1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 30 #include <ar.h> 31 #include <assert.h> 32 #include <capsicum_helpers.h> 33 #include <ctype.h> 34 #include <dwarf.h> 35 #include <err.h> 36 #include <fcntl.h> 37 #include <gelf.h> 38 #include <getopt.h> 39 #include <libdwarf.h> 40 #include <libelftc.h> 41 #include <libgen.h> 42 #include <stdarg.h> 43 #include <stdbool.h> 44 #include <stdint.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <string.h> 48 #include <time.h> 49 #include <unistd.h> 50 #include <zlib.h> 51 52 #include <libcasper.h> 53 #include <casper/cap_fileargs.h> 54 55 #include "_elftc.h" 56 57 ELFTC_VCSID("$Id: readelf.c 3769 2019-06-29 15:15:02Z emaste $"); 58 59 /* Backwards compatability for older FreeBSD releases. */ 60 #ifndef STB_GNU_UNIQUE 61 #define STB_GNU_UNIQUE 10 62 #endif 63 #ifndef STT_SPARC_REGISTER 64 #define STT_SPARC_REGISTER 13 65 #endif 66 67 68 /* 69 * readelf(1) options. 70 */ 71 #define RE_AA 0x00000001 72 #define RE_C 0x00000002 73 #define RE_DD 0x00000004 74 #define RE_D 0x00000008 75 #define RE_G 0x00000010 76 #define RE_H 0x00000020 77 #define RE_II 0x00000040 78 #define RE_I 0x00000080 79 #define RE_L 0x00000100 80 #define RE_NN 0x00000200 81 #define RE_N 0x00000400 82 #define RE_P 0x00000800 83 #define RE_R 0x00001000 84 #define RE_SS 0x00002000 85 #define RE_S 0x00004000 86 #define RE_T 0x00008000 87 #define RE_U 0x00010000 88 #define RE_VV 0x00020000 89 #define RE_WW 0x00040000 90 #define RE_W 0x00080000 91 #define RE_X 0x00100000 92 #define RE_Z 0x00200000 93 94 /* 95 * dwarf dump options. 96 */ 97 #define DW_A 0x00000001 98 #define DW_FF 0x00000002 99 #define DW_F 0x00000004 100 #define DW_I 0x00000008 101 #define DW_LL 0x00000010 102 #define DW_L 0x00000020 103 #define DW_M 0x00000040 104 #define DW_O 0x00000080 105 #define DW_P 0x00000100 106 #define DW_RR 0x00000200 107 #define DW_R 0x00000400 108 #define DW_S 0x00000800 109 110 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 111 DW_R | DW_RR | DW_S) 112 113 /* 114 * readelf(1) run control flags. 115 */ 116 #define DISPLAY_FILENAME 0x0001 117 118 /* 119 * Internal data structure for sections. 120 */ 121 struct section { 122 const char *name; /* section name */ 123 Elf_Scn *scn; /* section scn */ 124 uint64_t off; /* section offset */ 125 uint64_t sz; /* section size */ 126 uint64_t entsize; /* section entsize */ 127 uint64_t align; /* section alignment */ 128 uint64_t type; /* section type */ 129 uint64_t flags; /* section flags */ 130 uint64_t addr; /* section virtual addr */ 131 uint32_t link; /* section link ndx */ 132 uint32_t info; /* section info ndx */ 133 }; 134 135 struct dumpop { 136 union { 137 size_t si; /* section index */ 138 const char *sn; /* section name */ 139 } u; 140 enum { 141 DUMP_BY_INDEX = 0, 142 DUMP_BY_NAME 143 } type; /* dump type */ 144 #define HEX_DUMP 0x0001 145 #define STR_DUMP 0x0002 146 int op; /* dump operation */ 147 STAILQ_ENTRY(dumpop) dumpop_list; 148 }; 149 150 struct symver { 151 const char *name; 152 int type; 153 }; 154 155 /* 156 * Structure encapsulates the global data for readelf(1). 157 */ 158 struct readelf { 159 const char *filename; /* current processing file. */ 160 int options; /* command line options. */ 161 int flags; /* run control flags. */ 162 int dop; /* dwarf dump options. */ 163 Elf *elf; /* underlying ELF descriptor. */ 164 Elf *ar; /* archive ELF descriptor. */ 165 Dwarf_Debug dbg; /* DWARF handle. */ 166 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 167 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 168 Dwarf_Half cu_ver; /* DWARF CU version. */ 169 GElf_Ehdr ehdr; /* ELF header. */ 170 int ec; /* ELF class. */ 171 size_t shnum; /* #sections. */ 172 struct section *vd_s; /* Verdef section. */ 173 struct section *vn_s; /* Verneed section. */ 174 struct section *vs_s; /* Versym section. */ 175 uint16_t *vs; /* Versym array. */ 176 int vs_sz; /* Versym array size. */ 177 struct symver *ver; /* Version array. */ 178 int ver_sz; /* Size of version array. */ 179 struct section *sl; /* list of sections. */ 180 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 181 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 182 uint64_t (*dw_decode)(uint8_t **, int); 183 }; 184 185 enum options 186 { 187 OPTION_DEBUG_DUMP 188 }; 189 190 static struct option longopts[] = { 191 {"all", no_argument, NULL, 'a'}, 192 {"arch-specific", no_argument, NULL, 'A'}, 193 {"archive-index", no_argument, NULL, 'c'}, 194 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 195 {"decompress", no_argument, 0, 'z'}, 196 {"dynamic", no_argument, NULL, 'd'}, 197 {"file-header", no_argument, NULL, 'h'}, 198 {"full-section-name", no_argument, NULL, 'N'}, 199 {"headers", no_argument, NULL, 'e'}, 200 {"help", no_argument, 0, 'H'}, 201 {"hex-dump", required_argument, NULL, 'x'}, 202 {"histogram", no_argument, NULL, 'I'}, 203 {"notes", no_argument, NULL, 'n'}, 204 {"program-headers", no_argument, NULL, 'l'}, 205 {"relocs", no_argument, NULL, 'r'}, 206 {"sections", no_argument, NULL, 'S'}, 207 {"section-headers", no_argument, NULL, 'S'}, 208 {"section-groups", no_argument, NULL, 'g'}, 209 {"section-details", no_argument, NULL, 't'}, 210 {"segments", no_argument, NULL, 'l'}, 211 {"string-dump", required_argument, NULL, 'p'}, 212 {"symbols", no_argument, NULL, 's'}, 213 {"syms", no_argument, NULL, 's'}, 214 {"unwind", no_argument, NULL, 'u'}, 215 {"use-dynamic", no_argument, NULL, 'D'}, 216 {"version-info", no_argument, 0, 'V'}, 217 {"version", no_argument, 0, 'v'}, 218 {"wide", no_argument, 0, 'W'}, 219 {NULL, 0, NULL, 0} 220 }; 221 222 struct eflags_desc { 223 uint64_t flag; 224 const char *desc; 225 }; 226 227 struct flag_desc { 228 uint64_t flag; 229 const char *desc; 230 }; 231 232 struct mips_option { 233 uint64_t flag; 234 const char *desc; 235 }; 236 237 struct loc_at { 238 Dwarf_Attribute la_at; 239 Dwarf_Unsigned la_off; 240 Dwarf_Unsigned la_lowpc; 241 Dwarf_Half la_cu_psize; 242 Dwarf_Half la_cu_osize; 243 Dwarf_Half la_cu_ver; 244 }; 245 246 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 247 int t); 248 static const char *aeabi_adv_simd_arch(uint64_t simd); 249 static const char *aeabi_align_needed(uint64_t an); 250 static const char *aeabi_align_preserved(uint64_t ap); 251 static const char *aeabi_arm_isa(uint64_t ai); 252 static const char *aeabi_cpu_arch(uint64_t arch); 253 static const char *aeabi_cpu_arch_profile(uint64_t pf); 254 static const char *aeabi_div(uint64_t du); 255 static const char *aeabi_enum_size(uint64_t es); 256 static const char *aeabi_fp_16bit_format(uint64_t fp16); 257 static const char *aeabi_fp_arch(uint64_t fp); 258 static const char *aeabi_fp_denormal(uint64_t fd); 259 static const char *aeabi_fp_exceptions(uint64_t fe); 260 static const char *aeabi_fp_hpext(uint64_t fh); 261 static const char *aeabi_fp_number_model(uint64_t fn); 262 static const char *aeabi_fp_optm_goal(uint64_t fog); 263 static const char *aeabi_fp_rounding(uint64_t fr); 264 static const char *aeabi_hardfp(uint64_t hfp); 265 static const char *aeabi_mpext(uint64_t mp); 266 static const char *aeabi_optm_goal(uint64_t og); 267 static const char *aeabi_pcs_config(uint64_t pcs); 268 static const char *aeabi_pcs_got(uint64_t got); 269 static const char *aeabi_pcs_r9(uint64_t r9); 270 static const char *aeabi_pcs_ro(uint64_t ro); 271 static const char *aeabi_pcs_rw(uint64_t rw); 272 static const char *aeabi_pcs_wchar_t(uint64_t wt); 273 static const char *aeabi_t2ee(uint64_t t2ee); 274 static const char *aeabi_thumb_isa(uint64_t ti); 275 static const char *aeabi_fp_user_exceptions(uint64_t fu); 276 static const char *aeabi_unaligned_access(uint64_t ua); 277 static const char *aeabi_vfp_args(uint64_t va); 278 static const char *aeabi_virtual(uint64_t vt); 279 static const char *aeabi_wmmx_arch(uint64_t wmmx); 280 static const char *aeabi_wmmx_args(uint64_t wa); 281 static const char *elf_class(unsigned int class); 282 static const char *elf_endian(unsigned int endian); 283 static const char *elf_machine(unsigned int mach); 284 static const char *elf_osabi(unsigned int abi); 285 static const char *elf_type(unsigned int type); 286 static const char *elf_ver(unsigned int ver); 287 static const char *dt_type(unsigned int mach, unsigned int dtype); 288 static void dump_ar(struct readelf *re, int); 289 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 290 static void dump_attributes(struct readelf *re); 291 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 292 static void dump_dwarf(struct readelf *re); 293 static void dump_dwarf_abbrev(struct readelf *re); 294 static void dump_dwarf_aranges(struct readelf *re); 295 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 296 Dwarf_Unsigned len); 297 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 298 static void dump_dwarf_frame(struct readelf *re, int alt); 299 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 300 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 301 Dwarf_Addr pc, Dwarf_Debug dbg); 302 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 303 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 304 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 305 int alt); 306 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 307 static void dump_dwarf_macinfo(struct readelf *re); 308 static void dump_dwarf_line(struct readelf *re); 309 static void dump_dwarf_line_decoded(struct readelf *re); 310 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 311 static void dump_dwarf_loclist(struct readelf *re); 312 static void dump_dwarf_pubnames(struct readelf *re); 313 static void dump_dwarf_ranges(struct readelf *re); 314 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 315 Dwarf_Addr base); 316 static void dump_dwarf_str(struct readelf *re); 317 static void dump_eflags(struct readelf *re, uint64_t e_flags); 318 static void dump_elf(struct readelf *re); 319 static void dump_flags(struct flag_desc *fd, uint64_t flags); 320 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 321 static void dump_dynamic(struct readelf *re); 322 static void dump_liblist(struct readelf *re); 323 static void dump_mips_abiflags(struct readelf *re, struct section *s); 324 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 325 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 326 static void dump_mips_options(struct readelf *re, struct section *s); 327 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 328 uint64_t info); 329 static void dump_mips_reginfo(struct readelf *re, struct section *s); 330 static void dump_mips_specific_info(struct readelf *re); 331 static void dump_notes(struct readelf *re); 332 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 333 off_t off); 334 static void dump_notes_data(struct readelf *re, const char *name, 335 uint32_t type, const char *buf, size_t sz); 336 static void dump_svr4_hash(struct section *s); 337 static void dump_svr4_hash64(struct readelf *re, struct section *s); 338 static void dump_gnu_hash(struct readelf *re, struct section *s); 339 static void dump_gnu_property_type_0(struct readelf *re, const char *buf, 340 size_t sz); 341 static void dump_hash(struct readelf *re); 342 static void dump_phdr(struct readelf *re); 343 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 344 static void dump_section_groups(struct readelf *re); 345 static void dump_symtab(struct readelf *re, int i); 346 static void dump_symtabs(struct readelf *re); 347 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 348 static void dump_ver(struct readelf *re); 349 static void dump_verdef(struct readelf *re, int dump); 350 static void dump_verneed(struct readelf *re, int dump); 351 static void dump_versym(struct readelf *re); 352 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 353 static const char *dwarf_regname(struct readelf *re, unsigned int num); 354 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 355 const char *sn, int op, int t); 356 static int get_ent_count(struct section *s, int *ent_count); 357 static int get_mips_register_size(uint8_t flag); 358 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 359 Dwarf_Addr off); 360 static const char *get_string(struct readelf *re, int strtab, size_t off); 361 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 362 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 363 static void load_sections(struct readelf *re); 364 static int loc_at_comparator(const void *la1, const void *la2); 365 static const char *mips_abi_fp(uint64_t fp); 366 static const char *note_type(const char *note_name, unsigned int et, 367 unsigned int nt); 368 static const char *note_type_freebsd(unsigned int nt); 369 static const char *note_type_freebsd_core(unsigned int nt); 370 static const char *note_type_linux_core(unsigned int nt); 371 static const char *note_type_gnu(unsigned int nt); 372 static const char *note_type_netbsd(unsigned int nt); 373 static const char *note_type_openbsd(unsigned int nt); 374 static const char *note_type_unknown(unsigned int nt); 375 static const char *note_type_xen(unsigned int nt); 376 static const char *option_kind(uint8_t kind); 377 static const char *phdr_type(unsigned int mach, unsigned int ptype); 378 static const char *ppc_abi_fp(uint64_t fp); 379 static const char *ppc_abi_vector(uint64_t vec); 380 static void readelf_usage(int status); 381 static void readelf_version(void); 382 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 383 Dwarf_Unsigned lowpc, struct loc_at **la_list, 384 size_t *la_list_len, size_t *la_list_cap); 385 static void search_ver(struct readelf *re); 386 static const char *section_type(unsigned int mach, unsigned int stype); 387 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 388 Dwarf_Half osize, Dwarf_Half ver); 389 static const char *st_bind(unsigned int sbind); 390 static const char *st_shndx(unsigned int shndx); 391 static const char *st_type(unsigned int mach, unsigned int os, 392 unsigned int stype); 393 static const char *st_vis(unsigned int svis); 394 static const char *top_tag(unsigned int tag); 395 static void unload_sections(struct readelf *re); 396 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 397 int bytes_to_read); 398 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 399 int bytes_to_read); 400 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 401 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 402 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 403 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 404 405 static struct eflags_desc arm_eflags_desc[] = { 406 {EF_ARM_RELEXEC, "relocatable executable"}, 407 {EF_ARM_HASENTRY, "has entry point"}, 408 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 409 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 410 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 411 {EF_ARM_BE8, "BE8"}, 412 {EF_ARM_LE8, "LE8"}, 413 {EF_ARM_INTERWORK, "interworking enabled"}, 414 {EF_ARM_APCS_26, "uses APCS/26"}, 415 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 416 {EF_ARM_PIC, "position independent"}, 417 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 418 {EF_ARM_NEW_ABI, "uses new ABI"}, 419 {EF_ARM_OLD_ABI, "uses old ABI"}, 420 {EF_ARM_SOFT_FLOAT, "software FP"}, 421 {EF_ARM_VFP_FLOAT, "VFP"}, 422 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 423 {0, NULL} 424 }; 425 426 static struct eflags_desc mips_eflags_desc[] = { 427 {EF_MIPS_NOREORDER, "noreorder"}, 428 {EF_MIPS_PIC, "pic"}, 429 {EF_MIPS_CPIC, "cpic"}, 430 {EF_MIPS_UCODE, "ugen_reserved"}, 431 {EF_MIPS_ABI2, "abi2"}, 432 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 433 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 434 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 435 {0, NULL} 436 }; 437 438 static struct eflags_desc powerpc_eflags_desc[] = { 439 {EF_PPC_EMB, "emb"}, 440 {EF_PPC_RELOCATABLE, "relocatable"}, 441 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 442 {0, NULL} 443 }; 444 445 static struct eflags_desc riscv_eflags_desc[] = { 446 {EF_RISCV_RVC, "RVC"}, 447 {EF_RISCV_RVE, "RVE"}, 448 {EF_RISCV_TSO, "TSO"}, 449 {0, NULL} 450 }; 451 452 static struct eflags_desc sparc_eflags_desc[] = { 453 {EF_SPARC_32PLUS, "v8+"}, 454 {EF_SPARC_SUN_US1, "ultrasparcI"}, 455 {EF_SPARC_HAL_R1, "halr1"}, 456 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 457 {0, NULL} 458 }; 459 460 static const char * 461 elf_osabi(unsigned int abi) 462 { 463 static char s_abi[32]; 464 465 switch(abi) { 466 case ELFOSABI_NONE: return "NONE"; 467 case ELFOSABI_HPUX: return "HPUX"; 468 case ELFOSABI_NETBSD: return "NetBSD"; 469 case ELFOSABI_GNU: return "GNU"; 470 case ELFOSABI_HURD: return "HURD"; 471 case ELFOSABI_86OPEN: return "86OPEN"; 472 case ELFOSABI_SOLARIS: return "Solaris"; 473 case ELFOSABI_AIX: return "AIX"; 474 case ELFOSABI_IRIX: return "IRIX"; 475 case ELFOSABI_FREEBSD: return "FreeBSD"; 476 case ELFOSABI_TRU64: return "TRU64"; 477 case ELFOSABI_MODESTO: return "MODESTO"; 478 case ELFOSABI_OPENBSD: return "OpenBSD"; 479 case ELFOSABI_OPENVMS: return "OpenVMS"; 480 case ELFOSABI_NSK: return "NSK"; 481 case ELFOSABI_CLOUDABI: return "CloudABI"; 482 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 483 case ELFOSABI_ARM: return "ARM"; 484 case ELFOSABI_STANDALONE: return "StandAlone"; 485 default: 486 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 487 return (s_abi); 488 } 489 }; 490 491 static const char * 492 elf_machine(unsigned int mach) 493 { 494 static char s_mach[32]; 495 496 switch (mach) { 497 case EM_NONE: return "Unknown machine"; 498 case EM_M32: return "AT&T WE32100"; 499 case EM_SPARC: return "Sun SPARC"; 500 case EM_386: return "Intel i386"; 501 case EM_68K: return "Motorola 68000"; 502 case EM_IAMCU: return "Intel MCU"; 503 case EM_88K: return "Motorola 88000"; 504 case EM_860: return "Intel i860"; 505 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 506 case EM_S370: return "IBM System/370"; 507 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 508 case EM_PARISC: return "HP PA-RISC"; 509 case EM_VPP500: return "Fujitsu VPP500"; 510 case EM_SPARC32PLUS: return "SPARC v8plus"; 511 case EM_960: return "Intel 80960"; 512 case EM_PPC: return "PowerPC 32-bit"; 513 case EM_PPC64: return "PowerPC 64-bit"; 514 case EM_S390: return "IBM System/390"; 515 case EM_V800: return "NEC V800"; 516 case EM_FR20: return "Fujitsu FR20"; 517 case EM_RH32: return "TRW RH-32"; 518 case EM_RCE: return "Motorola RCE"; 519 case EM_ARM: return "ARM"; 520 case EM_SH: return "Hitachi SH"; 521 case EM_SPARCV9: return "SPARC v9 64-bit"; 522 case EM_TRICORE: return "Siemens TriCore embedded processor"; 523 case EM_ARC: return "Argonaut RISC Core"; 524 case EM_H8_300: return "Hitachi H8/300"; 525 case EM_H8_300H: return "Hitachi H8/300H"; 526 case EM_H8S: return "Hitachi H8S"; 527 case EM_H8_500: return "Hitachi H8/500"; 528 case EM_IA_64: return "Intel IA-64 Processor"; 529 case EM_MIPS_X: return "Stanford MIPS-X"; 530 case EM_COLDFIRE: return "Motorola ColdFire"; 531 case EM_68HC12: return "Motorola M68HC12"; 532 case EM_MMA: return "Fujitsu MMA"; 533 case EM_PCP: return "Siemens PCP"; 534 case EM_NCPU: return "Sony nCPU"; 535 case EM_NDR1: return "Denso NDR1 microprocessor"; 536 case EM_STARCORE: return "Motorola Star*Core processor"; 537 case EM_ME16: return "Toyota ME16 processor"; 538 case EM_ST100: return "STMicroelectronics ST100 processor"; 539 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 540 case EM_X86_64: return "Advanced Micro Devices x86-64"; 541 case EM_PDSP: return "Sony DSP Processor"; 542 case EM_FX66: return "Siemens FX66 microcontroller"; 543 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 544 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 545 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 546 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 547 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 548 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 549 case EM_SVX: return "Silicon Graphics SVx"; 550 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 551 case EM_VAX: return "Digital VAX"; 552 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 553 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 554 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 555 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 556 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 557 case EM_HUANY: return "Harvard University MI object files"; 558 case EM_PRISM: return "SiTera Prism"; 559 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 560 case EM_FR30: return "Fujitsu FR30"; 561 case EM_D10V: return "Mitsubishi D10V"; 562 case EM_D30V: return "Mitsubishi D30V"; 563 case EM_V850: return "NEC v850"; 564 case EM_M32R: return "Mitsubishi M32R"; 565 case EM_MN10300: return "Matsushita MN10300"; 566 case EM_MN10200: return "Matsushita MN10200"; 567 case EM_PJ: return "picoJava"; 568 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 569 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 570 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 571 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 572 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 573 case EM_NS32K: return "National Semiconductor 32000 series"; 574 case EM_TPC: return "Tenor Network TPC processor"; 575 case EM_SNP1K: return "Trebia SNP 1000 processor"; 576 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 577 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 578 case EM_MAX: return "MAX Processor"; 579 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 580 case EM_F2MC16: return "Fujitsu F2MC16"; 581 case EM_MSP430: return "TI embedded microcontroller msp430"; 582 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 583 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 584 case EM_SEP: return "Sharp embedded microprocessor"; 585 case EM_ARCA: return "Arca RISC Microprocessor"; 586 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 587 case EM_AARCH64: return "AArch64"; 588 case EM_RISCV: return "RISC-V"; 589 default: 590 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 591 return (s_mach); 592 } 593 594 } 595 596 static const char * 597 elf_class(unsigned int class) 598 { 599 static char s_class[32]; 600 601 switch (class) { 602 case ELFCLASSNONE: return "none"; 603 case ELFCLASS32: return "ELF32"; 604 case ELFCLASS64: return "ELF64"; 605 default: 606 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 607 return (s_class); 608 } 609 } 610 611 static const char * 612 elf_endian(unsigned int endian) 613 { 614 static char s_endian[32]; 615 616 switch (endian) { 617 case ELFDATANONE: return "none"; 618 case ELFDATA2LSB: return "2's complement, little endian"; 619 case ELFDATA2MSB: return "2's complement, big endian"; 620 default: 621 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 622 return (s_endian); 623 } 624 } 625 626 static const char * 627 elf_type(unsigned int type) 628 { 629 static char s_type[32]; 630 631 switch (type) { 632 case ET_NONE: return "NONE (None)"; 633 case ET_REL: return "REL (Relocatable file)"; 634 case ET_EXEC: return "EXEC (Executable file)"; 635 case ET_DYN: return "DYN (Shared object file)"; 636 case ET_CORE: return "CORE (Core file)"; 637 default: 638 if (type >= ET_LOPROC) 639 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 640 else if (type >= ET_LOOS && type <= ET_HIOS) 641 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 642 else 643 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 644 type); 645 return (s_type); 646 } 647 } 648 649 static const char * 650 elf_ver(unsigned int ver) 651 { 652 static char s_ver[32]; 653 654 switch (ver) { 655 case EV_CURRENT: return "(current)"; 656 case EV_NONE: return "(none)"; 657 default: 658 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 659 ver); 660 return (s_ver); 661 } 662 } 663 664 static const char * 665 phdr_type(unsigned int mach, unsigned int ptype) 666 { 667 static char s_ptype[32]; 668 669 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 670 switch (mach) { 671 case EM_ARM: 672 switch (ptype) { 673 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 674 case PT_ARM_EXIDX: return "ARM_EXIDX"; 675 } 676 break; 677 } 678 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 679 ptype - PT_LOPROC); 680 return (s_ptype); 681 } 682 683 switch (ptype) { 684 case PT_NULL: return "NULL"; 685 case PT_LOAD: return "LOAD"; 686 case PT_DYNAMIC: return "DYNAMIC"; 687 case PT_INTERP: return "INTERP"; 688 case PT_NOTE: return "NOTE"; 689 case PT_SHLIB: return "SHLIB"; 690 case PT_PHDR: return "PHDR"; 691 case PT_TLS: return "TLS"; 692 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 693 case PT_GNU_STACK: return "GNU_STACK"; 694 case PT_GNU_RELRO: return "GNU_RELRO"; 695 case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE"; 696 case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED"; 697 case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA"; 698 default: 699 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 700 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 701 ptype - PT_LOOS); 702 else 703 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 704 ptype); 705 return (s_ptype); 706 } 707 } 708 709 static const char * 710 section_type(unsigned int mach, unsigned int stype) 711 { 712 static char s_stype[32]; 713 714 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 715 switch (mach) { 716 case EM_ARM: 717 switch (stype) { 718 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 719 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 720 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 721 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 722 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 723 } 724 break; 725 case EM_X86_64: 726 switch (stype) { 727 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 728 default: 729 break; 730 } 731 break; 732 case EM_MIPS: 733 case EM_MIPS_RS3_LE: 734 switch (stype) { 735 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 736 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 737 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 738 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 739 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 740 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 741 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 742 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 743 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 744 case SHT_MIPS_RELD: return "MIPS_RELD"; 745 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 746 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 747 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 748 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 749 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 750 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 751 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 752 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 753 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 754 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 755 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 756 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 757 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 758 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 759 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 760 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 761 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 762 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 763 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 764 default: 765 break; 766 } 767 break; 768 default: 769 break; 770 } 771 772 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 773 stype - SHT_LOPROC); 774 return (s_stype); 775 } 776 777 switch (stype) { 778 case SHT_NULL: return "NULL"; 779 case SHT_PROGBITS: return "PROGBITS"; 780 case SHT_SYMTAB: return "SYMTAB"; 781 case SHT_STRTAB: return "STRTAB"; 782 case SHT_RELA: return "RELA"; 783 case SHT_HASH: return "HASH"; 784 case SHT_DYNAMIC: return "DYNAMIC"; 785 case SHT_NOTE: return "NOTE"; 786 case SHT_NOBITS: return "NOBITS"; 787 case SHT_REL: return "REL"; 788 case SHT_SHLIB: return "SHLIB"; 789 case SHT_DYNSYM: return "DYNSYM"; 790 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 791 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 792 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 793 case SHT_GROUP: return "GROUP"; 794 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 795 case SHT_SUNW_dof: return "SUNW_dof"; 796 case SHT_SUNW_cap: return "SUNW_cap"; 797 case SHT_GNU_HASH: return "GNU_HASH"; 798 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 799 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 800 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 801 case SHT_SUNW_move: return "SUNW_move"; 802 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 803 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 804 case SHT_SUNW_verdef: return "SUNW_verdef"; 805 case SHT_SUNW_verneed: return "SUNW_verneed"; 806 case SHT_SUNW_versym: return "SUNW_versym"; 807 default: 808 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 809 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 810 stype - SHT_LOOS); 811 else if (stype >= SHT_LOUSER) 812 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 813 stype - SHT_LOUSER); 814 else 815 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 816 stype); 817 return (s_stype); 818 } 819 } 820 821 static const char * 822 dt_type(unsigned int mach, unsigned int dtype) 823 { 824 static char s_dtype[32]; 825 826 switch (dtype) { 827 case DT_NULL: return "NULL"; 828 case DT_NEEDED: return "NEEDED"; 829 case DT_PLTRELSZ: return "PLTRELSZ"; 830 case DT_PLTGOT: return "PLTGOT"; 831 case DT_HASH: return "HASH"; 832 case DT_STRTAB: return "STRTAB"; 833 case DT_SYMTAB: return "SYMTAB"; 834 case DT_RELA: return "RELA"; 835 case DT_RELASZ: return "RELASZ"; 836 case DT_RELAENT: return "RELAENT"; 837 case DT_STRSZ: return "STRSZ"; 838 case DT_SYMENT: return "SYMENT"; 839 case DT_INIT: return "INIT"; 840 case DT_FINI: return "FINI"; 841 case DT_SONAME: return "SONAME"; 842 case DT_RPATH: return "RPATH"; 843 case DT_SYMBOLIC: return "SYMBOLIC"; 844 case DT_REL: return "REL"; 845 case DT_RELSZ: return "RELSZ"; 846 case DT_RELENT: return "RELENT"; 847 case DT_PLTREL: return "PLTREL"; 848 case DT_DEBUG: return "DEBUG"; 849 case DT_TEXTREL: return "TEXTREL"; 850 case DT_JMPREL: return "JMPREL"; 851 case DT_BIND_NOW: return "BIND_NOW"; 852 case DT_INIT_ARRAY: return "INIT_ARRAY"; 853 case DT_FINI_ARRAY: return "FINI_ARRAY"; 854 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 855 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 856 case DT_RUNPATH: return "RUNPATH"; 857 case DT_FLAGS: return "FLAGS"; 858 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 859 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 860 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 861 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 862 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 863 case DT_SUNW_FILTER: return "SUNW_FILTER"; 864 case DT_SUNW_CAP: return "SUNW_CAP"; 865 case DT_SUNW_ASLR: return "SUNW_ASLR"; 866 case DT_CHECKSUM: return "CHECKSUM"; 867 case DT_PLTPADSZ: return "PLTPADSZ"; 868 case DT_MOVEENT: return "MOVEENT"; 869 case DT_MOVESZ: return "MOVESZ"; 870 case DT_FEATURE: return "FEATURE"; 871 case DT_POSFLAG_1: return "POSFLAG_1"; 872 case DT_SYMINSZ: return "SYMINSZ"; 873 case DT_SYMINENT: return "SYMINENT"; 874 case DT_GNU_HASH: return "GNU_HASH"; 875 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 876 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 877 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 878 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 879 case DT_CONFIG: return "CONFIG"; 880 case DT_DEPAUDIT: return "DEPAUDIT"; 881 case DT_AUDIT: return "AUDIT"; 882 case DT_PLTPAD: return "PLTPAD"; 883 case DT_MOVETAB: return "MOVETAB"; 884 case DT_SYMINFO: return "SYMINFO"; 885 case DT_VERSYM: return "VERSYM"; 886 case DT_RELACOUNT: return "RELACOUNT"; 887 case DT_RELCOUNT: return "RELCOUNT"; 888 case DT_FLAGS_1: return "FLAGS_1"; 889 case DT_VERDEF: return "VERDEF"; 890 case DT_VERDEFNUM: return "VERDEFNUM"; 891 case DT_VERNEED: return "VERNEED"; 892 case DT_VERNEEDNUM: return "VERNEEDNUM"; 893 case DT_AUXILIARY: return "AUXILIARY"; 894 case DT_USED: return "USED"; 895 case DT_FILTER: return "FILTER"; 896 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 897 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 898 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 899 } 900 901 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 902 switch (mach) { 903 case EM_ARM: 904 switch (dtype) { 905 case DT_ARM_SYMTABSZ: 906 return "ARM_SYMTABSZ"; 907 default: 908 break; 909 } 910 break; 911 case EM_MIPS: 912 case EM_MIPS_RS3_LE: 913 switch (dtype) { 914 case DT_MIPS_RLD_VERSION: 915 return "MIPS_RLD_VERSION"; 916 case DT_MIPS_TIME_STAMP: 917 return "MIPS_TIME_STAMP"; 918 case DT_MIPS_ICHECKSUM: 919 return "MIPS_ICHECKSUM"; 920 case DT_MIPS_IVERSION: 921 return "MIPS_IVERSION"; 922 case DT_MIPS_FLAGS: 923 return "MIPS_FLAGS"; 924 case DT_MIPS_BASE_ADDRESS: 925 return "MIPS_BASE_ADDRESS"; 926 case DT_MIPS_CONFLICT: 927 return "MIPS_CONFLICT"; 928 case DT_MIPS_LIBLIST: 929 return "MIPS_LIBLIST"; 930 case DT_MIPS_LOCAL_GOTNO: 931 return "MIPS_LOCAL_GOTNO"; 932 case DT_MIPS_CONFLICTNO: 933 return "MIPS_CONFLICTNO"; 934 case DT_MIPS_LIBLISTNO: 935 return "MIPS_LIBLISTNO"; 936 case DT_MIPS_SYMTABNO: 937 return "MIPS_SYMTABNO"; 938 case DT_MIPS_UNREFEXTNO: 939 return "MIPS_UNREFEXTNO"; 940 case DT_MIPS_GOTSYM: 941 return "MIPS_GOTSYM"; 942 case DT_MIPS_HIPAGENO: 943 return "MIPS_HIPAGENO"; 944 case DT_MIPS_RLD_MAP: 945 return "MIPS_RLD_MAP"; 946 case DT_MIPS_DELTA_CLASS: 947 return "MIPS_DELTA_CLASS"; 948 case DT_MIPS_DELTA_CLASS_NO: 949 return "MIPS_DELTA_CLASS_NO"; 950 case DT_MIPS_DELTA_INSTANCE: 951 return "MIPS_DELTA_INSTANCE"; 952 case DT_MIPS_DELTA_INSTANCE_NO: 953 return "MIPS_DELTA_INSTANCE_NO"; 954 case DT_MIPS_DELTA_RELOC: 955 return "MIPS_DELTA_RELOC"; 956 case DT_MIPS_DELTA_RELOC_NO: 957 return "MIPS_DELTA_RELOC_NO"; 958 case DT_MIPS_DELTA_SYM: 959 return "MIPS_DELTA_SYM"; 960 case DT_MIPS_DELTA_SYM_NO: 961 return "MIPS_DELTA_SYM_NO"; 962 case DT_MIPS_DELTA_CLASSSYM: 963 return "MIPS_DELTA_CLASSSYM"; 964 case DT_MIPS_DELTA_CLASSSYM_NO: 965 return "MIPS_DELTA_CLASSSYM_NO"; 966 case DT_MIPS_CXX_FLAGS: 967 return "MIPS_CXX_FLAGS"; 968 case DT_MIPS_PIXIE_INIT: 969 return "MIPS_PIXIE_INIT"; 970 case DT_MIPS_SYMBOL_LIB: 971 return "MIPS_SYMBOL_LIB"; 972 case DT_MIPS_LOCALPAGE_GOTIDX: 973 return "MIPS_LOCALPAGE_GOTIDX"; 974 case DT_MIPS_LOCAL_GOTIDX: 975 return "MIPS_LOCAL_GOTIDX"; 976 case DT_MIPS_HIDDEN_GOTIDX: 977 return "MIPS_HIDDEN_GOTIDX"; 978 case DT_MIPS_PROTECTED_GOTIDX: 979 return "MIPS_PROTECTED_GOTIDX"; 980 case DT_MIPS_OPTIONS: 981 return "MIPS_OPTIONS"; 982 case DT_MIPS_INTERFACE: 983 return "MIPS_INTERFACE"; 984 case DT_MIPS_DYNSTR_ALIGN: 985 return "MIPS_DYNSTR_ALIGN"; 986 case DT_MIPS_INTERFACE_SIZE: 987 return "MIPS_INTERFACE_SIZE"; 988 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 989 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 990 case DT_MIPS_PERF_SUFFIX: 991 return "MIPS_PERF_SUFFIX"; 992 case DT_MIPS_COMPACT_SIZE: 993 return "MIPS_COMPACT_SIZE"; 994 case DT_MIPS_GP_VALUE: 995 return "MIPS_GP_VALUE"; 996 case DT_MIPS_AUX_DYNAMIC: 997 return "MIPS_AUX_DYNAMIC"; 998 case DT_MIPS_PLTGOT: 999 return "MIPS_PLTGOT"; 1000 case DT_MIPS_RLD_OBJ_UPDATE: 1001 return "MIPS_RLD_OBJ_UPDATE"; 1002 case DT_MIPS_RWPLT: 1003 return "MIPS_RWPLT"; 1004 default: 1005 break; 1006 } 1007 break; 1008 case EM_SPARC: 1009 case EM_SPARC32PLUS: 1010 case EM_SPARCV9: 1011 switch (dtype) { 1012 case DT_SPARC_REGISTER: 1013 return "DT_SPARC_REGISTER"; 1014 default: 1015 break; 1016 } 1017 break; 1018 default: 1019 break; 1020 } 1021 } 1022 1023 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 1024 return (s_dtype); 1025 } 1026 1027 static const char * 1028 st_bind(unsigned int sbind) 1029 { 1030 static char s_sbind[32]; 1031 1032 switch (sbind) { 1033 case STB_LOCAL: return "LOCAL"; 1034 case STB_GLOBAL: return "GLOBAL"; 1035 case STB_WEAK: return "WEAK"; 1036 case STB_GNU_UNIQUE: return "UNIQUE"; 1037 default: 1038 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 1039 return "OS"; 1040 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1041 return "PROC"; 1042 else 1043 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1044 sbind); 1045 return (s_sbind); 1046 } 1047 } 1048 1049 static const char * 1050 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1051 { 1052 static char s_stype[32]; 1053 1054 switch (stype) { 1055 case STT_NOTYPE: return "NOTYPE"; 1056 case STT_OBJECT: return "OBJECT"; 1057 case STT_FUNC: return "FUNC"; 1058 case STT_SECTION: return "SECTION"; 1059 case STT_FILE: return "FILE"; 1060 case STT_COMMON: return "COMMON"; 1061 case STT_TLS: return "TLS"; 1062 default: 1063 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1064 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1065 stype == STT_GNU_IFUNC) 1066 return "IFUNC"; 1067 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1068 stype - STT_LOOS); 1069 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1070 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1071 return "REGISTER"; 1072 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1073 stype - STT_LOPROC); 1074 } else 1075 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1076 stype); 1077 return (s_stype); 1078 } 1079 } 1080 1081 static const char * 1082 st_vis(unsigned int svis) 1083 { 1084 static char s_svis[32]; 1085 1086 switch(svis) { 1087 case STV_DEFAULT: return "DEFAULT"; 1088 case STV_INTERNAL: return "INTERNAL"; 1089 case STV_HIDDEN: return "HIDDEN"; 1090 case STV_PROTECTED: return "PROTECTED"; 1091 default: 1092 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1093 return (s_svis); 1094 } 1095 } 1096 1097 static const char * 1098 st_shndx(unsigned int shndx) 1099 { 1100 static char s_shndx[32]; 1101 1102 switch (shndx) { 1103 case SHN_UNDEF: return "UND"; 1104 case SHN_ABS: return "ABS"; 1105 case SHN_COMMON: return "COM"; 1106 default: 1107 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1108 return "PRC"; 1109 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1110 return "OS"; 1111 else 1112 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1113 return (s_shndx); 1114 } 1115 } 1116 1117 static struct { 1118 const char *ln; 1119 char sn; 1120 int value; 1121 } section_flag[] = { 1122 {"WRITE", 'W', SHF_WRITE}, 1123 {"ALLOC", 'A', SHF_ALLOC}, 1124 {"EXEC", 'X', SHF_EXECINSTR}, 1125 {"MERGE", 'M', SHF_MERGE}, 1126 {"STRINGS", 'S', SHF_STRINGS}, 1127 {"INFO LINK", 'I', SHF_INFO_LINK}, 1128 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1129 {"GROUP", 'G', SHF_GROUP}, 1130 {"TLS", 'T', SHF_TLS}, 1131 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1132 {NULL, 0, 0} 1133 }; 1134 1135 static const char * 1136 note_type(const char *name, unsigned int et, unsigned int nt) 1137 { 1138 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1139 et == ET_CORE) 1140 return note_type_linux_core(nt); 1141 else if (strcmp(name, "FreeBSD") == 0) 1142 if (et == ET_CORE) 1143 return note_type_freebsd_core(nt); 1144 else 1145 return note_type_freebsd(nt); 1146 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1147 return note_type_gnu(nt); 1148 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1149 return note_type_netbsd(nt); 1150 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1151 return note_type_openbsd(nt); 1152 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1153 return note_type_xen(nt); 1154 return note_type_unknown(nt); 1155 } 1156 1157 static const char * 1158 note_type_freebsd(unsigned int nt) 1159 { 1160 switch (nt) { 1161 case 1: return "NT_FREEBSD_ABI_TAG"; 1162 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1163 case 3: return "NT_FREEBSD_ARCH_TAG"; 1164 case 4: return "NT_FREEBSD_FEATURE_CTL"; 1165 default: return (note_type_unknown(nt)); 1166 } 1167 } 1168 1169 static const char * 1170 note_type_freebsd_core(unsigned int nt) 1171 { 1172 switch (nt) { 1173 case 1: return "NT_PRSTATUS"; 1174 case 2: return "NT_FPREGSET"; 1175 case 3: return "NT_PRPSINFO"; 1176 case 7: return "NT_THRMISC"; 1177 case 8: return "NT_PROCSTAT_PROC"; 1178 case 9: return "NT_PROCSTAT_FILES"; 1179 case 10: return "NT_PROCSTAT_VMMAP"; 1180 case 11: return "NT_PROCSTAT_GROUPS"; 1181 case 12: return "NT_PROCSTAT_UMASK"; 1182 case 13: return "NT_PROCSTAT_RLIMIT"; 1183 case 14: return "NT_PROCSTAT_OSREL"; 1184 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1185 case 16: return "NT_PROCSTAT_AUXV"; 1186 case 17: return "NT_PTLWPINFO"; 1187 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1188 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1189 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1190 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1191 default: return (note_type_unknown(nt)); 1192 } 1193 } 1194 1195 static const char * 1196 note_type_linux_core(unsigned int nt) 1197 { 1198 switch (nt) { 1199 case 1: return "NT_PRSTATUS (Process status)"; 1200 case 2: return "NT_FPREGSET (Floating point information)"; 1201 case 3: return "NT_PRPSINFO (Process information)"; 1202 case 4: return "NT_TASKSTRUCT (Task structure)"; 1203 case 6: return "NT_AUXV (Auxiliary vector)"; 1204 case 10: return "NT_PSTATUS (Linux process status)"; 1205 case 12: return "NT_FPREGS (Linux floating point regset)"; 1206 case 13: return "NT_PSINFO (Linux process information)"; 1207 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1208 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1209 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1210 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1211 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1212 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1213 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1214 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1215 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1216 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1217 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1218 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1219 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1220 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1221 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1222 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1223 default: return (note_type_unknown(nt)); 1224 } 1225 } 1226 1227 static const char * 1228 note_type_gnu(unsigned int nt) 1229 { 1230 switch (nt) { 1231 case 1: return "NT_GNU_ABI_TAG"; 1232 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1233 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1234 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1235 case 5: return "NT_GNU_PROPERTY_TYPE_0"; 1236 default: return (note_type_unknown(nt)); 1237 } 1238 } 1239 1240 static const char * 1241 note_type_netbsd(unsigned int nt) 1242 { 1243 switch (nt) { 1244 case 1: return "NT_NETBSD_IDENT"; 1245 default: return (note_type_unknown(nt)); 1246 } 1247 } 1248 1249 static const char * 1250 note_type_openbsd(unsigned int nt) 1251 { 1252 switch (nt) { 1253 case 1: return "NT_OPENBSD_IDENT"; 1254 default: return (note_type_unknown(nt)); 1255 } 1256 } 1257 1258 static const char * 1259 note_type_unknown(unsigned int nt) 1260 { 1261 static char s_nt[32]; 1262 1263 snprintf(s_nt, sizeof(s_nt), 1264 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1265 return (s_nt); 1266 } 1267 1268 static const char * 1269 note_type_xen(unsigned int nt) 1270 { 1271 switch (nt) { 1272 case 0: return "XEN_ELFNOTE_INFO"; 1273 case 1: return "XEN_ELFNOTE_ENTRY"; 1274 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1275 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1276 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1277 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1278 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1279 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1280 case 8: return "XEN_ELFNOTE_LOADER"; 1281 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1282 case 10: return "XEN_ELFNOTE_FEATURES"; 1283 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1284 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1285 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1286 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1287 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1288 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1289 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1290 case 18: return "XEN_ELFNOTE_PHYS32_ENTRY"; 1291 default: return (note_type_unknown(nt)); 1292 } 1293 } 1294 1295 static struct { 1296 const char *name; 1297 int value; 1298 } l_flag[] = { 1299 {"EXACT_MATCH", LL_EXACT_MATCH}, 1300 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1301 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1302 {"EXPORTS", LL_EXPORTS}, 1303 {"DELAY_LOAD", LL_DELAY_LOAD}, 1304 {"DELTA", LL_DELTA}, 1305 {NULL, 0} 1306 }; 1307 1308 static struct mips_option mips_exceptions_option[] = { 1309 {OEX_PAGE0, "PAGE0"}, 1310 {OEX_SMM, "SMM"}, 1311 {OEX_PRECISEFP, "PRECISEFP"}, 1312 {OEX_DISMISS, "DISMISS"}, 1313 {0, NULL} 1314 }; 1315 1316 static struct mips_option mips_pad_option[] = { 1317 {OPAD_PREFIX, "PREFIX"}, 1318 {OPAD_POSTFIX, "POSTFIX"}, 1319 {OPAD_SYMBOL, "SYMBOL"}, 1320 {0, NULL} 1321 }; 1322 1323 static struct mips_option mips_hwpatch_option[] = { 1324 {OHW_R4KEOP, "R4KEOP"}, 1325 {OHW_R8KPFETCH, "R8KPFETCH"}, 1326 {OHW_R5KEOP, "R5KEOP"}, 1327 {OHW_R5KCVTL, "R5KCVTL"}, 1328 {0, NULL} 1329 }; 1330 1331 static struct mips_option mips_hwa_option[] = { 1332 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1333 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1334 {0, NULL} 1335 }; 1336 1337 static struct mips_option mips_hwo_option[] = { 1338 {OHWO0_FIXADE, "FIXADE"}, 1339 {0, NULL} 1340 }; 1341 1342 static const char * 1343 option_kind(uint8_t kind) 1344 { 1345 static char s_kind[32]; 1346 1347 switch (kind) { 1348 case ODK_NULL: return "NULL"; 1349 case ODK_REGINFO: return "REGINFO"; 1350 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1351 case ODK_PAD: return "PAD"; 1352 case ODK_HWPATCH: return "HWPATCH"; 1353 case ODK_FILL: return "FILL"; 1354 case ODK_TAGS: return "TAGS"; 1355 case ODK_HWAND: return "HWAND"; 1356 case ODK_HWOR: return "HWOR"; 1357 case ODK_GP_GROUP: return "GP_GROUP"; 1358 case ODK_IDENT: return "IDENT"; 1359 default: 1360 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1361 return (s_kind); 1362 } 1363 } 1364 1365 static const char * 1366 top_tag(unsigned int tag) 1367 { 1368 static char s_top_tag[32]; 1369 1370 switch (tag) { 1371 case 1: return "File Attributes"; 1372 case 2: return "Section Attributes"; 1373 case 3: return "Symbol Attributes"; 1374 default: 1375 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1376 return (s_top_tag); 1377 } 1378 } 1379 1380 static const char * 1381 aeabi_cpu_arch(uint64_t arch) 1382 { 1383 static char s_cpu_arch[32]; 1384 1385 switch (arch) { 1386 case 0: return "Pre-V4"; 1387 case 1: return "ARM v4"; 1388 case 2: return "ARM v4T"; 1389 case 3: return "ARM v5T"; 1390 case 4: return "ARM v5TE"; 1391 case 5: return "ARM v5TEJ"; 1392 case 6: return "ARM v6"; 1393 case 7: return "ARM v6KZ"; 1394 case 8: return "ARM v6T2"; 1395 case 9: return "ARM v6K"; 1396 case 10: return "ARM v7"; 1397 case 11: return "ARM v6-M"; 1398 case 12: return "ARM v6S-M"; 1399 case 13: return "ARM v7E-M"; 1400 default: 1401 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1402 "Unknown (%ju)", (uintmax_t) arch); 1403 return (s_cpu_arch); 1404 } 1405 } 1406 1407 static const char * 1408 aeabi_cpu_arch_profile(uint64_t pf) 1409 { 1410 static char s_arch_profile[32]; 1411 1412 switch (pf) { 1413 case 0: 1414 return "Not applicable"; 1415 case 0x41: /* 'A' */ 1416 return "Application Profile"; 1417 case 0x52: /* 'R' */ 1418 return "Real-Time Profile"; 1419 case 0x4D: /* 'M' */ 1420 return "Microcontroller Profile"; 1421 case 0x53: /* 'S' */ 1422 return "Application or Real-Time Profile"; 1423 default: 1424 snprintf(s_arch_profile, sizeof(s_arch_profile), 1425 "Unknown (%ju)\n", (uintmax_t) pf); 1426 return (s_arch_profile); 1427 } 1428 } 1429 1430 static const char * 1431 aeabi_arm_isa(uint64_t ai) 1432 { 1433 static char s_ai[32]; 1434 1435 switch (ai) { 1436 case 0: return "No"; 1437 case 1: return "Yes"; 1438 default: 1439 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1440 (uintmax_t) ai); 1441 return (s_ai); 1442 } 1443 } 1444 1445 static const char * 1446 aeabi_thumb_isa(uint64_t ti) 1447 { 1448 static char s_ti[32]; 1449 1450 switch (ti) { 1451 case 0: return "No"; 1452 case 1: return "16-bit Thumb"; 1453 case 2: return "32-bit Thumb"; 1454 default: 1455 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1456 (uintmax_t) ti); 1457 return (s_ti); 1458 } 1459 } 1460 1461 static const char * 1462 aeabi_fp_arch(uint64_t fp) 1463 { 1464 static char s_fp_arch[32]; 1465 1466 switch (fp) { 1467 case 0: return "No"; 1468 case 1: return "VFPv1"; 1469 case 2: return "VFPv2"; 1470 case 3: return "VFPv3"; 1471 case 4: return "VFPv3-D16"; 1472 case 5: return "VFPv4"; 1473 case 6: return "VFPv4-D16"; 1474 default: 1475 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1476 (uintmax_t) fp); 1477 return (s_fp_arch); 1478 } 1479 } 1480 1481 static const char * 1482 aeabi_wmmx_arch(uint64_t wmmx) 1483 { 1484 static char s_wmmx[32]; 1485 1486 switch (wmmx) { 1487 case 0: return "No"; 1488 case 1: return "WMMXv1"; 1489 case 2: return "WMMXv2"; 1490 default: 1491 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1492 (uintmax_t) wmmx); 1493 return (s_wmmx); 1494 } 1495 } 1496 1497 static const char * 1498 aeabi_adv_simd_arch(uint64_t simd) 1499 { 1500 static char s_simd[32]; 1501 1502 switch (simd) { 1503 case 0: return "No"; 1504 case 1: return "NEONv1"; 1505 case 2: return "NEONv2"; 1506 default: 1507 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1508 (uintmax_t) simd); 1509 return (s_simd); 1510 } 1511 } 1512 1513 static const char * 1514 aeabi_pcs_config(uint64_t pcs) 1515 { 1516 static char s_pcs[32]; 1517 1518 switch (pcs) { 1519 case 0: return "None"; 1520 case 1: return "Bare platform"; 1521 case 2: return "Linux"; 1522 case 3: return "Linux DSO"; 1523 case 4: return "Palm OS 2004"; 1524 case 5: return "Palm OS (future)"; 1525 case 6: return "Symbian OS 2004"; 1526 case 7: return "Symbian OS (future)"; 1527 default: 1528 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1529 (uintmax_t) pcs); 1530 return (s_pcs); 1531 } 1532 } 1533 1534 static const char * 1535 aeabi_pcs_r9(uint64_t r9) 1536 { 1537 static char s_r9[32]; 1538 1539 switch (r9) { 1540 case 0: return "V6"; 1541 case 1: return "SB"; 1542 case 2: return "TLS pointer"; 1543 case 3: return "Unused"; 1544 default: 1545 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1546 return (s_r9); 1547 } 1548 } 1549 1550 static const char * 1551 aeabi_pcs_rw(uint64_t rw) 1552 { 1553 static char s_rw[32]; 1554 1555 switch (rw) { 1556 case 0: return "Absolute"; 1557 case 1: return "PC-relative"; 1558 case 2: return "SB-relative"; 1559 case 3: return "None"; 1560 default: 1561 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1562 return (s_rw); 1563 } 1564 } 1565 1566 static const char * 1567 aeabi_pcs_ro(uint64_t ro) 1568 { 1569 static char s_ro[32]; 1570 1571 switch (ro) { 1572 case 0: return "Absolute"; 1573 case 1: return "PC-relative"; 1574 case 2: return "None"; 1575 default: 1576 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1577 return (s_ro); 1578 } 1579 } 1580 1581 static const char * 1582 aeabi_pcs_got(uint64_t got) 1583 { 1584 static char s_got[32]; 1585 1586 switch (got) { 1587 case 0: return "None"; 1588 case 1: return "direct"; 1589 case 2: return "indirect via GOT"; 1590 default: 1591 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1592 (uintmax_t) got); 1593 return (s_got); 1594 } 1595 } 1596 1597 static const char * 1598 aeabi_pcs_wchar_t(uint64_t wt) 1599 { 1600 static char s_wt[32]; 1601 1602 switch (wt) { 1603 case 0: return "None"; 1604 case 2: return "wchar_t size 2"; 1605 case 4: return "wchar_t size 4"; 1606 default: 1607 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1608 return (s_wt); 1609 } 1610 } 1611 1612 static const char * 1613 aeabi_enum_size(uint64_t es) 1614 { 1615 static char s_es[32]; 1616 1617 switch (es) { 1618 case 0: return "None"; 1619 case 1: return "smallest"; 1620 case 2: return "32-bit"; 1621 case 3: return "visible 32-bit"; 1622 default: 1623 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1624 return (s_es); 1625 } 1626 } 1627 1628 static const char * 1629 aeabi_align_needed(uint64_t an) 1630 { 1631 static char s_align_n[64]; 1632 1633 switch (an) { 1634 case 0: return "No"; 1635 case 1: return "8-byte align"; 1636 case 2: return "4-byte align"; 1637 case 3: return "Reserved"; 1638 default: 1639 if (an >= 4 && an <= 12) 1640 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1641 " and up to 2^%ju-byte extended align", 1642 (uintmax_t) an); 1643 else 1644 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1645 (uintmax_t) an); 1646 return (s_align_n); 1647 } 1648 } 1649 1650 static const char * 1651 aeabi_align_preserved(uint64_t ap) 1652 { 1653 static char s_align_p[128]; 1654 1655 switch (ap) { 1656 case 0: return "No"; 1657 case 1: return "8-byte align"; 1658 case 2: return "8-byte align and SP % 8 == 0"; 1659 case 3: return "Reserved"; 1660 default: 1661 if (ap >= 4 && ap <= 12) 1662 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1663 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1664 " align", (uintmax_t) ap); 1665 else 1666 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1667 (uintmax_t) ap); 1668 return (s_align_p); 1669 } 1670 } 1671 1672 static const char * 1673 aeabi_fp_rounding(uint64_t fr) 1674 { 1675 static char s_fp_r[32]; 1676 1677 switch (fr) { 1678 case 0: return "Unused"; 1679 case 1: return "Needed"; 1680 default: 1681 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1682 (uintmax_t) fr); 1683 return (s_fp_r); 1684 } 1685 } 1686 1687 static const char * 1688 aeabi_fp_denormal(uint64_t fd) 1689 { 1690 static char s_fp_d[32]; 1691 1692 switch (fd) { 1693 case 0: return "Unused"; 1694 case 1: return "Needed"; 1695 case 2: return "Sign Only"; 1696 default: 1697 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1698 (uintmax_t) fd); 1699 return (s_fp_d); 1700 } 1701 } 1702 1703 static const char * 1704 aeabi_fp_exceptions(uint64_t fe) 1705 { 1706 static char s_fp_e[32]; 1707 1708 switch (fe) { 1709 case 0: return "Unused"; 1710 case 1: return "Needed"; 1711 default: 1712 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1713 (uintmax_t) fe); 1714 return (s_fp_e); 1715 } 1716 } 1717 1718 static const char * 1719 aeabi_fp_user_exceptions(uint64_t fu) 1720 { 1721 static char s_fp_u[32]; 1722 1723 switch (fu) { 1724 case 0: return "Unused"; 1725 case 1: return "Needed"; 1726 default: 1727 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1728 (uintmax_t) fu); 1729 return (s_fp_u); 1730 } 1731 } 1732 1733 static const char * 1734 aeabi_fp_number_model(uint64_t fn) 1735 { 1736 static char s_fp_n[32]; 1737 1738 switch (fn) { 1739 case 0: return "Unused"; 1740 case 1: return "IEEE 754 normal"; 1741 case 2: return "RTABI"; 1742 case 3: return "IEEE 754"; 1743 default: 1744 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1745 (uintmax_t) fn); 1746 return (s_fp_n); 1747 } 1748 } 1749 1750 static const char * 1751 aeabi_fp_16bit_format(uint64_t fp16) 1752 { 1753 static char s_fp_16[64]; 1754 1755 switch (fp16) { 1756 case 0: return "None"; 1757 case 1: return "IEEE 754"; 1758 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1759 default: 1760 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1761 (uintmax_t) fp16); 1762 return (s_fp_16); 1763 } 1764 } 1765 1766 static const char * 1767 aeabi_mpext(uint64_t mp) 1768 { 1769 static char s_mp[32]; 1770 1771 switch (mp) { 1772 case 0: return "Not allowed"; 1773 case 1: return "Allowed"; 1774 default: 1775 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1776 (uintmax_t) mp); 1777 return (s_mp); 1778 } 1779 } 1780 1781 static const char * 1782 aeabi_div(uint64_t du) 1783 { 1784 static char s_du[32]; 1785 1786 switch (du) { 1787 case 0: return "Yes (V7-R/V7-M)"; 1788 case 1: return "No"; 1789 case 2: return "Yes (V7-A)"; 1790 default: 1791 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1792 (uintmax_t) du); 1793 return (s_du); 1794 } 1795 } 1796 1797 static const char * 1798 aeabi_t2ee(uint64_t t2ee) 1799 { 1800 static char s_t2ee[32]; 1801 1802 switch (t2ee) { 1803 case 0: return "Not allowed"; 1804 case 1: return "Allowed"; 1805 default: 1806 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1807 (uintmax_t) t2ee); 1808 return (s_t2ee); 1809 } 1810 1811 } 1812 1813 static const char * 1814 aeabi_hardfp(uint64_t hfp) 1815 { 1816 static char s_hfp[32]; 1817 1818 switch (hfp) { 1819 case 0: return "Tag_FP_arch"; 1820 case 1: return "only SP"; 1821 case 2: return "only DP"; 1822 case 3: return "both SP and DP"; 1823 default: 1824 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1825 (uintmax_t) hfp); 1826 return (s_hfp); 1827 } 1828 } 1829 1830 static const char * 1831 aeabi_vfp_args(uint64_t va) 1832 { 1833 static char s_va[32]; 1834 1835 switch (va) { 1836 case 0: return "AAPCS (base variant)"; 1837 case 1: return "AAPCS (VFP variant)"; 1838 case 2: return "toolchain-specific"; 1839 default: 1840 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1841 return (s_va); 1842 } 1843 } 1844 1845 static const char * 1846 aeabi_wmmx_args(uint64_t wa) 1847 { 1848 static char s_wa[32]; 1849 1850 switch (wa) { 1851 case 0: return "AAPCS (base variant)"; 1852 case 1: return "Intel WMMX"; 1853 case 2: return "toolchain-specific"; 1854 default: 1855 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1856 return (s_wa); 1857 } 1858 } 1859 1860 static const char * 1861 aeabi_unaligned_access(uint64_t ua) 1862 { 1863 static char s_ua[32]; 1864 1865 switch (ua) { 1866 case 0: return "Not allowed"; 1867 case 1: return "Allowed"; 1868 default: 1869 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1870 return (s_ua); 1871 } 1872 } 1873 1874 static const char * 1875 aeabi_fp_hpext(uint64_t fh) 1876 { 1877 static char s_fh[32]; 1878 1879 switch (fh) { 1880 case 0: return "Not allowed"; 1881 case 1: return "Allowed"; 1882 default: 1883 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1884 return (s_fh); 1885 } 1886 } 1887 1888 static const char * 1889 aeabi_optm_goal(uint64_t og) 1890 { 1891 static char s_og[32]; 1892 1893 switch (og) { 1894 case 0: return "None"; 1895 case 1: return "Speed"; 1896 case 2: return "Speed aggressive"; 1897 case 3: return "Space"; 1898 case 4: return "Space aggressive"; 1899 case 5: return "Debugging"; 1900 case 6: return "Best Debugging"; 1901 default: 1902 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1903 return (s_og); 1904 } 1905 } 1906 1907 static const char * 1908 aeabi_fp_optm_goal(uint64_t fog) 1909 { 1910 static char s_fog[32]; 1911 1912 switch (fog) { 1913 case 0: return "None"; 1914 case 1: return "Speed"; 1915 case 2: return "Speed aggressive"; 1916 case 3: return "Space"; 1917 case 4: return "Space aggressive"; 1918 case 5: return "Accurary"; 1919 case 6: return "Best Accurary"; 1920 default: 1921 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1922 (uintmax_t) fog); 1923 return (s_fog); 1924 } 1925 } 1926 1927 static const char * 1928 aeabi_virtual(uint64_t vt) 1929 { 1930 static char s_virtual[64]; 1931 1932 switch (vt) { 1933 case 0: return "No"; 1934 case 1: return "TrustZone"; 1935 case 2: return "Virtualization extension"; 1936 case 3: return "TrustZone and virtualization extension"; 1937 default: 1938 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1939 (uintmax_t) vt); 1940 return (s_virtual); 1941 } 1942 } 1943 1944 static struct { 1945 uint64_t tag; 1946 const char *s_tag; 1947 const char *(*get_desc)(uint64_t val); 1948 } aeabi_tags[] = { 1949 {4, "Tag_CPU_raw_name", NULL}, 1950 {5, "Tag_CPU_name", NULL}, 1951 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1952 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1953 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1954 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1955 {10, "Tag_FP_arch", aeabi_fp_arch}, 1956 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1957 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1958 {13, "Tag_PCS_config", aeabi_pcs_config}, 1959 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1960 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1961 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1962 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1963 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1964 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1965 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1966 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1967 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1968 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1969 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1970 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1971 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1972 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1973 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1974 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1975 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1976 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1977 {32, "Tag_compatibility", NULL}, 1978 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1979 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1980 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1981 {42, "Tag_MPextension_use", aeabi_mpext}, 1982 {44, "Tag_DIV_use", aeabi_div}, 1983 {64, "Tag_nodefaults", NULL}, 1984 {65, "Tag_also_compatible_with", NULL}, 1985 {66, "Tag_T2EE_use", aeabi_t2ee}, 1986 {67, "Tag_conformance", NULL}, 1987 {68, "Tag_Virtualization_use", aeabi_virtual}, 1988 {70, "Tag_MPextension_use", aeabi_mpext}, 1989 }; 1990 1991 static const char * 1992 mips_abi_fp(uint64_t fp) 1993 { 1994 static char s_mips_abi_fp[64]; 1995 1996 switch (fp) { 1997 case 0: return "N/A"; 1998 case 1: return "Hard float (double precision)"; 1999 case 2: return "Hard float (single precision)"; 2000 case 3: return "Soft float"; 2001 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2002 default: 2003 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2004 (uintmax_t) fp); 2005 return (s_mips_abi_fp); 2006 } 2007 } 2008 2009 static const char * 2010 ppc_abi_fp(uint64_t fp) 2011 { 2012 static char s_ppc_abi_fp[64]; 2013 2014 switch (fp) { 2015 case 0: return "N/A"; 2016 case 1: return "Hard float (double precision)"; 2017 case 2: return "Soft float"; 2018 case 3: return "Hard float (single precision)"; 2019 default: 2020 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2021 (uintmax_t) fp); 2022 return (s_ppc_abi_fp); 2023 } 2024 } 2025 2026 static const char * 2027 ppc_abi_vector(uint64_t vec) 2028 { 2029 static char s_vec[64]; 2030 2031 switch (vec) { 2032 case 0: return "N/A"; 2033 case 1: return "Generic purpose registers"; 2034 case 2: return "AltiVec registers"; 2035 case 3: return "SPE registers"; 2036 default: 2037 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2038 return (s_vec); 2039 } 2040 } 2041 2042 static const char * 2043 dwarf_reg(unsigned int mach, unsigned int reg) 2044 { 2045 2046 switch (mach) { 2047 case EM_386: 2048 case EM_IAMCU: 2049 switch (reg) { 2050 case 0: return "eax"; 2051 case 1: return "ecx"; 2052 case 2: return "edx"; 2053 case 3: return "ebx"; 2054 case 4: return "esp"; 2055 case 5: return "ebp"; 2056 case 6: return "esi"; 2057 case 7: return "edi"; 2058 case 8: return "eip"; 2059 case 9: return "eflags"; 2060 case 11: return "st0"; 2061 case 12: return "st1"; 2062 case 13: return "st2"; 2063 case 14: return "st3"; 2064 case 15: return "st4"; 2065 case 16: return "st5"; 2066 case 17: return "st6"; 2067 case 18: return "st7"; 2068 case 21: return "xmm0"; 2069 case 22: return "xmm1"; 2070 case 23: return "xmm2"; 2071 case 24: return "xmm3"; 2072 case 25: return "xmm4"; 2073 case 26: return "xmm5"; 2074 case 27: return "xmm6"; 2075 case 28: return "xmm7"; 2076 case 29: return "mm0"; 2077 case 30: return "mm1"; 2078 case 31: return "mm2"; 2079 case 32: return "mm3"; 2080 case 33: return "mm4"; 2081 case 34: return "mm5"; 2082 case 35: return "mm6"; 2083 case 36: return "mm7"; 2084 case 37: return "fcw"; 2085 case 38: return "fsw"; 2086 case 39: return "mxcsr"; 2087 case 40: return "es"; 2088 case 41: return "cs"; 2089 case 42: return "ss"; 2090 case 43: return "ds"; 2091 case 44: return "fs"; 2092 case 45: return "gs"; 2093 case 48: return "tr"; 2094 case 49: return "ldtr"; 2095 default: return (NULL); 2096 } 2097 case EM_RISCV: 2098 switch (reg) { 2099 case 0: return "zero"; 2100 case 1: return "ra"; 2101 case 2: return "sp"; 2102 case 3: return "gp"; 2103 case 4: return "tp"; 2104 case 5: return "t0"; 2105 case 6: return "t1"; 2106 case 7: return "t2"; 2107 case 8: return "s0"; 2108 case 9: return "s1"; 2109 case 10: return "a0"; 2110 case 11: return "a1"; 2111 case 12: return "a2"; 2112 case 13: return "a3"; 2113 case 14: return "a4"; 2114 case 15: return "a5"; 2115 case 16: return "a6"; 2116 case 17: return "a7"; 2117 case 18: return "s2"; 2118 case 19: return "s3"; 2119 case 20: return "s4"; 2120 case 21: return "s5"; 2121 case 22: return "s6"; 2122 case 23: return "s7"; 2123 case 24: return "s8"; 2124 case 25: return "s9"; 2125 case 26: return "s10"; 2126 case 27: return "s11"; 2127 case 28: return "t3"; 2128 case 29: return "t4"; 2129 case 30: return "t5"; 2130 case 31: return "t6"; 2131 case 32: return "ft0"; 2132 case 33: return "ft1"; 2133 case 34: return "ft2"; 2134 case 35: return "ft3"; 2135 case 36: return "ft4"; 2136 case 37: return "ft5"; 2137 case 38: return "ft6"; 2138 case 39: return "ft7"; 2139 case 40: return "fs0"; 2140 case 41: return "fs1"; 2141 case 42: return "fa0"; 2142 case 43: return "fa1"; 2143 case 44: return "fa2"; 2144 case 45: return "fa3"; 2145 case 46: return "fa4"; 2146 case 47: return "fa5"; 2147 case 48: return "fa6"; 2148 case 49: return "fa7"; 2149 case 50: return "fs2"; 2150 case 51: return "fs3"; 2151 case 52: return "fs4"; 2152 case 53: return "fs5"; 2153 case 54: return "fs6"; 2154 case 55: return "fs7"; 2155 case 56: return "fs8"; 2156 case 57: return "fs9"; 2157 case 58: return "fs10"; 2158 case 59: return "fs11"; 2159 case 60: return "ft8"; 2160 case 61: return "ft9"; 2161 case 62: return "ft10"; 2162 case 63: return "ft11"; 2163 default: return (NULL); 2164 } 2165 case EM_X86_64: 2166 switch (reg) { 2167 case 0: return "rax"; 2168 case 1: return "rdx"; 2169 case 2: return "rcx"; 2170 case 3: return "rbx"; 2171 case 4: return "rsi"; 2172 case 5: return "rdi"; 2173 case 6: return "rbp"; 2174 case 7: return "rsp"; 2175 case 16: return "rip"; 2176 case 17: return "xmm0"; 2177 case 18: return "xmm1"; 2178 case 19: return "xmm2"; 2179 case 20: return "xmm3"; 2180 case 21: return "xmm4"; 2181 case 22: return "xmm5"; 2182 case 23: return "xmm6"; 2183 case 24: return "xmm7"; 2184 case 25: return "xmm8"; 2185 case 26: return "xmm9"; 2186 case 27: return "xmm10"; 2187 case 28: return "xmm11"; 2188 case 29: return "xmm12"; 2189 case 30: return "xmm13"; 2190 case 31: return "xmm14"; 2191 case 32: return "xmm15"; 2192 case 33: return "st0"; 2193 case 34: return "st1"; 2194 case 35: return "st2"; 2195 case 36: return "st3"; 2196 case 37: return "st4"; 2197 case 38: return "st5"; 2198 case 39: return "st6"; 2199 case 40: return "st7"; 2200 case 41: return "mm0"; 2201 case 42: return "mm1"; 2202 case 43: return "mm2"; 2203 case 44: return "mm3"; 2204 case 45: return "mm4"; 2205 case 46: return "mm5"; 2206 case 47: return "mm6"; 2207 case 48: return "mm7"; 2208 case 49: return "rflags"; 2209 case 50: return "es"; 2210 case 51: return "cs"; 2211 case 52: return "ss"; 2212 case 53: return "ds"; 2213 case 54: return "fs"; 2214 case 55: return "gs"; 2215 case 58: return "fs.base"; 2216 case 59: return "gs.base"; 2217 case 62: return "tr"; 2218 case 63: return "ldtr"; 2219 case 64: return "mxcsr"; 2220 case 65: return "fcw"; 2221 case 66: return "fsw"; 2222 default: return (NULL); 2223 } 2224 default: 2225 return (NULL); 2226 } 2227 } 2228 2229 static void 2230 dump_ehdr(struct readelf *re) 2231 { 2232 size_t phnum, shnum, shstrndx; 2233 int i; 2234 2235 printf("ELF Header:\n"); 2236 2237 /* e_ident[]. */ 2238 printf(" Magic: "); 2239 for (i = 0; i < EI_NIDENT; i++) 2240 printf("%.2x ", re->ehdr.e_ident[i]); 2241 putchar('\n'); 2242 2243 /* EI_CLASS. */ 2244 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2245 2246 /* EI_DATA. */ 2247 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2248 2249 /* EI_VERSION. */ 2250 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2251 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2252 2253 /* EI_OSABI. */ 2254 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2255 2256 /* EI_ABIVERSION. */ 2257 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2258 2259 /* e_type. */ 2260 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2261 2262 /* e_machine. */ 2263 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2264 2265 /* e_version. */ 2266 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2267 2268 /* e_entry. */ 2269 printf("%-37s%#jx\n", " Entry point address:", 2270 (uintmax_t)re->ehdr.e_entry); 2271 2272 /* e_phoff. */ 2273 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2274 (uintmax_t)re->ehdr.e_phoff); 2275 2276 /* e_shoff. */ 2277 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2278 (uintmax_t)re->ehdr.e_shoff); 2279 2280 /* e_flags. */ 2281 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2282 dump_eflags(re, re->ehdr.e_flags); 2283 putchar('\n'); 2284 2285 /* e_ehsize. */ 2286 printf("%-37s%u (bytes)\n", " Size of this header:", 2287 re->ehdr.e_ehsize); 2288 2289 /* e_phentsize. */ 2290 printf("%-37s%u (bytes)\n", " Size of program headers:", 2291 re->ehdr.e_phentsize); 2292 2293 /* e_phnum. */ 2294 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2295 if (re->ehdr.e_phnum == PN_XNUM) { 2296 /* Extended program header numbering is in use. */ 2297 if (elf_getphnum(re->elf, &phnum)) 2298 printf(" (%zu)", phnum); 2299 } 2300 putchar('\n'); 2301 2302 /* e_shentsize. */ 2303 printf("%-37s%u (bytes)\n", " Size of section headers:", 2304 re->ehdr.e_shentsize); 2305 2306 /* e_shnum. */ 2307 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2308 if (re->ehdr.e_shnum == SHN_UNDEF) { 2309 /* Extended section numbering is in use. */ 2310 if (elf_getshnum(re->elf, &shnum)) 2311 printf(" (%ju)", (uintmax_t)shnum); 2312 } 2313 putchar('\n'); 2314 2315 /* e_shstrndx. */ 2316 printf("%-37s%u", " Section header string table index:", 2317 re->ehdr.e_shstrndx); 2318 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2319 /* Extended section numbering is in use. */ 2320 if (elf_getshstrndx(re->elf, &shstrndx)) 2321 printf(" (%ju)", (uintmax_t)shstrndx); 2322 } 2323 putchar('\n'); 2324 } 2325 2326 static void 2327 dump_eflags(struct readelf *re, uint64_t e_flags) 2328 { 2329 struct eflags_desc *edesc; 2330 int arm_eabi; 2331 2332 edesc = NULL; 2333 switch (re->ehdr.e_machine) { 2334 case EM_ARM: 2335 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2336 if (arm_eabi == 0) 2337 printf(", GNU EABI"); 2338 else if (arm_eabi <= 5) 2339 printf(", Version%d EABI", arm_eabi); 2340 edesc = arm_eflags_desc; 2341 break; 2342 case EM_MIPS: 2343 case EM_MIPS_RS3_LE: 2344 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2345 case 0: printf(", mips1"); break; 2346 case 1: printf(", mips2"); break; 2347 case 2: printf(", mips3"); break; 2348 case 3: printf(", mips4"); break; 2349 case 4: printf(", mips5"); break; 2350 case 5: printf(", mips32"); break; 2351 case 6: printf(", mips64"); break; 2352 case 7: printf(", mips32r2"); break; 2353 case 8: printf(", mips64r2"); break; 2354 default: break; 2355 } 2356 switch ((e_flags & 0x00FF0000) >> 16) { 2357 case 0x81: printf(", 3900"); break; 2358 case 0x82: printf(", 4010"); break; 2359 case 0x83: printf(", 4100"); break; 2360 case 0x85: printf(", 4650"); break; 2361 case 0x87: printf(", 4120"); break; 2362 case 0x88: printf(", 4111"); break; 2363 case 0x8a: printf(", sb1"); break; 2364 case 0x8b: printf(", octeon"); break; 2365 case 0x8c: printf(", xlr"); break; 2366 case 0x91: printf(", 5400"); break; 2367 case 0x98: printf(", 5500"); break; 2368 case 0x99: printf(", 9000"); break; 2369 case 0xa0: printf(", loongson-2e"); break; 2370 case 0xa1: printf(", loongson-2f"); break; 2371 default: break; 2372 } 2373 switch ((e_flags & 0x0000F000) >> 12) { 2374 case 1: printf(", o32"); break; 2375 case 2: printf(", o64"); break; 2376 case 3: printf(", eabi32"); break; 2377 case 4: printf(", eabi64"); break; 2378 default: break; 2379 } 2380 edesc = mips_eflags_desc; 2381 break; 2382 case EM_PPC64: 2383 switch (e_flags) { 2384 case 0: printf(", Unspecified or Power ELF V1 ABI"); break; 2385 case 1: printf(", Power ELF V1 ABI"); break; 2386 case 2: printf(", OpenPOWER ELF V2 ABI"); break; 2387 default: break; 2388 } 2389 /* FALLTHROUGH */ 2390 case EM_PPC: 2391 edesc = powerpc_eflags_desc; 2392 break; 2393 case EM_RISCV: 2394 switch (e_flags & EF_RISCV_FLOAT_ABI_MASK) { 2395 case EF_RISCV_FLOAT_ABI_SOFT: 2396 printf(", soft-float ABI"); 2397 break; 2398 case EF_RISCV_FLOAT_ABI_SINGLE: 2399 printf(", single-float ABI"); 2400 break; 2401 case EF_RISCV_FLOAT_ABI_DOUBLE: 2402 printf(", double-float ABI"); 2403 break; 2404 case EF_RISCV_FLOAT_ABI_QUAD: 2405 printf(", quad-float ABI"); 2406 break; 2407 } 2408 edesc = riscv_eflags_desc; 2409 break; 2410 case EM_SPARC: 2411 case EM_SPARC32PLUS: 2412 case EM_SPARCV9: 2413 switch ((e_flags & EF_SPARCV9_MM)) { 2414 case EF_SPARCV9_TSO: printf(", tso"); break; 2415 case EF_SPARCV9_PSO: printf(", pso"); break; 2416 case EF_SPARCV9_MM: printf(", rmo"); break; 2417 default: break; 2418 } 2419 edesc = sparc_eflags_desc; 2420 break; 2421 default: 2422 break; 2423 } 2424 2425 if (edesc != NULL) { 2426 while (edesc->desc != NULL) { 2427 if (e_flags & edesc->flag) 2428 printf(", %s", edesc->desc); 2429 edesc++; 2430 } 2431 } 2432 } 2433 2434 static void 2435 dump_phdr(struct readelf *re) 2436 { 2437 const char *rawfile; 2438 GElf_Phdr phdr; 2439 size_t phnum, size; 2440 int i, j; 2441 2442 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2443 "MemSiz", "Flg", "Align" 2444 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2445 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2446 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2447 (uintmax_t)phdr.p_memsz, \ 2448 phdr.p_flags & PF_R ? 'R' : ' ', \ 2449 phdr.p_flags & PF_W ? 'W' : ' ', \ 2450 phdr.p_flags & PF_X ? 'E' : ' ', \ 2451 (uintmax_t)phdr.p_align 2452 2453 if (elf_getphnum(re->elf, &phnum) == 0) { 2454 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2455 return; 2456 } 2457 if (phnum == 0) { 2458 printf("\nThere are no program headers in this file.\n"); 2459 return; 2460 } 2461 2462 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2463 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2464 printf("There are %ju program headers, starting at offset %ju\n", 2465 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2466 2467 /* Dump program headers. */ 2468 printf("\nProgram Headers:\n"); 2469 if (re->ec == ELFCLASS32) 2470 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2471 else if (re->options & RE_WW) 2472 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2473 else 2474 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2475 "%-7s%s\n", PH_HDR); 2476 for (i = 0; (size_t) i < phnum; i++) { 2477 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2478 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2479 continue; 2480 } 2481 /* TODO: Add arch-specific segment type dump. */ 2482 if (re->ec == ELFCLASS32) 2483 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2484 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2485 else if (re->options & RE_WW) 2486 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2487 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2488 else 2489 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2490 " 0x%16.16jx 0x%16.16jx %c%c%c" 2491 " %#jx\n", PH_CT); 2492 if (phdr.p_type == PT_INTERP) { 2493 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2494 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2495 continue; 2496 } 2497 if (phdr.p_offset >= size) { 2498 warnx("invalid program header offset"); 2499 continue; 2500 } 2501 printf(" [Requesting program interpreter: %s]\n", 2502 rawfile + phdr.p_offset); 2503 } 2504 } 2505 2506 /* Dump section to segment mapping. */ 2507 if (re->shnum == 0) 2508 return; 2509 printf("\n Section to Segment mapping:\n"); 2510 printf(" Segment Sections...\n"); 2511 for (i = 0; (size_t)i < phnum; i++) { 2512 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2513 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2514 continue; 2515 } 2516 printf(" %2.2d ", i); 2517 /* skip NULL section. */ 2518 for (j = 1; (size_t)j < re->shnum; j++) { 2519 if (re->sl[j].off < phdr.p_offset) 2520 continue; 2521 if (re->sl[j].off + re->sl[j].sz > 2522 phdr.p_offset + phdr.p_filesz && 2523 re->sl[j].type != SHT_NOBITS) 2524 continue; 2525 if (re->sl[j].addr < phdr.p_vaddr || 2526 re->sl[j].addr + re->sl[j].sz > 2527 phdr.p_vaddr + phdr.p_memsz) 2528 continue; 2529 if (phdr.p_type == PT_TLS && 2530 (re->sl[j].flags & SHF_TLS) == 0) 2531 continue; 2532 printf("%s ", re->sl[j].name); 2533 } 2534 printf("\n"); 2535 } 2536 #undef PH_HDR 2537 #undef PH_CT 2538 } 2539 2540 static char * 2541 section_flags(struct readelf *re, struct section *s) 2542 { 2543 #define BUF_SZ 256 2544 static char buf[BUF_SZ]; 2545 int i, p, nb; 2546 2547 p = 0; 2548 nb = re->ec == ELFCLASS32 ? 8 : 16; 2549 if (re->options & RE_T) { 2550 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2551 (uintmax_t)s->flags); 2552 p += nb + 4; 2553 } 2554 for (i = 0; section_flag[i].ln != NULL; i++) { 2555 if ((s->flags & section_flag[i].value) == 0) 2556 continue; 2557 if (re->options & RE_T) { 2558 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2559 section_flag[i].ln); 2560 p += strlen(section_flag[i].ln) + 2; 2561 } else 2562 buf[p++] = section_flag[i].sn; 2563 } 2564 if (re->options & RE_T && p > nb + 4) 2565 p -= 2; 2566 buf[p] = '\0'; 2567 2568 return (buf); 2569 } 2570 2571 static void 2572 dump_shdr(struct readelf *re) 2573 { 2574 struct section *s; 2575 int i; 2576 2577 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2578 "Flg", "Lk", "Inf", "Al" 2579 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2580 "EntSize", "Flags", "Link", "Info", "Align" 2581 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2582 "Lk", "Inf", "Al", "Flags" 2583 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2584 "Size", "EntSize", "Info", "Align", "Flags" 2585 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2586 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2587 (uintmax_t)s->entsize, section_flags(re, s), \ 2588 s->link, s->info, (uintmax_t)s->align 2589 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2590 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2591 (uintmax_t)s->entsize, s->link, s->info, \ 2592 (uintmax_t)s->align, section_flags(re, s) 2593 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2594 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2595 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2596 (uintmax_t)s->align, section_flags(re, s) 2597 2598 if (re->shnum == 0) { 2599 printf("\nThere are no sections in this file.\n"); 2600 return; 2601 } 2602 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2603 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2604 printf("\nSection Headers:\n"); 2605 if (re->ec == ELFCLASS32) { 2606 if (re->options & RE_T) 2607 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2608 "%12s\n", ST_HDR); 2609 else 2610 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2611 S_HDR); 2612 } else if (re->options & RE_WW) { 2613 if (re->options & RE_T) 2614 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2615 "%12s\n", ST_HDR); 2616 else 2617 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2618 S_HDR); 2619 } else { 2620 if (re->options & RE_T) 2621 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2622 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2623 else 2624 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2625 "-6s%-6s%s\n", S_HDRL); 2626 } 2627 for (i = 0; (size_t)i < re->shnum; i++) { 2628 s = &re->sl[i]; 2629 if (re->ec == ELFCLASS32) { 2630 if (re->options & RE_T) 2631 printf(" [%2d] %s\n %-15.15s %8.8jx" 2632 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2633 " %s\n", ST_CT); 2634 else 2635 if (re->options & RE_WW) 2636 printf(" [%2d] %-17s %-15.15s " 2637 "%8.8jx %6.6jx %6.6jx %2.2jx %3s " 2638 "%2u %3u %2ju\n", S_CT); 2639 else 2640 printf(" [%2d] %-17.17s %-15.15s " 2641 "%8.8jx %6.6jx %6.6jx %2.2jx %3s " 2642 "%2u %3u %2ju\n", S_CT); 2643 } else if (re->options & RE_WW) { 2644 if (re->options & RE_T) 2645 printf(" [%2d] %s\n %-15.15s %16.16jx" 2646 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2647 " %s\n", ST_CT); 2648 else 2649 printf(" [%2d] %-17s %-15.15s %16.16jx" 2650 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2651 S_CT); 2652 } else { 2653 if (re->options & RE_T) 2654 printf(" [%2d] %s\n %-15.15s %16.16jx" 2655 " %16.16jx %u\n %16.16jx %16.16jx" 2656 " %-16u %ju\n %s\n", ST_CTL); 2657 else 2658 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2659 " %8.8jx\n %16.16jx %16.16jx " 2660 "%3s %2u %3u %ju\n", S_CT); 2661 } 2662 } 2663 if ((re->options & RE_T) == 0) 2664 printf("Key to Flags:\n W (write), A (alloc)," 2665 " X (execute), M (merge), S (strings)\n" 2666 " I (info), L (link order), G (group), x (unknown)\n" 2667 " O (extra OS processing required)" 2668 " o (OS specific), p (processor specific)\n"); 2669 2670 #undef S_HDR 2671 #undef S_HDRL 2672 #undef ST_HDR 2673 #undef ST_HDRL 2674 #undef S_CT 2675 #undef ST_CT 2676 #undef ST_CTL 2677 } 2678 2679 /* 2680 * Return number of entries in the given section. We'd prefer ent_count be a 2681 * size_t *, but libelf APIs already use int for section indices. 2682 */ 2683 static int 2684 get_ent_count(struct section *s, int *ent_count) 2685 { 2686 if (s->entsize == 0) { 2687 warnx("section %s has entry size 0", s->name); 2688 return (0); 2689 } else if (s->sz / s->entsize > INT_MAX) { 2690 warnx("section %s has invalid section count", s->name); 2691 return (0); 2692 } 2693 *ent_count = (int)(s->sz / s->entsize); 2694 return (1); 2695 } 2696 2697 static void 2698 dump_dynamic(struct readelf *re) 2699 { 2700 GElf_Dyn dyn; 2701 Elf_Data *d; 2702 struct section *s; 2703 int elferr, i, is_dynamic, j, jmax, nentries; 2704 2705 is_dynamic = 0; 2706 2707 for (i = 0; (size_t)i < re->shnum; i++) { 2708 s = &re->sl[i]; 2709 if (s->type != SHT_DYNAMIC) 2710 continue; 2711 (void) elf_errno(); 2712 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2713 elferr = elf_errno(); 2714 if (elferr != 0) 2715 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2716 continue; 2717 } 2718 if (d->d_size <= 0) 2719 continue; 2720 2721 is_dynamic = 1; 2722 2723 /* Determine the actual number of table entries. */ 2724 nentries = 0; 2725 if (!get_ent_count(s, &jmax)) 2726 continue; 2727 for (j = 0; j < jmax; j++) { 2728 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2729 warnx("gelf_getdyn failed: %s", 2730 elf_errmsg(-1)); 2731 continue; 2732 } 2733 nentries ++; 2734 if (dyn.d_tag == DT_NULL) 2735 break; 2736 } 2737 2738 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2739 printf(" contains %u entries:\n", nentries); 2740 2741 if (re->ec == ELFCLASS32) 2742 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2743 else 2744 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2745 2746 for (j = 0; j < nentries; j++) { 2747 if (gelf_getdyn(d, j, &dyn) != &dyn) 2748 continue; 2749 /* Dump dynamic entry type. */ 2750 if (re->ec == ELFCLASS32) 2751 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2752 else 2753 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2754 printf(" %-20s", dt_type(re->ehdr.e_machine, 2755 dyn.d_tag)); 2756 /* Dump dynamic entry value. */ 2757 dump_dyn_val(re, &dyn, s->link); 2758 } 2759 } 2760 2761 if (!is_dynamic) 2762 printf("\nThere is no dynamic section in this file.\n"); 2763 } 2764 2765 static char * 2766 timestamp(time_t ti) 2767 { 2768 static char ts[32]; 2769 struct tm *t; 2770 2771 t = gmtime(&ti); 2772 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2773 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2774 t->tm_min, t->tm_sec); 2775 2776 return (ts); 2777 } 2778 2779 static const char * 2780 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2781 { 2782 const char *name; 2783 2784 if (stab == SHN_UNDEF) 2785 name = "ERROR"; 2786 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2787 (void) elf_errno(); /* clear error */ 2788 name = "ERROR"; 2789 } 2790 2791 return (name); 2792 } 2793 2794 static void 2795 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn) 2796 { 2797 switch (re->ehdr.e_machine) { 2798 case EM_MIPS: 2799 case EM_MIPS_RS3_LE: 2800 switch (dyn->d_tag) { 2801 case DT_MIPS_RLD_VERSION: 2802 case DT_MIPS_LOCAL_GOTNO: 2803 case DT_MIPS_CONFLICTNO: 2804 case DT_MIPS_LIBLISTNO: 2805 case DT_MIPS_SYMTABNO: 2806 case DT_MIPS_UNREFEXTNO: 2807 case DT_MIPS_GOTSYM: 2808 case DT_MIPS_HIPAGENO: 2809 case DT_MIPS_DELTA_CLASS_NO: 2810 case DT_MIPS_DELTA_INSTANCE_NO: 2811 case DT_MIPS_DELTA_RELOC_NO: 2812 case DT_MIPS_DELTA_SYM_NO: 2813 case DT_MIPS_DELTA_CLASSSYM_NO: 2814 case DT_MIPS_LOCALPAGE_GOTIDX: 2815 case DT_MIPS_LOCAL_GOTIDX: 2816 case DT_MIPS_HIDDEN_GOTIDX: 2817 case DT_MIPS_PROTECTED_GOTIDX: 2818 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2819 break; 2820 case DT_MIPS_ICHECKSUM: 2821 case DT_MIPS_FLAGS: 2822 case DT_MIPS_BASE_ADDRESS: 2823 case DT_MIPS_CONFLICT: 2824 case DT_MIPS_LIBLIST: 2825 case DT_MIPS_RLD_MAP: 2826 case DT_MIPS_DELTA_CLASS: 2827 case DT_MIPS_DELTA_INSTANCE: 2828 case DT_MIPS_DELTA_RELOC: 2829 case DT_MIPS_DELTA_SYM: 2830 case DT_MIPS_DELTA_CLASSSYM: 2831 case DT_MIPS_CXX_FLAGS: 2832 case DT_MIPS_PIXIE_INIT: 2833 case DT_MIPS_SYMBOL_LIB: 2834 case DT_MIPS_OPTIONS: 2835 case DT_MIPS_INTERFACE: 2836 case DT_MIPS_DYNSTR_ALIGN: 2837 case DT_MIPS_INTERFACE_SIZE: 2838 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2839 case DT_MIPS_COMPACT_SIZE: 2840 case DT_MIPS_GP_VALUE: 2841 case DT_MIPS_AUX_DYNAMIC: 2842 case DT_MIPS_PLTGOT: 2843 case DT_MIPS_RLD_OBJ_UPDATE: 2844 case DT_MIPS_RWPLT: 2845 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2846 break; 2847 case DT_MIPS_IVERSION: 2848 case DT_MIPS_PERF_SUFFIX: 2849 case DT_MIPS_TIME_STAMP: 2850 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2851 break; 2852 default: 2853 printf("\n"); 2854 break; 2855 } 2856 break; 2857 default: 2858 printf("\n"); 2859 break; 2860 } 2861 } 2862 2863 static void 2864 dump_flags(struct flag_desc *desc, uint64_t val) 2865 { 2866 struct flag_desc *fd; 2867 2868 for (fd = desc; fd->flag != 0; fd++) { 2869 if (val & fd->flag) { 2870 val &= ~fd->flag; 2871 printf(" %s", fd->desc); 2872 } 2873 } 2874 if (val != 0) 2875 printf(" unknown (0x%jx)", (uintmax_t)val); 2876 printf("\n"); 2877 } 2878 2879 static struct flag_desc dt_flags[] = { 2880 { DF_ORIGIN, "ORIGIN" }, 2881 { DF_SYMBOLIC, "SYMBOLIC" }, 2882 { DF_TEXTREL, "TEXTREL" }, 2883 { DF_BIND_NOW, "BIND_NOW" }, 2884 { DF_STATIC_TLS, "STATIC_TLS" }, 2885 { 0, NULL } 2886 }; 2887 2888 static struct flag_desc dt_flags_1[] = { 2889 { DF_1_BIND_NOW, "NOW" }, 2890 { DF_1_GLOBAL, "GLOBAL" }, 2891 { 0x4, "GROUP" }, 2892 { DF_1_NODELETE, "NODELETE" }, 2893 { DF_1_LOADFLTR, "LOADFLTR" }, 2894 { 0x20, "INITFIRST" }, 2895 { DF_1_NOOPEN, "NOOPEN" }, 2896 { DF_1_ORIGIN, "ORIGIN" }, 2897 { 0x100, "DIRECT" }, 2898 { DF_1_INTERPOSE, "INTERPOSE" }, 2899 { DF_1_NODEFLIB, "NODEFLIB" }, 2900 { 0x1000, "NODUMP" }, 2901 { 0x2000, "CONFALT" }, 2902 { 0x4000, "ENDFILTEE" }, 2903 { 0x8000, "DISPRELDNE" }, 2904 { 0x10000, "DISPRELPND" }, 2905 { 0x20000, "NODIRECT" }, 2906 { 0x40000, "IGNMULDEF" }, 2907 { 0x80000, "NOKSYMS" }, 2908 { 0x100000, "NOHDR" }, 2909 { 0x200000, "EDITED" }, 2910 { 0x400000, "NORELOC" }, 2911 { 0x800000, "SYMINTPOSE" }, 2912 { 0x1000000, "GLOBAUDIT" }, 2913 { 0x02000000, "SINGLETON" }, 2914 { 0x04000000, "STUB" }, 2915 { DF_1_PIE, "PIE" }, 2916 { 0, NULL } 2917 }; 2918 2919 static void 2920 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2921 { 2922 const char *name; 2923 2924 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC && 2925 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) { 2926 dump_arch_dyn_val(re, dyn); 2927 return; 2928 } 2929 2930 /* These entry values are index into the string table. */ 2931 name = NULL; 2932 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER || 2933 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2934 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2935 name = dyn_str(re, stab, dyn->d_un.d_val); 2936 2937 switch(dyn->d_tag) { 2938 case DT_NULL: 2939 case DT_PLTGOT: 2940 case DT_HASH: 2941 case DT_STRTAB: 2942 case DT_SYMTAB: 2943 case DT_RELA: 2944 case DT_INIT: 2945 case DT_SYMBOLIC: 2946 case DT_REL: 2947 case DT_DEBUG: 2948 case DT_TEXTREL: 2949 case DT_JMPREL: 2950 case DT_FINI: 2951 case DT_VERDEF: 2952 case DT_VERNEED: 2953 case DT_VERSYM: 2954 case DT_GNU_HASH: 2955 case DT_GNU_LIBLIST: 2956 case DT_GNU_CONFLICT: 2957 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2958 break; 2959 case DT_PLTRELSZ: 2960 case DT_RELASZ: 2961 case DT_RELAENT: 2962 case DT_STRSZ: 2963 case DT_SYMENT: 2964 case DT_RELSZ: 2965 case DT_RELENT: 2966 case DT_PREINIT_ARRAYSZ: 2967 case DT_INIT_ARRAYSZ: 2968 case DT_FINI_ARRAYSZ: 2969 case DT_GNU_CONFLICTSZ: 2970 case DT_GNU_LIBLISTSZ: 2971 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2972 break; 2973 case DT_RELACOUNT: 2974 case DT_RELCOUNT: 2975 case DT_VERDEFNUM: 2976 case DT_VERNEEDNUM: 2977 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2978 break; 2979 case DT_AUXILIARY: 2980 printf(" Auxiliary library: [%s]\n", name); 2981 break; 2982 case DT_FILTER: 2983 printf(" Filter library: [%s]\n", name); 2984 break; 2985 case DT_NEEDED: 2986 printf(" Shared library: [%s]\n", name); 2987 break; 2988 case DT_SONAME: 2989 printf(" Library soname: [%s]\n", name); 2990 break; 2991 case DT_RPATH: 2992 printf(" Library rpath: [%s]\n", name); 2993 break; 2994 case DT_RUNPATH: 2995 printf(" Library runpath: [%s]\n", name); 2996 break; 2997 case DT_PLTREL: 2998 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2999 break; 3000 case DT_GNU_PRELINKED: 3001 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3002 break; 3003 case DT_FLAGS: 3004 dump_flags(dt_flags, dyn->d_un.d_val); 3005 break; 3006 case DT_FLAGS_1: 3007 dump_flags(dt_flags_1, dyn->d_un.d_val); 3008 break; 3009 default: 3010 printf("\n"); 3011 } 3012 } 3013 3014 static void 3015 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3016 { 3017 GElf_Rel r; 3018 const char *symname; 3019 uint64_t symval; 3020 int i, len; 3021 uint32_t type; 3022 uint8_t type2, type3; 3023 3024 if (s->link >= re->shnum) 3025 return; 3026 3027 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3028 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3029 elftc_reloc_type_str(re->ehdr.e_machine, \ 3030 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 3031 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3032 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 3033 (uintmax_t)symval, symname 3034 3035 printf("\nRelocation section (%s):\n", s->name); 3036 if (re->ec == ELFCLASS32) 3037 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3038 else { 3039 if (re->options & RE_WW) 3040 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3041 else 3042 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3043 } 3044 assert(d->d_size == s->sz); 3045 if (!get_ent_count(s, &len)) 3046 return; 3047 for (i = 0; i < len; i++) { 3048 if (gelf_getrel(d, i, &r) != &r) { 3049 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3050 continue; 3051 } 3052 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3053 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3054 if (re->ec == ELFCLASS32) { 3055 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3056 ELF64_R_TYPE(r.r_info)); 3057 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3058 } else { 3059 type = ELF64_R_TYPE(r.r_info); 3060 if (re->ehdr.e_machine == EM_MIPS) { 3061 type2 = (type >> 8) & 0xFF; 3062 type3 = (type >> 16) & 0xFF; 3063 type = type & 0xFF; 3064 } else { 3065 type2 = type3 = 0; 3066 } 3067 if (re->options & RE_WW) 3068 printf("%16.16jx %16.16jx %-24.24s" 3069 " %16.16jx %s\n", REL_CT64); 3070 else 3071 printf("%12.12jx %12.12jx %-19.19s" 3072 " %16.16jx %s\n", REL_CT64); 3073 if (re->ehdr.e_machine == EM_MIPS) { 3074 if (re->options & RE_WW) { 3075 printf("%32s: %s\n", "Type2", 3076 elftc_reloc_type_str(EM_MIPS, 3077 type2)); 3078 printf("%32s: %s\n", "Type3", 3079 elftc_reloc_type_str(EM_MIPS, 3080 type3)); 3081 } else { 3082 printf("%24s: %s\n", "Type2", 3083 elftc_reloc_type_str(EM_MIPS, 3084 type2)); 3085 printf("%24s: %s\n", "Type3", 3086 elftc_reloc_type_str(EM_MIPS, 3087 type3)); 3088 } 3089 } 3090 } 3091 } 3092 3093 #undef REL_HDR 3094 #undef REL_CT 3095 } 3096 3097 static void 3098 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3099 { 3100 GElf_Rela r; 3101 const char *symname; 3102 uint64_t symval; 3103 int i, len; 3104 uint32_t type; 3105 uint8_t type2, type3; 3106 3107 if (s->link >= re->shnum) 3108 return; 3109 3110 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3111 "st_name + r_addend" 3112 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3113 elftc_reloc_type_str(re->ehdr.e_machine, \ 3114 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 3115 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3116 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 3117 (uintmax_t)symval, symname 3118 3119 printf("\nRelocation section with addend (%s):\n", s->name); 3120 if (re->ec == ELFCLASS32) 3121 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3122 else { 3123 if (re->options & RE_WW) 3124 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3125 else 3126 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3127 } 3128 assert(d->d_size == s->sz); 3129 if (!get_ent_count(s, &len)) 3130 return; 3131 for (i = 0; i < len; i++) { 3132 if (gelf_getrela(d, i, &r) != &r) { 3133 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3134 continue; 3135 } 3136 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3137 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3138 if (re->ec == ELFCLASS32) { 3139 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3140 ELF64_R_TYPE(r.r_info)); 3141 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3142 printf(" + %x\n", (uint32_t) r.r_addend); 3143 } else { 3144 type = ELF64_R_TYPE(r.r_info); 3145 if (re->ehdr.e_machine == EM_MIPS) { 3146 type2 = (type >> 8) & 0xFF; 3147 type3 = (type >> 16) & 0xFF; 3148 type = type & 0xFF; 3149 } else { 3150 type2 = type3 = 0; 3151 } 3152 if (re->options & RE_WW) 3153 printf("%16.16jx %16.16jx %-24.24s" 3154 " %16.16jx %s", RELA_CT64); 3155 else 3156 printf("%12.12jx %12.12jx %-19.19s" 3157 " %16.16jx %s", RELA_CT64); 3158 printf(" + %jx\n", (uintmax_t) r.r_addend); 3159 if (re->ehdr.e_machine == EM_MIPS) { 3160 if (re->options & RE_WW) { 3161 printf("%32s: %s\n", "Type2", 3162 elftc_reloc_type_str(EM_MIPS, 3163 type2)); 3164 printf("%32s: %s\n", "Type3", 3165 elftc_reloc_type_str(EM_MIPS, 3166 type3)); 3167 } else { 3168 printf("%24s: %s\n", "Type2", 3169 elftc_reloc_type_str(EM_MIPS, 3170 type2)); 3171 printf("%24s: %s\n", "Type3", 3172 elftc_reloc_type_str(EM_MIPS, 3173 type3)); 3174 } 3175 } 3176 } 3177 } 3178 3179 #undef RELA_HDR 3180 #undef RELA_CT 3181 } 3182 3183 static void 3184 dump_reloc(struct readelf *re) 3185 { 3186 struct section *s; 3187 Elf_Data *d; 3188 int i, elferr; 3189 3190 for (i = 0; (size_t)i < re->shnum; i++) { 3191 s = &re->sl[i]; 3192 if (s->type == SHT_REL || s->type == SHT_RELA) { 3193 (void) elf_errno(); 3194 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3195 elferr = elf_errno(); 3196 if (elferr != 0) 3197 warnx("elf_getdata failed: %s", 3198 elf_errmsg(elferr)); 3199 continue; 3200 } 3201 if (s->type == SHT_REL) 3202 dump_rel(re, s, d); 3203 else 3204 dump_rela(re, s, d); 3205 } 3206 } 3207 } 3208 3209 static void 3210 dump_symtab(struct readelf *re, int i) 3211 { 3212 struct section *s; 3213 Elf_Data *d; 3214 GElf_Sym sym; 3215 const char *name; 3216 uint32_t stab; 3217 int elferr, j, len; 3218 uint16_t vs; 3219 3220 s = &re->sl[i]; 3221 if (s->link >= re->shnum) 3222 return; 3223 stab = s->link; 3224 (void) elf_errno(); 3225 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3226 elferr = elf_errno(); 3227 if (elferr != 0) 3228 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3229 return; 3230 } 3231 if (d->d_size <= 0) 3232 return; 3233 if (!get_ent_count(s, &len)) 3234 return; 3235 printf("Symbol table (%s)", s->name); 3236 printf(" contains %d entries:\n", len); 3237 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3238 "Bind", "Vis", "Ndx", "Name"); 3239 3240 for (j = 0; j < len; j++) { 3241 if (gelf_getsym(d, j, &sym) != &sym) { 3242 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3243 continue; 3244 } 3245 printf("%6d:", j); 3246 printf(" %16.16jx", (uintmax_t) sym.st_value); 3247 printf(" %5ju", (uintmax_t) sym.st_size); 3248 printf(" %-7s", st_type(re->ehdr.e_machine, 3249 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3250 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3251 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3252 printf(" %3s", st_shndx(sym.st_shndx)); 3253 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3254 printf(" %s", name); 3255 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3256 if (s->type == SHT_DYNSYM && re->ver != NULL && 3257 re->vs != NULL && re->vs[j] > 1) { 3258 vs = re->vs[j] & VERSYM_VERSION; 3259 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3260 warnx("invalid versym version index %u", vs); 3261 break; 3262 } 3263 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3264 printf("@%s (%d)", re->ver[vs].name, vs); 3265 else 3266 printf("@@%s (%d)", re->ver[vs].name, vs); 3267 } 3268 putchar('\n'); 3269 } 3270 3271 } 3272 3273 static void 3274 dump_symtabs(struct readelf *re) 3275 { 3276 GElf_Dyn dyn; 3277 Elf_Data *d; 3278 struct section *s; 3279 uint64_t dyn_off; 3280 int elferr, i, len; 3281 3282 /* 3283 * If -D is specified, only dump the symbol table specified by 3284 * the DT_SYMTAB entry in the .dynamic section. 3285 */ 3286 dyn_off = 0; 3287 if (re->options & RE_DD) { 3288 s = NULL; 3289 for (i = 0; (size_t)i < re->shnum; i++) 3290 if (re->sl[i].type == SHT_DYNAMIC) { 3291 s = &re->sl[i]; 3292 break; 3293 } 3294 if (s == NULL) 3295 return; 3296 (void) elf_errno(); 3297 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3298 elferr = elf_errno(); 3299 if (elferr != 0) 3300 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3301 return; 3302 } 3303 if (d->d_size <= 0) 3304 return; 3305 if (!get_ent_count(s, &len)) 3306 return; 3307 3308 for (i = 0; i < len; i++) { 3309 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3310 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3311 continue; 3312 } 3313 if (dyn.d_tag == DT_SYMTAB) { 3314 dyn_off = dyn.d_un.d_val; 3315 break; 3316 } 3317 } 3318 } 3319 3320 /* Find and dump symbol tables. */ 3321 for (i = 0; (size_t)i < re->shnum; i++) { 3322 s = &re->sl[i]; 3323 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3324 if (re->options & RE_DD) { 3325 if (dyn_off == s->addr) { 3326 dump_symtab(re, i); 3327 break; 3328 } 3329 } else 3330 dump_symtab(re, i); 3331 } 3332 } 3333 } 3334 3335 static void 3336 dump_svr4_hash(struct section *s) 3337 { 3338 Elf_Data *d; 3339 uint32_t *buf; 3340 uint32_t nbucket, nchain; 3341 uint32_t *bucket, *chain; 3342 uint32_t *bl, *c, maxl, total; 3343 int elferr, i, j; 3344 3345 /* Read and parse the content of .hash section. */ 3346 (void) elf_errno(); 3347 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3348 elferr = elf_errno(); 3349 if (elferr != 0) 3350 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3351 return; 3352 } 3353 if (d->d_size < 2 * sizeof(uint32_t)) { 3354 warnx(".hash section too small"); 3355 return; 3356 } 3357 buf = d->d_buf; 3358 nbucket = buf[0]; 3359 nchain = buf[1]; 3360 if (nbucket <= 0 || nchain <= 0) { 3361 warnx("Malformed .hash section"); 3362 return; 3363 } 3364 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3365 warnx("Malformed .hash section"); 3366 return; 3367 } 3368 bucket = &buf[2]; 3369 chain = &buf[2 + nbucket]; 3370 3371 maxl = 0; 3372 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3373 errx(EXIT_FAILURE, "calloc failed"); 3374 for (i = 0; (uint32_t)i < nbucket; i++) 3375 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3376 if (++bl[i] > maxl) 3377 maxl = bl[i]; 3378 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3379 errx(EXIT_FAILURE, "calloc failed"); 3380 for (i = 0; (uint32_t)i < nbucket; i++) 3381 c[bl[i]]++; 3382 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3383 nbucket); 3384 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3385 total = 0; 3386 for (i = 0; (uint32_t)i <= maxl; i++) { 3387 total += c[i] * i; 3388 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3389 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3390 } 3391 free(c); 3392 free(bl); 3393 } 3394 3395 static void 3396 dump_svr4_hash64(struct readelf *re, struct section *s) 3397 { 3398 Elf_Data *d, dst; 3399 uint64_t *buf; 3400 uint64_t nbucket, nchain; 3401 uint64_t *bucket, *chain; 3402 uint64_t *bl, *c, maxl, total; 3403 int elferr, i, j; 3404 3405 /* 3406 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3407 * .hash section contains only 32-bit entry, an explicit 3408 * gelf_xlatetom is needed here. 3409 */ 3410 (void) elf_errno(); 3411 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3412 elferr = elf_errno(); 3413 if (elferr != 0) 3414 warnx("elf_rawdata failed: %s", 3415 elf_errmsg(elferr)); 3416 return; 3417 } 3418 d->d_type = ELF_T_XWORD; 3419 memcpy(&dst, d, sizeof(Elf_Data)); 3420 if (gelf_xlatetom(re->elf, &dst, d, 3421 re->ehdr.e_ident[EI_DATA]) != &dst) { 3422 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3423 return; 3424 } 3425 if (dst.d_size < 2 * sizeof(uint64_t)) { 3426 warnx(".hash section too small"); 3427 return; 3428 } 3429 buf = dst.d_buf; 3430 nbucket = buf[0]; 3431 nchain = buf[1]; 3432 if (nbucket <= 0 || nchain <= 0) { 3433 warnx("Malformed .hash section"); 3434 return; 3435 } 3436 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3437 warnx("Malformed .hash section"); 3438 return; 3439 } 3440 bucket = &buf[2]; 3441 chain = &buf[2 + nbucket]; 3442 3443 maxl = 0; 3444 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3445 errx(EXIT_FAILURE, "calloc failed"); 3446 for (i = 0; (uint32_t)i < nbucket; i++) 3447 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3448 if (++bl[i] > maxl) 3449 maxl = bl[i]; 3450 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3451 errx(EXIT_FAILURE, "calloc failed"); 3452 for (i = 0; (uint64_t)i < nbucket; i++) 3453 c[bl[i]]++; 3454 printf("Histogram for bucket list length (total of %ju buckets):\n", 3455 (uintmax_t)nbucket); 3456 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3457 total = 0; 3458 for (i = 0; (uint64_t)i <= maxl; i++) { 3459 total += c[i] * i; 3460 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3461 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3462 } 3463 free(c); 3464 free(bl); 3465 } 3466 3467 static void 3468 dump_gnu_hash(struct readelf *re, struct section *s) 3469 { 3470 struct section *ds; 3471 Elf_Data *d; 3472 uint32_t *buf; 3473 uint32_t *bucket, *chain; 3474 uint32_t nbucket, nchain, symndx, maskwords; 3475 uint32_t *bl, *c, maxl, total; 3476 int elferr, dynsymcount, i, j; 3477 3478 (void) elf_errno(); 3479 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3480 elferr = elf_errno(); 3481 if (elferr != 0) 3482 warnx("elf_getdata failed: %s", 3483 elf_errmsg(elferr)); 3484 return; 3485 } 3486 if (d->d_size < 4 * sizeof(uint32_t)) { 3487 warnx(".gnu.hash section too small"); 3488 return; 3489 } 3490 buf = d->d_buf; 3491 nbucket = buf[0]; 3492 symndx = buf[1]; 3493 maskwords = buf[2]; 3494 buf += 4; 3495 if (s->link >= re->shnum) 3496 return; 3497 ds = &re->sl[s->link]; 3498 if (!get_ent_count(ds, &dynsymcount)) 3499 return; 3500 if (symndx >= (uint32_t)dynsymcount) { 3501 warnx("Malformed .gnu.hash section (symndx out of range)"); 3502 return; 3503 } 3504 nchain = dynsymcount - symndx; 3505 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3506 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3507 (nbucket + nchain) * sizeof(uint32_t)) { 3508 warnx("Malformed .gnu.hash section"); 3509 return; 3510 } 3511 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3512 chain = bucket + nbucket; 3513 3514 maxl = 0; 3515 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3516 errx(EXIT_FAILURE, "calloc failed"); 3517 for (i = 0; (uint32_t)i < nbucket; i++) 3518 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3519 j++) { 3520 if (++bl[i] > maxl) 3521 maxl = bl[i]; 3522 if (chain[j - symndx] & 1) 3523 break; 3524 } 3525 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3526 errx(EXIT_FAILURE, "calloc failed"); 3527 for (i = 0; (uint32_t)i < nbucket; i++) 3528 c[bl[i]]++; 3529 printf("Histogram for bucket list length (total of %u buckets):\n", 3530 nbucket); 3531 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3532 total = 0; 3533 for (i = 0; (uint32_t)i <= maxl; i++) { 3534 total += c[i] * i; 3535 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3536 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3537 } 3538 free(c); 3539 free(bl); 3540 } 3541 3542 static struct flag_desc gnu_property_x86_feature_1_and_bits[] = { 3543 { GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT" }, 3544 { GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK" }, 3545 { 0, NULL } 3546 }; 3547 3548 static void 3549 dump_gnu_property_type_0(struct readelf *re, const char *buf, size_t sz) 3550 { 3551 size_t i; 3552 uint32_t type, prop_sz; 3553 3554 printf(" Properties: "); 3555 while (sz > 0) { 3556 if (sz < 8) 3557 goto bad; 3558 3559 type = *(const uint32_t *)(const void *)buf; 3560 prop_sz = *(const uint32_t *)(const void *)(buf + 4); 3561 buf += 8; 3562 sz -= 8; 3563 3564 if (prop_sz > sz) 3565 goto bad; 3566 3567 if (type >= GNU_PROPERTY_LOPROC && 3568 type <= GNU_PROPERTY_HIPROC) { 3569 if (re->ehdr.e_machine != EM_X86_64) { 3570 printf("machine type %x unknown\n", 3571 re->ehdr.e_machine); 3572 goto unknown; 3573 } 3574 switch (type) { 3575 case GNU_PROPERTY_X86_FEATURE_1_AND: 3576 printf("x86 features:"); 3577 if (prop_sz != 4) 3578 goto bad; 3579 dump_flags(gnu_property_x86_feature_1_and_bits, 3580 *(const uint32_t *)(const void *)buf); 3581 break; 3582 } 3583 } 3584 3585 buf += roundup2(prop_sz, 8); 3586 sz -= roundup2(prop_sz, 8); 3587 } 3588 return; 3589 bad: 3590 printf("corrupt GNU property\n"); 3591 unknown: 3592 printf("remaining description data:"); 3593 for (i = 0; i < sz; i++) 3594 printf(" %02x", (unsigned char)buf[i]); 3595 printf("\n"); 3596 } 3597 3598 static void 3599 dump_hash(struct readelf *re) 3600 { 3601 struct section *s; 3602 int i; 3603 3604 for (i = 0; (size_t) i < re->shnum; i++) { 3605 s = &re->sl[i]; 3606 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3607 if (s->type == SHT_GNU_HASH) 3608 dump_gnu_hash(re, s); 3609 else if (re->ehdr.e_machine == EM_ALPHA && 3610 s->entsize == 8) 3611 dump_svr4_hash64(re, s); 3612 else 3613 dump_svr4_hash(s); 3614 } 3615 } 3616 } 3617 3618 static void 3619 dump_notes(struct readelf *re) 3620 { 3621 struct section *s; 3622 const char *rawfile; 3623 GElf_Phdr phdr; 3624 Elf_Data *d; 3625 size_t filesize, phnum; 3626 int i, elferr; 3627 3628 if (re->ehdr.e_type == ET_CORE) { 3629 /* 3630 * Search program headers in the core file for 3631 * PT_NOTE entry. 3632 */ 3633 if (elf_getphnum(re->elf, &phnum) == 0) { 3634 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3635 return; 3636 } 3637 if (phnum == 0) 3638 return; 3639 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3640 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3641 return; 3642 } 3643 for (i = 0; (size_t) i < phnum; i++) { 3644 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3645 warnx("gelf_getphdr failed: %s", 3646 elf_errmsg(-1)); 3647 continue; 3648 } 3649 if (phdr.p_type == PT_NOTE) { 3650 if (phdr.p_offset >= filesize || 3651 phdr.p_filesz > filesize - phdr.p_offset) { 3652 warnx("invalid PHDR offset"); 3653 continue; 3654 } 3655 dump_notes_content(re, rawfile + phdr.p_offset, 3656 phdr.p_filesz, phdr.p_offset); 3657 } 3658 } 3659 3660 } else { 3661 /* 3662 * For objects other than core files, Search for 3663 * SHT_NOTE sections. 3664 */ 3665 for (i = 0; (size_t) i < re->shnum; i++) { 3666 s = &re->sl[i]; 3667 if (s->type == SHT_NOTE) { 3668 (void) elf_errno(); 3669 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3670 elferr = elf_errno(); 3671 if (elferr != 0) 3672 warnx("elf_getdata failed: %s", 3673 elf_errmsg(elferr)); 3674 continue; 3675 } 3676 dump_notes_content(re, d->d_buf, d->d_size, 3677 s->off); 3678 } 3679 } 3680 } 3681 } 3682 3683 static struct flag_desc note_feature_ctl_flags[] = { 3684 { NT_FREEBSD_FCTL_ASLR_DISABLE, "ASLR_DISABLE" }, 3685 { NT_FREEBSD_FCTL_PROTMAX_DISABLE, "PROTMAX_DISABLE" }, 3686 { NT_FREEBSD_FCTL_STKGAP_DISABLE, "STKGAP_DISABLE" }, 3687 { NT_FREEBSD_FCTL_WXNEEDED, "WXNEEDED" }, 3688 { NT_FREEBSD_FCTL_LA48, "LA48" }, 3689 { NT_FREEBSD_FCTL_ASG_DISABLE, "ASG_DISABLE" }, 3690 { 0, NULL } 3691 }; 3692 3693 static bool 3694 dump_note_string(const char *description, const char *s, size_t len) 3695 { 3696 size_t i; 3697 3698 if (len == 0 || s[--len] != '\0') { 3699 return (false); 3700 } else { 3701 for (i = 0; i < len; i++) 3702 if (!isprint(s[i])) 3703 return (false); 3704 } 3705 3706 printf(" %s: %s\n", description, s); 3707 return (true); 3708 } 3709 3710 struct note_desc { 3711 uint32_t type; 3712 const char *description; 3713 bool (*fp)(const char *, const char *, size_t); 3714 }; 3715 3716 static struct note_desc xen_notes[] = { 3717 { 5, "Xen version", dump_note_string }, 3718 { 6, "Guest OS", dump_note_string }, 3719 { 7, "Guest version", dump_note_string }, 3720 { 8, "Loader", dump_note_string }, 3721 { 9, "PAE mode", dump_note_string }, 3722 { 10, "Features", dump_note_string }, 3723 { 11, "BSD symtab", dump_note_string }, 3724 { 0, NULL, NULL } 3725 }; 3726 3727 static void 3728 dump_notes_data(struct readelf *re, const char *name, uint32_t type, 3729 const char *buf, size_t sz) 3730 { 3731 struct note_desc *nd; 3732 size_t i; 3733 const uint32_t *ubuf; 3734 3735 /* Note data is at least 4-byte aligned. */ 3736 if (((uintptr_t)buf & 3) != 0) { 3737 warnx("bad note data alignment"); 3738 goto unknown; 3739 } 3740 ubuf = (const uint32_t *)(const void *)buf; 3741 3742 if (strcmp(name, "FreeBSD") == 0) { 3743 switch (type) { 3744 case NT_FREEBSD_ABI_TAG: 3745 if (sz != 4) 3746 goto unknown; 3747 printf(" ABI tag: %u\n", ubuf[0]); 3748 return; 3749 /* NT_FREEBSD_NOINIT_TAG carries no data, treat as unknown. */ 3750 case NT_FREEBSD_ARCH_TAG: 3751 printf(" Arch tag: %s\n", buf); 3752 return; 3753 case NT_FREEBSD_FEATURE_CTL: 3754 if (sz != 4) 3755 goto unknown; 3756 printf(" Features:"); 3757 dump_flags(note_feature_ctl_flags, ubuf[0]); 3758 return; 3759 } 3760 } else if (strcmp(name, "GNU") == 0) { 3761 switch (type) { 3762 case NT_GNU_PROPERTY_TYPE_0: 3763 dump_gnu_property_type_0(re, buf, sz); 3764 return; 3765 case NT_GNU_BUILD_ID: 3766 printf(" Build ID: "); 3767 for (i = 0; i < sz; i++) 3768 printf("%02x", (unsigned char)buf[i]); 3769 printf("\n"); 3770 return; 3771 } 3772 } else if (strcmp(name, "Xen") == 0) { 3773 for (nd = xen_notes; nd->description != NULL; nd++) { 3774 if (nd->type == type) { 3775 if (nd->fp(nd->description, buf, sz)) 3776 return; 3777 else 3778 break; 3779 } 3780 } 3781 } 3782 unknown: 3783 printf(" description data:"); 3784 for (i = 0; i < sz; i++) 3785 printf(" %02x", (unsigned char)buf[i]); 3786 printf("\n"); 3787 } 3788 3789 static void 3790 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3791 { 3792 Elf_Note *note; 3793 const char *end, *name; 3794 uint32_t namesz, descsz; 3795 3796 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3797 (uintmax_t) off, (uintmax_t) sz); 3798 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3799 end = buf + sz; 3800 while (buf < end) { 3801 if (buf + sizeof(*note) > end) { 3802 warnx("invalid note header"); 3803 return; 3804 } 3805 note = (Elf_Note *)(uintptr_t) buf; 3806 namesz = roundup2(note->n_namesz, 4); 3807 descsz = roundup2(note->n_descsz, 4); 3808 if (namesz < note->n_namesz || descsz < note->n_descsz || 3809 buf + namesz + descsz > end) { 3810 warnx("invalid note header"); 3811 return; 3812 } 3813 buf += sizeof(Elf_Note); 3814 name = buf; 3815 buf += namesz; 3816 /* 3817 * The name field is required to be nul-terminated, and 3818 * n_namesz includes the terminating nul in observed 3819 * implementations (contrary to the ELF-64 spec). A special 3820 * case is needed for cores generated by some older Linux 3821 * versions, which write a note named "CORE" without a nul 3822 * terminator and n_namesz = 4. 3823 */ 3824 if (note->n_namesz == 0) 3825 name = ""; 3826 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3827 name = "CORE"; 3828 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3829 name = "<invalid>"; 3830 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3831 printf(" %s\n", note_type(name, re->ehdr.e_type, 3832 note->n_type)); 3833 dump_notes_data(re, name, note->n_type, buf, note->n_descsz); 3834 buf += descsz; 3835 } 3836 } 3837 3838 /* 3839 * Symbol versioning sections are the same for 32bit and 64bit 3840 * ELF objects. 3841 */ 3842 #define Elf_Verdef Elf32_Verdef 3843 #define Elf_Verdaux Elf32_Verdaux 3844 #define Elf_Verneed Elf32_Verneed 3845 #define Elf_Vernaux Elf32_Vernaux 3846 3847 #define SAVE_VERSION_NAME(x, n, t) \ 3848 do { \ 3849 while (x >= re->ver_sz) { \ 3850 nv = realloc(re->ver, \ 3851 sizeof(*re->ver) * re->ver_sz * 2); \ 3852 if (nv == NULL) { \ 3853 warn("realloc failed"); \ 3854 free(re->ver); \ 3855 return; \ 3856 } \ 3857 re->ver = nv; \ 3858 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3859 re->ver[i].name = NULL; \ 3860 re->ver[i].type = 0; \ 3861 } \ 3862 re->ver_sz *= 2; \ 3863 } \ 3864 if (x > 1) { \ 3865 re->ver[x].name = n; \ 3866 re->ver[x].type = t; \ 3867 } \ 3868 } while (0) 3869 3870 3871 static void 3872 dump_verdef(struct readelf *re, int dump) 3873 { 3874 struct section *s; 3875 struct symver *nv; 3876 Elf_Data *d; 3877 Elf_Verdef *vd; 3878 Elf_Verdaux *vda; 3879 uint8_t *buf, *end, *buf2; 3880 const char *name; 3881 int elferr, i, j; 3882 3883 if ((s = re->vd_s) == NULL) 3884 return; 3885 if (s->link >= re->shnum) 3886 return; 3887 3888 if (re->ver == NULL) { 3889 re->ver_sz = 16; 3890 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3891 NULL) { 3892 warn("calloc failed"); 3893 return; 3894 } 3895 re->ver[0].name = "*local*"; 3896 re->ver[1].name = "*global*"; 3897 } 3898 3899 if (dump) 3900 printf("\nVersion definition section (%s):\n", s->name); 3901 (void) elf_errno(); 3902 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3903 elferr = elf_errno(); 3904 if (elferr != 0) 3905 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3906 return; 3907 } 3908 if (d->d_size == 0) 3909 return; 3910 3911 buf = d->d_buf; 3912 end = buf + d->d_size; 3913 while (buf + sizeof(Elf_Verdef) <= end) { 3914 vd = (Elf_Verdef *) (uintptr_t) buf; 3915 if (dump) { 3916 printf(" 0x%4.4lx", (unsigned long) 3917 (buf - (uint8_t *)d->d_buf)); 3918 printf(" vd_version: %u vd_flags: %d" 3919 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3920 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3921 } 3922 buf2 = buf + vd->vd_aux; 3923 j = 0; 3924 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3925 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3926 name = get_string(re, s->link, vda->vda_name); 3927 if (j == 0) { 3928 if (dump) 3929 printf(" vda_name: %s\n", name); 3930 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3931 } else if (dump) 3932 printf(" 0x%4.4lx parent: %s\n", 3933 (unsigned long) (buf2 - 3934 (uint8_t *)d->d_buf), name); 3935 if (vda->vda_next == 0) 3936 break; 3937 buf2 += vda->vda_next; 3938 j++; 3939 } 3940 if (vd->vd_next == 0) 3941 break; 3942 buf += vd->vd_next; 3943 } 3944 } 3945 3946 static void 3947 dump_verneed(struct readelf *re, int dump) 3948 { 3949 struct section *s; 3950 struct symver *nv; 3951 Elf_Data *d; 3952 Elf_Verneed *vn; 3953 Elf_Vernaux *vna; 3954 uint8_t *buf, *end, *buf2; 3955 const char *name; 3956 int elferr, i, j; 3957 3958 if ((s = re->vn_s) == NULL) 3959 return; 3960 if (s->link >= re->shnum) 3961 return; 3962 3963 if (re->ver == NULL) { 3964 re->ver_sz = 16; 3965 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3966 NULL) { 3967 warn("calloc failed"); 3968 return; 3969 } 3970 re->ver[0].name = "*local*"; 3971 re->ver[1].name = "*global*"; 3972 } 3973 3974 if (dump) 3975 printf("\nVersion needed section (%s):\n", s->name); 3976 (void) elf_errno(); 3977 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3978 elferr = elf_errno(); 3979 if (elferr != 0) 3980 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3981 return; 3982 } 3983 if (d->d_size == 0) 3984 return; 3985 3986 buf = d->d_buf; 3987 end = buf + d->d_size; 3988 while (buf + sizeof(Elf_Verneed) <= end) { 3989 vn = (Elf_Verneed *) (uintptr_t) buf; 3990 if (dump) { 3991 printf(" 0x%4.4lx", (unsigned long) 3992 (buf - (uint8_t *)d->d_buf)); 3993 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3994 vn->vn_version, 3995 get_string(re, s->link, vn->vn_file), 3996 vn->vn_cnt); 3997 } 3998 buf2 = buf + vn->vn_aux; 3999 j = 0; 4000 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 4001 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 4002 if (dump) 4003 printf(" 0x%4.4lx", (unsigned long) 4004 (buf2 - (uint8_t *)d->d_buf)); 4005 name = get_string(re, s->link, vna->vna_name); 4006 if (dump) 4007 printf(" vna_name: %s vna_flags: %u" 4008 " vna_other: %u\n", name, 4009 vna->vna_flags, vna->vna_other); 4010 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 4011 if (vna->vna_next == 0) 4012 break; 4013 buf2 += vna->vna_next; 4014 j++; 4015 } 4016 if (vn->vn_next == 0) 4017 break; 4018 buf += vn->vn_next; 4019 } 4020 } 4021 4022 static void 4023 dump_versym(struct readelf *re) 4024 { 4025 int i; 4026 uint16_t vs; 4027 4028 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 4029 return; 4030 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 4031 for (i = 0; i < re->vs_sz; i++) { 4032 if ((i & 3) == 0) { 4033 if (i > 0) 4034 putchar('\n'); 4035 printf(" %03x:", i); 4036 } 4037 vs = re->vs[i] & VERSYM_VERSION; 4038 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 4039 warnx("invalid versym version index %u", re->vs[i]); 4040 break; 4041 } 4042 if (re->vs[i] & VERSYM_HIDDEN) 4043 printf(" %3xh %-12s ", vs, 4044 re->ver[re->vs[i] & VERSYM_VERSION].name); 4045 else 4046 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 4047 } 4048 putchar('\n'); 4049 } 4050 4051 static void 4052 dump_ver(struct readelf *re) 4053 { 4054 4055 if (re->vs_s && re->ver && re->vs) 4056 dump_versym(re); 4057 if (re->vd_s) 4058 dump_verdef(re, 1); 4059 if (re->vn_s) 4060 dump_verneed(re, 1); 4061 } 4062 4063 static void 4064 search_ver(struct readelf *re) 4065 { 4066 struct section *s; 4067 Elf_Data *d; 4068 int elferr, i; 4069 4070 for (i = 0; (size_t) i < re->shnum; i++) { 4071 s = &re->sl[i]; 4072 if (s->type == SHT_SUNW_versym) 4073 re->vs_s = s; 4074 if (s->type == SHT_SUNW_verneed) 4075 re->vn_s = s; 4076 if (s->type == SHT_SUNW_verdef) 4077 re->vd_s = s; 4078 } 4079 if (re->vd_s) 4080 dump_verdef(re, 0); 4081 if (re->vn_s) 4082 dump_verneed(re, 0); 4083 if (re->vs_s && re->ver != NULL) { 4084 (void) elf_errno(); 4085 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 4086 elferr = elf_errno(); 4087 if (elferr != 0) 4088 warnx("elf_getdata failed: %s", 4089 elf_errmsg(elferr)); 4090 return; 4091 } 4092 if (d->d_size == 0) 4093 return; 4094 re->vs = d->d_buf; 4095 re->vs_sz = d->d_size / sizeof(Elf32_Half); 4096 } 4097 } 4098 4099 #undef Elf_Verdef 4100 #undef Elf_Verdaux 4101 #undef Elf_Verneed 4102 #undef Elf_Vernaux 4103 #undef SAVE_VERSION_NAME 4104 4105 /* 4106 * Elf32_Lib and Elf64_Lib are identical. 4107 */ 4108 #define Elf_Lib Elf32_Lib 4109 4110 static void 4111 dump_liblist(struct readelf *re) 4112 { 4113 struct section *s; 4114 struct tm *t; 4115 time_t ti; 4116 char tbuf[20]; 4117 Elf_Data *d; 4118 Elf_Lib *lib; 4119 int i, j, k, elferr, first, len; 4120 4121 for (i = 0; (size_t) i < re->shnum; i++) { 4122 s = &re->sl[i]; 4123 if (s->type != SHT_GNU_LIBLIST) 4124 continue; 4125 if (s->link >= re->shnum) 4126 continue; 4127 (void) elf_errno(); 4128 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4129 elferr = elf_errno(); 4130 if (elferr != 0) 4131 warnx("elf_getdata failed: %s", 4132 elf_errmsg(elferr)); 4133 continue; 4134 } 4135 if (d->d_size <= 0) 4136 continue; 4137 lib = d->d_buf; 4138 if (!get_ent_count(s, &len)) 4139 continue; 4140 printf("\nLibrary list section '%s' ", s->name); 4141 printf("contains %d entries:\n", len); 4142 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 4143 "Checksum", "Version", "Flags"); 4144 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 4145 printf("%3d: ", j); 4146 printf("%-20.20s ", 4147 get_string(re, s->link, lib->l_name)); 4148 ti = lib->l_time_stamp; 4149 t = gmtime(&ti); 4150 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 4151 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 4152 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 4153 printf("%-19.19s ", tbuf); 4154 printf("0x%08x ", lib->l_checksum); 4155 printf("%-7d %#x", lib->l_version, lib->l_flags); 4156 if (lib->l_flags != 0) { 4157 first = 1; 4158 putchar('('); 4159 for (k = 0; l_flag[k].name != NULL; k++) { 4160 if ((l_flag[k].value & lib->l_flags) == 4161 0) 4162 continue; 4163 if (!first) 4164 putchar(','); 4165 else 4166 first = 0; 4167 printf("%s", l_flag[k].name); 4168 } 4169 putchar(')'); 4170 } 4171 putchar('\n'); 4172 lib++; 4173 } 4174 } 4175 } 4176 4177 #undef Elf_Lib 4178 4179 static void 4180 dump_section_groups(struct readelf *re) 4181 { 4182 struct section *s; 4183 const char *symname; 4184 Elf_Data *d; 4185 uint32_t *w; 4186 int i, j, elferr; 4187 size_t n; 4188 4189 for (i = 0; (size_t) i < re->shnum; i++) { 4190 s = &re->sl[i]; 4191 if (s->type != SHT_GROUP) 4192 continue; 4193 if (s->link >= re->shnum) 4194 continue; 4195 (void) elf_errno(); 4196 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4197 elferr = elf_errno(); 4198 if (elferr != 0) 4199 warnx("elf_getdata failed: %s", 4200 elf_errmsg(elferr)); 4201 continue; 4202 } 4203 if (d->d_size <= 0) 4204 continue; 4205 4206 w = d->d_buf; 4207 4208 /* We only support COMDAT section. */ 4209 #ifndef GRP_COMDAT 4210 #define GRP_COMDAT 0x1 4211 #endif 4212 if ((*w++ & GRP_COMDAT) == 0) 4213 return; 4214 4215 if (s->entsize == 0) 4216 s->entsize = 4; 4217 4218 symname = get_symbol_name(re, s->link, s->info); 4219 n = s->sz / s->entsize; 4220 if (n-- < 1) 4221 return; 4222 4223 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 4224 " sections:\n", i, s->name, symname, (uintmax_t)n); 4225 printf(" %-10.10s %s\n", "[Index]", "Name"); 4226 for (j = 0; (size_t) j < n; j++, w++) { 4227 if (*w >= re->shnum) { 4228 warnx("invalid section index: %u", *w); 4229 continue; 4230 } 4231 printf(" [%5u] %s\n", *w, re->sl[*w].name); 4232 } 4233 } 4234 } 4235 4236 static uint8_t * 4237 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 4238 { 4239 uint64_t val; 4240 4241 /* 4242 * According to ARM EABI: For tags > 32, even numbered tags have 4243 * a ULEB128 param and odd numbered ones have NUL-terminated 4244 * string param. This rule probably also applies for tags <= 32 4245 * if the object arch is not ARM. 4246 */ 4247 4248 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4249 4250 if (tag & 1) { 4251 printf("%s\n", (char *) p); 4252 p += strlen((char *) p) + 1; 4253 } else { 4254 val = _decode_uleb128(&p, pe); 4255 printf("%ju\n", (uintmax_t) val); 4256 } 4257 4258 return (p); 4259 } 4260 4261 static uint8_t * 4262 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 4263 { 4264 uint64_t val; 4265 4266 val = _decode_uleb128(&p, pe); 4267 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 4268 p += strlen((char *) p) + 1; 4269 4270 return (p); 4271 } 4272 4273 static void 4274 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4275 { 4276 uint64_t tag, val; 4277 size_t i; 4278 int found, desc; 4279 4280 (void) re; 4281 4282 while (p < pe) { 4283 tag = _decode_uleb128(&p, pe); 4284 found = desc = 0; 4285 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4286 i++) { 4287 if (tag == aeabi_tags[i].tag) { 4288 found = 1; 4289 printf(" %s: ", aeabi_tags[i].s_tag); 4290 if (aeabi_tags[i].get_desc) { 4291 desc = 1; 4292 val = _decode_uleb128(&p, pe); 4293 printf("%s\n", 4294 aeabi_tags[i].get_desc(val)); 4295 } 4296 break; 4297 } 4298 if (tag < aeabi_tags[i].tag) 4299 break; 4300 } 4301 if (!found) { 4302 p = dump_unknown_tag(tag, p, pe); 4303 continue; 4304 } 4305 if (desc) 4306 continue; 4307 4308 switch (tag) { 4309 case 4: /* Tag_CPU_raw_name */ 4310 case 5: /* Tag_CPU_name */ 4311 case 67: /* Tag_conformance */ 4312 printf("%s\n", (char *) p); 4313 p += strlen((char *) p) + 1; 4314 break; 4315 case 32: /* Tag_compatibility */ 4316 p = dump_compatibility_tag(p, pe); 4317 break; 4318 case 64: /* Tag_nodefaults */ 4319 /* ignored, written as 0. */ 4320 (void) _decode_uleb128(&p, pe); 4321 printf("True\n"); 4322 break; 4323 case 65: /* Tag_also_compatible_with */ 4324 val = _decode_uleb128(&p, pe); 4325 /* Must be Tag_CPU_arch */ 4326 if (val != 6) { 4327 printf("unknown\n"); 4328 break; 4329 } 4330 val = _decode_uleb128(&p, pe); 4331 printf("%s\n", aeabi_cpu_arch(val)); 4332 /* Skip NUL terminator. */ 4333 p++; 4334 break; 4335 default: 4336 putchar('\n'); 4337 break; 4338 } 4339 } 4340 } 4341 4342 #ifndef Tag_GNU_MIPS_ABI_FP 4343 #define Tag_GNU_MIPS_ABI_FP 4 4344 #endif 4345 4346 static void 4347 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4348 { 4349 uint64_t tag, val; 4350 4351 (void) re; 4352 4353 while (p < pe) { 4354 tag = _decode_uleb128(&p, pe); 4355 switch (tag) { 4356 case Tag_GNU_MIPS_ABI_FP: 4357 val = _decode_uleb128(&p, pe); 4358 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4359 break; 4360 case 32: /* Tag_compatibility */ 4361 p = dump_compatibility_tag(p, pe); 4362 break; 4363 default: 4364 p = dump_unknown_tag(tag, p, pe); 4365 break; 4366 } 4367 } 4368 } 4369 4370 #ifndef Tag_GNU_Power_ABI_FP 4371 #define Tag_GNU_Power_ABI_FP 4 4372 #endif 4373 4374 #ifndef Tag_GNU_Power_ABI_Vector 4375 #define Tag_GNU_Power_ABI_Vector 8 4376 #endif 4377 4378 static void 4379 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4380 { 4381 uint64_t tag, val; 4382 4383 while (p < pe) { 4384 tag = _decode_uleb128(&p, pe); 4385 switch (tag) { 4386 case Tag_GNU_Power_ABI_FP: 4387 val = _decode_uleb128(&p, pe); 4388 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4389 break; 4390 case Tag_GNU_Power_ABI_Vector: 4391 val = _decode_uleb128(&p, pe); 4392 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4393 ppc_abi_vector(val)); 4394 break; 4395 case 32: /* Tag_compatibility */ 4396 p = dump_compatibility_tag(p, pe); 4397 break; 4398 default: 4399 p = dump_unknown_tag(tag, p, pe); 4400 break; 4401 } 4402 } 4403 } 4404 4405 static void 4406 dump_attributes(struct readelf *re) 4407 { 4408 struct section *s; 4409 Elf_Data *d; 4410 uint8_t *p, *pe, *sp; 4411 size_t len, seclen, nlen, sublen; 4412 uint64_t val; 4413 int tag, i, elferr; 4414 4415 for (i = 0; (size_t) i < re->shnum; i++) { 4416 s = &re->sl[i]; 4417 if (s->type != SHT_GNU_ATTRIBUTES && 4418 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4419 continue; 4420 (void) elf_errno(); 4421 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4422 elferr = elf_errno(); 4423 if (elferr != 0) 4424 warnx("elf_rawdata failed: %s", 4425 elf_errmsg(elferr)); 4426 continue; 4427 } 4428 if (d->d_size <= 0) 4429 continue; 4430 p = d->d_buf; 4431 pe = p + d->d_size; 4432 if (*p != 'A') { 4433 printf("Unknown Attribute Section Format: %c\n", 4434 (char) *p); 4435 continue; 4436 } 4437 len = d->d_size - 1; 4438 p++; 4439 while (len > 0) { 4440 if (len < 4) { 4441 warnx("truncated attribute section length"); 4442 return; 4443 } 4444 seclen = re->dw_decode(&p, 4); 4445 if (seclen > len) { 4446 warnx("invalid attribute section length"); 4447 return; 4448 } 4449 len -= seclen; 4450 nlen = strlen((char *) p) + 1; 4451 if (nlen + 4 > seclen) { 4452 warnx("invalid attribute section name"); 4453 return; 4454 } 4455 printf("Attribute Section: %s\n", (char *) p); 4456 p += nlen; 4457 seclen -= nlen + 4; 4458 while (seclen > 0) { 4459 sp = p; 4460 tag = *p++; 4461 sublen = re->dw_decode(&p, 4); 4462 if (sublen > seclen) { 4463 warnx("invalid attribute sub-section" 4464 " length"); 4465 return; 4466 } 4467 seclen -= sublen; 4468 printf("%s", top_tag(tag)); 4469 if (tag == 2 || tag == 3) { 4470 putchar(':'); 4471 for (;;) { 4472 val = _decode_uleb128(&p, pe); 4473 if (val == 0) 4474 break; 4475 printf(" %ju", (uintmax_t) val); 4476 } 4477 } 4478 putchar('\n'); 4479 if (re->ehdr.e_machine == EM_ARM && 4480 s->type == SHT_LOPROC + 3) 4481 dump_arm_attributes(re, p, sp + sublen); 4482 else if (re->ehdr.e_machine == EM_MIPS || 4483 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4484 dump_mips_attributes(re, p, 4485 sp + sublen); 4486 else if (re->ehdr.e_machine == EM_PPC) 4487 dump_ppc_attributes(p, sp + sublen); 4488 p = sp + sublen; 4489 } 4490 } 4491 } 4492 } 4493 4494 static void 4495 dump_mips_specific_info(struct readelf *re) 4496 { 4497 struct section *s; 4498 int i; 4499 4500 s = NULL; 4501 for (i = 0; (size_t) i < re->shnum; i++) { 4502 s = &re->sl[i]; 4503 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4504 (s->type == SHT_MIPS_OPTIONS))) { 4505 dump_mips_options(re, s); 4506 } 4507 } 4508 4509 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4510 (s->type == SHT_MIPS_ABIFLAGS))) 4511 dump_mips_abiflags(re, s); 4512 4513 /* 4514 * Dump .reginfo if present (although it will be ignored by an OS if a 4515 * .MIPS.options section is present, according to SGI mips64 spec). 4516 */ 4517 for (i = 0; (size_t) i < re->shnum; i++) { 4518 s = &re->sl[i]; 4519 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4520 (s->type == SHT_MIPS_REGINFO))) 4521 dump_mips_reginfo(re, s); 4522 } 4523 } 4524 4525 static void 4526 dump_mips_abiflags(struct readelf *re, struct section *s) 4527 { 4528 Elf_Data *d; 4529 uint8_t *p; 4530 int elferr; 4531 uint32_t isa_ext, ases, flags1, flags2; 4532 uint16_t version; 4533 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4534 4535 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4536 elferr = elf_errno(); 4537 if (elferr != 0) 4538 warnx("elf_rawdata failed: %s", 4539 elf_errmsg(elferr)); 4540 return; 4541 } 4542 if (d->d_size != 24) { 4543 warnx("invalid MIPS abiflags section size"); 4544 return; 4545 } 4546 4547 p = d->d_buf; 4548 version = re->dw_decode(&p, 2); 4549 printf("MIPS ABI Flags Version: %u", version); 4550 if (version != 0) { 4551 printf(" (unknown)\n\n"); 4552 return; 4553 } 4554 printf("\n\n"); 4555 4556 isa_level = re->dw_decode(&p, 1); 4557 isa_rev = re->dw_decode(&p, 1); 4558 gpr_size = re->dw_decode(&p, 1); 4559 cpr1_size = re->dw_decode(&p, 1); 4560 cpr2_size = re->dw_decode(&p, 1); 4561 fp_abi = re->dw_decode(&p, 1); 4562 isa_ext = re->dw_decode(&p, 4); 4563 ases = re->dw_decode(&p, 4); 4564 flags1 = re->dw_decode(&p, 4); 4565 flags2 = re->dw_decode(&p, 4); 4566 4567 printf("ISA: "); 4568 if (isa_rev <= 1) 4569 printf("MIPS%u\n", isa_level); 4570 else 4571 printf("MIPS%ur%u\n", isa_level, isa_rev); 4572 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4573 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4574 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4575 printf("FP ABI: "); 4576 switch (fp_abi) { 4577 case 3: 4578 printf("Soft float"); 4579 break; 4580 default: 4581 printf("%u", fp_abi); 4582 break; 4583 } 4584 printf("\nISA Extension: %u\n", isa_ext); 4585 printf("ASEs: %u\n", ases); 4586 printf("FLAGS 1: %08x\n", flags1); 4587 printf("FLAGS 2: %08x\n", flags2); 4588 } 4589 4590 static int 4591 get_mips_register_size(uint8_t flag) 4592 { 4593 switch (flag) { 4594 case 0: return 0; 4595 case 1: return 32; 4596 case 2: return 64; 4597 case 3: return 128; 4598 default: return -1; 4599 } 4600 } 4601 static void 4602 dump_mips_reginfo(struct readelf *re, struct section *s) 4603 { 4604 Elf_Data *d; 4605 int elferr, len; 4606 4607 (void) elf_errno(); 4608 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4609 elferr = elf_errno(); 4610 if (elferr != 0) 4611 warnx("elf_rawdata failed: %s", 4612 elf_errmsg(elferr)); 4613 return; 4614 } 4615 if (d->d_size <= 0) 4616 return; 4617 if (!get_ent_count(s, &len)) 4618 return; 4619 4620 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4621 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4622 } 4623 4624 static void 4625 dump_mips_options(struct readelf *re, struct section *s) 4626 { 4627 Elf_Data *d; 4628 uint32_t info; 4629 uint16_t sndx; 4630 uint8_t *p, *pe; 4631 uint8_t kind, size; 4632 int elferr; 4633 4634 (void) elf_errno(); 4635 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4636 elferr = elf_errno(); 4637 if (elferr != 0) 4638 warnx("elf_rawdata failed: %s", 4639 elf_errmsg(elferr)); 4640 return; 4641 } 4642 if (d->d_size == 0) 4643 return; 4644 4645 printf("\nSection %s contains:\n", s->name); 4646 p = d->d_buf; 4647 pe = p + d->d_size; 4648 while (p < pe) { 4649 if (pe - p < 8) { 4650 warnx("Truncated MIPS option header"); 4651 return; 4652 } 4653 kind = re->dw_decode(&p, 1); 4654 size = re->dw_decode(&p, 1); 4655 sndx = re->dw_decode(&p, 2); 4656 info = re->dw_decode(&p, 4); 4657 if (size < 8 || size - 8 > pe - p) { 4658 warnx("Malformed MIPS option header"); 4659 return; 4660 } 4661 size -= 8; 4662 switch (kind) { 4663 case ODK_REGINFO: 4664 dump_mips_odk_reginfo(re, p, size); 4665 break; 4666 case ODK_EXCEPTIONS: 4667 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4668 info & OEX_FPU_MIN); 4669 printf("%11.11s FPU_MAX: %#x\n", "", 4670 info & OEX_FPU_MAX); 4671 dump_mips_option_flags("", mips_exceptions_option, 4672 info); 4673 break; 4674 case ODK_PAD: 4675 printf(" %-10.10s section: %ju\n", "OPAD", 4676 (uintmax_t) sndx); 4677 dump_mips_option_flags("", mips_pad_option, info); 4678 break; 4679 case ODK_HWPATCH: 4680 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4681 info); 4682 break; 4683 case ODK_HWAND: 4684 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4685 break; 4686 case ODK_HWOR: 4687 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4688 break; 4689 case ODK_FILL: 4690 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4691 break; 4692 case ODK_TAGS: 4693 printf(" %-10.10s\n", "TAGS"); 4694 break; 4695 case ODK_GP_GROUP: 4696 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4697 info & 0xFFFF); 4698 if (info & 0x10000) 4699 printf(" %-10.10s GP group is " 4700 "self-contained\n", ""); 4701 break; 4702 case ODK_IDENT: 4703 printf(" %-10.10s default GP group number: %#x\n", 4704 "IDENT", info & 0xFFFF); 4705 if (info & 0x10000) 4706 printf(" %-10.10s default GP group is " 4707 "self-contained\n", ""); 4708 break; 4709 case ODK_PAGESIZE: 4710 printf(" %-10.10s\n", "PAGESIZE"); 4711 break; 4712 default: 4713 break; 4714 } 4715 p += size; 4716 } 4717 } 4718 4719 static void 4720 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4721 { 4722 int first; 4723 4724 first = 1; 4725 for (; opt->desc != NULL; opt++) { 4726 if (info & opt->flag) { 4727 printf(" %-10.10s %s\n", first ? name : "", 4728 opt->desc); 4729 first = 0; 4730 } 4731 } 4732 } 4733 4734 static void 4735 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4736 { 4737 uint32_t ri_gprmask; 4738 uint32_t ri_cprmask[4]; 4739 uint64_t ri_gp_value; 4740 uint8_t *pe; 4741 int i; 4742 4743 pe = p + sz; 4744 while (p < pe) { 4745 ri_gprmask = re->dw_decode(&p, 4); 4746 /* Skip ri_pad padding field for mips64. */ 4747 if (re->ec == ELFCLASS64) 4748 re->dw_decode(&p, 4); 4749 for (i = 0; i < 4; i++) 4750 ri_cprmask[i] = re->dw_decode(&p, 4); 4751 if (re->ec == ELFCLASS32) 4752 ri_gp_value = re->dw_decode(&p, 4); 4753 else 4754 ri_gp_value = re->dw_decode(&p, 8); 4755 printf(" %s ", option_kind(ODK_REGINFO)); 4756 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4757 for (i = 0; i < 4; i++) 4758 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4759 (uintmax_t) ri_cprmask[i]); 4760 printf("%12.12s", ""); 4761 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4762 } 4763 } 4764 4765 static void 4766 dump_arch_specific_info(struct readelf *re) 4767 { 4768 4769 dump_liblist(re); 4770 dump_attributes(re); 4771 4772 switch (re->ehdr.e_machine) { 4773 case EM_MIPS: 4774 case EM_MIPS_RS3_LE: 4775 dump_mips_specific_info(re); 4776 default: 4777 break; 4778 } 4779 } 4780 4781 static const char * 4782 dwarf_regname(struct readelf *re, unsigned int num) 4783 { 4784 static char rx[32]; 4785 const char *rn; 4786 4787 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4788 return (rn); 4789 4790 snprintf(rx, sizeof(rx), "r%u", num); 4791 4792 return (rx); 4793 } 4794 4795 static void 4796 dump_dwarf_line(struct readelf *re) 4797 { 4798 struct section *s; 4799 Dwarf_Die die; 4800 Dwarf_Error de; 4801 Dwarf_Half tag, version, pointer_size; 4802 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4803 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4804 Elf_Data *d; 4805 char *pn; 4806 uint64_t address, file, line, column, isa, opsize, udelta; 4807 int64_t sdelta; 4808 uint8_t *p, *pe; 4809 int8_t lbase; 4810 int i, is_stmt, dwarf_size, elferr, ret; 4811 4812 printf("\nDump of debug contents of section .debug_line:\n"); 4813 4814 s = NULL; 4815 for (i = 0; (size_t) i < re->shnum; i++) { 4816 s = &re->sl[i]; 4817 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4818 break; 4819 } 4820 if ((size_t) i >= re->shnum) 4821 return; 4822 4823 (void) elf_errno(); 4824 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4825 elferr = elf_errno(); 4826 if (elferr != 0) 4827 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4828 return; 4829 } 4830 if (d->d_size <= 0) 4831 return; 4832 4833 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4834 NULL, &de)) == DW_DLV_OK) { 4835 die = NULL; 4836 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4837 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4838 warnx("dwarf_tag failed: %s", 4839 dwarf_errmsg(de)); 4840 return; 4841 } 4842 /* XXX: What about DW_TAG_partial_unit? */ 4843 if (tag == DW_TAG_compile_unit) 4844 break; 4845 } 4846 if (die == NULL) { 4847 warnx("could not find DW_TAG_compile_unit die"); 4848 return; 4849 } 4850 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4851 &de) != DW_DLV_OK) 4852 continue; 4853 4854 length = re->dw_read(d, &offset, 4); 4855 if (length == 0xffffffff) { 4856 dwarf_size = 8; 4857 length = re->dw_read(d, &offset, 8); 4858 } else 4859 dwarf_size = 4; 4860 4861 if (length > d->d_size - offset) { 4862 warnx("invalid .dwarf_line section"); 4863 continue; 4864 } 4865 4866 endoff = offset + length; 4867 pe = (uint8_t *) d->d_buf + endoff; 4868 version = re->dw_read(d, &offset, 2); 4869 hdrlen = re->dw_read(d, &offset, dwarf_size); 4870 minlen = re->dw_read(d, &offset, 1); 4871 defstmt = re->dw_read(d, &offset, 1); 4872 lbase = re->dw_read(d, &offset, 1); 4873 lrange = re->dw_read(d, &offset, 1); 4874 opbase = re->dw_read(d, &offset, 1); 4875 4876 printf("\n"); 4877 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4878 printf(" DWARF version:\t\t%u\n", version); 4879 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4880 printf(" Minimum Instruction Length:\t%u\n", minlen); 4881 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4882 printf(" Line Base:\t\t\t%d\n", lbase); 4883 printf(" Line Range:\t\t\t%u\n", lrange); 4884 printf(" Opcode Base:\t\t\t%u\n", opbase); 4885 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4886 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4887 4888 printf("\n"); 4889 printf(" Opcodes:\n"); 4890 for (i = 1; i < opbase; i++) { 4891 oplen = re->dw_read(d, &offset, 1); 4892 printf(" Opcode %d has %u args\n", i, oplen); 4893 } 4894 4895 printf("\n"); 4896 printf(" The Directory Table:\n"); 4897 p = (uint8_t *) d->d_buf + offset; 4898 while (*p != '\0') { 4899 printf(" %s\n", (char *) p); 4900 p += strlen((char *) p) + 1; 4901 } 4902 4903 p++; 4904 printf("\n"); 4905 printf(" The File Name Table:\n"); 4906 printf(" Entry\tDir\tTime\tSize\tName\n"); 4907 i = 0; 4908 while (*p != '\0') { 4909 i++; 4910 pn = (char *) p; 4911 p += strlen(pn) + 1; 4912 dirndx = _decode_uleb128(&p, pe); 4913 mtime = _decode_uleb128(&p, pe); 4914 fsize = _decode_uleb128(&p, pe); 4915 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4916 (uintmax_t) dirndx, (uintmax_t) mtime, 4917 (uintmax_t) fsize, pn); 4918 } 4919 4920 #define RESET_REGISTERS \ 4921 do { \ 4922 address = 0; \ 4923 file = 1; \ 4924 line = 1; \ 4925 column = 0; \ 4926 is_stmt = defstmt; \ 4927 } while(0) 4928 4929 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4930 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4931 4932 p++; 4933 printf("\n"); 4934 printf(" Line Number Statements:\n"); 4935 4936 RESET_REGISTERS; 4937 4938 while (p < pe) { 4939 4940 if (*p == 0) { 4941 /* 4942 * Extended Opcodes. 4943 */ 4944 p++; 4945 opsize = _decode_uleb128(&p, pe); 4946 printf(" Extended opcode %u: ", *p); 4947 switch (*p) { 4948 case DW_LNE_end_sequence: 4949 p++; 4950 RESET_REGISTERS; 4951 printf("End of Sequence\n"); 4952 break; 4953 case DW_LNE_set_address: 4954 p++; 4955 address = re->dw_decode(&p, 4956 pointer_size); 4957 printf("set Address to %#jx\n", 4958 (uintmax_t) address); 4959 break; 4960 case DW_LNE_define_file: 4961 p++; 4962 pn = (char *) p; 4963 p += strlen(pn) + 1; 4964 dirndx = _decode_uleb128(&p, pe); 4965 mtime = _decode_uleb128(&p, pe); 4966 fsize = _decode_uleb128(&p, pe); 4967 printf("define new file: %s\n", pn); 4968 break; 4969 default: 4970 /* Unrecognized extened opcodes. */ 4971 p += opsize; 4972 printf("unknown opcode\n"); 4973 } 4974 } else if (*p > 0 && *p < opbase) { 4975 /* 4976 * Standard Opcodes. 4977 */ 4978 switch(*p++) { 4979 case DW_LNS_copy: 4980 printf(" Copy\n"); 4981 break; 4982 case DW_LNS_advance_pc: 4983 udelta = _decode_uleb128(&p, pe) * 4984 minlen; 4985 address += udelta; 4986 printf(" Advance PC by %ju to %#jx\n", 4987 (uintmax_t) udelta, 4988 (uintmax_t) address); 4989 break; 4990 case DW_LNS_advance_line: 4991 sdelta = _decode_sleb128(&p, pe); 4992 line += sdelta; 4993 printf(" Advance Line by %jd to %ju\n", 4994 (intmax_t) sdelta, 4995 (uintmax_t) line); 4996 break; 4997 case DW_LNS_set_file: 4998 file = _decode_uleb128(&p, pe); 4999 printf(" Set File to %ju\n", 5000 (uintmax_t) file); 5001 break; 5002 case DW_LNS_set_column: 5003 column = _decode_uleb128(&p, pe); 5004 printf(" Set Column to %ju\n", 5005 (uintmax_t) column); 5006 break; 5007 case DW_LNS_negate_stmt: 5008 is_stmt = !is_stmt; 5009 printf(" Set is_stmt to %d\n", is_stmt); 5010 break; 5011 case DW_LNS_set_basic_block: 5012 printf(" Set basic block flag\n"); 5013 break; 5014 case DW_LNS_const_add_pc: 5015 address += ADDRESS(255); 5016 printf(" Advance PC by constant %ju" 5017 " to %#jx\n", 5018 (uintmax_t) ADDRESS(255), 5019 (uintmax_t) address); 5020 break; 5021 case DW_LNS_fixed_advance_pc: 5022 udelta = re->dw_decode(&p, 2); 5023 address += udelta; 5024 printf(" Advance PC by fixed value " 5025 "%ju to %#jx\n", 5026 (uintmax_t) udelta, 5027 (uintmax_t) address); 5028 break; 5029 case DW_LNS_set_prologue_end: 5030 printf(" Set prologue end flag\n"); 5031 break; 5032 case DW_LNS_set_epilogue_begin: 5033 printf(" Set epilogue begin flag\n"); 5034 break; 5035 case DW_LNS_set_isa: 5036 isa = _decode_uleb128(&p, pe); 5037 printf(" Set isa to %ju\n", 5038 (uintmax_t) isa); 5039 break; 5040 default: 5041 /* Unrecognized extended opcodes. */ 5042 printf(" Unknown extended opcode %u\n", 5043 *(p - 1)); 5044 break; 5045 } 5046 5047 } else { 5048 /* 5049 * Special Opcodes. 5050 */ 5051 line += LINE(*p); 5052 address += ADDRESS(*p); 5053 printf(" Special opcode %u: advance Address " 5054 "by %ju to %#jx and Line by %jd to %ju\n", 5055 *p - opbase, (uintmax_t) ADDRESS(*p), 5056 (uintmax_t) address, (intmax_t) LINE(*p), 5057 (uintmax_t) line); 5058 p++; 5059 } 5060 5061 5062 } 5063 } 5064 if (ret == DW_DLV_ERROR) 5065 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5066 5067 #undef RESET_REGISTERS 5068 #undef LINE 5069 #undef ADDRESS 5070 } 5071 5072 static void 5073 dump_dwarf_line_decoded(struct readelf *re) 5074 { 5075 Dwarf_Die die; 5076 Dwarf_Line *linebuf, ln; 5077 Dwarf_Addr lineaddr; 5078 Dwarf_Signed linecount, srccount; 5079 Dwarf_Unsigned lineno, fn; 5080 Dwarf_Error de; 5081 const char *dir, *file; 5082 char **srcfiles; 5083 int i, ret; 5084 5085 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 5086 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5087 NULL, &de)) == DW_DLV_OK) { 5088 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 5089 continue; 5090 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 5091 DW_DLV_OK) 5092 file = NULL; 5093 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 5094 DW_DLV_OK) 5095 dir = NULL; 5096 printf("CU: "); 5097 if (dir && file && file[0] != '/') 5098 printf("%s/", dir); 5099 if (file) 5100 printf("%s", file); 5101 putchar('\n'); 5102 printf("%-37s %11s %s\n", "Filename", "Line Number", 5103 "Starting Address"); 5104 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 5105 continue; 5106 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 5107 continue; 5108 for (i = 0; i < linecount; i++) { 5109 ln = linebuf[i]; 5110 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 5111 continue; 5112 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 5113 continue; 5114 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 5115 continue; 5116 printf("%-37s %11ju %#18jx\n", 5117 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 5118 (uintmax_t) lineaddr); 5119 } 5120 putchar('\n'); 5121 } 5122 } 5123 5124 static void 5125 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 5126 { 5127 Dwarf_Attribute *attr_list; 5128 Dwarf_Die ret_die; 5129 Dwarf_Off dieoff, cuoff, culen, attroff; 5130 Dwarf_Unsigned ate, lang, v_udata, v_sig; 5131 Dwarf_Signed attr_count, v_sdata; 5132 Dwarf_Off v_off; 5133 Dwarf_Addr v_addr; 5134 Dwarf_Half tag, attr, form; 5135 Dwarf_Block *v_block; 5136 Dwarf_Bool v_bool, is_info; 5137 Dwarf_Sig8 v_sig8; 5138 Dwarf_Error de; 5139 Dwarf_Ptr v_expr; 5140 const char *tag_str, *attr_str, *ate_str, *lang_str; 5141 char unk_tag[32], unk_attr[32]; 5142 char *v_str; 5143 uint8_t *b, *p; 5144 int i, j, abc, ret; 5145 5146 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 5147 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 5148 goto cont_search; 5149 } 5150 5151 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 5152 5153 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 5154 warnx("dwarf_die_CU_offset_range failed: %s", 5155 dwarf_errmsg(de)); 5156 cuoff = 0; 5157 } 5158 5159 abc = dwarf_die_abbrev_code(die); 5160 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5161 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5162 goto cont_search; 5163 } 5164 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5165 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 5166 tag_str = unk_tag; 5167 } 5168 5169 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 5170 5171 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5172 DW_DLV_OK) { 5173 if (ret == DW_DLV_ERROR) 5174 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5175 goto cont_search; 5176 } 5177 5178 for (i = 0; i < attr_count; i++) { 5179 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5180 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5181 continue; 5182 } 5183 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5184 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5185 continue; 5186 } 5187 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 5188 snprintf(unk_attr, sizeof(unk_attr), 5189 "[Unknown AT: %#x]", attr); 5190 attr_str = unk_attr; 5191 } 5192 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 5193 DW_DLV_OK) { 5194 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 5195 attroff = 0; 5196 } 5197 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 5198 switch (form) { 5199 case DW_FORM_ref_addr: 5200 case DW_FORM_sec_offset: 5201 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 5202 DW_DLV_OK) { 5203 warnx("dwarf_global_formref failed: %s", 5204 dwarf_errmsg(de)); 5205 continue; 5206 } 5207 if (form == DW_FORM_ref_addr) 5208 printf("<0x%jx>", (uintmax_t) v_off); 5209 else 5210 printf("0x%jx", (uintmax_t) v_off); 5211 break; 5212 5213 case DW_FORM_ref1: 5214 case DW_FORM_ref2: 5215 case DW_FORM_ref4: 5216 case DW_FORM_ref8: 5217 case DW_FORM_ref_udata: 5218 if (dwarf_formref(attr_list[i], &v_off, &de) != 5219 DW_DLV_OK) { 5220 warnx("dwarf_formref failed: %s", 5221 dwarf_errmsg(de)); 5222 continue; 5223 } 5224 v_off += cuoff; 5225 printf("<0x%jx>", (uintmax_t) v_off); 5226 break; 5227 5228 case DW_FORM_addr: 5229 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 5230 DW_DLV_OK) { 5231 warnx("dwarf_formaddr failed: %s", 5232 dwarf_errmsg(de)); 5233 continue; 5234 } 5235 printf("%#jx", (uintmax_t) v_addr); 5236 break; 5237 5238 case DW_FORM_data1: 5239 case DW_FORM_data2: 5240 case DW_FORM_data4: 5241 case DW_FORM_data8: 5242 case DW_FORM_udata: 5243 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 5244 DW_DLV_OK) { 5245 warnx("dwarf_formudata failed: %s", 5246 dwarf_errmsg(de)); 5247 continue; 5248 } 5249 if (attr == DW_AT_high_pc) 5250 printf("0x%jx", (uintmax_t) v_udata); 5251 else 5252 printf("%ju", (uintmax_t) v_udata); 5253 break; 5254 5255 case DW_FORM_sdata: 5256 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 5257 DW_DLV_OK) { 5258 warnx("dwarf_formudata failed: %s", 5259 dwarf_errmsg(de)); 5260 continue; 5261 } 5262 printf("%jd", (intmax_t) v_sdata); 5263 break; 5264 5265 case DW_FORM_flag: 5266 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 5267 DW_DLV_OK) { 5268 warnx("dwarf_formflag failed: %s", 5269 dwarf_errmsg(de)); 5270 continue; 5271 } 5272 printf("%jd", (intmax_t) v_bool); 5273 break; 5274 5275 case DW_FORM_flag_present: 5276 putchar('1'); 5277 break; 5278 5279 case DW_FORM_string: 5280 case DW_FORM_strp: 5281 if (dwarf_formstring(attr_list[i], &v_str, &de) != 5282 DW_DLV_OK) { 5283 warnx("dwarf_formstring failed: %s", 5284 dwarf_errmsg(de)); 5285 continue; 5286 } 5287 if (form == DW_FORM_string) 5288 printf("%s", v_str); 5289 else 5290 printf("(indirect string) %s", v_str); 5291 break; 5292 5293 case DW_FORM_block: 5294 case DW_FORM_block1: 5295 case DW_FORM_block2: 5296 case DW_FORM_block4: 5297 if (dwarf_formblock(attr_list[i], &v_block, &de) != 5298 DW_DLV_OK) { 5299 warnx("dwarf_formblock failed: %s", 5300 dwarf_errmsg(de)); 5301 continue; 5302 } 5303 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 5304 b = v_block->bl_data; 5305 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 5306 printf(" %x", b[j]); 5307 printf("\t("); 5308 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 5309 putchar(')'); 5310 break; 5311 5312 case DW_FORM_exprloc: 5313 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5314 &de) != DW_DLV_OK) { 5315 warnx("dwarf_formexprloc failed: %s", 5316 dwarf_errmsg(de)); 5317 continue; 5318 } 5319 printf("%ju byte block:", (uintmax_t) v_udata); 5320 b = v_expr; 5321 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5322 printf(" %x", b[j]); 5323 printf("\t("); 5324 dump_dwarf_block(re, v_expr, v_udata); 5325 putchar(')'); 5326 break; 5327 5328 case DW_FORM_ref_sig8: 5329 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5330 DW_DLV_OK) { 5331 warnx("dwarf_formsig8 failed: %s", 5332 dwarf_errmsg(de)); 5333 continue; 5334 } 5335 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5336 v_sig = re->dw_decode(&p, 8); 5337 printf("signature: 0x%jx", (uintmax_t) v_sig); 5338 } 5339 switch (attr) { 5340 case DW_AT_encoding: 5341 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5342 DW_DLV_OK) 5343 break; 5344 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5345 ate_str = "DW_ATE_UNKNOWN"; 5346 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5347 break; 5348 5349 case DW_AT_language: 5350 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5351 DW_DLV_OK) 5352 break; 5353 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5354 break; 5355 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5356 break; 5357 5358 case DW_AT_location: 5359 case DW_AT_string_length: 5360 case DW_AT_return_addr: 5361 case DW_AT_data_member_location: 5362 case DW_AT_frame_base: 5363 case DW_AT_segment: 5364 case DW_AT_static_link: 5365 case DW_AT_use_location: 5366 case DW_AT_vtable_elem_location: 5367 switch (form) { 5368 case DW_FORM_data4: 5369 case DW_FORM_data8: 5370 case DW_FORM_sec_offset: 5371 printf("\t(location list)"); 5372 break; 5373 default: 5374 break; 5375 } 5376 5377 default: 5378 break; 5379 } 5380 putchar('\n'); 5381 } 5382 5383 5384 cont_search: 5385 /* Search children. */ 5386 ret = dwarf_child(die, &ret_die, &de); 5387 if (ret == DW_DLV_ERROR) 5388 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5389 else if (ret == DW_DLV_OK) 5390 dump_dwarf_die(re, ret_die, level + 1); 5391 5392 /* Search sibling. */ 5393 is_info = dwarf_get_die_infotypes_flag(die); 5394 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5395 if (ret == DW_DLV_ERROR) 5396 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5397 else if (ret == DW_DLV_OK) 5398 dump_dwarf_die(re, ret_die, level); 5399 5400 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5401 } 5402 5403 static void 5404 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5405 Dwarf_Half ver) 5406 { 5407 5408 re->cu_psize = psize; 5409 re->cu_osize = osize; 5410 re->cu_ver = ver; 5411 } 5412 5413 static void 5414 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5415 { 5416 struct section *s; 5417 Dwarf_Die die; 5418 Dwarf_Error de; 5419 Dwarf_Half tag, version, pointer_size, off_size; 5420 Dwarf_Off cu_offset, cu_length; 5421 Dwarf_Off aboff; 5422 Dwarf_Unsigned typeoff; 5423 Dwarf_Sig8 sig8; 5424 Dwarf_Unsigned sig; 5425 uint8_t *p; 5426 const char *sn; 5427 int i, ret; 5428 5429 sn = is_info ? ".debug_info" : ".debug_types"; 5430 5431 s = NULL; 5432 for (i = 0; (size_t) i < re->shnum; i++) { 5433 s = &re->sl[i]; 5434 if (s->name != NULL && !strcmp(s->name, sn)) 5435 break; 5436 } 5437 if ((size_t) i >= re->shnum) 5438 return; 5439 5440 do { 5441 printf("\nDump of debug contents of section %s:\n", sn); 5442 5443 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5444 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5445 &typeoff, NULL, &de)) == DW_DLV_OK) { 5446 set_cu_context(re, pointer_size, off_size, version); 5447 die = NULL; 5448 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5449 &de) == DW_DLV_OK) { 5450 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5451 warnx("dwarf_tag failed: %s", 5452 dwarf_errmsg(de)); 5453 continue; 5454 } 5455 /* XXX: What about DW_TAG_partial_unit? */ 5456 if ((is_info && tag == DW_TAG_compile_unit) || 5457 (!is_info && tag == DW_TAG_type_unit)) 5458 break; 5459 } 5460 if (die == NULL && is_info) { 5461 warnx("could not find DW_TAG_compile_unit " 5462 "die"); 5463 continue; 5464 } else if (die == NULL && !is_info) { 5465 warnx("could not find DW_TAG_type_unit die"); 5466 continue; 5467 } 5468 5469 if (dwarf_die_CU_offset_range(die, &cu_offset, 5470 &cu_length, &de) != DW_DLV_OK) { 5471 warnx("dwarf_die_CU_offset failed: %s", 5472 dwarf_errmsg(de)); 5473 continue; 5474 } 5475 5476 cu_length -= off_size == 4 ? 4 : 12; 5477 5478 sig = 0; 5479 if (!is_info) { 5480 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5481 sig = re->dw_decode(&p, 8); 5482 } 5483 5484 printf("\n Type Unit @ offset 0x%jx:\n", 5485 (uintmax_t) cu_offset); 5486 printf(" Length:\t\t%#jx (%d-bit)\n", 5487 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5488 printf(" Version:\t\t%u\n", version); 5489 printf(" Abbrev Offset:\t0x%jx\n", 5490 (uintmax_t) aboff); 5491 printf(" Pointer Size:\t%u\n", pointer_size); 5492 if (!is_info) { 5493 printf(" Signature:\t\t0x%016jx\n", 5494 (uintmax_t) sig); 5495 printf(" Type Offset:\t0x%jx\n", 5496 (uintmax_t) typeoff); 5497 } 5498 5499 dump_dwarf_die(re, die, 0); 5500 } 5501 if (ret == DW_DLV_ERROR) 5502 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5503 if (is_info) 5504 break; 5505 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5506 } 5507 5508 static void 5509 dump_dwarf_abbrev(struct readelf *re) 5510 { 5511 Dwarf_Abbrev ab; 5512 Dwarf_Off aboff, atoff; 5513 Dwarf_Unsigned length, attr_count; 5514 Dwarf_Signed flag, form; 5515 Dwarf_Half tag, attr; 5516 Dwarf_Error de; 5517 const char *tag_str, *attr_str, *form_str; 5518 char unk_tag[32], unk_attr[32], unk_form[32]; 5519 int i, j, ret; 5520 5521 printf("\nContents of section .debug_abbrev:\n\n"); 5522 5523 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5524 NULL, NULL, &de)) == DW_DLV_OK) { 5525 printf(" Number TAG\n"); 5526 i = 0; 5527 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5528 &attr_count, &de)) == DW_DLV_OK) { 5529 if (length == 1) { 5530 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5531 break; 5532 } 5533 aboff += length; 5534 printf("%4d", ++i); 5535 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5536 warnx("dwarf_get_abbrev_tag failed: %s", 5537 dwarf_errmsg(de)); 5538 goto next_abbrev; 5539 } 5540 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5541 snprintf(unk_tag, sizeof(unk_tag), 5542 "[Unknown Tag: %#x]", tag); 5543 tag_str = unk_tag; 5544 } 5545 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5546 DW_DLV_OK) { 5547 warnx("dwarf_get_abbrev_children_flag failed:" 5548 " %s", dwarf_errmsg(de)); 5549 goto next_abbrev; 5550 } 5551 printf(" %s %s\n", tag_str, 5552 flag ? "[has children]" : "[no children]"); 5553 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5554 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5555 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5556 warnx("dwarf_get_abbrev_entry failed:" 5557 " %s", dwarf_errmsg(de)); 5558 continue; 5559 } 5560 if (dwarf_get_AT_name(attr, &attr_str) != 5561 DW_DLV_OK) { 5562 snprintf(unk_attr, sizeof(unk_attr), 5563 "[Unknown AT: %#x]", attr); 5564 attr_str = unk_attr; 5565 } 5566 if (dwarf_get_FORM_name(form, &form_str) != 5567 DW_DLV_OK) { 5568 snprintf(unk_form, sizeof(unk_form), 5569 "[Unknown Form: %#x]", 5570 (Dwarf_Half) form); 5571 form_str = unk_form; 5572 } 5573 printf(" %-18s %s\n", attr_str, form_str); 5574 } 5575 next_abbrev: 5576 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5577 } 5578 if (ret != DW_DLV_OK) 5579 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5580 } 5581 if (ret == DW_DLV_ERROR) 5582 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5583 } 5584 5585 static void 5586 dump_dwarf_pubnames(struct readelf *re) 5587 { 5588 struct section *s; 5589 Dwarf_Off die_off; 5590 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5591 Dwarf_Signed cnt; 5592 Dwarf_Global *globs; 5593 Dwarf_Half nt_version; 5594 Dwarf_Error de; 5595 Elf_Data *d; 5596 char *glob_name; 5597 int i, dwarf_size, elferr; 5598 5599 printf("\nContents of the .debug_pubnames section:\n"); 5600 5601 s = NULL; 5602 for (i = 0; (size_t) i < re->shnum; i++) { 5603 s = &re->sl[i]; 5604 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5605 break; 5606 } 5607 if ((size_t) i >= re->shnum) 5608 return; 5609 5610 (void) elf_errno(); 5611 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5612 elferr = elf_errno(); 5613 if (elferr != 0) 5614 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5615 return; 5616 } 5617 if (d->d_size <= 0) 5618 return; 5619 5620 /* Read in .debug_pubnames section table header. */ 5621 offset = 0; 5622 length = re->dw_read(d, &offset, 4); 5623 if (length == 0xffffffff) { 5624 dwarf_size = 8; 5625 length = re->dw_read(d, &offset, 8); 5626 } else 5627 dwarf_size = 4; 5628 5629 if (length > d->d_size - offset) { 5630 warnx("invalid .dwarf_pubnames section"); 5631 return; 5632 } 5633 5634 nt_version = re->dw_read(d, &offset, 2); 5635 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5636 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5637 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5638 printf(" Version:\t\t\t\t%u\n", nt_version); 5639 printf(" Offset into .debug_info section:\t%ju\n", 5640 (uintmax_t) nt_cu_offset); 5641 printf(" Size of area in .debug_info section:\t%ju\n", 5642 (uintmax_t) nt_cu_length); 5643 5644 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5645 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5646 return; 5647 } 5648 5649 printf("\n Offset Name\n"); 5650 for (i = 0; i < cnt; i++) { 5651 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5652 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5653 continue; 5654 } 5655 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5656 DW_DLV_OK) { 5657 warnx("dwarf_global_die_offset failed: %s", 5658 dwarf_errmsg(de)); 5659 continue; 5660 } 5661 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5662 } 5663 } 5664 5665 static void 5666 dump_dwarf_aranges(struct readelf *re) 5667 { 5668 struct section *s; 5669 Dwarf_Arange *aranges; 5670 Dwarf_Addr start; 5671 Dwarf_Unsigned offset, length, as_cu_offset; 5672 Dwarf_Off die_off; 5673 Dwarf_Signed cnt; 5674 Dwarf_Half as_version, as_addrsz, as_segsz; 5675 Dwarf_Error de; 5676 Elf_Data *d; 5677 int i, dwarf_size, elferr; 5678 5679 printf("\nContents of section .debug_aranges:\n"); 5680 5681 s = NULL; 5682 for (i = 0; (size_t) i < re->shnum; i++) { 5683 s = &re->sl[i]; 5684 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5685 break; 5686 } 5687 if ((size_t) i >= re->shnum) 5688 return; 5689 5690 (void) elf_errno(); 5691 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5692 elferr = elf_errno(); 5693 if (elferr != 0) 5694 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5695 return; 5696 } 5697 if (d->d_size <= 0) 5698 return; 5699 5700 /* Read in the .debug_aranges section table header. */ 5701 offset = 0; 5702 length = re->dw_read(d, &offset, 4); 5703 if (length == 0xffffffff) { 5704 dwarf_size = 8; 5705 length = re->dw_read(d, &offset, 8); 5706 } else 5707 dwarf_size = 4; 5708 5709 if (length > d->d_size - offset) { 5710 warnx("invalid .dwarf_aranges section"); 5711 return; 5712 } 5713 5714 as_version = re->dw_read(d, &offset, 2); 5715 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5716 as_addrsz = re->dw_read(d, &offset, 1); 5717 as_segsz = re->dw_read(d, &offset, 1); 5718 5719 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5720 printf(" Version:\t\t\t%u\n", as_version); 5721 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5722 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5723 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5724 5725 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5726 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5727 return; 5728 } 5729 5730 printf("\n Address Length\n"); 5731 for (i = 0; i < cnt; i++) { 5732 if (dwarf_get_arange_info(aranges[i], &start, &length, 5733 &die_off, &de) != DW_DLV_OK) { 5734 warnx("dwarf_get_arange_info failed: %s", 5735 dwarf_errmsg(de)); 5736 continue; 5737 } 5738 printf(" %08jx %ju\n", (uintmax_t) start, 5739 (uintmax_t) length); 5740 } 5741 } 5742 5743 static void 5744 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5745 { 5746 Dwarf_Attribute *attr_list; 5747 Dwarf_Ranges *ranges; 5748 Dwarf_Die ret_die; 5749 Dwarf_Error de; 5750 Dwarf_Addr base0; 5751 Dwarf_Half attr; 5752 Dwarf_Signed attr_count, cnt; 5753 Dwarf_Unsigned off, bytecnt; 5754 int i, j, ret; 5755 5756 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5757 DW_DLV_OK) { 5758 if (ret == DW_DLV_ERROR) 5759 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5760 goto cont_search; 5761 } 5762 5763 for (i = 0; i < attr_count; i++) { 5764 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5765 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5766 continue; 5767 } 5768 if (attr != DW_AT_ranges) 5769 continue; 5770 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5771 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5772 continue; 5773 } 5774 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5775 &bytecnt, &de) != DW_DLV_OK) 5776 continue; 5777 base0 = base; 5778 for (j = 0; j < cnt; j++) { 5779 printf(" %08jx ", (uintmax_t) off); 5780 if (ranges[j].dwr_type == DW_RANGES_END) { 5781 printf("%s\n", "<End of list>"); 5782 continue; 5783 } else if (ranges[j].dwr_type == 5784 DW_RANGES_ADDRESS_SELECTION) { 5785 base0 = ranges[j].dwr_addr2; 5786 continue; 5787 } 5788 if (re->ec == ELFCLASS32) 5789 printf("%08jx %08jx\n", 5790 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5791 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5792 else 5793 printf("%016jx %016jx\n", 5794 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5795 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5796 } 5797 } 5798 5799 cont_search: 5800 /* Search children. */ 5801 ret = dwarf_child(die, &ret_die, &de); 5802 if (ret == DW_DLV_ERROR) 5803 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5804 else if (ret == DW_DLV_OK) 5805 dump_dwarf_ranges_foreach(re, ret_die, base); 5806 5807 /* Search sibling. */ 5808 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5809 if (ret == DW_DLV_ERROR) 5810 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5811 else if (ret == DW_DLV_OK) 5812 dump_dwarf_ranges_foreach(re, ret_die, base); 5813 } 5814 5815 static void 5816 dump_dwarf_ranges(struct readelf *re) 5817 { 5818 Dwarf_Ranges *ranges; 5819 Dwarf_Die die; 5820 Dwarf_Signed cnt; 5821 Dwarf_Unsigned bytecnt; 5822 Dwarf_Half tag; 5823 Dwarf_Error de; 5824 Dwarf_Unsigned lowpc; 5825 int ret; 5826 5827 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5828 DW_DLV_OK) 5829 return; 5830 5831 printf("Contents of the .debug_ranges section:\n\n"); 5832 if (re->ec == ELFCLASS32) 5833 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5834 else 5835 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5836 5837 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5838 NULL, &de)) == DW_DLV_OK) { 5839 die = NULL; 5840 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5841 continue; 5842 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5843 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5844 continue; 5845 } 5846 /* XXX: What about DW_TAG_partial_unit? */ 5847 lowpc = 0; 5848 if (tag == DW_TAG_compile_unit) { 5849 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5850 &de) != DW_DLV_OK) 5851 lowpc = 0; 5852 } 5853 5854 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5855 } 5856 putchar('\n'); 5857 } 5858 5859 static void 5860 dump_dwarf_macinfo(struct readelf *re) 5861 { 5862 Dwarf_Unsigned offset; 5863 Dwarf_Signed cnt; 5864 Dwarf_Macro_Details *md; 5865 Dwarf_Error de; 5866 const char *mi_str; 5867 char unk_mi[32]; 5868 int i; 5869 5870 #define _MAX_MACINFO_ENTRY 65535 5871 5872 printf("\nContents of section .debug_macinfo:\n\n"); 5873 5874 offset = 0; 5875 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5876 &cnt, &md, &de) == DW_DLV_OK) { 5877 for (i = 0; i < cnt; i++) { 5878 offset = md[i].dmd_offset + 1; 5879 if (md[i].dmd_type == 0) 5880 break; 5881 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5882 DW_DLV_OK) { 5883 snprintf(unk_mi, sizeof(unk_mi), 5884 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5885 mi_str = unk_mi; 5886 } 5887 printf(" %s", mi_str); 5888 switch (md[i].dmd_type) { 5889 case DW_MACINFO_define: 5890 case DW_MACINFO_undef: 5891 printf(" - lineno : %jd macro : %s\n", 5892 (intmax_t) md[i].dmd_lineno, 5893 md[i].dmd_macro); 5894 break; 5895 case DW_MACINFO_start_file: 5896 printf(" - lineno : %jd filenum : %jd\n", 5897 (intmax_t) md[i].dmd_lineno, 5898 (intmax_t) md[i].dmd_fileindex); 5899 break; 5900 default: 5901 putchar('\n'); 5902 break; 5903 } 5904 } 5905 } 5906 5907 #undef _MAX_MACINFO_ENTRY 5908 } 5909 5910 static void 5911 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5912 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5913 Dwarf_Debug dbg) 5914 { 5915 Dwarf_Frame_Op *oplist; 5916 Dwarf_Signed opcnt, delta; 5917 Dwarf_Small op; 5918 Dwarf_Error de; 5919 const char *op_str; 5920 char unk_op[32]; 5921 int i; 5922 5923 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5924 &opcnt, &de) != DW_DLV_OK) { 5925 warnx("dwarf_expand_frame_instructions failed: %s", 5926 dwarf_errmsg(de)); 5927 return; 5928 } 5929 5930 for (i = 0; i < opcnt; i++) { 5931 if (oplist[i].fp_base_op != 0) 5932 op = oplist[i].fp_base_op << 6; 5933 else 5934 op = oplist[i].fp_extended_op; 5935 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5936 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5937 op); 5938 op_str = unk_op; 5939 } 5940 printf(" %s", op_str); 5941 switch (op) { 5942 case DW_CFA_advance_loc: 5943 delta = oplist[i].fp_offset * caf; 5944 pc += delta; 5945 printf(": %ju to %08jx", (uintmax_t) delta, 5946 (uintmax_t) pc); 5947 break; 5948 case DW_CFA_offset: 5949 case DW_CFA_offset_extended: 5950 case DW_CFA_offset_extended_sf: 5951 delta = oplist[i].fp_offset * daf; 5952 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5953 dwarf_regname(re, oplist[i].fp_register), 5954 (intmax_t) delta); 5955 break; 5956 case DW_CFA_restore: 5957 printf(": r%u (%s)", oplist[i].fp_register, 5958 dwarf_regname(re, oplist[i].fp_register)); 5959 break; 5960 case DW_CFA_set_loc: 5961 pc = oplist[i].fp_offset; 5962 printf(": to %08jx", (uintmax_t) pc); 5963 break; 5964 case DW_CFA_advance_loc1: 5965 case DW_CFA_advance_loc2: 5966 case DW_CFA_advance_loc4: 5967 pc += oplist[i].fp_offset; 5968 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5969 (uintmax_t) pc); 5970 break; 5971 case DW_CFA_def_cfa: 5972 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5973 dwarf_regname(re, oplist[i].fp_register), 5974 (uintmax_t) oplist[i].fp_offset); 5975 break; 5976 case DW_CFA_def_cfa_sf: 5977 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5978 dwarf_regname(re, oplist[i].fp_register), 5979 (intmax_t) (oplist[i].fp_offset * daf)); 5980 break; 5981 case DW_CFA_def_cfa_register: 5982 printf(": r%u (%s)", oplist[i].fp_register, 5983 dwarf_regname(re, oplist[i].fp_register)); 5984 break; 5985 case DW_CFA_def_cfa_offset: 5986 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5987 break; 5988 case DW_CFA_def_cfa_offset_sf: 5989 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5990 break; 5991 default: 5992 break; 5993 } 5994 putchar('\n'); 5995 } 5996 5997 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5998 } 5999 6000 static char * 6001 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 6002 { 6003 static char rs[16]; 6004 6005 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 6006 snprintf(rs, sizeof(rs), "%c", 'u'); 6007 else if (reg == DW_FRAME_CFA_COL) 6008 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 6009 else 6010 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 6011 (intmax_t) off); 6012 6013 return (rs); 6014 } 6015 6016 static int 6017 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 6018 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 6019 { 6020 Dwarf_Regtable rt; 6021 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 6022 Dwarf_Error de; 6023 char *vec; 6024 int i; 6025 6026 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 6027 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 6028 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 6029 #define RT(x) rt.rules[(x)] 6030 6031 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 6032 if (vec == NULL) 6033 err(EXIT_FAILURE, "calloc failed"); 6034 6035 pre_pc = ~((Dwarf_Addr) 0); 6036 cur_pc = pc; 6037 end_pc = pc + func_len; 6038 for (; cur_pc < end_pc; cur_pc++) { 6039 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6040 &de) != DW_DLV_OK) { 6041 free(vec); 6042 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6043 dwarf_errmsg(de)); 6044 return (-1); 6045 } 6046 if (row_pc == pre_pc) 6047 continue; 6048 pre_pc = row_pc; 6049 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6050 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 6051 BIT_SET(vec, i); 6052 } 6053 } 6054 6055 printf(" LOC CFA "); 6056 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6057 if (BIT_ISSET(vec, i)) { 6058 if ((Dwarf_Half) i == cie_ra) 6059 printf("ra "); 6060 else 6061 printf("%-5s", 6062 dwarf_regname(re, (unsigned int) i)); 6063 } 6064 } 6065 putchar('\n'); 6066 6067 pre_pc = ~((Dwarf_Addr) 0); 6068 cur_pc = pc; 6069 end_pc = pc + func_len; 6070 for (; cur_pc < end_pc; cur_pc++) { 6071 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6072 &de) != DW_DLV_OK) { 6073 free(vec); 6074 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6075 dwarf_errmsg(de)); 6076 return (-1); 6077 } 6078 if (row_pc == pre_pc) 6079 continue; 6080 pre_pc = row_pc; 6081 printf("%08jx ", (uintmax_t) row_pc); 6082 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 6083 RT(0).dw_offset)); 6084 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6085 if (BIT_ISSET(vec, i)) { 6086 printf("%-5s", get_regoff_str(re, 6087 RT(i).dw_regnum, RT(i).dw_offset)); 6088 } 6089 } 6090 putchar('\n'); 6091 } 6092 6093 free(vec); 6094 6095 return (0); 6096 6097 #undef BIT_SET 6098 #undef BIT_CLR 6099 #undef BIT_ISSET 6100 #undef RT 6101 } 6102 6103 static void 6104 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 6105 { 6106 Dwarf_Cie *cie_list, cie, pre_cie; 6107 Dwarf_Fde *fde_list, fde; 6108 Dwarf_Off cie_offset, fde_offset; 6109 Dwarf_Unsigned cie_length, fde_instlen; 6110 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 6111 Dwarf_Signed cie_count, fde_count, cie_index; 6112 Dwarf_Addr low_pc; 6113 Dwarf_Half cie_ra; 6114 Dwarf_Small cie_version; 6115 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 6116 char *cie_aug, c; 6117 int i, eh_frame; 6118 Dwarf_Error de; 6119 6120 printf("\nThe section %s contains:\n\n", s->name); 6121 6122 if (!strcmp(s->name, ".debug_frame")) { 6123 eh_frame = 0; 6124 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 6125 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6126 warnx("dwarf_get_fde_list failed: %s", 6127 dwarf_errmsg(de)); 6128 return; 6129 } 6130 } else if (!strcmp(s->name, ".eh_frame")) { 6131 eh_frame = 1; 6132 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 6133 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6134 warnx("dwarf_get_fde_list_eh failed: %s", 6135 dwarf_errmsg(de)); 6136 return; 6137 } 6138 } else 6139 return; 6140 6141 pre_cie = NULL; 6142 for (i = 0; i < fde_count; i++) { 6143 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 6144 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6145 continue; 6146 } 6147 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 6148 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6149 continue; 6150 } 6151 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 6152 &fde_length, &cie_offset, &cie_index, &fde_offset, 6153 &de) != DW_DLV_OK) { 6154 warnx("dwarf_get_fde_range failed: %s", 6155 dwarf_errmsg(de)); 6156 continue; 6157 } 6158 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 6159 &de) != DW_DLV_OK) { 6160 warnx("dwarf_get_fde_instr_bytes failed: %s", 6161 dwarf_errmsg(de)); 6162 continue; 6163 } 6164 if (pre_cie == NULL || cie != pre_cie) { 6165 pre_cie = cie; 6166 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 6167 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 6168 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 6169 warnx("dwarf_get_cie_info failed: %s", 6170 dwarf_errmsg(de)); 6171 continue; 6172 } 6173 printf("%08jx %08jx %8.8jx CIE", 6174 (uintmax_t) cie_offset, 6175 (uintmax_t) cie_length, 6176 (uintmax_t) (eh_frame ? 0 : ~0U)); 6177 if (!alt) { 6178 putchar('\n'); 6179 printf(" Version:\t\t\t%u\n", cie_version); 6180 printf(" Augmentation:\t\t\t\""); 6181 while ((c = *cie_aug++) != '\0') 6182 putchar(c); 6183 printf("\"\n"); 6184 printf(" Code alignment factor:\t%ju\n", 6185 (uintmax_t) cie_caf); 6186 printf(" Data alignment factor:\t%jd\n", 6187 (intmax_t) cie_daf); 6188 printf(" Return address column:\t%ju\n", 6189 (uintmax_t) cie_ra); 6190 putchar('\n'); 6191 dump_dwarf_frame_inst(re, cie, cie_inst, 6192 cie_instlen, cie_caf, cie_daf, 0, 6193 re->dbg); 6194 putchar('\n'); 6195 } else { 6196 printf(" \""); 6197 while ((c = *cie_aug++) != '\0') 6198 putchar(c); 6199 putchar('"'); 6200 printf(" cf=%ju df=%jd ra=%ju\n", 6201 (uintmax_t) cie_caf, 6202 (uintmax_t) cie_daf, 6203 (uintmax_t) cie_ra); 6204 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 6205 cie_ra); 6206 putchar('\n'); 6207 } 6208 } 6209 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 6210 (uintmax_t) fde_offset, (uintmax_t) fde_length, 6211 (uintmax_t) cie_offset, 6212 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 6213 cie_offset), 6214 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 6215 if (!alt) 6216 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 6217 cie_caf, cie_daf, low_pc, re->dbg); 6218 else 6219 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 6220 cie_ra); 6221 putchar('\n'); 6222 } 6223 } 6224 6225 static void 6226 dump_dwarf_frame(struct readelf *re, int alt) 6227 { 6228 struct section *s; 6229 int i; 6230 6231 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 6232 6233 for (i = 0; (size_t) i < re->shnum; i++) { 6234 s = &re->sl[i]; 6235 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 6236 !strcmp(s->name, ".eh_frame"))) 6237 dump_dwarf_frame_section(re, s, alt); 6238 } 6239 } 6240 6241 static void 6242 dump_dwarf_str(struct readelf *re) 6243 { 6244 struct section *s; 6245 Elf_Data *d; 6246 unsigned char *p; 6247 int elferr, end, i, j; 6248 6249 printf("\nContents of section .debug_str:\n"); 6250 6251 s = NULL; 6252 for (i = 0; (size_t) i < re->shnum; i++) { 6253 s = &re->sl[i]; 6254 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 6255 break; 6256 } 6257 if ((size_t) i >= re->shnum) 6258 return; 6259 6260 (void) elf_errno(); 6261 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6262 elferr = elf_errno(); 6263 if (elferr != 0) 6264 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 6265 return; 6266 } 6267 if (d->d_size <= 0) 6268 return; 6269 6270 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 6271 printf(" 0x%08x", (unsigned int) i); 6272 if ((size_t) i + 16 > d->d_size) 6273 end = d->d_size; 6274 else 6275 end = i + 16; 6276 for (j = i; j < i + 16; j++) { 6277 if ((j - i) % 4 == 0) 6278 putchar(' '); 6279 if (j >= end) { 6280 printf(" "); 6281 continue; 6282 } 6283 printf("%02x", (uint8_t) p[j]); 6284 } 6285 putchar(' '); 6286 for (j = i; j < end; j++) { 6287 if (isprint(p[j])) 6288 putchar(p[j]); 6289 else if (p[j] == 0) 6290 putchar('.'); 6291 else 6292 putchar(' '); 6293 } 6294 putchar('\n'); 6295 } 6296 } 6297 6298 static int 6299 loc_at_comparator(const void *la1, const void *la2) 6300 { 6301 const struct loc_at *left, *right; 6302 6303 left = (const struct loc_at *)la1; 6304 right = (const struct loc_at *)la2; 6305 6306 if (left->la_off > right->la_off) 6307 return (1); 6308 else if (left->la_off < right->la_off) 6309 return (-1); 6310 else 6311 return (0); 6312 } 6313 6314 static void 6315 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc, 6316 struct loc_at **la_list, size_t *la_list_len, size_t *la_list_cap) 6317 { 6318 struct loc_at *la; 6319 Dwarf_Attribute *attr_list; 6320 Dwarf_Die ret_die; 6321 Dwarf_Unsigned off; 6322 Dwarf_Off ref; 6323 Dwarf_Signed attr_count; 6324 Dwarf_Half attr, form; 6325 Dwarf_Bool is_info; 6326 Dwarf_Error de; 6327 int i, ret; 6328 6329 is_info = dwarf_get_die_infotypes_flag(die); 6330 6331 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6332 DW_DLV_OK) { 6333 if (ret == DW_DLV_ERROR) 6334 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6335 goto cont_search; 6336 } 6337 for (i = 0; i < attr_count; i++) { 6338 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6339 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6340 continue; 6341 } 6342 if (attr != DW_AT_location && 6343 attr != DW_AT_string_length && 6344 attr != DW_AT_return_addr && 6345 attr != DW_AT_data_member_location && 6346 attr != DW_AT_frame_base && 6347 attr != DW_AT_segment && 6348 attr != DW_AT_static_link && 6349 attr != DW_AT_use_location && 6350 attr != DW_AT_vtable_elem_location) 6351 continue; 6352 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6353 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6354 continue; 6355 } 6356 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6357 if (dwarf_formudata(attr_list[i], &off, &de) != 6358 DW_DLV_OK) { 6359 warnx("dwarf_formudata failed: %s", 6360 dwarf_errmsg(de)); 6361 continue; 6362 } 6363 } else if (form == DW_FORM_sec_offset) { 6364 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6365 DW_DLV_OK) { 6366 warnx("dwarf_global_formref failed: %s", 6367 dwarf_errmsg(de)); 6368 continue; 6369 } 6370 off = ref; 6371 } else 6372 continue; 6373 6374 if (*la_list_cap == *la_list_len) { 6375 *la_list = realloc(*la_list, 6376 *la_list_cap * 2 * sizeof(**la_list)); 6377 if (*la_list == NULL) 6378 err(EXIT_FAILURE, "realloc failed"); 6379 *la_list_cap *= 2; 6380 } 6381 la = &((*la_list)[*la_list_len]); 6382 la->la_at = attr_list[i]; 6383 la->la_off = off; 6384 la->la_lowpc = lowpc; 6385 la->la_cu_psize = re->cu_psize; 6386 la->la_cu_osize = re->cu_osize; 6387 la->la_cu_ver = re->cu_ver; 6388 (*la_list_len)++; 6389 } 6390 6391 cont_search: 6392 /* Search children. */ 6393 ret = dwarf_child(die, &ret_die, &de); 6394 if (ret == DW_DLV_ERROR) 6395 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6396 else if (ret == DW_DLV_OK) 6397 search_loclist_at(re, ret_die, lowpc, la_list, 6398 la_list_len, la_list_cap); 6399 6400 /* Search sibling. */ 6401 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6402 if (ret == DW_DLV_ERROR) 6403 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6404 else if (ret == DW_DLV_OK) 6405 search_loclist_at(re, ret_die, lowpc, la_list, 6406 la_list_len, la_list_cap); 6407 } 6408 6409 static void 6410 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6411 { 6412 const char *op_str; 6413 char unk_op[32]; 6414 uint8_t *b, n; 6415 int i; 6416 6417 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6418 DW_DLV_OK) { 6419 snprintf(unk_op, sizeof(unk_op), 6420 "[Unknown OP: %#x]", lr->lr_atom); 6421 op_str = unk_op; 6422 } 6423 6424 printf("%s", op_str); 6425 6426 switch (lr->lr_atom) { 6427 case DW_OP_reg0: 6428 case DW_OP_reg1: 6429 case DW_OP_reg2: 6430 case DW_OP_reg3: 6431 case DW_OP_reg4: 6432 case DW_OP_reg5: 6433 case DW_OP_reg6: 6434 case DW_OP_reg7: 6435 case DW_OP_reg8: 6436 case DW_OP_reg9: 6437 case DW_OP_reg10: 6438 case DW_OP_reg11: 6439 case DW_OP_reg12: 6440 case DW_OP_reg13: 6441 case DW_OP_reg14: 6442 case DW_OP_reg15: 6443 case DW_OP_reg16: 6444 case DW_OP_reg17: 6445 case DW_OP_reg18: 6446 case DW_OP_reg19: 6447 case DW_OP_reg20: 6448 case DW_OP_reg21: 6449 case DW_OP_reg22: 6450 case DW_OP_reg23: 6451 case DW_OP_reg24: 6452 case DW_OP_reg25: 6453 case DW_OP_reg26: 6454 case DW_OP_reg27: 6455 case DW_OP_reg28: 6456 case DW_OP_reg29: 6457 case DW_OP_reg30: 6458 case DW_OP_reg31: 6459 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6460 break; 6461 6462 case DW_OP_deref: 6463 case DW_OP_lit0: 6464 case DW_OP_lit1: 6465 case DW_OP_lit2: 6466 case DW_OP_lit3: 6467 case DW_OP_lit4: 6468 case DW_OP_lit5: 6469 case DW_OP_lit6: 6470 case DW_OP_lit7: 6471 case DW_OP_lit8: 6472 case DW_OP_lit9: 6473 case DW_OP_lit10: 6474 case DW_OP_lit11: 6475 case DW_OP_lit12: 6476 case DW_OP_lit13: 6477 case DW_OP_lit14: 6478 case DW_OP_lit15: 6479 case DW_OP_lit16: 6480 case DW_OP_lit17: 6481 case DW_OP_lit18: 6482 case DW_OP_lit19: 6483 case DW_OP_lit20: 6484 case DW_OP_lit21: 6485 case DW_OP_lit22: 6486 case DW_OP_lit23: 6487 case DW_OP_lit24: 6488 case DW_OP_lit25: 6489 case DW_OP_lit26: 6490 case DW_OP_lit27: 6491 case DW_OP_lit28: 6492 case DW_OP_lit29: 6493 case DW_OP_lit30: 6494 case DW_OP_lit31: 6495 case DW_OP_dup: 6496 case DW_OP_drop: 6497 case DW_OP_over: 6498 case DW_OP_swap: 6499 case DW_OP_rot: 6500 case DW_OP_xderef: 6501 case DW_OP_abs: 6502 case DW_OP_and: 6503 case DW_OP_div: 6504 case DW_OP_minus: 6505 case DW_OP_mod: 6506 case DW_OP_mul: 6507 case DW_OP_neg: 6508 case DW_OP_not: 6509 case DW_OP_or: 6510 case DW_OP_plus: 6511 case DW_OP_shl: 6512 case DW_OP_shr: 6513 case DW_OP_shra: 6514 case DW_OP_xor: 6515 case DW_OP_eq: 6516 case DW_OP_ge: 6517 case DW_OP_gt: 6518 case DW_OP_le: 6519 case DW_OP_lt: 6520 case DW_OP_ne: 6521 case DW_OP_nop: 6522 case DW_OP_push_object_address: 6523 case DW_OP_form_tls_address: 6524 case DW_OP_call_frame_cfa: 6525 case DW_OP_stack_value: 6526 case DW_OP_GNU_push_tls_address: 6527 case DW_OP_GNU_uninit: 6528 break; 6529 6530 case DW_OP_const1u: 6531 case DW_OP_pick: 6532 case DW_OP_deref_size: 6533 case DW_OP_xderef_size: 6534 case DW_OP_const2u: 6535 case DW_OP_bra: 6536 case DW_OP_skip: 6537 case DW_OP_const4u: 6538 case DW_OP_const8u: 6539 case DW_OP_constu: 6540 case DW_OP_plus_uconst: 6541 case DW_OP_regx: 6542 case DW_OP_piece: 6543 printf(": %ju", (uintmax_t) 6544 lr->lr_number); 6545 break; 6546 6547 case DW_OP_const1s: 6548 case DW_OP_const2s: 6549 case DW_OP_const4s: 6550 case DW_OP_const8s: 6551 case DW_OP_consts: 6552 printf(": %jd", (intmax_t) 6553 lr->lr_number); 6554 break; 6555 6556 case DW_OP_breg0: 6557 case DW_OP_breg1: 6558 case DW_OP_breg2: 6559 case DW_OP_breg3: 6560 case DW_OP_breg4: 6561 case DW_OP_breg5: 6562 case DW_OP_breg6: 6563 case DW_OP_breg7: 6564 case DW_OP_breg8: 6565 case DW_OP_breg9: 6566 case DW_OP_breg10: 6567 case DW_OP_breg11: 6568 case DW_OP_breg12: 6569 case DW_OP_breg13: 6570 case DW_OP_breg14: 6571 case DW_OP_breg15: 6572 case DW_OP_breg16: 6573 case DW_OP_breg17: 6574 case DW_OP_breg18: 6575 case DW_OP_breg19: 6576 case DW_OP_breg20: 6577 case DW_OP_breg21: 6578 case DW_OP_breg22: 6579 case DW_OP_breg23: 6580 case DW_OP_breg24: 6581 case DW_OP_breg25: 6582 case DW_OP_breg26: 6583 case DW_OP_breg27: 6584 case DW_OP_breg28: 6585 case DW_OP_breg29: 6586 case DW_OP_breg30: 6587 case DW_OP_breg31: 6588 printf(" (%s): %jd", 6589 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6590 (intmax_t) lr->lr_number); 6591 break; 6592 6593 case DW_OP_fbreg: 6594 printf(": %jd", (intmax_t) 6595 lr->lr_number); 6596 break; 6597 6598 case DW_OP_bregx: 6599 printf(": %ju (%s) %jd", 6600 (uintmax_t) lr->lr_number, 6601 dwarf_regname(re, (unsigned int) lr->lr_number), 6602 (intmax_t) lr->lr_number2); 6603 break; 6604 6605 case DW_OP_addr: 6606 case DW_OP_GNU_encoded_addr: 6607 printf(": %#jx", (uintmax_t) 6608 lr->lr_number); 6609 break; 6610 6611 case DW_OP_GNU_implicit_pointer: 6612 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6613 (intmax_t) lr->lr_number2); 6614 break; 6615 6616 case DW_OP_implicit_value: 6617 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6618 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6619 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6620 printf(" %x", b[i]); 6621 break; 6622 6623 case DW_OP_GNU_entry_value: 6624 printf(": ("); 6625 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6626 lr->lr_number); 6627 putchar(')'); 6628 break; 6629 6630 case DW_OP_GNU_const_type: 6631 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6632 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6633 n = *b; 6634 for (i = 1; (uint8_t) i < n; i++) 6635 printf(" %x", b[i]); 6636 break; 6637 6638 case DW_OP_GNU_regval_type: 6639 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6640 dwarf_regname(re, (unsigned int) lr->lr_number), 6641 (uintmax_t) lr->lr_number2); 6642 break; 6643 6644 case DW_OP_GNU_convert: 6645 case DW_OP_GNU_deref_type: 6646 case DW_OP_GNU_parameter_ref: 6647 case DW_OP_GNU_reinterpret: 6648 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6649 break; 6650 6651 default: 6652 break; 6653 } 6654 } 6655 6656 static void 6657 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6658 { 6659 Dwarf_Locdesc *llbuf; 6660 Dwarf_Signed lcnt; 6661 Dwarf_Error de; 6662 int i; 6663 6664 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6665 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6666 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6667 return; 6668 } 6669 6670 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6671 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6672 if (i < llbuf->ld_cents - 1) 6673 printf("; "); 6674 } 6675 6676 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6677 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6678 } 6679 6680 static void 6681 dump_dwarf_loclist(struct readelf *re) 6682 { 6683 Dwarf_Die die; 6684 Dwarf_Locdesc **llbuf; 6685 Dwarf_Unsigned lowpc; 6686 Dwarf_Signed lcnt; 6687 Dwarf_Half tag, version, pointer_size, off_size; 6688 Dwarf_Error de; 6689 struct loc_at *la_list, *left, *right, *la; 6690 size_t la_list_len, la_list_cap; 6691 unsigned int duplicates, k; 6692 int i, j, ret, has_content; 6693 6694 la_list_len = 0; 6695 la_list_cap = 200; 6696 if ((la_list = calloc(la_list_cap, sizeof(struct loc_at))) == NULL) 6697 errx(EXIT_FAILURE, "calloc failed"); 6698 /* Search .debug_info section. */ 6699 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6700 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6701 set_cu_context(re, pointer_size, off_size, version); 6702 die = NULL; 6703 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6704 continue; 6705 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6706 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6707 continue; 6708 } 6709 /* XXX: What about DW_TAG_partial_unit? */ 6710 lowpc = 0; 6711 if (tag == DW_TAG_compile_unit) { 6712 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6713 &lowpc, &de) != DW_DLV_OK) 6714 lowpc = 0; 6715 } 6716 6717 /* Search attributes for reference to .debug_loc section. */ 6718 search_loclist_at(re, die, lowpc, &la_list, 6719 &la_list_len, &la_list_cap); 6720 } 6721 if (ret == DW_DLV_ERROR) 6722 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6723 6724 /* Search .debug_types section. */ 6725 do { 6726 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6727 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6728 NULL, NULL, &de)) == DW_DLV_OK) { 6729 set_cu_context(re, pointer_size, off_size, version); 6730 die = NULL; 6731 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6732 DW_DLV_OK) 6733 continue; 6734 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6735 warnx("dwarf_tag failed: %s", 6736 dwarf_errmsg(de)); 6737 continue; 6738 } 6739 6740 lowpc = 0; 6741 if (tag == DW_TAG_type_unit) { 6742 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6743 &lowpc, &de) != DW_DLV_OK) 6744 lowpc = 0; 6745 } 6746 6747 /* 6748 * Search attributes for reference to .debug_loc 6749 * section. 6750 */ 6751 search_loclist_at(re, die, lowpc, &la_list, 6752 &la_list_len, &la_list_cap); 6753 } 6754 if (ret == DW_DLV_ERROR) 6755 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6756 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6757 6758 if (la_list_len == 0) { 6759 free(la_list); 6760 return; 6761 } 6762 6763 /* Sort la_list using loc_at_comparator. */ 6764 qsort(la_list, la_list_len, sizeof(struct loc_at), loc_at_comparator); 6765 6766 /* Get rid of the duplicates in la_list. */ 6767 duplicates = 0; 6768 for (k = 1; k < la_list_len; ++k) { 6769 left = &la_list[k - 1 - duplicates]; 6770 right = &la_list[k]; 6771 6772 if (left->la_off == right->la_off) 6773 duplicates++; 6774 else 6775 la_list[k - duplicates] = *right; 6776 } 6777 la_list_len -= duplicates; 6778 6779 has_content = 0; 6780 for (k = 0; k < la_list_len; ++k) { 6781 la = &la_list[k]; 6782 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6783 DW_DLV_OK) { 6784 if (ret != DW_DLV_NO_ENTRY) 6785 warnx("dwarf_loclist_n failed: %s", 6786 dwarf_errmsg(de)); 6787 continue; 6788 } 6789 if (!has_content) { 6790 has_content = 1; 6791 printf("\nContents of section .debug_loc:\n"); 6792 printf(" Offset Begin End Expression\n"); 6793 } 6794 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6795 la->la_cu_ver); 6796 for (i = 0; i < lcnt; i++) { 6797 printf(" %8.8jx ", (uintmax_t) la->la_off); 6798 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6799 printf("<End of list>\n"); 6800 continue; 6801 } 6802 6803 /* TODO: handle base selection entry. */ 6804 6805 printf("%8.8jx %8.8jx ", 6806 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6807 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6808 6809 putchar('('); 6810 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6811 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6812 if (j < llbuf[i]->ld_cents - 1) 6813 printf("; "); 6814 } 6815 putchar(')'); 6816 6817 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6818 printf(" (start == end)"); 6819 putchar('\n'); 6820 } 6821 for (i = 0; i < lcnt; i++) { 6822 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6823 DW_DLA_LOC_BLOCK); 6824 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6825 } 6826 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6827 } 6828 6829 if (!has_content) 6830 printf("\nSection '.debug_loc' has no debugging data.\n"); 6831 6832 free(la_list); 6833 } 6834 6835 /* 6836 * Retrieve a string using string table section index and the string offset. 6837 */ 6838 static const char* 6839 get_string(struct readelf *re, int strtab, size_t off) 6840 { 6841 const char *name; 6842 6843 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6844 return (""); 6845 6846 return (name); 6847 } 6848 6849 /* 6850 * Retrieve the name of a symbol using the section index of the symbol 6851 * table and the index of the symbol within that table. 6852 */ 6853 static const char * 6854 get_symbol_name(struct readelf *re, int symtab, int i) 6855 { 6856 struct section *s; 6857 const char *name; 6858 GElf_Sym sym; 6859 Elf_Data *data; 6860 int elferr; 6861 6862 s = &re->sl[symtab]; 6863 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6864 return (""); 6865 (void) elf_errno(); 6866 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6867 elferr = elf_errno(); 6868 if (elferr != 0) 6869 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6870 return (""); 6871 } 6872 if (gelf_getsym(data, i, &sym) != &sym) 6873 return (""); 6874 /* Return section name for STT_SECTION symbol. */ 6875 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6876 if (sym.st_shndx < re->shnum && 6877 re->sl[sym.st_shndx].name != NULL) 6878 return (re->sl[sym.st_shndx].name); 6879 return (""); 6880 } 6881 if (s->link >= re->shnum || 6882 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6883 return (""); 6884 6885 return (name); 6886 } 6887 6888 static uint64_t 6889 get_symbol_value(struct readelf *re, int symtab, int i) 6890 { 6891 struct section *s; 6892 GElf_Sym sym; 6893 Elf_Data *data; 6894 int elferr; 6895 6896 s = &re->sl[symtab]; 6897 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6898 return (0); 6899 (void) elf_errno(); 6900 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6901 elferr = elf_errno(); 6902 if (elferr != 0) 6903 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6904 return (0); 6905 } 6906 if (gelf_getsym(data, i, &sym) != &sym) 6907 return (0); 6908 6909 return (sym.st_value); 6910 } 6911 6912 /* 6913 * Decompress a data section if needed (using ZLIB). 6914 * Returns true if sucessful, false otherwise. 6915 */ 6916 static bool decompress_section(struct section *s, 6917 unsigned char *compressed_data_buffer, size_t compressed_size, 6918 unsigned char **ret_buf, size_t *ret_sz) 6919 { 6920 GElf_Shdr sh; 6921 6922 if (gelf_getshdr(s->scn, &sh) == NULL) 6923 errx(EXIT_FAILURE, "gelf_getshdr() failed: %s", elf_errmsg(-1)); 6924 6925 if (sh.sh_flags & SHF_COMPRESSED) { 6926 int ret; 6927 GElf_Chdr chdr; 6928 Elf64_Xword inflated_size; 6929 unsigned char *uncompressed_data_buffer = NULL; 6930 Elf64_Xword uncompressed_size; 6931 z_stream strm; 6932 6933 if (gelf_getchdr(s->scn, &chdr) == NULL) 6934 errx(EXIT_FAILURE, "gelf_getchdr() failed: %s", elf_errmsg(-1)); 6935 if (chdr.ch_type != ELFCOMPRESS_ZLIB) { 6936 warnx("unknown compression type: %d", chdr.ch_type); 6937 return (false); 6938 } 6939 6940 inflated_size = 0; 6941 uncompressed_size = chdr.ch_size; 6942 uncompressed_data_buffer = malloc(uncompressed_size); 6943 compressed_data_buffer += sizeof(chdr); 6944 compressed_size -= sizeof(chdr); 6945 6946 strm.zalloc = Z_NULL; 6947 strm.zfree = Z_NULL; 6948 strm.opaque = Z_NULL; 6949 strm.avail_in = compressed_size; 6950 strm.avail_out = uncompressed_size; 6951 ret = inflateInit(&strm); 6952 6953 if (ret != Z_OK) 6954 goto fail; 6955 /* 6956 * The section can contain several compressed buffers, 6957 * so decompress in a loop until all data is inflated. 6958 */ 6959 while (inflated_size < compressed_size) { 6960 strm.next_in = compressed_data_buffer + inflated_size; 6961 strm.next_out = uncompressed_data_buffer + inflated_size; 6962 ret = inflate(&strm, Z_FINISH); 6963 if (ret != Z_STREAM_END) 6964 goto fail; 6965 inflated_size = uncompressed_size - strm.avail_out; 6966 ret = inflateReset(&strm); 6967 if (ret != Z_OK) 6968 goto fail; 6969 } 6970 if (strm.avail_out != 0) 6971 warnx("Warning: wrong info in compression header."); 6972 ret = inflateEnd(&strm); 6973 if (ret != Z_OK) 6974 goto fail; 6975 *ret_buf = uncompressed_data_buffer; 6976 *ret_sz = uncompressed_size; 6977 return (true); 6978 fail: 6979 inflateEnd(&strm); 6980 if (strm.msg) 6981 warnx("%s", strm.msg); 6982 else 6983 warnx("ZLIB error: %d", ret); 6984 free(uncompressed_data_buffer); 6985 return (false); 6986 } 6987 return (false); 6988 } 6989 6990 static void 6991 hex_dump(struct readelf *re) 6992 { 6993 struct section *s; 6994 Elf_Data *d; 6995 uint8_t *buf, *new_buf; 6996 size_t sz, nbytes; 6997 uint64_t addr; 6998 int elferr, i, j; 6999 7000 for (i = 1; (size_t) i < re->shnum; i++) { 7001 new_buf = NULL; 7002 s = &re->sl[i]; 7003 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 7004 continue; 7005 (void) elf_errno(); 7006 if ((d = elf_getdata(s->scn, NULL)) == NULL && 7007 (d = elf_rawdata(s->scn, NULL)) == NULL) { 7008 elferr = elf_errno(); 7009 if (elferr != 0) 7010 warnx("elf_getdata failed: %s", 7011 elf_errmsg(elferr)); 7012 continue; 7013 } 7014 (void) elf_errno(); 7015 if (d->d_size <= 0 || d->d_buf == NULL) { 7016 printf("\nSection '%s' has no data to dump.\n", 7017 s->name); 7018 continue; 7019 } 7020 buf = d->d_buf; 7021 sz = d->d_size; 7022 addr = s->addr; 7023 if (re->options & RE_Z) { 7024 if (decompress_section(s, d->d_buf, d->d_size, 7025 &new_buf, &sz)) 7026 buf = new_buf; 7027 } 7028 printf("\nHex dump of section '%s':\n", s->name); 7029 while (sz > 0) { 7030 printf(" 0x%8.8jx ", (uintmax_t)addr); 7031 nbytes = sz > 16? 16 : sz; 7032 for (j = 0; j < 16; j++) { 7033 if ((size_t)j < nbytes) 7034 printf("%2.2x", buf[j]); 7035 else 7036 printf(" "); 7037 if ((j & 3) == 3) 7038 printf(" "); 7039 } 7040 for (j = 0; (size_t)j < nbytes; j++) { 7041 if (isprint(buf[j])) 7042 printf("%c", buf[j]); 7043 else 7044 printf("."); 7045 } 7046 printf("\n"); 7047 buf += nbytes; 7048 addr += nbytes; 7049 sz -= nbytes; 7050 } 7051 free(new_buf); 7052 } 7053 } 7054 7055 static void 7056 str_dump(struct readelf *re) 7057 { 7058 struct section *s; 7059 Elf_Data *d; 7060 unsigned char *start, *end, *buf_end, *new_buf; 7061 unsigned int len; 7062 size_t sz; 7063 int i, j, elferr, found; 7064 7065 for (i = 1; (size_t) i < re->shnum; i++) { 7066 new_buf = NULL; 7067 s = &re->sl[i]; 7068 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 7069 continue; 7070 (void) elf_errno(); 7071 if ((d = elf_getdata(s->scn, NULL)) == NULL && 7072 (d = elf_rawdata(s->scn, NULL)) == NULL) { 7073 elferr = elf_errno(); 7074 if (elferr != 0) 7075 warnx("elf_getdata failed: %s", 7076 elf_errmsg(elferr)); 7077 continue; 7078 } 7079 (void) elf_errno(); 7080 if (d->d_size <= 0 || d->d_buf == NULL) { 7081 printf("\nSection '%s' has no data to dump.\n", 7082 s->name); 7083 continue; 7084 } 7085 found = 0; 7086 start = d->d_buf; 7087 sz = d->d_size; 7088 if (re->options & RE_Z) { 7089 if (decompress_section(s, d->d_buf, d->d_size, 7090 &new_buf, &sz)) 7091 start = new_buf; 7092 } 7093 buf_end = start + sz; 7094 printf("\nString dump of section '%s':\n", s->name); 7095 for (;;) { 7096 while (start < buf_end && !isprint(*start)) 7097 start++; 7098 if (start >= buf_end) 7099 break; 7100 end = start + 1; 7101 while (end < buf_end && isprint(*end)) 7102 end++; 7103 printf(" [%6lx] ", 7104 (long) (start - (unsigned char *) d->d_buf)); 7105 len = end - start; 7106 for (j = 0; (unsigned int) j < len; j++) 7107 putchar(start[j]); 7108 putchar('\n'); 7109 found = 1; 7110 if (end >= buf_end) 7111 break; 7112 start = end + 1; 7113 } 7114 free(new_buf); 7115 if (!found) 7116 printf(" No strings found in this section."); 7117 putchar('\n'); 7118 } 7119 } 7120 7121 static void 7122 load_sections(struct readelf *re) 7123 { 7124 struct section *s; 7125 const char *name; 7126 Elf_Scn *scn; 7127 GElf_Shdr sh; 7128 size_t shstrndx, ndx; 7129 int elferr; 7130 7131 /* Allocate storage for internal section list. */ 7132 if (!elf_getshnum(re->elf, &re->shnum)) { 7133 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 7134 return; 7135 } 7136 if (re->sl != NULL) 7137 free(re->sl); 7138 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 7139 err(EXIT_FAILURE, "calloc failed"); 7140 7141 /* Get the index of .shstrtab section. */ 7142 if (!elf_getshstrndx(re->elf, &shstrndx)) { 7143 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 7144 return; 7145 } 7146 7147 if ((scn = elf_getscn(re->elf, 0)) == NULL) 7148 return; 7149 7150 (void) elf_errno(); 7151 do { 7152 if (gelf_getshdr(scn, &sh) == NULL) { 7153 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 7154 (void) elf_errno(); 7155 continue; 7156 } 7157 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 7158 (void) elf_errno(); 7159 name = "<no-name>"; 7160 } 7161 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 7162 if ((elferr = elf_errno()) != 0) { 7163 warnx("elf_ndxscn failed: %s", 7164 elf_errmsg(elferr)); 7165 continue; 7166 } 7167 } 7168 if (ndx >= re->shnum) { 7169 warnx("section index of '%s' out of range", name); 7170 continue; 7171 } 7172 if (sh.sh_link >= re->shnum) 7173 warnx("section link %llu of '%s' out of range", 7174 (unsigned long long)sh.sh_link, name); 7175 s = &re->sl[ndx]; 7176 s->name = name; 7177 s->scn = scn; 7178 s->off = sh.sh_offset; 7179 s->sz = sh.sh_size; 7180 s->entsize = sh.sh_entsize; 7181 s->align = sh.sh_addralign; 7182 s->type = sh.sh_type; 7183 s->flags = sh.sh_flags; 7184 s->addr = sh.sh_addr; 7185 s->link = sh.sh_link; 7186 s->info = sh.sh_info; 7187 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 7188 elferr = elf_errno(); 7189 if (elferr != 0) 7190 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 7191 } 7192 7193 static void 7194 unload_sections(struct readelf *re) 7195 { 7196 7197 if (re->sl != NULL) { 7198 free(re->sl); 7199 re->sl = NULL; 7200 } 7201 re->shnum = 0; 7202 re->vd_s = NULL; 7203 re->vn_s = NULL; 7204 re->vs_s = NULL; 7205 re->vs = NULL; 7206 re->vs_sz = 0; 7207 if (re->ver != NULL) { 7208 free(re->ver); 7209 re->ver = NULL; 7210 re->ver_sz = 0; 7211 } 7212 } 7213 7214 static void 7215 dump_elf(struct readelf *re) 7216 { 7217 7218 /* Fetch ELF header. No need to continue if it fails. */ 7219 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 7220 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 7221 return; 7222 } 7223 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 7224 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 7225 return; 7226 } 7227 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 7228 re->dw_read = _read_msb; 7229 re->dw_decode = _decode_msb; 7230 } else { 7231 re->dw_read = _read_lsb; 7232 re->dw_decode = _decode_lsb; 7233 } 7234 7235 if (re->options & ~RE_H) 7236 load_sections(re); 7237 if ((re->options & RE_VV) || (re->options & RE_S)) 7238 search_ver(re); 7239 if (re->options & RE_H) 7240 dump_ehdr(re); 7241 if (re->options & RE_L) 7242 dump_phdr(re); 7243 if (re->options & RE_SS) 7244 dump_shdr(re); 7245 if (re->options & RE_G) 7246 dump_section_groups(re); 7247 if (re->options & RE_D) 7248 dump_dynamic(re); 7249 if (re->options & RE_R) 7250 dump_reloc(re); 7251 if (re->options & RE_S) 7252 dump_symtabs(re); 7253 if (re->options & RE_N) 7254 dump_notes(re); 7255 if (re->options & RE_II) 7256 dump_hash(re); 7257 if (re->options & RE_X) 7258 hex_dump(re); 7259 if (re->options & RE_P) 7260 str_dump(re); 7261 if (re->options & RE_VV) 7262 dump_ver(re); 7263 if (re->options & RE_AA) 7264 dump_arch_specific_info(re); 7265 if (re->options & RE_W) 7266 dump_dwarf(re); 7267 if (re->options & ~RE_H) 7268 unload_sections(re); 7269 } 7270 7271 static void 7272 dump_dwarf(struct readelf *re) 7273 { 7274 Dwarf_Error de; 7275 int error; 7276 7277 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 7278 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 7279 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 7280 dwarf_errmsg(de)); 7281 return; 7282 } 7283 7284 if (re->dop & DW_A) 7285 dump_dwarf_abbrev(re); 7286 if (re->dop & DW_L) 7287 dump_dwarf_line(re); 7288 if (re->dop & DW_LL) 7289 dump_dwarf_line_decoded(re); 7290 if (re->dop & DW_I) { 7291 dump_dwarf_info(re, 0); 7292 dump_dwarf_info(re, 1); 7293 } 7294 if (re->dop & DW_P) 7295 dump_dwarf_pubnames(re); 7296 if (re->dop & DW_R) 7297 dump_dwarf_aranges(re); 7298 if (re->dop & DW_RR) 7299 dump_dwarf_ranges(re); 7300 if (re->dop & DW_M) 7301 dump_dwarf_macinfo(re); 7302 if (re->dop & DW_F) 7303 dump_dwarf_frame(re, 0); 7304 else if (re->dop & DW_FF) 7305 dump_dwarf_frame(re, 1); 7306 if (re->dop & DW_S) 7307 dump_dwarf_str(re); 7308 if (re->dop & DW_O) 7309 dump_dwarf_loclist(re); 7310 7311 dwarf_finish(re->dbg, &de); 7312 } 7313 7314 static void 7315 dump_ar(struct readelf *re, int fd) 7316 { 7317 Elf_Arsym *arsym; 7318 Elf_Arhdr *arhdr; 7319 Elf_Cmd cmd; 7320 Elf *e; 7321 size_t sz; 7322 off_t off; 7323 int i; 7324 7325 re->ar = re->elf; 7326 7327 if (re->options & RE_C) { 7328 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 7329 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 7330 goto process_members; 7331 } 7332 printf("Index of archive %s: (%ju entries)\n", re->filename, 7333 (uintmax_t) sz - 1); 7334 off = 0; 7335 for (i = 0; (size_t) i < sz; i++) { 7336 if (arsym[i].as_name == NULL) 7337 break; 7338 if (arsym[i].as_off != off) { 7339 off = arsym[i].as_off; 7340 if (elf_rand(re->ar, off) != off) { 7341 warnx("elf_rand() failed: %s", 7342 elf_errmsg(-1)); 7343 continue; 7344 } 7345 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 7346 NULL) { 7347 warnx("elf_begin() failed: %s", 7348 elf_errmsg(-1)); 7349 continue; 7350 } 7351 if ((arhdr = elf_getarhdr(e)) == NULL) { 7352 warnx("elf_getarhdr() failed: %s", 7353 elf_errmsg(-1)); 7354 elf_end(e); 7355 continue; 7356 } 7357 printf("Binary %s(%s) contains:\n", 7358 re->filename, arhdr->ar_name); 7359 elf_end(e); 7360 } 7361 printf("\t%s\n", arsym[i].as_name); 7362 } 7363 if (elf_rand(re->ar, SARMAG) != SARMAG) { 7364 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 7365 return; 7366 } 7367 } 7368 7369 process_members: 7370 7371 if ((re->options & ~RE_C) == 0) 7372 return; 7373 7374 cmd = ELF_C_READ; 7375 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 7376 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 7377 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 7378 goto next_member; 7379 } 7380 if (strcmp(arhdr->ar_name, "/") == 0 || 7381 strcmp(arhdr->ar_name, "//") == 0 || 7382 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 7383 goto next_member; 7384 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 7385 dump_elf(re); 7386 7387 next_member: 7388 cmd = elf_next(re->elf); 7389 elf_end(re->elf); 7390 } 7391 re->elf = re->ar; 7392 } 7393 7394 static void 7395 dump_object(struct readelf *re, int fd) 7396 { 7397 if ((re->flags & DISPLAY_FILENAME) != 0) 7398 printf("\nFile: %s\n", re->filename); 7399 7400 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 7401 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 7402 goto done; 7403 } 7404 7405 switch (elf_kind(re->elf)) { 7406 case ELF_K_NONE: 7407 warnx("Not an ELF file."); 7408 goto done; 7409 case ELF_K_ELF: 7410 dump_elf(re); 7411 break; 7412 case ELF_K_AR: 7413 dump_ar(re, fd); 7414 break; 7415 default: 7416 warnx("Internal: libelf returned unknown elf kind."); 7417 } 7418 7419 done: 7420 elf_end(re->elf); 7421 } 7422 7423 static void 7424 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7425 { 7426 struct dumpop *d; 7427 7428 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 7429 if ((d = calloc(1, sizeof(*d))) == NULL) 7430 err(EXIT_FAILURE, "calloc failed"); 7431 if (t == DUMP_BY_INDEX) 7432 d->u.si = si; 7433 else 7434 d->u.sn = sn; 7435 d->type = t; 7436 d->op = op; 7437 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 7438 } else 7439 d->op |= op; 7440 } 7441 7442 static struct dumpop * 7443 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7444 { 7445 struct dumpop *d; 7446 7447 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7448 if ((op == -1 || op & d->op) && 7449 (t == -1 || (unsigned) t == d->type)) { 7450 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7451 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7452 return (d); 7453 } 7454 } 7455 7456 return (NULL); 7457 } 7458 7459 static struct { 7460 const char *ln; 7461 char sn; 7462 int value; 7463 } dwarf_op[] = { 7464 {"rawline", 'l', DW_L}, 7465 {"decodedline", 'L', DW_LL}, 7466 {"info", 'i', DW_I}, 7467 {"abbrev", 'a', DW_A}, 7468 {"pubnames", 'p', DW_P}, 7469 {"aranges", 'r', DW_R}, 7470 {"ranges", 'r', DW_R}, 7471 {"Ranges", 'R', DW_RR}, 7472 {"macro", 'm', DW_M}, 7473 {"frames", 'f', DW_F}, 7474 {"frames-interp", 'F', DW_FF}, 7475 {"str", 's', DW_S}, 7476 {"loc", 'o', DW_O}, 7477 {NULL, 0, 0} 7478 }; 7479 7480 static void 7481 parse_dwarf_op_short(struct readelf *re, const char *op) 7482 { 7483 int i; 7484 7485 if (op == NULL) { 7486 re->dop |= DW_DEFAULT_OPTIONS; 7487 return; 7488 } 7489 7490 for (; *op != '\0'; op++) { 7491 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7492 if (dwarf_op[i].sn == *op) { 7493 re->dop |= dwarf_op[i].value; 7494 break; 7495 } 7496 } 7497 } 7498 } 7499 7500 static void 7501 parse_dwarf_op_long(struct readelf *re, const char *op) 7502 { 7503 char *p, *token, *bp; 7504 int i; 7505 7506 if (op == NULL) { 7507 re->dop |= DW_DEFAULT_OPTIONS; 7508 return; 7509 } 7510 7511 if ((p = strdup(op)) == NULL) 7512 err(EXIT_FAILURE, "strdup failed"); 7513 bp = p; 7514 7515 while ((token = strsep(&p, ",")) != NULL) { 7516 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7517 if (!strcmp(token, dwarf_op[i].ln)) { 7518 re->dop |= dwarf_op[i].value; 7519 break; 7520 } 7521 } 7522 } 7523 7524 free(bp); 7525 } 7526 7527 static uint64_t 7528 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7529 { 7530 uint64_t ret; 7531 uint8_t *src; 7532 7533 src = (uint8_t *) d->d_buf + *offsetp; 7534 7535 ret = 0; 7536 switch (bytes_to_read) { 7537 case 8: 7538 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7539 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7540 /* FALLTHROUGH */ 7541 case 4: 7542 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7543 /* FALLTHROUGH */ 7544 case 2: 7545 ret |= ((uint64_t) src[1]) << 8; 7546 /* FALLTHROUGH */ 7547 case 1: 7548 ret |= src[0]; 7549 break; 7550 default: 7551 return (0); 7552 } 7553 7554 *offsetp += bytes_to_read; 7555 7556 return (ret); 7557 } 7558 7559 static uint64_t 7560 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7561 { 7562 uint64_t ret; 7563 uint8_t *src; 7564 7565 src = (uint8_t *) d->d_buf + *offsetp; 7566 7567 switch (bytes_to_read) { 7568 case 1: 7569 ret = src[0]; 7570 break; 7571 case 2: 7572 ret = src[1] | ((uint64_t) src[0]) << 8; 7573 break; 7574 case 4: 7575 ret = src[3] | ((uint64_t) src[2]) << 8; 7576 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7577 break; 7578 case 8: 7579 ret = src[7] | ((uint64_t) src[6]) << 8; 7580 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7581 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7582 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7583 break; 7584 default: 7585 return (0); 7586 } 7587 7588 *offsetp += bytes_to_read; 7589 7590 return (ret); 7591 } 7592 7593 static uint64_t 7594 _decode_lsb(uint8_t **data, int bytes_to_read) 7595 { 7596 uint64_t ret; 7597 uint8_t *src; 7598 7599 src = *data; 7600 7601 ret = 0; 7602 switch (bytes_to_read) { 7603 case 8: 7604 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7605 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7606 /* FALLTHROUGH */ 7607 case 4: 7608 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7609 /* FALLTHROUGH */ 7610 case 2: 7611 ret |= ((uint64_t) src[1]) << 8; 7612 /* FALLTHROUGH */ 7613 case 1: 7614 ret |= src[0]; 7615 break; 7616 default: 7617 return (0); 7618 } 7619 7620 *data += bytes_to_read; 7621 7622 return (ret); 7623 } 7624 7625 static uint64_t 7626 _decode_msb(uint8_t **data, int bytes_to_read) 7627 { 7628 uint64_t ret; 7629 uint8_t *src; 7630 7631 src = *data; 7632 7633 ret = 0; 7634 switch (bytes_to_read) { 7635 case 1: 7636 ret = src[0]; 7637 break; 7638 case 2: 7639 ret = src[1] | ((uint64_t) src[0]) << 8; 7640 break; 7641 case 4: 7642 ret = src[3] | ((uint64_t) src[2]) << 8; 7643 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7644 break; 7645 case 8: 7646 ret = src[7] | ((uint64_t) src[6]) << 8; 7647 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7648 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7649 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7650 break; 7651 default: 7652 return (0); 7653 break; 7654 } 7655 7656 *data += bytes_to_read; 7657 7658 return (ret); 7659 } 7660 7661 static int64_t 7662 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7663 { 7664 int64_t ret = 0; 7665 uint8_t b = 0; 7666 int shift = 0; 7667 7668 uint8_t *src = *dp; 7669 7670 do { 7671 if (src >= dpe) 7672 break; 7673 b = *src++; 7674 ret |= ((b & 0x7f) << shift); 7675 shift += 7; 7676 } while ((b & 0x80) != 0); 7677 7678 if (shift < 32 && (b & 0x40) != 0) 7679 ret |= (-1 << shift); 7680 7681 *dp = src; 7682 7683 return (ret); 7684 } 7685 7686 static uint64_t 7687 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7688 { 7689 uint64_t ret = 0; 7690 uint8_t b; 7691 int shift = 0; 7692 7693 uint8_t *src = *dp; 7694 7695 do { 7696 if (src >= dpe) 7697 break; 7698 b = *src++; 7699 ret |= ((b & 0x7f) << shift); 7700 shift += 7; 7701 } while ((b & 0x80) != 0); 7702 7703 *dp = src; 7704 7705 return (ret); 7706 } 7707 7708 static void 7709 readelf_version(void) 7710 { 7711 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7712 elftc_version()); 7713 exit(EXIT_SUCCESS); 7714 } 7715 7716 #define USAGE_MESSAGE "\ 7717 Usage: %s [options] file...\n\ 7718 Display information about ELF objects and ar(1) archives.\n\n\ 7719 Options:\n\ 7720 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7721 -c | --archive-index Print the archive symbol table for archives.\n\ 7722 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7723 -e | --headers Print all headers in the object.\n\ 7724 -g | --section-groups Print the contents of the section groups.\n\ 7725 -h | --file-header Print the file header for the object.\n\ 7726 -l | --program-headers Print the PHDR table for the object.\n\ 7727 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7728 -p INDEX | --string-dump=INDEX\n\ 7729 Print the contents of section at index INDEX.\n\ 7730 -r | --relocs Print relocation information.\n\ 7731 -s | --syms | --symbols Print symbol tables.\n\ 7732 -t | --section-details Print additional information about sections.\n\ 7733 -v | --version Print a version identifier and exit.\n\ 7734 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7735 frames-interp,info,loc,macro,pubnames,\n\ 7736 ranges,Ranges,rawline,str}\n\ 7737 Display DWARF information.\n\ 7738 -x INDEX | --hex-dump=INDEX\n\ 7739 Display contents of a section as hexadecimal.\n\ 7740 -z | --decompress Decompress the contents of a section before displaying it.\n\ 7741 -A | --arch-specific (accepted, but ignored)\n\ 7742 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7743 entry in the \".dynamic\" section.\n\ 7744 -H | --help Print a help message.\n\ 7745 -I | --histogram Print information on bucket list lengths for \n\ 7746 hash sections.\n\ 7747 -N | --full-section-name (accepted, but ignored)\n\ 7748 -S | --sections | --section-headers\n\ 7749 Print information about section headers.\n\ 7750 -V | --version-info Print symbol versoning information.\n\ 7751 -W | --wide Print information without wrapping long lines.\n" 7752 7753 7754 static void 7755 readelf_usage(int status) 7756 { 7757 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7758 exit(status); 7759 } 7760 7761 int 7762 main(int argc, char **argv) 7763 { 7764 cap_rights_t rights; 7765 fileargs_t *fa; 7766 struct readelf *re, re_storage; 7767 unsigned long si; 7768 int fd, opt, i; 7769 char *ep; 7770 7771 re = &re_storage; 7772 memset(re, 0, sizeof(*re)); 7773 STAILQ_INIT(&re->v_dumpop); 7774 7775 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:z", 7776 longopts, NULL)) != -1) { 7777 switch(opt) { 7778 case '?': 7779 readelf_usage(EXIT_SUCCESS); 7780 break; 7781 case 'A': 7782 re->options |= RE_AA; 7783 break; 7784 case 'a': 7785 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7786 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7787 break; 7788 case 'c': 7789 re->options |= RE_C; 7790 break; 7791 case 'D': 7792 re->options |= RE_DD; 7793 break; 7794 case 'd': 7795 re->options |= RE_D; 7796 break; 7797 case 'e': 7798 re->options |= RE_H | RE_L | RE_SS; 7799 break; 7800 case 'g': 7801 re->options |= RE_G; 7802 break; 7803 case 'H': 7804 readelf_usage(EXIT_SUCCESS); 7805 break; 7806 case 'h': 7807 re->options |= RE_H; 7808 break; 7809 case 'I': 7810 re->options |= RE_II; 7811 break; 7812 case 'i': 7813 /* Not implemented yet. */ 7814 break; 7815 case 'l': 7816 re->options |= RE_L; 7817 break; 7818 case 'N': 7819 re->options |= RE_NN; 7820 break; 7821 case 'n': 7822 re->options |= RE_N; 7823 break; 7824 case 'p': 7825 re->options |= RE_P; 7826 si = strtoul(optarg, &ep, 10); 7827 if (*ep == '\0') 7828 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7829 DUMP_BY_INDEX); 7830 else 7831 add_dumpop(re, 0, optarg, STR_DUMP, 7832 DUMP_BY_NAME); 7833 break; 7834 case 'r': 7835 re->options |= RE_R; 7836 break; 7837 case 'S': 7838 re->options |= RE_SS; 7839 break; 7840 case 's': 7841 re->options |= RE_S; 7842 break; 7843 case 't': 7844 re->options |= RE_SS | RE_T; 7845 break; 7846 case 'u': 7847 re->options |= RE_U; 7848 break; 7849 case 'V': 7850 re->options |= RE_VV; 7851 break; 7852 case 'v': 7853 readelf_version(); 7854 break; 7855 case 'W': 7856 re->options |= RE_WW; 7857 break; 7858 case 'w': 7859 re->options |= RE_W; 7860 parse_dwarf_op_short(re, optarg); 7861 break; 7862 case 'x': 7863 re->options |= RE_X; 7864 si = strtoul(optarg, &ep, 10); 7865 if (*ep == '\0') 7866 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7867 DUMP_BY_INDEX); 7868 else 7869 add_dumpop(re, 0, optarg, HEX_DUMP, 7870 DUMP_BY_NAME); 7871 break; 7872 case 'z': 7873 re->options |= RE_Z; 7874 break; 7875 case OPTION_DEBUG_DUMP: 7876 re->options |= RE_W; 7877 parse_dwarf_op_long(re, optarg); 7878 } 7879 } 7880 7881 argv += optind; 7882 argc -= optind; 7883 7884 if (argc == 0 || re->options == 0) 7885 readelf_usage(EXIT_FAILURE); 7886 7887 if (argc > 1) 7888 re->flags |= DISPLAY_FILENAME; 7889 7890 if (elf_version(EV_CURRENT) == EV_NONE) 7891 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7892 elf_errmsg(-1)); 7893 7894 cap_rights_init(&rights, CAP_FCNTL, CAP_FSTAT, CAP_MMAP_R, CAP_SEEK); 7895 fa = fileargs_init(argc, argv, O_RDONLY, 0, &rights, FA_OPEN); 7896 if (fa == NULL) 7897 err(1, "Unable to initialize casper fileargs"); 7898 7899 caph_cache_catpages(); 7900 if (caph_limit_stdio() < 0) { 7901 fileargs_free(fa); 7902 err(1, "Unable to limit stdio rights"); 7903 } 7904 if (caph_enter_casper() < 0) { 7905 fileargs_free(fa); 7906 err(1, "Unable to enter capability mode"); 7907 } 7908 7909 for (i = 0; i < argc; i++) { 7910 re->filename = argv[i]; 7911 fd = fileargs_open(fa, re->filename); 7912 if (fd < 0) { 7913 warn("open %s failed", re->filename); 7914 } else { 7915 dump_object(re, fd); 7916 close(fd); 7917 } 7918 } 7919 7920 exit(EXIT_SUCCESS); 7921 } 7922