4671 printf("End of Sequence\n"); 4672 break; 4673 case DW_LNE_set_address: 4674 p++; 4675 address = re->dw_decode(&p, 4676 pointer_size); 4677 printf("set Address to %#jx\n", 4678 (uintmax_t) address); 4679 break; 4680 case DW_LNE_define_file: 4681 p++; 4682 pn = (char *) p; 4683 p += strlen(pn) + 1; 4684 dirndx = _decode_uleb128(&p); 4685 mtime = _decode_uleb128(&p); 4686 fsize = _decode_uleb128(&p); 4687 printf("define new file: %s\n", pn); 4688 break; 4689 default: 4690 /* Unrecognized extened opcodes. */ 4691 p += opsize; 4692 printf("unknown opcode\n"); 4693 } 4694 } else if (*p > 0 && *p < opbase) { 4695 /* 4696 * Standard Opcodes. 4697 */ 4698 switch(*p++) { 4699 case DW_LNS_copy: 4700 printf(" Copy\n"); 4701 break; 4702 case DW_LNS_advance_pc: 4703 udelta = _decode_uleb128(&p) * 4704 minlen; 4705 address += udelta; 4706 printf(" Advance PC by %ju to %#jx\n", 4707 (uintmax_t) udelta, 4708 (uintmax_t) address); 4709 break; 4710 case DW_LNS_advance_line: 4711 sdelta = _decode_sleb128(&p); 4712 line += sdelta; 4713 printf(" Advance Line by %jd to %ju\n", 4714 (intmax_t) sdelta, 4715 (uintmax_t) line); 4716 break; 4717 case DW_LNS_set_file: 4718 file = _decode_uleb128(&p); 4719 printf(" Set File to %ju\n", 4720 (uintmax_t) file); 4721 break; 4722 case DW_LNS_set_column: 4723 column = _decode_uleb128(&p); 4724 printf(" Set Column to %ju\n", 4725 (uintmax_t) column); 4726 break; 4727 case DW_LNS_negate_stmt: 4728 is_stmt = !is_stmt; 4729 printf(" Set is_stmt to %d\n", is_stmt); 4730 break; 4731 case DW_LNS_set_basic_block: 4732 printf(" Set basic block flag\n"); 4733 break; 4734 case DW_LNS_const_add_pc: 4735 address += ADDRESS(255); 4736 printf(" Advance PC by constant %ju" 4737 " to %#jx\n", 4738 (uintmax_t) ADDRESS(255), 4739 (uintmax_t) address); 4740 break; 4741 case DW_LNS_fixed_advance_pc: 4742 udelta = re->dw_decode(&p, 2); 4743 address += udelta; 4744 printf(" Advance PC by fixed value " 4745 "%ju to %#jx\n", 4746 (uintmax_t) udelta, 4747 (uintmax_t) address); 4748 break; 4749 case DW_LNS_set_prologue_end: 4750 printf(" Set prologue end flag\n"); 4751 break; 4752 case DW_LNS_set_epilogue_begin: 4753 printf(" Set epilogue begin flag\n"); 4754 break; 4755 case DW_LNS_set_isa: 4756 isa = _decode_uleb128(&p); 4757 printf(" Set isa to %ju\n", isa); 4758 break; 4759 default: 4760 /* Unrecognized extended opcodes. */ 4761 printf(" Unknown extended opcode %u\n", 4762 *(p - 1)); 4763 break; 4764 } 4765 4766 } else { 4767 /* 4768 * Special Opcodes. 4769 */ 4770 line += LINE(*p); 4771 address += ADDRESS(*p); 4772 printf(" Special opcode %u: advance Address " 4773 "by %ju to %#jx and Line by %jd to %ju\n", 4774 *p - opbase, (uintmax_t) ADDRESS(*p), 4775 (uintmax_t) address, (intmax_t) LINE(*p), 4776 (uintmax_t) line); 4777 p++; 4778 } 4779 4780 4781 } 4782 } 4783 if (ret == DW_DLV_ERROR) 4784 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4785 4786 #undef RESET_REGISTERS 4787 #undef LINE 4788 #undef ADDRESS 4789 } 4790 4791 static void 4792 dump_dwarf_line_decoded(struct readelf *re) 4793 { 4794 Dwarf_Die die; 4795 Dwarf_Line *linebuf, ln; 4796 Dwarf_Addr lineaddr; 4797 Dwarf_Signed linecount, srccount; 4798 Dwarf_Unsigned lineno, fn; 4799 Dwarf_Error de; 4800 const char *dir, *file; 4801 char **srcfiles; 4802 int i, ret; 4803 4804 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4805 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4806 NULL, &de)) == DW_DLV_OK) { 4807 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4808 continue; 4809 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4810 DW_DLV_OK) 4811 file = NULL; 4812 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4813 DW_DLV_OK) 4814 dir = NULL; 4815 printf("CU: "); 4816 if (dir && file) 4817 printf("%s/", dir); 4818 if (file) 4819 printf("%s", file); 4820 putchar('\n'); 4821 printf("%-37s %11s %s\n", "Filename", "Line Number", 4822 "Starting Address"); 4823 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4824 continue; 4825 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4826 continue; 4827 for (i = 0; i < linecount; i++) { 4828 ln = linebuf[i]; 4829 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4830 continue; 4831 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4832 continue; 4833 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4834 continue; 4835 printf("%-37s %11ju %#18jx\n", 4836 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4837 (uintmax_t) lineaddr); 4838 } 4839 putchar('\n'); 4840 } 4841 } 4842 4843 static void 4844 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4845 { 4846 Dwarf_Attribute *attr_list; 4847 Dwarf_Die ret_die; 4848 Dwarf_Off dieoff, cuoff, culen, attroff; 4849 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4850 Dwarf_Signed attr_count, v_sdata; 4851 Dwarf_Off v_off; 4852 Dwarf_Addr v_addr; 4853 Dwarf_Half tag, attr, form; 4854 Dwarf_Block *v_block; 4855 Dwarf_Bool v_bool, is_info; 4856 Dwarf_Sig8 v_sig8; 4857 Dwarf_Error de; 4858 Dwarf_Ptr v_expr; 4859 const char *tag_str, *attr_str, *ate_str, *lang_str; 4860 char unk_tag[32], unk_attr[32]; 4861 char *v_str; 4862 uint8_t *b, *p; 4863 int i, j, abc, ret; 4864 4865 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4866 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4867 goto cont_search; 4868 } 4869 4870 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4871 4872 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4873 warnx("dwarf_die_CU_offset_range failed: %s", 4874 dwarf_errmsg(de)); 4875 cuoff = 0; 4876 } 4877 4878 abc = dwarf_die_abbrev_code(die); 4879 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4880 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4881 goto cont_search; 4882 } 4883 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4884 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4885 tag_str = unk_tag; 4886 } 4887 4888 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4889 4890 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4891 DW_DLV_OK) { 4892 if (ret == DW_DLV_ERROR) 4893 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4894 goto cont_search; 4895 } 4896 4897 for (i = 0; i < attr_count; i++) { 4898 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4899 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4900 continue; 4901 } 4902 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4903 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4904 continue; 4905 } 4906 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4907 snprintf(unk_attr, sizeof(unk_attr), 4908 "[Unknown AT: %#x]", attr); 4909 attr_str = unk_attr; 4910 } 4911 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4912 DW_DLV_OK) { 4913 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4914 attroff = 0; 4915 } 4916 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4917 switch (form) { 4918 case DW_FORM_ref_addr: 4919 case DW_FORM_sec_offset: 4920 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4921 DW_DLV_OK) { 4922 warnx("dwarf_global_formref failed: %s", 4923 dwarf_errmsg(de)); 4924 continue; 4925 } 4926 if (form == DW_FORM_ref_addr) 4927 printf("<0x%jx>", (uintmax_t) v_off); 4928 else 4929 printf("0x%jx", (uintmax_t) v_off); 4930 break; 4931 4932 case DW_FORM_ref1: 4933 case DW_FORM_ref2: 4934 case DW_FORM_ref4: 4935 case DW_FORM_ref8: 4936 case DW_FORM_ref_udata: 4937 if (dwarf_formref(attr_list[i], &v_off, &de) != 4938 DW_DLV_OK) { 4939 warnx("dwarf_formref failed: %s", 4940 dwarf_errmsg(de)); 4941 continue; 4942 } 4943 v_off += cuoff; 4944 printf("<0x%jx>", (uintmax_t) v_off); 4945 break; 4946 4947 case DW_FORM_addr: 4948 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4949 DW_DLV_OK) { 4950 warnx("dwarf_formaddr failed: %s", 4951 dwarf_errmsg(de)); 4952 continue; 4953 } 4954 printf("%#jx", (uintmax_t) v_addr); 4955 break; 4956 4957 case DW_FORM_data1: 4958 case DW_FORM_data2: 4959 case DW_FORM_data4: 4960 case DW_FORM_data8: 4961 case DW_FORM_udata: 4962 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4963 DW_DLV_OK) { 4964 warnx("dwarf_formudata failed: %s", 4965 dwarf_errmsg(de)); 4966 continue; 4967 } 4968 if (attr == DW_AT_high_pc) 4969 printf("0x%jx", (uintmax_t) v_udata); 4970 else 4971 printf("%ju", (uintmax_t) v_udata); 4972 break; 4973 4974 case DW_FORM_sdata: 4975 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4976 DW_DLV_OK) { 4977 warnx("dwarf_formudata failed: %s", 4978 dwarf_errmsg(de)); 4979 continue; 4980 } 4981 printf("%jd", (intmax_t) v_sdata); 4982 break; 4983 4984 case DW_FORM_flag: 4985 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4986 DW_DLV_OK) { 4987 warnx("dwarf_formflag failed: %s", 4988 dwarf_errmsg(de)); 4989 continue; 4990 } 4991 printf("%jd", (intmax_t) v_bool); 4992 break; 4993 4994 case DW_FORM_flag_present: 4995 putchar('1'); 4996 break; 4997 4998 case DW_FORM_string: 4999 case DW_FORM_strp: 5000 if (dwarf_formstring(attr_list[i], &v_str, &de) != 5001 DW_DLV_OK) { 5002 warnx("dwarf_formstring failed: %s", 5003 dwarf_errmsg(de)); 5004 continue; 5005 } 5006 if (form == DW_FORM_string) 5007 printf("%s", v_str); 5008 else 5009 printf("(indirect string) %s", v_str); 5010 break; 5011 5012 case DW_FORM_block: 5013 case DW_FORM_block1: 5014 case DW_FORM_block2: 5015 case DW_FORM_block4: 5016 if (dwarf_formblock(attr_list[i], &v_block, &de) != 5017 DW_DLV_OK) { 5018 warnx("dwarf_formblock failed: %s", 5019 dwarf_errmsg(de)); 5020 continue; 5021 } 5022 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 5023 b = v_block->bl_data; 5024 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 5025 printf(" %x", b[j]); 5026 printf("\t("); 5027 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 5028 putchar(')'); 5029 break; 5030 5031 case DW_FORM_exprloc: 5032 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5033 &de) != DW_DLV_OK) { 5034 warnx("dwarf_formexprloc failed: %s", 5035 dwarf_errmsg(de)); 5036 continue; 5037 } 5038 printf("%ju byte block:", (uintmax_t) v_udata); 5039 b = v_expr; 5040 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5041 printf(" %x", b[j]); 5042 printf("\t("); 5043 dump_dwarf_block(re, v_expr, v_udata); 5044 putchar(')'); 5045 break; 5046 5047 case DW_FORM_ref_sig8: 5048 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5049 DW_DLV_OK) { 5050 warnx("dwarf_formsig8 failed: %s", 5051 dwarf_errmsg(de)); 5052 continue; 5053 } 5054 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5055 v_sig = re->dw_decode(&p, 8); 5056 printf("signature: 0x%jx", (uintmax_t) v_sig); 5057 } 5058 switch (attr) { 5059 case DW_AT_encoding: 5060 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5061 DW_DLV_OK) 5062 break; 5063 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5064 ate_str = "DW_ATE_UNKNOWN"; 5065 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5066 break; 5067 5068 case DW_AT_language: 5069 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5070 DW_DLV_OK) 5071 break; 5072 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5073 break; 5074 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5075 break; 5076 5077 case DW_AT_location: 5078 case DW_AT_string_length: 5079 case DW_AT_return_addr: 5080 case DW_AT_data_member_location: 5081 case DW_AT_frame_base: 5082 case DW_AT_segment: 5083 case DW_AT_static_link: 5084 case DW_AT_use_location: 5085 case DW_AT_vtable_elem_location: 5086 switch (form) { 5087 case DW_FORM_data4: 5088 case DW_FORM_data8: 5089 case DW_FORM_sec_offset: 5090 printf("\t(location list)"); 5091 break; 5092 default: 5093 break; 5094 } 5095 5096 default: 5097 break; 5098 } 5099 putchar('\n'); 5100 } 5101 5102 5103 cont_search: 5104 /* Search children. */ 5105 ret = dwarf_child(die, &ret_die, &de); 5106 if (ret == DW_DLV_ERROR) 5107 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5108 else if (ret == DW_DLV_OK) 5109 dump_dwarf_die(re, ret_die, level + 1); 5110 5111 /* Search sibling. */ 5112 is_info = dwarf_get_die_infotypes_flag(die); 5113 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5114 if (ret == DW_DLV_ERROR) 5115 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5116 else if (ret == DW_DLV_OK) 5117 dump_dwarf_die(re, ret_die, level); 5118 5119 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5120 } 5121 5122 static void 5123 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5124 Dwarf_Half ver) 5125 { 5126 5127 re->cu_psize = psize; 5128 re->cu_osize = osize; 5129 re->cu_ver = ver; 5130 } 5131 5132 static void 5133 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5134 { 5135 struct section *s; 5136 Dwarf_Die die; 5137 Dwarf_Error de; 5138 Dwarf_Half tag, version, pointer_size, off_size; 5139 Dwarf_Off cu_offset, cu_length; 5140 Dwarf_Off aboff; 5141 Dwarf_Unsigned typeoff; 5142 Dwarf_Sig8 sig8; 5143 Dwarf_Unsigned sig; 5144 uint8_t *p; 5145 const char *sn; 5146 int i, ret; 5147 5148 sn = is_info ? ".debug_info" : ".debug_types"; 5149 5150 s = NULL; 5151 for (i = 0; (size_t) i < re->shnum; i++) { 5152 s = &re->sl[i]; 5153 if (s->name != NULL && !strcmp(s->name, sn)) 5154 break; 5155 } 5156 if ((size_t) i >= re->shnum) 5157 return; 5158 5159 do { 5160 printf("\nDump of debug contents of section %s:\n", sn); 5161 5162 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5163 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5164 &typeoff, NULL, &de)) == DW_DLV_OK) { 5165 set_cu_context(re, pointer_size, off_size, version); 5166 die = NULL; 5167 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5168 &de) == DW_DLV_OK) { 5169 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5170 warnx("dwarf_tag failed: %s", 5171 dwarf_errmsg(de)); 5172 continue; 5173 } 5174 /* XXX: What about DW_TAG_partial_unit? */ 5175 if ((is_info && tag == DW_TAG_compile_unit) || 5176 (!is_info && tag == DW_TAG_type_unit)) 5177 break; 5178 } 5179 if (die == NULL && is_info) { 5180 warnx("could not find DW_TAG_compile_unit " 5181 "die"); 5182 continue; 5183 } else if (die == NULL && !is_info) { 5184 warnx("could not find DW_TAG_type_unit die"); 5185 continue; 5186 } 5187 5188 if (dwarf_die_CU_offset_range(die, &cu_offset, 5189 &cu_length, &de) != DW_DLV_OK) { 5190 warnx("dwarf_die_CU_offset failed: %s", 5191 dwarf_errmsg(de)); 5192 continue; 5193 } 5194 5195 cu_length -= off_size == 4 ? 4 : 12; 5196 5197 sig = 0; 5198 if (!is_info) { 5199 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5200 sig = re->dw_decode(&p, 8); 5201 } 5202 5203 printf("\n Type Unit @ offset 0x%jx:\n", 5204 (uintmax_t) cu_offset); 5205 printf(" Length:\t\t%#jx (%d-bit)\n", 5206 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5207 printf(" Version:\t\t%u\n", version); 5208 printf(" Abbrev Offset:\t0x%jx\n", 5209 (uintmax_t) aboff); 5210 printf(" Pointer Size:\t%u\n", pointer_size); 5211 if (!is_info) { 5212 printf(" Signature:\t\t0x%016jx\n", 5213 (uintmax_t) sig); 5214 printf(" Type Offset:\t0x%jx\n", 5215 (uintmax_t) typeoff); 5216 } 5217 5218 dump_dwarf_die(re, die, 0); 5219 } 5220 if (ret == DW_DLV_ERROR) 5221 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5222 if (is_info) 5223 break; 5224 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5225 } 5226 5227 static void 5228 dump_dwarf_abbrev(struct readelf *re) 5229 { 5230 Dwarf_Abbrev ab; 5231 Dwarf_Off aboff, atoff; 5232 Dwarf_Unsigned length, attr_count; 5233 Dwarf_Signed flag, form; 5234 Dwarf_Half tag, attr; 5235 Dwarf_Error de; 5236 const char *tag_str, *attr_str, *form_str; 5237 char unk_tag[32], unk_attr[32], unk_form[32]; 5238 int i, j, ret; 5239 5240 printf("\nContents of section .debug_abbrev:\n\n"); 5241 5242 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5243 NULL, NULL, &de)) == DW_DLV_OK) { 5244 printf(" Number TAG\n"); 5245 i = 0; 5246 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5247 &attr_count, &de)) == DW_DLV_OK) { 5248 if (length == 1) { 5249 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5250 break; 5251 } 5252 aboff += length; 5253 printf("%4d", ++i); 5254 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5255 warnx("dwarf_get_abbrev_tag failed: %s", 5256 dwarf_errmsg(de)); 5257 goto next_abbrev; 5258 } 5259 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5260 snprintf(unk_tag, sizeof(unk_tag), 5261 "[Unknown Tag: %#x]", tag); 5262 tag_str = unk_tag; 5263 } 5264 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5265 DW_DLV_OK) { 5266 warnx("dwarf_get_abbrev_children_flag failed:" 5267 " %s", dwarf_errmsg(de)); 5268 goto next_abbrev; 5269 } 5270 printf(" %s %s\n", tag_str, 5271 flag ? "[has children]" : "[no children]"); 5272 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5273 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5274 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5275 warnx("dwarf_get_abbrev_entry failed:" 5276 " %s", dwarf_errmsg(de)); 5277 continue; 5278 } 5279 if (dwarf_get_AT_name(attr, &attr_str) != 5280 DW_DLV_OK) { 5281 snprintf(unk_attr, sizeof(unk_attr), 5282 "[Unknown AT: %#x]", attr); 5283 attr_str = unk_attr; 5284 } 5285 if (dwarf_get_FORM_name(form, &form_str) != 5286 DW_DLV_OK) { 5287 snprintf(unk_form, sizeof(unk_form), 5288 "[Unknown Form: %#x]", 5289 (Dwarf_Half) form); 5290 form_str = unk_form; 5291 } 5292 printf(" %-18s %s\n", attr_str, form_str); 5293 } 5294 next_abbrev: 5295 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5296 } 5297 if (ret != DW_DLV_OK) 5298 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5299 } 5300 if (ret == DW_DLV_ERROR) 5301 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5302 } 5303 5304 static void 5305 dump_dwarf_pubnames(struct readelf *re) 5306 { 5307 struct section *s; 5308 Dwarf_Off die_off; 5309 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5310 Dwarf_Signed cnt; 5311 Dwarf_Global *globs; 5312 Dwarf_Half nt_version; 5313 Dwarf_Error de; 5314 Elf_Data *d; 5315 char *glob_name; 5316 int i, dwarf_size, elferr; 5317 5318 printf("\nContents of the .debug_pubnames section:\n"); 5319 5320 s = NULL; 5321 for (i = 0; (size_t) i < re->shnum; i++) { 5322 s = &re->sl[i]; 5323 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5324 break; 5325 } 5326 if ((size_t) i >= re->shnum) 5327 return; 5328 5329 (void) elf_errno(); 5330 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5331 elferr = elf_errno(); 5332 if (elferr != 0) 5333 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5334 return; 5335 } 5336 if (d->d_size <= 0) 5337 return; 5338 5339 /* Read in .debug_pubnames section table header. */ 5340 offset = 0; 5341 length = re->dw_read(d, &offset, 4); 5342 if (length == 0xffffffff) { 5343 dwarf_size = 8; 5344 length = re->dw_read(d, &offset, 8); 5345 } else 5346 dwarf_size = 4; 5347 5348 if (length > d->d_size - offset) { 5349 warnx("invalid .dwarf_pubnames section"); 5350 return; 5351 } 5352 5353 nt_version = re->dw_read(d, &offset, 2); 5354 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5355 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5356 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5357 printf(" Version:\t\t\t\t%u\n", nt_version); 5358 printf(" Offset into .debug_info section:\t%ju\n", 5359 (uintmax_t) nt_cu_offset); 5360 printf(" Size of area in .debug_info section:\t%ju\n", 5361 (uintmax_t) nt_cu_length); 5362 5363 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5364 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5365 return; 5366 } 5367 5368 printf("\n Offset Name\n"); 5369 for (i = 0; i < cnt; i++) { 5370 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5371 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5372 continue; 5373 } 5374 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5375 DW_DLV_OK) { 5376 warnx("dwarf_global_die_offset failed: %s", 5377 dwarf_errmsg(de)); 5378 continue; 5379 } 5380 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5381 } 5382 } 5383 5384 static void 5385 dump_dwarf_aranges(struct readelf *re) 5386 { 5387 struct section *s; 5388 Dwarf_Arange *aranges; 5389 Dwarf_Addr start; 5390 Dwarf_Unsigned offset, length, as_cu_offset; 5391 Dwarf_Off die_off; 5392 Dwarf_Signed cnt; 5393 Dwarf_Half as_version, as_addrsz, as_segsz; 5394 Dwarf_Error de; 5395 Elf_Data *d; 5396 int i, dwarf_size, elferr; 5397 5398 printf("\nContents of section .debug_aranges:\n"); 5399 5400 s = NULL; 5401 for (i = 0; (size_t) i < re->shnum; i++) { 5402 s = &re->sl[i]; 5403 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5404 break; 5405 } 5406 if ((size_t) i >= re->shnum) 5407 return; 5408 5409 (void) elf_errno(); 5410 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5411 elferr = elf_errno(); 5412 if (elferr != 0) 5413 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5414 return; 5415 } 5416 if (d->d_size <= 0) 5417 return; 5418 5419 /* Read in the .debug_aranges section table header. */ 5420 offset = 0; 5421 length = re->dw_read(d, &offset, 4); 5422 if (length == 0xffffffff) { 5423 dwarf_size = 8; 5424 length = re->dw_read(d, &offset, 8); 5425 } else 5426 dwarf_size = 4; 5427 5428 if (length > d->d_size - offset) { 5429 warnx("invalid .dwarf_aranges section"); 5430 return; 5431 } 5432 5433 as_version = re->dw_read(d, &offset, 2); 5434 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5435 as_addrsz = re->dw_read(d, &offset, 1); 5436 as_segsz = re->dw_read(d, &offset, 1); 5437 5438 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5439 printf(" Version:\t\t\t%u\n", as_version); 5440 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5441 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5442 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5443 5444 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5445 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5446 return; 5447 } 5448 5449 printf("\n Address Length\n"); 5450 for (i = 0; i < cnt; i++) { 5451 if (dwarf_get_arange_info(aranges[i], &start, &length, 5452 &die_off, &de) != DW_DLV_OK) { 5453 warnx("dwarf_get_arange_info failed: %s", 5454 dwarf_errmsg(de)); 5455 continue; 5456 } 5457 printf(" %08jx %ju\n", (uintmax_t) start, 5458 (uintmax_t) length); 5459 } 5460 } 5461 5462 static void 5463 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5464 { 5465 Dwarf_Attribute *attr_list; 5466 Dwarf_Ranges *ranges; 5467 Dwarf_Die ret_die; 5468 Dwarf_Error de; 5469 Dwarf_Addr base0; 5470 Dwarf_Half attr; 5471 Dwarf_Signed attr_count, cnt; 5472 Dwarf_Unsigned off, bytecnt; 5473 int i, j, ret; 5474 5475 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5476 DW_DLV_OK) { 5477 if (ret == DW_DLV_ERROR) 5478 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5479 goto cont_search; 5480 } 5481 5482 for (i = 0; i < attr_count; i++) { 5483 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5484 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5485 continue; 5486 } 5487 if (attr != DW_AT_ranges) 5488 continue; 5489 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5490 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5491 continue; 5492 } 5493 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5494 &bytecnt, &de) != DW_DLV_OK) 5495 continue; 5496 base0 = base; 5497 for (j = 0; j < cnt; j++) { 5498 printf(" %08jx ", (uintmax_t) off); 5499 if (ranges[j].dwr_type == DW_RANGES_END) { 5500 printf("%s\n", "<End of list>"); 5501 continue; 5502 } else if (ranges[j].dwr_type == 5503 DW_RANGES_ADDRESS_SELECTION) { 5504 base0 = ranges[j].dwr_addr2; 5505 continue; 5506 } 5507 if (re->ec == ELFCLASS32) 5508 printf("%08jx %08jx\n", 5509 ranges[j].dwr_addr1 + base0, 5510 ranges[j].dwr_addr2 + base0); 5511 else 5512 printf("%016jx %016jx\n", 5513 ranges[j].dwr_addr1 + base0, 5514 ranges[j].dwr_addr2 + base0); 5515 } 5516 } 5517 5518 cont_search: 5519 /* Search children. */ 5520 ret = dwarf_child(die, &ret_die, &de); 5521 if (ret == DW_DLV_ERROR) 5522 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5523 else if (ret == DW_DLV_OK) 5524 dump_dwarf_ranges_foreach(re, ret_die, base); 5525 5526 /* Search sibling. */ 5527 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5528 if (ret == DW_DLV_ERROR) 5529 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5530 else if (ret == DW_DLV_OK) 5531 dump_dwarf_ranges_foreach(re, ret_die, base); 5532 } 5533 5534 static void 5535 dump_dwarf_ranges(struct readelf *re) 5536 { 5537 Dwarf_Ranges *ranges; 5538 Dwarf_Die die; 5539 Dwarf_Signed cnt; 5540 Dwarf_Unsigned bytecnt; 5541 Dwarf_Half tag; 5542 Dwarf_Error de; 5543 Dwarf_Unsigned lowpc; 5544 int ret; 5545 5546 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5547 DW_DLV_OK) 5548 return; 5549 5550 printf("Contents of the .debug_ranges section:\n\n"); 5551 if (re->ec == ELFCLASS32) 5552 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5553 else 5554 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5555 5556 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5557 NULL, &de)) == DW_DLV_OK) { 5558 die = NULL; 5559 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5560 continue; 5561 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5562 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5563 continue; 5564 } 5565 /* XXX: What about DW_TAG_partial_unit? */ 5566 lowpc = 0; 5567 if (tag == DW_TAG_compile_unit) { 5568 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5569 &de) != DW_DLV_OK) 5570 lowpc = 0; 5571 } 5572 5573 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5574 } 5575 putchar('\n'); 5576 } 5577 5578 static void 5579 dump_dwarf_macinfo(struct readelf *re) 5580 { 5581 Dwarf_Unsigned offset; 5582 Dwarf_Signed cnt; 5583 Dwarf_Macro_Details *md; 5584 Dwarf_Error de; 5585 const char *mi_str; 5586 char unk_mi[32]; 5587 int i; 5588 5589 #define _MAX_MACINFO_ENTRY 65535 5590 5591 printf("\nContents of section .debug_macinfo:\n\n"); 5592 5593 offset = 0; 5594 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5595 &cnt, &md, &de) == DW_DLV_OK) { 5596 for (i = 0; i < cnt; i++) { 5597 offset = md[i].dmd_offset + 1; 5598 if (md[i].dmd_type == 0) 5599 break; 5600 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5601 DW_DLV_OK) { 5602 snprintf(unk_mi, sizeof(unk_mi), 5603 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5604 mi_str = unk_mi; 5605 } 5606 printf(" %s", mi_str); 5607 switch (md[i].dmd_type) { 5608 case DW_MACINFO_define: 5609 case DW_MACINFO_undef: 5610 printf(" - lineno : %jd macro : %s\n", 5611 (intmax_t) md[i].dmd_lineno, 5612 md[i].dmd_macro); 5613 break; 5614 case DW_MACINFO_start_file: 5615 printf(" - lineno : %jd filenum : %jd\n", 5616 (intmax_t) md[i].dmd_lineno, 5617 (intmax_t) md[i].dmd_fileindex); 5618 break; 5619 default: 5620 putchar('\n'); 5621 break; 5622 } 5623 } 5624 } 5625 5626 #undef _MAX_MACINFO_ENTRY 5627 } 5628 5629 static void 5630 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5631 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5632 Dwarf_Debug dbg) 5633 { 5634 Dwarf_Frame_Op *oplist; 5635 Dwarf_Signed opcnt, delta; 5636 Dwarf_Small op; 5637 Dwarf_Error de; 5638 const char *op_str; 5639 char unk_op[32]; 5640 int i; 5641 5642 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5643 &opcnt, &de) != DW_DLV_OK) { 5644 warnx("dwarf_expand_frame_instructions failed: %s", 5645 dwarf_errmsg(de)); 5646 return; 5647 } 5648 5649 for (i = 0; i < opcnt; i++) { 5650 if (oplist[i].fp_base_op != 0) 5651 op = oplist[i].fp_base_op << 6; 5652 else 5653 op = oplist[i].fp_extended_op; 5654 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5655 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5656 op); 5657 op_str = unk_op; 5658 } 5659 printf(" %s", op_str); 5660 switch (op) { 5661 case DW_CFA_advance_loc: 5662 delta = oplist[i].fp_offset * caf; 5663 pc += delta; 5664 printf(": %ju to %08jx", (uintmax_t) delta, 5665 (uintmax_t) pc); 5666 break; 5667 case DW_CFA_offset: 5668 case DW_CFA_offset_extended: 5669 case DW_CFA_offset_extended_sf: 5670 delta = oplist[i].fp_offset * daf; 5671 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5672 dwarf_regname(re, oplist[i].fp_register), 5673 (intmax_t) delta); 5674 break; 5675 case DW_CFA_restore: 5676 printf(": r%u (%s)", oplist[i].fp_register, 5677 dwarf_regname(re, oplist[i].fp_register)); 5678 break; 5679 case DW_CFA_set_loc: 5680 pc = oplist[i].fp_offset; 5681 printf(": to %08jx", (uintmax_t) pc); 5682 break; 5683 case DW_CFA_advance_loc1: 5684 case DW_CFA_advance_loc2: 5685 case DW_CFA_advance_loc4: 5686 pc += oplist[i].fp_offset; 5687 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5688 (uintmax_t) pc); 5689 break; 5690 case DW_CFA_def_cfa: 5691 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5692 dwarf_regname(re, oplist[i].fp_register), 5693 (uintmax_t) oplist[i].fp_offset); 5694 break; 5695 case DW_CFA_def_cfa_sf: 5696 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5697 dwarf_regname(re, oplist[i].fp_register), 5698 (intmax_t) (oplist[i].fp_offset * daf)); 5699 break; 5700 case DW_CFA_def_cfa_register: 5701 printf(": r%u (%s)", oplist[i].fp_register, 5702 dwarf_regname(re, oplist[i].fp_register)); 5703 break; 5704 case DW_CFA_def_cfa_offset: 5705 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5706 break; 5707 case DW_CFA_def_cfa_offset_sf: 5708 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5709 break; 5710 default: 5711 break; 5712 } 5713 putchar('\n'); 5714 } 5715 5716 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5717 } 5718 5719 static char * 5720 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5721 { 5722 static char rs[16]; 5723 5724 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5725 snprintf(rs, sizeof(rs), "%c", 'u'); 5726 else if (reg == DW_FRAME_CFA_COL) 5727 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5728 else 5729 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5730 (intmax_t) off); 5731 5732 return (rs); 5733 } 5734 5735 static int 5736 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5737 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5738 { 5739 Dwarf_Regtable rt; 5740 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5741 Dwarf_Error de; 5742 char *vec; 5743 int i; 5744 5745 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5746 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5747 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5748 #define RT(x) rt.rules[(x)] 5749 5750 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5751 if (vec == NULL) 5752 err(EXIT_FAILURE, "calloc failed"); 5753 5754 pre_pc = ~((Dwarf_Addr) 0); 5755 cur_pc = pc; 5756 end_pc = pc + func_len; 5757 for (; cur_pc < end_pc; cur_pc++) { 5758 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5759 &de) != DW_DLV_OK) { 5760 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5761 dwarf_errmsg(de)); 5762 return (-1); 5763 } 5764 if (row_pc == pre_pc) 5765 continue; 5766 pre_pc = row_pc; 5767 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5768 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5769 BIT_SET(vec, i); 5770 } 5771 } 5772 5773 printf(" LOC CFA "); 5774 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5775 if (BIT_ISSET(vec, i)) { 5776 if ((Dwarf_Half) i == cie_ra) 5777 printf("ra "); 5778 else 5779 printf("%-5s", 5780 dwarf_regname(re, (unsigned int) i)); 5781 } 5782 } 5783 putchar('\n'); 5784 5785 pre_pc = ~((Dwarf_Addr) 0); 5786 cur_pc = pc; 5787 end_pc = pc + func_len; 5788 for (; cur_pc < end_pc; cur_pc++) { 5789 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5790 &de) != DW_DLV_OK) { 5791 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5792 dwarf_errmsg(de)); 5793 return (-1); 5794 } 5795 if (row_pc == pre_pc) 5796 continue; 5797 pre_pc = row_pc; 5798 printf("%08jx ", (uintmax_t) row_pc); 5799 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5800 RT(0).dw_offset)); 5801 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5802 if (BIT_ISSET(vec, i)) { 5803 printf("%-5s", get_regoff_str(re, 5804 RT(i).dw_regnum, RT(i).dw_offset)); 5805 } 5806 } 5807 putchar('\n'); 5808 } 5809 5810 free(vec); 5811 5812 return (0); 5813 5814 #undef BIT_SET 5815 #undef BIT_CLR 5816 #undef BIT_ISSET 5817 #undef RT 5818 } 5819 5820 static void 5821 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5822 { 5823 Dwarf_Cie *cie_list, cie, pre_cie; 5824 Dwarf_Fde *fde_list, fde; 5825 Dwarf_Off cie_offset, fde_offset; 5826 Dwarf_Unsigned cie_length, fde_instlen; 5827 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5828 Dwarf_Signed cie_count, fde_count, cie_index; 5829 Dwarf_Addr low_pc; 5830 Dwarf_Half cie_ra; 5831 Dwarf_Small cie_version; 5832 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5833 char *cie_aug, c; 5834 int i, eh_frame; 5835 Dwarf_Error de; 5836 5837 printf("\nThe section %s contains:\n\n", s->name); 5838 5839 if (!strcmp(s->name, ".debug_frame")) { 5840 eh_frame = 0; 5841 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5842 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5843 warnx("dwarf_get_fde_list failed: %s", 5844 dwarf_errmsg(de)); 5845 return; 5846 } 5847 } else if (!strcmp(s->name, ".eh_frame")) { 5848 eh_frame = 1; 5849 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5850 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5851 warnx("dwarf_get_fde_list_eh failed: %s", 5852 dwarf_errmsg(de)); 5853 return; 5854 } 5855 } else 5856 return; 5857 5858 pre_cie = NULL; 5859 for (i = 0; i < fde_count; i++) { 5860 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5861 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5862 continue; 5863 } 5864 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5865 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5866 continue; 5867 } 5868 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5869 &fde_length, &cie_offset, &cie_index, &fde_offset, 5870 &de) != DW_DLV_OK) { 5871 warnx("dwarf_get_fde_range failed: %s", 5872 dwarf_errmsg(de)); 5873 continue; 5874 } 5875 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5876 &de) != DW_DLV_OK) { 5877 warnx("dwarf_get_fde_instr_bytes failed: %s", 5878 dwarf_errmsg(de)); 5879 continue; 5880 } 5881 if (pre_cie == NULL || cie != pre_cie) { 5882 pre_cie = cie; 5883 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5884 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5885 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5886 warnx("dwarf_get_cie_info failed: %s", 5887 dwarf_errmsg(de)); 5888 continue; 5889 } 5890 printf("%08jx %08jx %8.8jx CIE", 5891 (uintmax_t) cie_offset, 5892 (uintmax_t) cie_length, 5893 (uintmax_t) (eh_frame ? 0 : ~0U)); 5894 if (!alt) { 5895 putchar('\n'); 5896 printf(" Version:\t\t\t%u\n", cie_version); 5897 printf(" Augmentation:\t\t\t\""); 5898 while ((c = *cie_aug++) != '\0') 5899 putchar(c); 5900 printf("\"\n"); 5901 printf(" Code alignment factor:\t%ju\n", 5902 (uintmax_t) cie_caf); 5903 printf(" Data alignment factor:\t%jd\n", 5904 (intmax_t) cie_daf); 5905 printf(" Return address column:\t%ju\n", 5906 (uintmax_t) cie_ra); 5907 putchar('\n'); 5908 dump_dwarf_frame_inst(re, cie, cie_inst, 5909 cie_instlen, cie_caf, cie_daf, 0, 5910 re->dbg); 5911 putchar('\n'); 5912 } else { 5913 printf(" \""); 5914 while ((c = *cie_aug++) != '\0') 5915 putchar(c); 5916 putchar('"'); 5917 printf(" cf=%ju df=%jd ra=%ju\n", 5918 (uintmax_t) cie_caf, 5919 (uintmax_t) cie_daf, 5920 (uintmax_t) cie_ra); 5921 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5922 cie_ra); 5923 putchar('\n'); 5924 } 5925 } 5926 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5927 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5928 (uintmax_t) cie_offset, 5929 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5930 cie_offset), 5931 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5932 if (!alt) 5933 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5934 cie_caf, cie_daf, low_pc, re->dbg); 5935 else 5936 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5937 cie_ra); 5938 putchar('\n'); 5939 } 5940 } 5941 5942 static void 5943 dump_dwarf_frame(struct readelf *re, int alt) 5944 { 5945 struct section *s; 5946 int i; 5947 5948 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5949 5950 for (i = 0; (size_t) i < re->shnum; i++) { 5951 s = &re->sl[i]; 5952 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5953 !strcmp(s->name, ".eh_frame"))) 5954 dump_dwarf_frame_section(re, s, alt); 5955 } 5956 } 5957 5958 static void 5959 dump_dwarf_str(struct readelf *re) 5960 { 5961 struct section *s; 5962 Elf_Data *d; 5963 unsigned char *p; 5964 int elferr, end, i, j; 5965 5966 printf("\nContents of section .debug_str:\n"); 5967 5968 s = NULL; 5969 for (i = 0; (size_t) i < re->shnum; i++) { 5970 s = &re->sl[i]; 5971 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5972 break; 5973 } 5974 if ((size_t) i >= re->shnum) 5975 return; 5976 5977 (void) elf_errno(); 5978 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5979 elferr = elf_errno(); 5980 if (elferr != 0) 5981 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5982 return; 5983 } 5984 if (d->d_size <= 0) 5985 return; 5986 5987 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5988 printf(" 0x%08x", (unsigned int) i); 5989 if ((size_t) i + 16 > d->d_size) 5990 end = d->d_size; 5991 else 5992 end = i + 16; 5993 for (j = i; j < i + 16; j++) { 5994 if ((j - i) % 4 == 0) 5995 putchar(' '); 5996 if (j >= end) { 5997 printf(" "); 5998 continue; 5999 } 6000 printf("%02x", (uint8_t) p[j]); 6001 } 6002 putchar(' '); 6003 for (j = i; j < end; j++) { 6004 if (isprint(p[j])) 6005 putchar(p[j]); 6006 else if (p[j] == 0) 6007 putchar('.'); 6008 else 6009 putchar(' '); 6010 } 6011 putchar('\n'); 6012 } 6013 } 6014 6015 struct loc_at { 6016 Dwarf_Attribute la_at; 6017 Dwarf_Unsigned la_off; 6018 Dwarf_Unsigned la_lowpc; 6019 Dwarf_Half la_cu_psize; 6020 Dwarf_Half la_cu_osize; 6021 Dwarf_Half la_cu_ver; 6022 TAILQ_ENTRY(loc_at) la_next; 6023 }; 6024 6025 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 6026 6027 static void 6028 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 6029 { 6030 Dwarf_Attribute *attr_list; 6031 Dwarf_Die ret_die; 6032 Dwarf_Unsigned off; 6033 Dwarf_Off ref; 6034 Dwarf_Signed attr_count; 6035 Dwarf_Half attr, form; 6036 Dwarf_Bool is_info; 6037 Dwarf_Error de; 6038 struct loc_at *la, *nla; 6039 int i, ret; 6040 6041 is_info = dwarf_get_die_infotypes_flag(die); 6042 6043 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6044 DW_DLV_OK) { 6045 if (ret == DW_DLV_ERROR) 6046 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6047 goto cont_search; 6048 } 6049 for (i = 0; i < attr_count; i++) { 6050 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6051 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6052 continue; 6053 } 6054 if (attr != DW_AT_location && 6055 attr != DW_AT_string_length && 6056 attr != DW_AT_return_addr && 6057 attr != DW_AT_data_member_location && 6058 attr != DW_AT_frame_base && 6059 attr != DW_AT_segment && 6060 attr != DW_AT_static_link && 6061 attr != DW_AT_use_location && 6062 attr != DW_AT_vtable_elem_location) 6063 continue; 6064 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6065 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6066 continue; 6067 } 6068 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6069 if (dwarf_formudata(attr_list[i], &off, &de) != 6070 DW_DLV_OK) { 6071 warnx("dwarf_formudata failed: %s", 6072 dwarf_errmsg(de)); 6073 continue; 6074 } 6075 } else if (form == DW_FORM_sec_offset) { 6076 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6077 DW_DLV_OK) { 6078 warnx("dwarf_global_formref failed: %s", 6079 dwarf_errmsg(de)); 6080 continue; 6081 } 6082 off = ref; 6083 } else 6084 continue; 6085 6086 TAILQ_FOREACH(la, &lalist, la_next) { 6087 if (off == la->la_off) 6088 break; 6089 if (off < la->la_off) { 6090 if ((nla = malloc(sizeof(*nla))) == NULL) 6091 err(EXIT_FAILURE, "malloc failed"); 6092 nla->la_at = attr_list[i]; 6093 nla->la_off = off; 6094 nla->la_lowpc = lowpc; 6095 nla->la_cu_psize = re->cu_psize; 6096 nla->la_cu_osize = re->cu_osize; 6097 nla->la_cu_ver = re->cu_ver; 6098 TAILQ_INSERT_BEFORE(la, nla, la_next); 6099 break; 6100 } 6101 } 6102 if (la == NULL) { 6103 if ((nla = malloc(sizeof(*nla))) == NULL) 6104 err(EXIT_FAILURE, "malloc failed"); 6105 nla->la_at = attr_list[i]; 6106 nla->la_off = off; 6107 nla->la_lowpc = lowpc; 6108 nla->la_cu_psize = re->cu_psize; 6109 nla->la_cu_osize = re->cu_osize; 6110 nla->la_cu_ver = re->cu_ver; 6111 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6112 } 6113 } 6114 6115 cont_search: 6116 /* Search children. */ 6117 ret = dwarf_child(die, &ret_die, &de); 6118 if (ret == DW_DLV_ERROR) 6119 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6120 else if (ret == DW_DLV_OK) 6121 search_loclist_at(re, ret_die, lowpc); 6122 6123 /* Search sibling. */ 6124 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6125 if (ret == DW_DLV_ERROR) 6126 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6127 else if (ret == DW_DLV_OK) 6128 search_loclist_at(re, ret_die, lowpc); 6129 } 6130 6131 static void 6132 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6133 { 6134 const char *op_str; 6135 char unk_op[32]; 6136 uint8_t *b, n; 6137 int i; 6138 6139 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6140 DW_DLV_OK) { 6141 snprintf(unk_op, sizeof(unk_op), 6142 "[Unknown OP: %#x]", lr->lr_atom); 6143 op_str = unk_op; 6144 } 6145 6146 printf("%s", op_str); 6147 6148 switch (lr->lr_atom) { 6149 case DW_OP_reg0: 6150 case DW_OP_reg1: 6151 case DW_OP_reg2: 6152 case DW_OP_reg3: 6153 case DW_OP_reg4: 6154 case DW_OP_reg5: 6155 case DW_OP_reg6: 6156 case DW_OP_reg7: 6157 case DW_OP_reg8: 6158 case DW_OP_reg9: 6159 case DW_OP_reg10: 6160 case DW_OP_reg11: 6161 case DW_OP_reg12: 6162 case DW_OP_reg13: 6163 case DW_OP_reg14: 6164 case DW_OP_reg15: 6165 case DW_OP_reg16: 6166 case DW_OP_reg17: 6167 case DW_OP_reg18: 6168 case DW_OP_reg19: 6169 case DW_OP_reg20: 6170 case DW_OP_reg21: 6171 case DW_OP_reg22: 6172 case DW_OP_reg23: 6173 case DW_OP_reg24: 6174 case DW_OP_reg25: 6175 case DW_OP_reg26: 6176 case DW_OP_reg27: 6177 case DW_OP_reg28: 6178 case DW_OP_reg29: 6179 case DW_OP_reg30: 6180 case DW_OP_reg31: 6181 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6182 break; 6183 6184 case DW_OP_deref: 6185 case DW_OP_lit0: 6186 case DW_OP_lit1: 6187 case DW_OP_lit2: 6188 case DW_OP_lit3: 6189 case DW_OP_lit4: 6190 case DW_OP_lit5: 6191 case DW_OP_lit6: 6192 case DW_OP_lit7: 6193 case DW_OP_lit8: 6194 case DW_OP_lit9: 6195 case DW_OP_lit10: 6196 case DW_OP_lit11: 6197 case DW_OP_lit12: 6198 case DW_OP_lit13: 6199 case DW_OP_lit14: 6200 case DW_OP_lit15: 6201 case DW_OP_lit16: 6202 case DW_OP_lit17: 6203 case DW_OP_lit18: 6204 case DW_OP_lit19: 6205 case DW_OP_lit20: 6206 case DW_OP_lit21: 6207 case DW_OP_lit22: 6208 case DW_OP_lit23: 6209 case DW_OP_lit24: 6210 case DW_OP_lit25: 6211 case DW_OP_lit26: 6212 case DW_OP_lit27: 6213 case DW_OP_lit28: 6214 case DW_OP_lit29: 6215 case DW_OP_lit30: 6216 case DW_OP_lit31: 6217 case DW_OP_dup: 6218 case DW_OP_drop: 6219 case DW_OP_over: 6220 case DW_OP_swap: 6221 case DW_OP_rot: 6222 case DW_OP_xderef: 6223 case DW_OP_abs: 6224 case DW_OP_and: 6225 case DW_OP_div: 6226 case DW_OP_minus: 6227 case DW_OP_mod: 6228 case DW_OP_mul: 6229 case DW_OP_neg: 6230 case DW_OP_not: 6231 case DW_OP_or: 6232 case DW_OP_plus: 6233 case DW_OP_shl: 6234 case DW_OP_shr: 6235 case DW_OP_shra: 6236 case DW_OP_xor: 6237 case DW_OP_eq: 6238 case DW_OP_ge: 6239 case DW_OP_gt: 6240 case DW_OP_le: 6241 case DW_OP_lt: 6242 case DW_OP_ne: 6243 case DW_OP_nop: 6244 case DW_OP_push_object_address: 6245 case DW_OP_form_tls_address: 6246 case DW_OP_call_frame_cfa: 6247 case DW_OP_stack_value: 6248 case DW_OP_GNU_push_tls_address: 6249 case DW_OP_GNU_uninit: 6250 break; 6251 6252 case DW_OP_const1u: 6253 case DW_OP_pick: 6254 case DW_OP_deref_size: 6255 case DW_OP_xderef_size: 6256 case DW_OP_const2u: 6257 case DW_OP_bra: 6258 case DW_OP_skip: 6259 case DW_OP_const4u: 6260 case DW_OP_const8u: 6261 case DW_OP_constu: 6262 case DW_OP_plus_uconst: 6263 case DW_OP_regx: 6264 case DW_OP_piece: 6265 printf(": %ju", (uintmax_t) 6266 lr->lr_number); 6267 break; 6268 6269 case DW_OP_const1s: 6270 case DW_OP_const2s: 6271 case DW_OP_const4s: 6272 case DW_OP_const8s: 6273 case DW_OP_consts: 6274 printf(": %jd", (intmax_t) 6275 lr->lr_number); 6276 break; 6277 6278 case DW_OP_breg0: 6279 case DW_OP_breg1: 6280 case DW_OP_breg2: 6281 case DW_OP_breg3: 6282 case DW_OP_breg4: 6283 case DW_OP_breg5: 6284 case DW_OP_breg6: 6285 case DW_OP_breg7: 6286 case DW_OP_breg8: 6287 case DW_OP_breg9: 6288 case DW_OP_breg10: 6289 case DW_OP_breg11: 6290 case DW_OP_breg12: 6291 case DW_OP_breg13: 6292 case DW_OP_breg14: 6293 case DW_OP_breg15: 6294 case DW_OP_breg16: 6295 case DW_OP_breg17: 6296 case DW_OP_breg18: 6297 case DW_OP_breg19: 6298 case DW_OP_breg20: 6299 case DW_OP_breg21: 6300 case DW_OP_breg22: 6301 case DW_OP_breg23: 6302 case DW_OP_breg24: 6303 case DW_OP_breg25: 6304 case DW_OP_breg26: 6305 case DW_OP_breg27: 6306 case DW_OP_breg28: 6307 case DW_OP_breg29: 6308 case DW_OP_breg30: 6309 case DW_OP_breg31: 6310 printf(" (%s): %jd", 6311 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6312 (intmax_t) lr->lr_number); 6313 break; 6314 6315 case DW_OP_fbreg: 6316 printf(": %jd", (intmax_t) 6317 lr->lr_number); 6318 break; 6319 6320 case DW_OP_bregx: 6321 printf(": %ju (%s) %jd", 6322 (uintmax_t) lr->lr_number, 6323 dwarf_regname(re, (unsigned int) lr->lr_number), 6324 (intmax_t) lr->lr_number2); 6325 break; 6326 6327 case DW_OP_addr: 6328 case DW_OP_GNU_encoded_addr: 6329 printf(": %#jx", (uintmax_t) 6330 lr->lr_number); 6331 break; 6332 6333 case DW_OP_GNU_implicit_pointer: 6334 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6335 (intmax_t) lr->lr_number2); 6336 break; 6337 6338 case DW_OP_implicit_value: 6339 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6340 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6341 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6342 printf(" %x", b[i]); 6343 break; 6344 6345 case DW_OP_GNU_entry_value: 6346 printf(": ("); 6347 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6348 lr->lr_number); 6349 putchar(')'); 6350 break; 6351 6352 case DW_OP_GNU_const_type: 6353 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6354 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6355 n = *b; 6356 for (i = 1; (uint8_t) i < n; i++) 6357 printf(" %x", b[i]); 6358 break; 6359 6360 case DW_OP_GNU_regval_type: 6361 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6362 dwarf_regname(re, (unsigned int) lr->lr_number), 6363 (uintmax_t) lr->lr_number2); 6364 break; 6365 6366 case DW_OP_GNU_convert: 6367 case DW_OP_GNU_deref_type: 6368 case DW_OP_GNU_parameter_ref: 6369 case DW_OP_GNU_reinterpret: 6370 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6371 break; 6372 6373 default: 6374 break; 6375 } 6376 } 6377 6378 static void 6379 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6380 { 6381 Dwarf_Locdesc *llbuf; 6382 Dwarf_Signed lcnt; 6383 Dwarf_Error de; 6384 int i; 6385 6386 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6387 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6388 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6389 return; 6390 } 6391 6392 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6393 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6394 if (i < llbuf->ld_cents - 1) 6395 printf("; "); 6396 } 6397 6398 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6399 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6400 } 6401 6402 static void 6403 dump_dwarf_loclist(struct readelf *re) 6404 { 6405 Dwarf_Die die; 6406 Dwarf_Locdesc **llbuf; 6407 Dwarf_Unsigned lowpc; 6408 Dwarf_Signed lcnt; 6409 Dwarf_Half tag, version, pointer_size, off_size; 6410 Dwarf_Error de; 6411 struct loc_at *la; 6412 int i, j, ret; 6413 6414 printf("\nContents of section .debug_loc:\n"); 6415 6416 /* Search .debug_info section. */ 6417 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6418 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6419 set_cu_context(re, pointer_size, off_size, version); 6420 die = NULL; 6421 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6422 continue; 6423 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6424 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6425 continue; 6426 } 6427 /* XXX: What about DW_TAG_partial_unit? */ 6428 lowpc = 0; 6429 if (tag == DW_TAG_compile_unit) { 6430 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6431 &lowpc, &de) != DW_DLV_OK) 6432 lowpc = 0; 6433 } 6434 6435 /* Search attributes for reference to .debug_loc section. */ 6436 search_loclist_at(re, die, lowpc); 6437 } 6438 if (ret == DW_DLV_ERROR) 6439 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6440 6441 /* Search .debug_types section. */ 6442 do { 6443 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6444 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6445 NULL, NULL, &de)) == DW_DLV_OK) { 6446 set_cu_context(re, pointer_size, off_size, version); 6447 die = NULL; 6448 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6449 DW_DLV_OK) 6450 continue; 6451 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6452 warnx("dwarf_tag failed: %s", 6453 dwarf_errmsg(de)); 6454 continue; 6455 } 6456 6457 lowpc = 0; 6458 if (tag == DW_TAG_type_unit) { 6459 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6460 &lowpc, &de) != DW_DLV_OK) 6461 lowpc = 0; 6462 } 6463 6464 /* 6465 * Search attributes for reference to .debug_loc 6466 * section. 6467 */ 6468 search_loclist_at(re, die, lowpc); 6469 } 6470 if (ret == DW_DLV_ERROR) 6471 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6472 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6473 6474 if (TAILQ_EMPTY(&lalist)) 6475 return; 6476 6477 printf(" Offset Begin End Expression\n"); 6478 6479 TAILQ_FOREACH(la, &lalist, la_next) { 6480 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 6481 DW_DLV_OK) { 6482 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 6483 continue; 6484 } 6485 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6486 la->la_cu_ver); 6487 for (i = 0; i < lcnt; i++) { 6488 printf(" %8.8jx ", la->la_off); 6489 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6490 printf("<End of list>\n"); 6491 continue; 6492 } 6493 6494 /* TODO: handle base selection entry. */ 6495 6496 printf("%8.8jx %8.8jx ", 6497 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6498 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6499 6500 putchar('('); 6501 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6502 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6503 if (j < llbuf[i]->ld_cents - 1) 6504 printf("; "); 6505 } 6506 putchar(')'); 6507 6508 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6509 printf(" (start == end)"); 6510 putchar('\n'); 6511 } 6512 for (i = 0; i < lcnt; i++) { 6513 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6514 DW_DLA_LOC_BLOCK); 6515 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6516 } 6517 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6518 } 6519 } 6520 6521 /* 6522 * Retrieve a string using string table section index and the string offset. 6523 */ 6524 static const char* 6525 get_string(struct readelf *re, int strtab, size_t off) 6526 { 6527 const char *name; 6528 6529 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6530 return (""); 6531 6532 return (name); 6533 } 6534 6535 /* 6536 * Retrieve the name of a symbol using the section index of the symbol 6537 * table and the index of the symbol within that table. 6538 */ 6539 static const char * 6540 get_symbol_name(struct readelf *re, int symtab, int i) 6541 { 6542 struct section *s; 6543 const char *name; 6544 GElf_Sym sym; 6545 Elf_Data *data; 6546 int elferr; 6547 6548 s = &re->sl[symtab]; 6549 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6550 return (""); 6551 (void) elf_errno(); 6552 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6553 elferr = elf_errno(); 6554 if (elferr != 0) 6555 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6556 return (""); 6557 } 6558 if (gelf_getsym(data, i, &sym) != &sym) 6559 return (""); 6560 /* Return section name for STT_SECTION symbol. */ 6561 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 6562 re->sl[sym.st_shndx].name != NULL) 6563 return (re->sl[sym.st_shndx].name); 6564 if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6565 return (""); 6566 6567 return (name); 6568 } 6569 6570 static uint64_t 6571 get_symbol_value(struct readelf *re, int symtab, int i) 6572 { 6573 struct section *s; 6574 GElf_Sym sym; 6575 Elf_Data *data; 6576 int elferr; 6577 6578 s = &re->sl[symtab]; 6579 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6580 return (0); 6581 (void) elf_errno(); 6582 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6583 elferr = elf_errno(); 6584 if (elferr != 0) 6585 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6586 return (0); 6587 } 6588 if (gelf_getsym(data, i, &sym) != &sym) 6589 return (0); 6590 6591 return (sym.st_value); 6592 } 6593 6594 static void 6595 hex_dump(struct readelf *re) 6596 { 6597 struct section *s; 6598 Elf_Data *d; 6599 uint8_t *buf; 6600 size_t sz, nbytes; 6601 uint64_t addr; 6602 int elferr, i, j; 6603 6604 for (i = 1; (size_t) i < re->shnum; i++) { 6605 s = &re->sl[i]; 6606 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6607 continue; 6608 (void) elf_errno(); 6609 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6610 elferr = elf_errno(); 6611 if (elferr != 0) 6612 warnx("elf_getdata failed: %s", 6613 elf_errmsg(elferr)); 6614 continue; 6615 } 6616 if (d->d_size <= 0 || d->d_buf == NULL) { 6617 printf("\nSection '%s' has no data to dump.\n", 6618 s->name); 6619 continue; 6620 } 6621 buf = d->d_buf; 6622 sz = d->d_size; 6623 addr = s->addr; 6624 printf("\nHex dump of section '%s':\n", s->name); 6625 while (sz > 0) { 6626 printf(" 0x%8.8jx ", (uintmax_t)addr); 6627 nbytes = sz > 16? 16 : sz; 6628 for (j = 0; j < 16; j++) { 6629 if ((size_t)j < nbytes) 6630 printf("%2.2x", buf[j]); 6631 else 6632 printf(" "); 6633 if ((j & 3) == 3) 6634 printf(" "); 6635 } 6636 for (j = 0; (size_t)j < nbytes; j++) { 6637 if (isprint(buf[j])) 6638 printf("%c", buf[j]); 6639 else 6640 printf("."); 6641 } 6642 printf("\n"); 6643 buf += nbytes; 6644 addr += nbytes; 6645 sz -= nbytes; 6646 } 6647 } 6648 } 6649 6650 static void 6651 str_dump(struct readelf *re) 6652 { 6653 struct section *s; 6654 Elf_Data *d; 6655 unsigned char *start, *end, *buf_end; 6656 unsigned int len; 6657 int i, j, elferr, found; 6658 6659 for (i = 1; (size_t) i < re->shnum; i++) { 6660 s = &re->sl[i]; 6661 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6662 continue; 6663 (void) elf_errno(); 6664 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6665 elferr = elf_errno(); 6666 if (elferr != 0) 6667 warnx("elf_getdata failed: %s", 6668 elf_errmsg(elferr)); 6669 continue; 6670 } 6671 if (d->d_size <= 0 || d->d_buf == NULL) { 6672 printf("\nSection '%s' has no data to dump.\n", 6673 s->name); 6674 continue; 6675 } 6676 buf_end = (unsigned char *) d->d_buf + d->d_size; 6677 start = (unsigned char *) d->d_buf; 6678 found = 0; 6679 printf("\nString dump of section '%s':\n", s->name); 6680 for (;;) { 6681 while (start < buf_end && !isprint(*start)) 6682 start++; 6683 if (start >= buf_end) 6684 break; 6685 end = start + 1; 6686 while (end < buf_end && isprint(*end)) 6687 end++; 6688 printf(" [%6lx] ", 6689 (long) (start - (unsigned char *) d->d_buf)); 6690 len = end - start; 6691 for (j = 0; (unsigned int) j < len; j++) 6692 putchar(start[j]); 6693 putchar('\n'); 6694 found = 1; 6695 if (end >= buf_end) 6696 break; 6697 start = end + 1; 6698 } 6699 if (!found) 6700 printf(" No strings found in this section."); 6701 putchar('\n'); 6702 } 6703 } 6704 6705 static void 6706 load_sections(struct readelf *re) 6707 { 6708 struct section *s; 6709 const char *name; 6710 Elf_Scn *scn; 6711 GElf_Shdr sh; 6712 size_t shstrndx, ndx; 6713 int elferr; 6714 6715 /* Allocate storage for internal section list. */ 6716 if (!elf_getshnum(re->elf, &re->shnum)) { 6717 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6718 return; 6719 } 6720 if (re->sl != NULL) 6721 free(re->sl); 6722 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6723 err(EXIT_FAILURE, "calloc failed"); 6724 6725 /* Get the index of .shstrtab section. */ 6726 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6727 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6728 return; 6729 } 6730 6731 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6732 return; 6733 6734 (void) elf_errno(); 6735 do { 6736 if (gelf_getshdr(scn, &sh) == NULL) { 6737 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6738 (void) elf_errno(); 6739 continue; 6740 } 6741 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6742 (void) elf_errno(); 6743 name = "ERROR"; 6744 } 6745 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6746 if ((elferr = elf_errno()) != 0) 6747 warnx("elf_ndxscn failed: %s", 6748 elf_errmsg(elferr)); 6749 continue; 6750 } 6751 if (ndx >= re->shnum) { 6752 warnx("section index of '%s' out of range", name); 6753 continue; 6754 } 6755 s = &re->sl[ndx]; 6756 s->name = name; 6757 s->scn = scn; 6758 s->off = sh.sh_offset; 6759 s->sz = sh.sh_size; 6760 s->entsize = sh.sh_entsize; 6761 s->align = sh.sh_addralign; 6762 s->type = sh.sh_type; 6763 s->flags = sh.sh_flags; 6764 s->addr = sh.sh_addr; 6765 s->link = sh.sh_link; 6766 s->info = sh.sh_info; 6767 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6768 elferr = elf_errno(); 6769 if (elferr != 0) 6770 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6771 } 6772 6773 static void 6774 unload_sections(struct readelf *re) 6775 { 6776 6777 if (re->sl != NULL) { 6778 free(re->sl); 6779 re->sl = NULL; 6780 } 6781 re->shnum = 0; 6782 re->vd_s = NULL; 6783 re->vn_s = NULL; 6784 re->vs_s = NULL; 6785 re->vs = NULL; 6786 re->vs_sz = 0; 6787 if (re->ver != NULL) { 6788 free(re->ver); 6789 re->ver = NULL; 6790 re->ver_sz = 0; 6791 } 6792 } 6793 6794 static void 6795 dump_elf(struct readelf *re) 6796 { 6797 6798 /* Fetch ELF header. No need to continue if it fails. */ 6799 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6800 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6801 return; 6802 } 6803 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6804 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6805 return; 6806 } 6807 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6808 re->dw_read = _read_msb; 6809 re->dw_decode = _decode_msb; 6810 } else { 6811 re->dw_read = _read_lsb; 6812 re->dw_decode = _decode_lsb; 6813 } 6814 6815 if (re->options & ~RE_H) 6816 load_sections(re); 6817 if ((re->options & RE_VV) || (re->options & RE_S)) 6818 search_ver(re); 6819 if (re->options & RE_H) 6820 dump_ehdr(re); 6821 if (re->options & RE_L) 6822 dump_phdr(re); 6823 if (re->options & RE_SS) 6824 dump_shdr(re); 6825 if (re->options & RE_D) 6826 dump_dynamic(re); 6827 if (re->options & RE_R) 6828 dump_reloc(re); 6829 if (re->options & RE_S) 6830 dump_symtabs(re); 6831 if (re->options & RE_N) 6832 dump_notes(re); 6833 if (re->options & RE_II) 6834 dump_hash(re); 6835 if (re->options & RE_X) 6836 hex_dump(re); 6837 if (re->options & RE_P) 6838 str_dump(re); 6839 if (re->options & RE_VV) 6840 dump_ver(re); 6841 if (re->options & RE_AA) 6842 dump_arch_specific_info(re); 6843 if (re->options & RE_W) 6844 dump_dwarf(re); 6845 if (re->options & ~RE_H) 6846 unload_sections(re); 6847 } 6848 6849 static void 6850 dump_dwarf(struct readelf *re) 6851 { 6852 int error; 6853 Dwarf_Error de; 6854 6855 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6856 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6857 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6858 dwarf_errmsg(de)); 6859 return; 6860 } 6861 6862 if (re->dop & DW_A) 6863 dump_dwarf_abbrev(re); 6864 if (re->dop & DW_L) 6865 dump_dwarf_line(re); 6866 if (re->dop & DW_LL) 6867 dump_dwarf_line_decoded(re); 6868 if (re->dop & DW_I) { 6869 dump_dwarf_info(re, 0); 6870 dump_dwarf_info(re, 1); 6871 } 6872 if (re->dop & DW_P) 6873 dump_dwarf_pubnames(re); 6874 if (re->dop & DW_R) 6875 dump_dwarf_aranges(re); 6876 if (re->dop & DW_RR) 6877 dump_dwarf_ranges(re); 6878 if (re->dop & DW_M) 6879 dump_dwarf_macinfo(re); 6880 if (re->dop & DW_F) 6881 dump_dwarf_frame(re, 0); 6882 else if (re->dop & DW_FF) 6883 dump_dwarf_frame(re, 1); 6884 if (re->dop & DW_S) 6885 dump_dwarf_str(re); 6886 if (re->dop & DW_O) 6887 dump_dwarf_loclist(re); 6888 6889 dwarf_finish(re->dbg, &de); 6890 } 6891 6892 static void 6893 dump_ar(struct readelf *re, int fd) 6894 { 6895 Elf_Arsym *arsym; 6896 Elf_Arhdr *arhdr; 6897 Elf_Cmd cmd; 6898 Elf *e; 6899 size_t sz; 6900 off_t off; 6901 int i; 6902 6903 re->ar = re->elf; 6904 6905 if (re->options & RE_C) { 6906 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6907 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6908 goto process_members; 6909 } 6910 printf("Index of archive %s: (%ju entries)\n", re->filename, 6911 (uintmax_t) sz - 1); 6912 off = 0; 6913 for (i = 0; (size_t) i < sz; i++) { 6914 if (arsym[i].as_name == NULL) 6915 break; 6916 if (arsym[i].as_off != off) { 6917 off = arsym[i].as_off; 6918 if (elf_rand(re->ar, off) != off) { 6919 warnx("elf_rand() failed: %s", 6920 elf_errmsg(-1)); 6921 continue; 6922 } 6923 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6924 NULL) { 6925 warnx("elf_begin() failed: %s", 6926 elf_errmsg(-1)); 6927 continue; 6928 } 6929 if ((arhdr = elf_getarhdr(e)) == NULL) { 6930 warnx("elf_getarhdr() failed: %s", 6931 elf_errmsg(-1)); 6932 elf_end(e); 6933 continue; 6934 } 6935 printf("Binary %s(%s) contains:\n", 6936 re->filename, arhdr->ar_name); 6937 } 6938 printf("\t%s\n", arsym[i].as_name); 6939 } 6940 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6941 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6942 return; 6943 } 6944 } 6945 6946 process_members: 6947 6948 if ((re->options & ~RE_C) == 0) 6949 return; 6950 6951 cmd = ELF_C_READ; 6952 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6953 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6954 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6955 goto next_member; 6956 } 6957 if (strcmp(arhdr->ar_name, "/") == 0 || 6958 strcmp(arhdr->ar_name, "//") == 0 || 6959 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6960 goto next_member; 6961 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6962 dump_elf(re); 6963 6964 next_member: 6965 cmd = elf_next(re->elf); 6966 elf_end(re->elf); 6967 } 6968 re->elf = re->ar; 6969 } 6970 6971 static void 6972 dump_object(struct readelf *re) 6973 { 6974 int fd; 6975 6976 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6977 warn("open %s failed", re->filename); 6978 return; 6979 } 6980 6981 if ((re->flags & DISPLAY_FILENAME) != 0) 6982 printf("\nFile: %s\n", re->filename); 6983 6984 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6985 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6986 return; 6987 } 6988 6989 switch (elf_kind(re->elf)) { 6990 case ELF_K_NONE: 6991 warnx("Not an ELF file."); 6992 return; 6993 case ELF_K_ELF: 6994 dump_elf(re); 6995 break; 6996 case ELF_K_AR: 6997 dump_ar(re, fd); 6998 break; 6999 default: 7000 warnx("Internal: libelf returned unknown elf kind."); 7001 return; 7002 } 7003 7004 elf_end(re->elf); 7005 } 7006 7007 static void 7008 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7009 { 7010 struct dumpop *d; 7011 7012 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 7013 if ((d = calloc(1, sizeof(*d))) == NULL) 7014 err(EXIT_FAILURE, "calloc failed"); 7015 if (t == DUMP_BY_INDEX) 7016 d->u.si = si; 7017 else 7018 d->u.sn = sn; 7019 d->type = t; 7020 d->op = op; 7021 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 7022 } else 7023 d->op |= op; 7024 } 7025 7026 static struct dumpop * 7027 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7028 { 7029 struct dumpop *d; 7030 7031 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7032 if ((op == -1 || op & d->op) && 7033 (t == -1 || (unsigned) t == d->type)) { 7034 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7035 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7036 return (d); 7037 } 7038 } 7039 7040 return (NULL); 7041 } 7042 7043 static struct { 7044 const char *ln; 7045 char sn; 7046 int value; 7047 } dwarf_op[] = { 7048 {"rawline", 'l', DW_L}, 7049 {"decodedline", 'L', DW_LL}, 7050 {"info", 'i', DW_I}, 7051 {"abbrev", 'a', DW_A}, 7052 {"pubnames", 'p', DW_P}, 7053 {"aranges", 'r', DW_R}, 7054 {"ranges", 'r', DW_R}, 7055 {"Ranges", 'R', DW_RR}, 7056 {"macro", 'm', DW_M}, 7057 {"frames", 'f', DW_F}, 7058 {"frames-interp", 'F', DW_FF}, 7059 {"str", 's', DW_S}, 7060 {"loc", 'o', DW_O}, 7061 {NULL, 0, 0} 7062 }; 7063 7064 static void 7065 parse_dwarf_op_short(struct readelf *re, const char *op) 7066 { 7067 int i; 7068 7069 if (op == NULL) { 7070 re->dop |= DW_DEFAULT_OPTIONS; 7071 return; 7072 } 7073 7074 for (; *op != '\0'; op++) { 7075 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7076 if (dwarf_op[i].sn == *op) { 7077 re->dop |= dwarf_op[i].value; 7078 break; 7079 } 7080 } 7081 } 7082 } 7083 7084 static void 7085 parse_dwarf_op_long(struct readelf *re, const char *op) 7086 { 7087 char *p, *token, *bp; 7088 int i; 7089 7090 if (op == NULL) { 7091 re->dop |= DW_DEFAULT_OPTIONS; 7092 return; 7093 } 7094 7095 if ((p = strdup(op)) == NULL) 7096 err(EXIT_FAILURE, "strdup failed"); 7097 bp = p; 7098 7099 while ((token = strsep(&p, ",")) != NULL) { 7100 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7101 if (!strcmp(token, dwarf_op[i].ln)) { 7102 re->dop |= dwarf_op[i].value; 7103 break; 7104 } 7105 } 7106 } 7107 7108 free(bp); 7109 } 7110 7111 static uint64_t 7112 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7113 { 7114 uint64_t ret; 7115 uint8_t *src; 7116 7117 src = (uint8_t *) d->d_buf + *offsetp; 7118 7119 ret = 0; 7120 switch (bytes_to_read) { 7121 case 8: 7122 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7123 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7124 case 4: 7125 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7126 case 2: 7127 ret |= ((uint64_t) src[1]) << 8; 7128 case 1: 7129 ret |= src[0]; 7130 break; 7131 default: 7132 return (0); 7133 } 7134 7135 *offsetp += bytes_to_read; 7136 7137 return (ret); 7138 } 7139 7140 static uint64_t 7141 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7142 { 7143 uint64_t ret; 7144 uint8_t *src; 7145 7146 src = (uint8_t *) d->d_buf + *offsetp; 7147 7148 switch (bytes_to_read) { 7149 case 1: 7150 ret = src[0]; 7151 break; 7152 case 2: 7153 ret = src[1] | ((uint64_t) src[0]) << 8; 7154 break; 7155 case 4: 7156 ret = src[3] | ((uint64_t) src[2]) << 8; 7157 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7158 break; 7159 case 8: 7160 ret = src[7] | ((uint64_t) src[6]) << 8; 7161 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7162 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7163 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7164 break; 7165 default: 7166 return (0); 7167 } 7168 7169 *offsetp += bytes_to_read; 7170 7171 return (ret); 7172 } 7173 7174 static uint64_t 7175 _decode_lsb(uint8_t **data, int bytes_to_read) 7176 { 7177 uint64_t ret; 7178 uint8_t *src; 7179 7180 src = *data; 7181 7182 ret = 0; 7183 switch (bytes_to_read) { 7184 case 8: 7185 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7186 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7187 case 4: 7188 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7189 case 2: 7190 ret |= ((uint64_t) src[1]) << 8; 7191 case 1: 7192 ret |= src[0]; 7193 break; 7194 default: 7195 return (0); 7196 } 7197 7198 *data += bytes_to_read; 7199 7200 return (ret); 7201 } 7202 7203 static uint64_t 7204 _decode_msb(uint8_t **data, int bytes_to_read) 7205 { 7206 uint64_t ret; 7207 uint8_t *src; 7208 7209 src = *data; 7210 7211 ret = 0; 7212 switch (bytes_to_read) { 7213 case 1: 7214 ret = src[0]; 7215 break; 7216 case 2: 7217 ret = src[1] | ((uint64_t) src[0]) << 8; 7218 break; 7219 case 4: 7220 ret = src[3] | ((uint64_t) src[2]) << 8; 7221 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7222 break; 7223 case 8: 7224 ret = src[7] | ((uint64_t) src[6]) << 8; 7225 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7226 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7227 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7228 break; 7229 default: 7230 return (0); 7231 break; 7232 } 7233 7234 *data += bytes_to_read; 7235 7236 return (ret); 7237 } 7238 7239 static int64_t 7240 _decode_sleb128(uint8_t **dp) 7241 { 7242 int64_t ret = 0; 7243 uint8_t b; 7244 int shift = 0; 7245 7246 uint8_t *src = *dp; 7247 7248 do { 7249 b = *src++; 7250 ret |= ((b & 0x7f) << shift); 7251 shift += 7; 7252 } while ((b & 0x80) != 0); 7253 7254 if (shift < 32 && (b & 0x40) != 0) 7255 ret |= (-1 << shift); 7256 7257 *dp = src; 7258 7259 return (ret); 7260 } 7261 7262 static uint64_t 7263 _decode_uleb128(uint8_t **dp) 7264 { 7265 uint64_t ret = 0; 7266 uint8_t b; 7267 int shift = 0; 7268 7269 uint8_t *src = *dp; 7270 7271 do { 7272 b = *src++; 7273 ret |= ((b & 0x7f) << shift); 7274 shift += 7; 7275 } while ((b & 0x80) != 0); 7276 7277 *dp = src; 7278 7279 return (ret); 7280 } 7281 7282 static void 7283 readelf_version(void) 7284 { 7285 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7286 elftc_version()); 7287 exit(EXIT_SUCCESS); 7288 } 7289 7290 #define USAGE_MESSAGE "\ 7291 Usage: %s [options] file...\n\ 7292 Display information about ELF objects and ar(1) archives.\n\n\ 7293 Options:\n\ 7294 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7295 -c | --archive-index Print the archive symbol table for archives.\n\ 7296 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7297 -e | --headers Print all headers in the object.\n\ 7298 -g | --section-groups (accepted, but ignored)\n\ 7299 -h | --file-header Print the file header for the object.\n\ 7300 -l | --program-headers Print the PHDR table for the object.\n\ 7301 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7302 -p INDEX | --string-dump=INDEX\n\ 7303 Print the contents of section at index INDEX.\n\ 7304 -r | --relocs Print relocation information.\n\ 7305 -s | --syms | --symbols Print symbol tables.\n\ 7306 -t | --section-details Print additional information about sections.\n\ 7307 -v | --version Print a version identifier and exit.\n\ 7308 -x INDEX | --hex-dump=INDEX\n\ 7309 Display contents of a section as hexadecimal.\n\ 7310 -A | --arch-specific (accepted, but ignored)\n\ 7311 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7312 entry in the \".dynamic\" section.\n\ 7313 -H | --help Print a help message.\n\ 7314 -I | --histogram Print information on bucket list lengths for \n\ 7315 hash sections.\n\ 7316 -N | --full-section-name (accepted, but ignored)\n\ 7317 -S | --sections | --section-headers\n\ 7318 Print information about section headers.\n\ 7319 -V | --version-info Print symbol versoning information.\n\ 7320 -W | --wide Print information without wrapping long lines.\n" 7321 7322 7323 static void 7324 readelf_usage(void) 7325 { 7326 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7327 exit(EXIT_FAILURE); 7328 } 7329 7330 int 7331 main(int argc, char **argv) 7332 { 7333 struct readelf *re, re_storage; 7334 unsigned long si; 7335 int opt, i; 7336 char *ep; 7337 7338 re = &re_storage; 7339 memset(re, 0, sizeof(*re)); 7340 STAILQ_INIT(&re->v_dumpop); 7341 7342 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7343 longopts, NULL)) != -1) { 7344 switch(opt) { 7345 case '?': 7346 readelf_usage(); 7347 break; 7348 case 'A': 7349 re->options |= RE_AA; 7350 break; 7351 case 'a': 7352 re->options |= RE_AA | RE_D | RE_H | RE_II | RE_L | 7353 RE_R | RE_SS | RE_S | RE_VV; 7354 break; 7355 case 'c': 7356 re->options |= RE_C; 7357 break; 7358 case 'D': 7359 re->options |= RE_DD; 7360 break; 7361 case 'd': 7362 re->options |= RE_D; 7363 break; 7364 case 'e': 7365 re->options |= RE_H | RE_L | RE_SS; 7366 break; 7367 case 'g': 7368 re->options |= RE_G; 7369 break; 7370 case 'H': 7371 readelf_usage(); 7372 break; 7373 case 'h': 7374 re->options |= RE_H; 7375 break; 7376 case 'I': 7377 re->options |= RE_II; 7378 break; 7379 case 'i': 7380 /* Not implemented yet. */ 7381 break; 7382 case 'l': 7383 re->options |= RE_L; 7384 break; 7385 case 'N': 7386 re->options |= RE_NN; 7387 break; 7388 case 'n': 7389 re->options |= RE_N; 7390 break; 7391 case 'p': 7392 re->options |= RE_P; 7393 si = strtoul(optarg, &ep, 10); 7394 if (*ep == '\0') 7395 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7396 DUMP_BY_INDEX); 7397 else 7398 add_dumpop(re, 0, optarg, STR_DUMP, 7399 DUMP_BY_NAME); 7400 break; 7401 case 'r': 7402 re->options |= RE_R; 7403 break; 7404 case 'S': 7405 re->options |= RE_SS; 7406 break; 7407 case 's': 7408 re->options |= RE_S; 7409 break; 7410 case 't': 7411 re->options |= RE_T; 7412 break; 7413 case 'u': 7414 re->options |= RE_U; 7415 break; 7416 case 'V': 7417 re->options |= RE_VV; 7418 break; 7419 case 'v': 7420 readelf_version(); 7421 break; 7422 case 'W': 7423 re->options |= RE_WW; 7424 break; 7425 case 'w': 7426 re->options |= RE_W; 7427 parse_dwarf_op_short(re, optarg); 7428 break; 7429 case 'x': 7430 re->options |= RE_X; 7431 si = strtoul(optarg, &ep, 10); 7432 if (*ep == '\0') 7433 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7434 DUMP_BY_INDEX); 7435 else 7436 add_dumpop(re, 0, optarg, HEX_DUMP, 7437 DUMP_BY_NAME); 7438 break; 7439 case OPTION_DEBUG_DUMP: 7440 re->options |= RE_W; 7441 parse_dwarf_op_long(re, optarg); 7442 } 7443 } 7444 7445 argv += optind; 7446 argc -= optind; 7447 7448 if (argc == 0 || re->options == 0) 7449 readelf_usage(); 7450 7451 if (argc > 1) 7452 re->flags |= DISPLAY_FILENAME; 7453 7454 if (elf_version(EV_CURRENT) == EV_NONE) 7455 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7456 elf_errmsg(-1)); 7457 7458 for (i = 0; i < argc; i++) 7459 if (argv[i] != NULL) { 7460 re->filename = argv[i]; 7461 dump_object(re); 7462 } 7463 7464 exit(EXIT_SUCCESS); 7465 } 7466