xref: /freebsd/contrib/elftoolchain/readelf/readelf.c (revision db3cb3640f547c063293e9fdc4db69e9dc120951)
1 /*-
2  * Copyright (c) 2009-2014 Kai Wang
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #include <sys/param.h>
29 #include <sys/queue.h>
30 #include <ar.h>
31 #include <ctype.h>
32 #include <dwarf.h>
33 #include <err.h>
34 #include <fcntl.h>
35 #include <gelf.h>
36 #include <getopt.h>
37 #include <libdwarf.h>
38 #include <libelftc.h>
39 #include <libgen.h>
40 #include <stdarg.h>
41 #include <stdint.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <time.h>
46 #include <unistd.h>
47 
48 #include "_elftc.h"
49 
50 ELFTC_VCSID("$Id: readelf.c 3110 2014-12-20 08:32:46Z kaiwang27 $");
51 
52 /*
53  * readelf(1) options.
54  */
55 #define	RE_AA	0x00000001
56 #define	RE_C	0x00000002
57 #define	RE_DD	0x00000004
58 #define	RE_D	0x00000008
59 #define	RE_G	0x00000010
60 #define	RE_H	0x00000020
61 #define	RE_II	0x00000040
62 #define	RE_I	0x00000080
63 #define	RE_L	0x00000100
64 #define	RE_NN	0x00000200
65 #define	RE_N	0x00000400
66 #define	RE_P	0x00000800
67 #define	RE_R	0x00001000
68 #define	RE_SS	0x00002000
69 #define	RE_S	0x00004000
70 #define	RE_T	0x00008000
71 #define	RE_U	0x00010000
72 #define	RE_VV	0x00020000
73 #define	RE_WW	0x00040000
74 #define	RE_W	0x00080000
75 #define	RE_X	0x00100000
76 
77 /*
78  * dwarf dump options.
79  */
80 #define	DW_A	0x00000001
81 #define	DW_FF	0x00000002
82 #define	DW_F	0x00000004
83 #define	DW_I	0x00000008
84 #define	DW_LL	0x00000010
85 #define	DW_L	0x00000020
86 #define	DW_M	0x00000040
87 #define	DW_O	0x00000080
88 #define	DW_P	0x00000100
89 #define	DW_RR	0x00000200
90 #define	DW_R	0x00000400
91 #define	DW_S	0x00000800
92 
93 #define	DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
94 	    DW_R | DW_RR | DW_S)
95 
96 /*
97  * readelf(1) run control flags.
98  */
99 #define	DISPLAY_FILENAME	0x0001
100 
101 /*
102  * Internal data structure for sections.
103  */
104 struct section {
105 	const char	*name;		/* section name */
106 	Elf_Scn		*scn;		/* section scn */
107 	uint64_t	 off;		/* section offset */
108 	uint64_t	 sz;		/* section size */
109 	uint64_t	 entsize;	/* section entsize */
110 	uint64_t	 align;		/* section alignment */
111 	uint64_t	 type;		/* section type */
112 	uint64_t	 flags;		/* section flags */
113 	uint64_t	 addr;		/* section virtual addr */
114 	uint32_t	 link;		/* section link ndx */
115 	uint32_t	 info;		/* section info ndx */
116 };
117 
118 struct dumpop {
119 	union {
120 		size_t si;		/* section index */
121 		const char *sn;		/* section name */
122 	} u;
123 	enum {
124 		DUMP_BY_INDEX = 0,
125 		DUMP_BY_NAME
126 	} type;				/* dump type */
127 #define HEX_DUMP	0x0001
128 #define STR_DUMP	0x0002
129 	int op;				/* dump operation */
130 	STAILQ_ENTRY(dumpop) dumpop_list;
131 };
132 
133 struct symver {
134 	const char *name;
135 	int type;
136 };
137 
138 /*
139  * Structure encapsulates the global data for readelf(1).
140  */
141 struct readelf {
142 	const char	 *filename;	/* current processing file. */
143 	int		  options;	/* command line options. */
144 	int		  flags;	/* run control flags. */
145 	int		  dop;		/* dwarf dump options. */
146 	Elf		 *elf;		/* underlying ELF descriptor. */
147 	Elf		 *ar;		/* archive ELF descriptor. */
148 	Dwarf_Debug	  dbg;		/* DWARF handle. */
149 	Dwarf_Half	  cu_psize;	/* DWARF CU pointer size. */
150 	Dwarf_Half	  cu_osize;	/* DWARF CU offset size. */
151 	Dwarf_Half	  cu_ver;	/* DWARF CU version. */
152 	GElf_Ehdr	  ehdr;		/* ELF header. */
153 	int		  ec;		/* ELF class. */
154 	size_t		  shnum;	/* #sections. */
155 	struct section	 *vd_s;		/* Verdef section. */
156 	struct section	 *vn_s;		/* Verneed section. */
157 	struct section	 *vs_s;		/* Versym section. */
158 	uint16_t	 *vs;		/* Versym array. */
159 	int		  vs_sz;	/* Versym array size. */
160 	struct symver	 *ver;		/* Version array. */
161 	int		  ver_sz;	/* Size of version array. */
162 	struct section	 *sl;		/* list of sections. */
163 	STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
164 	uint64_t	(*dw_read)(Elf_Data *, uint64_t *, int);
165 	uint64_t	(*dw_decode)(uint8_t **, int);
166 };
167 
168 enum options
169 {
170 	OPTION_DEBUG_DUMP
171 };
172 
173 static struct option longopts[] = {
174 	{"all", no_argument, NULL, 'a'},
175 	{"arch-specific", no_argument, NULL, 'A'},
176 	{"archive-index", no_argument, NULL, 'c'},
177 	{"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
178 	{"dynamic", no_argument, NULL, 'd'},
179 	{"file-header", no_argument, NULL, 'h'},
180 	{"full-section-name", no_argument, NULL, 'N'},
181 	{"headers", no_argument, NULL, 'e'},
182 	{"help", no_argument, 0, 'H'},
183 	{"hex-dump", required_argument, NULL, 'x'},
184 	{"histogram", no_argument, NULL, 'I'},
185 	{"notes", no_argument, NULL, 'n'},
186 	{"program-headers", no_argument, NULL, 'l'},
187 	{"relocs", no_argument, NULL, 'r'},
188 	{"sections", no_argument, NULL, 'S'},
189 	{"section-headers", no_argument, NULL, 'S'},
190 	{"section-groups", no_argument, NULL, 'g'},
191 	{"section-details", no_argument, NULL, 't'},
192 	{"segments", no_argument, NULL, 'l'},
193 	{"string-dump", required_argument, NULL, 'p'},
194 	{"symbols", no_argument, NULL, 's'},
195 	{"syms", no_argument, NULL, 's'},
196 	{"unwind", no_argument, NULL, 'u'},
197 	{"use-dynamic", no_argument, NULL, 'D'},
198 	{"version-info", no_argument, 0, 'V'},
199 	{"version", no_argument, 0, 'v'},
200 	{"wide", no_argument, 0, 'W'},
201 	{NULL, 0, NULL, 0}
202 };
203 
204 struct eflags_desc {
205 	uint64_t flag;
206 	const char *desc;
207 };
208 
209 struct mips_option {
210 	uint64_t flag;
211 	const char *desc;
212 };
213 
214 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
215     int t);
216 static const char *aeabi_adv_simd_arch(uint64_t simd);
217 static const char *aeabi_align_needed(uint64_t an);
218 static const char *aeabi_align_preserved(uint64_t ap);
219 static const char *aeabi_arm_isa(uint64_t ai);
220 static const char *aeabi_cpu_arch(uint64_t arch);
221 static const char *aeabi_cpu_arch_profile(uint64_t pf);
222 static const char *aeabi_div(uint64_t du);
223 static const char *aeabi_enum_size(uint64_t es);
224 static const char *aeabi_fp_16bit_format(uint64_t fp16);
225 static const char *aeabi_fp_arch(uint64_t fp);
226 static const char *aeabi_fp_denormal(uint64_t fd);
227 static const char *aeabi_fp_exceptions(uint64_t fe);
228 static const char *aeabi_fp_hpext(uint64_t fh);
229 static const char *aeabi_fp_number_model(uint64_t fn);
230 static const char *aeabi_fp_optm_goal(uint64_t fog);
231 static const char *aeabi_fp_rounding(uint64_t fr);
232 static const char *aeabi_hardfp(uint64_t hfp);
233 static const char *aeabi_mpext(uint64_t mp);
234 static const char *aeabi_optm_goal(uint64_t og);
235 static const char *aeabi_pcs_config(uint64_t pcs);
236 static const char *aeabi_pcs_got(uint64_t got);
237 static const char *aeabi_pcs_r9(uint64_t r9);
238 static const char *aeabi_pcs_ro(uint64_t ro);
239 static const char *aeabi_pcs_rw(uint64_t rw);
240 static const char *aeabi_pcs_wchar_t(uint64_t wt);
241 static const char *aeabi_t2ee(uint64_t t2ee);
242 static const char *aeabi_thumb_isa(uint64_t ti);
243 static const char *aeabi_fp_user_exceptions(uint64_t fu);
244 static const char *aeabi_unaligned_access(uint64_t ua);
245 static const char *aeabi_vfp_args(uint64_t va);
246 static const char *aeabi_virtual(uint64_t vt);
247 static const char *aeabi_wmmx_arch(uint64_t wmmx);
248 static const char *aeabi_wmmx_args(uint64_t wa);
249 static const char *elf_class(unsigned int class);
250 static const char *elf_endian(unsigned int endian);
251 static const char *elf_machine(unsigned int mach);
252 static const char *elf_osabi(unsigned int abi);
253 static const char *elf_type(unsigned int type);
254 static const char *elf_ver(unsigned int ver);
255 static const char *dt_type(unsigned int mach, unsigned int dtype);
256 static void dump_ar(struct readelf *re, int);
257 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
258 static void dump_attributes(struct readelf *re);
259 static uint8_t *dump_compatibility_tag(uint8_t *p);
260 static void dump_dwarf(struct readelf *re);
261 static void dump_dwarf_abbrev(struct readelf *re);
262 static void dump_dwarf_aranges(struct readelf *re);
263 static void dump_dwarf_block(struct readelf *re, uint8_t *b,
264     Dwarf_Unsigned len);
265 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
266 static void dump_dwarf_frame(struct readelf *re, int alt);
267 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
268     uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
269     Dwarf_Addr pc, Dwarf_Debug dbg);
270 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
271     Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
272 static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
273     int alt);
274 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
275 static void dump_dwarf_macinfo(struct readelf *re);
276 static void dump_dwarf_line(struct readelf *re);
277 static void dump_dwarf_line_decoded(struct readelf *re);
278 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
279 static void dump_dwarf_loclist(struct readelf *re);
280 static void dump_dwarf_pubnames(struct readelf *re);
281 static void dump_dwarf_ranges(struct readelf *re);
282 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
283     Dwarf_Addr base);
284 static void dump_dwarf_str(struct readelf *re);
285 static void dump_eflags(struct readelf *re, uint64_t e_flags);
286 static void dump_elf(struct readelf *re);
287 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
288 static void dump_dynamic(struct readelf *re);
289 static void dump_liblist(struct readelf *re);
290 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
291 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
292 static void dump_mips_options(struct readelf *re, struct section *s);
293 static void dump_mips_option_flags(const char *name, struct mips_option *opt,
294     uint64_t info);
295 static void dump_mips_reginfo(struct readelf *re, struct section *s);
296 static void dump_mips_specific_info(struct readelf *re);
297 static void dump_notes(struct readelf *re);
298 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
299     off_t off);
300 static void dump_svr4_hash(struct section *s);
301 static void dump_svr4_hash64(struct readelf *re, struct section *s);
302 static void dump_gnu_hash(struct readelf *re, struct section *s);
303 static void dump_hash(struct readelf *re);
304 static void dump_phdr(struct readelf *re);
305 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
306 static void dump_symtab(struct readelf *re, int i);
307 static void dump_symtabs(struct readelf *re);
308 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p);
309 static void dump_ver(struct readelf *re);
310 static void dump_verdef(struct readelf *re, int dump);
311 static void dump_verneed(struct readelf *re, int dump);
312 static void dump_versym(struct readelf *re);
313 static const char *dwarf_reg(unsigned int mach, unsigned int reg);
314 static const char *dwarf_regname(struct readelf *re, unsigned int num);
315 static struct dumpop *find_dumpop(struct readelf *re, size_t si,
316     const char *sn, int op, int t);
317 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
318     Dwarf_Addr off);
319 static const char *get_string(struct readelf *re, int strtab, size_t off);
320 static const char *get_symbol_name(struct readelf *re, int symtab, int i);
321 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
322 static void load_sections(struct readelf *re);
323 static const char *mips_abi_fp(uint64_t fp);
324 static const char *note_type(const char *note_name, unsigned int et,
325     unsigned int nt);
326 static const char *note_type_freebsd(unsigned int nt);
327 static const char *note_type_freebsd_core(unsigned int nt);
328 static const char *note_type_linux_core(unsigned int nt);
329 static const char *note_type_gnu(unsigned int nt);
330 static const char *note_type_netbsd(unsigned int nt);
331 static const char *note_type_openbsd(unsigned int nt);
332 static const char *note_type_unknown(unsigned int nt);
333 static const char *option_kind(uint8_t kind);
334 static const char *phdr_type(unsigned int ptype);
335 static const char *ppc_abi_fp(uint64_t fp);
336 static const char *ppc_abi_vector(uint64_t vec);
337 static const char *r_type(unsigned int mach, unsigned int type);
338 static void readelf_usage(void);
339 static void readelf_version(void);
340 static void search_loclist_at(struct readelf *re, Dwarf_Die die,
341     Dwarf_Unsigned lowpc);
342 static void search_ver(struct readelf *re);
343 static const char *section_type(unsigned int mach, unsigned int stype);
344 static void set_cu_context(struct readelf *re, Dwarf_Half psize,
345     Dwarf_Half osize, Dwarf_Half ver);
346 static const char *st_bind(unsigned int sbind);
347 static const char *st_shndx(unsigned int shndx);
348 static const char *st_type(unsigned int stype);
349 static const char *st_vis(unsigned int svis);
350 static const char *top_tag(unsigned int tag);
351 static void unload_sections(struct readelf *re);
352 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
353     int bytes_to_read);
354 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
355     int bytes_to_read);
356 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
357 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
358 static int64_t _decode_sleb128(uint8_t **dp);
359 static uint64_t _decode_uleb128(uint8_t **dp);
360 
361 static struct eflags_desc arm_eflags_desc[] = {
362 	{EF_ARM_RELEXEC, "relocatable executable"},
363 	{EF_ARM_HASENTRY, "has entry point"},
364 	{EF_ARM_SYMSARESORTED, "sorted symbol tables"},
365 	{EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
366 	{EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
367 	{EF_ARM_BE8, "BE8"},
368 	{EF_ARM_LE8, "LE8"},
369 	{EF_ARM_INTERWORK, "interworking enabled"},
370 	{EF_ARM_APCS_26, "uses APCS/26"},
371 	{EF_ARM_APCS_FLOAT, "uses APCS/float"},
372 	{EF_ARM_PIC, "position independent"},
373 	{EF_ARM_ALIGN8, "8 bit structure alignment"},
374 	{EF_ARM_NEW_ABI, "uses new ABI"},
375 	{EF_ARM_OLD_ABI, "uses old ABI"},
376 	{EF_ARM_SOFT_FLOAT, "software FP"},
377 	{EF_ARM_VFP_FLOAT, "VFP"},
378 	{EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
379 	{0, NULL}
380 };
381 
382 static struct eflags_desc mips_eflags_desc[] = {
383 	{EF_MIPS_NOREORDER, "noreorder"},
384 	{EF_MIPS_PIC, "pic"},
385 	{EF_MIPS_CPIC, "cpic"},
386 	{EF_MIPS_UCODE, "ugen_reserved"},
387 	{EF_MIPS_ABI2, "abi2"},
388 	{EF_MIPS_OPTIONS_FIRST, "odk first"},
389 	{EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
390 	{EF_MIPS_ARCH_ASE_M16, "mips16"},
391 	{0, NULL}
392 };
393 
394 static struct eflags_desc powerpc_eflags_desc[] = {
395 	{EF_PPC_EMB, "emb"},
396 	{EF_PPC_RELOCATABLE, "relocatable"},
397 	{EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
398 	{0, NULL}
399 };
400 
401 static struct eflags_desc sparc_eflags_desc[] = {
402 	{EF_SPARC_32PLUS, "v8+"},
403 	{EF_SPARC_SUN_US1, "ultrasparcI"},
404 	{EF_SPARC_HAL_R1, "halr1"},
405 	{EF_SPARC_SUN_US3, "ultrasparcIII"},
406 	{0, NULL}
407 };
408 
409 static const char *
410 elf_osabi(unsigned int abi)
411 {
412 	static char s_abi[32];
413 
414 	switch(abi) {
415 	case ELFOSABI_SYSV: return "SYSV";
416 	case ELFOSABI_HPUX: return "HPUS";
417 	case ELFOSABI_NETBSD: return "NetBSD";
418 	case ELFOSABI_GNU: return "GNU";
419 	case ELFOSABI_HURD: return "HURD";
420 	case ELFOSABI_86OPEN: return "86OPEN";
421 	case ELFOSABI_SOLARIS: return "Solaris";
422 	case ELFOSABI_AIX: return "AIX";
423 	case ELFOSABI_IRIX: return "IRIX";
424 	case ELFOSABI_FREEBSD: return "FreeBSD";
425 	case ELFOSABI_TRU64: return "TRU64";
426 	case ELFOSABI_MODESTO: return "MODESTO";
427 	case ELFOSABI_OPENBSD: return "OpenBSD";
428 	case ELFOSABI_OPENVMS: return "OpenVMS";
429 	case ELFOSABI_NSK: return "NSK";
430 	case ELFOSABI_ARM: return "ARM";
431 	case ELFOSABI_STANDALONE: return "StandAlone";
432 	default:
433 		snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
434 		return (s_abi);
435 	}
436 };
437 
438 static const char *
439 elf_machine(unsigned int mach)
440 {
441 	static char s_mach[32];
442 
443 	switch (mach) {
444 	case EM_NONE: return "Unknown machine";
445 	case EM_M32: return "AT&T WE32100";
446 	case EM_SPARC: return "Sun SPARC";
447 	case EM_386: return "Intel i386";
448 	case EM_68K: return "Motorola 68000";
449 	case EM_88K: return "Motorola 88000";
450 	case EM_860: return "Intel i860";
451 	case EM_MIPS: return "MIPS R3000 Big-Endian only";
452 	case EM_S370: return "IBM System/370";
453 	case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
454 	case EM_PARISC: return "HP PA-RISC";
455 	case EM_VPP500: return "Fujitsu VPP500";
456 	case EM_SPARC32PLUS: return "SPARC v8plus";
457 	case EM_960: return "Intel 80960";
458 	case EM_PPC: return "PowerPC 32-bit";
459 	case EM_PPC64: return "PowerPC 64-bit";
460 	case EM_S390: return "IBM System/390";
461 	case EM_V800: return "NEC V800";
462 	case EM_FR20: return "Fujitsu FR20";
463 	case EM_RH32: return "TRW RH-32";
464 	case EM_RCE: return "Motorola RCE";
465 	case EM_ARM: return "ARM";
466 	case EM_SH: return "Hitachi SH";
467 	case EM_SPARCV9: return "SPARC v9 64-bit";
468 	case EM_TRICORE: return "Siemens TriCore embedded processor";
469 	case EM_ARC: return "Argonaut RISC Core";
470 	case EM_H8_300: return "Hitachi H8/300";
471 	case EM_H8_300H: return "Hitachi H8/300H";
472 	case EM_H8S: return "Hitachi H8S";
473 	case EM_H8_500: return "Hitachi H8/500";
474 	case EM_IA_64: return "Intel IA-64 Processor";
475 	case EM_MIPS_X: return "Stanford MIPS-X";
476 	case EM_COLDFIRE: return "Motorola ColdFire";
477 	case EM_68HC12: return "Motorola M68HC12";
478 	case EM_MMA: return "Fujitsu MMA";
479 	case EM_PCP: return "Siemens PCP";
480 	case EM_NCPU: return "Sony nCPU";
481 	case EM_NDR1: return "Denso NDR1 microprocessor";
482 	case EM_STARCORE: return "Motorola Star*Core processor";
483 	case EM_ME16: return "Toyota ME16 processor";
484 	case EM_ST100: return "STMicroelectronics ST100 processor";
485 	case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
486 	case EM_X86_64: return "Advanced Micro Devices x86-64";
487 	case EM_PDSP: return "Sony DSP Processor";
488 	case EM_FX66: return "Siemens FX66 microcontroller";
489 	case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
490 	case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
491 	case EM_68HC16: return "Motorola MC68HC16 microcontroller";
492 	case EM_68HC11: return "Motorola MC68HC11 microcontroller";
493 	case EM_68HC08: return "Motorola MC68HC08 microcontroller";
494 	case EM_68HC05: return "Motorola MC68HC05 microcontroller";
495 	case EM_SVX: return "Silicon Graphics SVx";
496 	case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
497 	case EM_VAX: return "Digital VAX";
498 	case EM_CRIS: return "Axis Communications 32-bit embedded processor";
499 	case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
500 	case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
501 	case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
502 	case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
503 	case EM_HUANY: return "Harvard University MI object files";
504 	case EM_PRISM: return "SiTera Prism";
505 	case EM_AVR: return "Atmel AVR 8-bit microcontroller";
506 	case EM_FR30: return "Fujitsu FR30";
507 	case EM_D10V: return "Mitsubishi D10V";
508 	case EM_D30V: return "Mitsubishi D30V";
509 	case EM_V850: return "NEC v850";
510 	case EM_M32R: return "Mitsubishi M32R";
511 	case EM_MN10300: return "Matsushita MN10300";
512 	case EM_MN10200: return "Matsushita MN10200";
513 	case EM_PJ: return "picoJava";
514 	case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
515 	case EM_ARC_A5: return "ARC Cores Tangent-A5";
516 	case EM_XTENSA: return "Tensilica Xtensa Architecture";
517 	case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
518 	case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
519 	case EM_NS32K: return "National Semiconductor 32000 series";
520 	case EM_TPC: return "Tenor Network TPC processor";
521 	case EM_SNP1K: return "Trebia SNP 1000 processor";
522 	case EM_ST200: return "STMicroelectronics ST200 microcontroller";
523 	case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
524 	case EM_MAX: return "MAX Processor";
525 	case EM_CR: return "National Semiconductor CompactRISC microprocessor";
526 	case EM_F2MC16: return "Fujitsu F2MC16";
527 	case EM_MSP430: return "TI embedded microcontroller msp430";
528 	case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
529 	case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
530 	case EM_SEP: return "Sharp embedded microprocessor";
531 	case EM_ARCA: return "Arca RISC Microprocessor";
532 	case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
533 	case EM_AARCH64: return "AArch64";
534 	default:
535 		snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
536 		return (s_mach);
537 	}
538 
539 }
540 
541 static const char *
542 elf_class(unsigned int class)
543 {
544 	static char s_class[32];
545 
546 	switch (class) {
547 	case ELFCLASSNONE: return "none";
548 	case ELFCLASS32: return "ELF32";
549 	case ELFCLASS64: return "ELF64";
550 	default:
551 		snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
552 		return (s_class);
553 	}
554 }
555 
556 static const char *
557 elf_endian(unsigned int endian)
558 {
559 	static char s_endian[32];
560 
561 	switch (endian) {
562 	case ELFDATANONE: return "none";
563 	case ELFDATA2LSB: return "2's complement, little endian";
564 	case ELFDATA2MSB: return "2's complement, big endian";
565 	default:
566 		snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
567 		return (s_endian);
568 	}
569 }
570 
571 static const char *
572 elf_type(unsigned int type)
573 {
574 	static char s_type[32];
575 
576 	switch (type) {
577 	case ET_NONE: return "NONE (None)";
578 	case ET_REL: return "REL (Relocatable file)";
579 	case ET_EXEC: return "EXEC (Executable file)";
580 	case ET_DYN: return "DYN (Shared object file)";
581 	case ET_CORE: return "CORE (Core file)";
582 	default:
583 		if (type >= ET_LOPROC)
584 			snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
585 		else if (type >= ET_LOOS && type <= ET_HIOS)
586 			snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
587 		else
588 			snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
589 			    type);
590 		return (s_type);
591 	}
592 }
593 
594 static const char *
595 elf_ver(unsigned int ver)
596 {
597 	static char s_ver[32];
598 
599 	switch (ver) {
600 	case EV_CURRENT: return "(current)";
601 	case EV_NONE: return "(none)";
602 	default:
603 		snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
604 		    ver);
605 		return (s_ver);
606 	}
607 }
608 
609 static const char *
610 phdr_type(unsigned int ptype)
611 {
612 	static char s_ptype[32];
613 
614 	switch (ptype) {
615 	case PT_NULL: return "NULL";
616 	case PT_LOAD: return "LOAD";
617 	case PT_DYNAMIC: return "DYNAMIC";
618 	case PT_INTERP: return "INTERP";
619 	case PT_NOTE: return "NOTE";
620 	case PT_SHLIB: return "SHLIB";
621 	case PT_PHDR: return "PHDR";
622 	case PT_TLS: return "TLS";
623 	case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
624 	case PT_GNU_STACK: return "GNU_STACK";
625 	case PT_GNU_RELRO: return "GNU_RELRO";
626 	default:
627 		if (ptype >= PT_LOPROC && ptype <= PT_HIPROC)
628 			snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
629 			    ptype - PT_LOPROC);
630 		else if (ptype >= PT_LOOS && ptype <= PT_HIOS)
631 			snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
632 			    ptype - PT_LOOS);
633 		else
634 			snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
635 			    ptype);
636 		return (s_ptype);
637 	}
638 }
639 
640 static const char *
641 section_type(unsigned int mach, unsigned int stype)
642 {
643 	static char s_stype[32];
644 
645 	if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
646 		switch (mach) {
647 		case EM_X86_64:
648 			switch (stype) {
649 			case SHT_AMD64_UNWIND: return "AMD64_UNWIND";
650 			default:
651 				break;
652 			}
653 			break;
654 		case EM_MIPS:
655 		case EM_MIPS_RS3_LE:
656 			switch (stype) {
657 			case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
658 			case SHT_MIPS_MSYM: return "MIPS_MSYM";
659 			case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
660 			case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
661 			case SHT_MIPS_UCODE: return "MIPS_UCODE";
662 			case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
663 			case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
664 			case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
665 			case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
666 			case SHT_MIPS_RELD: return "MIPS_RELD";
667 			case SHT_MIPS_IFACE: return "MIPS_IFACE";
668 			case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
669 			case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
670 			case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
671 			case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
672 			case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
673 			case SHT_MIPS_DWARF: return "MIPS_DWARF";
674 			case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
675 			case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
676 			case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
677 			case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
678 			case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
679 			case SHT_MIPS_XLATE: return "MIPS_XLATE";
680 			case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
681 			case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
682 			case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
683 			case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
684 			case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
685 			default:
686 				break;
687 			}
688 			break;
689 		default:
690 			break;
691 		}
692 
693 		snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
694 		    stype - SHT_LOPROC);
695 		return (s_stype);
696 	}
697 
698 	switch (stype) {
699 	case SHT_NULL: return "NULL";
700 	case SHT_PROGBITS: return "PROGBITS";
701 	case SHT_SYMTAB: return "SYMTAB";
702 	case SHT_STRTAB: return "STRTAB";
703 	case SHT_RELA: return "RELA";
704 	case SHT_HASH: return "HASH";
705 	case SHT_DYNAMIC: return "DYNAMIC";
706 	case SHT_NOTE: return "NOTE";
707 	case SHT_NOBITS: return "NOBITS";
708 	case SHT_REL: return "REL";
709 	case SHT_SHLIB: return "SHLIB";
710 	case SHT_DYNSYM: return "DYNSYM";
711 	case SHT_INIT_ARRAY: return "INIT_ARRAY";
712 	case SHT_FINI_ARRAY: return "FINI_ARRAY";
713 	case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
714 	case SHT_GROUP: return "GROUP";
715 	case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
716 	case SHT_SUNW_dof: return "SUNW_dof";
717 	case SHT_SUNW_cap: return "SUNW_cap";
718 	case SHT_GNU_HASH: return "GNU_HASH";
719 	case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
720 	case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
721 	case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
722 	case SHT_SUNW_move: return "SUNW_move";
723 	case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
724 	case SHT_SUNW_syminfo: return "SUNW_syminfo";
725 	case SHT_SUNW_verdef: return "SUNW_verdef";
726 	case SHT_SUNW_verneed: return "SUNW_verneed";
727 	case SHT_SUNW_versym: return "SUNW_versym";
728 	default:
729 		if (stype >= SHT_LOOS && stype <= SHT_HIOS)
730 			snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
731 			    stype - SHT_LOOS);
732 		else if (stype >= SHT_LOUSER)
733 			snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
734 			    stype - SHT_LOUSER);
735 		else
736 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
737 			    stype);
738 		return (s_stype);
739 	}
740 }
741 
742 static const char *
743 dt_type(unsigned int mach, unsigned int dtype)
744 {
745 	static char s_dtype[32];
746 
747 	if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
748 		switch (mach) {
749 		case EM_ARM:
750 			switch (dtype) {
751 			case DT_ARM_SYMTABSZ:
752 				return "ARM_SYMTABSZ";
753 			default:
754 				break;
755 			}
756 			break;
757 		case EM_MIPS:
758 		case EM_MIPS_RS3_LE:
759 			switch (dtype) {
760 			case DT_MIPS_RLD_VERSION:
761 				return "MIPS_RLD_VERSION";
762 			case DT_MIPS_TIME_STAMP:
763 				return "MIPS_TIME_STAMP";
764 			case DT_MIPS_ICHECKSUM:
765 				return "MIPS_ICHECKSUM";
766 			case DT_MIPS_IVERSION:
767 				return "MIPS_IVERSION";
768 			case DT_MIPS_FLAGS:
769 				return "MIPS_FLAGS";
770 			case DT_MIPS_BASE_ADDRESS:
771 				return "MIPS_BASE_ADDRESS";
772 			case DT_MIPS_CONFLICT:
773 				return "MIPS_CONFLICT";
774 			case DT_MIPS_LIBLIST:
775 				return "MIPS_LIBLIST";
776 			case DT_MIPS_LOCAL_GOTNO:
777 				return "MIPS_LOCAL_GOTNO";
778 			case DT_MIPS_CONFLICTNO:
779 				return "MIPS_CONFLICTNO";
780 			case DT_MIPS_LIBLISTNO:
781 				return "MIPS_LIBLISTNO";
782 			case DT_MIPS_SYMTABNO:
783 				return "MIPS_SYMTABNO";
784 			case DT_MIPS_UNREFEXTNO:
785 				return "MIPS_UNREFEXTNO";
786 			case DT_MIPS_GOTSYM:
787 				return "MIPS_GOTSYM";
788 			case DT_MIPS_HIPAGENO:
789 				return "MIPS_HIPAGENO";
790 			case DT_MIPS_RLD_MAP:
791 				return "MIPS_RLD_MAP";
792 			case DT_MIPS_DELTA_CLASS:
793 				return "MIPS_DELTA_CLASS";
794 			case DT_MIPS_DELTA_CLASS_NO:
795 				return "MIPS_DELTA_CLASS_NO";
796 			case DT_MIPS_DELTA_INSTANCE:
797 				return "MIPS_DELTA_INSTANCE";
798 			case DT_MIPS_DELTA_INSTANCE_NO:
799 				return "MIPS_DELTA_INSTANCE_NO";
800 			case DT_MIPS_DELTA_RELOC:
801 				return "MIPS_DELTA_RELOC";
802 			case DT_MIPS_DELTA_RELOC_NO:
803 				return "MIPS_DELTA_RELOC_NO";
804 			case DT_MIPS_DELTA_SYM:
805 				return "MIPS_DELTA_SYM";
806 			case DT_MIPS_DELTA_SYM_NO:
807 				return "MIPS_DELTA_SYM_NO";
808 			case DT_MIPS_DELTA_CLASSSYM:
809 				return "MIPS_DELTA_CLASSSYM";
810 			case DT_MIPS_DELTA_CLASSSYM_NO:
811 				return "MIPS_DELTA_CLASSSYM_NO";
812 			case DT_MIPS_CXX_FLAGS:
813 				return "MIPS_CXX_FLAGS";
814 			case DT_MIPS_PIXIE_INIT:
815 				return "MIPS_PIXIE_INIT";
816 			case DT_MIPS_SYMBOL_LIB:
817 				return "MIPS_SYMBOL_LIB";
818 			case DT_MIPS_LOCALPAGE_GOTIDX:
819 				return "MIPS_LOCALPAGE_GOTIDX";
820 			case DT_MIPS_LOCAL_GOTIDX:
821 				return "MIPS_LOCAL_GOTIDX";
822 			case DT_MIPS_HIDDEN_GOTIDX:
823 				return "MIPS_HIDDEN_GOTIDX";
824 			case DT_MIPS_PROTECTED_GOTIDX:
825 				return "MIPS_PROTECTED_GOTIDX";
826 			case DT_MIPS_OPTIONS:
827 				return "MIPS_OPTIONS";
828 			case DT_MIPS_INTERFACE:
829 				return "MIPS_INTERFACE";
830 			case DT_MIPS_DYNSTR_ALIGN:
831 				return "MIPS_DYNSTR_ALIGN";
832 			case DT_MIPS_INTERFACE_SIZE:
833 				return "MIPS_INTERFACE_SIZE";
834 			case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
835 				return "MIPS_RLD_TEXT_RESOLVE_ADDR";
836 			case DT_MIPS_PERF_SUFFIX:
837 				return "MIPS_PERF_SUFFIX";
838 			case DT_MIPS_COMPACT_SIZE:
839 				return "MIPS_COMPACT_SIZE";
840 			case DT_MIPS_GP_VALUE:
841 				return "MIPS_GP_VALUE";
842 			case DT_MIPS_AUX_DYNAMIC:
843 				return "MIPS_AUX_DYNAMIC";
844 			case DT_MIPS_PLTGOT:
845 				return "MIPS_PLTGOT";
846 			case DT_MIPS_RLD_OBJ_UPDATE:
847 				return "MIPS_RLD_OBJ_UPDATE";
848 			case DT_MIPS_RWPLT:
849 				return "MIPS_RWPLT";
850 			default:
851 				break;
852 			}
853 			break;
854 		case EM_SPARC:
855 		case EM_SPARC32PLUS:
856 		case EM_SPARCV9:
857 			switch (dtype) {
858 			case DT_SPARC_REGISTER:
859 				return "DT_SPARC_REGISTER";
860 			default:
861 				break;
862 			}
863 			break;
864 		default:
865 			break;
866 		}
867 		snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
868 		return (s_dtype);
869 	}
870 
871 	switch (dtype) {
872 	case DT_NULL: return "NULL";
873 	case DT_NEEDED: return "NEEDED";
874 	case DT_PLTRELSZ: return "PLTRELSZ";
875 	case DT_PLTGOT: return "PLTGOT";
876 	case DT_HASH: return "HASH";
877 	case DT_STRTAB: return "STRTAB";
878 	case DT_SYMTAB: return "SYMTAB";
879 	case DT_RELA: return "RELA";
880 	case DT_RELASZ: return "RELASZ";
881 	case DT_RELAENT: return "RELAENT";
882 	case DT_STRSZ: return "STRSZ";
883 	case DT_SYMENT: return "SYMENT";
884 	case DT_INIT: return "INIT";
885 	case DT_FINI: return "FINI";
886 	case DT_SONAME: return "SONAME";
887 	case DT_RPATH: return "RPATH";
888 	case DT_SYMBOLIC: return "SYMBOLIC";
889 	case DT_REL: return "REL";
890 	case DT_RELSZ: return "RELSZ";
891 	case DT_RELENT: return "RELENT";
892 	case DT_PLTREL: return "PLTREL";
893 	case DT_DEBUG: return "DEBUG";
894 	case DT_TEXTREL: return "TEXTREL";
895 	case DT_JMPREL: return "JMPREL";
896 	case DT_BIND_NOW: return "BIND_NOW";
897 	case DT_INIT_ARRAY: return "INIT_ARRAY";
898 	case DT_FINI_ARRAY: return "FINI_ARRAY";
899 	case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
900 	case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
901 	case DT_RUNPATH: return "RUNPATH";
902 	case DT_FLAGS: return "FLAGS";
903 	case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
904 	case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
905 	case DT_MAXPOSTAGS: return "MAXPOSTAGS";
906 	case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
907 	case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
908 	case DT_SUNW_FILTER: return "SUNW_FILTER";
909 	case DT_SUNW_CAP: return "SUNW_CAP";
910 	case DT_CHECKSUM: return "CHECKSUM";
911 	case DT_PLTPADSZ: return "PLTPADSZ";
912 	case DT_MOVEENT: return "MOVEENT";
913 	case DT_MOVESZ: return "MOVESZ";
914 	case DT_FEATURE: return "FEATURE";
915 	case DT_POSFLAG_1: return "POSFLAG_1";
916 	case DT_SYMINSZ: return "SYMINSZ";
917 	case DT_SYMINENT: return "SYMINENT";
918 	case DT_GNU_HASH: return "GNU_HASH";
919 	case DT_GNU_CONFLICT: return "GNU_CONFLICT";
920 	case DT_GNU_LIBLIST: return "GNU_LIBLIST";
921 	case DT_CONFIG: return "CONFIG";
922 	case DT_DEPAUDIT: return "DEPAUDIT";
923 	case DT_AUDIT: return "AUDIT";
924 	case DT_PLTPAD: return "PLTPAD";
925 	case DT_MOVETAB: return "MOVETAB";
926 	case DT_SYMINFO: return "SYMINFO";
927 	case DT_VERSYM: return "VERSYM";
928 	case DT_RELACOUNT: return "RELACOUNT";
929 	case DT_RELCOUNT: return "RELCOUNT";
930 	case DT_FLAGS_1: return "FLAGS_1";
931 	case DT_VERDEF: return "VERDEF";
932 	case DT_VERDEFNUM: return "VERDEFNUM";
933 	case DT_VERNEED: return "VERNEED";
934 	case DT_VERNEEDNUM: return "VERNEEDNUM";
935 	case DT_AUXILIARY: return "AUXILIARY";
936 	case DT_USED: return "USED";
937 	case DT_FILTER: return "FILTER";
938 	case DT_GNU_PRELINKED: return "GNU_PRELINKED";
939 	case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
940 	case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
941 	default:
942 		snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
943 		return (s_dtype);
944 	}
945 }
946 
947 static const char *
948 st_bind(unsigned int sbind)
949 {
950 	static char s_sbind[32];
951 
952 	switch (sbind) {
953 	case STB_LOCAL: return "LOCAL";
954 	case STB_GLOBAL: return "GLOBAL";
955 	case STB_WEAK: return "WEAK";
956 	default:
957 		if (sbind >= STB_LOOS && sbind <= STB_HIOS)
958 			return "OS";
959 		else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
960 			return "PROC";
961 		else
962 			snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
963 			    sbind);
964 		return (s_sbind);
965 	}
966 }
967 
968 static const char *
969 st_type(unsigned int stype)
970 {
971 	static char s_stype[32];
972 
973 	switch (stype) {
974 	case STT_NOTYPE: return "NOTYPE";
975 	case STT_OBJECT: return "OBJECT";
976 	case STT_FUNC: return "FUNC";
977 	case STT_SECTION: return "SECTION";
978 	case STT_FILE: return "FILE";
979 	case STT_COMMON: return "COMMON";
980 	case STT_TLS: return "TLS";
981 	default:
982 		if (stype >= STT_LOOS && stype <= STT_HIOS)
983 			snprintf(s_stype, sizeof(s_stype), "OS+%#x",
984 			    stype - STT_LOOS);
985 		else if (stype >= STT_LOPROC && stype <= STT_HIPROC)
986 			snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
987 			    stype - STT_LOPROC);
988 		else
989 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
990 			    stype);
991 		return (s_stype);
992 	}
993 }
994 
995 static const char *
996 st_vis(unsigned int svis)
997 {
998 	static char s_svis[32];
999 
1000 	switch(svis) {
1001 	case STV_DEFAULT: return "DEFAULT";
1002 	case STV_INTERNAL: return "INTERNAL";
1003 	case STV_HIDDEN: return "HIDDEN";
1004 	case STV_PROTECTED: return "PROTECTED";
1005 	default:
1006 		snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
1007 		return (s_svis);
1008 	}
1009 }
1010 
1011 static const char *
1012 st_shndx(unsigned int shndx)
1013 {
1014 	static char s_shndx[32];
1015 
1016 	switch (shndx) {
1017 	case SHN_UNDEF: return "UND";
1018 	case SHN_ABS: return "ABS";
1019 	case SHN_COMMON: return "COM";
1020 	default:
1021 		if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
1022 			return "PRC";
1023 		else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
1024 			return "OS";
1025 		else
1026 			snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
1027 		return (s_shndx);
1028 	}
1029 }
1030 
1031 static struct {
1032 	const char *ln;
1033 	char sn;
1034 	int value;
1035 } section_flag[] = {
1036 	{"WRITE", 'W', SHF_WRITE},
1037 	{"ALLOC", 'A', SHF_ALLOC},
1038 	{"EXEC", 'X', SHF_EXECINSTR},
1039 	{"MERGE", 'M', SHF_MERGE},
1040 	{"STRINGS", 'S', SHF_STRINGS},
1041 	{"INFO LINK", 'I', SHF_INFO_LINK},
1042 	{"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
1043 	{"GROUP", 'G', SHF_GROUP},
1044 	{"TLS", 'T', SHF_TLS},
1045 	{NULL, 0, 0}
1046 };
1047 
1048 static const char *
1049 r_type(unsigned int mach, unsigned int type)
1050 {
1051 	switch(mach) {
1052 	case EM_NONE: return "";
1053 	case EM_386:
1054 		switch(type) {
1055 		case 0: return "R_386_NONE";
1056 		case 1: return "R_386_32";
1057 		case 2: return "R_386_PC32";
1058 		case 3: return "R_386_GOT32";
1059 		case 4: return "R_386_PLT32";
1060 		case 5: return "R_386_COPY";
1061 		case 6: return "R_386_GLOB_DAT";
1062 		case 7: return "R_386_JMP_SLOT";
1063 		case 8: return "R_386_RELATIVE";
1064 		case 9: return "R_386_GOTOFF";
1065 		case 10: return "R_386_GOTPC";
1066 		case 14: return "R_386_TLS_TPOFF";
1067 		case 15: return "R_386_TLS_IE";
1068 		case 16: return "R_386_TLS_GOTIE";
1069 		case 17: return "R_386_TLS_LE";
1070 		case 18: return "R_386_TLS_GD";
1071 		case 19: return "R_386_TLS_LDM";
1072 		case 24: return "R_386_TLS_GD_32";
1073 		case 25: return "R_386_TLS_GD_PUSH";
1074 		case 26: return "R_386_TLS_GD_CALL";
1075 		case 27: return "R_386_TLS_GD_POP";
1076 		case 28: return "R_386_TLS_LDM_32";
1077 		case 29: return "R_386_TLS_LDM_PUSH";
1078 		case 30: return "R_386_TLS_LDM_CALL";
1079 		case 31: return "R_386_TLS_LDM_POP";
1080 		case 32: return "R_386_TLS_LDO_32";
1081 		case 33: return "R_386_TLS_IE_32";
1082 		case 34: return "R_386_TLS_LE_32";
1083 		case 35: return "R_386_TLS_DTPMOD32";
1084 		case 36: return "R_386_TLS_DTPOFF32";
1085 		case 37: return "R_386_TLS_TPOFF32";
1086 		default: return "";
1087 		}
1088 	case EM_AARCH64:
1089 		switch(type) {
1090 		case 0: return "R_AARCH64_NONE";
1091 		case 257: return "R_AARCH64_ABS64";
1092 		case 258: return "R_AARCH64_ABS32";
1093 		case 259: return "R_AARCH64_ABS16";
1094 		case 260: return "R_AARCH64_PREL64";
1095 		case 261: return "R_AARCH64_PREL32";
1096 		case 262: return "R_AARCH64_PREL16";
1097 		case 263: return "R_AARCH64_MOVW_UABS_G0";
1098 		case 264: return "R_AARCH64_MOVW_UABS_G0_NC";
1099 		case 265: return "R_AARCH64_MOVW_UABS_G1";
1100 		case 266: return "R_AARCH64_MOVW_UABS_G1_NC";
1101 		case 267: return "R_AARCH64_MOVW_UABS_G2";
1102 		case 268: return "R_AARCH64_MOVW_UABS_G2_NC";
1103 		case 269: return "R_AARCH64_MOVW_UABS_G3";
1104 		case 270: return "R_AARCH64_MOVW_SABS_G0";
1105 		case 271: return "R_AARCH64_MOVW_SABS_G1";
1106 		case 272: return "R_AARCH64_MOVW_SABS_G2";
1107 		case 273: return "R_AARCH64_LD_PREL_LO19";
1108 		case 274: return "R_AARCH64_ADR_PREL_LO21";
1109 		case 275: return "R_AARCH64_ADR_PREL_PG_HI21";
1110 		case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC";
1111 		case 277: return "R_AARCH64_ADD_ABS_LO12_NC";
1112 		case 278: return "R_AARCH64_LDST8_ABS_LO12_NC";
1113 		case 279: return "R_AARCH64_TSTBR14";
1114 		case 280: return "R_AARCH64_CONDBR19";
1115 		case 282: return "R_AARCH64_JUMP26";
1116 		case 283: return "R_AARCH64_CALL26";
1117 		case 284: return "R_AARCH64_LDST16_ABS_LO12_NC";
1118 		case 285: return "R_AARCH64_LDST32_ABS_LO12_NC";
1119 		case 286: return "R_AARCH64_LDST64_ABS_LO12_NC";
1120 		case 287: return "R_AARCH64_MOVW_PREL_G0";
1121 		case 288: return "R_AARCH64_MOVW_PREL_G0_NC";
1122 		case 289: return "R_AARCH64_MOVW_PREL_G1";
1123 		case 290: return "R_AARCH64_MOVW_PREL_G1_NC";
1124 		case 291: return "R_AARCH64_MOVW_PREL_G2";
1125 		case 292: return "R_AARCH64_MOVW_PREL_G2_NC";
1126 		case 293: return "R_AARCH64_MOVW_PREL_G3";
1127 		case 299: return "R_AARCH64_LDST128_ABS_LO12_NC";
1128 		case 300: return "R_AARCH64_MOVW_GOTOFF_G0";
1129 		case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC";
1130 		case 302: return "R_AARCH64_MOVW_GOTOFF_G1";
1131 		case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC";
1132 		case 304: return "R_AARCH64_MOVW_GOTOFF_G2";
1133 		case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC";
1134 		case 306: return "R_AARCH64_MOVW_GOTOFF_G3";
1135 		case 307: return "R_AARCH64_GOTREL64";
1136 		case 308: return "R_AARCH64_GOTREL32";
1137 		case 309: return "R_AARCH64_GOT_LD_PREL19";
1138 		case 310: return "R_AARCH64_LD64_GOTOFF_LO15";
1139 		case 311: return "R_AARCH64_ADR_GOT_PAGE";
1140 		case 312: return "R_AARCH64_LD64_GOT_LO12_NC";
1141 		case 313: return "R_AARCH64_LD64_GOTPAGE_LO15";
1142 		case 1024: return "R_AARCH64_COPY";
1143 		case 1025: return "R_AARCH64_GLOB_DAT";
1144 		case 1026: return "R_AARCH64_JUMP_SLOT";
1145 		case 1027: return "R_AARCH64_RELATIVE";
1146 		case 1031: return "R_AARCH64_TLSDESC";
1147 		default: return "";
1148 		}
1149 	case EM_ARM:
1150 		switch(type) {
1151 		case 0: return "R_ARM_NONE";
1152 		case 1: return "R_ARM_PC24";
1153 		case 2: return "R_ARM_ABS32";
1154 		case 3: return "R_ARM_REL32";
1155 		case 4: return "R_ARM_PC13";
1156 		case 5: return "R_ARM_ABS16";
1157 		case 6: return "R_ARM_ABS12";
1158 		case 7: return "R_ARM_THM_ABS5";
1159 		case 8: return "R_ARM_ABS8";
1160 		case 9: return "R_ARM_SBREL32";
1161 		case 10: return "R_ARM_THM_PC22";
1162 		case 11: return "R_ARM_THM_PC8";
1163 		case 12: return "R_ARM_AMP_VCALL9";
1164 		case 13: return "R_ARM_SWI24";
1165 		case 14: return "R_ARM_THM_SWI8";
1166 		case 15: return "R_ARM_XPC25";
1167 		case 16: return "R_ARM_THM_XPC22";
1168 		case 20: return "R_ARM_COPY";
1169 		case 21: return "R_ARM_GLOB_DAT";
1170 		case 22: return "R_ARM_JUMP_SLOT";
1171 		case 23: return "R_ARM_RELATIVE";
1172 		case 24: return "R_ARM_GOTOFF";
1173 		case 25: return "R_ARM_GOTPC";
1174 		case 26: return "R_ARM_GOT32";
1175 		case 27: return "R_ARM_PLT32";
1176 		case 100: return "R_ARM_GNU_VTENTRY";
1177 		case 101: return "R_ARM_GNU_VTINHERIT";
1178 		case 250: return "R_ARM_RSBREL32";
1179 		case 251: return "R_ARM_THM_RPC22";
1180 		case 252: return "R_ARM_RREL32";
1181 		case 253: return "R_ARM_RABS32";
1182 		case 254: return "R_ARM_RPC24";
1183 		case 255: return "R_ARM_RBASE";
1184 		default: return "";
1185 		}
1186 	case EM_IA_64:
1187 		switch(type) {
1188 		case 0: return "R_IA_64_NONE";
1189 		case 33: return "R_IA_64_IMM14";
1190 		case 34: return "R_IA_64_IMM22";
1191 		case 35: return "R_IA_64_IMM64";
1192 		case 36: return "R_IA_64_DIR32MSB";
1193 		case 37: return "R_IA_64_DIR32LSB";
1194 		case 38: return "R_IA_64_DIR64MSB";
1195 		case 39: return "R_IA_64_DIR64LSB";
1196 		case 42: return "R_IA_64_GPREL22";
1197 		case 43: return "R_IA_64_GPREL64I";
1198 		case 44: return "R_IA_64_GPREL32MSB";
1199 		case 45: return "R_IA_64_GPREL32LSB";
1200 		case 46: return "R_IA_64_GPREL64MSB";
1201 		case 47: return "R_IA_64_GPREL64LSB";
1202 		case 50: return "R_IA_64_LTOFF22";
1203 		case 51: return "R_IA_64_LTOFF64I";
1204 		case 58: return "R_IA_64_PLTOFF22";
1205 		case 59: return "R_IA_64_PLTOFF64I";
1206 		case 62: return "R_IA_64_PLTOFF64MSB";
1207 		case 63: return "R_IA_64_PLTOFF64LSB";
1208 		case 67: return "R_IA_64_FPTR64I";
1209 		case 68: return "R_IA_64_FPTR32MSB";
1210 		case 69: return "R_IA_64_FPTR32LSB";
1211 		case 70: return "R_IA_64_FPTR64MSB";
1212 		case 71: return "R_IA_64_FPTR64LSB";
1213 		case 72: return "R_IA_64_PCREL60B";
1214 		case 73: return "R_IA_64_PCREL21B";
1215 		case 74: return "R_IA_64_PCREL21M";
1216 		case 75: return "R_IA_64_PCREL21F";
1217 		case 76: return "R_IA_64_PCREL32MSB";
1218 		case 77: return "R_IA_64_PCREL32LSB";
1219 		case 78: return "R_IA_64_PCREL64MSB";
1220 		case 79: return "R_IA_64_PCREL64LSB";
1221 		case 82: return "R_IA_64_LTOFF_FPTR22";
1222 		case 83: return "R_IA_64_LTOFF_FPTR64I";
1223 		case 84: return "R_IA_64_LTOFF_FPTR32MSB";
1224 		case 85: return "R_IA_64_LTOFF_FPTR32LSB";
1225 		case 86: return "R_IA_64_LTOFF_FPTR64MSB";
1226 		case 87: return "R_IA_64_LTOFF_FPTR64LSB";
1227 		case 92: return "R_IA_64_SEGREL32MSB";
1228 		case 93: return "R_IA_64_SEGREL32LSB";
1229 		case 94: return "R_IA_64_SEGREL64MSB";
1230 		case 95: return "R_IA_64_SEGREL64LSB";
1231 		case 100: return "R_IA_64_SECREL32MSB";
1232 		case 101: return "R_IA_64_SECREL32LSB";
1233 		case 102: return "R_IA_64_SECREL64MSB";
1234 		case 103: return "R_IA_64_SECREL64LSB";
1235 		case 108: return "R_IA_64_REL32MSB";
1236 		case 109: return "R_IA_64_REL32LSB";
1237 		case 110: return "R_IA_64_REL64MSB";
1238 		case 111: return "R_IA_64_REL64LSB";
1239 		case 116: return "R_IA_64_LTV32MSB";
1240 		case 117: return "R_IA_64_LTV32LSB";
1241 		case 118: return "R_IA_64_LTV64MSB";
1242 		case 119: return "R_IA_64_LTV64LSB";
1243 		case 121: return "R_IA_64_PCREL21BI";
1244 		case 122: return "R_IA_64_PCREL22";
1245 		case 123: return "R_IA_64_PCREL64I";
1246 		case 128: return "R_IA_64_IPLTMSB";
1247 		case 129: return "R_IA_64_IPLTLSB";
1248 		case 133: return "R_IA_64_SUB";
1249 		case 134: return "R_IA_64_LTOFF22X";
1250 		case 135: return "R_IA_64_LDXMOV";
1251 		case 145: return "R_IA_64_TPREL14";
1252 		case 146: return "R_IA_64_TPREL22";
1253 		case 147: return "R_IA_64_TPREL64I";
1254 		case 150: return "R_IA_64_TPREL64MSB";
1255 		case 151: return "R_IA_64_TPREL64LSB";
1256 		case 154: return "R_IA_64_LTOFF_TPREL22";
1257 		case 166: return "R_IA_64_DTPMOD64MSB";
1258 		case 167: return "R_IA_64_DTPMOD64LSB";
1259 		case 170: return "R_IA_64_LTOFF_DTPMOD22";
1260 		case 177: return "R_IA_64_DTPREL14";
1261 		case 178: return "R_IA_64_DTPREL22";
1262 		case 179: return "R_IA_64_DTPREL64I";
1263 		case 180: return "R_IA_64_DTPREL32MSB";
1264 		case 181: return "R_IA_64_DTPREL32LSB";
1265 		case 182: return "R_IA_64_DTPREL64MSB";
1266 		case 183: return "R_IA_64_DTPREL64LSB";
1267 		case 186: return "R_IA_64_LTOFF_DTPREL22";
1268 		default: return "";
1269 		}
1270 	case EM_MIPS:
1271 		switch(type) {
1272 		case 0: return "R_MIPS_NONE";
1273 		case 1: return "R_MIPS_16";
1274 		case 2: return "R_MIPS_32";
1275 		case 3: return "R_MIPS_REL32";
1276 		case 4: return "R_MIPS_26";
1277 		case 5: return "R_MIPS_HI16";
1278 		case 6: return "R_MIPS_LO16";
1279 		case 7: return "R_MIPS_GPREL16";
1280 		case 8: return "R_MIPS_LITERAL";
1281 		case 9: return "R_MIPS_GOT16";
1282 		case 10: return "R_MIPS_PC16";
1283 		case 11: return "R_MIPS_CALL16";
1284 		case 12: return "R_MIPS_GPREL32";
1285 		case 21: return "R_MIPS_GOTHI16";
1286 		case 22: return "R_MIPS_GOTLO16";
1287 		case 30: return "R_MIPS_CALLHI16";
1288 		case 31: return "R_MIPS_CALLLO16";
1289 		default: return "";
1290 		}
1291 	case EM_PPC:
1292 		switch(type) {
1293 		case 0: return "R_PPC_NONE";
1294 		case 1: return "R_PPC_ADDR32";
1295 		case 2: return "R_PPC_ADDR24";
1296 		case 3: return "R_PPC_ADDR16";
1297 		case 4: return "R_PPC_ADDR16_LO";
1298 		case 5: return "R_PPC_ADDR16_HI";
1299 		case 6: return "R_PPC_ADDR16_HA";
1300 		case 7: return "R_PPC_ADDR14";
1301 		case 8: return "R_PPC_ADDR14_BRTAKEN";
1302 		case 9: return "R_PPC_ADDR14_BRNTAKEN";
1303 		case 10: return "R_PPC_REL24";
1304 		case 11: return "R_PPC_REL14";
1305 		case 12: return "R_PPC_REL14_BRTAKEN";
1306 		case 13: return "R_PPC_REL14_BRNTAKEN";
1307 		case 14: return "R_PPC_GOT16";
1308 		case 15: return "R_PPC_GOT16_LO";
1309 		case 16: return "R_PPC_GOT16_HI";
1310 		case 17: return "R_PPC_GOT16_HA";
1311 		case 18: return "R_PPC_PLTREL24";
1312 		case 19: return "R_PPC_COPY";
1313 		case 20: return "R_PPC_GLOB_DAT";
1314 		case 21: return "R_PPC_JMP_SLOT";
1315 		case 22: return "R_PPC_RELATIVE";
1316 		case 23: return "R_PPC_LOCAL24PC";
1317 		case 24: return "R_PPC_UADDR32";
1318 		case 25: return "R_PPC_UADDR16";
1319 		case 26: return "R_PPC_REL32";
1320 		case 27: return "R_PPC_PLT32";
1321 		case 28: return "R_PPC_PLTREL32";
1322 		case 29: return "R_PPC_PLT16_LO";
1323 		case 30: return "R_PPC_PLT16_HI";
1324 		case 31: return "R_PPC_PLT16_HA";
1325 		case 32: return "R_PPC_SDAREL16";
1326 		case 33: return "R_PPC_SECTOFF";
1327 		case 34: return "R_PPC_SECTOFF_LO";
1328 		case 35: return "R_PPC_SECTOFF_HI";
1329 		case 36: return "R_PPC_SECTOFF_HA";
1330 		case 67: return "R_PPC_TLS";
1331 		case 68: return "R_PPC_DTPMOD32";
1332 		case 69: return "R_PPC_TPREL16";
1333 		case 70: return "R_PPC_TPREL16_LO";
1334 		case 71: return "R_PPC_TPREL16_HI";
1335 		case 72: return "R_PPC_TPREL16_HA";
1336 		case 73: return "R_PPC_TPREL32";
1337 		case 74: return "R_PPC_DTPREL16";
1338 		case 75: return "R_PPC_DTPREL16_LO";
1339 		case 76: return "R_PPC_DTPREL16_HI";
1340 		case 77: return "R_PPC_DTPREL16_HA";
1341 		case 78: return "R_PPC_DTPREL32";
1342 		case 79: return "R_PPC_GOT_TLSGD16";
1343 		case 80: return "R_PPC_GOT_TLSGD16_LO";
1344 		case 81: return "R_PPC_GOT_TLSGD16_HI";
1345 		case 82: return "R_PPC_GOT_TLSGD16_HA";
1346 		case 83: return "R_PPC_GOT_TLSLD16";
1347 		case 84: return "R_PPC_GOT_TLSLD16_LO";
1348 		case 85: return "R_PPC_GOT_TLSLD16_HI";
1349 		case 86: return "R_PPC_GOT_TLSLD16_HA";
1350 		case 87: return "R_PPC_GOT_TPREL16";
1351 		case 88: return "R_PPC_GOT_TPREL16_LO";
1352 		case 89: return "R_PPC_GOT_TPREL16_HI";
1353 		case 90: return "R_PPC_GOT_TPREL16_HA";
1354 		case 101: return "R_PPC_EMB_NADDR32";
1355 		case 102: return "R_PPC_EMB_NADDR16";
1356 		case 103: return "R_PPC_EMB_NADDR16_LO";
1357 		case 104: return "R_PPC_EMB_NADDR16_HI";
1358 		case 105: return "R_PPC_EMB_NADDR16_HA";
1359 		case 106: return "R_PPC_EMB_SDAI16";
1360 		case 107: return "R_PPC_EMB_SDA2I16";
1361 		case 108: return "R_PPC_EMB_SDA2REL";
1362 		case 109: return "R_PPC_EMB_SDA21";
1363 		case 110: return "R_PPC_EMB_MRKREF";
1364 		case 111: return "R_PPC_EMB_RELSEC16";
1365 		case 112: return "R_PPC_EMB_RELST_LO";
1366 		case 113: return "R_PPC_EMB_RELST_HI";
1367 		case 114: return "R_PPC_EMB_RELST_HA";
1368 		case 115: return "R_PPC_EMB_BIT_FLD";
1369 		case 116: return "R_PPC_EMB_RELSDA";
1370 		default: return "";
1371 		}
1372 	case EM_SPARC:
1373 	case EM_SPARCV9:
1374 		switch(type) {
1375 		case 0: return "R_SPARC_NONE";
1376 		case 1: return "R_SPARC_8";
1377 		case 2: return "R_SPARC_16";
1378 		case 3: return "R_SPARC_32";
1379 		case 4: return "R_SPARC_DISP8";
1380 		case 5: return "R_SPARC_DISP16";
1381 		case 6: return "R_SPARC_DISP32";
1382 		case 7: return "R_SPARC_WDISP30";
1383 		case 8: return "R_SPARC_WDISP22";
1384 		case 9: return "R_SPARC_HI22";
1385 		case 10: return "R_SPARC_22";
1386 		case 11: return "R_SPARC_13";
1387 		case 12: return "R_SPARC_LO10";
1388 		case 13: return "R_SPARC_GOT10";
1389 		case 14: return "R_SPARC_GOT13";
1390 		case 15: return "R_SPARC_GOT22";
1391 		case 16: return "R_SPARC_PC10";
1392 		case 17: return "R_SPARC_PC22";
1393 		case 18: return "R_SPARC_WPLT30";
1394 		case 19: return "R_SPARC_COPY";
1395 		case 20: return "R_SPARC_GLOB_DAT";
1396 		case 21: return "R_SPARC_JMP_SLOT";
1397 		case 22: return "R_SPARC_RELATIVE";
1398 		case 23: return "R_SPARC_UA32";
1399 		case 24: return "R_SPARC_PLT32";
1400 		case 25: return "R_SPARC_HIPLT22";
1401 		case 26: return "R_SPARC_LOPLT10";
1402 		case 27: return "R_SPARC_PCPLT32";
1403 		case 28: return "R_SPARC_PCPLT22";
1404 		case 29: return "R_SPARC_PCPLT10";
1405 		case 30: return "R_SPARC_10";
1406 		case 31: return "R_SPARC_11";
1407 		case 32: return "R_SPARC_64";
1408 		case 33: return "R_SPARC_OLO10";
1409 		case 34: return "R_SPARC_HH22";
1410 		case 35: return "R_SPARC_HM10";
1411 		case 36: return "R_SPARC_LM22";
1412 		case 37: return "R_SPARC_PC_HH22";
1413 		case 38: return "R_SPARC_PC_HM10";
1414 		case 39: return "R_SPARC_PC_LM22";
1415 		case 40: return "R_SPARC_WDISP16";
1416 		case 41: return "R_SPARC_WDISP19";
1417 		case 42: return "R_SPARC_GLOB_JMP";
1418 		case 43: return "R_SPARC_7";
1419 		case 44: return "R_SPARC_5";
1420 		case 45: return "R_SPARC_6";
1421 		case 46: return "R_SPARC_DISP64";
1422 		case 47: return "R_SPARC_PLT64";
1423 		case 48: return "R_SPARC_HIX22";
1424 		case 49: return "R_SPARC_LOX10";
1425 		case 50: return "R_SPARC_H44";
1426 		case 51: return "R_SPARC_M44";
1427 		case 52: return "R_SPARC_L44";
1428 		case 53: return "R_SPARC_REGISTER";
1429 		case 54: return "R_SPARC_UA64";
1430 		case 55: return "R_SPARC_UA16";
1431 		case 56: return "R_SPARC_TLS_GD_HI22";
1432 		case 57: return "R_SPARC_TLS_GD_LO10";
1433 		case 58: return "R_SPARC_TLS_GD_ADD";
1434 		case 59: return "R_SPARC_TLS_GD_CALL";
1435 		case 60: return "R_SPARC_TLS_LDM_HI22";
1436 		case 61: return "R_SPARC_TLS_LDM_LO10";
1437 		case 62: return "R_SPARC_TLS_LDM_ADD";
1438 		case 63: return "R_SPARC_TLS_LDM_CALL";
1439 		case 64: return "R_SPARC_TLS_LDO_HIX22";
1440 		case 65: return "R_SPARC_TLS_LDO_LOX10";
1441 		case 66: return "R_SPARC_TLS_LDO_ADD";
1442 		case 67: return "R_SPARC_TLS_IE_HI22";
1443 		case 68: return "R_SPARC_TLS_IE_LO10";
1444 		case 69: return "R_SPARC_TLS_IE_LD";
1445 		case 70: return "R_SPARC_TLS_IE_LDX";
1446 		case 71: return "R_SPARC_TLS_IE_ADD";
1447 		case 72: return "R_SPARC_TLS_LE_HIX22";
1448 		case 73: return "R_SPARC_TLS_LE_LOX10";
1449 		case 74: return "R_SPARC_TLS_DTPMOD32";
1450 		case 75: return "R_SPARC_TLS_DTPMOD64";
1451 		case 76: return "R_SPARC_TLS_DTPOFF32";
1452 		case 77: return "R_SPARC_TLS_DTPOFF64";
1453 		case 78: return "R_SPARC_TLS_TPOFF32";
1454 		case 79: return "R_SPARC_TLS_TPOFF64";
1455 		default: return "";
1456 		}
1457 	case EM_X86_64:
1458 		switch(type) {
1459 		case 0: return "R_X86_64_NONE";
1460 		case 1: return "R_X86_64_64";
1461 		case 2: return "R_X86_64_PC32";
1462 		case 3: return "R_X86_64_GOT32";
1463 		case 4: return "R_X86_64_PLT32";
1464 		case 5: return "R_X86_64_COPY";
1465 		case 6: return "R_X86_64_GLOB_DAT";
1466 		case 7: return "R_X86_64_JMP_SLOT";
1467 		case 8: return "R_X86_64_RELATIVE";
1468 		case 9: return "R_X86_64_GOTPCREL";
1469 		case 10: return "R_X86_64_32";
1470 		case 11: return "R_X86_64_32S";
1471 		case 12: return "R_X86_64_16";
1472 		case 13: return "R_X86_64_PC16";
1473 		case 14: return "R_X86_64_8";
1474 		case 15: return "R_X86_64_PC8";
1475 		case 16: return "R_X86_64_DTPMOD64";
1476 		case 17: return "R_X86_64_DTPOFF64";
1477 		case 18: return "R_X86_64_TPOFF64";
1478 		case 19: return "R_X86_64_TLSGD";
1479 		case 20: return "R_X86_64_TLSLD";
1480 		case 21: return "R_X86_64_DTPOFF32";
1481 		case 22: return "R_X86_64_GOTTPOFF";
1482 		case 23: return "R_X86_64_TPOFF32";
1483 		default: return "";
1484 		}
1485 	default: return "";
1486 	}
1487 }
1488 
1489 static const char *
1490 note_type(const char *name, unsigned int et, unsigned int nt)
1491 {
1492 	if (strcmp(name, "CORE") == 0 && et == ET_CORE)
1493 		return note_type_linux_core(nt);
1494 	else if (strcmp(name, "FreeBSD") == 0)
1495 		if (et == ET_CORE)
1496 			return note_type_freebsd_core(nt);
1497 		else
1498 			return note_type_freebsd(nt);
1499 	else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
1500 		return note_type_gnu(nt);
1501 	else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
1502 		return note_type_netbsd(nt);
1503 	else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
1504 		return note_type_openbsd(nt);
1505 	return note_type_unknown(nt);
1506 }
1507 
1508 static const char *
1509 note_type_freebsd(unsigned int nt)
1510 {
1511 	switch (nt) {
1512 	case 1: return "NT_FREEBSD_ABI_TAG";
1513 	case 2: return "NT_FREEBSD_NOINIT_TAG";
1514 	case 3: return "NT_FREEBSD_ARCH_TAG";
1515 	default: return (note_type_unknown(nt));
1516 	}
1517 }
1518 
1519 static const char *
1520 note_type_freebsd_core(unsigned int nt)
1521 {
1522 	switch (nt) {
1523 	case 1: return "NT_PRSTATUS";
1524 	case 2: return "NT_FPREGSET";
1525 	case 3: return "NT_PRPSINFO";
1526 	case 7: return "NT_THRMISC";
1527 	case 8: return "NT_PROCSTAT_PROC";
1528 	case 9: return "NT_PROCSTAT_FILES";
1529 	case 10: return "NT_PROCSTAT_VMMAP";
1530 	case 11: return "NT_PROCSTAT_GROUPS";
1531 	case 12: return "NT_PROCSTAT_UMASK";
1532 	case 13: return "NT_PROCSTAT_RLIMIT";
1533 	case 14: return "NT_PROCSTAT_OSREL";
1534 	case 15: return "NT_PROCSTAT_PSSTRINGS";
1535 	case 16: return "NT_PROCSTAT_AUXV";
1536 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1537 	default: return (note_type_unknown(nt));
1538 	}
1539 }
1540 
1541 static const char *
1542 note_type_linux_core(unsigned int nt)
1543 {
1544 	switch (nt) {
1545 	case 1: return "NT_PRSTATUS (Process status)";
1546 	case 2: return "NT_FPREGSET (Floating point information)";
1547 	case 3: return "NT_PRPSINFO (Process information)";
1548 	case 6: return "NT_AUXV (Auxiliary vector)";
1549 	case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
1550 	case 10: return "NT_PSTATUS (Linux process status)";
1551 	case 12: return "NT_FPREGS (Linux floating point regset)";
1552 	case 13: return "NT_PSINFO (Linux process information)";
1553 	case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
1554 	case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
1555 	default: return (note_type_unknown(nt));
1556 	}
1557 }
1558 
1559 static const char *
1560 note_type_gnu(unsigned int nt)
1561 {
1562 	switch (nt) {
1563 	case 1: return "NT_GNU_ABI_TAG";
1564 	case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
1565 	case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
1566 	case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
1567 	default: return (note_type_unknown(nt));
1568 	}
1569 }
1570 
1571 static const char *
1572 note_type_netbsd(unsigned int nt)
1573 {
1574 	switch (nt) {
1575 	case 1: return "NT_NETBSD_IDENT";
1576 	default: return (note_type_unknown(nt));
1577 	}
1578 }
1579 
1580 static const char *
1581 note_type_openbsd(unsigned int nt)
1582 {
1583 	switch (nt) {
1584 	case 1: return "NT_OPENBSD_IDENT";
1585 	default: return (note_type_unknown(nt));
1586 	}
1587 }
1588 
1589 static const char *
1590 note_type_unknown(unsigned int nt)
1591 {
1592 	static char s_nt[32];
1593 
1594 	snprintf(s_nt, sizeof(s_nt), "<unknown: %u>", nt);
1595 	return (s_nt);
1596 }
1597 
1598 static struct {
1599 	const char *name;
1600 	int value;
1601 } l_flag[] = {
1602 	{"EXACT_MATCH", LL_EXACT_MATCH},
1603 	{"IGNORE_INT_VER", LL_IGNORE_INT_VER},
1604 	{"REQUIRE_MINOR", LL_REQUIRE_MINOR},
1605 	{"EXPORTS", LL_EXPORTS},
1606 	{"DELAY_LOAD", LL_DELAY_LOAD},
1607 	{"DELTA", LL_DELTA},
1608 	{NULL, 0}
1609 };
1610 
1611 static struct mips_option mips_exceptions_option[] = {
1612 	{OEX_PAGE0, "PAGE0"},
1613 	{OEX_SMM, "SMM"},
1614 	{OEX_PRECISEFP, "PRECISEFP"},
1615 	{OEX_DISMISS, "DISMISS"},
1616 	{0, NULL}
1617 };
1618 
1619 static struct mips_option mips_pad_option[] = {
1620 	{OPAD_PREFIX, "PREFIX"},
1621 	{OPAD_POSTFIX, "POSTFIX"},
1622 	{OPAD_SYMBOL, "SYMBOL"},
1623 	{0, NULL}
1624 };
1625 
1626 static struct mips_option mips_hwpatch_option[] = {
1627 	{OHW_R4KEOP, "R4KEOP"},
1628 	{OHW_R8KPFETCH, "R8KPFETCH"},
1629 	{OHW_R5KEOP, "R5KEOP"},
1630 	{OHW_R5KCVTL, "R5KCVTL"},
1631 	{0, NULL}
1632 };
1633 
1634 static struct mips_option mips_hwa_option[] = {
1635 	{OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
1636 	{OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
1637 	{0, NULL}
1638 };
1639 
1640 static struct mips_option mips_hwo_option[] = {
1641 	{OHWO0_FIXADE, "FIXADE"},
1642 	{0, NULL}
1643 };
1644 
1645 static const char *
1646 option_kind(uint8_t kind)
1647 {
1648 	static char s_kind[32];
1649 
1650 	switch (kind) {
1651 	case ODK_NULL: return "NULL";
1652 	case ODK_REGINFO: return "REGINFO";
1653 	case ODK_EXCEPTIONS: return "EXCEPTIONS";
1654 	case ODK_PAD: return "PAD";
1655 	case ODK_HWPATCH: return "HWPATCH";
1656 	case ODK_FILL: return "FILL";
1657 	case ODK_TAGS: return "TAGS";
1658 	case ODK_HWAND: return "HWAND";
1659 	case ODK_HWOR: return "HWOR";
1660 	case ODK_GP_GROUP: return "GP_GROUP";
1661 	case ODK_IDENT: return "IDENT";
1662 	default:
1663 		snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
1664 		return (s_kind);
1665 	}
1666 }
1667 
1668 static const char *
1669 top_tag(unsigned int tag)
1670 {
1671 	static char s_top_tag[32];
1672 
1673 	switch (tag) {
1674 	case 1: return "File Attributes";
1675 	case 2: return "Section Attributes";
1676 	case 3: return "Symbol Attributes";
1677 	default:
1678 		snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
1679 		return (s_top_tag);
1680 	}
1681 }
1682 
1683 static const char *
1684 aeabi_cpu_arch(uint64_t arch)
1685 {
1686 	static char s_cpu_arch[32];
1687 
1688 	switch (arch) {
1689 	case 0: return "Pre-V4";
1690 	case 1: return "ARM v4";
1691 	case 2: return "ARM v4T";
1692 	case 3: return "ARM v5T";
1693 	case 4: return "ARM v5TE";
1694 	case 5: return "ARM v5TEJ";
1695 	case 6: return "ARM v6";
1696 	case 7: return "ARM v6KZ";
1697 	case 8: return "ARM v6T2";
1698 	case 9: return "ARM v6K";
1699 	case 10: return "ARM v7";
1700 	case 11: return "ARM v6-M";
1701 	case 12: return "ARM v6S-M";
1702 	case 13: return "ARM v7E-M";
1703 	default:
1704 		snprintf(s_cpu_arch, sizeof(s_cpu_arch),
1705 		    "Unknown (%ju)", (uintmax_t) arch);
1706 		return (s_cpu_arch);
1707 	}
1708 }
1709 
1710 static const char *
1711 aeabi_cpu_arch_profile(uint64_t pf)
1712 {
1713 	static char s_arch_profile[32];
1714 
1715 	switch (pf) {
1716 	case 0:
1717 		return "Not applicable";
1718 	case 0x41:		/* 'A' */
1719 		return "Application Profile";
1720 	case 0x52:		/* 'R' */
1721 		return "Real-Time Profile";
1722 	case 0x4D:		/* 'M' */
1723 		return "Microcontroller Profile";
1724 	case 0x53:		/* 'S' */
1725 		return "Application or Real-Time Profile";
1726 	default:
1727 		snprintf(s_arch_profile, sizeof(s_arch_profile),
1728 		    "Unknown (%ju)\n", (uintmax_t) pf);
1729 		return (s_arch_profile);
1730 	}
1731 }
1732 
1733 static const char *
1734 aeabi_arm_isa(uint64_t ai)
1735 {
1736 	static char s_ai[32];
1737 
1738 	switch (ai) {
1739 	case 0: return "No";
1740 	case 1: return "Yes";
1741 	default:
1742 		snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
1743 		    (uintmax_t) ai);
1744 		return (s_ai);
1745 	}
1746 }
1747 
1748 static const char *
1749 aeabi_thumb_isa(uint64_t ti)
1750 {
1751 	static char s_ti[32];
1752 
1753 	switch (ti) {
1754 	case 0: return "No";
1755 	case 1: return "16-bit Thumb";
1756 	case 2: return "32-bit Thumb";
1757 	default:
1758 		snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
1759 		    (uintmax_t) ti);
1760 		return (s_ti);
1761 	}
1762 }
1763 
1764 static const char *
1765 aeabi_fp_arch(uint64_t fp)
1766 {
1767 	static char s_fp_arch[32];
1768 
1769 	switch (fp) {
1770 	case 0: return "No";
1771 	case 1: return "VFPv1";
1772 	case 2: return "VFPv2";
1773 	case 3: return "VFPv3";
1774 	case 4: return "VFPv3-D16";
1775 	case 5: return "VFPv4";
1776 	case 6: return "VFPv4-D16";
1777 	default:
1778 		snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
1779 		    (uintmax_t) fp);
1780 		return (s_fp_arch);
1781 	}
1782 }
1783 
1784 static const char *
1785 aeabi_wmmx_arch(uint64_t wmmx)
1786 {
1787 	static char s_wmmx[32];
1788 
1789 	switch (wmmx) {
1790 	case 0: return "No";
1791 	case 1: return "WMMXv1";
1792 	case 2: return "WMMXv2";
1793 	default:
1794 		snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
1795 		    (uintmax_t) wmmx);
1796 		return (s_wmmx);
1797 	}
1798 }
1799 
1800 static const char *
1801 aeabi_adv_simd_arch(uint64_t simd)
1802 {
1803 	static char s_simd[32];
1804 
1805 	switch (simd) {
1806 	case 0: return "No";
1807 	case 1: return "NEONv1";
1808 	case 2: return "NEONv2";
1809 	default:
1810 		snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
1811 		    (uintmax_t) simd);
1812 		return (s_simd);
1813 	}
1814 }
1815 
1816 static const char *
1817 aeabi_pcs_config(uint64_t pcs)
1818 {
1819 	static char s_pcs[32];
1820 
1821 	switch (pcs) {
1822 	case 0: return "None";
1823 	case 1: return "Bare platform";
1824 	case 2: return "Linux";
1825 	case 3: return "Linux DSO";
1826 	case 4: return "Palm OS 2004";
1827 	case 5: return "Palm OS (future)";
1828 	case 6: return "Symbian OS 2004";
1829 	case 7: return "Symbian OS (future)";
1830 	default:
1831 		snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
1832 		    (uintmax_t) pcs);
1833 		return (s_pcs);
1834 	}
1835 }
1836 
1837 static const char *
1838 aeabi_pcs_r9(uint64_t r9)
1839 {
1840 	static char s_r9[32];
1841 
1842 	switch (r9) {
1843 	case 0: return "V6";
1844 	case 1: return "SB";
1845 	case 2: return "TLS pointer";
1846 	case 3: return "Unused";
1847 	default:
1848 		snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
1849 		return (s_r9);
1850 	}
1851 }
1852 
1853 static const char *
1854 aeabi_pcs_rw(uint64_t rw)
1855 {
1856 	static char s_rw[32];
1857 
1858 	switch (rw) {
1859 	case 0: return "Absolute";
1860 	case 1: return "PC-relative";
1861 	case 2: return "SB-relative";
1862 	case 3: return "None";
1863 	default:
1864 		snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
1865 		return (s_rw);
1866 	}
1867 }
1868 
1869 static const char *
1870 aeabi_pcs_ro(uint64_t ro)
1871 {
1872 	static char s_ro[32];
1873 
1874 	switch (ro) {
1875 	case 0: return "Absolute";
1876 	case 1: return "PC-relative";
1877 	case 2: return "None";
1878 	default:
1879 		snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
1880 		return (s_ro);
1881 	}
1882 }
1883 
1884 static const char *
1885 aeabi_pcs_got(uint64_t got)
1886 {
1887 	static char s_got[32];
1888 
1889 	switch (got) {
1890 	case 0: return "None";
1891 	case 1: return "direct";
1892 	case 2: return "indirect via GOT";
1893 	default:
1894 		snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
1895 		    (uintmax_t) got);
1896 		return (s_got);
1897 	}
1898 }
1899 
1900 static const char *
1901 aeabi_pcs_wchar_t(uint64_t wt)
1902 {
1903 	static char s_wt[32];
1904 
1905 	switch (wt) {
1906 	case 0: return "None";
1907 	case 2: return "wchar_t size 2";
1908 	case 4: return "wchar_t size 4";
1909 	default:
1910 		snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
1911 		return (s_wt);
1912 	}
1913 }
1914 
1915 static const char *
1916 aeabi_enum_size(uint64_t es)
1917 {
1918 	static char s_es[32];
1919 
1920 	switch (es) {
1921 	case 0: return "None";
1922 	case 1: return "smallest";
1923 	case 2: return "32-bit";
1924 	case 3: return "visible 32-bit";
1925 	default:
1926 		snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
1927 		return (s_es);
1928 	}
1929 }
1930 
1931 static const char *
1932 aeabi_align_needed(uint64_t an)
1933 {
1934 	static char s_align_n[64];
1935 
1936 	switch (an) {
1937 	case 0: return "No";
1938 	case 1: return "8-byte align";
1939 	case 2: return "4-byte align";
1940 	case 3: return "Reserved";
1941 	default:
1942 		if (an >= 4 && an <= 12)
1943 			snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
1944 			    " and up to 2^%ju-byte extended align",
1945 			    (uintmax_t) an);
1946 		else
1947 			snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
1948 			    (uintmax_t) an);
1949 		return (s_align_n);
1950 	}
1951 }
1952 
1953 static const char *
1954 aeabi_align_preserved(uint64_t ap)
1955 {
1956 	static char s_align_p[128];
1957 
1958 	switch (ap) {
1959 	case 0: return "No";
1960 	case 1: return "8-byte align";
1961 	case 2: return "8-byte align and SP % 8 == 0";
1962 	case 3: return "Reserved";
1963 	default:
1964 		if (ap >= 4 && ap <= 12)
1965 			snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
1966 			    " and SP %% 8 == 0 and up to 2^%ju-byte extended"
1967 			    " align", (uintmax_t) ap);
1968 		else
1969 			snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
1970 			    (uintmax_t) ap);
1971 		return (s_align_p);
1972 	}
1973 }
1974 
1975 static const char *
1976 aeabi_fp_rounding(uint64_t fr)
1977 {
1978 	static char s_fp_r[32];
1979 
1980 	switch (fr) {
1981 	case 0: return "Unused";
1982 	case 1: return "Needed";
1983 	default:
1984 		snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
1985 		    (uintmax_t) fr);
1986 		return (s_fp_r);
1987 	}
1988 }
1989 
1990 static const char *
1991 aeabi_fp_denormal(uint64_t fd)
1992 {
1993 	static char s_fp_d[32];
1994 
1995 	switch (fd) {
1996 	case 0: return "Unused";
1997 	case 1: return "Needed";
1998 	case 2: return "Sign Only";
1999 	default:
2000 		snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
2001 		    (uintmax_t) fd);
2002 		return (s_fp_d);
2003 	}
2004 }
2005 
2006 static const char *
2007 aeabi_fp_exceptions(uint64_t fe)
2008 {
2009 	static char s_fp_e[32];
2010 
2011 	switch (fe) {
2012 	case 0: return "Unused";
2013 	case 1: return "Needed";
2014 	default:
2015 		snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
2016 		    (uintmax_t) fe);
2017 		return (s_fp_e);
2018 	}
2019 }
2020 
2021 static const char *
2022 aeabi_fp_user_exceptions(uint64_t fu)
2023 {
2024 	static char s_fp_u[32];
2025 
2026 	switch (fu) {
2027 	case 0: return "Unused";
2028 	case 1: return "Needed";
2029 	default:
2030 		snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
2031 		    (uintmax_t) fu);
2032 		return (s_fp_u);
2033 	}
2034 }
2035 
2036 static const char *
2037 aeabi_fp_number_model(uint64_t fn)
2038 {
2039 	static char s_fp_n[32];
2040 
2041 	switch (fn) {
2042 	case 0: return "Unused";
2043 	case 1: return "IEEE 754 normal";
2044 	case 2: return "RTABI";
2045 	case 3: return "IEEE 754";
2046 	default:
2047 		snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
2048 		    (uintmax_t) fn);
2049 		return (s_fp_n);
2050 	}
2051 }
2052 
2053 static const char *
2054 aeabi_fp_16bit_format(uint64_t fp16)
2055 {
2056 	static char s_fp_16[64];
2057 
2058 	switch (fp16) {
2059 	case 0: return "None";
2060 	case 1: return "IEEE 754";
2061 	case 2: return "VFPv3/Advanced SIMD (alternative format)";
2062 	default:
2063 		snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
2064 		    (uintmax_t) fp16);
2065 		return (s_fp_16);
2066 	}
2067 }
2068 
2069 static const char *
2070 aeabi_mpext(uint64_t mp)
2071 {
2072 	static char s_mp[32];
2073 
2074 	switch (mp) {
2075 	case 0: return "Not allowed";
2076 	case 1: return "Allowed";
2077 	default:
2078 		snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
2079 		    (uintmax_t) mp);
2080 		return (s_mp);
2081 	}
2082 }
2083 
2084 static const char *
2085 aeabi_div(uint64_t du)
2086 {
2087 	static char s_du[32];
2088 
2089 	switch (du) {
2090 	case 0: return "Yes (V7-R/V7-M)";
2091 	case 1: return "No";
2092 	case 2: return "Yes (V7-A)";
2093 	default:
2094 		snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
2095 		    (uintmax_t) du);
2096 		return (s_du);
2097 	}
2098 }
2099 
2100 static const char *
2101 aeabi_t2ee(uint64_t t2ee)
2102 {
2103 	static char s_t2ee[32];
2104 
2105 	switch (t2ee) {
2106 	case 0: return "Not allowed";
2107 	case 1: return "Allowed";
2108 	default:
2109 		snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
2110 		    (uintmax_t) t2ee);
2111 		return (s_t2ee);
2112 	}
2113 
2114 }
2115 
2116 static const char *
2117 aeabi_hardfp(uint64_t hfp)
2118 {
2119 	static char s_hfp[32];
2120 
2121 	switch (hfp) {
2122 	case 0: return "Tag_FP_arch";
2123 	case 1: return "only SP";
2124 	case 2: return "only DP";
2125 	case 3: return "both SP and DP";
2126 	default:
2127 		snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
2128 		    (uintmax_t) hfp);
2129 		return (s_hfp);
2130 	}
2131 }
2132 
2133 static const char *
2134 aeabi_vfp_args(uint64_t va)
2135 {
2136 	static char s_va[32];
2137 
2138 	switch (va) {
2139 	case 0: return "AAPCS (base variant)";
2140 	case 1: return "AAPCS (VFP variant)";
2141 	case 2: return "toolchain-specific";
2142 	default:
2143 		snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
2144 		return (s_va);
2145 	}
2146 }
2147 
2148 static const char *
2149 aeabi_wmmx_args(uint64_t wa)
2150 {
2151 	static char s_wa[32];
2152 
2153 	switch (wa) {
2154 	case 0: return "AAPCS (base variant)";
2155 	case 1: return "Intel WMMX";
2156 	case 2: return "toolchain-specific";
2157 	default:
2158 		snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
2159 		return (s_wa);
2160 	}
2161 }
2162 
2163 static const char *
2164 aeabi_unaligned_access(uint64_t ua)
2165 {
2166 	static char s_ua[32];
2167 
2168 	switch (ua) {
2169 	case 0: return "Not allowed";
2170 	case 1: return "Allowed";
2171 	default:
2172 		snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
2173 		return (s_ua);
2174 	}
2175 }
2176 
2177 static const char *
2178 aeabi_fp_hpext(uint64_t fh)
2179 {
2180 	static char s_fh[32];
2181 
2182 	switch (fh) {
2183 	case 0: return "Not allowed";
2184 	case 1: return "Allowed";
2185 	default:
2186 		snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
2187 		return (s_fh);
2188 	}
2189 }
2190 
2191 static const char *
2192 aeabi_optm_goal(uint64_t og)
2193 {
2194 	static char s_og[32];
2195 
2196 	switch (og) {
2197 	case 0: return "None";
2198 	case 1: return "Speed";
2199 	case 2: return "Speed aggressive";
2200 	case 3: return "Space";
2201 	case 4: return "Space aggressive";
2202 	case 5: return "Debugging";
2203 	case 6: return "Best Debugging";
2204 	default:
2205 		snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
2206 		return (s_og);
2207 	}
2208 }
2209 
2210 static const char *
2211 aeabi_fp_optm_goal(uint64_t fog)
2212 {
2213 	static char s_fog[32];
2214 
2215 	switch (fog) {
2216 	case 0: return "None";
2217 	case 1: return "Speed";
2218 	case 2: return "Speed aggressive";
2219 	case 3: return "Space";
2220 	case 4: return "Space aggressive";
2221 	case 5: return "Accurary";
2222 	case 6: return "Best Accurary";
2223 	default:
2224 		snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
2225 		    (uintmax_t) fog);
2226 		return (s_fog);
2227 	}
2228 }
2229 
2230 static const char *
2231 aeabi_virtual(uint64_t vt)
2232 {
2233 	static char s_virtual[64];
2234 
2235 	switch (vt) {
2236 	case 0: return "No";
2237 	case 1: return "TrustZone";
2238 	case 2: return "Virtualization extension";
2239 	case 3: return "TrustZone and virtualization extension";
2240 	default:
2241 		snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
2242 		    (uintmax_t) vt);
2243 		return (s_virtual);
2244 	}
2245 }
2246 
2247 static struct {
2248 	uint64_t tag;
2249 	const char *s_tag;
2250 	const char *(*get_desc)(uint64_t val);
2251 } aeabi_tags[] = {
2252 	{4, "Tag_CPU_raw_name", NULL},
2253 	{5, "Tag_CPU_name", NULL},
2254 	{6, "Tag_CPU_arch", aeabi_cpu_arch},
2255 	{7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
2256 	{8, "Tag_ARM_ISA_use", aeabi_arm_isa},
2257 	{9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
2258 	{10, "Tag_FP_arch", aeabi_fp_arch},
2259 	{11, "Tag_WMMX_arch", aeabi_wmmx_arch},
2260 	{12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
2261 	{13, "Tag_PCS_config", aeabi_pcs_config},
2262 	{14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
2263 	{15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
2264 	{16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
2265 	{17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
2266 	{18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
2267 	{19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
2268 	{20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
2269 	{21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
2270 	{22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
2271 	{23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
2272 	{24, "Tag_ABI_align_needed", aeabi_align_needed},
2273 	{25, "Tag_ABI_align_preserved", aeabi_align_preserved},
2274 	{26, "Tag_ABI_enum_size", aeabi_enum_size},
2275 	{27, "Tag_ABI_HardFP_use", aeabi_hardfp},
2276 	{28, "Tag_ABI_VFP_args", aeabi_vfp_args},
2277 	{29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
2278 	{30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
2279 	{31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
2280 	{32, "Tag_compatibility", NULL},
2281 	{34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
2282 	{36, "Tag_FP_HP_extension", aeabi_fp_hpext},
2283 	{38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
2284 	{42, "Tag_MPextension_use", aeabi_mpext},
2285 	{44, "Tag_DIV_use", aeabi_div},
2286 	{64, "Tag_nodefaults", NULL},
2287 	{65, "Tag_also_compatible_with", NULL},
2288 	{66, "Tag_T2EE_use", aeabi_t2ee},
2289 	{67, "Tag_conformance", NULL},
2290 	{68, "Tag_Virtualization_use", aeabi_virtual},
2291 	{70, "Tag_MPextension_use", aeabi_mpext},
2292 };
2293 
2294 static const char *
2295 mips_abi_fp(uint64_t fp)
2296 {
2297 	static char s_mips_abi_fp[64];
2298 
2299 	switch (fp) {
2300 	case 0: return "N/A";
2301 	case 1: return "Hard float (double precision)";
2302 	case 2: return "Hard float (single precision)";
2303 	case 3: return "Soft float";
2304 	case 4: return "64-bit float (-mips32r2 -mfp64)";
2305 	default:
2306 		snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
2307 		    (uintmax_t) fp);
2308 		return (s_mips_abi_fp);
2309 	}
2310 }
2311 
2312 static const char *
2313 ppc_abi_fp(uint64_t fp)
2314 {
2315 	static char s_ppc_abi_fp[64];
2316 
2317 	switch (fp) {
2318 	case 0: return "N/A";
2319 	case 1: return "Hard float (double precision)";
2320 	case 2: return "Soft float";
2321 	case 3: return "Hard float (single precision)";
2322 	default:
2323 		snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
2324 		    (uintmax_t) fp);
2325 		return (s_ppc_abi_fp);
2326 	}
2327 }
2328 
2329 static const char *
2330 ppc_abi_vector(uint64_t vec)
2331 {
2332 	static char s_vec[64];
2333 
2334 	switch (vec) {
2335 	case 0: return "N/A";
2336 	case 1: return "Generic purpose registers";
2337 	case 2: return "AltiVec registers";
2338 	case 3: return "SPE registers";
2339 	default:
2340 		snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
2341 		return (s_vec);
2342 	}
2343 }
2344 
2345 static const char *
2346 dwarf_reg(unsigned int mach, unsigned int reg)
2347 {
2348 
2349 	switch (mach) {
2350 	case EM_386:
2351 		switch (reg) {
2352 		case 0: return "eax";
2353 		case 1: return "ecx";
2354 		case 2: return "edx";
2355 		case 3: return "ebx";
2356 		case 4: return "esp";
2357 		case 5: return "ebp";
2358 		case 6: return "esi";
2359 		case 7: return "edi";
2360 		case 8: return "eip";
2361 		case 9: return "eflags";
2362 		case 11: return "st0";
2363 		case 12: return "st1";
2364 		case 13: return "st2";
2365 		case 14: return "st3";
2366 		case 15: return "st4";
2367 		case 16: return "st5";
2368 		case 17: return "st6";
2369 		case 18: return "st7";
2370 		case 21: return "xmm0";
2371 		case 22: return "xmm1";
2372 		case 23: return "xmm2";
2373 		case 24: return "xmm3";
2374 		case 25: return "xmm4";
2375 		case 26: return "xmm5";
2376 		case 27: return "xmm6";
2377 		case 28: return "xmm7";
2378 		case 29: return "mm0";
2379 		case 30: return "mm1";
2380 		case 31: return "mm2";
2381 		case 32: return "mm3";
2382 		case 33: return "mm4";
2383 		case 34: return "mm5";
2384 		case 35: return "mm6";
2385 		case 36: return "mm7";
2386 		case 37: return "fcw";
2387 		case 38: return "fsw";
2388 		case 39: return "mxcsr";
2389 		case 40: return "es";
2390 		case 41: return "cs";
2391 		case 42: return "ss";
2392 		case 43: return "ds";
2393 		case 44: return "fs";
2394 		case 45: return "gs";
2395 		case 48: return "tr";
2396 		case 49: return "ldtr";
2397 		default: return (NULL);
2398 		}
2399 	case EM_X86_64:
2400 		switch (reg) {
2401 		case 0: return "rax";
2402 		case 1: return "rdx";
2403 		case 2: return "rcx";
2404 		case 3: return "rbx";
2405 		case 4: return "rsi";
2406 		case 5: return "rdi";
2407 		case 6: return "rbp";
2408 		case 7: return "rsp";
2409 		case 16: return "rip";
2410 		case 17: return "xmm0";
2411 		case 18: return "xmm1";
2412 		case 19: return "xmm2";
2413 		case 20: return "xmm3";
2414 		case 21: return "xmm4";
2415 		case 22: return "xmm5";
2416 		case 23: return "xmm6";
2417 		case 24: return "xmm7";
2418 		case 25: return "xmm8";
2419 		case 26: return "xmm9";
2420 		case 27: return "xmm10";
2421 		case 28: return "xmm11";
2422 		case 29: return "xmm12";
2423 		case 30: return "xmm13";
2424 		case 31: return "xmm14";
2425 		case 32: return "xmm15";
2426 		case 33: return "st0";
2427 		case 34: return "st1";
2428 		case 35: return "st2";
2429 		case 36: return "st3";
2430 		case 37: return "st4";
2431 		case 38: return "st5";
2432 		case 39: return "st6";
2433 		case 40: return "st7";
2434 		case 41: return "mm0";
2435 		case 42: return "mm1";
2436 		case 43: return "mm2";
2437 		case 44: return "mm3";
2438 		case 45: return "mm4";
2439 		case 46: return "mm5";
2440 		case 47: return "mm6";
2441 		case 48: return "mm7";
2442 		case 49: return "rflags";
2443 		case 50: return "es";
2444 		case 51: return "cs";
2445 		case 52: return "ss";
2446 		case 53: return "ds";
2447 		case 54: return "fs";
2448 		case 55: return "gs";
2449 		case 58: return "fs.base";
2450 		case 59: return "gs.base";
2451 		case 62: return "tr";
2452 		case 63: return "ldtr";
2453 		case 64: return "mxcsr";
2454 		case 65: return "fcw";
2455 		case 66: return "fsw";
2456 		default: return (NULL);
2457 		}
2458 	default:
2459 		return (NULL);
2460 	}
2461 }
2462 
2463 static void
2464 dump_ehdr(struct readelf *re)
2465 {
2466 	size_t		 shnum, shstrndx;
2467 	int		 i;
2468 
2469 	printf("ELF Header:\n");
2470 
2471 	/* e_ident[]. */
2472 	printf("  Magic:   ");
2473 	for (i = 0; i < EI_NIDENT; i++)
2474 		printf("%.2x ", re->ehdr.e_ident[i]);
2475 	putchar('\n');
2476 
2477 	/* EI_CLASS. */
2478 	printf("%-37s%s\n", "  Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
2479 
2480 	/* EI_DATA. */
2481 	printf("%-37s%s\n", "  Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
2482 
2483 	/* EI_VERSION. */
2484 	printf("%-37s%d %s\n", "  Version:", re->ehdr.e_ident[EI_VERSION],
2485 	    elf_ver(re->ehdr.e_ident[EI_VERSION]));
2486 
2487 	/* EI_OSABI. */
2488 	printf("%-37s%s\n", "  OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
2489 
2490 	/* EI_ABIVERSION. */
2491 	printf("%-37s%d\n", "  ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
2492 
2493 	/* e_type. */
2494 	printf("%-37s%s\n", "  Type:", elf_type(re->ehdr.e_type));
2495 
2496 	/* e_machine. */
2497 	printf("%-37s%s\n", "  Machine:", elf_machine(re->ehdr.e_machine));
2498 
2499 	/* e_version. */
2500 	printf("%-37s%#x\n", "  Version:", re->ehdr.e_version);
2501 
2502 	/* e_entry. */
2503 	printf("%-37s%#jx\n", "  Entry point address:",
2504 	    (uintmax_t)re->ehdr.e_entry);
2505 
2506 	/* e_phoff. */
2507 	printf("%-37s%ju (bytes into file)\n", "  Start of program headers:",
2508 	    (uintmax_t)re->ehdr.e_phoff);
2509 
2510 	/* e_shoff. */
2511 	printf("%-37s%ju (bytes into file)\n", "  Start of section headers:",
2512 	    (uintmax_t)re->ehdr.e_shoff);
2513 
2514 	/* e_flags. */
2515 	printf("%-37s%#x", "  Flags:", re->ehdr.e_flags);
2516 	dump_eflags(re, re->ehdr.e_flags);
2517 	putchar('\n');
2518 
2519 	/* e_ehsize. */
2520 	printf("%-37s%u (bytes)\n", "  Size of this header:",
2521 	    re->ehdr.e_ehsize);
2522 
2523 	/* e_phentsize. */
2524 	printf("%-37s%u (bytes)\n", "  Size of program headers:",
2525 	    re->ehdr.e_phentsize);
2526 
2527 	/* e_phnum. */
2528 	printf("%-37s%u\n", "  Number of program headers:", re->ehdr.e_phnum);
2529 
2530 	/* e_shentsize. */
2531 	printf("%-37s%u (bytes)\n", "  Size of section headers:",
2532 	    re->ehdr.e_shentsize);
2533 
2534 	/* e_shnum. */
2535 	printf("%-37s%u", "  Number of section headers:", re->ehdr.e_shnum);
2536 	if (re->ehdr.e_shnum == SHN_UNDEF) {
2537 		/* Extended section numbering is in use. */
2538 		if (elf_getshnum(re->elf, &shnum))
2539 			printf(" (%ju)", (uintmax_t)shnum);
2540 	}
2541 	putchar('\n');
2542 
2543 	/* e_shstrndx. */
2544 	printf("%-37s%u", "  Section header string table index:",
2545 	    re->ehdr.e_shstrndx);
2546 	if (re->ehdr.e_shstrndx == SHN_XINDEX) {
2547 		/* Extended section numbering is in use. */
2548 		if (elf_getshstrndx(re->elf, &shstrndx))
2549 			printf(" (%ju)", (uintmax_t)shstrndx);
2550 	}
2551 	putchar('\n');
2552 }
2553 
2554 static void
2555 dump_eflags(struct readelf *re, uint64_t e_flags)
2556 {
2557 	struct eflags_desc *edesc;
2558 	int arm_eabi;
2559 
2560 	edesc = NULL;
2561 	switch (re->ehdr.e_machine) {
2562 	case EM_ARM:
2563 		arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
2564 		if (arm_eabi == 0)
2565 			printf(", GNU EABI");
2566 		else if (arm_eabi <= 5)
2567 			printf(", Version%d EABI", arm_eabi);
2568 		edesc = arm_eflags_desc;
2569 		break;
2570 	case EM_MIPS:
2571 	case EM_MIPS_RS3_LE:
2572 		switch ((e_flags & EF_MIPS_ARCH) >> 28) {
2573 		case 0:	printf(", mips1"); break;
2574 		case 1: printf(", mips2"); break;
2575 		case 2: printf(", mips3"); break;
2576 		case 3: printf(", mips4"); break;
2577 		case 4: printf(", mips5"); break;
2578 		case 5: printf(", mips32"); break;
2579 		case 6: printf(", mips64"); break;
2580 		case 7: printf(", mips32r2"); break;
2581 		case 8: printf(", mips64r2"); break;
2582 		default: break;
2583 		}
2584 		switch ((e_flags & 0x00FF0000) >> 16) {
2585 		case 0x81: printf(", 3900"); break;
2586 		case 0x82: printf(", 4010"); break;
2587 		case 0x83: printf(", 4100"); break;
2588 		case 0x85: printf(", 4650"); break;
2589 		case 0x87: printf(", 4120"); break;
2590 		case 0x88: printf(", 4111"); break;
2591 		case 0x8a: printf(", sb1"); break;
2592 		case 0x8b: printf(", octeon"); break;
2593 		case 0x8c: printf(", xlr"); break;
2594 		case 0x91: printf(", 5400"); break;
2595 		case 0x98: printf(", 5500"); break;
2596 		case 0x99: printf(", 9000"); break;
2597 		case 0xa0: printf(", loongson-2e"); break;
2598 		case 0xa1: printf(", loongson-2f"); break;
2599 		default: break;
2600 		}
2601 		switch ((e_flags & 0x0000F000) >> 12) {
2602 		case 1: printf(", o32"); break;
2603 		case 2: printf(", o64"); break;
2604 		case 3: printf(", eabi32"); break;
2605 		case 4: printf(", eabi64"); break;
2606 		default: break;
2607 		}
2608 		edesc = mips_eflags_desc;
2609 		break;
2610 	case EM_PPC:
2611 	case EM_PPC64:
2612 		edesc = powerpc_eflags_desc;
2613 		break;
2614 	case EM_SPARC:
2615 	case EM_SPARC32PLUS:
2616 	case EM_SPARCV9:
2617 		switch ((e_flags & EF_SPARCV9_MM)) {
2618 		case EF_SPARCV9_TSO: printf(", tso"); break;
2619 		case EF_SPARCV9_PSO: printf(", pso"); break;
2620 		case EF_SPARCV9_MM: printf(", rmo"); break;
2621 		default: break;
2622 		}
2623 		edesc = sparc_eflags_desc;
2624 		break;
2625 	default:
2626 		break;
2627 	}
2628 
2629 	if (edesc != NULL) {
2630 		while (edesc->desc != NULL) {
2631 			if (e_flags & edesc->flag)
2632 				printf(", %s", edesc->desc);
2633 			edesc++;
2634 		}
2635 	}
2636 }
2637 
2638 static void
2639 dump_phdr(struct readelf *re)
2640 {
2641 	const char	*rawfile;
2642 	GElf_Phdr	 phdr;
2643 	size_t		 phnum;
2644 	int		 i, j;
2645 
2646 #define	PH_HDR	"Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz",	\
2647 		"MemSiz", "Flg", "Align"
2648 #define	PH_CT	phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset,	\
2649 		(uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr,	\
2650 		(uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz,	\
2651 		phdr.p_flags & PF_R ? 'R' : ' ',			\
2652 		phdr.p_flags & PF_W ? 'W' : ' ',			\
2653 		phdr.p_flags & PF_X ? 'E' : ' ',			\
2654 		(uintmax_t)phdr.p_align
2655 
2656 	if (elf_getphnum(re->elf, &phnum) == 0) {
2657 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2658 		return;
2659 	}
2660 	if (phnum == 0) {
2661 		printf("\nThere are no program headers in this file.\n");
2662 		return;
2663 	}
2664 
2665 	printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
2666 	printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
2667 	printf("There are %ju program headers, starting at offset %ju\n",
2668 	    (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
2669 
2670 	/* Dump program headers. */
2671 	printf("\nProgram Headers:\n");
2672 	if (re->ec == ELFCLASS32)
2673 		printf("  %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
2674 	else if (re->options & RE_WW)
2675 		printf("  %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
2676 	else
2677 		printf("  %-15s%-19s%-19s%s\n                 %-19s%-20s"
2678 		    "%-7s%s\n", PH_HDR);
2679 	for (i = 0; (size_t) i < phnum; i++) {
2680 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2681 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2682 			continue;
2683 		}
2684 		/* TODO: Add arch-specific segment type dump. */
2685 		if (re->ec == ELFCLASS32)
2686 			printf("  %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
2687 			    "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
2688 		else if (re->options & RE_WW)
2689 			printf("  %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
2690 			    "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
2691 		else
2692 			printf("  %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
2693 			    "                 0x%16.16jx 0x%16.16jx  %c%c%c"
2694 			    "    %#jx\n", PH_CT);
2695 		if (phdr.p_type == PT_INTERP) {
2696 			if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) {
2697 				warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2698 				continue;
2699 			}
2700 			printf("      [Requesting program interpreter: %s]\n",
2701 				rawfile + phdr.p_offset);
2702 		}
2703 	}
2704 
2705 	/* Dump section to segment mapping. */
2706 	if (re->shnum == 0)
2707 		return;
2708 	printf("\n Section to Segment mapping:\n");
2709 	printf("  Segment Sections...\n");
2710 	for (i = 0; (size_t)i < phnum; i++) {
2711 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2712 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2713 			continue;
2714 		}
2715 		printf("   %2.2d     ", i);
2716 		/* skip NULL section. */
2717 		for (j = 1; (size_t)j < re->shnum; j++)
2718 			if (re->sl[j].off >= phdr.p_offset &&
2719 			    re->sl[j].off + re->sl[j].sz <=
2720 			    phdr.p_offset + phdr.p_memsz)
2721 				printf("%s ", re->sl[j].name);
2722 		printf("\n");
2723 	}
2724 #undef	PH_HDR
2725 #undef	PH_CT
2726 }
2727 
2728 static char *
2729 section_flags(struct readelf *re, struct section *s)
2730 {
2731 #define BUF_SZ 256
2732 	static char	buf[BUF_SZ];
2733 	int		i, p, nb;
2734 
2735 	p = 0;
2736 	nb = re->ec == ELFCLASS32 ? 8 : 16;
2737 	if (re->options & RE_T) {
2738 		snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
2739 		    (uintmax_t)s->flags);
2740 		p += nb + 4;
2741 	}
2742 	for (i = 0; section_flag[i].ln != NULL; i++) {
2743 		if ((s->flags & section_flag[i].value) == 0)
2744 			continue;
2745 		if (re->options & RE_T) {
2746 			snprintf(&buf[p], BUF_SZ - p, "%s, ",
2747 			    section_flag[i].ln);
2748 			p += strlen(section_flag[i].ln) + 2;
2749 		} else
2750 			buf[p++] = section_flag[i].sn;
2751 	}
2752 	if (re->options & RE_T && p > nb + 4)
2753 		p -= 2;
2754 	buf[p] = '\0';
2755 
2756 	return (buf);
2757 }
2758 
2759 static void
2760 dump_shdr(struct readelf *re)
2761 {
2762 	struct section	*s;
2763 	int		 i;
2764 
2765 #define	S_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2766 		"Flg", "Lk", "Inf", "Al"
2767 #define	S_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Size",	\
2768 		"EntSize", "Flags", "Link", "Info", "Align"
2769 #define	ST_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2770 		"Lk", "Inf", "Al", "Flags"
2771 #define	ST_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Link",	\
2772 		"Size", "EntSize", "Info", "Align", "Flags"
2773 #define	S_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),	\
2774 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2775 		(uintmax_t)s->entsize, section_flags(re, s),		\
2776 		s->link, s->info, (uintmax_t)s->align
2777 #define	ST_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2778 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2779 		(uintmax_t)s->entsize, s->link, s->info,		\
2780 		(uintmax_t)s->align, section_flags(re, s)
2781 #define	ST_CTL	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2782 		(uintmax_t)s->addr, (uintmax_t)s->off, s->link,		\
2783 		(uintmax_t)s->sz, (uintmax_t)s->entsize, s->info,	\
2784 		(uintmax_t)s->align, section_flags(re, s)
2785 
2786 	if (re->shnum == 0) {
2787 		printf("\nThere are no sections in this file.\n");
2788 		return;
2789 	}
2790 	printf("There are %ju section headers, starting at offset 0x%jx:\n",
2791 	    (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
2792 	printf("\nSection Headers:\n");
2793 	if (re->ec == ELFCLASS32) {
2794 		if (re->options & RE_T)
2795 			printf("  %s\n       %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
2796 			    "%12s\n", ST_HDR);
2797 		else
2798 			printf("  %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2799 			    S_HDR);
2800 	} else if (re->options & RE_WW) {
2801 		if (re->options & RE_T)
2802 			printf("  %s\n       %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
2803 			    "%12s\n", ST_HDR);
2804 		else
2805 			printf("  %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2806 			    S_HDR);
2807 	} else {
2808 		if (re->options & RE_T)
2809 			printf("  %s\n       %-18s%-17s%-18s%s\n       %-18s"
2810 			    "%-17s%-18s%s\n%12s\n", ST_HDRL);
2811 		else
2812 			printf("  %-23s%-17s%-18s%s\n       %-18s%-17s%-7s%"
2813 			    "-6s%-6s%s\n", S_HDRL);
2814 	}
2815 	for (i = 0; (size_t)i < re->shnum; i++) {
2816 		s = &re->sl[i];
2817 		if (re->ec == ELFCLASS32) {
2818 			if (re->options & RE_T)
2819 				printf("  [%2d] %s\n       %-15.15s %8.8jx"
2820 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2821 				    "       %s\n", ST_CT);
2822 			else
2823 				printf("  [%2d] %-17.17s %-15.15s %8.8jx"
2824 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2825 				    S_CT);
2826 		} else if (re->options & RE_WW) {
2827 			if (re->options & RE_T)
2828 				printf("  [%2d] %s\n       %-15.15s %16.16jx"
2829 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2830 				    "       %s\n", ST_CT);
2831 			else
2832 				printf("  [%2d] %-17.17s %-15.15s %16.16jx"
2833 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2834 				    S_CT);
2835 		} else {
2836 			if (re->options & RE_T)
2837 				printf("  [%2d] %s\n       %-15.15s  %16.16jx"
2838 				    "  %16.16jx  %u\n       %16.16jx %16.16jx"
2839 				    "  %-16u  %ju\n       %s\n", ST_CTL);
2840 			else
2841 				printf("  [%2d] %-17.17s %-15.15s  %16.16jx"
2842 				    "  %8.8jx\n       %16.16jx  %16.16jx "
2843 				    "%3s      %2u   %3u     %ju\n", S_CT);
2844 		}
2845 	}
2846 	if ((re->options & RE_T) == 0)
2847 		printf("Key to Flags:\n  W (write), A (alloc),"
2848 		    " X (execute), M (merge), S (strings)\n"
2849 		    "  I (info), L (link order), G (group), x (unknown)\n"
2850 		    "  O (extra OS processing required)"
2851 		    " o (OS specific), p (processor specific)\n");
2852 
2853 #undef	S_HDR
2854 #undef	S_HDRL
2855 #undef	ST_HDR
2856 #undef	ST_HDRL
2857 #undef	S_CT
2858 #undef	ST_CT
2859 #undef	ST_CTL
2860 }
2861 
2862 static void
2863 dump_dynamic(struct readelf *re)
2864 {
2865 	GElf_Dyn	 dyn;
2866 	Elf_Data	*d;
2867 	struct section	*s;
2868 	int		 elferr, i, is_dynamic, j, jmax, nentries;
2869 
2870 	is_dynamic = 0;
2871 
2872 	for (i = 0; (size_t)i < re->shnum; i++) {
2873 		s = &re->sl[i];
2874 		if (s->type != SHT_DYNAMIC)
2875 			continue;
2876 		(void) elf_errno();
2877 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2878 			elferr = elf_errno();
2879 			if (elferr != 0)
2880 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
2881 			continue;
2882 		}
2883 		if (d->d_size <= 0)
2884 			continue;
2885 
2886 		is_dynamic = 1;
2887 
2888 		/* Determine the actual number of table entries. */
2889 		nentries = 0;
2890 		jmax = (int) (s->sz / s->entsize);
2891 
2892 		for (j = 0; j < jmax; j++) {
2893 			if (gelf_getdyn(d, j, &dyn) != &dyn) {
2894 				warnx("gelf_getdyn failed: %s",
2895 				    elf_errmsg(-1));
2896 				continue;
2897 			}
2898 			nentries ++;
2899 			if (dyn.d_tag == DT_NULL)
2900 				break;
2901                 }
2902 
2903 		printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
2904 		printf(" contains %u entries:\n", nentries);
2905 
2906 		if (re->ec == ELFCLASS32)
2907 			printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
2908 		else
2909 			printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
2910 
2911 		for (j = 0; j < nentries; j++) {
2912 			if (gelf_getdyn(d, j, &dyn) != &dyn)
2913 				continue;
2914 			/* Dump dynamic entry type. */
2915 			if (re->ec == ELFCLASS32)
2916 				printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
2917 			else
2918 				printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
2919 			printf(" %-20s", dt_type(re->ehdr.e_machine,
2920 			    dyn.d_tag));
2921 			/* Dump dynamic entry value. */
2922 			dump_dyn_val(re, &dyn, s->link);
2923 		}
2924 	}
2925 
2926 	if (!is_dynamic)
2927 		printf("\nThere is no dynamic section in this file.\n");
2928 }
2929 
2930 static char *
2931 timestamp(time_t ti)
2932 {
2933 	static char ts[32];
2934 	struct tm *t;
2935 
2936 	t = gmtime(&ti);
2937 	snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
2938 	    t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
2939 	    t->tm_min, t->tm_sec);
2940 
2941 	return (ts);
2942 }
2943 
2944 static const char *
2945 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
2946 {
2947 	const char *name;
2948 
2949 	if (stab == SHN_UNDEF)
2950 		name = "ERROR";
2951 	else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
2952 		(void) elf_errno(); /* clear error */
2953 		name = "ERROR";
2954 	}
2955 
2956 	return (name);
2957 }
2958 
2959 static void
2960 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
2961 {
2962 	const char *name;
2963 
2964 	switch (re->ehdr.e_machine) {
2965 	case EM_MIPS:
2966 	case EM_MIPS_RS3_LE:
2967 		switch (dyn->d_tag) {
2968 		case DT_MIPS_RLD_VERSION:
2969 		case DT_MIPS_LOCAL_GOTNO:
2970 		case DT_MIPS_CONFLICTNO:
2971 		case DT_MIPS_LIBLISTNO:
2972 		case DT_MIPS_SYMTABNO:
2973 		case DT_MIPS_UNREFEXTNO:
2974 		case DT_MIPS_GOTSYM:
2975 		case DT_MIPS_HIPAGENO:
2976 		case DT_MIPS_DELTA_CLASS_NO:
2977 		case DT_MIPS_DELTA_INSTANCE_NO:
2978 		case DT_MIPS_DELTA_RELOC_NO:
2979 		case DT_MIPS_DELTA_SYM_NO:
2980 		case DT_MIPS_DELTA_CLASSSYM_NO:
2981 		case DT_MIPS_LOCALPAGE_GOTIDX:
2982 		case DT_MIPS_LOCAL_GOTIDX:
2983 		case DT_MIPS_HIDDEN_GOTIDX:
2984 		case DT_MIPS_PROTECTED_GOTIDX:
2985 			printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
2986 			break;
2987 		case DT_MIPS_ICHECKSUM:
2988 		case DT_MIPS_FLAGS:
2989 		case DT_MIPS_BASE_ADDRESS:
2990 		case DT_MIPS_CONFLICT:
2991 		case DT_MIPS_LIBLIST:
2992 		case DT_MIPS_RLD_MAP:
2993 		case DT_MIPS_DELTA_CLASS:
2994 		case DT_MIPS_DELTA_INSTANCE:
2995 		case DT_MIPS_DELTA_RELOC:
2996 		case DT_MIPS_DELTA_SYM:
2997 		case DT_MIPS_DELTA_CLASSSYM:
2998 		case DT_MIPS_CXX_FLAGS:
2999 		case DT_MIPS_PIXIE_INIT:
3000 		case DT_MIPS_SYMBOL_LIB:
3001 		case DT_MIPS_OPTIONS:
3002 		case DT_MIPS_INTERFACE:
3003 		case DT_MIPS_DYNSTR_ALIGN:
3004 		case DT_MIPS_INTERFACE_SIZE:
3005 		case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
3006 		case DT_MIPS_COMPACT_SIZE:
3007 		case DT_MIPS_GP_VALUE:
3008 		case DT_MIPS_AUX_DYNAMIC:
3009 		case DT_MIPS_PLTGOT:
3010 		case DT_MIPS_RLD_OBJ_UPDATE:
3011 		case DT_MIPS_RWPLT:
3012 			printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
3013 			break;
3014 		case DT_MIPS_IVERSION:
3015 		case DT_MIPS_PERF_SUFFIX:
3016 		case DT_AUXILIARY:
3017 		case DT_FILTER:
3018 			name = dyn_str(re, stab, dyn->d_un.d_val);
3019 			printf(" %s\n", name);
3020 			break;
3021 		case DT_MIPS_TIME_STAMP:
3022 			printf(" %s\n", timestamp(dyn->d_un.d_val));
3023 			break;
3024 		}
3025 		break;
3026 	default:
3027 		printf("\n");
3028 		break;
3029 	}
3030 }
3031 
3032 static void
3033 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
3034 {
3035 	const char *name;
3036 
3037 	if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) {
3038 		dump_arch_dyn_val(re, dyn, stab);
3039 		return;
3040 	}
3041 
3042 	/* These entry values are index into the string table. */
3043 	name = NULL;
3044 	if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
3045 	    dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
3046 		name = dyn_str(re, stab, dyn->d_un.d_val);
3047 
3048 	switch(dyn->d_tag) {
3049 	case DT_NULL:
3050 	case DT_PLTGOT:
3051 	case DT_HASH:
3052 	case DT_STRTAB:
3053 	case DT_SYMTAB:
3054 	case DT_RELA:
3055 	case DT_INIT:
3056 	case DT_SYMBOLIC:
3057 	case DT_REL:
3058 	case DT_DEBUG:
3059 	case DT_TEXTREL:
3060 	case DT_JMPREL:
3061 	case DT_FINI:
3062 	case DT_VERDEF:
3063 	case DT_VERNEED:
3064 	case DT_VERSYM:
3065 	case DT_GNU_HASH:
3066 	case DT_GNU_LIBLIST:
3067 	case DT_GNU_CONFLICT:
3068 		printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
3069 		break;
3070 	case DT_PLTRELSZ:
3071 	case DT_RELASZ:
3072 	case DT_RELAENT:
3073 	case DT_STRSZ:
3074 	case DT_SYMENT:
3075 	case DT_RELSZ:
3076 	case DT_RELENT:
3077 	case DT_INIT_ARRAYSZ:
3078 	case DT_FINI_ARRAYSZ:
3079 	case DT_GNU_CONFLICTSZ:
3080 	case DT_GNU_LIBLISTSZ:
3081 		printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
3082 		break;
3083  	case DT_RELACOUNT:
3084 	case DT_RELCOUNT:
3085 	case DT_VERDEFNUM:
3086 	case DT_VERNEEDNUM:
3087 		printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
3088 		break;
3089 	case DT_NEEDED:
3090 		printf(" Shared library: [%s]\n", name);
3091 		break;
3092 	case DT_SONAME:
3093 		printf(" Library soname: [%s]\n", name);
3094 		break;
3095 	case DT_RPATH:
3096 		printf(" Library rpath: [%s]\n", name);
3097 		break;
3098 	case DT_RUNPATH:
3099 		printf(" Library runpath: [%s]\n", name);
3100 		break;
3101 	case DT_PLTREL:
3102 		printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
3103 		break;
3104 	case DT_GNU_PRELINKED:
3105 		printf(" %s\n", timestamp(dyn->d_un.d_val));
3106 		break;
3107 	default:
3108 		printf("\n");
3109 	}
3110 }
3111 
3112 static void
3113 dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
3114 {
3115 	GElf_Rel r;
3116 	const char *symname;
3117 	uint64_t symval;
3118 	int i, len;
3119 
3120 #define	REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
3121 #define	REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3122 		r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \
3123 		(uintmax_t)symval, symname
3124 #define	REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3125 		r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \
3126 		(uintmax_t)symval, symname
3127 
3128 	printf("\nRelocation section (%s):\n", s->name);
3129 	if (re->ec == ELFCLASS32)
3130 		printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
3131 	else {
3132 		if (re->options & RE_WW)
3133 			printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
3134 		else
3135 			printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
3136 	}
3137 	len = d->d_size / s->entsize;
3138 	for (i = 0; i < len; i++) {
3139 		if (gelf_getrel(d, i, &r) != &r) {
3140 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3141 			continue;
3142 		}
3143 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3144 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3145 		if (re->ec == ELFCLASS32) {
3146 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3147 			    ELF64_R_TYPE(r.r_info));
3148 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
3149 		} else {
3150 			if (re->options & RE_WW)
3151 				printf("%16.16jx %16.16jx %-24.24s"
3152 				    " %16.16jx %s\n", REL_CT64);
3153 			else
3154 				printf("%12.12jx %12.12jx %-19.19s"
3155 				    " %16.16jx %s\n", REL_CT64);
3156 		}
3157 	}
3158 
3159 #undef	REL_HDR
3160 #undef	REL_CT
3161 }
3162 
3163 static void
3164 dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
3165 {
3166 	GElf_Rela r;
3167 	const char *symname;
3168 	uint64_t symval;
3169 	int i, len;
3170 
3171 #define	RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
3172 		"st_name + r_addend"
3173 #define	RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3174 		r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \
3175 		(uintmax_t)symval, symname
3176 #define	RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3177 		r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \
3178 		(uintmax_t)symval, symname
3179 
3180 	printf("\nRelocation section with addend (%s):\n", s->name);
3181 	if (re->ec == ELFCLASS32)
3182 		printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
3183 	else {
3184 		if (re->options & RE_WW)
3185 			printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
3186 		else
3187 			printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
3188 	}
3189 	len = d->d_size / s->entsize;
3190 	for (i = 0; i < len; i++) {
3191 		if (gelf_getrela(d, i, &r) != &r) {
3192 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3193 			continue;
3194 		}
3195 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3196 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3197 		if (re->ec == ELFCLASS32) {
3198 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3199 			    ELF64_R_TYPE(r.r_info));
3200 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
3201 			printf(" + %x\n", (uint32_t) r.r_addend);
3202 		} else {
3203 			if (re->options & RE_WW)
3204 				printf("%16.16jx %16.16jx %-24.24s"
3205 				    " %16.16jx %s", RELA_CT64);
3206 			else
3207 				printf("%12.12jx %12.12jx %-19.19s"
3208 				    " %16.16jx %s", RELA_CT64);
3209 			printf(" + %jx\n", (uintmax_t) r.r_addend);
3210 		}
3211 	}
3212 
3213 #undef	RELA_HDR
3214 #undef	RELA_CT
3215 }
3216 
3217 static void
3218 dump_reloc(struct readelf *re)
3219 {
3220 	struct section *s;
3221 	Elf_Data *d;
3222 	int i, elferr;
3223 
3224 	for (i = 0; (size_t)i < re->shnum; i++) {
3225 		s = &re->sl[i];
3226 		if (s->type == SHT_REL || s->type == SHT_RELA) {
3227 			(void) elf_errno();
3228 			if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3229 				elferr = elf_errno();
3230 				if (elferr != 0)
3231 					warnx("elf_getdata failed: %s",
3232 					    elf_errmsg(elferr));
3233 				continue;
3234 			}
3235 			if (s->type == SHT_REL)
3236 				dump_rel(re, s, d);
3237 			else
3238 				dump_rela(re, s, d);
3239 		}
3240 	}
3241 }
3242 
3243 static void
3244 dump_symtab(struct readelf *re, int i)
3245 {
3246 	struct section *s;
3247 	Elf_Data *d;
3248 	GElf_Sym sym;
3249 	const char *name;
3250 	int elferr, stab, j;
3251 
3252 	s = &re->sl[i];
3253 	stab = s->link;
3254 	(void) elf_errno();
3255 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3256 		elferr = elf_errno();
3257 		if (elferr != 0)
3258 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3259 		return;
3260 	}
3261 	if (d->d_size <= 0)
3262 		return;
3263 	printf("Symbol table (%s)", s->name);
3264 	printf(" contains %ju entries:\n", s->sz / s->entsize);
3265 	printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
3266 	    "Bind", "Vis", "Ndx", "Name");
3267 
3268 	for (j = 0; (uint64_t)j < s->sz / s->entsize; j++) {
3269 		if (gelf_getsym(d, j, &sym) != &sym) {
3270 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
3271 			continue;
3272 		}
3273 		printf("%6d:", j);
3274 		printf(" %16.16jx", (uintmax_t)sym.st_value);
3275 		printf(" %5ju", sym.st_size);
3276 		printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info)));
3277 		printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
3278 		printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
3279 		printf(" %3s", st_shndx(sym.st_shndx));
3280 		if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
3281 			printf(" %s", name);
3282 		/* Append symbol version string for SHT_DYNSYM symbol table. */
3283 		if (s->type == SHT_DYNSYM && re->ver != NULL &&
3284 		    re->vs != NULL && re->vs[j] > 1) {
3285 			if (re->vs[j] & 0x8000 ||
3286 			    re->ver[re->vs[j] & 0x7fff].type == 0)
3287 				printf("@%s (%d)",
3288 				    re->ver[re->vs[j] & 0x7fff].name,
3289 				    re->vs[j] & 0x7fff);
3290 			else
3291 				printf("@@%s (%d)", re->ver[re->vs[j]].name,
3292 				    re->vs[j]);
3293 		}
3294 		putchar('\n');
3295 	}
3296 
3297 }
3298 
3299 static void
3300 dump_symtabs(struct readelf *re)
3301 {
3302 	GElf_Dyn dyn;
3303 	Elf_Data *d;
3304 	struct section *s;
3305 	uint64_t dyn_off;
3306 	int elferr, i;
3307 
3308 	/*
3309 	 * If -D is specified, only dump the symbol table specified by
3310 	 * the DT_SYMTAB entry in the .dynamic section.
3311 	 */
3312 	dyn_off = 0;
3313 	if (re->options & RE_DD) {
3314 		s = NULL;
3315 		for (i = 0; (size_t)i < re->shnum; i++)
3316 			if (re->sl[i].type == SHT_DYNAMIC) {
3317 				s = &re->sl[i];
3318 				break;
3319 			}
3320 		if (s == NULL)
3321 			return;
3322 		(void) elf_errno();
3323 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3324 			elferr = elf_errno();
3325 			if (elferr != 0)
3326 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
3327 			return;
3328 		}
3329 		if (d->d_size <= 0)
3330 			return;
3331 
3332 		for (i = 0; (uint64_t)i < s->sz / s->entsize; i++) {
3333 			if (gelf_getdyn(d, i, &dyn) != &dyn) {
3334 				warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
3335 				continue;
3336 			}
3337 			if (dyn.d_tag == DT_SYMTAB) {
3338 				dyn_off = dyn.d_un.d_val;
3339 				break;
3340 			}
3341 		}
3342 	}
3343 
3344 	/* Find and dump symbol tables. */
3345 	for (i = 0; (size_t)i < re->shnum; i++) {
3346 		s = &re->sl[i];
3347 		if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
3348 			if (re->options & RE_DD) {
3349 				if (dyn_off == s->addr) {
3350 					dump_symtab(re, i);
3351 					break;
3352 				}
3353 			} else
3354 				dump_symtab(re, i);
3355 		}
3356 	}
3357 }
3358 
3359 static void
3360 dump_svr4_hash(struct section *s)
3361 {
3362 	Elf_Data	*d;
3363 	uint32_t	*buf;
3364 	uint32_t	 nbucket, nchain;
3365 	uint32_t	*bucket, *chain;
3366 	uint32_t	*bl, *c, maxl, total;
3367 	int		 elferr, i, j;
3368 
3369 	/* Read and parse the content of .hash section. */
3370 	(void) elf_errno();
3371 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3372 		elferr = elf_errno();
3373 		if (elferr != 0)
3374 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3375 		return;
3376 	}
3377 	if (d->d_size < 2 * sizeof(uint32_t)) {
3378 		warnx(".hash section too small");
3379 		return;
3380 	}
3381 	buf = d->d_buf;
3382 	nbucket = buf[0];
3383 	nchain = buf[1];
3384 	if (nbucket <= 0 || nchain <= 0) {
3385 		warnx("Malformed .hash section");
3386 		return;
3387 	}
3388 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3389 		warnx("Malformed .hash section");
3390 		return;
3391 	}
3392 	bucket = &buf[2];
3393 	chain = &buf[2 + nbucket];
3394 
3395 	maxl = 0;
3396 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3397 		errx(EXIT_FAILURE, "calloc failed");
3398 	for (i = 0; (uint32_t)i < nbucket; i++)
3399 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3400 			if (++bl[i] > maxl)
3401 				maxl = bl[i];
3402 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3403 		errx(EXIT_FAILURE, "calloc failed");
3404 	for (i = 0; (uint32_t)i < nbucket; i++)
3405 		c[bl[i]]++;
3406 	printf("\nHistogram for bucket list length (total of %u buckets):\n",
3407 	    nbucket);
3408 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3409 	total = 0;
3410 	for (i = 0; (uint32_t)i <= maxl; i++) {
3411 		total += c[i] * i;
3412 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3413 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3414 	}
3415 	free(c);
3416 	free(bl);
3417 }
3418 
3419 static void
3420 dump_svr4_hash64(struct readelf *re, struct section *s)
3421 {
3422 	Elf_Data	*d, dst;
3423 	uint64_t	*buf;
3424 	uint64_t	 nbucket, nchain;
3425 	uint64_t	*bucket, *chain;
3426 	uint64_t	*bl, *c, maxl, total;
3427 	int		 elferr, i, j;
3428 
3429 	/*
3430 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
3431 	 * .hash section contains only 32-bit entry, an explicit
3432 	 * gelf_xlatetom is needed here.
3433 	 */
3434 	(void) elf_errno();
3435 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
3436 		elferr = elf_errno();
3437 		if (elferr != 0)
3438 			warnx("elf_rawdata failed: %s",
3439 			    elf_errmsg(elferr));
3440 		return;
3441 	}
3442 	d->d_type = ELF_T_XWORD;
3443 	memcpy(&dst, d, sizeof(Elf_Data));
3444 	if (gelf_xlatetom(re->elf, &dst, d,
3445 		re->ehdr.e_ident[EI_DATA]) != &dst) {
3446 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
3447 		return;
3448 	}
3449 	if (dst.d_size < 2 * sizeof(uint64_t)) {
3450 		warnx(".hash section too small");
3451 		return;
3452 	}
3453 	buf = dst.d_buf;
3454 	nbucket = buf[0];
3455 	nchain = buf[1];
3456 	if (nbucket <= 0 || nchain <= 0) {
3457 		warnx("Malformed .hash section");
3458 		return;
3459 	}
3460 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3461 		warnx("Malformed .hash section");
3462 		return;
3463 	}
3464 	bucket = &buf[2];
3465 	chain = &buf[2 + nbucket];
3466 
3467 	maxl = 0;
3468 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3469 		errx(EXIT_FAILURE, "calloc failed");
3470 	for (i = 0; (uint32_t)i < nbucket; i++)
3471 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3472 			if (++bl[i] > maxl)
3473 				maxl = bl[i];
3474 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3475 		errx(EXIT_FAILURE, "calloc failed");
3476 	for (i = 0; (uint64_t)i < nbucket; i++)
3477 		c[bl[i]]++;
3478 	printf("Histogram for bucket list length (total of %ju buckets):\n",
3479 	    (uintmax_t)nbucket);
3480 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3481 	total = 0;
3482 	for (i = 0; (uint64_t)i <= maxl; i++) {
3483 		total += c[i] * i;
3484 		printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
3485 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3486 	}
3487 	free(c);
3488 	free(bl);
3489 }
3490 
3491 static void
3492 dump_gnu_hash(struct readelf *re, struct section *s)
3493 {
3494 	struct section	*ds;
3495 	Elf_Data	*d;
3496 	uint32_t	*buf;
3497 	uint32_t	*bucket, *chain;
3498 	uint32_t	 nbucket, nchain, symndx, maskwords;
3499 	uint32_t	*bl, *c, maxl, total;
3500 	int		 elferr, dynsymcount, i, j;
3501 
3502 	(void) elf_errno();
3503 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3504 		elferr = elf_errno();
3505 		if (elferr != 0)
3506 			warnx("elf_getdata failed: %s",
3507 			    elf_errmsg(elferr));
3508 		return;
3509 	}
3510 	if (d->d_size < 4 * sizeof(uint32_t)) {
3511 		warnx(".gnu.hash section too small");
3512 		return;
3513 	}
3514 	buf = d->d_buf;
3515 	nbucket = buf[0];
3516 	symndx = buf[1];
3517 	maskwords = buf[2];
3518 	buf += 4;
3519 	ds = &re->sl[s->link];
3520 	dynsymcount = ds->sz / ds->entsize;
3521 	nchain = dynsymcount - symndx;
3522 	if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
3523 	    (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
3524 	    (nbucket + nchain) * sizeof(uint32_t)) {
3525 		warnx("Malformed .gnu.hash section");
3526 		return;
3527 	}
3528 	bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
3529 	chain = bucket + nbucket;
3530 
3531 	maxl = 0;
3532 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3533 		errx(EXIT_FAILURE, "calloc failed");
3534 	for (i = 0; (uint32_t)i < nbucket; i++)
3535 		for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
3536 		     j++) {
3537 			if (++bl[i] > maxl)
3538 				maxl = bl[i];
3539 			if (chain[j - symndx] & 1)
3540 				break;
3541 		}
3542 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3543 		errx(EXIT_FAILURE, "calloc failed");
3544 	for (i = 0; (uint32_t)i < nbucket; i++)
3545 		c[bl[i]]++;
3546 	printf("Histogram for bucket list length (total of %u buckets):\n",
3547 	    nbucket);
3548 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3549 	total = 0;
3550 	for (i = 0; (uint32_t)i <= maxl; i++) {
3551 		total += c[i] * i;
3552 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3553 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3554 	}
3555 	free(c);
3556 	free(bl);
3557 }
3558 
3559 static void
3560 dump_hash(struct readelf *re)
3561 {
3562 	struct section	*s;
3563 	int		 i;
3564 
3565 	for (i = 0; (size_t) i < re->shnum; i++) {
3566 		s = &re->sl[i];
3567 		if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
3568 			if (s->type == SHT_GNU_HASH)
3569 				dump_gnu_hash(re, s);
3570 			else if (re->ehdr.e_machine == EM_ALPHA &&
3571 			    s->entsize == 8)
3572 				dump_svr4_hash64(re, s);
3573 			else
3574 				dump_svr4_hash(s);
3575 		}
3576 	}
3577 }
3578 
3579 static void
3580 dump_notes(struct readelf *re)
3581 {
3582 	struct section *s;
3583 	const char *rawfile;
3584 	GElf_Phdr phdr;
3585 	Elf_Data *d;
3586 	size_t phnum;
3587 	int i, elferr;
3588 
3589 	if (re->ehdr.e_type == ET_CORE) {
3590 		/*
3591 		 * Search program headers in the core file for
3592 		 * PT_NOTE entry.
3593 		 */
3594 		if (elf_getphnum(re->elf, &phnum) == 0) {
3595 			warnx("elf_getphnum failed: %s", elf_errmsg(-1));
3596 			return;
3597 		}
3598 		if (phnum == 0)
3599 			return;
3600 		if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) {
3601 			warnx("elf_rawfile failed: %s", elf_errmsg(-1));
3602 			return;
3603 		}
3604 		for (i = 0; (size_t) i < phnum; i++) {
3605 			if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
3606 				warnx("gelf_getphdr failed: %s",
3607 				    elf_errmsg(-1));
3608 				continue;
3609 			}
3610 			if (phdr.p_type == PT_NOTE)
3611 				dump_notes_content(re, rawfile + phdr.p_offset,
3612 				    phdr.p_filesz, phdr.p_offset);
3613 		}
3614 
3615 	} else {
3616 		/*
3617 		 * For objects other than core files, Search for
3618 		 * SHT_NOTE sections.
3619 		 */
3620 		for (i = 0; (size_t) i < re->shnum; i++) {
3621 			s = &re->sl[i];
3622 			if (s->type == SHT_NOTE) {
3623 				(void) elf_errno();
3624 				if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3625 					elferr = elf_errno();
3626 					if (elferr != 0)
3627 						warnx("elf_getdata failed: %s",
3628 						    elf_errmsg(elferr));
3629 					continue;
3630 				}
3631 				dump_notes_content(re, d->d_buf, d->d_size,
3632 				    s->off);
3633 			}
3634 		}
3635 	}
3636 }
3637 
3638 static void
3639 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
3640 {
3641 	Elf_Note *note;
3642 	const char *end, *name;
3643 
3644 	printf("\nNotes at offset %#010jx with length %#010jx:\n",
3645 	    (uintmax_t) off, (uintmax_t) sz);
3646 	printf("  %-13s %-15s %s\n", "Owner", "Data size", "Description");
3647 	end = buf + sz;
3648 	while (buf < end) {
3649 		if (buf + sizeof(*note) > end) {
3650 			warnx("invalid note header");
3651 			return;
3652 		}
3653 		note = (Elf_Note *)(uintptr_t) buf;
3654 		name = (char *)(uintptr_t)(note + 1);
3655 		/*
3656 		 * The name field is required to be nul-terminated, and
3657 		 * n_namesz includes the terminating nul in observed
3658 		 * implementations (contrary to the ELF-64 spec). A special
3659 		 * case is needed for cores generated by some older Linux
3660 		 * versions, which write a note named "CORE" without a nul
3661 		 * terminator and n_namesz = 4.
3662 		 */
3663 		if (note->n_namesz == 0)
3664 			name = "";
3665 		else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
3666 			name = "CORE";
3667 		else if (strnlen(name, note->n_namesz) >= note->n_namesz)
3668 			name = "<invalid>";
3669 		printf("  %-13s %#010jx", name, (uintmax_t) note->n_descsz);
3670 		printf("      %s\n", note_type(name, re->ehdr.e_type,
3671 		    note->n_type));
3672 		buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) +
3673 		    roundup2(note->n_descsz, 4);
3674 	}
3675 }
3676 
3677 /*
3678  * Symbol versioning sections are the same for 32bit and 64bit
3679  * ELF objects.
3680  */
3681 #define Elf_Verdef	Elf32_Verdef
3682 #define	Elf_Verdaux	Elf32_Verdaux
3683 #define	Elf_Verneed	Elf32_Verneed
3684 #define	Elf_Vernaux	Elf32_Vernaux
3685 
3686 #define	SAVE_VERSION_NAME(x, n, t)					\
3687 	do {								\
3688 		while (x >= re->ver_sz) {				\
3689 			nv = realloc(re->ver,				\
3690 			    sizeof(*re->ver) * re->ver_sz * 2);		\
3691 			if (nv == NULL) {				\
3692 				warn("realloc failed");			\
3693 				free(re->ver);				\
3694 				return;					\
3695 			}						\
3696 			re->ver = nv;					\
3697 			for (i = re->ver_sz; i < re->ver_sz * 2; i++) {	\
3698 				re->ver[i].name = NULL;			\
3699 				re->ver[i].type = 0;			\
3700 			}						\
3701 			re->ver_sz *= 2;				\
3702 		}							\
3703 		if (x > 1) {						\
3704 			re->ver[x].name = n;				\
3705 			re->ver[x].type = t;				\
3706 		}							\
3707 	} while (0)
3708 
3709 
3710 static void
3711 dump_verdef(struct readelf *re, int dump)
3712 {
3713 	struct section *s;
3714 	struct symver *nv;
3715 	Elf_Data *d;
3716 	Elf_Verdef *vd;
3717 	Elf_Verdaux *vda;
3718 	uint8_t *buf, *end, *buf2;
3719 	const char *name;
3720 	int elferr, i, j;
3721 
3722 	if ((s = re->vd_s) == NULL)
3723 		return;
3724 
3725 	if (re->ver == NULL) {
3726 		re->ver_sz = 16;
3727 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3728 		    NULL) {
3729 			warn("calloc failed");
3730 			return;
3731 		}
3732 		re->ver[0].name = "*local*";
3733 		re->ver[1].name = "*global*";
3734 	}
3735 
3736 	if (dump)
3737 		printf("\nVersion definition section (%s):\n", s->name);
3738 	(void) elf_errno();
3739 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3740 		elferr = elf_errno();
3741 		if (elferr != 0)
3742 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3743 		return;
3744 	}
3745 	if (d->d_size == 0)
3746 		return;
3747 
3748 	buf = d->d_buf;
3749 	end = buf + d->d_size;
3750 	while (buf + sizeof(Elf_Verdef) <= end) {
3751 		vd = (Elf_Verdef *) (uintptr_t) buf;
3752 		if (dump) {
3753 			printf("  0x%4.4lx", (unsigned long)
3754 			    (buf - (uint8_t *)d->d_buf));
3755 			printf(" vd_version: %u vd_flags: %d"
3756 			    " vd_ndx: %u vd_cnt: %u", vd->vd_version,
3757 			    vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
3758 		}
3759 		buf2 = buf + vd->vd_aux;
3760 		j = 0;
3761 		while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
3762 			vda = (Elf_Verdaux *) (uintptr_t) buf2;
3763 			name = get_string(re, s->link, vda->vda_name);
3764 			if (j == 0) {
3765 				if (dump)
3766 					printf(" vda_name: %s\n", name);
3767 				SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
3768 			} else if (dump)
3769 				printf("  0x%4.4lx parent: %s\n",
3770 				    (unsigned long) (buf2 -
3771 				    (uint8_t *)d->d_buf), name);
3772 			if (vda->vda_next == 0)
3773 				break;
3774 			buf2 += vda->vda_next;
3775 			j++;
3776 		}
3777 		if (vd->vd_next == 0)
3778 			break;
3779 		buf += vd->vd_next;
3780 	}
3781 }
3782 
3783 static void
3784 dump_verneed(struct readelf *re, int dump)
3785 {
3786 	struct section *s;
3787 	struct symver *nv;
3788 	Elf_Data *d;
3789 	Elf_Verneed *vn;
3790 	Elf_Vernaux *vna;
3791 	uint8_t *buf, *end, *buf2;
3792 	const char *name;
3793 	int elferr, i, j;
3794 
3795 	if ((s = re->vn_s) == NULL)
3796 		return;
3797 
3798 	if (re->ver == NULL) {
3799 		re->ver_sz = 16;
3800 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3801 		    NULL) {
3802 			warn("calloc failed");
3803 			return;
3804 		}
3805 		re->ver[0].name = "*local*";
3806 		re->ver[1].name = "*global*";
3807 	}
3808 
3809 	if (dump)
3810 		printf("\nVersion needed section (%s):\n", s->name);
3811 	(void) elf_errno();
3812 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3813 		elferr = elf_errno();
3814 		if (elferr != 0)
3815 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3816 		return;
3817 	}
3818 	if (d->d_size == 0)
3819 		return;
3820 
3821 	buf = d->d_buf;
3822 	end = buf + d->d_size;
3823 	while (buf + sizeof(Elf_Verneed) <= end) {
3824 		vn = (Elf_Verneed *) (uintptr_t) buf;
3825 		if (dump) {
3826 			printf("  0x%4.4lx", (unsigned long)
3827 			    (buf - (uint8_t *)d->d_buf));
3828 			printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
3829 			    vn->vn_version,
3830 			    get_string(re, s->link, vn->vn_file),
3831 			    vn->vn_cnt);
3832 		}
3833 		buf2 = buf + vn->vn_aux;
3834 		j = 0;
3835 		while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
3836 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
3837 			if (dump)
3838 				printf("  0x%4.4lx", (unsigned long)
3839 				    (buf2 - (uint8_t *)d->d_buf));
3840 			name = get_string(re, s->link, vna->vna_name);
3841 			if (dump)
3842 				printf("   vna_name: %s vna_flags: %u"
3843 				    " vna_other: %u\n", name,
3844 				    vna->vna_flags, vna->vna_other);
3845 			SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
3846 			if (vna->vna_next == 0)
3847 				break;
3848 			buf2 += vna->vna_next;
3849 			j++;
3850 		}
3851 		if (vn->vn_next == 0)
3852 			break;
3853 		buf += vn->vn_next;
3854 	}
3855 }
3856 
3857 static void
3858 dump_versym(struct readelf *re)
3859 {
3860 	int i;
3861 
3862 	if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
3863 		return;
3864 	printf("\nVersion symbol section (%s):\n", re->vs_s->name);
3865 	for (i = 0; i < re->vs_sz; i++) {
3866 		if ((i & 3) == 0) {
3867 			if (i > 0)
3868 				putchar('\n');
3869 			printf("  %03x:", i);
3870 		}
3871 		if (re->vs[i] & 0x8000)
3872 			printf(" %3xh %-12s ", re->vs[i] & 0x7fff,
3873 			    re->ver[re->vs[i] & 0x7fff].name);
3874 		else
3875 			printf(" %3x %-12s ", re->vs[i],
3876 			    re->ver[re->vs[i]].name);
3877 	}
3878 	putchar('\n');
3879 }
3880 
3881 static void
3882 dump_ver(struct readelf *re)
3883 {
3884 
3885 	if (re->vs_s && re->ver && re->vs)
3886 		dump_versym(re);
3887 	if (re->vd_s)
3888 		dump_verdef(re, 1);
3889 	if (re->vn_s)
3890 		dump_verneed(re, 1);
3891 }
3892 
3893 static void
3894 search_ver(struct readelf *re)
3895 {
3896 	struct section *s;
3897 	Elf_Data *d;
3898 	int elferr, i;
3899 
3900 	for (i = 0; (size_t) i < re->shnum; i++) {
3901 		s = &re->sl[i];
3902 		if (s->type == SHT_SUNW_versym)
3903 			re->vs_s = s;
3904 		if (s->type == SHT_SUNW_verneed)
3905 			re->vn_s = s;
3906 		if (s->type == SHT_SUNW_verdef)
3907 			re->vd_s = s;
3908 	}
3909 	if (re->vd_s)
3910 		dump_verdef(re, 0);
3911 	if (re->vn_s)
3912 		dump_verneed(re, 0);
3913 	if (re->vs_s && re->ver != NULL) {
3914 		(void) elf_errno();
3915 		if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
3916 			elferr = elf_errno();
3917 			if (elferr != 0)
3918 				warnx("elf_getdata failed: %s",
3919 				    elf_errmsg(elferr));
3920 			return;
3921 		}
3922 		if (d->d_size == 0)
3923 			return;
3924 		re->vs = d->d_buf;
3925 		re->vs_sz = d->d_size / sizeof(Elf32_Half);
3926 	}
3927 }
3928 
3929 #undef	Elf_Verdef
3930 #undef	Elf_Verdaux
3931 #undef	Elf_Verneed
3932 #undef	Elf_Vernaux
3933 #undef	SAVE_VERSION_NAME
3934 
3935 /*
3936  * Elf32_Lib and Elf64_Lib are identical.
3937  */
3938 #define	Elf_Lib		Elf32_Lib
3939 
3940 static void
3941 dump_liblist(struct readelf *re)
3942 {
3943 	struct section *s;
3944 	struct tm *t;
3945 	time_t ti;
3946 	char tbuf[20];
3947 	Elf_Data *d;
3948 	Elf_Lib *lib;
3949 	int i, j, k, elferr, first;
3950 
3951 	for (i = 0; (size_t) i < re->shnum; i++) {
3952 		s = &re->sl[i];
3953 		if (s->type != SHT_GNU_LIBLIST)
3954 			continue;
3955 		(void) elf_errno();
3956 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3957 			elferr = elf_errno();
3958 			if (elferr != 0)
3959 				warnx("elf_getdata failed: %s",
3960 				    elf_errmsg(elferr));
3961 			continue;
3962 		}
3963 		if (d->d_size <= 0)
3964 			continue;
3965 		lib = d->d_buf;
3966 		printf("\nLibrary list section '%s' ", s->name);
3967 		printf("contains %ju entries:\n", s->sz / s->entsize);
3968 		printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
3969 		    "Checksum", "Version", "Flags");
3970 		for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
3971 			printf("%3d: ", j);
3972 			printf("%-20.20s ",
3973 			    get_string(re, s->link, lib->l_name));
3974 			ti = lib->l_time_stamp;
3975 			t = gmtime(&ti);
3976 			snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
3977 			    ":%2d", t->tm_year + 1900, t->tm_mon + 1,
3978 			    t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
3979 			printf("%-19.19s ", tbuf);
3980 			printf("0x%08x ", lib->l_checksum);
3981 			printf("%-7d %#x", lib->l_version, lib->l_flags);
3982 			if (lib->l_flags != 0) {
3983 				first = 1;
3984 				putchar('(');
3985 				for (k = 0; l_flag[k].name != NULL; k++) {
3986 					if ((l_flag[k].value & lib->l_flags) ==
3987 					    0)
3988 						continue;
3989 					if (!first)
3990 						putchar(',');
3991 					else
3992 						first = 0;
3993 					printf("%s", l_flag[k].name);
3994 				}
3995 				putchar(')');
3996 			}
3997 			putchar('\n');
3998 			lib++;
3999 		}
4000 	}
4001 }
4002 
4003 #undef Elf_Lib
4004 
4005 static uint8_t *
4006 dump_unknown_tag(uint64_t tag, uint8_t *p)
4007 {
4008 	uint64_t val;
4009 
4010 	/*
4011 	 * According to ARM EABI: For tags > 32, even numbered tags have
4012 	 * a ULEB128 param and odd numbered ones have NUL-terminated
4013 	 * string param. This rule probably also applies for tags <= 32
4014 	 * if the object arch is not ARM.
4015 	 */
4016 
4017 	printf("  Tag_unknown_%ju: ", (uintmax_t) tag);
4018 
4019 	if (tag & 1) {
4020 		printf("%s\n", (char *) p);
4021 		p += strlen((char *) p) + 1;
4022 	} else {
4023 		val = _decode_uleb128(&p);
4024 		printf("%ju\n", (uintmax_t) val);
4025 	}
4026 
4027 	return (p);
4028 }
4029 
4030 static uint8_t *
4031 dump_compatibility_tag(uint8_t *p)
4032 {
4033 	uint64_t val;
4034 
4035 	val = _decode_uleb128(&p);
4036 	printf("flag = %ju, vendor = %s\n", val, p);
4037 	p += strlen((char *) p) + 1;
4038 
4039 	return (p);
4040 }
4041 
4042 static void
4043 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4044 {
4045 	uint64_t tag, val;
4046 	size_t i;
4047 	int found, desc;
4048 
4049 	(void) re;
4050 
4051 	while (p < pe) {
4052 		tag = _decode_uleb128(&p);
4053 		found = desc = 0;
4054 		for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
4055 		     i++) {
4056 			if (tag == aeabi_tags[i].tag) {
4057 				found = 1;
4058 				printf("  %s: ", aeabi_tags[i].s_tag);
4059 				if (aeabi_tags[i].get_desc) {
4060 					desc = 1;
4061 					val = _decode_uleb128(&p);
4062 					printf("%s\n",
4063 					    aeabi_tags[i].get_desc(val));
4064 				}
4065 				break;
4066 			}
4067 			if (tag < aeabi_tags[i].tag)
4068 				break;
4069 		}
4070 		if (!found) {
4071 			p = dump_unknown_tag(tag, p);
4072 			continue;
4073 		}
4074 		if (desc)
4075 			continue;
4076 
4077 		switch (tag) {
4078 		case 4:		/* Tag_CPU_raw_name */
4079 		case 5:		/* Tag_CPU_name */
4080 		case 67:	/* Tag_conformance */
4081 			printf("%s\n", (char *) p);
4082 			p += strlen((char *) p) + 1;
4083 			break;
4084 		case 32:	/* Tag_compatibility */
4085 			p = dump_compatibility_tag(p);
4086 			break;
4087 		case 64:	/* Tag_nodefaults */
4088 			/* ignored, written as 0. */
4089 			(void) _decode_uleb128(&p);
4090 			printf("True\n");
4091 			break;
4092 		case 65:	/* Tag_also_compatible_with */
4093 			val = _decode_uleb128(&p);
4094 			/* Must be Tag_CPU_arch */
4095 			if (val != 6) {
4096 				printf("unknown\n");
4097 				break;
4098 			}
4099 			val = _decode_uleb128(&p);
4100 			printf("%s\n", aeabi_cpu_arch(val));
4101 			/* Skip NUL terminator. */
4102 			p++;
4103 			break;
4104 		default:
4105 			putchar('\n');
4106 			break;
4107 		}
4108 	}
4109 }
4110 
4111 #ifndef	Tag_GNU_MIPS_ABI_FP
4112 #define	Tag_GNU_MIPS_ABI_FP	4
4113 #endif
4114 
4115 static void
4116 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4117 {
4118 	uint64_t tag, val;
4119 
4120 	(void) re;
4121 
4122 	while (p < pe) {
4123 		tag = _decode_uleb128(&p);
4124 		switch (tag) {
4125 		case Tag_GNU_MIPS_ABI_FP:
4126 			val = _decode_uleb128(&p);
4127 			printf("  Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
4128 			break;
4129 		case 32:	/* Tag_compatibility */
4130 			p = dump_compatibility_tag(p);
4131 			break;
4132 		default:
4133 			p = dump_unknown_tag(tag, p);
4134 			break;
4135 		}
4136 	}
4137 }
4138 
4139 #ifndef Tag_GNU_Power_ABI_FP
4140 #define	Tag_GNU_Power_ABI_FP	4
4141 #endif
4142 
4143 #ifndef Tag_GNU_Power_ABI_Vector
4144 #define	Tag_GNU_Power_ABI_Vector	8
4145 #endif
4146 
4147 static void
4148 dump_ppc_attributes(uint8_t *p, uint8_t *pe)
4149 {
4150 	uint64_t tag, val;
4151 
4152 	while (p < pe) {
4153 		tag = _decode_uleb128(&p);
4154 		switch (tag) {
4155 		case Tag_GNU_Power_ABI_FP:
4156 			val = _decode_uleb128(&p);
4157 			printf("  Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
4158 			break;
4159 		case Tag_GNU_Power_ABI_Vector:
4160 			val = _decode_uleb128(&p);
4161 			printf("  Tag_GNU_Power_ABI_Vector: %s\n",
4162 			    ppc_abi_vector(val));
4163 			break;
4164 		case 32:	/* Tag_compatibility */
4165 			p = dump_compatibility_tag(p);
4166 			break;
4167 		default:
4168 			p = dump_unknown_tag(tag, p);
4169 			break;
4170 		}
4171 	}
4172 }
4173 
4174 static void
4175 dump_attributes(struct readelf *re)
4176 {
4177 	struct section *s;
4178 	Elf_Data *d;
4179 	uint8_t *p, *sp;
4180 	size_t len, seclen, nlen, sublen;
4181 	uint64_t val;
4182 	int tag, i, elferr;
4183 
4184 	for (i = 0; (size_t) i < re->shnum; i++) {
4185 		s = &re->sl[i];
4186 		if (s->type != SHT_GNU_ATTRIBUTES &&
4187 		    (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
4188 			continue;
4189 		(void) elf_errno();
4190 		if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4191 			elferr = elf_errno();
4192 			if (elferr != 0)
4193 				warnx("elf_rawdata failed: %s",
4194 				    elf_errmsg(elferr));
4195 			continue;
4196 		}
4197 		if (d->d_size <= 0)
4198 			continue;
4199 		p = d->d_buf;
4200 		if (*p != 'A') {
4201 			printf("Unknown Attribute Section Format: %c\n",
4202 			    (char) *p);
4203 			continue;
4204 		}
4205 		len = d->d_size - 1;
4206 		p++;
4207 		while (len > 0) {
4208 			seclen = re->dw_decode(&p, 4);
4209 			if (seclen > len) {
4210 				warnx("invalid attribute section length");
4211 				break;
4212 			}
4213 			len -= seclen;
4214 			printf("Attribute Section: %s\n", (char *) p);
4215 			nlen = strlen((char *) p) + 1;
4216 			p += nlen;
4217 			seclen -= nlen + 4;
4218 			while (seclen > 0) {
4219 				sp = p;
4220 				tag = *p++;
4221 				sublen = re->dw_decode(&p, 4);
4222 				if (sublen > seclen) {
4223 					warnx("invalid attribute sub-section"
4224 					    " length");
4225 					break;
4226 				}
4227 				seclen -= sublen;
4228 				printf("%s", top_tag(tag));
4229 				if (tag == 2 || tag == 3) {
4230 					putchar(':');
4231 					for (;;) {
4232 						val = _decode_uleb128(&p);
4233 						if (val == 0)
4234 							break;
4235 						printf(" %ju", (uintmax_t) val);
4236 					}
4237 				}
4238 				putchar('\n');
4239 				if (re->ehdr.e_machine == EM_ARM &&
4240 				    s->type == SHT_LOPROC + 3)
4241 					dump_arm_attributes(re, p, sp + sublen);
4242 				else if (re->ehdr.e_machine == EM_MIPS ||
4243 				    re->ehdr.e_machine == EM_MIPS_RS3_LE)
4244 					dump_mips_attributes(re, p,
4245 					    sp + sublen);
4246 				else if (re->ehdr.e_machine == EM_PPC)
4247 					dump_ppc_attributes(p, sp + sublen);
4248 				p = sp + sublen;
4249 			}
4250 		}
4251 	}
4252 }
4253 
4254 static void
4255 dump_mips_specific_info(struct readelf *re)
4256 {
4257 	struct section *s;
4258 	int i, options_found;
4259 
4260 	options_found = 0;
4261 	s = NULL;
4262 	for (i = 0; (size_t) i < re->shnum; i++) {
4263 		s = &re->sl[i];
4264 		if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
4265 		    (s->type == SHT_MIPS_OPTIONS))) {
4266 			dump_mips_options(re, s);
4267 			options_found = 1;
4268 		}
4269 	}
4270 
4271 	/*
4272 	 * According to SGI mips64 spec, .reginfo should be ignored if
4273 	 * .MIPS.options section is present.
4274 	 */
4275 	if (!options_found) {
4276 		for (i = 0; (size_t) i < re->shnum; i++) {
4277 			s = &re->sl[i];
4278 			if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
4279 			    (s->type == SHT_MIPS_REGINFO)))
4280 				dump_mips_reginfo(re, s);
4281 		}
4282 	}
4283 }
4284 
4285 static void
4286 dump_mips_reginfo(struct readelf *re, struct section *s)
4287 {
4288 	Elf_Data *d;
4289 	int elferr;
4290 
4291 	(void) elf_errno();
4292 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4293 		elferr = elf_errno();
4294 		if (elferr != 0)
4295 			warnx("elf_rawdata failed: %s",
4296 			    elf_errmsg(elferr));
4297 		return;
4298 	}
4299 	if (d->d_size <= 0)
4300 		return;
4301 
4302 	printf("\nSection '%s' contains %ju entries:\n", s->name,
4303 	    s->sz / s->entsize);
4304 	dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
4305 }
4306 
4307 static void
4308 dump_mips_options(struct readelf *re, struct section *s)
4309 {
4310 	Elf_Data *d;
4311 	uint32_t info;
4312 	uint16_t sndx;
4313 	uint8_t *p, *pe;
4314 	uint8_t kind, size;
4315 	int elferr;
4316 
4317 	(void) elf_errno();
4318 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4319 		elferr = elf_errno();
4320 		if (elferr != 0)
4321 			warnx("elf_rawdata failed: %s",
4322 			    elf_errmsg(elferr));
4323 		return;
4324 	}
4325 	if (d->d_size == 0)
4326 		return;
4327 
4328 	printf("\nSection %s contains:\n", s->name);
4329 	p = d->d_buf;
4330 	pe = p + d->d_size;
4331 	while (p < pe) {
4332 		kind = re->dw_decode(&p, 1);
4333 		size = re->dw_decode(&p, 1);
4334 		sndx = re->dw_decode(&p, 2);
4335 		info = re->dw_decode(&p, 4);
4336 		switch (kind) {
4337 		case ODK_REGINFO:
4338 			dump_mips_odk_reginfo(re, p, size - 8);
4339 			break;
4340 		case ODK_EXCEPTIONS:
4341 			printf(" EXCEPTIONS FPU_MIN: %#x\n",
4342 			    info & OEX_FPU_MIN);
4343 			printf("%11.11s FPU_MAX: %#x\n", "",
4344 			    info & OEX_FPU_MAX);
4345 			dump_mips_option_flags("", mips_exceptions_option,
4346 			    info);
4347 			break;
4348 		case ODK_PAD:
4349 			printf(" %-10.10s section: %ju\n", "OPAD",
4350 			    (uintmax_t) sndx);
4351 			dump_mips_option_flags("", mips_pad_option, info);
4352 			break;
4353 		case ODK_HWPATCH:
4354 			dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
4355 			    info);
4356 			break;
4357 		case ODK_HWAND:
4358 			dump_mips_option_flags("HWAND", mips_hwa_option, info);
4359 			break;
4360 		case ODK_HWOR:
4361 			dump_mips_option_flags("HWOR", mips_hwo_option, info);
4362 			break;
4363 		case ODK_FILL:
4364 			printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
4365 			break;
4366 		case ODK_TAGS:
4367 			printf(" %-10.10s\n", "TAGS");
4368 			break;
4369 		case ODK_GP_GROUP:
4370 			printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
4371 			    info & 0xFFFF);
4372 			if (info & 0x10000)
4373 				printf(" %-10.10s GP group is "
4374 				    "self-contained\n", "");
4375 			break;
4376 		case ODK_IDENT:
4377 			printf(" %-10.10s default GP group number: %#x\n",
4378 			    "IDENT", info & 0xFFFF);
4379 			if (info & 0x10000)
4380 				printf(" %-10.10s default GP group is "
4381 				    "self-contained\n", "");
4382 			break;
4383 		case ODK_PAGESIZE:
4384 			printf(" %-10.10s\n", "PAGESIZE");
4385 			break;
4386 		default:
4387 			break;
4388 		}
4389 		p += size - 8;
4390 	}
4391 }
4392 
4393 static void
4394 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
4395 {
4396 	int first;
4397 
4398 	first = 1;
4399 	for (; opt->desc != NULL; opt++) {
4400 		if (info & opt->flag) {
4401 			printf(" %-10.10s %s\n", first ? name : "",
4402 			    opt->desc);
4403 			first = 0;
4404 		}
4405 	}
4406 }
4407 
4408 static void
4409 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
4410 {
4411 	uint32_t ri_gprmask;
4412 	uint32_t ri_cprmask[4];
4413 	uint64_t ri_gp_value;
4414 	uint8_t *pe;
4415 	int i;
4416 
4417 	pe = p + sz;
4418 	while (p < pe) {
4419 		ri_gprmask = re->dw_decode(&p, 4);
4420 		/* Skip ri_pad padding field for mips64. */
4421 		if (re->ec == ELFCLASS64)
4422 			re->dw_decode(&p, 4);
4423 		for (i = 0; i < 4; i++)
4424 			ri_cprmask[i] = re->dw_decode(&p, 4);
4425 		if (re->ec == ELFCLASS32)
4426 			ri_gp_value = re->dw_decode(&p, 4);
4427 		else
4428 			ri_gp_value = re->dw_decode(&p, 8);
4429 		printf(" %s    ", option_kind(ODK_REGINFO));
4430 		printf("ri_gprmask:    0x%08jx\n", (uintmax_t) ri_gprmask);
4431 		for (i = 0; i < 4; i++)
4432 			printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
4433 			    (uintmax_t) ri_cprmask[i]);
4434 		printf("%12.12s", "");
4435 		printf("ri_gp_value:   %#jx\n", (uintmax_t) ri_gp_value);
4436 	}
4437 }
4438 
4439 static void
4440 dump_arch_specific_info(struct readelf *re)
4441 {
4442 
4443 	dump_liblist(re);
4444 	dump_attributes(re);
4445 
4446 	switch (re->ehdr.e_machine) {
4447 	case EM_MIPS:
4448 	case EM_MIPS_RS3_LE:
4449 		dump_mips_specific_info(re);
4450 	default:
4451 		break;
4452 	}
4453 }
4454 
4455 static const char *
4456 dwarf_regname(struct readelf *re, unsigned int num)
4457 {
4458 	static char rx[32];
4459 	const char *rn;
4460 
4461 	if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
4462 		return (rn);
4463 
4464 	snprintf(rx, sizeof(rx), "r%u", num);
4465 
4466 	return (rx);
4467 }
4468 
4469 static void
4470 dump_dwarf_line(struct readelf *re)
4471 {
4472 	struct section *s;
4473 	Dwarf_Die die;
4474 	Dwarf_Error de;
4475 	Dwarf_Half tag, version, pointer_size;
4476 	Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
4477 	Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
4478 	Elf_Data *d;
4479 	char *pn;
4480 	uint64_t address, file, line, column, isa, opsize, udelta;
4481 	int64_t sdelta;
4482 	uint8_t *p, *pe;
4483 	int8_t lbase;
4484 	int i, is_stmt, dwarf_size, elferr, ret;
4485 
4486 	printf("\nDump of debug contents of section .debug_line:\n");
4487 
4488 	s = NULL;
4489 	for (i = 0; (size_t) i < re->shnum; i++) {
4490 		s = &re->sl[i];
4491 		if (s->name != NULL && !strcmp(s->name, ".debug_line"))
4492 			break;
4493 	}
4494 	if ((size_t) i >= re->shnum)
4495 		return;
4496 
4497 	(void) elf_errno();
4498 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4499 		elferr = elf_errno();
4500 		if (elferr != 0)
4501 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
4502 		return;
4503 	}
4504 	if (d->d_size <= 0)
4505 		return;
4506 
4507 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4508 	    NULL, &de)) ==  DW_DLV_OK) {
4509 		die = NULL;
4510 		while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
4511 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4512 				warnx("dwarf_tag failed: %s",
4513 				    dwarf_errmsg(de));
4514 				return;
4515 			}
4516 			/* XXX: What about DW_TAG_partial_unit? */
4517 			if (tag == DW_TAG_compile_unit)
4518 				break;
4519 		}
4520 		if (die == NULL) {
4521 			warnx("could not find DW_TAG_compile_unit die");
4522 			return;
4523 		}
4524 		if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
4525 		    &de) != DW_DLV_OK)
4526 			continue;
4527 
4528 		length = re->dw_read(d, &offset, 4);
4529 		if (length == 0xffffffff) {
4530 			dwarf_size = 8;
4531 			length = re->dw_read(d, &offset, 8);
4532 		} else
4533 			dwarf_size = 4;
4534 
4535 		if (length > d->d_size - offset) {
4536 			warnx("invalid .dwarf_line section");
4537 			continue;
4538 		}
4539 
4540 		endoff = offset + length;
4541 		version = re->dw_read(d, &offset, 2);
4542 		hdrlen = re->dw_read(d, &offset, dwarf_size);
4543 		minlen = re->dw_read(d, &offset, 1);
4544 		defstmt = re->dw_read(d, &offset, 1);
4545 		lbase = re->dw_read(d, &offset, 1);
4546 		lrange = re->dw_read(d, &offset, 1);
4547 		opbase = re->dw_read(d, &offset, 1);
4548 
4549 		printf("\n");
4550 		printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
4551 		printf("  DWARF version:\t\t%u\n", version);
4552 		printf("  Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
4553 		printf("  Minimum Instruction Length:\t%u\n", minlen);
4554 		printf("  Initial value of 'is_stmt':\t%u\n", defstmt);
4555 		printf("  Line Base:\t\t\t%d\n", lbase);
4556 		printf("  Line Range:\t\t\t%u\n", lrange);
4557 		printf("  Opcode Base:\t\t\t%u\n", opbase);
4558 		(void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
4559 		printf("  (Pointer size:\t\t%u)\n", pointer_size);
4560 
4561 		printf("\n");
4562 		printf(" Opcodes:\n");
4563 		for (i = 1; i < opbase; i++) {
4564 			oplen = re->dw_read(d, &offset, 1);
4565 			printf("  Opcode %d has %u args\n", i, oplen);
4566 		}
4567 
4568 		printf("\n");
4569 		printf(" The Directory Table:\n");
4570 		p = (uint8_t *) d->d_buf + offset;
4571 		while (*p != '\0') {
4572 			printf("  %s\n", (char *) p);
4573 			p += strlen((char *) p) + 1;
4574 		}
4575 
4576 		p++;
4577 		printf("\n");
4578 		printf(" The File Name Table:\n");
4579 		printf("  Entry\tDir\tTime\tSize\tName\n");
4580 		i = 0;
4581 		while (*p != '\0') {
4582 			i++;
4583 			pn = (char *) p;
4584 			p += strlen(pn) + 1;
4585 			dirndx = _decode_uleb128(&p);
4586 			mtime = _decode_uleb128(&p);
4587 			fsize = _decode_uleb128(&p);
4588 			printf("  %d\t%ju\t%ju\t%ju\t%s\n", i,
4589 			    (uintmax_t) dirndx, (uintmax_t) mtime,
4590 			    (uintmax_t) fsize, pn);
4591 		}
4592 
4593 #define	RESET_REGISTERS						\
4594 	do {							\
4595 		address	       = 0;				\
4596 		file	       = 1;				\
4597 		line	       = 1;				\
4598 		column	       = 0;				\
4599 		is_stmt	       = defstmt;			\
4600 	} while(0)
4601 
4602 #define	LINE(x) (lbase + (((x) - opbase) % lrange))
4603 #define	ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
4604 
4605 		p++;
4606 		pe = (uint8_t *) d->d_buf + endoff;
4607 		printf("\n");
4608 		printf(" Line Number Statements:\n");
4609 
4610 		RESET_REGISTERS;
4611 
4612 		while (p < pe) {
4613 
4614 			if (*p == 0) {
4615 				/*
4616 				 * Extended Opcodes.
4617 				 */
4618 				p++;
4619 				opsize = _decode_uleb128(&p);
4620 				printf("  Extended opcode %u: ", *p);
4621 				switch (*p) {
4622 				case DW_LNE_end_sequence:
4623 					p++;
4624 					RESET_REGISTERS;
4625 					printf("End of Sequence\n");
4626 					break;
4627 				case DW_LNE_set_address:
4628 					p++;
4629 					address = re->dw_decode(&p,
4630 					    pointer_size);
4631 					printf("set Address to %#jx\n",
4632 					    (uintmax_t) address);
4633 					break;
4634 				case DW_LNE_define_file:
4635 					p++;
4636 					pn = (char *) p;
4637 					p += strlen(pn) + 1;
4638 					dirndx = _decode_uleb128(&p);
4639 					mtime = _decode_uleb128(&p);
4640 					fsize = _decode_uleb128(&p);
4641 					printf("define new file: %s\n", pn);
4642 					break;
4643 				default:
4644 					/* Unrecognized extened opcodes. */
4645 					p += opsize;
4646 					printf("unknown opcode\n");
4647 				}
4648 			} else if (*p > 0 && *p < opbase) {
4649 				/*
4650 				 * Standard Opcodes.
4651 				 */
4652 				switch(*p++) {
4653 				case DW_LNS_copy:
4654 					printf("  Copy\n");
4655 					break;
4656 				case DW_LNS_advance_pc:
4657 					udelta = _decode_uleb128(&p) *
4658 					    minlen;
4659 					address += udelta;
4660 					printf("  Advance PC by %ju to %#jx\n",
4661 					    (uintmax_t) udelta,
4662 					    (uintmax_t) address);
4663 					break;
4664 				case DW_LNS_advance_line:
4665 					sdelta = _decode_sleb128(&p);
4666 					line += sdelta;
4667 					printf("  Advance Line by %jd to %ju\n",
4668 					    (intmax_t) sdelta,
4669 					    (uintmax_t) line);
4670 					break;
4671 				case DW_LNS_set_file:
4672 					file = _decode_uleb128(&p);
4673 					printf("  Set File to %ju\n",
4674 					    (uintmax_t) file);
4675 					break;
4676 				case DW_LNS_set_column:
4677 					column = _decode_uleb128(&p);
4678 					printf("  Set Column to %ju\n",
4679 					    (uintmax_t) column);
4680 					break;
4681 				case DW_LNS_negate_stmt:
4682 					is_stmt = !is_stmt;
4683 					printf("  Set is_stmt to %d\n", is_stmt);
4684 					break;
4685 				case DW_LNS_set_basic_block:
4686 					printf("  Set basic block flag\n");
4687 					break;
4688 				case DW_LNS_const_add_pc:
4689 					address += ADDRESS(255);
4690 					printf("  Advance PC by constant %ju"
4691 					    " to %#jx\n",
4692 					    (uintmax_t) ADDRESS(255),
4693 					    (uintmax_t) address);
4694 					break;
4695 				case DW_LNS_fixed_advance_pc:
4696 					udelta = re->dw_decode(&p, 2);
4697 					address += udelta;
4698 					printf("  Advance PC by fixed value "
4699 					    "%ju to %#jx\n",
4700 					    (uintmax_t) udelta,
4701 					    (uintmax_t) address);
4702 					break;
4703 				case DW_LNS_set_prologue_end:
4704 					printf("  Set prologue end flag\n");
4705 					break;
4706 				case DW_LNS_set_epilogue_begin:
4707 					printf("  Set epilogue begin flag\n");
4708 					break;
4709 				case DW_LNS_set_isa:
4710 					isa = _decode_uleb128(&p);
4711 					printf("  Set isa to %ju\n", isa);
4712 					break;
4713 				default:
4714 					/* Unrecognized extended opcodes. */
4715 					printf("  Unknown extended opcode %u\n",
4716 					    *(p - 1));
4717 					break;
4718 				}
4719 
4720 			} else {
4721 				/*
4722 				 * Special Opcodes.
4723 				 */
4724 				line += LINE(*p);
4725 				address += ADDRESS(*p);
4726 				printf("  Special opcode %u: advance Address "
4727 				    "by %ju to %#jx and Line by %jd to %ju\n",
4728 				    *p - opbase, (uintmax_t) ADDRESS(*p),
4729 				    (uintmax_t) address, (intmax_t) LINE(*p),
4730 				    (uintmax_t) line);
4731 				p++;
4732 			}
4733 
4734 
4735 		}
4736 	}
4737 	if (ret == DW_DLV_ERROR)
4738 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
4739 
4740 #undef	RESET_REGISTERS
4741 #undef	LINE
4742 #undef	ADDRESS
4743 }
4744 
4745 static void
4746 dump_dwarf_line_decoded(struct readelf *re)
4747 {
4748 	Dwarf_Die die;
4749 	Dwarf_Line *linebuf, ln;
4750 	Dwarf_Addr lineaddr;
4751 	Dwarf_Signed linecount, srccount;
4752 	Dwarf_Unsigned lineno, fn;
4753 	Dwarf_Error de;
4754 	const char *dir, *file;
4755 	char **srcfiles;
4756 	int i, ret;
4757 
4758 	printf("Decoded dump of debug contents of section .debug_line:\n\n");
4759 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4760 	    NULL, &de)) == DW_DLV_OK) {
4761 		if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
4762 			continue;
4763 		if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
4764 		    DW_DLV_OK)
4765 			file = NULL;
4766 		if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
4767 		    DW_DLV_OK)
4768 			dir = NULL;
4769 		printf("CU: ");
4770 		if (dir && file)
4771 			printf("%s/", dir);
4772 		if (file)
4773 			printf("%s", file);
4774 		putchar('\n');
4775 		printf("%-37s %11s   %s\n", "Filename", "Line Number",
4776 		    "Starting Address");
4777 		if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
4778 			continue;
4779 		if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
4780 			continue;
4781 		for (i = 0; i < linecount; i++) {
4782 			ln = linebuf[i];
4783 			if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
4784 				continue;
4785 			if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
4786 				continue;
4787 			if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
4788 				continue;
4789 			printf("%-37s %11ju %#18jx\n",
4790 			    basename(srcfiles[fn - 1]), (uintmax_t) lineno,
4791 			    (uintmax_t) lineaddr);
4792 		}
4793 		putchar('\n');
4794 	}
4795 }
4796 
4797 static void
4798 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
4799 {
4800 	Dwarf_Attribute *attr_list;
4801 	Dwarf_Die ret_die;
4802 	Dwarf_Off dieoff, cuoff, culen, attroff;
4803 	Dwarf_Unsigned ate, lang, v_udata, v_sig;
4804 	Dwarf_Signed attr_count, v_sdata;
4805 	Dwarf_Off v_off;
4806 	Dwarf_Addr v_addr;
4807 	Dwarf_Half tag, attr, form;
4808 	Dwarf_Block *v_block;
4809 	Dwarf_Bool v_bool, is_info;
4810 	Dwarf_Sig8 v_sig8;
4811 	Dwarf_Error de;
4812 	Dwarf_Ptr v_expr;
4813 	const char *tag_str, *attr_str, *ate_str, *lang_str;
4814 	char unk_tag[32], unk_attr[32];
4815 	char *v_str;
4816 	uint8_t *b, *p;
4817 	int i, j, abc, ret;
4818 
4819 	if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
4820 		warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
4821 		goto cont_search;
4822 	}
4823 
4824 	printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
4825 
4826 	if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
4827 		warnx("dwarf_die_CU_offset_range failed: %s",
4828 		      dwarf_errmsg(de));
4829 		cuoff = 0;
4830 	}
4831 
4832 	abc = dwarf_die_abbrev_code(die);
4833 	if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4834 		warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
4835 		goto cont_search;
4836 	}
4837 	if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
4838 		snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
4839 		tag_str = unk_tag;
4840 	}
4841 
4842 	printf("Abbrev Number: %d (%s)\n", abc, tag_str);
4843 
4844 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
4845 	    DW_DLV_OK) {
4846 		if (ret == DW_DLV_ERROR)
4847 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
4848 		goto cont_search;
4849 	}
4850 
4851 	for (i = 0; i < attr_count; i++) {
4852 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
4853 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
4854 			continue;
4855 		}
4856 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
4857 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
4858 			continue;
4859 		}
4860 		if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
4861 			snprintf(unk_attr, sizeof(unk_attr),
4862 			    "[Unknown AT: %#x]", attr);
4863 			attr_str = unk_attr;
4864 		}
4865 		if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
4866 		    DW_DLV_OK) {
4867 			warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
4868 			attroff = 0;
4869 		}
4870 		printf("    <%jx>   %-18s: ", (uintmax_t) attroff, attr_str);
4871 		switch (form) {
4872 		case DW_FORM_ref_addr:
4873 		case DW_FORM_sec_offset:
4874 			if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
4875 			    DW_DLV_OK) {
4876 				warnx("dwarf_global_formref failed: %s",
4877 				    dwarf_errmsg(de));
4878 				continue;
4879 			}
4880 			if (form == DW_FORM_ref_addr)
4881 				printf("<0x%jx>", (uintmax_t) v_off);
4882 			else
4883 				printf("0x%jx", (uintmax_t) v_off);
4884 			break;
4885 
4886 		case DW_FORM_ref1:
4887 		case DW_FORM_ref2:
4888 		case DW_FORM_ref4:
4889 		case DW_FORM_ref8:
4890 		case DW_FORM_ref_udata:
4891 			if (dwarf_formref(attr_list[i], &v_off, &de) !=
4892 			    DW_DLV_OK) {
4893 				warnx("dwarf_formref failed: %s",
4894 				    dwarf_errmsg(de));
4895 				continue;
4896 			}
4897 			v_off += cuoff;
4898 			printf("<0x%jx>", (uintmax_t) v_off);
4899 			break;
4900 
4901 		case DW_FORM_addr:
4902 			if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
4903 			    DW_DLV_OK) {
4904 				warnx("dwarf_formaddr failed: %s",
4905 				    dwarf_errmsg(de));
4906 				continue;
4907 			}
4908 			printf("%#jx", (uintmax_t) v_addr);
4909 			break;
4910 
4911 		case DW_FORM_data1:
4912 		case DW_FORM_data2:
4913 		case DW_FORM_data4:
4914 		case DW_FORM_data8:
4915 		case DW_FORM_udata:
4916 			if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
4917 			    DW_DLV_OK) {
4918 				warnx("dwarf_formudata failed: %s",
4919 				    dwarf_errmsg(de));
4920 				continue;
4921 			}
4922 			if (attr == DW_AT_high_pc)
4923 				printf("0x%jx", (uintmax_t) v_udata);
4924 			else
4925 				printf("%ju", (uintmax_t) v_udata);
4926 			break;
4927 
4928 		case DW_FORM_sdata:
4929 			if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
4930 			    DW_DLV_OK) {
4931 				warnx("dwarf_formudata failed: %s",
4932 				    dwarf_errmsg(de));
4933 				continue;
4934 			}
4935 			printf("%jd", (intmax_t) v_sdata);
4936 			break;
4937 
4938 		case DW_FORM_flag:
4939 			if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
4940 			    DW_DLV_OK) {
4941 				warnx("dwarf_formflag failed: %s",
4942 				    dwarf_errmsg(de));
4943 				continue;
4944 			}
4945 			printf("%jd", (intmax_t) v_bool);
4946 			break;
4947 
4948 		case DW_FORM_flag_present:
4949 			putchar('1');
4950 			break;
4951 
4952 		case DW_FORM_string:
4953 		case DW_FORM_strp:
4954 			if (dwarf_formstring(attr_list[i], &v_str, &de) !=
4955 			    DW_DLV_OK) {
4956 				warnx("dwarf_formstring failed: %s",
4957 				    dwarf_errmsg(de));
4958 				continue;
4959 			}
4960 			if (form == DW_FORM_string)
4961 				printf("%s", v_str);
4962 			else
4963 				printf("(indirect string) %s", v_str);
4964 			break;
4965 
4966 		case DW_FORM_block:
4967 		case DW_FORM_block1:
4968 		case DW_FORM_block2:
4969 		case DW_FORM_block4:
4970 			if (dwarf_formblock(attr_list[i], &v_block, &de) !=
4971 			    DW_DLV_OK) {
4972 				warnx("dwarf_formblock failed: %s",
4973 				    dwarf_errmsg(de));
4974 				continue;
4975 			}
4976 			printf("%ju byte block:", (uintmax_t) v_block->bl_len);
4977 			b = v_block->bl_data;
4978 			for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
4979 				printf(" %x", b[j]);
4980 			printf("\t(");
4981 			dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
4982 			putchar(')');
4983 			break;
4984 
4985 		case DW_FORM_exprloc:
4986 			if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
4987 			    &de) != DW_DLV_OK) {
4988 				warnx("dwarf_formexprloc failed: %s",
4989 				    dwarf_errmsg(de));
4990 				continue;
4991 			}
4992 			printf("%ju byte block:", (uintmax_t) v_udata);
4993 			b = v_expr;
4994 			for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
4995 				printf(" %x", b[j]);
4996 			printf("\t(");
4997 			dump_dwarf_block(re, v_expr, v_udata);
4998 			putchar(')');
4999 			break;
5000 
5001 		case DW_FORM_ref_sig8:
5002 			if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
5003 			    DW_DLV_OK) {
5004 				warnx("dwarf_formsig8 failed: %s",
5005 				    dwarf_errmsg(de));
5006 				continue;
5007 			}
5008 			p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
5009 			v_sig = re->dw_decode(&p, 8);
5010 			printf("signature: 0x%jx", (uintmax_t) v_sig);
5011 		}
5012 		switch (attr) {
5013 		case DW_AT_encoding:
5014 			if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
5015 			    DW_DLV_OK)
5016 				break;
5017 			if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
5018 				ate_str = "DW_ATE_UNKNOWN";
5019 			printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
5020 			break;
5021 
5022 		case DW_AT_language:
5023 			if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
5024 			    DW_DLV_OK)
5025 				break;
5026 			if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
5027 				break;
5028 			printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
5029 			break;
5030 
5031 		case DW_AT_location:
5032 		case DW_AT_string_length:
5033 		case DW_AT_return_addr:
5034 		case DW_AT_data_member_location:
5035 		case DW_AT_frame_base:
5036 		case DW_AT_segment:
5037 		case DW_AT_static_link:
5038 		case DW_AT_use_location:
5039 		case DW_AT_vtable_elem_location:
5040 			switch (form) {
5041 			case DW_FORM_data4:
5042 			case DW_FORM_data8:
5043 			case DW_FORM_sec_offset:
5044 				printf("\t(location list)");
5045 				break;
5046 			default:
5047 				break;
5048 			}
5049 
5050 		default:
5051 			break;
5052 		}
5053 		putchar('\n');
5054 	}
5055 
5056 
5057 cont_search:
5058 	/* Search children. */
5059 	ret = dwarf_child(die, &ret_die, &de);
5060 	if (ret == DW_DLV_ERROR)
5061 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5062 	else if (ret == DW_DLV_OK)
5063 		dump_dwarf_die(re, ret_die, level + 1);
5064 
5065 	/* Search sibling. */
5066 	is_info = dwarf_get_die_infotypes_flag(die);
5067 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
5068 	if (ret == DW_DLV_ERROR)
5069 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5070 	else if (ret == DW_DLV_OK)
5071 		dump_dwarf_die(re, ret_die, level);
5072 
5073 	dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5074 }
5075 
5076 static void
5077 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
5078     Dwarf_Half ver)
5079 {
5080 
5081 	re->cu_psize = psize;
5082 	re->cu_osize = osize;
5083 	re->cu_ver = ver;
5084 }
5085 
5086 static void
5087 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
5088 {
5089 	struct section *s;
5090 	Dwarf_Die die;
5091 	Dwarf_Error de;
5092 	Dwarf_Half tag, version, pointer_size, off_size;
5093 	Dwarf_Off cu_offset, cu_length;
5094 	Dwarf_Off aboff;
5095 	Dwarf_Unsigned typeoff;
5096 	Dwarf_Sig8 sig8;
5097 	Dwarf_Unsigned sig;
5098 	uint8_t *p;
5099 	const char *sn;
5100 	int i, ret;
5101 
5102 	sn = is_info ? ".debug_info" : ".debug_types";
5103 
5104 	s = NULL;
5105 	for (i = 0; (size_t) i < re->shnum; i++) {
5106 		s = &re->sl[i];
5107 		if (s->name != NULL && !strcmp(s->name, sn))
5108 			break;
5109 	}
5110 	if ((size_t) i >= re->shnum)
5111 		return;
5112 
5113 	do {
5114 		printf("\nDump of debug contents of section %s:\n", sn);
5115 
5116 		while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
5117 		    &version, &aboff, &pointer_size, &off_size, NULL, &sig8,
5118 		    &typeoff, NULL, &de)) == DW_DLV_OK) {
5119 			set_cu_context(re, pointer_size, off_size, version);
5120 			die = NULL;
5121 			while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
5122 			    &de) == DW_DLV_OK) {
5123 				if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5124 					warnx("dwarf_tag failed: %s",
5125 					    dwarf_errmsg(de));
5126 					continue;
5127 				}
5128 				/* XXX: What about DW_TAG_partial_unit? */
5129 				if ((is_info && tag == DW_TAG_compile_unit) ||
5130 				    (!is_info && tag == DW_TAG_type_unit))
5131 					break;
5132 			}
5133 			if (die == NULL && is_info) {
5134 				warnx("could not find DW_TAG_compile_unit "
5135 				    "die");
5136 				continue;
5137 			} else if (die == NULL && !is_info) {
5138 				warnx("could not find DW_TAG_type_unit die");
5139 				continue;
5140 			}
5141 
5142 			if (dwarf_die_CU_offset_range(die, &cu_offset,
5143 			    &cu_length, &de) != DW_DLV_OK) {
5144 				warnx("dwarf_die_CU_offset failed: %s",
5145 				    dwarf_errmsg(de));
5146 				continue;
5147 			}
5148 
5149 			cu_length -= off_size == 4 ? 4 : 12;
5150 
5151 			sig = 0;
5152 			if (!is_info) {
5153 				p = (uint8_t *)(uintptr_t) &sig8.signature[0];
5154 				sig = re->dw_decode(&p, 8);
5155 			}
5156 
5157 			printf("\n  Type Unit @ offset 0x%jx:\n",
5158 			    (uintmax_t) cu_offset);
5159 			printf("    Length:\t\t%#jx (%d-bit)\n",
5160 			    (uintmax_t) cu_length, off_size == 4 ? 32 : 64);
5161 			printf("    Version:\t\t%u\n", version);
5162 			printf("    Abbrev Offset:\t0x%jx\n",
5163 			    (uintmax_t) aboff);
5164 			printf("    Pointer Size:\t%u\n", pointer_size);
5165 			if (!is_info) {
5166 				printf("    Signature:\t\t0x%016jx\n",
5167 				    (uintmax_t) sig);
5168 				printf("    Type Offset:\t0x%jx\n",
5169 				    (uintmax_t) typeoff);
5170 			}
5171 
5172 			dump_dwarf_die(re, die, 0);
5173 		}
5174 		if (ret == DW_DLV_ERROR)
5175 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5176 		if (is_info)
5177 			break;
5178 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
5179 }
5180 
5181 static void
5182 dump_dwarf_abbrev(struct readelf *re)
5183 {
5184 	Dwarf_Abbrev ab;
5185 	Dwarf_Off aboff, atoff;
5186 	Dwarf_Unsigned length, attr_count;
5187 	Dwarf_Signed flag, form;
5188 	Dwarf_Half tag, attr;
5189 	Dwarf_Error de;
5190 	const char *tag_str, *attr_str, *form_str;
5191 	char unk_tag[32], unk_attr[32], unk_form[32];
5192 	int i, j, ret;
5193 
5194 	printf("\nContents of section .debug_abbrev:\n\n");
5195 
5196 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
5197 	    NULL, NULL, &de)) ==  DW_DLV_OK) {
5198 		printf("  Number TAG\n");
5199 		i = 0;
5200 		while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
5201 		    &attr_count, &de)) == DW_DLV_OK) {
5202 			if (length == 1) {
5203 				dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5204 				break;
5205 			}
5206 			aboff += length;
5207 			printf("%4d", ++i);
5208 			if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
5209 				warnx("dwarf_get_abbrev_tag failed: %s",
5210 				    dwarf_errmsg(de));
5211 				goto next_abbrev;
5212 			}
5213 			if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5214 				snprintf(unk_tag, sizeof(unk_tag),
5215 				    "[Unknown Tag: %#x]", tag);
5216 				tag_str = unk_tag;
5217 			}
5218 			if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
5219 			    DW_DLV_OK) {
5220 				warnx("dwarf_get_abbrev_children_flag failed:"
5221 				    " %s", dwarf_errmsg(de));
5222 				goto next_abbrev;
5223 			}
5224 			printf("      %s    %s\n", tag_str,
5225 			    flag ? "[has children]" : "[no children]");
5226 			for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
5227 				if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
5228 				    &attr, &form, &atoff, &de) != DW_DLV_OK) {
5229 					warnx("dwarf_get_abbrev_entry failed:"
5230 					    " %s", dwarf_errmsg(de));
5231 					continue;
5232 				}
5233 				if (dwarf_get_AT_name(attr, &attr_str) !=
5234 				    DW_DLV_OK) {
5235 					snprintf(unk_attr, sizeof(unk_attr),
5236 					    "[Unknown AT: %#x]", attr);
5237 					attr_str = unk_attr;
5238 				}
5239 				if (dwarf_get_FORM_name(form, &form_str) !=
5240 				    DW_DLV_OK) {
5241 					snprintf(unk_form, sizeof(unk_form),
5242 					    "[Unknown Form: %#x]",
5243 					    (Dwarf_Half) form);
5244 					form_str = unk_form;
5245 				}
5246 				printf("    %-18s %s\n", attr_str, form_str);
5247 			}
5248 		next_abbrev:
5249 			dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5250 		}
5251 		if (ret != DW_DLV_OK)
5252 			warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
5253 	}
5254 	if (ret == DW_DLV_ERROR)
5255 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5256 }
5257 
5258 static void
5259 dump_dwarf_pubnames(struct readelf *re)
5260 {
5261 	struct section *s;
5262 	Dwarf_Off die_off;
5263 	Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
5264 	Dwarf_Signed cnt;
5265 	Dwarf_Global *globs;
5266 	Dwarf_Half nt_version;
5267 	Dwarf_Error de;
5268 	Elf_Data *d;
5269 	char *glob_name;
5270 	int i, dwarf_size, elferr;
5271 
5272 	printf("\nContents of the .debug_pubnames section:\n");
5273 
5274 	s = NULL;
5275 	for (i = 0; (size_t) i < re->shnum; i++) {
5276 		s = &re->sl[i];
5277 		if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
5278 			break;
5279 	}
5280 	if ((size_t) i >= re->shnum)
5281 		return;
5282 
5283 	(void) elf_errno();
5284 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5285 		elferr = elf_errno();
5286 		if (elferr != 0)
5287 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5288 		return;
5289 	}
5290 	if (d->d_size <= 0)
5291 		return;
5292 
5293 	/* Read in .debug_pubnames section table header. */
5294 	offset = 0;
5295 	length = re->dw_read(d, &offset, 4);
5296 	if (length == 0xffffffff) {
5297 		dwarf_size = 8;
5298 		length = re->dw_read(d, &offset, 8);
5299 	} else
5300 		dwarf_size = 4;
5301 
5302 	if (length > d->d_size - offset) {
5303 		warnx("invalid .dwarf_pubnames section");
5304 		return;
5305 	}
5306 
5307 	nt_version = re->dw_read(d, &offset, 2);
5308 	nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
5309 	nt_cu_length = re->dw_read(d, &offset, dwarf_size);
5310 	printf("  Length:\t\t\t\t%ju\n", (uintmax_t) length);
5311 	printf("  Version:\t\t\t\t%u\n", nt_version);
5312 	printf("  Offset into .debug_info section:\t%ju\n",
5313 	    (uintmax_t) nt_cu_offset);
5314 	printf("  Size of area in .debug_info section:\t%ju\n",
5315 	    (uintmax_t) nt_cu_length);
5316 
5317 	if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
5318 		warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
5319 		return;
5320 	}
5321 
5322 	printf("\n    Offset      Name\n");
5323 	for (i = 0; i < cnt; i++) {
5324 		if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
5325 			warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
5326 			continue;
5327 		}
5328 		if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
5329 		    DW_DLV_OK) {
5330 			warnx("dwarf_global_die_offset failed: %s",
5331 			    dwarf_errmsg(de));
5332 			continue;
5333 		}
5334 		printf("    %-11ju %s\n", (uintmax_t) die_off, glob_name);
5335 	}
5336 }
5337 
5338 static void
5339 dump_dwarf_aranges(struct readelf *re)
5340 {
5341 	struct section *s;
5342 	Dwarf_Arange *aranges;
5343 	Dwarf_Addr start;
5344 	Dwarf_Unsigned offset, length, as_cu_offset;
5345 	Dwarf_Off die_off;
5346 	Dwarf_Signed cnt;
5347 	Dwarf_Half as_version, as_addrsz, as_segsz;
5348 	Dwarf_Error de;
5349 	Elf_Data *d;
5350 	int i, dwarf_size, elferr;
5351 
5352 	printf("\nContents of section .debug_aranges:\n");
5353 
5354 	s = NULL;
5355 	for (i = 0; (size_t) i < re->shnum; i++) {
5356 		s = &re->sl[i];
5357 		if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
5358 			break;
5359 	}
5360 	if ((size_t) i >= re->shnum)
5361 		return;
5362 
5363 	(void) elf_errno();
5364 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5365 		elferr = elf_errno();
5366 		if (elferr != 0)
5367 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5368 		return;
5369 	}
5370 	if (d->d_size <= 0)
5371 		return;
5372 
5373 	/* Read in the .debug_aranges section table header. */
5374 	offset = 0;
5375 	length = re->dw_read(d, &offset, 4);
5376 	if (length == 0xffffffff) {
5377 		dwarf_size = 8;
5378 		length = re->dw_read(d, &offset, 8);
5379 	} else
5380 		dwarf_size = 4;
5381 
5382 	if (length > d->d_size - offset) {
5383 		warnx("invalid .dwarf_aranges section");
5384 		return;
5385 	}
5386 
5387 	as_version = re->dw_read(d, &offset, 2);
5388 	as_cu_offset = re->dw_read(d, &offset, dwarf_size);
5389 	as_addrsz = re->dw_read(d, &offset, 1);
5390 	as_segsz = re->dw_read(d, &offset, 1);
5391 
5392 	printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
5393 	printf("  Version:\t\t\t%u\n", as_version);
5394 	printf("  Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
5395 	printf("  Pointer Size:\t\t\t%u\n", as_addrsz);
5396 	printf("  Segment Size:\t\t\t%u\n", as_segsz);
5397 
5398 	if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
5399 		warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
5400 		return;
5401 	}
5402 
5403 	printf("\n    Address  Length\n");
5404 	for (i = 0; i < cnt; i++) {
5405 		if (dwarf_get_arange_info(aranges[i], &start, &length,
5406 		    &die_off, &de) != DW_DLV_OK) {
5407 			warnx("dwarf_get_arange_info failed: %s",
5408 			    dwarf_errmsg(de));
5409 			continue;
5410 		}
5411 		printf("    %08jx %ju\n", (uintmax_t) start,
5412 		    (uintmax_t) length);
5413 	}
5414 }
5415 
5416 static void
5417 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
5418 {
5419 	Dwarf_Attribute *attr_list;
5420 	Dwarf_Ranges *ranges;
5421 	Dwarf_Die ret_die;
5422 	Dwarf_Error de;
5423 	Dwarf_Addr base0;
5424 	Dwarf_Half attr;
5425 	Dwarf_Signed attr_count, cnt;
5426 	Dwarf_Unsigned off, bytecnt;
5427 	int i, j, ret;
5428 
5429 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5430 	    DW_DLV_OK) {
5431 		if (ret == DW_DLV_ERROR)
5432 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5433 		goto cont_search;
5434 	}
5435 
5436 	for (i = 0; i < attr_count; i++) {
5437 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5438 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5439 			continue;
5440 		}
5441 		if (attr != DW_AT_ranges)
5442 			continue;
5443 		if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) {
5444 			warnx("dwarf_formudata failed: %s", dwarf_errmsg(de));
5445 			continue;
5446 		}
5447 		if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt,
5448 		    &bytecnt, &de) != DW_DLV_OK)
5449 			continue;
5450 		base0 = base;
5451 		for (j = 0; j < cnt; j++) {
5452 			printf("    %08jx ", (uintmax_t) off);
5453 			if (ranges[j].dwr_type == DW_RANGES_END) {
5454 				printf("%s\n", "<End of list>");
5455 				continue;
5456 			} else if (ranges[j].dwr_type ==
5457 			    DW_RANGES_ADDRESS_SELECTION) {
5458 				base0 = ranges[j].dwr_addr2;
5459 				continue;
5460 			}
5461 			if (re->ec == ELFCLASS32)
5462 				printf("%08jx %08jx\n",
5463 				    ranges[j].dwr_addr1 + base0,
5464 				    ranges[j].dwr_addr2 + base0);
5465 			else
5466 				printf("%016jx %016jx\n",
5467 				    ranges[j].dwr_addr1 + base0,
5468 				    ranges[j].dwr_addr2 + base0);
5469 		}
5470 	}
5471 
5472 cont_search:
5473 	/* Search children. */
5474 	ret = dwarf_child(die, &ret_die, &de);
5475 	if (ret == DW_DLV_ERROR)
5476 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5477 	else if (ret == DW_DLV_OK)
5478 		dump_dwarf_ranges_foreach(re, ret_die, base);
5479 
5480 	/* Search sibling. */
5481 	ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
5482 	if (ret == DW_DLV_ERROR)
5483 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5484 	else if (ret == DW_DLV_OK)
5485 		dump_dwarf_ranges_foreach(re, ret_die, base);
5486 }
5487 
5488 static void
5489 dump_dwarf_ranges(struct readelf *re)
5490 {
5491 	Dwarf_Ranges *ranges;
5492 	Dwarf_Die die;
5493 	Dwarf_Signed cnt;
5494 	Dwarf_Unsigned bytecnt;
5495 	Dwarf_Half tag;
5496 	Dwarf_Error de;
5497 	Dwarf_Unsigned lowpc;
5498 	int ret;
5499 
5500 	if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
5501 	    DW_DLV_OK)
5502 		return;
5503 
5504 	printf("Contents of the .debug_ranges section:\n\n");
5505 	if (re->ec == ELFCLASS32)
5506 		printf("    %-8s %-8s %s\n", "Offset", "Begin", "End");
5507 	else
5508 		printf("    %-8s %-16s %s\n", "Offset", "Begin", "End");
5509 
5510 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5511 	    NULL, &de)) == DW_DLV_OK) {
5512 		die = NULL;
5513 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
5514 			continue;
5515 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5516 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5517 			continue;
5518 		}
5519 		/* XXX: What about DW_TAG_partial_unit? */
5520 		lowpc = 0;
5521 		if (tag == DW_TAG_compile_unit) {
5522 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
5523 			    &de) != DW_DLV_OK)
5524 				lowpc = 0;
5525 		}
5526 
5527 		dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
5528 	}
5529 	putchar('\n');
5530 }
5531 
5532 static void
5533 dump_dwarf_macinfo(struct readelf *re)
5534 {
5535 	Dwarf_Unsigned offset;
5536 	Dwarf_Signed cnt;
5537 	Dwarf_Macro_Details *md;
5538 	Dwarf_Error de;
5539 	const char *mi_str;
5540 	char unk_mi[32];
5541 	int i;
5542 
5543 #define	_MAX_MACINFO_ENTRY	65535
5544 
5545 	printf("\nContents of section .debug_macinfo:\n\n");
5546 
5547 	offset = 0;
5548 	while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
5549 	    &cnt, &md, &de) == DW_DLV_OK) {
5550 		for (i = 0; i < cnt; i++) {
5551 			offset = md[i].dmd_offset + 1;
5552 			if (md[i].dmd_type == 0)
5553 				break;
5554 			if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
5555 			    DW_DLV_OK) {
5556 				snprintf(unk_mi, sizeof(unk_mi),
5557 				    "[Unknown MACINFO: %#x]", md[i].dmd_type);
5558 				mi_str = unk_mi;
5559 			}
5560 			printf(" %s", mi_str);
5561 			switch (md[i].dmd_type) {
5562 			case DW_MACINFO_define:
5563 			case DW_MACINFO_undef:
5564 				printf(" - lineno : %jd macro : %s\n",
5565 				    (intmax_t) md[i].dmd_lineno,
5566 				    md[i].dmd_macro);
5567 				break;
5568 			case DW_MACINFO_start_file:
5569 				printf(" - lineno : %jd filenum : %jd\n",
5570 				    (intmax_t) md[i].dmd_lineno,
5571 				    (intmax_t) md[i].dmd_fileindex);
5572 				break;
5573 			default:
5574 				putchar('\n');
5575 				break;
5576 			}
5577 		}
5578 	}
5579 
5580 #undef	_MAX_MACINFO_ENTRY
5581 }
5582 
5583 static void
5584 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
5585     Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
5586     Dwarf_Debug dbg)
5587 {
5588 	Dwarf_Frame_Op *oplist;
5589 	Dwarf_Signed opcnt, delta;
5590 	Dwarf_Small op;
5591 	Dwarf_Error de;
5592 	const char *op_str;
5593 	char unk_op[32];
5594 	int i;
5595 
5596 	if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
5597 	    &opcnt, &de) != DW_DLV_OK) {
5598 		warnx("dwarf_expand_frame_instructions failed: %s",
5599 		    dwarf_errmsg(de));
5600 		return;
5601 	}
5602 
5603 	for (i = 0; i < opcnt; i++) {
5604 		if (oplist[i].fp_base_op != 0)
5605 			op = oplist[i].fp_base_op << 6;
5606 		else
5607 			op = oplist[i].fp_extended_op;
5608 		if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
5609 			snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
5610 			    op);
5611 			op_str = unk_op;
5612 		}
5613 		printf("  %s", op_str);
5614 		switch (op) {
5615 		case DW_CFA_advance_loc:
5616 			delta = oplist[i].fp_offset * caf;
5617 			pc += delta;
5618 			printf(": %ju to %08jx", (uintmax_t) delta,
5619 			    (uintmax_t) pc);
5620 			break;
5621 		case DW_CFA_offset:
5622 		case DW_CFA_offset_extended:
5623 		case DW_CFA_offset_extended_sf:
5624 			delta = oplist[i].fp_offset * daf;
5625 			printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
5626 			    dwarf_regname(re, oplist[i].fp_register),
5627 			    (intmax_t) delta);
5628 			break;
5629 		case DW_CFA_restore:
5630 			printf(": r%u (%s)", oplist[i].fp_register,
5631 			    dwarf_regname(re, oplist[i].fp_register));
5632 			break;
5633 		case DW_CFA_set_loc:
5634 			pc = oplist[i].fp_offset;
5635 			printf(": to %08jx", (uintmax_t) pc);
5636 			break;
5637 		case DW_CFA_advance_loc1:
5638 		case DW_CFA_advance_loc2:
5639 		case DW_CFA_advance_loc4:
5640 			pc += oplist[i].fp_offset;
5641 			printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
5642 			    (uintmax_t) pc);
5643 			break;
5644 		case DW_CFA_def_cfa:
5645 			printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
5646 			    dwarf_regname(re, oplist[i].fp_register),
5647 			    (uintmax_t) oplist[i].fp_offset);
5648 			break;
5649 		case DW_CFA_def_cfa_sf:
5650 			printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
5651 			    dwarf_regname(re, oplist[i].fp_register),
5652 			    (intmax_t) (oplist[i].fp_offset * daf));
5653 			break;
5654 		case DW_CFA_def_cfa_register:
5655 			printf(": r%u (%s)", oplist[i].fp_register,
5656 			    dwarf_regname(re, oplist[i].fp_register));
5657 			break;
5658 		case DW_CFA_def_cfa_offset:
5659 			printf(": %ju", (uintmax_t) oplist[i].fp_offset);
5660 			break;
5661 		case DW_CFA_def_cfa_offset_sf:
5662 			printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
5663 			break;
5664 		default:
5665 			break;
5666 		}
5667 		putchar('\n');
5668 	}
5669 
5670 	dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
5671 }
5672 
5673 static char *
5674 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
5675 {
5676 	static char rs[16];
5677 
5678 	if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
5679 		snprintf(rs, sizeof(rs), "%c", 'u');
5680 	else if (reg == DW_FRAME_CFA_COL)
5681 		snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
5682 	else
5683 		snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
5684 		    (intmax_t) off);
5685 
5686 	return (rs);
5687 }
5688 
5689 static int
5690 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
5691     Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
5692 {
5693 	Dwarf_Regtable rt;
5694 	Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
5695 	Dwarf_Error de;
5696 	char *vec;
5697 	int i;
5698 
5699 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
5700 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
5701 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
5702 #define	RT(x) rt.rules[(x)]
5703 
5704 	vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
5705 	if (vec == NULL)
5706 		err(EXIT_FAILURE, "calloc failed");
5707 
5708 	pre_pc = ~((Dwarf_Addr) 0);
5709 	cur_pc = pc;
5710 	end_pc = pc + func_len;
5711 	for (; cur_pc < end_pc; cur_pc++) {
5712 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5713 		    &de) != DW_DLV_OK) {
5714 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5715 			    dwarf_errmsg(de));
5716 			return (-1);
5717 		}
5718 		if (row_pc == pre_pc)
5719 			continue;
5720 		pre_pc = row_pc;
5721 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5722 			if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
5723 				BIT_SET(vec, i);
5724 		}
5725 	}
5726 
5727 	printf("   LOC   CFA      ");
5728 	for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5729 		if (BIT_ISSET(vec, i)) {
5730 			if ((Dwarf_Half) i == cie_ra)
5731 				printf("ra   ");
5732 			else
5733 				printf("%-5s",
5734 				    dwarf_regname(re, (unsigned int) i));
5735 		}
5736 	}
5737 	putchar('\n');
5738 
5739 	pre_pc = ~((Dwarf_Addr) 0);
5740 	cur_pc = pc;
5741 	end_pc = pc + func_len;
5742 	for (; cur_pc < end_pc; cur_pc++) {
5743 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5744 		    &de) != DW_DLV_OK) {
5745 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5746 			    dwarf_errmsg(de));
5747 			return (-1);
5748 		}
5749 		if (row_pc == pre_pc)
5750 			continue;
5751 		pre_pc = row_pc;
5752 		printf("%08jx ", (uintmax_t) row_pc);
5753 		printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
5754 		    RT(0).dw_offset));
5755 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5756 			if (BIT_ISSET(vec, i)) {
5757 				printf("%-5s", get_regoff_str(re,
5758 				    RT(i).dw_regnum, RT(i).dw_offset));
5759 			}
5760 		}
5761 		putchar('\n');
5762 	}
5763 
5764 	free(vec);
5765 
5766 	return (0);
5767 
5768 #undef	BIT_SET
5769 #undef	BIT_CLR
5770 #undef	BIT_ISSET
5771 #undef	RT
5772 }
5773 
5774 static void
5775 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
5776 {
5777 	Dwarf_Cie *cie_list, cie, pre_cie;
5778 	Dwarf_Fde *fde_list, fde;
5779 	Dwarf_Off cie_offset, fde_offset;
5780 	Dwarf_Unsigned cie_length, fde_instlen;
5781 	Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
5782 	Dwarf_Signed cie_count, fde_count, cie_index;
5783 	Dwarf_Addr low_pc;
5784 	Dwarf_Half cie_ra;
5785 	Dwarf_Small cie_version;
5786 	Dwarf_Ptr fde_addr, fde_inst, cie_inst;
5787 	char *cie_aug, c;
5788 	int i, eh_frame;
5789 	Dwarf_Error de;
5790 
5791 	printf("\nThe section %s contains:\n\n", s->name);
5792 
5793 	if (!strcmp(s->name, ".debug_frame")) {
5794 		eh_frame = 0;
5795 		if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
5796 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5797 			warnx("dwarf_get_fde_list failed: %s",
5798 			    dwarf_errmsg(de));
5799 			return;
5800 		}
5801 	} else if (!strcmp(s->name, ".eh_frame")) {
5802 		eh_frame = 1;
5803 		if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
5804 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5805 			warnx("dwarf_get_fde_list_eh failed: %s",
5806 			    dwarf_errmsg(de));
5807 			return;
5808 		}
5809 	} else
5810 		return;
5811 
5812 	pre_cie = NULL;
5813 	for (i = 0; i < fde_count; i++) {
5814 		if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
5815 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5816 			continue;
5817 		}
5818 		if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
5819 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5820 			continue;
5821 		}
5822 		if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
5823 		    &fde_length, &cie_offset, &cie_index, &fde_offset,
5824 		    &de) != DW_DLV_OK) {
5825 			warnx("dwarf_get_fde_range failed: %s",
5826 			    dwarf_errmsg(de));
5827 			continue;
5828 		}
5829 		if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
5830 		    &de) != DW_DLV_OK) {
5831 			warnx("dwarf_get_fde_instr_bytes failed: %s",
5832 			    dwarf_errmsg(de));
5833 			continue;
5834 		}
5835 		if (pre_cie == NULL || cie != pre_cie) {
5836 			pre_cie = cie;
5837 			if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
5838 			    &cie_aug, &cie_caf, &cie_daf, &cie_ra,
5839 			    &cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
5840 				warnx("dwarf_get_cie_info failed: %s",
5841 				    dwarf_errmsg(de));
5842 				continue;
5843 			}
5844 			printf("%08jx %08jx %8.8jx CIE",
5845 			    (uintmax_t) cie_offset,
5846 			    (uintmax_t) cie_length,
5847 			    (uintmax_t) (eh_frame ? 0 : ~0U));
5848 			if (!alt) {
5849 				putchar('\n');
5850 				printf("  Version:\t\t\t%u\n", cie_version);
5851 				printf("  Augmentation:\t\t\t\"");
5852 				while ((c = *cie_aug++) != '\0')
5853 					putchar(c);
5854 				printf("\"\n");
5855 				printf("  Code alignment factor:\t%ju\n",
5856 				    (uintmax_t) cie_caf);
5857 				printf("  Data alignment factor:\t%jd\n",
5858 				    (intmax_t) cie_daf);
5859 				printf("  Return address column:\t%ju\n",
5860 				    (uintmax_t) cie_ra);
5861 				putchar('\n');
5862 				dump_dwarf_frame_inst(re, cie, cie_inst,
5863 				    cie_instlen, cie_caf, cie_daf, 0,
5864 				    re->dbg);
5865 				putchar('\n');
5866 			} else {
5867 				printf(" \"");
5868 				while ((c = *cie_aug++) != '\0')
5869 					putchar(c);
5870 				putchar('"');
5871 				printf(" cf=%ju df=%jd ra=%ju\n",
5872 				    (uintmax_t) cie_caf,
5873 				    (uintmax_t) cie_daf,
5874 				    (uintmax_t) cie_ra);
5875 				dump_dwarf_frame_regtable(re, fde, low_pc, 1,
5876 				    cie_ra);
5877 				putchar('\n');
5878 			}
5879 		}
5880 		printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
5881 		    (uintmax_t) fde_offset, (uintmax_t) fde_length,
5882 		    (uintmax_t) cie_offset,
5883 		    (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
5884 			cie_offset),
5885 		    (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
5886 		if (!alt)
5887 			dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
5888 			    cie_caf, cie_daf, low_pc, re->dbg);
5889 		else
5890 			dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
5891 			    cie_ra);
5892 		putchar('\n');
5893 	}
5894 }
5895 
5896 static void
5897 dump_dwarf_frame(struct readelf *re, int alt)
5898 {
5899 	struct section *s;
5900 	int i;
5901 
5902 	(void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
5903 
5904 	for (i = 0; (size_t) i < re->shnum; i++) {
5905 		s = &re->sl[i];
5906 		if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
5907 		    !strcmp(s->name, ".eh_frame")))
5908 			dump_dwarf_frame_section(re, s, alt);
5909 	}
5910 }
5911 
5912 static void
5913 dump_dwarf_str(struct readelf *re)
5914 {
5915 	struct section *s;
5916 	Elf_Data *d;
5917 	unsigned char *p;
5918 	int elferr, end, i, j;
5919 
5920 	printf("\nContents of section .debug_str:\n");
5921 
5922 	s = NULL;
5923 	for (i = 0; (size_t) i < re->shnum; i++) {
5924 		s = &re->sl[i];
5925 		if (s->name != NULL && !strcmp(s->name, ".debug_str"))
5926 			break;
5927 	}
5928 	if ((size_t) i >= re->shnum)
5929 		return;
5930 
5931 	(void) elf_errno();
5932 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5933 		elferr = elf_errno();
5934 		if (elferr != 0)
5935 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5936 		return;
5937 	}
5938 	if (d->d_size <= 0)
5939 		return;
5940 
5941 	for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
5942 		printf("  0x%08x", (unsigned int) i);
5943 		if ((size_t) i + 16 > d->d_size)
5944 			end = d->d_size;
5945 		else
5946 			end = i + 16;
5947 		for (j = i; j < i + 16; j++) {
5948 			if ((j - i) % 4 == 0)
5949 				putchar(' ');
5950 			if (j >= end) {
5951 				printf("  ");
5952 				continue;
5953 			}
5954 			printf("%02x", (uint8_t) p[j]);
5955 		}
5956 		putchar(' ');
5957 		for (j = i; j < end; j++) {
5958 			if (isprint(p[j]))
5959 				putchar(p[j]);
5960 			else if (p[j] == 0)
5961 				putchar('.');
5962 			else
5963 				putchar(' ');
5964 		}
5965 		putchar('\n');
5966 	}
5967 }
5968 
5969 struct loc_at {
5970 	Dwarf_Attribute la_at;
5971 	Dwarf_Unsigned la_off;
5972 	Dwarf_Unsigned la_lowpc;
5973 	Dwarf_Half la_cu_psize;
5974 	Dwarf_Half la_cu_osize;
5975 	Dwarf_Half la_cu_ver;
5976 	TAILQ_ENTRY(loc_at) la_next;
5977 };
5978 
5979 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist);
5980 
5981 static void
5982 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc)
5983 {
5984 	Dwarf_Attribute *attr_list;
5985 	Dwarf_Die ret_die;
5986 	Dwarf_Unsigned off;
5987 	Dwarf_Off ref;
5988 	Dwarf_Signed attr_count;
5989 	Dwarf_Half attr, form;
5990 	Dwarf_Bool is_info;
5991 	Dwarf_Error de;
5992 	struct loc_at *la, *nla;
5993 	int i, ret;
5994 
5995 	is_info = dwarf_get_die_infotypes_flag(die);
5996 
5997 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5998 	    DW_DLV_OK) {
5999 		if (ret == DW_DLV_ERROR)
6000 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
6001 		goto cont_search;
6002 	}
6003 	for (i = 0; i < attr_count; i++) {
6004 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
6005 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
6006 			continue;
6007 		}
6008 		if (attr != DW_AT_location &&
6009 		    attr != DW_AT_string_length &&
6010 		    attr != DW_AT_return_addr &&
6011 		    attr != DW_AT_data_member_location &&
6012 		    attr != DW_AT_frame_base &&
6013 		    attr != DW_AT_segment &&
6014 		    attr != DW_AT_static_link &&
6015 		    attr != DW_AT_use_location &&
6016 		    attr != DW_AT_vtable_elem_location)
6017 			continue;
6018 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
6019 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
6020 			continue;
6021 		}
6022 		if (form == DW_FORM_data4 || form == DW_FORM_data8) {
6023 			if (dwarf_formudata(attr_list[i], &off, &de) !=
6024 			    DW_DLV_OK) {
6025 				warnx("dwarf_formudata failed: %s",
6026 				    dwarf_errmsg(de));
6027 				continue;
6028 			}
6029 		} else if (form == DW_FORM_sec_offset) {
6030 			if (dwarf_global_formref(attr_list[i], &ref, &de) !=
6031 			    DW_DLV_OK) {
6032 				warnx("dwarf_global_formref failed: %s",
6033 				    dwarf_errmsg(de));
6034 				continue;
6035 			}
6036 			off = ref;
6037 		} else
6038 			continue;
6039 
6040 		TAILQ_FOREACH(la, &lalist, la_next) {
6041 			if (off == la->la_off)
6042 				break;
6043 			if (off < la->la_off) {
6044 				if ((nla = malloc(sizeof(*nla))) == NULL)
6045 					err(EXIT_FAILURE, "malloc failed");
6046 				nla->la_at = attr_list[i];
6047 				nla->la_off = off;
6048 				nla->la_lowpc = lowpc;
6049 				nla->la_cu_psize = re->cu_psize;
6050 				nla->la_cu_osize = re->cu_osize;
6051 				nla->la_cu_ver = re->cu_ver;
6052 				TAILQ_INSERT_BEFORE(la, nla, la_next);
6053 				break;
6054 			}
6055 		}
6056 		if (la == NULL) {
6057 			if ((nla = malloc(sizeof(*nla))) == NULL)
6058 				err(EXIT_FAILURE, "malloc failed");
6059 			nla->la_at = attr_list[i];
6060 			nla->la_off = off;
6061 			nla->la_lowpc = lowpc;
6062 			nla->la_cu_psize = re->cu_psize;
6063 			nla->la_cu_osize = re->cu_osize;
6064 			nla->la_cu_ver = re->cu_ver;
6065 			TAILQ_INSERT_TAIL(&lalist, nla, la_next);
6066 		}
6067 	}
6068 
6069 cont_search:
6070 	/* Search children. */
6071 	ret = dwarf_child(die, &ret_die, &de);
6072 	if (ret == DW_DLV_ERROR)
6073 		warnx("dwarf_child: %s", dwarf_errmsg(de));
6074 	else if (ret == DW_DLV_OK)
6075 		search_loclist_at(re, ret_die, lowpc);
6076 
6077 	/* Search sibling. */
6078 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
6079 	if (ret == DW_DLV_ERROR)
6080 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
6081 	else if (ret == DW_DLV_OK)
6082 		search_loclist_at(re, ret_die, lowpc);
6083 }
6084 
6085 static void
6086 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
6087 {
6088 	const char *op_str;
6089 	char unk_op[32];
6090 	uint8_t *b, n;
6091 	int i;
6092 
6093 	if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
6094 	    DW_DLV_OK) {
6095 		snprintf(unk_op, sizeof(unk_op),
6096 		    "[Unknown OP: %#x]", lr->lr_atom);
6097 		op_str = unk_op;
6098 	}
6099 
6100 	printf("%s", op_str);
6101 
6102 	switch (lr->lr_atom) {
6103 	case DW_OP_reg0:
6104 	case DW_OP_reg1:
6105 	case DW_OP_reg2:
6106 	case DW_OP_reg3:
6107 	case DW_OP_reg4:
6108 	case DW_OP_reg5:
6109 	case DW_OP_reg6:
6110 	case DW_OP_reg7:
6111 	case DW_OP_reg8:
6112 	case DW_OP_reg9:
6113 	case DW_OP_reg10:
6114 	case DW_OP_reg11:
6115 	case DW_OP_reg12:
6116 	case DW_OP_reg13:
6117 	case DW_OP_reg14:
6118 	case DW_OP_reg15:
6119 	case DW_OP_reg16:
6120 	case DW_OP_reg17:
6121 	case DW_OP_reg18:
6122 	case DW_OP_reg19:
6123 	case DW_OP_reg20:
6124 	case DW_OP_reg21:
6125 	case DW_OP_reg22:
6126 	case DW_OP_reg23:
6127 	case DW_OP_reg24:
6128 	case DW_OP_reg25:
6129 	case DW_OP_reg26:
6130 	case DW_OP_reg27:
6131 	case DW_OP_reg28:
6132 	case DW_OP_reg29:
6133 	case DW_OP_reg30:
6134 	case DW_OP_reg31:
6135 		printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
6136 		break;
6137 
6138 	case DW_OP_deref:
6139 	case DW_OP_lit0:
6140 	case DW_OP_lit1:
6141 	case DW_OP_lit2:
6142 	case DW_OP_lit3:
6143 	case DW_OP_lit4:
6144 	case DW_OP_lit5:
6145 	case DW_OP_lit6:
6146 	case DW_OP_lit7:
6147 	case DW_OP_lit8:
6148 	case DW_OP_lit9:
6149 	case DW_OP_lit10:
6150 	case DW_OP_lit11:
6151 	case DW_OP_lit12:
6152 	case DW_OP_lit13:
6153 	case DW_OP_lit14:
6154 	case DW_OP_lit15:
6155 	case DW_OP_lit16:
6156 	case DW_OP_lit17:
6157 	case DW_OP_lit18:
6158 	case DW_OP_lit19:
6159 	case DW_OP_lit20:
6160 	case DW_OP_lit21:
6161 	case DW_OP_lit22:
6162 	case DW_OP_lit23:
6163 	case DW_OP_lit24:
6164 	case DW_OP_lit25:
6165 	case DW_OP_lit26:
6166 	case DW_OP_lit27:
6167 	case DW_OP_lit28:
6168 	case DW_OP_lit29:
6169 	case DW_OP_lit30:
6170 	case DW_OP_lit31:
6171 	case DW_OP_dup:
6172 	case DW_OP_drop:
6173 	case DW_OP_over:
6174 	case DW_OP_swap:
6175 	case DW_OP_rot:
6176 	case DW_OP_xderef:
6177 	case DW_OP_abs:
6178 	case DW_OP_and:
6179 	case DW_OP_div:
6180 	case DW_OP_minus:
6181 	case DW_OP_mod:
6182 	case DW_OP_mul:
6183 	case DW_OP_neg:
6184 	case DW_OP_not:
6185 	case DW_OP_or:
6186 	case DW_OP_plus:
6187 	case DW_OP_shl:
6188 	case DW_OP_shr:
6189 	case DW_OP_shra:
6190 	case DW_OP_xor:
6191 	case DW_OP_eq:
6192 	case DW_OP_ge:
6193 	case DW_OP_gt:
6194 	case DW_OP_le:
6195 	case DW_OP_lt:
6196 	case DW_OP_ne:
6197 	case DW_OP_nop:
6198 	case DW_OP_push_object_address:
6199 	case DW_OP_form_tls_address:
6200 	case DW_OP_call_frame_cfa:
6201 	case DW_OP_stack_value:
6202 	case DW_OP_GNU_push_tls_address:
6203 	case DW_OP_GNU_uninit:
6204 		break;
6205 
6206 	case DW_OP_const1u:
6207 	case DW_OP_pick:
6208 	case DW_OP_deref_size:
6209 	case DW_OP_xderef_size:
6210 	case DW_OP_const2u:
6211 	case DW_OP_bra:
6212 	case DW_OP_skip:
6213 	case DW_OP_const4u:
6214 	case DW_OP_const8u:
6215 	case DW_OP_constu:
6216 	case DW_OP_plus_uconst:
6217 	case DW_OP_regx:
6218 	case DW_OP_piece:
6219 		printf(": %ju", (uintmax_t)
6220 		    lr->lr_number);
6221 		break;
6222 
6223 	case DW_OP_const1s:
6224 	case DW_OP_const2s:
6225 	case DW_OP_const4s:
6226 	case DW_OP_const8s:
6227 	case DW_OP_consts:
6228 		printf(": %jd", (intmax_t)
6229 		    lr->lr_number);
6230 		break;
6231 
6232 	case DW_OP_breg0:
6233 	case DW_OP_breg1:
6234 	case DW_OP_breg2:
6235 	case DW_OP_breg3:
6236 	case DW_OP_breg4:
6237 	case DW_OP_breg5:
6238 	case DW_OP_breg6:
6239 	case DW_OP_breg7:
6240 	case DW_OP_breg8:
6241 	case DW_OP_breg9:
6242 	case DW_OP_breg10:
6243 	case DW_OP_breg11:
6244 	case DW_OP_breg12:
6245 	case DW_OP_breg13:
6246 	case DW_OP_breg14:
6247 	case DW_OP_breg15:
6248 	case DW_OP_breg16:
6249 	case DW_OP_breg17:
6250 	case DW_OP_breg18:
6251 	case DW_OP_breg19:
6252 	case DW_OP_breg20:
6253 	case DW_OP_breg21:
6254 	case DW_OP_breg22:
6255 	case DW_OP_breg23:
6256 	case DW_OP_breg24:
6257 	case DW_OP_breg25:
6258 	case DW_OP_breg26:
6259 	case DW_OP_breg27:
6260 	case DW_OP_breg28:
6261 	case DW_OP_breg29:
6262 	case DW_OP_breg30:
6263 	case DW_OP_breg31:
6264 		printf(" (%s): %jd",
6265 		    dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
6266 		    (intmax_t) lr->lr_number);
6267 		break;
6268 
6269 	case DW_OP_fbreg:
6270 		printf(": %jd", (intmax_t)
6271 		    lr->lr_number);
6272 		break;
6273 
6274 	case DW_OP_bregx:
6275 		printf(": %ju (%s) %jd",
6276 		    (uintmax_t) lr->lr_number,
6277 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6278 		    (intmax_t) lr->lr_number2);
6279 		break;
6280 
6281 	case DW_OP_addr:
6282 	case DW_OP_GNU_encoded_addr:
6283 		printf(": %#jx", (uintmax_t)
6284 		    lr->lr_number);
6285 		break;
6286 
6287 	case DW_OP_GNU_implicit_pointer:
6288 		printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
6289 		    (intmax_t) lr->lr_number2);
6290 		break;
6291 
6292 	case DW_OP_implicit_value:
6293 		printf(": %ju byte block:", (uintmax_t) lr->lr_number);
6294 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6295 		for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
6296 			printf(" %x", b[i]);
6297 		break;
6298 
6299 	case DW_OP_GNU_entry_value:
6300 		printf(": (");
6301 		dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
6302 		    lr->lr_number);
6303 		putchar(')');
6304 		break;
6305 
6306 	case DW_OP_GNU_const_type:
6307 		printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
6308 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6309 		n = *b;
6310 		for (i = 1; (uint8_t) i < n; i++)
6311 			printf(" %x", b[i]);
6312 		break;
6313 
6314 	case DW_OP_GNU_regval_type:
6315 		printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
6316 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6317 		    (uintmax_t) lr->lr_number2);
6318 		break;
6319 
6320 	case DW_OP_GNU_convert:
6321 	case DW_OP_GNU_deref_type:
6322 	case DW_OP_GNU_parameter_ref:
6323 	case DW_OP_GNU_reinterpret:
6324 		printf(": <0x%jx>", (uintmax_t) lr->lr_number);
6325 		break;
6326 
6327 	default:
6328 		break;
6329 	}
6330 }
6331 
6332 static void
6333 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
6334 {
6335 	Dwarf_Locdesc *llbuf;
6336 	Dwarf_Signed lcnt;
6337 	Dwarf_Error de;
6338 	int i;
6339 
6340 	if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
6341 	    re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
6342 		warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
6343 		return;
6344 	}
6345 
6346 	for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
6347 		dump_dwarf_loc(re, &llbuf->ld_s[i]);
6348 		if (i < llbuf->ld_cents - 1)
6349 			printf("; ");
6350 	}
6351 
6352 	dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
6353 	dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
6354 }
6355 
6356 static void
6357 dump_dwarf_loclist(struct readelf *re)
6358 {
6359 	Dwarf_Die die;
6360 	Dwarf_Locdesc **llbuf;
6361 	Dwarf_Unsigned lowpc;
6362 	Dwarf_Signed lcnt;
6363 	Dwarf_Half tag, version, pointer_size, off_size;
6364 	Dwarf_Error de;
6365 	struct loc_at *la;
6366 	int i, j, ret;
6367 
6368 	printf("\nContents of section .debug_loc:\n");
6369 
6370 	/* Search .debug_info section. */
6371 	while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
6372 	    &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
6373 		set_cu_context(re, pointer_size, off_size, version);
6374 		die = NULL;
6375 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
6376 			continue;
6377 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6378 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
6379 			continue;
6380 		}
6381 		/* XXX: What about DW_TAG_partial_unit? */
6382 		lowpc = 0;
6383 		if (tag == DW_TAG_compile_unit) {
6384 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6385 				&lowpc, &de) != DW_DLV_OK)
6386 				lowpc = 0;
6387 		}
6388 
6389 		/* Search attributes for reference to .debug_loc section. */
6390 		search_loclist_at(re, die, lowpc);
6391 	}
6392 	if (ret == DW_DLV_ERROR)
6393 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6394 
6395 	/* Search .debug_types section. */
6396 	do {
6397 		while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
6398 		    &version, NULL, &pointer_size, &off_size, NULL, NULL,
6399 		    NULL, NULL, &de)) == DW_DLV_OK) {
6400 			set_cu_context(re, pointer_size, off_size, version);
6401 			die = NULL;
6402 			if (dwarf_siblingof(re->dbg, die, &die, &de) !=
6403 			    DW_DLV_OK)
6404 				continue;
6405 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6406 				warnx("dwarf_tag failed: %s",
6407 				    dwarf_errmsg(de));
6408 				continue;
6409 			}
6410 
6411 			lowpc = 0;
6412 			if (tag == DW_TAG_type_unit) {
6413 				if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6414 				    &lowpc, &de) != DW_DLV_OK)
6415 					lowpc = 0;
6416 			}
6417 
6418 			/*
6419 			 * Search attributes for reference to .debug_loc
6420 			 * section.
6421 			 */
6422 			search_loclist_at(re, die, lowpc);
6423 		}
6424 		if (ret == DW_DLV_ERROR)
6425 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6426 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
6427 
6428 	if (TAILQ_EMPTY(&lalist))
6429 		return;
6430 
6431 	printf("    Offset   Begin    End      Expression\n");
6432 
6433 	TAILQ_FOREACH(la, &lalist, la_next) {
6434 		if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) !=
6435 		    DW_DLV_OK) {
6436 			warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de));
6437 			continue;
6438 		}
6439 		set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
6440 		    la->la_cu_ver);
6441 		for (i = 0; i < lcnt; i++) {
6442 			printf("    %8.8jx ", la->la_off);
6443 			if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
6444 				printf("<End of list>\n");
6445 				continue;
6446 			}
6447 
6448 			/* TODO: handle base selection entry. */
6449 
6450 			printf("%8.8jx %8.8jx ",
6451 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
6452 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
6453 
6454 			putchar('(');
6455 			for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
6456 				dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
6457 				if (j < llbuf[i]->ld_cents - 1)
6458 					printf("; ");
6459 			}
6460 			putchar(')');
6461 
6462 			if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
6463 				printf(" (start == end)");
6464 			putchar('\n');
6465 		}
6466 		for (i = 0; i < lcnt; i++) {
6467 			dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
6468 			    DW_DLA_LOC_BLOCK);
6469 			dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
6470 		}
6471 		dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
6472 	}
6473 }
6474 
6475 /*
6476  * Retrieve a string using string table section index and the string offset.
6477  */
6478 static const char*
6479 get_string(struct readelf *re, int strtab, size_t off)
6480 {
6481 	const char *name;
6482 
6483 	if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
6484 		return ("");
6485 
6486 	return (name);
6487 }
6488 
6489 /*
6490  * Retrieve the name of a symbol using the section index of the symbol
6491  * table and the index of the symbol within that table.
6492  */
6493 static const char *
6494 get_symbol_name(struct readelf *re, int symtab, int i)
6495 {
6496 	struct section	*s;
6497 	const char	*name;
6498 	GElf_Sym	 sym;
6499 	Elf_Data	*data;
6500 	int		 elferr;
6501 
6502 	s = &re->sl[symtab];
6503 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6504 		return ("");
6505 	(void) elf_errno();
6506 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6507 		elferr = elf_errno();
6508 		if (elferr != 0)
6509 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6510 		return ("");
6511 	}
6512 	if (gelf_getsym(data, i, &sym) != &sym)
6513 		return ("");
6514 	/* Return section name for STT_SECTION symbol. */
6515 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
6516 	    re->sl[sym.st_shndx].name != NULL)
6517 		return (re->sl[sym.st_shndx].name);
6518 	if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
6519 		return ("");
6520 
6521 	return (name);
6522 }
6523 
6524 static uint64_t
6525 get_symbol_value(struct readelf *re, int symtab, int i)
6526 {
6527 	struct section	*s;
6528 	GElf_Sym	 sym;
6529 	Elf_Data	*data;
6530 	int		 elferr;
6531 
6532 	s = &re->sl[symtab];
6533 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6534 		return (0);
6535 	(void) elf_errno();
6536 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6537 		elferr = elf_errno();
6538 		if (elferr != 0)
6539 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6540 		return (0);
6541 	}
6542 	if (gelf_getsym(data, i, &sym) != &sym)
6543 		return (0);
6544 
6545 	return (sym.st_value);
6546 }
6547 
6548 static void
6549 hex_dump(struct readelf *re)
6550 {
6551 	struct section *s;
6552 	Elf_Data *d;
6553 	uint8_t *buf;
6554 	size_t sz, nbytes;
6555 	uint64_t addr;
6556 	int elferr, i, j;
6557 
6558 	for (i = 1; (size_t) i < re->shnum; i++) {
6559 		s = &re->sl[i];
6560 		if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
6561 			continue;
6562 		(void) elf_errno();
6563 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6564 			elferr = elf_errno();
6565 			if (elferr != 0)
6566 				warnx("elf_getdata failed: %s",
6567 				    elf_errmsg(elferr));
6568 			continue;
6569 		}
6570 		if (d->d_size <= 0 || d->d_buf == NULL) {
6571 			printf("\nSection '%s' has no data to dump.\n",
6572 			    s->name);
6573 			continue;
6574 		}
6575 		buf = d->d_buf;
6576 		sz = d->d_size;
6577 		addr = s->addr;
6578 		printf("\nHex dump of section '%s':\n", s->name);
6579 		while (sz > 0) {
6580 			printf("  0x%8.8jx ", (uintmax_t)addr);
6581 			nbytes = sz > 16? 16 : sz;
6582 			for (j = 0; j < 16; j++) {
6583 				if ((size_t)j < nbytes)
6584 					printf("%2.2x", buf[j]);
6585 				else
6586 					printf("  ");
6587 				if ((j & 3) == 3)
6588 					printf(" ");
6589 			}
6590 			for (j = 0; (size_t)j < nbytes; j++) {
6591 				if (isprint(buf[j]))
6592 					printf("%c", buf[j]);
6593 				else
6594 					printf(".");
6595 			}
6596 			printf("\n");
6597 			buf += nbytes;
6598 			addr += nbytes;
6599 			sz -= nbytes;
6600 		}
6601 	}
6602 }
6603 
6604 static void
6605 str_dump(struct readelf *re)
6606 {
6607 	struct section *s;
6608 	Elf_Data *d;
6609 	unsigned char *start, *end, *buf_end;
6610 	unsigned int len;
6611 	int i, j, elferr, found;
6612 
6613 	for (i = 1; (size_t) i < re->shnum; i++) {
6614 		s = &re->sl[i];
6615 		if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
6616 			continue;
6617 		(void) elf_errno();
6618 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6619 			elferr = elf_errno();
6620 			if (elferr != 0)
6621 				warnx("elf_getdata failed: %s",
6622 				    elf_errmsg(elferr));
6623 			continue;
6624 		}
6625 		if (d->d_size <= 0 || d->d_buf == NULL) {
6626 			printf("\nSection '%s' has no data to dump.\n",
6627 			    s->name);
6628 			continue;
6629 		}
6630 		buf_end = (unsigned char *) d->d_buf + d->d_size;
6631 		start = (unsigned char *) d->d_buf;
6632 		found = 0;
6633 		printf("\nString dump of section '%s':\n", s->name);
6634 		for (;;) {
6635 			while (start < buf_end && !isprint(*start))
6636 				start++;
6637 			if (start >= buf_end)
6638 				break;
6639 			end = start + 1;
6640 			while (end < buf_end && isprint(*end))
6641 				end++;
6642 			printf("  [%6lx]  ",
6643 			    (long) (start - (unsigned char *) d->d_buf));
6644 			len = end - start;
6645 			for (j = 0; (unsigned int) j < len; j++)
6646 				putchar(start[j]);
6647 			putchar('\n');
6648 			found = 1;
6649 			if (end >= buf_end)
6650 				break;
6651 			start = end + 1;
6652 		}
6653 		if (!found)
6654 			printf("  No strings found in this section.");
6655 		putchar('\n');
6656 	}
6657 }
6658 
6659 static void
6660 load_sections(struct readelf *re)
6661 {
6662 	struct section	*s;
6663 	const char	*name;
6664 	Elf_Scn		*scn;
6665 	GElf_Shdr	 sh;
6666 	size_t		 shstrndx, ndx;
6667 	int		 elferr;
6668 
6669 	/* Allocate storage for internal section list. */
6670 	if (!elf_getshnum(re->elf, &re->shnum)) {
6671 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
6672 		return;
6673 	}
6674 	if (re->sl != NULL)
6675 		free(re->sl);
6676 	if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
6677 		err(EXIT_FAILURE, "calloc failed");
6678 
6679 	/* Get the index of .shstrtab section. */
6680 	if (!elf_getshstrndx(re->elf, &shstrndx)) {
6681 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
6682 		return;
6683 	}
6684 
6685 	if ((scn = elf_getscn(re->elf, 0)) == NULL) {
6686 		warnx("elf_getscn failed: %s", elf_errmsg(-1));
6687 		return;
6688 	}
6689 
6690 	(void) elf_errno();
6691 	do {
6692 		if (gelf_getshdr(scn, &sh) == NULL) {
6693 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
6694 			(void) elf_errno();
6695 			continue;
6696 		}
6697 		if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
6698 			(void) elf_errno();
6699 			name = "ERROR";
6700 		}
6701 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
6702 			if ((elferr = elf_errno()) != 0)
6703 				warnx("elf_ndxscn failed: %s",
6704 				    elf_errmsg(elferr));
6705 			continue;
6706 		}
6707 		if (ndx >= re->shnum) {
6708 			warnx("section index of '%s' out of range", name);
6709 			continue;
6710 		}
6711 		s = &re->sl[ndx];
6712 		s->name = name;
6713 		s->scn = scn;
6714 		s->off = sh.sh_offset;
6715 		s->sz = sh.sh_size;
6716 		s->entsize = sh.sh_entsize;
6717 		s->align = sh.sh_addralign;
6718 		s->type = sh.sh_type;
6719 		s->flags = sh.sh_flags;
6720 		s->addr = sh.sh_addr;
6721 		s->link = sh.sh_link;
6722 		s->info = sh.sh_info;
6723 	} while ((scn = elf_nextscn(re->elf, scn)) != NULL);
6724 	elferr = elf_errno();
6725 	if (elferr != 0)
6726 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
6727 }
6728 
6729 static void
6730 unload_sections(struct readelf *re)
6731 {
6732 
6733 	if (re->sl != NULL) {
6734 		free(re->sl);
6735 		re->sl = NULL;
6736 	}
6737 	re->shnum = 0;
6738 	re->vd_s = NULL;
6739 	re->vn_s = NULL;
6740 	re->vs_s = NULL;
6741 	re->vs = NULL;
6742 	re->vs_sz = 0;
6743 	if (re->ver != NULL) {
6744 		free(re->ver);
6745 		re->ver = NULL;
6746 		re->ver_sz = 0;
6747 	}
6748 }
6749 
6750 static void
6751 dump_elf(struct readelf *re)
6752 {
6753 
6754 	/* Fetch ELF header. No need to continue if it fails. */
6755 	if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
6756 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
6757 		return;
6758 	}
6759 	if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
6760 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
6761 		return;
6762 	}
6763 	if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
6764 		re->dw_read = _read_msb;
6765 		re->dw_decode = _decode_msb;
6766 	} else {
6767 		re->dw_read = _read_lsb;
6768 		re->dw_decode = _decode_lsb;
6769 	}
6770 
6771 	if (re->options & ~RE_H)
6772 		load_sections(re);
6773 	if ((re->options & RE_VV) || (re->options & RE_S))
6774 		search_ver(re);
6775 	if (re->options & RE_H)
6776 		dump_ehdr(re);
6777 	if (re->options & RE_L)
6778 		dump_phdr(re);
6779 	if (re->options & RE_SS)
6780 		dump_shdr(re);
6781 	if (re->options & RE_D)
6782 		dump_dynamic(re);
6783 	if (re->options & RE_R)
6784 		dump_reloc(re);
6785 	if (re->options & RE_S)
6786 		dump_symtabs(re);
6787 	if (re->options & RE_N)
6788 		dump_notes(re);
6789 	if (re->options & RE_II)
6790 		dump_hash(re);
6791 	if (re->options & RE_X)
6792 		hex_dump(re);
6793 	if (re->options & RE_P)
6794 		str_dump(re);
6795 	if (re->options & RE_VV)
6796 		dump_ver(re);
6797 	if (re->options & RE_AA)
6798 		dump_arch_specific_info(re);
6799 	if (re->options & RE_W)
6800 		dump_dwarf(re);
6801 	if (re->options & ~RE_H)
6802 		unload_sections(re);
6803 }
6804 
6805 static void
6806 dump_dwarf(struct readelf *re)
6807 {
6808 	int error;
6809 	Dwarf_Error de;
6810 
6811 	if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
6812 		if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
6813 			errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
6814 			    dwarf_errmsg(de));
6815 		return;
6816 	}
6817 
6818 	if (re->dop & DW_A)
6819 		dump_dwarf_abbrev(re);
6820 	if (re->dop & DW_L)
6821 		dump_dwarf_line(re);
6822 	if (re->dop & DW_LL)
6823 		dump_dwarf_line_decoded(re);
6824 	if (re->dop & DW_I) {
6825 		dump_dwarf_info(re, 0);
6826 		dump_dwarf_info(re, 1);
6827 	}
6828 	if (re->dop & DW_P)
6829 		dump_dwarf_pubnames(re);
6830 	if (re->dop & DW_R)
6831 		dump_dwarf_aranges(re);
6832 	if (re->dop & DW_RR)
6833 		dump_dwarf_ranges(re);
6834 	if (re->dop & DW_M)
6835 		dump_dwarf_macinfo(re);
6836 	if (re->dop & DW_F)
6837 		dump_dwarf_frame(re, 0);
6838 	else if (re->dop & DW_FF)
6839 		dump_dwarf_frame(re, 1);
6840 	if (re->dop & DW_S)
6841 		dump_dwarf_str(re);
6842 	if (re->dop & DW_O)
6843 		dump_dwarf_loclist(re);
6844 
6845 	dwarf_finish(re->dbg, &de);
6846 }
6847 
6848 static void
6849 dump_ar(struct readelf *re, int fd)
6850 {
6851 	Elf_Arsym *arsym;
6852 	Elf_Arhdr *arhdr;
6853 	Elf_Cmd cmd;
6854 	Elf *e;
6855 	size_t sz;
6856 	off_t off;
6857 	int i;
6858 
6859 	re->ar = re->elf;
6860 
6861 	if (re->options & RE_C) {
6862 		if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
6863 			warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
6864 			goto process_members;
6865 		}
6866 		printf("Index of archive %s: (%ju entries)\n", re->filename,
6867 		    (uintmax_t) sz - 1);
6868 		off = 0;
6869 		for (i = 0; (size_t) i < sz; i++) {
6870 			if (arsym[i].as_name == NULL)
6871 				break;
6872 			if (arsym[i].as_off != off) {
6873 				off = arsym[i].as_off;
6874 				if (elf_rand(re->ar, off) != off) {
6875 					warnx("elf_rand() failed: %s",
6876 					    elf_errmsg(-1));
6877 					continue;
6878 				}
6879 				if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
6880 				    NULL) {
6881 					warnx("elf_begin() failed: %s",
6882 					    elf_errmsg(-1));
6883 					continue;
6884 				}
6885 				if ((arhdr = elf_getarhdr(e)) == NULL) {
6886 					warnx("elf_getarhdr() failed: %s",
6887 					    elf_errmsg(-1));
6888 					elf_end(e);
6889 					continue;
6890 				}
6891 				printf("Binary %s(%s) contains:\n",
6892 				    re->filename, arhdr->ar_name);
6893 			}
6894 			printf("\t%s\n", arsym[i].as_name);
6895 		}
6896 		if (elf_rand(re->ar, SARMAG) != SARMAG) {
6897 			warnx("elf_rand() failed: %s", elf_errmsg(-1));
6898 			return;
6899 		}
6900 	}
6901 
6902 process_members:
6903 
6904 	if ((re->options & ~RE_C) == 0)
6905 		return;
6906 
6907 	cmd = ELF_C_READ;
6908 	while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
6909 		if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
6910 			warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
6911 			goto next_member;
6912 		}
6913 		if (strcmp(arhdr->ar_name, "/") == 0 ||
6914 		    strcmp(arhdr->ar_name, "//") == 0 ||
6915 		    strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
6916 			goto next_member;
6917 		printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
6918 		dump_elf(re);
6919 
6920 	next_member:
6921 		cmd = elf_next(re->elf);
6922 		elf_end(re->elf);
6923 	}
6924 	re->elf = re->ar;
6925 }
6926 
6927 static void
6928 dump_object(struct readelf *re)
6929 {
6930 	int fd;
6931 
6932 	if ((fd = open(re->filename, O_RDONLY)) == -1) {
6933 		warn("open %s failed", re->filename);
6934 		return;
6935 	}
6936 
6937 	if ((re->flags & DISPLAY_FILENAME) != 0)
6938 		printf("\nFile: %s\n", re->filename);
6939 
6940 	if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
6941 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
6942 		return;
6943 	}
6944 
6945 	switch (elf_kind(re->elf)) {
6946 	case ELF_K_NONE:
6947 		warnx("Not an ELF file.");
6948 		return;
6949 	case ELF_K_ELF:
6950 		dump_elf(re);
6951 		break;
6952 	case ELF_K_AR:
6953 		dump_ar(re, fd);
6954 		break;
6955 	default:
6956 		warnx("Internal: libelf returned unknown elf kind.");
6957 		return;
6958 	}
6959 
6960 	elf_end(re->elf);
6961 }
6962 
6963 static void
6964 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
6965 {
6966 	struct dumpop *d;
6967 
6968 	if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
6969 		if ((d = calloc(1, sizeof(*d))) == NULL)
6970 			err(EXIT_FAILURE, "calloc failed");
6971 		if (t == DUMP_BY_INDEX)
6972 			d->u.si = si;
6973 		else
6974 			d->u.sn = sn;
6975 		d->type = t;
6976 		d->op = op;
6977 		STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
6978 	} else
6979 		d->op |= op;
6980 }
6981 
6982 static struct dumpop *
6983 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
6984 {
6985 	struct dumpop *d;
6986 
6987 	STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
6988 		if ((op == -1 || op & d->op) &&
6989 		    (t == -1 || (unsigned) t == d->type)) {
6990 			if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
6991 			    (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
6992 				return (d);
6993 		}
6994 	}
6995 
6996 	return (NULL);
6997 }
6998 
6999 static struct {
7000 	const char *ln;
7001 	char sn;
7002 	int value;
7003 } dwarf_op[] = {
7004 	{"rawline", 'l', DW_L},
7005 	{"decodedline", 'L', DW_LL},
7006 	{"info", 'i', DW_I},
7007 	{"abbrev", 'a', DW_A},
7008 	{"pubnames", 'p', DW_P},
7009 	{"aranges", 'r', DW_R},
7010 	{"ranges", 'r', DW_R},
7011 	{"Ranges", 'R', DW_RR},
7012 	{"macro", 'm', DW_M},
7013 	{"frames", 'f', DW_F},
7014 	{"frames-interp", 'F', DW_FF},
7015 	{"str", 's', DW_S},
7016 	{"loc", 'o', DW_O},
7017 	{NULL, 0, 0}
7018 };
7019 
7020 static void
7021 parse_dwarf_op_short(struct readelf *re, const char *op)
7022 {
7023 	int i;
7024 
7025 	if (op == NULL) {
7026 		re->dop |= DW_DEFAULT_OPTIONS;
7027 		return;
7028 	}
7029 
7030 	for (; *op != '\0'; op++) {
7031 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7032 			if (dwarf_op[i].sn == *op) {
7033 				re->dop |= dwarf_op[i].value;
7034 				break;
7035 			}
7036 		}
7037 	}
7038 }
7039 
7040 static void
7041 parse_dwarf_op_long(struct readelf *re, const char *op)
7042 {
7043 	char *p, *token, *bp;
7044 	int i;
7045 
7046 	if (op == NULL) {
7047 		re->dop |= DW_DEFAULT_OPTIONS;
7048 		return;
7049 	}
7050 
7051 	if ((p = strdup(op)) == NULL)
7052 		err(EXIT_FAILURE, "strdup failed");
7053 	bp = p;
7054 
7055 	while ((token = strsep(&p, ",")) != NULL) {
7056 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7057 			if (!strcmp(token, dwarf_op[i].ln)) {
7058 				re->dop |= dwarf_op[i].value;
7059 				break;
7060 			}
7061 		}
7062 	}
7063 
7064 	free(bp);
7065 }
7066 
7067 static uint64_t
7068 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7069 {
7070 	uint64_t ret;
7071 	uint8_t *src;
7072 
7073 	src = (uint8_t *) d->d_buf + *offsetp;
7074 
7075 	ret = 0;
7076 	switch (bytes_to_read) {
7077 	case 8:
7078 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7079 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7080 	case 4:
7081 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7082 	case 2:
7083 		ret |= ((uint64_t) src[1]) << 8;
7084 	case 1:
7085 		ret |= src[0];
7086 		break;
7087 	default:
7088 		return (0);
7089 	}
7090 
7091 	*offsetp += bytes_to_read;
7092 
7093 	return (ret);
7094 }
7095 
7096 static uint64_t
7097 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7098 {
7099 	uint64_t ret;
7100 	uint8_t *src;
7101 
7102 	src = (uint8_t *) d->d_buf + *offsetp;
7103 
7104 	switch (bytes_to_read) {
7105 	case 1:
7106 		ret = src[0];
7107 		break;
7108 	case 2:
7109 		ret = src[1] | ((uint64_t) src[0]) << 8;
7110 		break;
7111 	case 4:
7112 		ret = src[3] | ((uint64_t) src[2]) << 8;
7113 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7114 		break;
7115 	case 8:
7116 		ret = src[7] | ((uint64_t) src[6]) << 8;
7117 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7118 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7119 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7120 		break;
7121 	default:
7122 		return (0);
7123 	}
7124 
7125 	*offsetp += bytes_to_read;
7126 
7127 	return (ret);
7128 }
7129 
7130 static uint64_t
7131 _decode_lsb(uint8_t **data, int bytes_to_read)
7132 {
7133 	uint64_t ret;
7134 	uint8_t *src;
7135 
7136 	src = *data;
7137 
7138 	ret = 0;
7139 	switch (bytes_to_read) {
7140 	case 8:
7141 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7142 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7143 	case 4:
7144 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7145 	case 2:
7146 		ret |= ((uint64_t) src[1]) << 8;
7147 	case 1:
7148 		ret |= src[0];
7149 		break;
7150 	default:
7151 		return (0);
7152 	}
7153 
7154 	*data += bytes_to_read;
7155 
7156 	return (ret);
7157 }
7158 
7159 static uint64_t
7160 _decode_msb(uint8_t **data, int bytes_to_read)
7161 {
7162 	uint64_t ret;
7163 	uint8_t *src;
7164 
7165 	src = *data;
7166 
7167 	ret = 0;
7168 	switch (bytes_to_read) {
7169 	case 1:
7170 		ret = src[0];
7171 		break;
7172 	case 2:
7173 		ret = src[1] | ((uint64_t) src[0]) << 8;
7174 		break;
7175 	case 4:
7176 		ret = src[3] | ((uint64_t) src[2]) << 8;
7177 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7178 		break;
7179 	case 8:
7180 		ret = src[7] | ((uint64_t) src[6]) << 8;
7181 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7182 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7183 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7184 		break;
7185 	default:
7186 		return (0);
7187 		break;
7188 	}
7189 
7190 	*data += bytes_to_read;
7191 
7192 	return (ret);
7193 }
7194 
7195 static int64_t
7196 _decode_sleb128(uint8_t **dp)
7197 {
7198 	int64_t ret = 0;
7199 	uint8_t b;
7200 	int shift = 0;
7201 
7202 	uint8_t *src = *dp;
7203 
7204 	do {
7205 		b = *src++;
7206 		ret |= ((b & 0x7f) << shift);
7207 		shift += 7;
7208 	} while ((b & 0x80) != 0);
7209 
7210 	if (shift < 32 && (b & 0x40) != 0)
7211 		ret |= (-1 << shift);
7212 
7213 	*dp = src;
7214 
7215 	return (ret);
7216 }
7217 
7218 static uint64_t
7219 _decode_uleb128(uint8_t **dp)
7220 {
7221 	uint64_t ret = 0;
7222 	uint8_t b;
7223 	int shift = 0;
7224 
7225 	uint8_t *src = *dp;
7226 
7227 	do {
7228 		b = *src++;
7229 		ret |= ((b & 0x7f) << shift);
7230 		shift += 7;
7231 	} while ((b & 0x80) != 0);
7232 
7233 	*dp = src;
7234 
7235 	return (ret);
7236 }
7237 
7238 static void
7239 readelf_version(void)
7240 {
7241 	(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
7242 	    elftc_version());
7243 	exit(EXIT_SUCCESS);
7244 }
7245 
7246 #define	USAGE_MESSAGE	"\
7247 Usage: %s [options] file...\n\
7248   Display information about ELF objects and ar(1) archives.\n\n\
7249   Options:\n\
7250   -a | --all               Equivalent to specifying options '-dhIlrsASV'.\n\
7251   -c | --archive-index     Print the archive symbol table for archives.\n\
7252   -d | --dynamic           Print the contents of SHT_DYNAMIC sections.\n\
7253   -e | --headers           Print all headers in the object.\n\
7254   -g | --section-groups    (accepted, but ignored)\n\
7255   -h | --file-header       Print the file header for the object.\n\
7256   -l | --program-headers   Print the PHDR table for the object.\n\
7257   -n | --notes             Print the contents of SHT_NOTE sections.\n\
7258   -p INDEX | --string-dump=INDEX\n\
7259                            Print the contents of section at index INDEX.\n\
7260   -r | --relocs            Print relocation information.\n\
7261   -s | --syms | --symbols  Print symbol tables.\n\
7262   -t | --section-details   Print additional information about sections.\n\
7263   -v | --version           Print a version identifier and exit.\n\
7264   -x INDEX | --hex-dump=INDEX\n\
7265                            Display contents of a section as hexadecimal.\n\
7266   -A | --arch-specific     (accepted, but ignored)\n\
7267   -D | --use-dynamic       Print the symbol table specified by the DT_SYMTAB\n\
7268                            entry in the \".dynamic\" section.\n\
7269   -H | --help              Print a help message.\n\
7270   -I | --histogram         Print information on bucket list lengths for \n\
7271                            hash sections.\n\
7272   -N | --full-section-name (accepted, but ignored)\n\
7273   -S | --sections | --section-headers\n\
7274                            Print information about section headers.\n\
7275   -V | --version-info      Print symbol versoning information.\n\
7276   -W | --wide              Print information without wrapping long lines.\n"
7277 
7278 
7279 static void
7280 readelf_usage(void)
7281 {
7282 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
7283 	exit(EXIT_FAILURE);
7284 }
7285 
7286 int
7287 main(int argc, char **argv)
7288 {
7289 	struct readelf	*re, re_storage;
7290 	unsigned long	 si;
7291 	int		 opt, i;
7292 	char		*ep;
7293 
7294 	re = &re_storage;
7295 	memset(re, 0, sizeof(*re));
7296 	STAILQ_INIT(&re->v_dumpop);
7297 
7298 	while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:",
7299 	    longopts, NULL)) != -1) {
7300 		switch(opt) {
7301 		case '?':
7302 			readelf_usage();
7303 			break;
7304 		case 'A':
7305 			re->options |= RE_AA;
7306 			break;
7307 		case 'a':
7308 			re->options |= RE_AA | RE_D | RE_H | RE_II | RE_L |
7309 			    RE_R | RE_SS | RE_S | RE_VV;
7310 			break;
7311 		case 'c':
7312 			re->options |= RE_C;
7313 			break;
7314 		case 'D':
7315 			re->options |= RE_DD;
7316 			break;
7317 		case 'd':
7318 			re->options |= RE_D;
7319 			break;
7320 		case 'e':
7321 			re->options |= RE_H | RE_L | RE_SS;
7322 			break;
7323 		case 'g':
7324 			re->options |= RE_G;
7325 			break;
7326 		case 'H':
7327 			readelf_usage();
7328 			break;
7329 		case 'h':
7330 			re->options |= RE_H;
7331 			break;
7332 		case 'I':
7333 			re->options |= RE_II;
7334 			break;
7335 		case 'i':
7336 			/* Not implemented yet. */
7337 			break;
7338 		case 'l':
7339 			re->options |= RE_L;
7340 			break;
7341 		case 'N':
7342 			re->options |= RE_NN;
7343 			break;
7344 		case 'n':
7345 			re->options |= RE_N;
7346 			break;
7347 		case 'p':
7348 			re->options |= RE_P;
7349 			si = strtoul(optarg, &ep, 10);
7350 			if (*ep == '\0')
7351 				add_dumpop(re, (size_t) si, NULL, STR_DUMP,
7352 				    DUMP_BY_INDEX);
7353 			else
7354 				add_dumpop(re, 0, optarg, STR_DUMP,
7355 				    DUMP_BY_NAME);
7356 			break;
7357 		case 'r':
7358 			re->options |= RE_R;
7359 			break;
7360 		case 'S':
7361 			re->options |= RE_SS;
7362 			break;
7363 		case 's':
7364 			re->options |= RE_S;
7365 			break;
7366 		case 't':
7367 			re->options |= RE_T;
7368 			break;
7369 		case 'u':
7370 			re->options |= RE_U;
7371 			break;
7372 		case 'V':
7373 			re->options |= RE_VV;
7374 			break;
7375 		case 'v':
7376 			readelf_version();
7377 			break;
7378 		case 'W':
7379 			re->options |= RE_WW;
7380 			break;
7381 		case 'w':
7382 			re->options |= RE_W;
7383 			parse_dwarf_op_short(re, optarg);
7384 			break;
7385 		case 'x':
7386 			re->options |= RE_X;
7387 			si = strtoul(optarg, &ep, 10);
7388 			if (*ep == '\0')
7389 				add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
7390 				    DUMP_BY_INDEX);
7391 			else
7392 				add_dumpop(re, 0, optarg, HEX_DUMP,
7393 				    DUMP_BY_NAME);
7394 			break;
7395 		case OPTION_DEBUG_DUMP:
7396 			re->options |= RE_W;
7397 			parse_dwarf_op_long(re, optarg);
7398 		}
7399 	}
7400 
7401 	argv += optind;
7402 	argc -= optind;
7403 
7404 	if (argc == 0 || re->options == 0)
7405 		readelf_usage();
7406 
7407 	if (argc > 1)
7408 		re->flags |= DISPLAY_FILENAME;
7409 
7410 	if (elf_version(EV_CURRENT) == EV_NONE)
7411 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
7412 		    elf_errmsg(-1));
7413 
7414 	for (i = 0; i < argc; i++)
7415 		if (argv[i] != NULL) {
7416 			re->filename = argv[i];
7417 			dump_object(re);
7418 		}
7419 
7420 	exit(EXIT_SUCCESS);
7421 }
7422