1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3519 2017-04-09 23:15:58Z kaiwang27 $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_abiflags(struct readelf *re, struct section *s); 300 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 301 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 302 static void dump_mips_options(struct readelf *re, struct section *s); 303 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 304 uint64_t info); 305 static void dump_mips_reginfo(struct readelf *re, struct section *s); 306 static void dump_mips_specific_info(struct readelf *re); 307 static void dump_notes(struct readelf *re); 308 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 309 off_t off); 310 static void dump_svr4_hash(struct section *s); 311 static void dump_svr4_hash64(struct readelf *re, struct section *s); 312 static void dump_gnu_hash(struct readelf *re, struct section *s); 313 static void dump_hash(struct readelf *re); 314 static void dump_phdr(struct readelf *re); 315 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 316 static void dump_section_groups(struct readelf *re); 317 static void dump_symtab(struct readelf *re, int i); 318 static void dump_symtabs(struct readelf *re); 319 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 320 static void dump_ver(struct readelf *re); 321 static void dump_verdef(struct readelf *re, int dump); 322 static void dump_verneed(struct readelf *re, int dump); 323 static void dump_versym(struct readelf *re); 324 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 325 static const char *dwarf_regname(struct readelf *re, unsigned int num); 326 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 327 const char *sn, int op, int t); 328 static int get_ent_count(struct section *s, int *ent_count); 329 static int get_mips_register_size(uint8_t flag); 330 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 331 Dwarf_Addr off); 332 static const char *get_string(struct readelf *re, int strtab, size_t off); 333 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 334 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 335 static void load_sections(struct readelf *re); 336 static const char *mips_abi_fp(uint64_t fp); 337 static const char *note_type(const char *note_name, unsigned int et, 338 unsigned int nt); 339 static const char *note_type_freebsd(unsigned int nt); 340 static const char *note_type_freebsd_core(unsigned int nt); 341 static const char *note_type_linux_core(unsigned int nt); 342 static const char *note_type_gnu(unsigned int nt); 343 static const char *note_type_netbsd(unsigned int nt); 344 static const char *note_type_openbsd(unsigned int nt); 345 static const char *note_type_unknown(unsigned int nt); 346 static const char *note_type_xen(unsigned int nt); 347 static const char *option_kind(uint8_t kind); 348 static const char *phdr_type(unsigned int mach, unsigned int ptype); 349 static const char *ppc_abi_fp(uint64_t fp); 350 static const char *ppc_abi_vector(uint64_t vec); 351 static void readelf_usage(int status); 352 static void readelf_version(void); 353 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 354 Dwarf_Unsigned lowpc); 355 static void search_ver(struct readelf *re); 356 static const char *section_type(unsigned int mach, unsigned int stype); 357 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 358 Dwarf_Half osize, Dwarf_Half ver); 359 static const char *st_bind(unsigned int sbind); 360 static const char *st_shndx(unsigned int shndx); 361 static const char *st_type(unsigned int mach, unsigned int os, 362 unsigned int stype); 363 static const char *st_vis(unsigned int svis); 364 static const char *top_tag(unsigned int tag); 365 static void unload_sections(struct readelf *re); 366 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 369 int bytes_to_read); 370 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 371 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 372 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 373 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 374 375 static struct eflags_desc arm_eflags_desc[] = { 376 {EF_ARM_RELEXEC, "relocatable executable"}, 377 {EF_ARM_HASENTRY, "has entry point"}, 378 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 379 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 380 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 381 {EF_ARM_BE8, "BE8"}, 382 {EF_ARM_LE8, "LE8"}, 383 {EF_ARM_INTERWORK, "interworking enabled"}, 384 {EF_ARM_APCS_26, "uses APCS/26"}, 385 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 386 {EF_ARM_PIC, "position independent"}, 387 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 388 {EF_ARM_NEW_ABI, "uses new ABI"}, 389 {EF_ARM_OLD_ABI, "uses old ABI"}, 390 {EF_ARM_SOFT_FLOAT, "software FP"}, 391 {EF_ARM_VFP_FLOAT, "VFP"}, 392 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 393 {0, NULL} 394 }; 395 396 static struct eflags_desc mips_eflags_desc[] = { 397 {EF_MIPS_NOREORDER, "noreorder"}, 398 {EF_MIPS_PIC, "pic"}, 399 {EF_MIPS_CPIC, "cpic"}, 400 {EF_MIPS_UCODE, "ugen_reserved"}, 401 {EF_MIPS_ABI2, "abi2"}, 402 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 403 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 404 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 405 {0, NULL} 406 }; 407 408 static struct eflags_desc powerpc_eflags_desc[] = { 409 {EF_PPC_EMB, "emb"}, 410 {EF_PPC_RELOCATABLE, "relocatable"}, 411 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 412 {0, NULL} 413 }; 414 415 static struct eflags_desc sparc_eflags_desc[] = { 416 {EF_SPARC_32PLUS, "v8+"}, 417 {EF_SPARC_SUN_US1, "ultrasparcI"}, 418 {EF_SPARC_HAL_R1, "halr1"}, 419 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 420 {0, NULL} 421 }; 422 423 static const char * 424 elf_osabi(unsigned int abi) 425 { 426 static char s_abi[32]; 427 428 switch(abi) { 429 case ELFOSABI_NONE: return "NONE"; 430 case ELFOSABI_HPUX: return "HPUX"; 431 case ELFOSABI_NETBSD: return "NetBSD"; 432 case ELFOSABI_GNU: return "GNU"; 433 case ELFOSABI_HURD: return "HURD"; 434 case ELFOSABI_86OPEN: return "86OPEN"; 435 case ELFOSABI_SOLARIS: return "Solaris"; 436 case ELFOSABI_AIX: return "AIX"; 437 case ELFOSABI_IRIX: return "IRIX"; 438 case ELFOSABI_FREEBSD: return "FreeBSD"; 439 case ELFOSABI_TRU64: return "TRU64"; 440 case ELFOSABI_MODESTO: return "MODESTO"; 441 case ELFOSABI_OPENBSD: return "OpenBSD"; 442 case ELFOSABI_OPENVMS: return "OpenVMS"; 443 case ELFOSABI_NSK: return "NSK"; 444 case ELFOSABI_CLOUDABI: return "CloudABI"; 445 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 446 case ELFOSABI_ARM: return "ARM"; 447 case ELFOSABI_STANDALONE: return "StandAlone"; 448 default: 449 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 450 return (s_abi); 451 } 452 }; 453 454 static const char * 455 elf_machine(unsigned int mach) 456 { 457 static char s_mach[32]; 458 459 switch (mach) { 460 case EM_NONE: return "Unknown machine"; 461 case EM_M32: return "AT&T WE32100"; 462 case EM_SPARC: return "Sun SPARC"; 463 case EM_386: return "Intel i386"; 464 case EM_68K: return "Motorola 68000"; 465 case EM_IAMCU: return "Intel MCU"; 466 case EM_88K: return "Motorola 88000"; 467 case EM_860: return "Intel i860"; 468 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 469 case EM_S370: return "IBM System/370"; 470 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 471 case EM_PARISC: return "HP PA-RISC"; 472 case EM_VPP500: return "Fujitsu VPP500"; 473 case EM_SPARC32PLUS: return "SPARC v8plus"; 474 case EM_960: return "Intel 80960"; 475 case EM_PPC: return "PowerPC 32-bit"; 476 case EM_PPC64: return "PowerPC 64-bit"; 477 case EM_S390: return "IBM System/390"; 478 case EM_V800: return "NEC V800"; 479 case EM_FR20: return "Fujitsu FR20"; 480 case EM_RH32: return "TRW RH-32"; 481 case EM_RCE: return "Motorola RCE"; 482 case EM_ARM: return "ARM"; 483 case EM_SH: return "Hitachi SH"; 484 case EM_SPARCV9: return "SPARC v9 64-bit"; 485 case EM_TRICORE: return "Siemens TriCore embedded processor"; 486 case EM_ARC: return "Argonaut RISC Core"; 487 case EM_H8_300: return "Hitachi H8/300"; 488 case EM_H8_300H: return "Hitachi H8/300H"; 489 case EM_H8S: return "Hitachi H8S"; 490 case EM_H8_500: return "Hitachi H8/500"; 491 case EM_IA_64: return "Intel IA-64 Processor"; 492 case EM_MIPS_X: return "Stanford MIPS-X"; 493 case EM_COLDFIRE: return "Motorola ColdFire"; 494 case EM_68HC12: return "Motorola M68HC12"; 495 case EM_MMA: return "Fujitsu MMA"; 496 case EM_PCP: return "Siemens PCP"; 497 case EM_NCPU: return "Sony nCPU"; 498 case EM_NDR1: return "Denso NDR1 microprocessor"; 499 case EM_STARCORE: return "Motorola Star*Core processor"; 500 case EM_ME16: return "Toyota ME16 processor"; 501 case EM_ST100: return "STMicroelectronics ST100 processor"; 502 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 503 case EM_X86_64: return "Advanced Micro Devices x86-64"; 504 case EM_PDSP: return "Sony DSP Processor"; 505 case EM_FX66: return "Siemens FX66 microcontroller"; 506 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 507 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 508 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 509 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 510 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 511 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 512 case EM_SVX: return "Silicon Graphics SVx"; 513 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 514 case EM_VAX: return "Digital VAX"; 515 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 516 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 517 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 518 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 519 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 520 case EM_HUANY: return "Harvard University MI object files"; 521 case EM_PRISM: return "SiTera Prism"; 522 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 523 case EM_FR30: return "Fujitsu FR30"; 524 case EM_D10V: return "Mitsubishi D10V"; 525 case EM_D30V: return "Mitsubishi D30V"; 526 case EM_V850: return "NEC v850"; 527 case EM_M32R: return "Mitsubishi M32R"; 528 case EM_MN10300: return "Matsushita MN10300"; 529 case EM_MN10200: return "Matsushita MN10200"; 530 case EM_PJ: return "picoJava"; 531 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 532 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 533 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 534 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 535 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 536 case EM_NS32K: return "National Semiconductor 32000 series"; 537 case EM_TPC: return "Tenor Network TPC processor"; 538 case EM_SNP1K: return "Trebia SNP 1000 processor"; 539 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 540 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 541 case EM_MAX: return "MAX Processor"; 542 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 543 case EM_F2MC16: return "Fujitsu F2MC16"; 544 case EM_MSP430: return "TI embedded microcontroller msp430"; 545 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 546 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 547 case EM_SEP: return "Sharp embedded microprocessor"; 548 case EM_ARCA: return "Arca RISC Microprocessor"; 549 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 550 case EM_AARCH64: return "AArch64"; 551 case EM_RISCV: return "RISC-V"; 552 default: 553 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 554 return (s_mach); 555 } 556 557 } 558 559 static const char * 560 elf_class(unsigned int class) 561 { 562 static char s_class[32]; 563 564 switch (class) { 565 case ELFCLASSNONE: return "none"; 566 case ELFCLASS32: return "ELF32"; 567 case ELFCLASS64: return "ELF64"; 568 default: 569 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 570 return (s_class); 571 } 572 } 573 574 static const char * 575 elf_endian(unsigned int endian) 576 { 577 static char s_endian[32]; 578 579 switch (endian) { 580 case ELFDATANONE: return "none"; 581 case ELFDATA2LSB: return "2's complement, little endian"; 582 case ELFDATA2MSB: return "2's complement, big endian"; 583 default: 584 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 585 return (s_endian); 586 } 587 } 588 589 static const char * 590 elf_type(unsigned int type) 591 { 592 static char s_type[32]; 593 594 switch (type) { 595 case ET_NONE: return "NONE (None)"; 596 case ET_REL: return "REL (Relocatable file)"; 597 case ET_EXEC: return "EXEC (Executable file)"; 598 case ET_DYN: return "DYN (Shared object file)"; 599 case ET_CORE: return "CORE (Core file)"; 600 default: 601 if (type >= ET_LOPROC) 602 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 603 else if (type >= ET_LOOS && type <= ET_HIOS) 604 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 605 else 606 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 607 type); 608 return (s_type); 609 } 610 } 611 612 static const char * 613 elf_ver(unsigned int ver) 614 { 615 static char s_ver[32]; 616 617 switch (ver) { 618 case EV_CURRENT: return "(current)"; 619 case EV_NONE: return "(none)"; 620 default: 621 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 622 ver); 623 return (s_ver); 624 } 625 } 626 627 static const char * 628 phdr_type(unsigned int mach, unsigned int ptype) 629 { 630 static char s_ptype[32]; 631 632 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 633 switch (mach) { 634 case EM_ARM: 635 switch (ptype) { 636 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 637 case PT_ARM_EXIDX: return "ARM_EXIDX"; 638 } 639 break; 640 } 641 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 642 ptype - PT_LOPROC); 643 return (s_ptype); 644 } 645 646 switch (ptype) { 647 case PT_NULL: return "NULL"; 648 case PT_LOAD: return "LOAD"; 649 case PT_DYNAMIC: return "DYNAMIC"; 650 case PT_INTERP: return "INTERP"; 651 case PT_NOTE: return "NOTE"; 652 case PT_SHLIB: return "SHLIB"; 653 case PT_PHDR: return "PHDR"; 654 case PT_TLS: return "TLS"; 655 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 656 case PT_GNU_STACK: return "GNU_STACK"; 657 case PT_GNU_RELRO: return "GNU_RELRO"; 658 default: 659 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 660 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 661 ptype - PT_LOOS); 662 else 663 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 664 ptype); 665 return (s_ptype); 666 } 667 } 668 669 static const char * 670 section_type(unsigned int mach, unsigned int stype) 671 { 672 static char s_stype[32]; 673 674 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 675 switch (mach) { 676 case EM_ARM: 677 switch (stype) { 678 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 679 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 680 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 681 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 682 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 683 } 684 break; 685 case EM_X86_64: 686 switch (stype) { 687 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 688 default: 689 break; 690 } 691 break; 692 case EM_MIPS: 693 case EM_MIPS_RS3_LE: 694 switch (stype) { 695 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 696 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 697 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 698 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 699 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 700 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 701 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 702 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 703 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 704 case SHT_MIPS_RELD: return "MIPS_RELD"; 705 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 706 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 707 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 708 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 709 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 710 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 711 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 712 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 713 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 714 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 715 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 716 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 717 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 718 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 719 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 720 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 721 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 722 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 723 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 724 default: 725 break; 726 } 727 break; 728 default: 729 break; 730 } 731 732 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 733 stype - SHT_LOPROC); 734 return (s_stype); 735 } 736 737 switch (stype) { 738 case SHT_NULL: return "NULL"; 739 case SHT_PROGBITS: return "PROGBITS"; 740 case SHT_SYMTAB: return "SYMTAB"; 741 case SHT_STRTAB: return "STRTAB"; 742 case SHT_RELA: return "RELA"; 743 case SHT_HASH: return "HASH"; 744 case SHT_DYNAMIC: return "DYNAMIC"; 745 case SHT_NOTE: return "NOTE"; 746 case SHT_NOBITS: return "NOBITS"; 747 case SHT_REL: return "REL"; 748 case SHT_SHLIB: return "SHLIB"; 749 case SHT_DYNSYM: return "DYNSYM"; 750 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 751 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 752 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 753 case SHT_GROUP: return "GROUP"; 754 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 755 case SHT_SUNW_dof: return "SUNW_dof"; 756 case SHT_SUNW_cap: return "SUNW_cap"; 757 case SHT_GNU_HASH: return "GNU_HASH"; 758 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 759 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 760 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 761 case SHT_SUNW_move: return "SUNW_move"; 762 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 763 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 764 case SHT_SUNW_verdef: return "SUNW_verdef"; 765 case SHT_SUNW_verneed: return "SUNW_verneed"; 766 case SHT_SUNW_versym: return "SUNW_versym"; 767 default: 768 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 769 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 770 stype - SHT_LOOS); 771 else if (stype >= SHT_LOUSER) 772 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 773 stype - SHT_LOUSER); 774 else 775 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 776 stype); 777 return (s_stype); 778 } 779 } 780 781 static const char * 782 dt_type(unsigned int mach, unsigned int dtype) 783 { 784 static char s_dtype[32]; 785 786 switch (dtype) { 787 case DT_NULL: return "NULL"; 788 case DT_NEEDED: return "NEEDED"; 789 case DT_PLTRELSZ: return "PLTRELSZ"; 790 case DT_PLTGOT: return "PLTGOT"; 791 case DT_HASH: return "HASH"; 792 case DT_STRTAB: return "STRTAB"; 793 case DT_SYMTAB: return "SYMTAB"; 794 case DT_RELA: return "RELA"; 795 case DT_RELASZ: return "RELASZ"; 796 case DT_RELAENT: return "RELAENT"; 797 case DT_STRSZ: return "STRSZ"; 798 case DT_SYMENT: return "SYMENT"; 799 case DT_INIT: return "INIT"; 800 case DT_FINI: return "FINI"; 801 case DT_SONAME: return "SONAME"; 802 case DT_RPATH: return "RPATH"; 803 case DT_SYMBOLIC: return "SYMBOLIC"; 804 case DT_REL: return "REL"; 805 case DT_RELSZ: return "RELSZ"; 806 case DT_RELENT: return "RELENT"; 807 case DT_PLTREL: return "PLTREL"; 808 case DT_DEBUG: return "DEBUG"; 809 case DT_TEXTREL: return "TEXTREL"; 810 case DT_JMPREL: return "JMPREL"; 811 case DT_BIND_NOW: return "BIND_NOW"; 812 case DT_INIT_ARRAY: return "INIT_ARRAY"; 813 case DT_FINI_ARRAY: return "FINI_ARRAY"; 814 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 815 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 816 case DT_RUNPATH: return "RUNPATH"; 817 case DT_FLAGS: return "FLAGS"; 818 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 819 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 820 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 821 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 822 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 823 case DT_SUNW_FILTER: return "SUNW_FILTER"; 824 case DT_SUNW_CAP: return "SUNW_CAP"; 825 case DT_CHECKSUM: return "CHECKSUM"; 826 case DT_PLTPADSZ: return "PLTPADSZ"; 827 case DT_MOVEENT: return "MOVEENT"; 828 case DT_MOVESZ: return "MOVESZ"; 829 case DT_FEATURE: return "FEATURE"; 830 case DT_POSFLAG_1: return "POSFLAG_1"; 831 case DT_SYMINSZ: return "SYMINSZ"; 832 case DT_SYMINENT: return "SYMINENT"; 833 case DT_GNU_HASH: return "GNU_HASH"; 834 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 835 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 836 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 837 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 838 case DT_CONFIG: return "CONFIG"; 839 case DT_DEPAUDIT: return "DEPAUDIT"; 840 case DT_AUDIT: return "AUDIT"; 841 case DT_PLTPAD: return "PLTPAD"; 842 case DT_MOVETAB: return "MOVETAB"; 843 case DT_SYMINFO: return "SYMINFO"; 844 case DT_VERSYM: return "VERSYM"; 845 case DT_RELACOUNT: return "RELACOUNT"; 846 case DT_RELCOUNT: return "RELCOUNT"; 847 case DT_FLAGS_1: return "FLAGS_1"; 848 case DT_VERDEF: return "VERDEF"; 849 case DT_VERDEFNUM: return "VERDEFNUM"; 850 case DT_VERNEED: return "VERNEED"; 851 case DT_VERNEEDNUM: return "VERNEEDNUM"; 852 case DT_AUXILIARY: return "AUXILIARY"; 853 case DT_USED: return "USED"; 854 case DT_FILTER: return "FILTER"; 855 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 856 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 857 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 858 } 859 860 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 861 switch (mach) { 862 case EM_ARM: 863 switch (dtype) { 864 case DT_ARM_SYMTABSZ: 865 return "ARM_SYMTABSZ"; 866 default: 867 break; 868 } 869 break; 870 case EM_MIPS: 871 case EM_MIPS_RS3_LE: 872 switch (dtype) { 873 case DT_MIPS_RLD_VERSION: 874 return "MIPS_RLD_VERSION"; 875 case DT_MIPS_TIME_STAMP: 876 return "MIPS_TIME_STAMP"; 877 case DT_MIPS_ICHECKSUM: 878 return "MIPS_ICHECKSUM"; 879 case DT_MIPS_IVERSION: 880 return "MIPS_IVERSION"; 881 case DT_MIPS_FLAGS: 882 return "MIPS_FLAGS"; 883 case DT_MIPS_BASE_ADDRESS: 884 return "MIPS_BASE_ADDRESS"; 885 case DT_MIPS_CONFLICT: 886 return "MIPS_CONFLICT"; 887 case DT_MIPS_LIBLIST: 888 return "MIPS_LIBLIST"; 889 case DT_MIPS_LOCAL_GOTNO: 890 return "MIPS_LOCAL_GOTNO"; 891 case DT_MIPS_CONFLICTNO: 892 return "MIPS_CONFLICTNO"; 893 case DT_MIPS_LIBLISTNO: 894 return "MIPS_LIBLISTNO"; 895 case DT_MIPS_SYMTABNO: 896 return "MIPS_SYMTABNO"; 897 case DT_MIPS_UNREFEXTNO: 898 return "MIPS_UNREFEXTNO"; 899 case DT_MIPS_GOTSYM: 900 return "MIPS_GOTSYM"; 901 case DT_MIPS_HIPAGENO: 902 return "MIPS_HIPAGENO"; 903 case DT_MIPS_RLD_MAP: 904 return "MIPS_RLD_MAP"; 905 case DT_MIPS_DELTA_CLASS: 906 return "MIPS_DELTA_CLASS"; 907 case DT_MIPS_DELTA_CLASS_NO: 908 return "MIPS_DELTA_CLASS_NO"; 909 case DT_MIPS_DELTA_INSTANCE: 910 return "MIPS_DELTA_INSTANCE"; 911 case DT_MIPS_DELTA_INSTANCE_NO: 912 return "MIPS_DELTA_INSTANCE_NO"; 913 case DT_MIPS_DELTA_RELOC: 914 return "MIPS_DELTA_RELOC"; 915 case DT_MIPS_DELTA_RELOC_NO: 916 return "MIPS_DELTA_RELOC_NO"; 917 case DT_MIPS_DELTA_SYM: 918 return "MIPS_DELTA_SYM"; 919 case DT_MIPS_DELTA_SYM_NO: 920 return "MIPS_DELTA_SYM_NO"; 921 case DT_MIPS_DELTA_CLASSSYM: 922 return "MIPS_DELTA_CLASSSYM"; 923 case DT_MIPS_DELTA_CLASSSYM_NO: 924 return "MIPS_DELTA_CLASSSYM_NO"; 925 case DT_MIPS_CXX_FLAGS: 926 return "MIPS_CXX_FLAGS"; 927 case DT_MIPS_PIXIE_INIT: 928 return "MIPS_PIXIE_INIT"; 929 case DT_MIPS_SYMBOL_LIB: 930 return "MIPS_SYMBOL_LIB"; 931 case DT_MIPS_LOCALPAGE_GOTIDX: 932 return "MIPS_LOCALPAGE_GOTIDX"; 933 case DT_MIPS_LOCAL_GOTIDX: 934 return "MIPS_LOCAL_GOTIDX"; 935 case DT_MIPS_HIDDEN_GOTIDX: 936 return "MIPS_HIDDEN_GOTIDX"; 937 case DT_MIPS_PROTECTED_GOTIDX: 938 return "MIPS_PROTECTED_GOTIDX"; 939 case DT_MIPS_OPTIONS: 940 return "MIPS_OPTIONS"; 941 case DT_MIPS_INTERFACE: 942 return "MIPS_INTERFACE"; 943 case DT_MIPS_DYNSTR_ALIGN: 944 return "MIPS_DYNSTR_ALIGN"; 945 case DT_MIPS_INTERFACE_SIZE: 946 return "MIPS_INTERFACE_SIZE"; 947 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 948 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 949 case DT_MIPS_PERF_SUFFIX: 950 return "MIPS_PERF_SUFFIX"; 951 case DT_MIPS_COMPACT_SIZE: 952 return "MIPS_COMPACT_SIZE"; 953 case DT_MIPS_GP_VALUE: 954 return "MIPS_GP_VALUE"; 955 case DT_MIPS_AUX_DYNAMIC: 956 return "MIPS_AUX_DYNAMIC"; 957 case DT_MIPS_PLTGOT: 958 return "MIPS_PLTGOT"; 959 case DT_MIPS_RLD_OBJ_UPDATE: 960 return "MIPS_RLD_OBJ_UPDATE"; 961 case DT_MIPS_RWPLT: 962 return "MIPS_RWPLT"; 963 default: 964 break; 965 } 966 break; 967 case EM_SPARC: 968 case EM_SPARC32PLUS: 969 case EM_SPARCV9: 970 switch (dtype) { 971 case DT_SPARC_REGISTER: 972 return "DT_SPARC_REGISTER"; 973 default: 974 break; 975 } 976 break; 977 default: 978 break; 979 } 980 } 981 982 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 983 return (s_dtype); 984 } 985 986 static const char * 987 st_bind(unsigned int sbind) 988 { 989 static char s_sbind[32]; 990 991 switch (sbind) { 992 case STB_LOCAL: return "LOCAL"; 993 case STB_GLOBAL: return "GLOBAL"; 994 case STB_WEAK: return "WEAK"; 995 case STB_GNU_UNIQUE: return "UNIQUE"; 996 default: 997 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 998 return "OS"; 999 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1000 return "PROC"; 1001 else 1002 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1003 sbind); 1004 return (s_sbind); 1005 } 1006 } 1007 1008 static const char * 1009 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1010 { 1011 static char s_stype[32]; 1012 1013 switch (stype) { 1014 case STT_NOTYPE: return "NOTYPE"; 1015 case STT_OBJECT: return "OBJECT"; 1016 case STT_FUNC: return "FUNC"; 1017 case STT_SECTION: return "SECTION"; 1018 case STT_FILE: return "FILE"; 1019 case STT_COMMON: return "COMMON"; 1020 case STT_TLS: return "TLS"; 1021 default: 1022 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1023 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1024 stype == STT_GNU_IFUNC) 1025 return "IFUNC"; 1026 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1027 stype - STT_LOOS); 1028 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1029 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1030 return "REGISTER"; 1031 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1032 stype - STT_LOPROC); 1033 } else 1034 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1035 stype); 1036 return (s_stype); 1037 } 1038 } 1039 1040 static const char * 1041 st_vis(unsigned int svis) 1042 { 1043 static char s_svis[32]; 1044 1045 switch(svis) { 1046 case STV_DEFAULT: return "DEFAULT"; 1047 case STV_INTERNAL: return "INTERNAL"; 1048 case STV_HIDDEN: return "HIDDEN"; 1049 case STV_PROTECTED: return "PROTECTED"; 1050 default: 1051 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1052 return (s_svis); 1053 } 1054 } 1055 1056 static const char * 1057 st_shndx(unsigned int shndx) 1058 { 1059 static char s_shndx[32]; 1060 1061 switch (shndx) { 1062 case SHN_UNDEF: return "UND"; 1063 case SHN_ABS: return "ABS"; 1064 case SHN_COMMON: return "COM"; 1065 default: 1066 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1067 return "PRC"; 1068 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1069 return "OS"; 1070 else 1071 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1072 return (s_shndx); 1073 } 1074 } 1075 1076 static struct { 1077 const char *ln; 1078 char sn; 1079 int value; 1080 } section_flag[] = { 1081 {"WRITE", 'W', SHF_WRITE}, 1082 {"ALLOC", 'A', SHF_ALLOC}, 1083 {"EXEC", 'X', SHF_EXECINSTR}, 1084 {"MERGE", 'M', SHF_MERGE}, 1085 {"STRINGS", 'S', SHF_STRINGS}, 1086 {"INFO LINK", 'I', SHF_INFO_LINK}, 1087 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1088 {"GROUP", 'G', SHF_GROUP}, 1089 {"TLS", 'T', SHF_TLS}, 1090 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1091 {NULL, 0, 0} 1092 }; 1093 1094 static const char * 1095 note_type(const char *name, unsigned int et, unsigned int nt) 1096 { 1097 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1098 et == ET_CORE) 1099 return note_type_linux_core(nt); 1100 else if (strcmp(name, "FreeBSD") == 0) 1101 if (et == ET_CORE) 1102 return note_type_freebsd_core(nt); 1103 else 1104 return note_type_freebsd(nt); 1105 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1106 return note_type_gnu(nt); 1107 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1108 return note_type_netbsd(nt); 1109 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1110 return note_type_openbsd(nt); 1111 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1112 return note_type_xen(nt); 1113 return note_type_unknown(nt); 1114 } 1115 1116 static const char * 1117 note_type_freebsd(unsigned int nt) 1118 { 1119 switch (nt) { 1120 case 1: return "NT_FREEBSD_ABI_TAG"; 1121 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1122 case 3: return "NT_FREEBSD_ARCH_TAG"; 1123 default: return (note_type_unknown(nt)); 1124 } 1125 } 1126 1127 static const char * 1128 note_type_freebsd_core(unsigned int nt) 1129 { 1130 switch (nt) { 1131 case 1: return "NT_PRSTATUS"; 1132 case 2: return "NT_FPREGSET"; 1133 case 3: return "NT_PRPSINFO"; 1134 case 7: return "NT_THRMISC"; 1135 case 8: return "NT_PROCSTAT_PROC"; 1136 case 9: return "NT_PROCSTAT_FILES"; 1137 case 10: return "NT_PROCSTAT_VMMAP"; 1138 case 11: return "NT_PROCSTAT_GROUPS"; 1139 case 12: return "NT_PROCSTAT_UMASK"; 1140 case 13: return "NT_PROCSTAT_RLIMIT"; 1141 case 14: return "NT_PROCSTAT_OSREL"; 1142 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1143 case 16: return "NT_PROCSTAT_AUXV"; 1144 case 17: return "NT_PTLWPINFO"; 1145 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1146 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1147 default: return (note_type_unknown(nt)); 1148 } 1149 } 1150 1151 static const char * 1152 note_type_linux_core(unsigned int nt) 1153 { 1154 switch (nt) { 1155 case 1: return "NT_PRSTATUS (Process status)"; 1156 case 2: return "NT_FPREGSET (Floating point information)"; 1157 case 3: return "NT_PRPSINFO (Process information)"; 1158 case 4: return "NT_TASKSTRUCT (Task structure)"; 1159 case 6: return "NT_AUXV (Auxiliary vector)"; 1160 case 10: return "NT_PSTATUS (Linux process status)"; 1161 case 12: return "NT_FPREGS (Linux floating point regset)"; 1162 case 13: return "NT_PSINFO (Linux process information)"; 1163 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1164 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1165 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1166 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1167 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1168 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1169 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1170 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1171 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1172 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1173 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1174 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1175 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1176 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1177 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1178 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1179 default: return (note_type_unknown(nt)); 1180 } 1181 } 1182 1183 static const char * 1184 note_type_gnu(unsigned int nt) 1185 { 1186 switch (nt) { 1187 case 1: return "NT_GNU_ABI_TAG"; 1188 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1189 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1190 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1191 default: return (note_type_unknown(nt)); 1192 } 1193 } 1194 1195 static const char * 1196 note_type_netbsd(unsigned int nt) 1197 { 1198 switch (nt) { 1199 case 1: return "NT_NETBSD_IDENT"; 1200 default: return (note_type_unknown(nt)); 1201 } 1202 } 1203 1204 static const char * 1205 note_type_openbsd(unsigned int nt) 1206 { 1207 switch (nt) { 1208 case 1: return "NT_OPENBSD_IDENT"; 1209 default: return (note_type_unknown(nt)); 1210 } 1211 } 1212 1213 static const char * 1214 note_type_unknown(unsigned int nt) 1215 { 1216 static char s_nt[32]; 1217 1218 snprintf(s_nt, sizeof(s_nt), 1219 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1220 return (s_nt); 1221 } 1222 1223 static const char * 1224 note_type_xen(unsigned int nt) 1225 { 1226 switch (nt) { 1227 case 0: return "XEN_ELFNOTE_INFO"; 1228 case 1: return "XEN_ELFNOTE_ENTRY"; 1229 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1230 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1231 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1232 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1233 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1234 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1235 case 8: return "XEN_ELFNOTE_LOADER"; 1236 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1237 case 10: return "XEN_ELFNOTE_FEATURES"; 1238 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1239 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1240 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1241 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1242 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1243 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1244 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1245 default: return (note_type_unknown(nt)); 1246 } 1247 } 1248 1249 static struct { 1250 const char *name; 1251 int value; 1252 } l_flag[] = { 1253 {"EXACT_MATCH", LL_EXACT_MATCH}, 1254 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1255 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1256 {"EXPORTS", LL_EXPORTS}, 1257 {"DELAY_LOAD", LL_DELAY_LOAD}, 1258 {"DELTA", LL_DELTA}, 1259 {NULL, 0} 1260 }; 1261 1262 static struct mips_option mips_exceptions_option[] = { 1263 {OEX_PAGE0, "PAGE0"}, 1264 {OEX_SMM, "SMM"}, 1265 {OEX_PRECISEFP, "PRECISEFP"}, 1266 {OEX_DISMISS, "DISMISS"}, 1267 {0, NULL} 1268 }; 1269 1270 static struct mips_option mips_pad_option[] = { 1271 {OPAD_PREFIX, "PREFIX"}, 1272 {OPAD_POSTFIX, "POSTFIX"}, 1273 {OPAD_SYMBOL, "SYMBOL"}, 1274 {0, NULL} 1275 }; 1276 1277 static struct mips_option mips_hwpatch_option[] = { 1278 {OHW_R4KEOP, "R4KEOP"}, 1279 {OHW_R8KPFETCH, "R8KPFETCH"}, 1280 {OHW_R5KEOP, "R5KEOP"}, 1281 {OHW_R5KCVTL, "R5KCVTL"}, 1282 {0, NULL} 1283 }; 1284 1285 static struct mips_option mips_hwa_option[] = { 1286 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1287 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1288 {0, NULL} 1289 }; 1290 1291 static struct mips_option mips_hwo_option[] = { 1292 {OHWO0_FIXADE, "FIXADE"}, 1293 {0, NULL} 1294 }; 1295 1296 static const char * 1297 option_kind(uint8_t kind) 1298 { 1299 static char s_kind[32]; 1300 1301 switch (kind) { 1302 case ODK_NULL: return "NULL"; 1303 case ODK_REGINFO: return "REGINFO"; 1304 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1305 case ODK_PAD: return "PAD"; 1306 case ODK_HWPATCH: return "HWPATCH"; 1307 case ODK_FILL: return "FILL"; 1308 case ODK_TAGS: return "TAGS"; 1309 case ODK_HWAND: return "HWAND"; 1310 case ODK_HWOR: return "HWOR"; 1311 case ODK_GP_GROUP: return "GP_GROUP"; 1312 case ODK_IDENT: return "IDENT"; 1313 default: 1314 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1315 return (s_kind); 1316 } 1317 } 1318 1319 static const char * 1320 top_tag(unsigned int tag) 1321 { 1322 static char s_top_tag[32]; 1323 1324 switch (tag) { 1325 case 1: return "File Attributes"; 1326 case 2: return "Section Attributes"; 1327 case 3: return "Symbol Attributes"; 1328 default: 1329 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1330 return (s_top_tag); 1331 } 1332 } 1333 1334 static const char * 1335 aeabi_cpu_arch(uint64_t arch) 1336 { 1337 static char s_cpu_arch[32]; 1338 1339 switch (arch) { 1340 case 0: return "Pre-V4"; 1341 case 1: return "ARM v4"; 1342 case 2: return "ARM v4T"; 1343 case 3: return "ARM v5T"; 1344 case 4: return "ARM v5TE"; 1345 case 5: return "ARM v5TEJ"; 1346 case 6: return "ARM v6"; 1347 case 7: return "ARM v6KZ"; 1348 case 8: return "ARM v6T2"; 1349 case 9: return "ARM v6K"; 1350 case 10: return "ARM v7"; 1351 case 11: return "ARM v6-M"; 1352 case 12: return "ARM v6S-M"; 1353 case 13: return "ARM v7E-M"; 1354 default: 1355 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1356 "Unknown (%ju)", (uintmax_t) arch); 1357 return (s_cpu_arch); 1358 } 1359 } 1360 1361 static const char * 1362 aeabi_cpu_arch_profile(uint64_t pf) 1363 { 1364 static char s_arch_profile[32]; 1365 1366 switch (pf) { 1367 case 0: 1368 return "Not applicable"; 1369 case 0x41: /* 'A' */ 1370 return "Application Profile"; 1371 case 0x52: /* 'R' */ 1372 return "Real-Time Profile"; 1373 case 0x4D: /* 'M' */ 1374 return "Microcontroller Profile"; 1375 case 0x53: /* 'S' */ 1376 return "Application or Real-Time Profile"; 1377 default: 1378 snprintf(s_arch_profile, sizeof(s_arch_profile), 1379 "Unknown (%ju)\n", (uintmax_t) pf); 1380 return (s_arch_profile); 1381 } 1382 } 1383 1384 static const char * 1385 aeabi_arm_isa(uint64_t ai) 1386 { 1387 static char s_ai[32]; 1388 1389 switch (ai) { 1390 case 0: return "No"; 1391 case 1: return "Yes"; 1392 default: 1393 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1394 (uintmax_t) ai); 1395 return (s_ai); 1396 } 1397 } 1398 1399 static const char * 1400 aeabi_thumb_isa(uint64_t ti) 1401 { 1402 static char s_ti[32]; 1403 1404 switch (ti) { 1405 case 0: return "No"; 1406 case 1: return "16-bit Thumb"; 1407 case 2: return "32-bit Thumb"; 1408 default: 1409 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1410 (uintmax_t) ti); 1411 return (s_ti); 1412 } 1413 } 1414 1415 static const char * 1416 aeabi_fp_arch(uint64_t fp) 1417 { 1418 static char s_fp_arch[32]; 1419 1420 switch (fp) { 1421 case 0: return "No"; 1422 case 1: return "VFPv1"; 1423 case 2: return "VFPv2"; 1424 case 3: return "VFPv3"; 1425 case 4: return "VFPv3-D16"; 1426 case 5: return "VFPv4"; 1427 case 6: return "VFPv4-D16"; 1428 default: 1429 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1430 (uintmax_t) fp); 1431 return (s_fp_arch); 1432 } 1433 } 1434 1435 static const char * 1436 aeabi_wmmx_arch(uint64_t wmmx) 1437 { 1438 static char s_wmmx[32]; 1439 1440 switch (wmmx) { 1441 case 0: return "No"; 1442 case 1: return "WMMXv1"; 1443 case 2: return "WMMXv2"; 1444 default: 1445 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1446 (uintmax_t) wmmx); 1447 return (s_wmmx); 1448 } 1449 } 1450 1451 static const char * 1452 aeabi_adv_simd_arch(uint64_t simd) 1453 { 1454 static char s_simd[32]; 1455 1456 switch (simd) { 1457 case 0: return "No"; 1458 case 1: return "NEONv1"; 1459 case 2: return "NEONv2"; 1460 default: 1461 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1462 (uintmax_t) simd); 1463 return (s_simd); 1464 } 1465 } 1466 1467 static const char * 1468 aeabi_pcs_config(uint64_t pcs) 1469 { 1470 static char s_pcs[32]; 1471 1472 switch (pcs) { 1473 case 0: return "None"; 1474 case 1: return "Bare platform"; 1475 case 2: return "Linux"; 1476 case 3: return "Linux DSO"; 1477 case 4: return "Palm OS 2004"; 1478 case 5: return "Palm OS (future)"; 1479 case 6: return "Symbian OS 2004"; 1480 case 7: return "Symbian OS (future)"; 1481 default: 1482 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1483 (uintmax_t) pcs); 1484 return (s_pcs); 1485 } 1486 } 1487 1488 static const char * 1489 aeabi_pcs_r9(uint64_t r9) 1490 { 1491 static char s_r9[32]; 1492 1493 switch (r9) { 1494 case 0: return "V6"; 1495 case 1: return "SB"; 1496 case 2: return "TLS pointer"; 1497 case 3: return "Unused"; 1498 default: 1499 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1500 return (s_r9); 1501 } 1502 } 1503 1504 static const char * 1505 aeabi_pcs_rw(uint64_t rw) 1506 { 1507 static char s_rw[32]; 1508 1509 switch (rw) { 1510 case 0: return "Absolute"; 1511 case 1: return "PC-relative"; 1512 case 2: return "SB-relative"; 1513 case 3: return "None"; 1514 default: 1515 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1516 return (s_rw); 1517 } 1518 } 1519 1520 static const char * 1521 aeabi_pcs_ro(uint64_t ro) 1522 { 1523 static char s_ro[32]; 1524 1525 switch (ro) { 1526 case 0: return "Absolute"; 1527 case 1: return "PC-relative"; 1528 case 2: return "None"; 1529 default: 1530 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1531 return (s_ro); 1532 } 1533 } 1534 1535 static const char * 1536 aeabi_pcs_got(uint64_t got) 1537 { 1538 static char s_got[32]; 1539 1540 switch (got) { 1541 case 0: return "None"; 1542 case 1: return "direct"; 1543 case 2: return "indirect via GOT"; 1544 default: 1545 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1546 (uintmax_t) got); 1547 return (s_got); 1548 } 1549 } 1550 1551 static const char * 1552 aeabi_pcs_wchar_t(uint64_t wt) 1553 { 1554 static char s_wt[32]; 1555 1556 switch (wt) { 1557 case 0: return "None"; 1558 case 2: return "wchar_t size 2"; 1559 case 4: return "wchar_t size 4"; 1560 default: 1561 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1562 return (s_wt); 1563 } 1564 } 1565 1566 static const char * 1567 aeabi_enum_size(uint64_t es) 1568 { 1569 static char s_es[32]; 1570 1571 switch (es) { 1572 case 0: return "None"; 1573 case 1: return "smallest"; 1574 case 2: return "32-bit"; 1575 case 3: return "visible 32-bit"; 1576 default: 1577 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1578 return (s_es); 1579 } 1580 } 1581 1582 static const char * 1583 aeabi_align_needed(uint64_t an) 1584 { 1585 static char s_align_n[64]; 1586 1587 switch (an) { 1588 case 0: return "No"; 1589 case 1: return "8-byte align"; 1590 case 2: return "4-byte align"; 1591 case 3: return "Reserved"; 1592 default: 1593 if (an >= 4 && an <= 12) 1594 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1595 " and up to 2^%ju-byte extended align", 1596 (uintmax_t) an); 1597 else 1598 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1599 (uintmax_t) an); 1600 return (s_align_n); 1601 } 1602 } 1603 1604 static const char * 1605 aeabi_align_preserved(uint64_t ap) 1606 { 1607 static char s_align_p[128]; 1608 1609 switch (ap) { 1610 case 0: return "No"; 1611 case 1: return "8-byte align"; 1612 case 2: return "8-byte align and SP % 8 == 0"; 1613 case 3: return "Reserved"; 1614 default: 1615 if (ap >= 4 && ap <= 12) 1616 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1617 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1618 " align", (uintmax_t) ap); 1619 else 1620 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1621 (uintmax_t) ap); 1622 return (s_align_p); 1623 } 1624 } 1625 1626 static const char * 1627 aeabi_fp_rounding(uint64_t fr) 1628 { 1629 static char s_fp_r[32]; 1630 1631 switch (fr) { 1632 case 0: return "Unused"; 1633 case 1: return "Needed"; 1634 default: 1635 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1636 (uintmax_t) fr); 1637 return (s_fp_r); 1638 } 1639 } 1640 1641 static const char * 1642 aeabi_fp_denormal(uint64_t fd) 1643 { 1644 static char s_fp_d[32]; 1645 1646 switch (fd) { 1647 case 0: return "Unused"; 1648 case 1: return "Needed"; 1649 case 2: return "Sign Only"; 1650 default: 1651 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1652 (uintmax_t) fd); 1653 return (s_fp_d); 1654 } 1655 } 1656 1657 static const char * 1658 aeabi_fp_exceptions(uint64_t fe) 1659 { 1660 static char s_fp_e[32]; 1661 1662 switch (fe) { 1663 case 0: return "Unused"; 1664 case 1: return "Needed"; 1665 default: 1666 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1667 (uintmax_t) fe); 1668 return (s_fp_e); 1669 } 1670 } 1671 1672 static const char * 1673 aeabi_fp_user_exceptions(uint64_t fu) 1674 { 1675 static char s_fp_u[32]; 1676 1677 switch (fu) { 1678 case 0: return "Unused"; 1679 case 1: return "Needed"; 1680 default: 1681 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1682 (uintmax_t) fu); 1683 return (s_fp_u); 1684 } 1685 } 1686 1687 static const char * 1688 aeabi_fp_number_model(uint64_t fn) 1689 { 1690 static char s_fp_n[32]; 1691 1692 switch (fn) { 1693 case 0: return "Unused"; 1694 case 1: return "IEEE 754 normal"; 1695 case 2: return "RTABI"; 1696 case 3: return "IEEE 754"; 1697 default: 1698 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1699 (uintmax_t) fn); 1700 return (s_fp_n); 1701 } 1702 } 1703 1704 static const char * 1705 aeabi_fp_16bit_format(uint64_t fp16) 1706 { 1707 static char s_fp_16[64]; 1708 1709 switch (fp16) { 1710 case 0: return "None"; 1711 case 1: return "IEEE 754"; 1712 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1713 default: 1714 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1715 (uintmax_t) fp16); 1716 return (s_fp_16); 1717 } 1718 } 1719 1720 static const char * 1721 aeabi_mpext(uint64_t mp) 1722 { 1723 static char s_mp[32]; 1724 1725 switch (mp) { 1726 case 0: return "Not allowed"; 1727 case 1: return "Allowed"; 1728 default: 1729 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1730 (uintmax_t) mp); 1731 return (s_mp); 1732 } 1733 } 1734 1735 static const char * 1736 aeabi_div(uint64_t du) 1737 { 1738 static char s_du[32]; 1739 1740 switch (du) { 1741 case 0: return "Yes (V7-R/V7-M)"; 1742 case 1: return "No"; 1743 case 2: return "Yes (V7-A)"; 1744 default: 1745 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1746 (uintmax_t) du); 1747 return (s_du); 1748 } 1749 } 1750 1751 static const char * 1752 aeabi_t2ee(uint64_t t2ee) 1753 { 1754 static char s_t2ee[32]; 1755 1756 switch (t2ee) { 1757 case 0: return "Not allowed"; 1758 case 1: return "Allowed"; 1759 default: 1760 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1761 (uintmax_t) t2ee); 1762 return (s_t2ee); 1763 } 1764 1765 } 1766 1767 static const char * 1768 aeabi_hardfp(uint64_t hfp) 1769 { 1770 static char s_hfp[32]; 1771 1772 switch (hfp) { 1773 case 0: return "Tag_FP_arch"; 1774 case 1: return "only SP"; 1775 case 2: return "only DP"; 1776 case 3: return "both SP and DP"; 1777 default: 1778 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1779 (uintmax_t) hfp); 1780 return (s_hfp); 1781 } 1782 } 1783 1784 static const char * 1785 aeabi_vfp_args(uint64_t va) 1786 { 1787 static char s_va[32]; 1788 1789 switch (va) { 1790 case 0: return "AAPCS (base variant)"; 1791 case 1: return "AAPCS (VFP variant)"; 1792 case 2: return "toolchain-specific"; 1793 default: 1794 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1795 return (s_va); 1796 } 1797 } 1798 1799 static const char * 1800 aeabi_wmmx_args(uint64_t wa) 1801 { 1802 static char s_wa[32]; 1803 1804 switch (wa) { 1805 case 0: return "AAPCS (base variant)"; 1806 case 1: return "Intel WMMX"; 1807 case 2: return "toolchain-specific"; 1808 default: 1809 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1810 return (s_wa); 1811 } 1812 } 1813 1814 static const char * 1815 aeabi_unaligned_access(uint64_t ua) 1816 { 1817 static char s_ua[32]; 1818 1819 switch (ua) { 1820 case 0: return "Not allowed"; 1821 case 1: return "Allowed"; 1822 default: 1823 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1824 return (s_ua); 1825 } 1826 } 1827 1828 static const char * 1829 aeabi_fp_hpext(uint64_t fh) 1830 { 1831 static char s_fh[32]; 1832 1833 switch (fh) { 1834 case 0: return "Not allowed"; 1835 case 1: return "Allowed"; 1836 default: 1837 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1838 return (s_fh); 1839 } 1840 } 1841 1842 static const char * 1843 aeabi_optm_goal(uint64_t og) 1844 { 1845 static char s_og[32]; 1846 1847 switch (og) { 1848 case 0: return "None"; 1849 case 1: return "Speed"; 1850 case 2: return "Speed aggressive"; 1851 case 3: return "Space"; 1852 case 4: return "Space aggressive"; 1853 case 5: return "Debugging"; 1854 case 6: return "Best Debugging"; 1855 default: 1856 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1857 return (s_og); 1858 } 1859 } 1860 1861 static const char * 1862 aeabi_fp_optm_goal(uint64_t fog) 1863 { 1864 static char s_fog[32]; 1865 1866 switch (fog) { 1867 case 0: return "None"; 1868 case 1: return "Speed"; 1869 case 2: return "Speed aggressive"; 1870 case 3: return "Space"; 1871 case 4: return "Space aggressive"; 1872 case 5: return "Accurary"; 1873 case 6: return "Best Accurary"; 1874 default: 1875 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1876 (uintmax_t) fog); 1877 return (s_fog); 1878 } 1879 } 1880 1881 static const char * 1882 aeabi_virtual(uint64_t vt) 1883 { 1884 static char s_virtual[64]; 1885 1886 switch (vt) { 1887 case 0: return "No"; 1888 case 1: return "TrustZone"; 1889 case 2: return "Virtualization extension"; 1890 case 3: return "TrustZone and virtualization extension"; 1891 default: 1892 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1893 (uintmax_t) vt); 1894 return (s_virtual); 1895 } 1896 } 1897 1898 static struct { 1899 uint64_t tag; 1900 const char *s_tag; 1901 const char *(*get_desc)(uint64_t val); 1902 } aeabi_tags[] = { 1903 {4, "Tag_CPU_raw_name", NULL}, 1904 {5, "Tag_CPU_name", NULL}, 1905 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1906 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1907 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1908 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1909 {10, "Tag_FP_arch", aeabi_fp_arch}, 1910 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1911 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1912 {13, "Tag_PCS_config", aeabi_pcs_config}, 1913 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1914 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1915 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1916 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1917 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1918 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1919 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1920 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1921 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1922 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1923 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1924 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1925 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1926 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1927 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1928 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1929 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1930 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1931 {32, "Tag_compatibility", NULL}, 1932 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1933 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1934 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1935 {42, "Tag_MPextension_use", aeabi_mpext}, 1936 {44, "Tag_DIV_use", aeabi_div}, 1937 {64, "Tag_nodefaults", NULL}, 1938 {65, "Tag_also_compatible_with", NULL}, 1939 {66, "Tag_T2EE_use", aeabi_t2ee}, 1940 {67, "Tag_conformance", NULL}, 1941 {68, "Tag_Virtualization_use", aeabi_virtual}, 1942 {70, "Tag_MPextension_use", aeabi_mpext}, 1943 }; 1944 1945 static const char * 1946 mips_abi_fp(uint64_t fp) 1947 { 1948 static char s_mips_abi_fp[64]; 1949 1950 switch (fp) { 1951 case 0: return "N/A"; 1952 case 1: return "Hard float (double precision)"; 1953 case 2: return "Hard float (single precision)"; 1954 case 3: return "Soft float"; 1955 case 4: return "64-bit float (-mips32r2 -mfp64)"; 1956 default: 1957 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 1958 (uintmax_t) fp); 1959 return (s_mips_abi_fp); 1960 } 1961 } 1962 1963 static const char * 1964 ppc_abi_fp(uint64_t fp) 1965 { 1966 static char s_ppc_abi_fp[64]; 1967 1968 switch (fp) { 1969 case 0: return "N/A"; 1970 case 1: return "Hard float (double precision)"; 1971 case 2: return "Soft float"; 1972 case 3: return "Hard float (single precision)"; 1973 default: 1974 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 1975 (uintmax_t) fp); 1976 return (s_ppc_abi_fp); 1977 } 1978 } 1979 1980 static const char * 1981 ppc_abi_vector(uint64_t vec) 1982 { 1983 static char s_vec[64]; 1984 1985 switch (vec) { 1986 case 0: return "N/A"; 1987 case 1: return "Generic purpose registers"; 1988 case 2: return "AltiVec registers"; 1989 case 3: return "SPE registers"; 1990 default: 1991 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 1992 return (s_vec); 1993 } 1994 } 1995 1996 static const char * 1997 dwarf_reg(unsigned int mach, unsigned int reg) 1998 { 1999 2000 switch (mach) { 2001 case EM_386: 2002 case EM_IAMCU: 2003 switch (reg) { 2004 case 0: return "eax"; 2005 case 1: return "ecx"; 2006 case 2: return "edx"; 2007 case 3: return "ebx"; 2008 case 4: return "esp"; 2009 case 5: return "ebp"; 2010 case 6: return "esi"; 2011 case 7: return "edi"; 2012 case 8: return "eip"; 2013 case 9: return "eflags"; 2014 case 11: return "st0"; 2015 case 12: return "st1"; 2016 case 13: return "st2"; 2017 case 14: return "st3"; 2018 case 15: return "st4"; 2019 case 16: return "st5"; 2020 case 17: return "st6"; 2021 case 18: return "st7"; 2022 case 21: return "xmm0"; 2023 case 22: return "xmm1"; 2024 case 23: return "xmm2"; 2025 case 24: return "xmm3"; 2026 case 25: return "xmm4"; 2027 case 26: return "xmm5"; 2028 case 27: return "xmm6"; 2029 case 28: return "xmm7"; 2030 case 29: return "mm0"; 2031 case 30: return "mm1"; 2032 case 31: return "mm2"; 2033 case 32: return "mm3"; 2034 case 33: return "mm4"; 2035 case 34: return "mm5"; 2036 case 35: return "mm6"; 2037 case 36: return "mm7"; 2038 case 37: return "fcw"; 2039 case 38: return "fsw"; 2040 case 39: return "mxcsr"; 2041 case 40: return "es"; 2042 case 41: return "cs"; 2043 case 42: return "ss"; 2044 case 43: return "ds"; 2045 case 44: return "fs"; 2046 case 45: return "gs"; 2047 case 48: return "tr"; 2048 case 49: return "ldtr"; 2049 default: return (NULL); 2050 } 2051 case EM_X86_64: 2052 switch (reg) { 2053 case 0: return "rax"; 2054 case 1: return "rdx"; 2055 case 2: return "rcx"; 2056 case 3: return "rbx"; 2057 case 4: return "rsi"; 2058 case 5: return "rdi"; 2059 case 6: return "rbp"; 2060 case 7: return "rsp"; 2061 case 16: return "rip"; 2062 case 17: return "xmm0"; 2063 case 18: return "xmm1"; 2064 case 19: return "xmm2"; 2065 case 20: return "xmm3"; 2066 case 21: return "xmm4"; 2067 case 22: return "xmm5"; 2068 case 23: return "xmm6"; 2069 case 24: return "xmm7"; 2070 case 25: return "xmm8"; 2071 case 26: return "xmm9"; 2072 case 27: return "xmm10"; 2073 case 28: return "xmm11"; 2074 case 29: return "xmm12"; 2075 case 30: return "xmm13"; 2076 case 31: return "xmm14"; 2077 case 32: return "xmm15"; 2078 case 33: return "st0"; 2079 case 34: return "st1"; 2080 case 35: return "st2"; 2081 case 36: return "st3"; 2082 case 37: return "st4"; 2083 case 38: return "st5"; 2084 case 39: return "st6"; 2085 case 40: return "st7"; 2086 case 41: return "mm0"; 2087 case 42: return "mm1"; 2088 case 43: return "mm2"; 2089 case 44: return "mm3"; 2090 case 45: return "mm4"; 2091 case 46: return "mm5"; 2092 case 47: return "mm6"; 2093 case 48: return "mm7"; 2094 case 49: return "rflags"; 2095 case 50: return "es"; 2096 case 51: return "cs"; 2097 case 52: return "ss"; 2098 case 53: return "ds"; 2099 case 54: return "fs"; 2100 case 55: return "gs"; 2101 case 58: return "fs.base"; 2102 case 59: return "gs.base"; 2103 case 62: return "tr"; 2104 case 63: return "ldtr"; 2105 case 64: return "mxcsr"; 2106 case 65: return "fcw"; 2107 case 66: return "fsw"; 2108 default: return (NULL); 2109 } 2110 default: 2111 return (NULL); 2112 } 2113 } 2114 2115 static void 2116 dump_ehdr(struct readelf *re) 2117 { 2118 size_t phnum, shnum, shstrndx; 2119 int i; 2120 2121 printf("ELF Header:\n"); 2122 2123 /* e_ident[]. */ 2124 printf(" Magic: "); 2125 for (i = 0; i < EI_NIDENT; i++) 2126 printf("%.2x ", re->ehdr.e_ident[i]); 2127 putchar('\n'); 2128 2129 /* EI_CLASS. */ 2130 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2131 2132 /* EI_DATA. */ 2133 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2134 2135 /* EI_VERSION. */ 2136 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2137 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2138 2139 /* EI_OSABI. */ 2140 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2141 2142 /* EI_ABIVERSION. */ 2143 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2144 2145 /* e_type. */ 2146 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2147 2148 /* e_machine. */ 2149 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2150 2151 /* e_version. */ 2152 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2153 2154 /* e_entry. */ 2155 printf("%-37s%#jx\n", " Entry point address:", 2156 (uintmax_t)re->ehdr.e_entry); 2157 2158 /* e_phoff. */ 2159 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2160 (uintmax_t)re->ehdr.e_phoff); 2161 2162 /* e_shoff. */ 2163 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2164 (uintmax_t)re->ehdr.e_shoff); 2165 2166 /* e_flags. */ 2167 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2168 dump_eflags(re, re->ehdr.e_flags); 2169 putchar('\n'); 2170 2171 /* e_ehsize. */ 2172 printf("%-37s%u (bytes)\n", " Size of this header:", 2173 re->ehdr.e_ehsize); 2174 2175 /* e_phentsize. */ 2176 printf("%-37s%u (bytes)\n", " Size of program headers:", 2177 re->ehdr.e_phentsize); 2178 2179 /* e_phnum. */ 2180 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2181 if (re->ehdr.e_phnum == PN_XNUM) { 2182 /* Extended program header numbering is in use. */ 2183 if (elf_getphnum(re->elf, &phnum)) 2184 printf(" (%zu)", phnum); 2185 } 2186 putchar('\n'); 2187 2188 /* e_shentsize. */ 2189 printf("%-37s%u (bytes)\n", " Size of section headers:", 2190 re->ehdr.e_shentsize); 2191 2192 /* e_shnum. */ 2193 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2194 if (re->ehdr.e_shnum == SHN_UNDEF) { 2195 /* Extended section numbering is in use. */ 2196 if (elf_getshnum(re->elf, &shnum)) 2197 printf(" (%ju)", (uintmax_t)shnum); 2198 } 2199 putchar('\n'); 2200 2201 /* e_shstrndx. */ 2202 printf("%-37s%u", " Section header string table index:", 2203 re->ehdr.e_shstrndx); 2204 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2205 /* Extended section numbering is in use. */ 2206 if (elf_getshstrndx(re->elf, &shstrndx)) 2207 printf(" (%ju)", (uintmax_t)shstrndx); 2208 } 2209 putchar('\n'); 2210 } 2211 2212 static void 2213 dump_eflags(struct readelf *re, uint64_t e_flags) 2214 { 2215 struct eflags_desc *edesc; 2216 int arm_eabi; 2217 2218 edesc = NULL; 2219 switch (re->ehdr.e_machine) { 2220 case EM_ARM: 2221 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2222 if (arm_eabi == 0) 2223 printf(", GNU EABI"); 2224 else if (arm_eabi <= 5) 2225 printf(", Version%d EABI", arm_eabi); 2226 edesc = arm_eflags_desc; 2227 break; 2228 case EM_MIPS: 2229 case EM_MIPS_RS3_LE: 2230 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2231 case 0: printf(", mips1"); break; 2232 case 1: printf(", mips2"); break; 2233 case 2: printf(", mips3"); break; 2234 case 3: printf(", mips4"); break; 2235 case 4: printf(", mips5"); break; 2236 case 5: printf(", mips32"); break; 2237 case 6: printf(", mips64"); break; 2238 case 7: printf(", mips32r2"); break; 2239 case 8: printf(", mips64r2"); break; 2240 default: break; 2241 } 2242 switch ((e_flags & 0x00FF0000) >> 16) { 2243 case 0x81: printf(", 3900"); break; 2244 case 0x82: printf(", 4010"); break; 2245 case 0x83: printf(", 4100"); break; 2246 case 0x85: printf(", 4650"); break; 2247 case 0x87: printf(", 4120"); break; 2248 case 0x88: printf(", 4111"); break; 2249 case 0x8a: printf(", sb1"); break; 2250 case 0x8b: printf(", octeon"); break; 2251 case 0x8c: printf(", xlr"); break; 2252 case 0x91: printf(", 5400"); break; 2253 case 0x98: printf(", 5500"); break; 2254 case 0x99: printf(", 9000"); break; 2255 case 0xa0: printf(", loongson-2e"); break; 2256 case 0xa1: printf(", loongson-2f"); break; 2257 default: break; 2258 } 2259 switch ((e_flags & 0x0000F000) >> 12) { 2260 case 1: printf(", o32"); break; 2261 case 2: printf(", o64"); break; 2262 case 3: printf(", eabi32"); break; 2263 case 4: printf(", eabi64"); break; 2264 default: break; 2265 } 2266 edesc = mips_eflags_desc; 2267 break; 2268 case EM_PPC: 2269 case EM_PPC64: 2270 edesc = powerpc_eflags_desc; 2271 break; 2272 case EM_SPARC: 2273 case EM_SPARC32PLUS: 2274 case EM_SPARCV9: 2275 switch ((e_flags & EF_SPARCV9_MM)) { 2276 case EF_SPARCV9_TSO: printf(", tso"); break; 2277 case EF_SPARCV9_PSO: printf(", pso"); break; 2278 case EF_SPARCV9_MM: printf(", rmo"); break; 2279 default: break; 2280 } 2281 edesc = sparc_eflags_desc; 2282 break; 2283 default: 2284 break; 2285 } 2286 2287 if (edesc != NULL) { 2288 while (edesc->desc != NULL) { 2289 if (e_flags & edesc->flag) 2290 printf(", %s", edesc->desc); 2291 edesc++; 2292 } 2293 } 2294 } 2295 2296 static void 2297 dump_phdr(struct readelf *re) 2298 { 2299 const char *rawfile; 2300 GElf_Phdr phdr; 2301 size_t phnum, size; 2302 int i, j; 2303 2304 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2305 "MemSiz", "Flg", "Align" 2306 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2307 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2308 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2309 (uintmax_t)phdr.p_memsz, \ 2310 phdr.p_flags & PF_R ? 'R' : ' ', \ 2311 phdr.p_flags & PF_W ? 'W' : ' ', \ 2312 phdr.p_flags & PF_X ? 'E' : ' ', \ 2313 (uintmax_t)phdr.p_align 2314 2315 if (elf_getphnum(re->elf, &phnum) == 0) { 2316 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2317 return; 2318 } 2319 if (phnum == 0) { 2320 printf("\nThere are no program headers in this file.\n"); 2321 return; 2322 } 2323 2324 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2325 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2326 printf("There are %ju program headers, starting at offset %ju\n", 2327 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2328 2329 /* Dump program headers. */ 2330 printf("\nProgram Headers:\n"); 2331 if (re->ec == ELFCLASS32) 2332 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2333 else if (re->options & RE_WW) 2334 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2335 else 2336 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2337 "%-7s%s\n", PH_HDR); 2338 for (i = 0; (size_t) i < phnum; i++) { 2339 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2340 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2341 continue; 2342 } 2343 /* TODO: Add arch-specific segment type dump. */ 2344 if (re->ec == ELFCLASS32) 2345 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2346 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2347 else if (re->options & RE_WW) 2348 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2349 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2350 else 2351 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2352 " 0x%16.16jx 0x%16.16jx %c%c%c" 2353 " %#jx\n", PH_CT); 2354 if (phdr.p_type == PT_INTERP) { 2355 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2356 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2357 continue; 2358 } 2359 if (phdr.p_offset >= size) { 2360 warnx("invalid program header offset"); 2361 continue; 2362 } 2363 printf(" [Requesting program interpreter: %s]\n", 2364 rawfile + phdr.p_offset); 2365 } 2366 } 2367 2368 /* Dump section to segment mapping. */ 2369 if (re->shnum == 0) 2370 return; 2371 printf("\n Section to Segment mapping:\n"); 2372 printf(" Segment Sections...\n"); 2373 for (i = 0; (size_t)i < phnum; i++) { 2374 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2375 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2376 continue; 2377 } 2378 printf(" %2.2d ", i); 2379 /* skip NULL section. */ 2380 for (j = 1; (size_t)j < re->shnum; j++) 2381 if (re->sl[j].addr >= phdr.p_vaddr && 2382 re->sl[j].addr + re->sl[j].sz <= 2383 phdr.p_vaddr + phdr.p_memsz) 2384 printf("%s ", re->sl[j].name); 2385 printf("\n"); 2386 } 2387 #undef PH_HDR 2388 #undef PH_CT 2389 } 2390 2391 static char * 2392 section_flags(struct readelf *re, struct section *s) 2393 { 2394 #define BUF_SZ 256 2395 static char buf[BUF_SZ]; 2396 int i, p, nb; 2397 2398 p = 0; 2399 nb = re->ec == ELFCLASS32 ? 8 : 16; 2400 if (re->options & RE_T) { 2401 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2402 (uintmax_t)s->flags); 2403 p += nb + 4; 2404 } 2405 for (i = 0; section_flag[i].ln != NULL; i++) { 2406 if ((s->flags & section_flag[i].value) == 0) 2407 continue; 2408 if (re->options & RE_T) { 2409 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2410 section_flag[i].ln); 2411 p += strlen(section_flag[i].ln) + 2; 2412 } else 2413 buf[p++] = section_flag[i].sn; 2414 } 2415 if (re->options & RE_T && p > nb + 4) 2416 p -= 2; 2417 buf[p] = '\0'; 2418 2419 return (buf); 2420 } 2421 2422 static void 2423 dump_shdr(struct readelf *re) 2424 { 2425 struct section *s; 2426 int i; 2427 2428 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2429 "Flg", "Lk", "Inf", "Al" 2430 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2431 "EntSize", "Flags", "Link", "Info", "Align" 2432 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2433 "Lk", "Inf", "Al", "Flags" 2434 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2435 "Size", "EntSize", "Info", "Align", "Flags" 2436 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2437 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2438 (uintmax_t)s->entsize, section_flags(re, s), \ 2439 s->link, s->info, (uintmax_t)s->align 2440 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2441 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2442 (uintmax_t)s->entsize, s->link, s->info, \ 2443 (uintmax_t)s->align, section_flags(re, s) 2444 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2445 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2446 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2447 (uintmax_t)s->align, section_flags(re, s) 2448 2449 if (re->shnum == 0) { 2450 printf("\nThere are no sections in this file.\n"); 2451 return; 2452 } 2453 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2454 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2455 printf("\nSection Headers:\n"); 2456 if (re->ec == ELFCLASS32) { 2457 if (re->options & RE_T) 2458 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2459 "%12s\n", ST_HDR); 2460 else 2461 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2462 S_HDR); 2463 } else if (re->options & RE_WW) { 2464 if (re->options & RE_T) 2465 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2466 "%12s\n", ST_HDR); 2467 else 2468 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2469 S_HDR); 2470 } else { 2471 if (re->options & RE_T) 2472 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2473 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2474 else 2475 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2476 "-6s%-6s%s\n", S_HDRL); 2477 } 2478 for (i = 0; (size_t)i < re->shnum; i++) { 2479 s = &re->sl[i]; 2480 if (re->ec == ELFCLASS32) { 2481 if (re->options & RE_T) 2482 printf(" [%2d] %s\n %-15.15s %8.8jx" 2483 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2484 " %s\n", ST_CT); 2485 else 2486 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2487 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2488 S_CT); 2489 } else if (re->options & RE_WW) { 2490 if (re->options & RE_T) 2491 printf(" [%2d] %s\n %-15.15s %16.16jx" 2492 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2493 " %s\n", ST_CT); 2494 else 2495 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2496 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2497 S_CT); 2498 } else { 2499 if (re->options & RE_T) 2500 printf(" [%2d] %s\n %-15.15s %16.16jx" 2501 " %16.16jx %u\n %16.16jx %16.16jx" 2502 " %-16u %ju\n %s\n", ST_CTL); 2503 else 2504 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2505 " %8.8jx\n %16.16jx %16.16jx " 2506 "%3s %2u %3u %ju\n", S_CT); 2507 } 2508 } 2509 if ((re->options & RE_T) == 0) 2510 printf("Key to Flags:\n W (write), A (alloc)," 2511 " X (execute), M (merge), S (strings)\n" 2512 " I (info), L (link order), G (group), x (unknown)\n" 2513 " O (extra OS processing required)" 2514 " o (OS specific), p (processor specific)\n"); 2515 2516 #undef S_HDR 2517 #undef S_HDRL 2518 #undef ST_HDR 2519 #undef ST_HDRL 2520 #undef S_CT 2521 #undef ST_CT 2522 #undef ST_CTL 2523 } 2524 2525 /* 2526 * Return number of entries in the given section. We'd prefer ent_count be a 2527 * size_t *, but libelf APIs already use int for section indices. 2528 */ 2529 static int 2530 get_ent_count(struct section *s, int *ent_count) 2531 { 2532 if (s->entsize == 0) { 2533 warnx("section %s has entry size 0", s->name); 2534 return (0); 2535 } else if (s->sz / s->entsize > INT_MAX) { 2536 warnx("section %s has invalid section count", s->name); 2537 return (0); 2538 } 2539 *ent_count = (int)(s->sz / s->entsize); 2540 return (1); 2541 } 2542 2543 static void 2544 dump_dynamic(struct readelf *re) 2545 { 2546 GElf_Dyn dyn; 2547 Elf_Data *d; 2548 struct section *s; 2549 int elferr, i, is_dynamic, j, jmax, nentries; 2550 2551 is_dynamic = 0; 2552 2553 for (i = 0; (size_t)i < re->shnum; i++) { 2554 s = &re->sl[i]; 2555 if (s->type != SHT_DYNAMIC) 2556 continue; 2557 (void) elf_errno(); 2558 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2559 elferr = elf_errno(); 2560 if (elferr != 0) 2561 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2562 continue; 2563 } 2564 if (d->d_size <= 0) 2565 continue; 2566 2567 is_dynamic = 1; 2568 2569 /* Determine the actual number of table entries. */ 2570 nentries = 0; 2571 if (!get_ent_count(s, &jmax)) 2572 continue; 2573 for (j = 0; j < jmax; j++) { 2574 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2575 warnx("gelf_getdyn failed: %s", 2576 elf_errmsg(-1)); 2577 continue; 2578 } 2579 nentries ++; 2580 if (dyn.d_tag == DT_NULL) 2581 break; 2582 } 2583 2584 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2585 printf(" contains %u entries:\n", nentries); 2586 2587 if (re->ec == ELFCLASS32) 2588 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2589 else 2590 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2591 2592 for (j = 0; j < nentries; j++) { 2593 if (gelf_getdyn(d, j, &dyn) != &dyn) 2594 continue; 2595 /* Dump dynamic entry type. */ 2596 if (re->ec == ELFCLASS32) 2597 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2598 else 2599 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2600 printf(" %-20s", dt_type(re->ehdr.e_machine, 2601 dyn.d_tag)); 2602 /* Dump dynamic entry value. */ 2603 dump_dyn_val(re, &dyn, s->link); 2604 } 2605 } 2606 2607 if (!is_dynamic) 2608 printf("\nThere is no dynamic section in this file.\n"); 2609 } 2610 2611 static char * 2612 timestamp(time_t ti) 2613 { 2614 static char ts[32]; 2615 struct tm *t; 2616 2617 t = gmtime(&ti); 2618 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2619 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2620 t->tm_min, t->tm_sec); 2621 2622 return (ts); 2623 } 2624 2625 static const char * 2626 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2627 { 2628 const char *name; 2629 2630 if (stab == SHN_UNDEF) 2631 name = "ERROR"; 2632 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2633 (void) elf_errno(); /* clear error */ 2634 name = "ERROR"; 2635 } 2636 2637 return (name); 2638 } 2639 2640 static void 2641 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn) 2642 { 2643 switch (re->ehdr.e_machine) { 2644 case EM_MIPS: 2645 case EM_MIPS_RS3_LE: 2646 switch (dyn->d_tag) { 2647 case DT_MIPS_RLD_VERSION: 2648 case DT_MIPS_LOCAL_GOTNO: 2649 case DT_MIPS_CONFLICTNO: 2650 case DT_MIPS_LIBLISTNO: 2651 case DT_MIPS_SYMTABNO: 2652 case DT_MIPS_UNREFEXTNO: 2653 case DT_MIPS_GOTSYM: 2654 case DT_MIPS_HIPAGENO: 2655 case DT_MIPS_DELTA_CLASS_NO: 2656 case DT_MIPS_DELTA_INSTANCE_NO: 2657 case DT_MIPS_DELTA_RELOC_NO: 2658 case DT_MIPS_DELTA_SYM_NO: 2659 case DT_MIPS_DELTA_CLASSSYM_NO: 2660 case DT_MIPS_LOCALPAGE_GOTIDX: 2661 case DT_MIPS_LOCAL_GOTIDX: 2662 case DT_MIPS_HIDDEN_GOTIDX: 2663 case DT_MIPS_PROTECTED_GOTIDX: 2664 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2665 break; 2666 case DT_MIPS_ICHECKSUM: 2667 case DT_MIPS_FLAGS: 2668 case DT_MIPS_BASE_ADDRESS: 2669 case DT_MIPS_CONFLICT: 2670 case DT_MIPS_LIBLIST: 2671 case DT_MIPS_RLD_MAP: 2672 case DT_MIPS_DELTA_CLASS: 2673 case DT_MIPS_DELTA_INSTANCE: 2674 case DT_MIPS_DELTA_RELOC: 2675 case DT_MIPS_DELTA_SYM: 2676 case DT_MIPS_DELTA_CLASSSYM: 2677 case DT_MIPS_CXX_FLAGS: 2678 case DT_MIPS_PIXIE_INIT: 2679 case DT_MIPS_SYMBOL_LIB: 2680 case DT_MIPS_OPTIONS: 2681 case DT_MIPS_INTERFACE: 2682 case DT_MIPS_DYNSTR_ALIGN: 2683 case DT_MIPS_INTERFACE_SIZE: 2684 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2685 case DT_MIPS_COMPACT_SIZE: 2686 case DT_MIPS_GP_VALUE: 2687 case DT_MIPS_AUX_DYNAMIC: 2688 case DT_MIPS_PLTGOT: 2689 case DT_MIPS_RLD_OBJ_UPDATE: 2690 case DT_MIPS_RWPLT: 2691 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2692 break; 2693 case DT_MIPS_IVERSION: 2694 case DT_MIPS_PERF_SUFFIX: 2695 case DT_MIPS_TIME_STAMP: 2696 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2697 break; 2698 default: 2699 printf("\n"); 2700 break; 2701 } 2702 break; 2703 default: 2704 printf("\n"); 2705 break; 2706 } 2707 } 2708 2709 static void 2710 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2711 { 2712 const char *name; 2713 2714 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC && 2715 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) { 2716 dump_arch_dyn_val(re, dyn); 2717 return; 2718 } 2719 2720 /* These entry values are index into the string table. */ 2721 name = NULL; 2722 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER || 2723 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2724 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2725 name = dyn_str(re, stab, dyn->d_un.d_val); 2726 2727 switch(dyn->d_tag) { 2728 case DT_NULL: 2729 case DT_PLTGOT: 2730 case DT_HASH: 2731 case DT_STRTAB: 2732 case DT_SYMTAB: 2733 case DT_RELA: 2734 case DT_INIT: 2735 case DT_SYMBOLIC: 2736 case DT_REL: 2737 case DT_DEBUG: 2738 case DT_TEXTREL: 2739 case DT_JMPREL: 2740 case DT_FINI: 2741 case DT_VERDEF: 2742 case DT_VERNEED: 2743 case DT_VERSYM: 2744 case DT_GNU_HASH: 2745 case DT_GNU_LIBLIST: 2746 case DT_GNU_CONFLICT: 2747 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2748 break; 2749 case DT_PLTRELSZ: 2750 case DT_RELASZ: 2751 case DT_RELAENT: 2752 case DT_STRSZ: 2753 case DT_SYMENT: 2754 case DT_RELSZ: 2755 case DT_RELENT: 2756 case DT_PREINIT_ARRAYSZ: 2757 case DT_INIT_ARRAYSZ: 2758 case DT_FINI_ARRAYSZ: 2759 case DT_GNU_CONFLICTSZ: 2760 case DT_GNU_LIBLISTSZ: 2761 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2762 break; 2763 case DT_RELACOUNT: 2764 case DT_RELCOUNT: 2765 case DT_VERDEFNUM: 2766 case DT_VERNEEDNUM: 2767 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2768 break; 2769 case DT_AUXILIARY: 2770 printf(" Auxiliary library: [%s]\n", name); 2771 break; 2772 case DT_FILTER: 2773 printf(" Filter library: [%s]\n", name); 2774 break; 2775 case DT_NEEDED: 2776 printf(" Shared library: [%s]\n", name); 2777 break; 2778 case DT_SONAME: 2779 printf(" Library soname: [%s]\n", name); 2780 break; 2781 case DT_RPATH: 2782 printf(" Library rpath: [%s]\n", name); 2783 break; 2784 case DT_RUNPATH: 2785 printf(" Library runpath: [%s]\n", name); 2786 break; 2787 case DT_PLTREL: 2788 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2789 break; 2790 case DT_GNU_PRELINKED: 2791 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2792 break; 2793 default: 2794 printf("\n"); 2795 } 2796 } 2797 2798 static void 2799 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2800 { 2801 GElf_Rel r; 2802 const char *symname; 2803 uint64_t symval; 2804 int i, len; 2805 uint32_t type; 2806 uint8_t type2, type3; 2807 2808 if (s->link >= re->shnum) 2809 return; 2810 2811 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2812 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2813 elftc_reloc_type_str(re->ehdr.e_machine, \ 2814 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2815 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2816 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2817 (uintmax_t)symval, symname 2818 2819 printf("\nRelocation section (%s):\n", s->name); 2820 if (re->ec == ELFCLASS32) 2821 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2822 else { 2823 if (re->options & RE_WW) 2824 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2825 else 2826 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2827 } 2828 assert(d->d_size == s->sz); 2829 if (!get_ent_count(s, &len)) 2830 return; 2831 for (i = 0; i < len; i++) { 2832 if (gelf_getrel(d, i, &r) != &r) { 2833 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2834 continue; 2835 } 2836 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2837 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2838 if (re->ec == ELFCLASS32) { 2839 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2840 ELF64_R_TYPE(r.r_info)); 2841 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2842 } else { 2843 type = ELF64_R_TYPE(r.r_info); 2844 if (re->ehdr.e_machine == EM_MIPS) { 2845 type2 = (type >> 8) & 0xFF; 2846 type3 = (type >> 16) & 0xFF; 2847 type = type & 0xFF; 2848 } else { 2849 type2 = type3 = 0; 2850 } 2851 if (re->options & RE_WW) 2852 printf("%16.16jx %16.16jx %-24.24s" 2853 " %16.16jx %s\n", REL_CT64); 2854 else 2855 printf("%12.12jx %12.12jx %-19.19s" 2856 " %16.16jx %s\n", REL_CT64); 2857 if (re->ehdr.e_machine == EM_MIPS) { 2858 if (re->options & RE_WW) { 2859 printf("%32s: %s\n", "Type2", 2860 elftc_reloc_type_str(EM_MIPS, 2861 type2)); 2862 printf("%32s: %s\n", "Type3", 2863 elftc_reloc_type_str(EM_MIPS, 2864 type3)); 2865 } else { 2866 printf("%24s: %s\n", "Type2", 2867 elftc_reloc_type_str(EM_MIPS, 2868 type2)); 2869 printf("%24s: %s\n", "Type3", 2870 elftc_reloc_type_str(EM_MIPS, 2871 type3)); 2872 } 2873 } 2874 } 2875 } 2876 2877 #undef REL_HDR 2878 #undef REL_CT 2879 } 2880 2881 static void 2882 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2883 { 2884 GElf_Rela r; 2885 const char *symname; 2886 uint64_t symval; 2887 int i, len; 2888 uint32_t type; 2889 uint8_t type2, type3; 2890 2891 if (s->link >= re->shnum) 2892 return; 2893 2894 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2895 "st_name + r_addend" 2896 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2897 elftc_reloc_type_str(re->ehdr.e_machine, \ 2898 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2899 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2900 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2901 (uintmax_t)symval, symname 2902 2903 printf("\nRelocation section with addend (%s):\n", s->name); 2904 if (re->ec == ELFCLASS32) 2905 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2906 else { 2907 if (re->options & RE_WW) 2908 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2909 else 2910 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2911 } 2912 assert(d->d_size == s->sz); 2913 if (!get_ent_count(s, &len)) 2914 return; 2915 for (i = 0; i < len; i++) { 2916 if (gelf_getrela(d, i, &r) != &r) { 2917 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2918 continue; 2919 } 2920 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2921 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2922 if (re->ec == ELFCLASS32) { 2923 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2924 ELF64_R_TYPE(r.r_info)); 2925 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2926 printf(" + %x\n", (uint32_t) r.r_addend); 2927 } else { 2928 type = ELF64_R_TYPE(r.r_info); 2929 if (re->ehdr.e_machine == EM_MIPS) { 2930 type2 = (type >> 8) & 0xFF; 2931 type3 = (type >> 16) & 0xFF; 2932 type = type & 0xFF; 2933 } else { 2934 type2 = type3 = 0; 2935 } 2936 if (re->options & RE_WW) 2937 printf("%16.16jx %16.16jx %-24.24s" 2938 " %16.16jx %s", RELA_CT64); 2939 else 2940 printf("%12.12jx %12.12jx %-19.19s" 2941 " %16.16jx %s", RELA_CT64); 2942 printf(" + %jx\n", (uintmax_t) r.r_addend); 2943 if (re->ehdr.e_machine == EM_MIPS) { 2944 if (re->options & RE_WW) { 2945 printf("%32s: %s\n", "Type2", 2946 elftc_reloc_type_str(EM_MIPS, 2947 type2)); 2948 printf("%32s: %s\n", "Type3", 2949 elftc_reloc_type_str(EM_MIPS, 2950 type3)); 2951 } else { 2952 printf("%24s: %s\n", "Type2", 2953 elftc_reloc_type_str(EM_MIPS, 2954 type2)); 2955 printf("%24s: %s\n", "Type3", 2956 elftc_reloc_type_str(EM_MIPS, 2957 type3)); 2958 } 2959 } 2960 } 2961 } 2962 2963 #undef RELA_HDR 2964 #undef RELA_CT 2965 } 2966 2967 static void 2968 dump_reloc(struct readelf *re) 2969 { 2970 struct section *s; 2971 Elf_Data *d; 2972 int i, elferr; 2973 2974 for (i = 0; (size_t)i < re->shnum; i++) { 2975 s = &re->sl[i]; 2976 if (s->type == SHT_REL || s->type == SHT_RELA) { 2977 (void) elf_errno(); 2978 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2979 elferr = elf_errno(); 2980 if (elferr != 0) 2981 warnx("elf_getdata failed: %s", 2982 elf_errmsg(elferr)); 2983 continue; 2984 } 2985 if (s->type == SHT_REL) 2986 dump_rel(re, s, d); 2987 else 2988 dump_rela(re, s, d); 2989 } 2990 } 2991 } 2992 2993 static void 2994 dump_symtab(struct readelf *re, int i) 2995 { 2996 struct section *s; 2997 Elf_Data *d; 2998 GElf_Sym sym; 2999 const char *name; 3000 uint32_t stab; 3001 int elferr, j, len; 3002 uint16_t vs; 3003 3004 s = &re->sl[i]; 3005 if (s->link >= re->shnum) 3006 return; 3007 stab = s->link; 3008 (void) elf_errno(); 3009 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3010 elferr = elf_errno(); 3011 if (elferr != 0) 3012 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3013 return; 3014 } 3015 if (d->d_size <= 0) 3016 return; 3017 if (!get_ent_count(s, &len)) 3018 return; 3019 printf("Symbol table (%s)", s->name); 3020 printf(" contains %d entries:\n", len); 3021 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3022 "Bind", "Vis", "Ndx", "Name"); 3023 3024 for (j = 0; j < len; j++) { 3025 if (gelf_getsym(d, j, &sym) != &sym) { 3026 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3027 continue; 3028 } 3029 printf("%6d:", j); 3030 printf(" %16.16jx", (uintmax_t) sym.st_value); 3031 printf(" %5ju", (uintmax_t) sym.st_size); 3032 printf(" %-7s", st_type(re->ehdr.e_machine, 3033 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3034 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3035 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3036 printf(" %3s", st_shndx(sym.st_shndx)); 3037 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3038 printf(" %s", name); 3039 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3040 if (s->type == SHT_DYNSYM && re->ver != NULL && 3041 re->vs != NULL && re->vs[j] > 1) { 3042 vs = re->vs[j] & VERSYM_VERSION; 3043 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3044 warnx("invalid versym version index %u", vs); 3045 break; 3046 } 3047 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3048 printf("@%s (%d)", re->ver[vs].name, vs); 3049 else 3050 printf("@@%s (%d)", re->ver[vs].name, vs); 3051 } 3052 putchar('\n'); 3053 } 3054 3055 } 3056 3057 static void 3058 dump_symtabs(struct readelf *re) 3059 { 3060 GElf_Dyn dyn; 3061 Elf_Data *d; 3062 struct section *s; 3063 uint64_t dyn_off; 3064 int elferr, i, len; 3065 3066 /* 3067 * If -D is specified, only dump the symbol table specified by 3068 * the DT_SYMTAB entry in the .dynamic section. 3069 */ 3070 dyn_off = 0; 3071 if (re->options & RE_DD) { 3072 s = NULL; 3073 for (i = 0; (size_t)i < re->shnum; i++) 3074 if (re->sl[i].type == SHT_DYNAMIC) { 3075 s = &re->sl[i]; 3076 break; 3077 } 3078 if (s == NULL) 3079 return; 3080 (void) elf_errno(); 3081 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3082 elferr = elf_errno(); 3083 if (elferr != 0) 3084 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3085 return; 3086 } 3087 if (d->d_size <= 0) 3088 return; 3089 if (!get_ent_count(s, &len)) 3090 return; 3091 3092 for (i = 0; i < len; i++) { 3093 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3094 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3095 continue; 3096 } 3097 if (dyn.d_tag == DT_SYMTAB) { 3098 dyn_off = dyn.d_un.d_val; 3099 break; 3100 } 3101 } 3102 } 3103 3104 /* Find and dump symbol tables. */ 3105 for (i = 0; (size_t)i < re->shnum; i++) { 3106 s = &re->sl[i]; 3107 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3108 if (re->options & RE_DD) { 3109 if (dyn_off == s->addr) { 3110 dump_symtab(re, i); 3111 break; 3112 } 3113 } else 3114 dump_symtab(re, i); 3115 } 3116 } 3117 } 3118 3119 static void 3120 dump_svr4_hash(struct section *s) 3121 { 3122 Elf_Data *d; 3123 uint32_t *buf; 3124 uint32_t nbucket, nchain; 3125 uint32_t *bucket, *chain; 3126 uint32_t *bl, *c, maxl, total; 3127 int elferr, i, j; 3128 3129 /* Read and parse the content of .hash section. */ 3130 (void) elf_errno(); 3131 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3132 elferr = elf_errno(); 3133 if (elferr != 0) 3134 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3135 return; 3136 } 3137 if (d->d_size < 2 * sizeof(uint32_t)) { 3138 warnx(".hash section too small"); 3139 return; 3140 } 3141 buf = d->d_buf; 3142 nbucket = buf[0]; 3143 nchain = buf[1]; 3144 if (nbucket <= 0 || nchain <= 0) { 3145 warnx("Malformed .hash section"); 3146 return; 3147 } 3148 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3149 warnx("Malformed .hash section"); 3150 return; 3151 } 3152 bucket = &buf[2]; 3153 chain = &buf[2 + nbucket]; 3154 3155 maxl = 0; 3156 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3157 errx(EXIT_FAILURE, "calloc failed"); 3158 for (i = 0; (uint32_t)i < nbucket; i++) 3159 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3160 if (++bl[i] > maxl) 3161 maxl = bl[i]; 3162 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3163 errx(EXIT_FAILURE, "calloc failed"); 3164 for (i = 0; (uint32_t)i < nbucket; i++) 3165 c[bl[i]]++; 3166 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3167 nbucket); 3168 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3169 total = 0; 3170 for (i = 0; (uint32_t)i <= maxl; i++) { 3171 total += c[i] * i; 3172 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3173 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3174 } 3175 free(c); 3176 free(bl); 3177 } 3178 3179 static void 3180 dump_svr4_hash64(struct readelf *re, struct section *s) 3181 { 3182 Elf_Data *d, dst; 3183 uint64_t *buf; 3184 uint64_t nbucket, nchain; 3185 uint64_t *bucket, *chain; 3186 uint64_t *bl, *c, maxl, total; 3187 int elferr, i, j; 3188 3189 /* 3190 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3191 * .hash section contains only 32-bit entry, an explicit 3192 * gelf_xlatetom is needed here. 3193 */ 3194 (void) elf_errno(); 3195 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3196 elferr = elf_errno(); 3197 if (elferr != 0) 3198 warnx("elf_rawdata failed: %s", 3199 elf_errmsg(elferr)); 3200 return; 3201 } 3202 d->d_type = ELF_T_XWORD; 3203 memcpy(&dst, d, sizeof(Elf_Data)); 3204 if (gelf_xlatetom(re->elf, &dst, d, 3205 re->ehdr.e_ident[EI_DATA]) != &dst) { 3206 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3207 return; 3208 } 3209 if (dst.d_size < 2 * sizeof(uint64_t)) { 3210 warnx(".hash section too small"); 3211 return; 3212 } 3213 buf = dst.d_buf; 3214 nbucket = buf[0]; 3215 nchain = buf[1]; 3216 if (nbucket <= 0 || nchain <= 0) { 3217 warnx("Malformed .hash section"); 3218 return; 3219 } 3220 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3221 warnx("Malformed .hash section"); 3222 return; 3223 } 3224 bucket = &buf[2]; 3225 chain = &buf[2 + nbucket]; 3226 3227 maxl = 0; 3228 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3229 errx(EXIT_FAILURE, "calloc failed"); 3230 for (i = 0; (uint32_t)i < nbucket; i++) 3231 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3232 if (++bl[i] > maxl) 3233 maxl = bl[i]; 3234 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3235 errx(EXIT_FAILURE, "calloc failed"); 3236 for (i = 0; (uint64_t)i < nbucket; i++) 3237 c[bl[i]]++; 3238 printf("Histogram for bucket list length (total of %ju buckets):\n", 3239 (uintmax_t)nbucket); 3240 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3241 total = 0; 3242 for (i = 0; (uint64_t)i <= maxl; i++) { 3243 total += c[i] * i; 3244 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3245 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3246 } 3247 free(c); 3248 free(bl); 3249 } 3250 3251 static void 3252 dump_gnu_hash(struct readelf *re, struct section *s) 3253 { 3254 struct section *ds; 3255 Elf_Data *d; 3256 uint32_t *buf; 3257 uint32_t *bucket, *chain; 3258 uint32_t nbucket, nchain, symndx, maskwords; 3259 uint32_t *bl, *c, maxl, total; 3260 int elferr, dynsymcount, i, j; 3261 3262 (void) elf_errno(); 3263 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3264 elferr = elf_errno(); 3265 if (elferr != 0) 3266 warnx("elf_getdata failed: %s", 3267 elf_errmsg(elferr)); 3268 return; 3269 } 3270 if (d->d_size < 4 * sizeof(uint32_t)) { 3271 warnx(".gnu.hash section too small"); 3272 return; 3273 } 3274 buf = d->d_buf; 3275 nbucket = buf[0]; 3276 symndx = buf[1]; 3277 maskwords = buf[2]; 3278 buf += 4; 3279 if (s->link >= re->shnum) 3280 return; 3281 ds = &re->sl[s->link]; 3282 if (!get_ent_count(ds, &dynsymcount)) 3283 return; 3284 if (symndx >= (uint32_t)dynsymcount) { 3285 warnx("Malformed .gnu.hash section (symndx out of range)"); 3286 return; 3287 } 3288 nchain = dynsymcount - symndx; 3289 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3290 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3291 (nbucket + nchain) * sizeof(uint32_t)) { 3292 warnx("Malformed .gnu.hash section"); 3293 return; 3294 } 3295 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3296 chain = bucket + nbucket; 3297 3298 maxl = 0; 3299 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3300 errx(EXIT_FAILURE, "calloc failed"); 3301 for (i = 0; (uint32_t)i < nbucket; i++) 3302 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3303 j++) { 3304 if (++bl[i] > maxl) 3305 maxl = bl[i]; 3306 if (chain[j - symndx] & 1) 3307 break; 3308 } 3309 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3310 errx(EXIT_FAILURE, "calloc failed"); 3311 for (i = 0; (uint32_t)i < nbucket; i++) 3312 c[bl[i]]++; 3313 printf("Histogram for bucket list length (total of %u buckets):\n", 3314 nbucket); 3315 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3316 total = 0; 3317 for (i = 0; (uint32_t)i <= maxl; i++) { 3318 total += c[i] * i; 3319 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3320 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3321 } 3322 free(c); 3323 free(bl); 3324 } 3325 3326 static void 3327 dump_hash(struct readelf *re) 3328 { 3329 struct section *s; 3330 int i; 3331 3332 for (i = 0; (size_t) i < re->shnum; i++) { 3333 s = &re->sl[i]; 3334 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3335 if (s->type == SHT_GNU_HASH) 3336 dump_gnu_hash(re, s); 3337 else if (re->ehdr.e_machine == EM_ALPHA && 3338 s->entsize == 8) 3339 dump_svr4_hash64(re, s); 3340 else 3341 dump_svr4_hash(s); 3342 } 3343 } 3344 } 3345 3346 static void 3347 dump_notes(struct readelf *re) 3348 { 3349 struct section *s; 3350 const char *rawfile; 3351 GElf_Phdr phdr; 3352 Elf_Data *d; 3353 size_t filesize, phnum; 3354 int i, elferr; 3355 3356 if (re->ehdr.e_type == ET_CORE) { 3357 /* 3358 * Search program headers in the core file for 3359 * PT_NOTE entry. 3360 */ 3361 if (elf_getphnum(re->elf, &phnum) == 0) { 3362 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3363 return; 3364 } 3365 if (phnum == 0) 3366 return; 3367 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3368 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3369 return; 3370 } 3371 for (i = 0; (size_t) i < phnum; i++) { 3372 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3373 warnx("gelf_getphdr failed: %s", 3374 elf_errmsg(-1)); 3375 continue; 3376 } 3377 if (phdr.p_type == PT_NOTE) { 3378 if (phdr.p_offset >= filesize || 3379 phdr.p_filesz > filesize - phdr.p_offset) { 3380 warnx("invalid PHDR offset"); 3381 continue; 3382 } 3383 dump_notes_content(re, rawfile + phdr.p_offset, 3384 phdr.p_filesz, phdr.p_offset); 3385 } 3386 } 3387 3388 } else { 3389 /* 3390 * For objects other than core files, Search for 3391 * SHT_NOTE sections. 3392 */ 3393 for (i = 0; (size_t) i < re->shnum; i++) { 3394 s = &re->sl[i]; 3395 if (s->type == SHT_NOTE) { 3396 (void) elf_errno(); 3397 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3398 elferr = elf_errno(); 3399 if (elferr != 0) 3400 warnx("elf_getdata failed: %s", 3401 elf_errmsg(elferr)); 3402 continue; 3403 } 3404 dump_notes_content(re, d->d_buf, d->d_size, 3405 s->off); 3406 } 3407 } 3408 } 3409 } 3410 3411 static void 3412 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3413 { 3414 Elf_Note *note; 3415 const char *end, *name; 3416 3417 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3418 (uintmax_t) off, (uintmax_t) sz); 3419 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3420 end = buf + sz; 3421 while (buf < end) { 3422 if (buf + sizeof(*note) > end) { 3423 warnx("invalid note header"); 3424 return; 3425 } 3426 note = (Elf_Note *)(uintptr_t) buf; 3427 name = (char *)(uintptr_t)(note + 1); 3428 /* 3429 * The name field is required to be nul-terminated, and 3430 * n_namesz includes the terminating nul in observed 3431 * implementations (contrary to the ELF-64 spec). A special 3432 * case is needed for cores generated by some older Linux 3433 * versions, which write a note named "CORE" without a nul 3434 * terminator and n_namesz = 4. 3435 */ 3436 if (note->n_namesz == 0) 3437 name = ""; 3438 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3439 name = "CORE"; 3440 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3441 name = "<invalid>"; 3442 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3443 printf(" %s\n", note_type(name, re->ehdr.e_type, 3444 note->n_type)); 3445 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3446 roundup2(note->n_descsz, 4); 3447 } 3448 } 3449 3450 /* 3451 * Symbol versioning sections are the same for 32bit and 64bit 3452 * ELF objects. 3453 */ 3454 #define Elf_Verdef Elf32_Verdef 3455 #define Elf_Verdaux Elf32_Verdaux 3456 #define Elf_Verneed Elf32_Verneed 3457 #define Elf_Vernaux Elf32_Vernaux 3458 3459 #define SAVE_VERSION_NAME(x, n, t) \ 3460 do { \ 3461 while (x >= re->ver_sz) { \ 3462 nv = realloc(re->ver, \ 3463 sizeof(*re->ver) * re->ver_sz * 2); \ 3464 if (nv == NULL) { \ 3465 warn("realloc failed"); \ 3466 free(re->ver); \ 3467 return; \ 3468 } \ 3469 re->ver = nv; \ 3470 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3471 re->ver[i].name = NULL; \ 3472 re->ver[i].type = 0; \ 3473 } \ 3474 re->ver_sz *= 2; \ 3475 } \ 3476 if (x > 1) { \ 3477 re->ver[x].name = n; \ 3478 re->ver[x].type = t; \ 3479 } \ 3480 } while (0) 3481 3482 3483 static void 3484 dump_verdef(struct readelf *re, int dump) 3485 { 3486 struct section *s; 3487 struct symver *nv; 3488 Elf_Data *d; 3489 Elf_Verdef *vd; 3490 Elf_Verdaux *vda; 3491 uint8_t *buf, *end, *buf2; 3492 const char *name; 3493 int elferr, i, j; 3494 3495 if ((s = re->vd_s) == NULL) 3496 return; 3497 if (s->link >= re->shnum) 3498 return; 3499 3500 if (re->ver == NULL) { 3501 re->ver_sz = 16; 3502 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3503 NULL) { 3504 warn("calloc failed"); 3505 return; 3506 } 3507 re->ver[0].name = "*local*"; 3508 re->ver[1].name = "*global*"; 3509 } 3510 3511 if (dump) 3512 printf("\nVersion definition section (%s):\n", s->name); 3513 (void) elf_errno(); 3514 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3515 elferr = elf_errno(); 3516 if (elferr != 0) 3517 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3518 return; 3519 } 3520 if (d->d_size == 0) 3521 return; 3522 3523 buf = d->d_buf; 3524 end = buf + d->d_size; 3525 while (buf + sizeof(Elf_Verdef) <= end) { 3526 vd = (Elf_Verdef *) (uintptr_t) buf; 3527 if (dump) { 3528 printf(" 0x%4.4lx", (unsigned long) 3529 (buf - (uint8_t *)d->d_buf)); 3530 printf(" vd_version: %u vd_flags: %d" 3531 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3532 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3533 } 3534 buf2 = buf + vd->vd_aux; 3535 j = 0; 3536 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3537 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3538 name = get_string(re, s->link, vda->vda_name); 3539 if (j == 0) { 3540 if (dump) 3541 printf(" vda_name: %s\n", name); 3542 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3543 } else if (dump) 3544 printf(" 0x%4.4lx parent: %s\n", 3545 (unsigned long) (buf2 - 3546 (uint8_t *)d->d_buf), name); 3547 if (vda->vda_next == 0) 3548 break; 3549 buf2 += vda->vda_next; 3550 j++; 3551 } 3552 if (vd->vd_next == 0) 3553 break; 3554 buf += vd->vd_next; 3555 } 3556 } 3557 3558 static void 3559 dump_verneed(struct readelf *re, int dump) 3560 { 3561 struct section *s; 3562 struct symver *nv; 3563 Elf_Data *d; 3564 Elf_Verneed *vn; 3565 Elf_Vernaux *vna; 3566 uint8_t *buf, *end, *buf2; 3567 const char *name; 3568 int elferr, i, j; 3569 3570 if ((s = re->vn_s) == NULL) 3571 return; 3572 if (s->link >= re->shnum) 3573 return; 3574 3575 if (re->ver == NULL) { 3576 re->ver_sz = 16; 3577 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3578 NULL) { 3579 warn("calloc failed"); 3580 return; 3581 } 3582 re->ver[0].name = "*local*"; 3583 re->ver[1].name = "*global*"; 3584 } 3585 3586 if (dump) 3587 printf("\nVersion needed section (%s):\n", s->name); 3588 (void) elf_errno(); 3589 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3590 elferr = elf_errno(); 3591 if (elferr != 0) 3592 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3593 return; 3594 } 3595 if (d->d_size == 0) 3596 return; 3597 3598 buf = d->d_buf; 3599 end = buf + d->d_size; 3600 while (buf + sizeof(Elf_Verneed) <= end) { 3601 vn = (Elf_Verneed *) (uintptr_t) buf; 3602 if (dump) { 3603 printf(" 0x%4.4lx", (unsigned long) 3604 (buf - (uint8_t *)d->d_buf)); 3605 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3606 vn->vn_version, 3607 get_string(re, s->link, vn->vn_file), 3608 vn->vn_cnt); 3609 } 3610 buf2 = buf + vn->vn_aux; 3611 j = 0; 3612 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3613 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3614 if (dump) 3615 printf(" 0x%4.4lx", (unsigned long) 3616 (buf2 - (uint8_t *)d->d_buf)); 3617 name = get_string(re, s->link, vna->vna_name); 3618 if (dump) 3619 printf(" vna_name: %s vna_flags: %u" 3620 " vna_other: %u\n", name, 3621 vna->vna_flags, vna->vna_other); 3622 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3623 if (vna->vna_next == 0) 3624 break; 3625 buf2 += vna->vna_next; 3626 j++; 3627 } 3628 if (vn->vn_next == 0) 3629 break; 3630 buf += vn->vn_next; 3631 } 3632 } 3633 3634 static void 3635 dump_versym(struct readelf *re) 3636 { 3637 int i; 3638 uint16_t vs; 3639 3640 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3641 return; 3642 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3643 for (i = 0; i < re->vs_sz; i++) { 3644 if ((i & 3) == 0) { 3645 if (i > 0) 3646 putchar('\n'); 3647 printf(" %03x:", i); 3648 } 3649 vs = re->vs[i] & VERSYM_VERSION; 3650 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3651 warnx("invalid versym version index %u", re->vs[i]); 3652 break; 3653 } 3654 if (re->vs[i] & VERSYM_HIDDEN) 3655 printf(" %3xh %-12s ", vs, 3656 re->ver[re->vs[i] & VERSYM_VERSION].name); 3657 else 3658 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 3659 } 3660 putchar('\n'); 3661 } 3662 3663 static void 3664 dump_ver(struct readelf *re) 3665 { 3666 3667 if (re->vs_s && re->ver && re->vs) 3668 dump_versym(re); 3669 if (re->vd_s) 3670 dump_verdef(re, 1); 3671 if (re->vn_s) 3672 dump_verneed(re, 1); 3673 } 3674 3675 static void 3676 search_ver(struct readelf *re) 3677 { 3678 struct section *s; 3679 Elf_Data *d; 3680 int elferr, i; 3681 3682 for (i = 0; (size_t) i < re->shnum; i++) { 3683 s = &re->sl[i]; 3684 if (s->type == SHT_SUNW_versym) 3685 re->vs_s = s; 3686 if (s->type == SHT_SUNW_verneed) 3687 re->vn_s = s; 3688 if (s->type == SHT_SUNW_verdef) 3689 re->vd_s = s; 3690 } 3691 if (re->vd_s) 3692 dump_verdef(re, 0); 3693 if (re->vn_s) 3694 dump_verneed(re, 0); 3695 if (re->vs_s && re->ver != NULL) { 3696 (void) elf_errno(); 3697 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3698 elferr = elf_errno(); 3699 if (elferr != 0) 3700 warnx("elf_getdata failed: %s", 3701 elf_errmsg(elferr)); 3702 return; 3703 } 3704 if (d->d_size == 0) 3705 return; 3706 re->vs = d->d_buf; 3707 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3708 } 3709 } 3710 3711 #undef Elf_Verdef 3712 #undef Elf_Verdaux 3713 #undef Elf_Verneed 3714 #undef Elf_Vernaux 3715 #undef SAVE_VERSION_NAME 3716 3717 /* 3718 * Elf32_Lib and Elf64_Lib are identical. 3719 */ 3720 #define Elf_Lib Elf32_Lib 3721 3722 static void 3723 dump_liblist(struct readelf *re) 3724 { 3725 struct section *s; 3726 struct tm *t; 3727 time_t ti; 3728 char tbuf[20]; 3729 Elf_Data *d; 3730 Elf_Lib *lib; 3731 int i, j, k, elferr, first, len; 3732 3733 for (i = 0; (size_t) i < re->shnum; i++) { 3734 s = &re->sl[i]; 3735 if (s->type != SHT_GNU_LIBLIST) 3736 continue; 3737 if (s->link >= re->shnum) 3738 continue; 3739 (void) elf_errno(); 3740 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3741 elferr = elf_errno(); 3742 if (elferr != 0) 3743 warnx("elf_getdata failed: %s", 3744 elf_errmsg(elferr)); 3745 continue; 3746 } 3747 if (d->d_size <= 0) 3748 continue; 3749 lib = d->d_buf; 3750 if (!get_ent_count(s, &len)) 3751 continue; 3752 printf("\nLibrary list section '%s' ", s->name); 3753 printf("contains %d entries:\n", len); 3754 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3755 "Checksum", "Version", "Flags"); 3756 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3757 printf("%3d: ", j); 3758 printf("%-20.20s ", 3759 get_string(re, s->link, lib->l_name)); 3760 ti = lib->l_time_stamp; 3761 t = gmtime(&ti); 3762 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3763 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3764 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3765 printf("%-19.19s ", tbuf); 3766 printf("0x%08x ", lib->l_checksum); 3767 printf("%-7d %#x", lib->l_version, lib->l_flags); 3768 if (lib->l_flags != 0) { 3769 first = 1; 3770 putchar('('); 3771 for (k = 0; l_flag[k].name != NULL; k++) { 3772 if ((l_flag[k].value & lib->l_flags) == 3773 0) 3774 continue; 3775 if (!first) 3776 putchar(','); 3777 else 3778 first = 0; 3779 printf("%s", l_flag[k].name); 3780 } 3781 putchar(')'); 3782 } 3783 putchar('\n'); 3784 lib++; 3785 } 3786 } 3787 } 3788 3789 #undef Elf_Lib 3790 3791 static void 3792 dump_section_groups(struct readelf *re) 3793 { 3794 struct section *s; 3795 const char *symname; 3796 Elf_Data *d; 3797 uint32_t *w; 3798 int i, j, elferr; 3799 size_t n; 3800 3801 for (i = 0; (size_t) i < re->shnum; i++) { 3802 s = &re->sl[i]; 3803 if (s->type != SHT_GROUP) 3804 continue; 3805 if (s->link >= re->shnum) 3806 continue; 3807 (void) elf_errno(); 3808 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3809 elferr = elf_errno(); 3810 if (elferr != 0) 3811 warnx("elf_getdata failed: %s", 3812 elf_errmsg(elferr)); 3813 continue; 3814 } 3815 if (d->d_size <= 0) 3816 continue; 3817 3818 w = d->d_buf; 3819 3820 /* We only support COMDAT section. */ 3821 #ifndef GRP_COMDAT 3822 #define GRP_COMDAT 0x1 3823 #endif 3824 if ((*w++ & GRP_COMDAT) == 0) 3825 return; 3826 3827 if (s->entsize == 0) 3828 s->entsize = 4; 3829 3830 symname = get_symbol_name(re, s->link, s->info); 3831 n = s->sz / s->entsize; 3832 if (n-- < 1) 3833 return; 3834 3835 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 3836 " sections:\n", i, s->name, symname, (uintmax_t)n); 3837 printf(" %-10.10s %s\n", "[Index]", "Name"); 3838 for (j = 0; (size_t) j < n; j++, w++) { 3839 if (*w >= re->shnum) { 3840 warnx("invalid section index: %u", *w); 3841 continue; 3842 } 3843 printf(" [%5u] %s\n", *w, re->sl[*w].name); 3844 } 3845 } 3846 } 3847 3848 static uint8_t * 3849 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 3850 { 3851 uint64_t val; 3852 3853 /* 3854 * According to ARM EABI: For tags > 32, even numbered tags have 3855 * a ULEB128 param and odd numbered ones have NUL-terminated 3856 * string param. This rule probably also applies for tags <= 32 3857 * if the object arch is not ARM. 3858 */ 3859 3860 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3861 3862 if (tag & 1) { 3863 printf("%s\n", (char *) p); 3864 p += strlen((char *) p) + 1; 3865 } else { 3866 val = _decode_uleb128(&p, pe); 3867 printf("%ju\n", (uintmax_t) val); 3868 } 3869 3870 return (p); 3871 } 3872 3873 static uint8_t * 3874 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 3875 { 3876 uint64_t val; 3877 3878 val = _decode_uleb128(&p, pe); 3879 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 3880 p += strlen((char *) p) + 1; 3881 3882 return (p); 3883 } 3884 3885 static void 3886 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3887 { 3888 uint64_t tag, val; 3889 size_t i; 3890 int found, desc; 3891 3892 (void) re; 3893 3894 while (p < pe) { 3895 tag = _decode_uleb128(&p, pe); 3896 found = desc = 0; 3897 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3898 i++) { 3899 if (tag == aeabi_tags[i].tag) { 3900 found = 1; 3901 printf(" %s: ", aeabi_tags[i].s_tag); 3902 if (aeabi_tags[i].get_desc) { 3903 desc = 1; 3904 val = _decode_uleb128(&p, pe); 3905 printf("%s\n", 3906 aeabi_tags[i].get_desc(val)); 3907 } 3908 break; 3909 } 3910 if (tag < aeabi_tags[i].tag) 3911 break; 3912 } 3913 if (!found) { 3914 p = dump_unknown_tag(tag, p, pe); 3915 continue; 3916 } 3917 if (desc) 3918 continue; 3919 3920 switch (tag) { 3921 case 4: /* Tag_CPU_raw_name */ 3922 case 5: /* Tag_CPU_name */ 3923 case 67: /* Tag_conformance */ 3924 printf("%s\n", (char *) p); 3925 p += strlen((char *) p) + 1; 3926 break; 3927 case 32: /* Tag_compatibility */ 3928 p = dump_compatibility_tag(p, pe); 3929 break; 3930 case 64: /* Tag_nodefaults */ 3931 /* ignored, written as 0. */ 3932 (void) _decode_uleb128(&p, pe); 3933 printf("True\n"); 3934 break; 3935 case 65: /* Tag_also_compatible_with */ 3936 val = _decode_uleb128(&p, pe); 3937 /* Must be Tag_CPU_arch */ 3938 if (val != 6) { 3939 printf("unknown\n"); 3940 break; 3941 } 3942 val = _decode_uleb128(&p, pe); 3943 printf("%s\n", aeabi_cpu_arch(val)); 3944 /* Skip NUL terminator. */ 3945 p++; 3946 break; 3947 default: 3948 putchar('\n'); 3949 break; 3950 } 3951 } 3952 } 3953 3954 #ifndef Tag_GNU_MIPS_ABI_FP 3955 #define Tag_GNU_MIPS_ABI_FP 4 3956 #endif 3957 3958 static void 3959 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3960 { 3961 uint64_t tag, val; 3962 3963 (void) re; 3964 3965 while (p < pe) { 3966 tag = _decode_uleb128(&p, pe); 3967 switch (tag) { 3968 case Tag_GNU_MIPS_ABI_FP: 3969 val = _decode_uleb128(&p, pe); 3970 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3971 break; 3972 case 32: /* Tag_compatibility */ 3973 p = dump_compatibility_tag(p, pe); 3974 break; 3975 default: 3976 p = dump_unknown_tag(tag, p, pe); 3977 break; 3978 } 3979 } 3980 } 3981 3982 #ifndef Tag_GNU_Power_ABI_FP 3983 #define Tag_GNU_Power_ABI_FP 4 3984 #endif 3985 3986 #ifndef Tag_GNU_Power_ABI_Vector 3987 #define Tag_GNU_Power_ABI_Vector 8 3988 #endif 3989 3990 static void 3991 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 3992 { 3993 uint64_t tag, val; 3994 3995 while (p < pe) { 3996 tag = _decode_uleb128(&p, pe); 3997 switch (tag) { 3998 case Tag_GNU_Power_ABI_FP: 3999 val = _decode_uleb128(&p, pe); 4000 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4001 break; 4002 case Tag_GNU_Power_ABI_Vector: 4003 val = _decode_uleb128(&p, pe); 4004 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4005 ppc_abi_vector(val)); 4006 break; 4007 case 32: /* Tag_compatibility */ 4008 p = dump_compatibility_tag(p, pe); 4009 break; 4010 default: 4011 p = dump_unknown_tag(tag, p, pe); 4012 break; 4013 } 4014 } 4015 } 4016 4017 static void 4018 dump_attributes(struct readelf *re) 4019 { 4020 struct section *s; 4021 Elf_Data *d; 4022 uint8_t *p, *pe, *sp; 4023 size_t len, seclen, nlen, sublen; 4024 uint64_t val; 4025 int tag, i, elferr; 4026 4027 for (i = 0; (size_t) i < re->shnum; i++) { 4028 s = &re->sl[i]; 4029 if (s->type != SHT_GNU_ATTRIBUTES && 4030 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4031 continue; 4032 (void) elf_errno(); 4033 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4034 elferr = elf_errno(); 4035 if (elferr != 0) 4036 warnx("elf_rawdata failed: %s", 4037 elf_errmsg(elferr)); 4038 continue; 4039 } 4040 if (d->d_size <= 0) 4041 continue; 4042 p = d->d_buf; 4043 pe = p + d->d_size; 4044 if (*p != 'A') { 4045 printf("Unknown Attribute Section Format: %c\n", 4046 (char) *p); 4047 continue; 4048 } 4049 len = d->d_size - 1; 4050 p++; 4051 while (len > 0) { 4052 if (len < 4) { 4053 warnx("truncated attribute section length"); 4054 return; 4055 } 4056 seclen = re->dw_decode(&p, 4); 4057 if (seclen > len) { 4058 warnx("invalid attribute section length"); 4059 return; 4060 } 4061 len -= seclen; 4062 nlen = strlen((char *) p) + 1; 4063 if (nlen + 4 > seclen) { 4064 warnx("invalid attribute section name"); 4065 return; 4066 } 4067 printf("Attribute Section: %s\n", (char *) p); 4068 p += nlen; 4069 seclen -= nlen + 4; 4070 while (seclen > 0) { 4071 sp = p; 4072 tag = *p++; 4073 sublen = re->dw_decode(&p, 4); 4074 if (sublen > seclen) { 4075 warnx("invalid attribute sub-section" 4076 " length"); 4077 return; 4078 } 4079 seclen -= sublen; 4080 printf("%s", top_tag(tag)); 4081 if (tag == 2 || tag == 3) { 4082 putchar(':'); 4083 for (;;) { 4084 val = _decode_uleb128(&p, pe); 4085 if (val == 0) 4086 break; 4087 printf(" %ju", (uintmax_t) val); 4088 } 4089 } 4090 putchar('\n'); 4091 if (re->ehdr.e_machine == EM_ARM && 4092 s->type == SHT_LOPROC + 3) 4093 dump_arm_attributes(re, p, sp + sublen); 4094 else if (re->ehdr.e_machine == EM_MIPS || 4095 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4096 dump_mips_attributes(re, p, 4097 sp + sublen); 4098 else if (re->ehdr.e_machine == EM_PPC) 4099 dump_ppc_attributes(p, sp + sublen); 4100 p = sp + sublen; 4101 } 4102 } 4103 } 4104 } 4105 4106 static void 4107 dump_mips_specific_info(struct readelf *re) 4108 { 4109 struct section *s; 4110 int i; 4111 4112 s = NULL; 4113 for (i = 0; (size_t) i < re->shnum; i++) { 4114 s = &re->sl[i]; 4115 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4116 (s->type == SHT_MIPS_OPTIONS))) { 4117 dump_mips_options(re, s); 4118 } 4119 } 4120 4121 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4122 (s->type == SHT_MIPS_ABIFLAGS))) 4123 dump_mips_abiflags(re, s); 4124 4125 /* 4126 * Dump .reginfo if present (although it will be ignored by an OS if a 4127 * .MIPS.options section is present, according to SGI mips64 spec). 4128 */ 4129 for (i = 0; (size_t) i < re->shnum; i++) { 4130 s = &re->sl[i]; 4131 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4132 (s->type == SHT_MIPS_REGINFO))) 4133 dump_mips_reginfo(re, s); 4134 } 4135 } 4136 4137 static void 4138 dump_mips_abiflags(struct readelf *re, struct section *s) 4139 { 4140 Elf_Data *d; 4141 uint8_t *p; 4142 int elferr; 4143 uint32_t isa_ext, ases, flags1, flags2; 4144 uint16_t version; 4145 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4146 4147 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4148 elferr = elf_errno(); 4149 if (elferr != 0) 4150 warnx("elf_rawdata failed: %s", 4151 elf_errmsg(elferr)); 4152 return; 4153 } 4154 if (d->d_size != 24) { 4155 warnx("invalid MIPS abiflags section size"); 4156 return; 4157 } 4158 4159 p = d->d_buf; 4160 version = re->dw_decode(&p, 2); 4161 printf("MIPS ABI Flags Version: %u", version); 4162 if (version != 0) { 4163 printf(" (unknown)\n\n"); 4164 return; 4165 } 4166 printf("\n\n"); 4167 4168 isa_level = re->dw_decode(&p, 1); 4169 isa_rev = re->dw_decode(&p, 1); 4170 gpr_size = re->dw_decode(&p, 1); 4171 cpr1_size = re->dw_decode(&p, 1); 4172 cpr2_size = re->dw_decode(&p, 1); 4173 fp_abi = re->dw_decode(&p, 1); 4174 isa_ext = re->dw_decode(&p, 4); 4175 ases = re->dw_decode(&p, 4); 4176 flags1 = re->dw_decode(&p, 4); 4177 flags2 = re->dw_decode(&p, 4); 4178 4179 printf("ISA: "); 4180 if (isa_rev <= 1) 4181 printf("MIPS%u\n", isa_level); 4182 else 4183 printf("MIPS%ur%u\n", isa_level, isa_rev); 4184 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4185 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4186 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4187 printf("FP ABI: "); 4188 switch (fp_abi) { 4189 case 3: 4190 printf("Soft float"); 4191 break; 4192 default: 4193 printf("%u", fp_abi); 4194 break; 4195 } 4196 printf("\nISA Extension: %u\n", isa_ext); 4197 printf("ASEs: %u\n", ases); 4198 printf("FLAGS 1: %08x\n", flags1); 4199 printf("FLAGS 2: %08x\n", flags2); 4200 } 4201 4202 static int 4203 get_mips_register_size(uint8_t flag) 4204 { 4205 switch (flag) { 4206 case 0: return 0; 4207 case 1: return 32; 4208 case 2: return 64; 4209 case 3: return 128; 4210 default: return -1; 4211 } 4212 } 4213 static void 4214 dump_mips_reginfo(struct readelf *re, struct section *s) 4215 { 4216 Elf_Data *d; 4217 int elferr, len; 4218 4219 (void) elf_errno(); 4220 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4221 elferr = elf_errno(); 4222 if (elferr != 0) 4223 warnx("elf_rawdata failed: %s", 4224 elf_errmsg(elferr)); 4225 return; 4226 } 4227 if (d->d_size <= 0) 4228 return; 4229 if (!get_ent_count(s, &len)) 4230 return; 4231 4232 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4233 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4234 } 4235 4236 static void 4237 dump_mips_options(struct readelf *re, struct section *s) 4238 { 4239 Elf_Data *d; 4240 uint32_t info; 4241 uint16_t sndx; 4242 uint8_t *p, *pe; 4243 uint8_t kind, size; 4244 int elferr; 4245 4246 (void) elf_errno(); 4247 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4248 elferr = elf_errno(); 4249 if (elferr != 0) 4250 warnx("elf_rawdata failed: %s", 4251 elf_errmsg(elferr)); 4252 return; 4253 } 4254 if (d->d_size == 0) 4255 return; 4256 4257 printf("\nSection %s contains:\n", s->name); 4258 p = d->d_buf; 4259 pe = p + d->d_size; 4260 while (p < pe) { 4261 if (pe - p < 8) { 4262 warnx("Truncated MIPS option header"); 4263 return; 4264 } 4265 kind = re->dw_decode(&p, 1); 4266 size = re->dw_decode(&p, 1); 4267 sndx = re->dw_decode(&p, 2); 4268 info = re->dw_decode(&p, 4); 4269 if (size < 8 || size - 8 > pe - p) { 4270 warnx("Malformed MIPS option header"); 4271 return; 4272 } 4273 size -= 8; 4274 switch (kind) { 4275 case ODK_REGINFO: 4276 dump_mips_odk_reginfo(re, p, size); 4277 break; 4278 case ODK_EXCEPTIONS: 4279 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4280 info & OEX_FPU_MIN); 4281 printf("%11.11s FPU_MAX: %#x\n", "", 4282 info & OEX_FPU_MAX); 4283 dump_mips_option_flags("", mips_exceptions_option, 4284 info); 4285 break; 4286 case ODK_PAD: 4287 printf(" %-10.10s section: %ju\n", "OPAD", 4288 (uintmax_t) sndx); 4289 dump_mips_option_flags("", mips_pad_option, info); 4290 break; 4291 case ODK_HWPATCH: 4292 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4293 info); 4294 break; 4295 case ODK_HWAND: 4296 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4297 break; 4298 case ODK_HWOR: 4299 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4300 break; 4301 case ODK_FILL: 4302 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4303 break; 4304 case ODK_TAGS: 4305 printf(" %-10.10s\n", "TAGS"); 4306 break; 4307 case ODK_GP_GROUP: 4308 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4309 info & 0xFFFF); 4310 if (info & 0x10000) 4311 printf(" %-10.10s GP group is " 4312 "self-contained\n", ""); 4313 break; 4314 case ODK_IDENT: 4315 printf(" %-10.10s default GP group number: %#x\n", 4316 "IDENT", info & 0xFFFF); 4317 if (info & 0x10000) 4318 printf(" %-10.10s default GP group is " 4319 "self-contained\n", ""); 4320 break; 4321 case ODK_PAGESIZE: 4322 printf(" %-10.10s\n", "PAGESIZE"); 4323 break; 4324 default: 4325 break; 4326 } 4327 p += size; 4328 } 4329 } 4330 4331 static void 4332 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4333 { 4334 int first; 4335 4336 first = 1; 4337 for (; opt->desc != NULL; opt++) { 4338 if (info & opt->flag) { 4339 printf(" %-10.10s %s\n", first ? name : "", 4340 opt->desc); 4341 first = 0; 4342 } 4343 } 4344 } 4345 4346 static void 4347 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4348 { 4349 uint32_t ri_gprmask; 4350 uint32_t ri_cprmask[4]; 4351 uint64_t ri_gp_value; 4352 uint8_t *pe; 4353 int i; 4354 4355 pe = p + sz; 4356 while (p < pe) { 4357 ri_gprmask = re->dw_decode(&p, 4); 4358 /* Skip ri_pad padding field for mips64. */ 4359 if (re->ec == ELFCLASS64) 4360 re->dw_decode(&p, 4); 4361 for (i = 0; i < 4; i++) 4362 ri_cprmask[i] = re->dw_decode(&p, 4); 4363 if (re->ec == ELFCLASS32) 4364 ri_gp_value = re->dw_decode(&p, 4); 4365 else 4366 ri_gp_value = re->dw_decode(&p, 8); 4367 printf(" %s ", option_kind(ODK_REGINFO)); 4368 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4369 for (i = 0; i < 4; i++) 4370 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4371 (uintmax_t) ri_cprmask[i]); 4372 printf("%12.12s", ""); 4373 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4374 } 4375 } 4376 4377 static void 4378 dump_arch_specific_info(struct readelf *re) 4379 { 4380 4381 dump_liblist(re); 4382 dump_attributes(re); 4383 4384 switch (re->ehdr.e_machine) { 4385 case EM_MIPS: 4386 case EM_MIPS_RS3_LE: 4387 dump_mips_specific_info(re); 4388 default: 4389 break; 4390 } 4391 } 4392 4393 static const char * 4394 dwarf_regname(struct readelf *re, unsigned int num) 4395 { 4396 static char rx[32]; 4397 const char *rn; 4398 4399 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4400 return (rn); 4401 4402 snprintf(rx, sizeof(rx), "r%u", num); 4403 4404 return (rx); 4405 } 4406 4407 static void 4408 dump_dwarf_line(struct readelf *re) 4409 { 4410 struct section *s; 4411 Dwarf_Die die; 4412 Dwarf_Error de; 4413 Dwarf_Half tag, version, pointer_size; 4414 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4415 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4416 Elf_Data *d; 4417 char *pn; 4418 uint64_t address, file, line, column, isa, opsize, udelta; 4419 int64_t sdelta; 4420 uint8_t *p, *pe; 4421 int8_t lbase; 4422 int i, is_stmt, dwarf_size, elferr, ret; 4423 4424 printf("\nDump of debug contents of section .debug_line:\n"); 4425 4426 s = NULL; 4427 for (i = 0; (size_t) i < re->shnum; i++) { 4428 s = &re->sl[i]; 4429 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4430 break; 4431 } 4432 if ((size_t) i >= re->shnum) 4433 return; 4434 4435 (void) elf_errno(); 4436 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4437 elferr = elf_errno(); 4438 if (elferr != 0) 4439 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4440 return; 4441 } 4442 if (d->d_size <= 0) 4443 return; 4444 4445 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4446 NULL, &de)) == DW_DLV_OK) { 4447 die = NULL; 4448 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4449 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4450 warnx("dwarf_tag failed: %s", 4451 dwarf_errmsg(de)); 4452 return; 4453 } 4454 /* XXX: What about DW_TAG_partial_unit? */ 4455 if (tag == DW_TAG_compile_unit) 4456 break; 4457 } 4458 if (die == NULL) { 4459 warnx("could not find DW_TAG_compile_unit die"); 4460 return; 4461 } 4462 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4463 &de) != DW_DLV_OK) 4464 continue; 4465 4466 length = re->dw_read(d, &offset, 4); 4467 if (length == 0xffffffff) { 4468 dwarf_size = 8; 4469 length = re->dw_read(d, &offset, 8); 4470 } else 4471 dwarf_size = 4; 4472 4473 if (length > d->d_size - offset) { 4474 warnx("invalid .dwarf_line section"); 4475 continue; 4476 } 4477 4478 endoff = offset + length; 4479 pe = (uint8_t *) d->d_buf + endoff; 4480 version = re->dw_read(d, &offset, 2); 4481 hdrlen = re->dw_read(d, &offset, dwarf_size); 4482 minlen = re->dw_read(d, &offset, 1); 4483 defstmt = re->dw_read(d, &offset, 1); 4484 lbase = re->dw_read(d, &offset, 1); 4485 lrange = re->dw_read(d, &offset, 1); 4486 opbase = re->dw_read(d, &offset, 1); 4487 4488 printf("\n"); 4489 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4490 printf(" DWARF version:\t\t%u\n", version); 4491 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4492 printf(" Minimum Instruction Length:\t%u\n", minlen); 4493 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4494 printf(" Line Base:\t\t\t%d\n", lbase); 4495 printf(" Line Range:\t\t\t%u\n", lrange); 4496 printf(" Opcode Base:\t\t\t%u\n", opbase); 4497 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4498 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4499 4500 printf("\n"); 4501 printf(" Opcodes:\n"); 4502 for (i = 1; i < opbase; i++) { 4503 oplen = re->dw_read(d, &offset, 1); 4504 printf(" Opcode %d has %u args\n", i, oplen); 4505 } 4506 4507 printf("\n"); 4508 printf(" The Directory Table:\n"); 4509 p = (uint8_t *) d->d_buf + offset; 4510 while (*p != '\0') { 4511 printf(" %s\n", (char *) p); 4512 p += strlen((char *) p) + 1; 4513 } 4514 4515 p++; 4516 printf("\n"); 4517 printf(" The File Name Table:\n"); 4518 printf(" Entry\tDir\tTime\tSize\tName\n"); 4519 i = 0; 4520 while (*p != '\0') { 4521 i++; 4522 pn = (char *) p; 4523 p += strlen(pn) + 1; 4524 dirndx = _decode_uleb128(&p, pe); 4525 mtime = _decode_uleb128(&p, pe); 4526 fsize = _decode_uleb128(&p, pe); 4527 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4528 (uintmax_t) dirndx, (uintmax_t) mtime, 4529 (uintmax_t) fsize, pn); 4530 } 4531 4532 #define RESET_REGISTERS \ 4533 do { \ 4534 address = 0; \ 4535 file = 1; \ 4536 line = 1; \ 4537 column = 0; \ 4538 is_stmt = defstmt; \ 4539 } while(0) 4540 4541 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4542 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4543 4544 p++; 4545 printf("\n"); 4546 printf(" Line Number Statements:\n"); 4547 4548 RESET_REGISTERS; 4549 4550 while (p < pe) { 4551 4552 if (*p == 0) { 4553 /* 4554 * Extended Opcodes. 4555 */ 4556 p++; 4557 opsize = _decode_uleb128(&p, pe); 4558 printf(" Extended opcode %u: ", *p); 4559 switch (*p) { 4560 case DW_LNE_end_sequence: 4561 p++; 4562 RESET_REGISTERS; 4563 printf("End of Sequence\n"); 4564 break; 4565 case DW_LNE_set_address: 4566 p++; 4567 address = re->dw_decode(&p, 4568 pointer_size); 4569 printf("set Address to %#jx\n", 4570 (uintmax_t) address); 4571 break; 4572 case DW_LNE_define_file: 4573 p++; 4574 pn = (char *) p; 4575 p += strlen(pn) + 1; 4576 dirndx = _decode_uleb128(&p, pe); 4577 mtime = _decode_uleb128(&p, pe); 4578 fsize = _decode_uleb128(&p, pe); 4579 printf("define new file: %s\n", pn); 4580 break; 4581 default: 4582 /* Unrecognized extened opcodes. */ 4583 p += opsize; 4584 printf("unknown opcode\n"); 4585 } 4586 } else if (*p > 0 && *p < opbase) { 4587 /* 4588 * Standard Opcodes. 4589 */ 4590 switch(*p++) { 4591 case DW_LNS_copy: 4592 printf(" Copy\n"); 4593 break; 4594 case DW_LNS_advance_pc: 4595 udelta = _decode_uleb128(&p, pe) * 4596 minlen; 4597 address += udelta; 4598 printf(" Advance PC by %ju to %#jx\n", 4599 (uintmax_t) udelta, 4600 (uintmax_t) address); 4601 break; 4602 case DW_LNS_advance_line: 4603 sdelta = _decode_sleb128(&p, pe); 4604 line += sdelta; 4605 printf(" Advance Line by %jd to %ju\n", 4606 (intmax_t) sdelta, 4607 (uintmax_t) line); 4608 break; 4609 case DW_LNS_set_file: 4610 file = _decode_uleb128(&p, pe); 4611 printf(" Set File to %ju\n", 4612 (uintmax_t) file); 4613 break; 4614 case DW_LNS_set_column: 4615 column = _decode_uleb128(&p, pe); 4616 printf(" Set Column to %ju\n", 4617 (uintmax_t) column); 4618 break; 4619 case DW_LNS_negate_stmt: 4620 is_stmt = !is_stmt; 4621 printf(" Set is_stmt to %d\n", is_stmt); 4622 break; 4623 case DW_LNS_set_basic_block: 4624 printf(" Set basic block flag\n"); 4625 break; 4626 case DW_LNS_const_add_pc: 4627 address += ADDRESS(255); 4628 printf(" Advance PC by constant %ju" 4629 " to %#jx\n", 4630 (uintmax_t) ADDRESS(255), 4631 (uintmax_t) address); 4632 break; 4633 case DW_LNS_fixed_advance_pc: 4634 udelta = re->dw_decode(&p, 2); 4635 address += udelta; 4636 printf(" Advance PC by fixed value " 4637 "%ju to %#jx\n", 4638 (uintmax_t) udelta, 4639 (uintmax_t) address); 4640 break; 4641 case DW_LNS_set_prologue_end: 4642 printf(" Set prologue end flag\n"); 4643 break; 4644 case DW_LNS_set_epilogue_begin: 4645 printf(" Set epilogue begin flag\n"); 4646 break; 4647 case DW_LNS_set_isa: 4648 isa = _decode_uleb128(&p, pe); 4649 printf(" Set isa to %ju\n", 4650 (uintmax_t) isa); 4651 break; 4652 default: 4653 /* Unrecognized extended opcodes. */ 4654 printf(" Unknown extended opcode %u\n", 4655 *(p - 1)); 4656 break; 4657 } 4658 4659 } else { 4660 /* 4661 * Special Opcodes. 4662 */ 4663 line += LINE(*p); 4664 address += ADDRESS(*p); 4665 printf(" Special opcode %u: advance Address " 4666 "by %ju to %#jx and Line by %jd to %ju\n", 4667 *p - opbase, (uintmax_t) ADDRESS(*p), 4668 (uintmax_t) address, (intmax_t) LINE(*p), 4669 (uintmax_t) line); 4670 p++; 4671 } 4672 4673 4674 } 4675 } 4676 if (ret == DW_DLV_ERROR) 4677 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4678 4679 #undef RESET_REGISTERS 4680 #undef LINE 4681 #undef ADDRESS 4682 } 4683 4684 static void 4685 dump_dwarf_line_decoded(struct readelf *re) 4686 { 4687 Dwarf_Die die; 4688 Dwarf_Line *linebuf, ln; 4689 Dwarf_Addr lineaddr; 4690 Dwarf_Signed linecount, srccount; 4691 Dwarf_Unsigned lineno, fn; 4692 Dwarf_Error de; 4693 const char *dir, *file; 4694 char **srcfiles; 4695 int i, ret; 4696 4697 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4698 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4699 NULL, &de)) == DW_DLV_OK) { 4700 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4701 continue; 4702 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4703 DW_DLV_OK) 4704 file = NULL; 4705 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4706 DW_DLV_OK) 4707 dir = NULL; 4708 printf("CU: "); 4709 if (dir && file) 4710 printf("%s/", dir); 4711 if (file) 4712 printf("%s", file); 4713 putchar('\n'); 4714 printf("%-37s %11s %s\n", "Filename", "Line Number", 4715 "Starting Address"); 4716 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4717 continue; 4718 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4719 continue; 4720 for (i = 0; i < linecount; i++) { 4721 ln = linebuf[i]; 4722 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4723 continue; 4724 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4725 continue; 4726 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4727 continue; 4728 printf("%-37s %11ju %#18jx\n", 4729 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4730 (uintmax_t) lineaddr); 4731 } 4732 putchar('\n'); 4733 } 4734 } 4735 4736 static void 4737 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4738 { 4739 Dwarf_Attribute *attr_list; 4740 Dwarf_Die ret_die; 4741 Dwarf_Off dieoff, cuoff, culen, attroff; 4742 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4743 Dwarf_Signed attr_count, v_sdata; 4744 Dwarf_Off v_off; 4745 Dwarf_Addr v_addr; 4746 Dwarf_Half tag, attr, form; 4747 Dwarf_Block *v_block; 4748 Dwarf_Bool v_bool, is_info; 4749 Dwarf_Sig8 v_sig8; 4750 Dwarf_Error de; 4751 Dwarf_Ptr v_expr; 4752 const char *tag_str, *attr_str, *ate_str, *lang_str; 4753 char unk_tag[32], unk_attr[32]; 4754 char *v_str; 4755 uint8_t *b, *p; 4756 int i, j, abc, ret; 4757 4758 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4759 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4760 goto cont_search; 4761 } 4762 4763 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4764 4765 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4766 warnx("dwarf_die_CU_offset_range failed: %s", 4767 dwarf_errmsg(de)); 4768 cuoff = 0; 4769 } 4770 4771 abc = dwarf_die_abbrev_code(die); 4772 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4773 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4774 goto cont_search; 4775 } 4776 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4777 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4778 tag_str = unk_tag; 4779 } 4780 4781 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4782 4783 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4784 DW_DLV_OK) { 4785 if (ret == DW_DLV_ERROR) 4786 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4787 goto cont_search; 4788 } 4789 4790 for (i = 0; i < attr_count; i++) { 4791 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4792 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4793 continue; 4794 } 4795 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4796 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4797 continue; 4798 } 4799 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4800 snprintf(unk_attr, sizeof(unk_attr), 4801 "[Unknown AT: %#x]", attr); 4802 attr_str = unk_attr; 4803 } 4804 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4805 DW_DLV_OK) { 4806 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4807 attroff = 0; 4808 } 4809 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4810 switch (form) { 4811 case DW_FORM_ref_addr: 4812 case DW_FORM_sec_offset: 4813 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4814 DW_DLV_OK) { 4815 warnx("dwarf_global_formref failed: %s", 4816 dwarf_errmsg(de)); 4817 continue; 4818 } 4819 if (form == DW_FORM_ref_addr) 4820 printf("<0x%jx>", (uintmax_t) v_off); 4821 else 4822 printf("0x%jx", (uintmax_t) v_off); 4823 break; 4824 4825 case DW_FORM_ref1: 4826 case DW_FORM_ref2: 4827 case DW_FORM_ref4: 4828 case DW_FORM_ref8: 4829 case DW_FORM_ref_udata: 4830 if (dwarf_formref(attr_list[i], &v_off, &de) != 4831 DW_DLV_OK) { 4832 warnx("dwarf_formref failed: %s", 4833 dwarf_errmsg(de)); 4834 continue; 4835 } 4836 v_off += cuoff; 4837 printf("<0x%jx>", (uintmax_t) v_off); 4838 break; 4839 4840 case DW_FORM_addr: 4841 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4842 DW_DLV_OK) { 4843 warnx("dwarf_formaddr failed: %s", 4844 dwarf_errmsg(de)); 4845 continue; 4846 } 4847 printf("%#jx", (uintmax_t) v_addr); 4848 break; 4849 4850 case DW_FORM_data1: 4851 case DW_FORM_data2: 4852 case DW_FORM_data4: 4853 case DW_FORM_data8: 4854 case DW_FORM_udata: 4855 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4856 DW_DLV_OK) { 4857 warnx("dwarf_formudata failed: %s", 4858 dwarf_errmsg(de)); 4859 continue; 4860 } 4861 if (attr == DW_AT_high_pc) 4862 printf("0x%jx", (uintmax_t) v_udata); 4863 else 4864 printf("%ju", (uintmax_t) v_udata); 4865 break; 4866 4867 case DW_FORM_sdata: 4868 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4869 DW_DLV_OK) { 4870 warnx("dwarf_formudata failed: %s", 4871 dwarf_errmsg(de)); 4872 continue; 4873 } 4874 printf("%jd", (intmax_t) v_sdata); 4875 break; 4876 4877 case DW_FORM_flag: 4878 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4879 DW_DLV_OK) { 4880 warnx("dwarf_formflag failed: %s", 4881 dwarf_errmsg(de)); 4882 continue; 4883 } 4884 printf("%jd", (intmax_t) v_bool); 4885 break; 4886 4887 case DW_FORM_flag_present: 4888 putchar('1'); 4889 break; 4890 4891 case DW_FORM_string: 4892 case DW_FORM_strp: 4893 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4894 DW_DLV_OK) { 4895 warnx("dwarf_formstring failed: %s", 4896 dwarf_errmsg(de)); 4897 continue; 4898 } 4899 if (form == DW_FORM_string) 4900 printf("%s", v_str); 4901 else 4902 printf("(indirect string) %s", v_str); 4903 break; 4904 4905 case DW_FORM_block: 4906 case DW_FORM_block1: 4907 case DW_FORM_block2: 4908 case DW_FORM_block4: 4909 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4910 DW_DLV_OK) { 4911 warnx("dwarf_formblock failed: %s", 4912 dwarf_errmsg(de)); 4913 continue; 4914 } 4915 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4916 b = v_block->bl_data; 4917 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4918 printf(" %x", b[j]); 4919 printf("\t("); 4920 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4921 putchar(')'); 4922 break; 4923 4924 case DW_FORM_exprloc: 4925 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 4926 &de) != DW_DLV_OK) { 4927 warnx("dwarf_formexprloc failed: %s", 4928 dwarf_errmsg(de)); 4929 continue; 4930 } 4931 printf("%ju byte block:", (uintmax_t) v_udata); 4932 b = v_expr; 4933 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 4934 printf(" %x", b[j]); 4935 printf("\t("); 4936 dump_dwarf_block(re, v_expr, v_udata); 4937 putchar(')'); 4938 break; 4939 4940 case DW_FORM_ref_sig8: 4941 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 4942 DW_DLV_OK) { 4943 warnx("dwarf_formsig8 failed: %s", 4944 dwarf_errmsg(de)); 4945 continue; 4946 } 4947 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 4948 v_sig = re->dw_decode(&p, 8); 4949 printf("signature: 0x%jx", (uintmax_t) v_sig); 4950 } 4951 switch (attr) { 4952 case DW_AT_encoding: 4953 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4954 DW_DLV_OK) 4955 break; 4956 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4957 ate_str = "DW_ATE_UNKNOWN"; 4958 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4959 break; 4960 4961 case DW_AT_language: 4962 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 4963 DW_DLV_OK) 4964 break; 4965 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 4966 break; 4967 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 4968 break; 4969 4970 case DW_AT_location: 4971 case DW_AT_string_length: 4972 case DW_AT_return_addr: 4973 case DW_AT_data_member_location: 4974 case DW_AT_frame_base: 4975 case DW_AT_segment: 4976 case DW_AT_static_link: 4977 case DW_AT_use_location: 4978 case DW_AT_vtable_elem_location: 4979 switch (form) { 4980 case DW_FORM_data4: 4981 case DW_FORM_data8: 4982 case DW_FORM_sec_offset: 4983 printf("\t(location list)"); 4984 break; 4985 default: 4986 break; 4987 } 4988 4989 default: 4990 break; 4991 } 4992 putchar('\n'); 4993 } 4994 4995 4996 cont_search: 4997 /* Search children. */ 4998 ret = dwarf_child(die, &ret_die, &de); 4999 if (ret == DW_DLV_ERROR) 5000 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5001 else if (ret == DW_DLV_OK) 5002 dump_dwarf_die(re, ret_die, level + 1); 5003 5004 /* Search sibling. */ 5005 is_info = dwarf_get_die_infotypes_flag(die); 5006 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5007 if (ret == DW_DLV_ERROR) 5008 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5009 else if (ret == DW_DLV_OK) 5010 dump_dwarf_die(re, ret_die, level); 5011 5012 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5013 } 5014 5015 static void 5016 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5017 Dwarf_Half ver) 5018 { 5019 5020 re->cu_psize = psize; 5021 re->cu_osize = osize; 5022 re->cu_ver = ver; 5023 } 5024 5025 static void 5026 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5027 { 5028 struct section *s; 5029 Dwarf_Die die; 5030 Dwarf_Error de; 5031 Dwarf_Half tag, version, pointer_size, off_size; 5032 Dwarf_Off cu_offset, cu_length; 5033 Dwarf_Off aboff; 5034 Dwarf_Unsigned typeoff; 5035 Dwarf_Sig8 sig8; 5036 Dwarf_Unsigned sig; 5037 uint8_t *p; 5038 const char *sn; 5039 int i, ret; 5040 5041 sn = is_info ? ".debug_info" : ".debug_types"; 5042 5043 s = NULL; 5044 for (i = 0; (size_t) i < re->shnum; i++) { 5045 s = &re->sl[i]; 5046 if (s->name != NULL && !strcmp(s->name, sn)) 5047 break; 5048 } 5049 if ((size_t) i >= re->shnum) 5050 return; 5051 5052 do { 5053 printf("\nDump of debug contents of section %s:\n", sn); 5054 5055 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5056 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5057 &typeoff, NULL, &de)) == DW_DLV_OK) { 5058 set_cu_context(re, pointer_size, off_size, version); 5059 die = NULL; 5060 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5061 &de) == DW_DLV_OK) { 5062 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5063 warnx("dwarf_tag failed: %s", 5064 dwarf_errmsg(de)); 5065 continue; 5066 } 5067 /* XXX: What about DW_TAG_partial_unit? */ 5068 if ((is_info && tag == DW_TAG_compile_unit) || 5069 (!is_info && tag == DW_TAG_type_unit)) 5070 break; 5071 } 5072 if (die == NULL && is_info) { 5073 warnx("could not find DW_TAG_compile_unit " 5074 "die"); 5075 continue; 5076 } else if (die == NULL && !is_info) { 5077 warnx("could not find DW_TAG_type_unit die"); 5078 continue; 5079 } 5080 5081 if (dwarf_die_CU_offset_range(die, &cu_offset, 5082 &cu_length, &de) != DW_DLV_OK) { 5083 warnx("dwarf_die_CU_offset failed: %s", 5084 dwarf_errmsg(de)); 5085 continue; 5086 } 5087 5088 cu_length -= off_size == 4 ? 4 : 12; 5089 5090 sig = 0; 5091 if (!is_info) { 5092 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5093 sig = re->dw_decode(&p, 8); 5094 } 5095 5096 printf("\n Type Unit @ offset 0x%jx:\n", 5097 (uintmax_t) cu_offset); 5098 printf(" Length:\t\t%#jx (%d-bit)\n", 5099 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5100 printf(" Version:\t\t%u\n", version); 5101 printf(" Abbrev Offset:\t0x%jx\n", 5102 (uintmax_t) aboff); 5103 printf(" Pointer Size:\t%u\n", pointer_size); 5104 if (!is_info) { 5105 printf(" Signature:\t\t0x%016jx\n", 5106 (uintmax_t) sig); 5107 printf(" Type Offset:\t0x%jx\n", 5108 (uintmax_t) typeoff); 5109 } 5110 5111 dump_dwarf_die(re, die, 0); 5112 } 5113 if (ret == DW_DLV_ERROR) 5114 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5115 if (is_info) 5116 break; 5117 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5118 } 5119 5120 static void 5121 dump_dwarf_abbrev(struct readelf *re) 5122 { 5123 Dwarf_Abbrev ab; 5124 Dwarf_Off aboff, atoff; 5125 Dwarf_Unsigned length, attr_count; 5126 Dwarf_Signed flag, form; 5127 Dwarf_Half tag, attr; 5128 Dwarf_Error de; 5129 const char *tag_str, *attr_str, *form_str; 5130 char unk_tag[32], unk_attr[32], unk_form[32]; 5131 int i, j, ret; 5132 5133 printf("\nContents of section .debug_abbrev:\n\n"); 5134 5135 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5136 NULL, NULL, &de)) == DW_DLV_OK) { 5137 printf(" Number TAG\n"); 5138 i = 0; 5139 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5140 &attr_count, &de)) == DW_DLV_OK) { 5141 if (length == 1) { 5142 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5143 break; 5144 } 5145 aboff += length; 5146 printf("%4d", ++i); 5147 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5148 warnx("dwarf_get_abbrev_tag failed: %s", 5149 dwarf_errmsg(de)); 5150 goto next_abbrev; 5151 } 5152 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5153 snprintf(unk_tag, sizeof(unk_tag), 5154 "[Unknown Tag: %#x]", tag); 5155 tag_str = unk_tag; 5156 } 5157 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5158 DW_DLV_OK) { 5159 warnx("dwarf_get_abbrev_children_flag failed:" 5160 " %s", dwarf_errmsg(de)); 5161 goto next_abbrev; 5162 } 5163 printf(" %s %s\n", tag_str, 5164 flag ? "[has children]" : "[no children]"); 5165 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5166 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5167 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5168 warnx("dwarf_get_abbrev_entry failed:" 5169 " %s", dwarf_errmsg(de)); 5170 continue; 5171 } 5172 if (dwarf_get_AT_name(attr, &attr_str) != 5173 DW_DLV_OK) { 5174 snprintf(unk_attr, sizeof(unk_attr), 5175 "[Unknown AT: %#x]", attr); 5176 attr_str = unk_attr; 5177 } 5178 if (dwarf_get_FORM_name(form, &form_str) != 5179 DW_DLV_OK) { 5180 snprintf(unk_form, sizeof(unk_form), 5181 "[Unknown Form: %#x]", 5182 (Dwarf_Half) form); 5183 form_str = unk_form; 5184 } 5185 printf(" %-18s %s\n", attr_str, form_str); 5186 } 5187 next_abbrev: 5188 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5189 } 5190 if (ret != DW_DLV_OK) 5191 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5192 } 5193 if (ret == DW_DLV_ERROR) 5194 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5195 } 5196 5197 static void 5198 dump_dwarf_pubnames(struct readelf *re) 5199 { 5200 struct section *s; 5201 Dwarf_Off die_off; 5202 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5203 Dwarf_Signed cnt; 5204 Dwarf_Global *globs; 5205 Dwarf_Half nt_version; 5206 Dwarf_Error de; 5207 Elf_Data *d; 5208 char *glob_name; 5209 int i, dwarf_size, elferr; 5210 5211 printf("\nContents of the .debug_pubnames section:\n"); 5212 5213 s = NULL; 5214 for (i = 0; (size_t) i < re->shnum; i++) { 5215 s = &re->sl[i]; 5216 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5217 break; 5218 } 5219 if ((size_t) i >= re->shnum) 5220 return; 5221 5222 (void) elf_errno(); 5223 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5224 elferr = elf_errno(); 5225 if (elferr != 0) 5226 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5227 return; 5228 } 5229 if (d->d_size <= 0) 5230 return; 5231 5232 /* Read in .debug_pubnames section table header. */ 5233 offset = 0; 5234 length = re->dw_read(d, &offset, 4); 5235 if (length == 0xffffffff) { 5236 dwarf_size = 8; 5237 length = re->dw_read(d, &offset, 8); 5238 } else 5239 dwarf_size = 4; 5240 5241 if (length > d->d_size - offset) { 5242 warnx("invalid .dwarf_pubnames section"); 5243 return; 5244 } 5245 5246 nt_version = re->dw_read(d, &offset, 2); 5247 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5248 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5249 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5250 printf(" Version:\t\t\t\t%u\n", nt_version); 5251 printf(" Offset into .debug_info section:\t%ju\n", 5252 (uintmax_t) nt_cu_offset); 5253 printf(" Size of area in .debug_info section:\t%ju\n", 5254 (uintmax_t) nt_cu_length); 5255 5256 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5257 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5258 return; 5259 } 5260 5261 printf("\n Offset Name\n"); 5262 for (i = 0; i < cnt; i++) { 5263 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5264 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5265 continue; 5266 } 5267 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5268 DW_DLV_OK) { 5269 warnx("dwarf_global_die_offset failed: %s", 5270 dwarf_errmsg(de)); 5271 continue; 5272 } 5273 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5274 } 5275 } 5276 5277 static void 5278 dump_dwarf_aranges(struct readelf *re) 5279 { 5280 struct section *s; 5281 Dwarf_Arange *aranges; 5282 Dwarf_Addr start; 5283 Dwarf_Unsigned offset, length, as_cu_offset; 5284 Dwarf_Off die_off; 5285 Dwarf_Signed cnt; 5286 Dwarf_Half as_version, as_addrsz, as_segsz; 5287 Dwarf_Error de; 5288 Elf_Data *d; 5289 int i, dwarf_size, elferr; 5290 5291 printf("\nContents of section .debug_aranges:\n"); 5292 5293 s = NULL; 5294 for (i = 0; (size_t) i < re->shnum; i++) { 5295 s = &re->sl[i]; 5296 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5297 break; 5298 } 5299 if ((size_t) i >= re->shnum) 5300 return; 5301 5302 (void) elf_errno(); 5303 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5304 elferr = elf_errno(); 5305 if (elferr != 0) 5306 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5307 return; 5308 } 5309 if (d->d_size <= 0) 5310 return; 5311 5312 /* Read in the .debug_aranges section table header. */ 5313 offset = 0; 5314 length = re->dw_read(d, &offset, 4); 5315 if (length == 0xffffffff) { 5316 dwarf_size = 8; 5317 length = re->dw_read(d, &offset, 8); 5318 } else 5319 dwarf_size = 4; 5320 5321 if (length > d->d_size - offset) { 5322 warnx("invalid .dwarf_aranges section"); 5323 return; 5324 } 5325 5326 as_version = re->dw_read(d, &offset, 2); 5327 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5328 as_addrsz = re->dw_read(d, &offset, 1); 5329 as_segsz = re->dw_read(d, &offset, 1); 5330 5331 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5332 printf(" Version:\t\t\t%u\n", as_version); 5333 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5334 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5335 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5336 5337 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5338 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5339 return; 5340 } 5341 5342 printf("\n Address Length\n"); 5343 for (i = 0; i < cnt; i++) { 5344 if (dwarf_get_arange_info(aranges[i], &start, &length, 5345 &die_off, &de) != DW_DLV_OK) { 5346 warnx("dwarf_get_arange_info failed: %s", 5347 dwarf_errmsg(de)); 5348 continue; 5349 } 5350 printf(" %08jx %ju\n", (uintmax_t) start, 5351 (uintmax_t) length); 5352 } 5353 } 5354 5355 static void 5356 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5357 { 5358 Dwarf_Attribute *attr_list; 5359 Dwarf_Ranges *ranges; 5360 Dwarf_Die ret_die; 5361 Dwarf_Error de; 5362 Dwarf_Addr base0; 5363 Dwarf_Half attr; 5364 Dwarf_Signed attr_count, cnt; 5365 Dwarf_Unsigned off, bytecnt; 5366 int i, j, ret; 5367 5368 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5369 DW_DLV_OK) { 5370 if (ret == DW_DLV_ERROR) 5371 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5372 goto cont_search; 5373 } 5374 5375 for (i = 0; i < attr_count; i++) { 5376 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5377 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5378 continue; 5379 } 5380 if (attr != DW_AT_ranges) 5381 continue; 5382 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5383 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5384 continue; 5385 } 5386 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5387 &bytecnt, &de) != DW_DLV_OK) 5388 continue; 5389 base0 = base; 5390 for (j = 0; j < cnt; j++) { 5391 printf(" %08jx ", (uintmax_t) off); 5392 if (ranges[j].dwr_type == DW_RANGES_END) { 5393 printf("%s\n", "<End of list>"); 5394 continue; 5395 } else if (ranges[j].dwr_type == 5396 DW_RANGES_ADDRESS_SELECTION) { 5397 base0 = ranges[j].dwr_addr2; 5398 continue; 5399 } 5400 if (re->ec == ELFCLASS32) 5401 printf("%08jx %08jx\n", 5402 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5403 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5404 else 5405 printf("%016jx %016jx\n", 5406 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5407 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5408 } 5409 } 5410 5411 cont_search: 5412 /* Search children. */ 5413 ret = dwarf_child(die, &ret_die, &de); 5414 if (ret == DW_DLV_ERROR) 5415 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5416 else if (ret == DW_DLV_OK) 5417 dump_dwarf_ranges_foreach(re, ret_die, base); 5418 5419 /* Search sibling. */ 5420 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5421 if (ret == DW_DLV_ERROR) 5422 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5423 else if (ret == DW_DLV_OK) 5424 dump_dwarf_ranges_foreach(re, ret_die, base); 5425 } 5426 5427 static void 5428 dump_dwarf_ranges(struct readelf *re) 5429 { 5430 Dwarf_Ranges *ranges; 5431 Dwarf_Die die; 5432 Dwarf_Signed cnt; 5433 Dwarf_Unsigned bytecnt; 5434 Dwarf_Half tag; 5435 Dwarf_Error de; 5436 Dwarf_Unsigned lowpc; 5437 int ret; 5438 5439 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5440 DW_DLV_OK) 5441 return; 5442 5443 printf("Contents of the .debug_ranges section:\n\n"); 5444 if (re->ec == ELFCLASS32) 5445 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5446 else 5447 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5448 5449 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5450 NULL, &de)) == DW_DLV_OK) { 5451 die = NULL; 5452 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5453 continue; 5454 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5455 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5456 continue; 5457 } 5458 /* XXX: What about DW_TAG_partial_unit? */ 5459 lowpc = 0; 5460 if (tag == DW_TAG_compile_unit) { 5461 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5462 &de) != DW_DLV_OK) 5463 lowpc = 0; 5464 } 5465 5466 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5467 } 5468 putchar('\n'); 5469 } 5470 5471 static void 5472 dump_dwarf_macinfo(struct readelf *re) 5473 { 5474 Dwarf_Unsigned offset; 5475 Dwarf_Signed cnt; 5476 Dwarf_Macro_Details *md; 5477 Dwarf_Error de; 5478 const char *mi_str; 5479 char unk_mi[32]; 5480 int i; 5481 5482 #define _MAX_MACINFO_ENTRY 65535 5483 5484 printf("\nContents of section .debug_macinfo:\n\n"); 5485 5486 offset = 0; 5487 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5488 &cnt, &md, &de) == DW_DLV_OK) { 5489 for (i = 0; i < cnt; i++) { 5490 offset = md[i].dmd_offset + 1; 5491 if (md[i].dmd_type == 0) 5492 break; 5493 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5494 DW_DLV_OK) { 5495 snprintf(unk_mi, sizeof(unk_mi), 5496 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5497 mi_str = unk_mi; 5498 } 5499 printf(" %s", mi_str); 5500 switch (md[i].dmd_type) { 5501 case DW_MACINFO_define: 5502 case DW_MACINFO_undef: 5503 printf(" - lineno : %jd macro : %s\n", 5504 (intmax_t) md[i].dmd_lineno, 5505 md[i].dmd_macro); 5506 break; 5507 case DW_MACINFO_start_file: 5508 printf(" - lineno : %jd filenum : %jd\n", 5509 (intmax_t) md[i].dmd_lineno, 5510 (intmax_t) md[i].dmd_fileindex); 5511 break; 5512 default: 5513 putchar('\n'); 5514 break; 5515 } 5516 } 5517 } 5518 5519 #undef _MAX_MACINFO_ENTRY 5520 } 5521 5522 static void 5523 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5524 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5525 Dwarf_Debug dbg) 5526 { 5527 Dwarf_Frame_Op *oplist; 5528 Dwarf_Signed opcnt, delta; 5529 Dwarf_Small op; 5530 Dwarf_Error de; 5531 const char *op_str; 5532 char unk_op[32]; 5533 int i; 5534 5535 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5536 &opcnt, &de) != DW_DLV_OK) { 5537 warnx("dwarf_expand_frame_instructions failed: %s", 5538 dwarf_errmsg(de)); 5539 return; 5540 } 5541 5542 for (i = 0; i < opcnt; i++) { 5543 if (oplist[i].fp_base_op != 0) 5544 op = oplist[i].fp_base_op << 6; 5545 else 5546 op = oplist[i].fp_extended_op; 5547 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5548 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5549 op); 5550 op_str = unk_op; 5551 } 5552 printf(" %s", op_str); 5553 switch (op) { 5554 case DW_CFA_advance_loc: 5555 delta = oplist[i].fp_offset * caf; 5556 pc += delta; 5557 printf(": %ju to %08jx", (uintmax_t) delta, 5558 (uintmax_t) pc); 5559 break; 5560 case DW_CFA_offset: 5561 case DW_CFA_offset_extended: 5562 case DW_CFA_offset_extended_sf: 5563 delta = oplist[i].fp_offset * daf; 5564 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5565 dwarf_regname(re, oplist[i].fp_register), 5566 (intmax_t) delta); 5567 break; 5568 case DW_CFA_restore: 5569 printf(": r%u (%s)", oplist[i].fp_register, 5570 dwarf_regname(re, oplist[i].fp_register)); 5571 break; 5572 case DW_CFA_set_loc: 5573 pc = oplist[i].fp_offset; 5574 printf(": to %08jx", (uintmax_t) pc); 5575 break; 5576 case DW_CFA_advance_loc1: 5577 case DW_CFA_advance_loc2: 5578 case DW_CFA_advance_loc4: 5579 pc += oplist[i].fp_offset; 5580 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5581 (uintmax_t) pc); 5582 break; 5583 case DW_CFA_def_cfa: 5584 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5585 dwarf_regname(re, oplist[i].fp_register), 5586 (uintmax_t) oplist[i].fp_offset); 5587 break; 5588 case DW_CFA_def_cfa_sf: 5589 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5590 dwarf_regname(re, oplist[i].fp_register), 5591 (intmax_t) (oplist[i].fp_offset * daf)); 5592 break; 5593 case DW_CFA_def_cfa_register: 5594 printf(": r%u (%s)", oplist[i].fp_register, 5595 dwarf_regname(re, oplist[i].fp_register)); 5596 break; 5597 case DW_CFA_def_cfa_offset: 5598 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5599 break; 5600 case DW_CFA_def_cfa_offset_sf: 5601 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5602 break; 5603 default: 5604 break; 5605 } 5606 putchar('\n'); 5607 } 5608 5609 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5610 } 5611 5612 static char * 5613 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5614 { 5615 static char rs[16]; 5616 5617 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5618 snprintf(rs, sizeof(rs), "%c", 'u'); 5619 else if (reg == DW_FRAME_CFA_COL) 5620 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5621 else 5622 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5623 (intmax_t) off); 5624 5625 return (rs); 5626 } 5627 5628 static int 5629 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5630 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5631 { 5632 Dwarf_Regtable rt; 5633 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5634 Dwarf_Error de; 5635 char *vec; 5636 int i; 5637 5638 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5639 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5640 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5641 #define RT(x) rt.rules[(x)] 5642 5643 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5644 if (vec == NULL) 5645 err(EXIT_FAILURE, "calloc failed"); 5646 5647 pre_pc = ~((Dwarf_Addr) 0); 5648 cur_pc = pc; 5649 end_pc = pc + func_len; 5650 for (; cur_pc < end_pc; cur_pc++) { 5651 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5652 &de) != DW_DLV_OK) { 5653 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5654 dwarf_errmsg(de)); 5655 return (-1); 5656 } 5657 if (row_pc == pre_pc) 5658 continue; 5659 pre_pc = row_pc; 5660 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5661 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5662 BIT_SET(vec, i); 5663 } 5664 } 5665 5666 printf(" LOC CFA "); 5667 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5668 if (BIT_ISSET(vec, i)) { 5669 if ((Dwarf_Half) i == cie_ra) 5670 printf("ra "); 5671 else 5672 printf("%-5s", 5673 dwarf_regname(re, (unsigned int) i)); 5674 } 5675 } 5676 putchar('\n'); 5677 5678 pre_pc = ~((Dwarf_Addr) 0); 5679 cur_pc = pc; 5680 end_pc = pc + func_len; 5681 for (; cur_pc < end_pc; cur_pc++) { 5682 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5683 &de) != DW_DLV_OK) { 5684 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5685 dwarf_errmsg(de)); 5686 return (-1); 5687 } 5688 if (row_pc == pre_pc) 5689 continue; 5690 pre_pc = row_pc; 5691 printf("%08jx ", (uintmax_t) row_pc); 5692 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5693 RT(0).dw_offset)); 5694 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5695 if (BIT_ISSET(vec, i)) { 5696 printf("%-5s", get_regoff_str(re, 5697 RT(i).dw_regnum, RT(i).dw_offset)); 5698 } 5699 } 5700 putchar('\n'); 5701 } 5702 5703 free(vec); 5704 5705 return (0); 5706 5707 #undef BIT_SET 5708 #undef BIT_CLR 5709 #undef BIT_ISSET 5710 #undef RT 5711 } 5712 5713 static void 5714 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5715 { 5716 Dwarf_Cie *cie_list, cie, pre_cie; 5717 Dwarf_Fde *fde_list, fde; 5718 Dwarf_Off cie_offset, fde_offset; 5719 Dwarf_Unsigned cie_length, fde_instlen; 5720 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5721 Dwarf_Signed cie_count, fde_count, cie_index; 5722 Dwarf_Addr low_pc; 5723 Dwarf_Half cie_ra; 5724 Dwarf_Small cie_version; 5725 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5726 char *cie_aug, c; 5727 int i, eh_frame; 5728 Dwarf_Error de; 5729 5730 printf("\nThe section %s contains:\n\n", s->name); 5731 5732 if (!strcmp(s->name, ".debug_frame")) { 5733 eh_frame = 0; 5734 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5735 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5736 warnx("dwarf_get_fde_list failed: %s", 5737 dwarf_errmsg(de)); 5738 return; 5739 } 5740 } else if (!strcmp(s->name, ".eh_frame")) { 5741 eh_frame = 1; 5742 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5743 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5744 warnx("dwarf_get_fde_list_eh failed: %s", 5745 dwarf_errmsg(de)); 5746 return; 5747 } 5748 } else 5749 return; 5750 5751 pre_cie = NULL; 5752 for (i = 0; i < fde_count; i++) { 5753 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5754 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5755 continue; 5756 } 5757 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5758 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5759 continue; 5760 } 5761 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5762 &fde_length, &cie_offset, &cie_index, &fde_offset, 5763 &de) != DW_DLV_OK) { 5764 warnx("dwarf_get_fde_range failed: %s", 5765 dwarf_errmsg(de)); 5766 continue; 5767 } 5768 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5769 &de) != DW_DLV_OK) { 5770 warnx("dwarf_get_fde_instr_bytes failed: %s", 5771 dwarf_errmsg(de)); 5772 continue; 5773 } 5774 if (pre_cie == NULL || cie != pre_cie) { 5775 pre_cie = cie; 5776 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5777 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5778 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5779 warnx("dwarf_get_cie_info failed: %s", 5780 dwarf_errmsg(de)); 5781 continue; 5782 } 5783 printf("%08jx %08jx %8.8jx CIE", 5784 (uintmax_t) cie_offset, 5785 (uintmax_t) cie_length, 5786 (uintmax_t) (eh_frame ? 0 : ~0U)); 5787 if (!alt) { 5788 putchar('\n'); 5789 printf(" Version:\t\t\t%u\n", cie_version); 5790 printf(" Augmentation:\t\t\t\""); 5791 while ((c = *cie_aug++) != '\0') 5792 putchar(c); 5793 printf("\"\n"); 5794 printf(" Code alignment factor:\t%ju\n", 5795 (uintmax_t) cie_caf); 5796 printf(" Data alignment factor:\t%jd\n", 5797 (intmax_t) cie_daf); 5798 printf(" Return address column:\t%ju\n", 5799 (uintmax_t) cie_ra); 5800 putchar('\n'); 5801 dump_dwarf_frame_inst(re, cie, cie_inst, 5802 cie_instlen, cie_caf, cie_daf, 0, 5803 re->dbg); 5804 putchar('\n'); 5805 } else { 5806 printf(" \""); 5807 while ((c = *cie_aug++) != '\0') 5808 putchar(c); 5809 putchar('"'); 5810 printf(" cf=%ju df=%jd ra=%ju\n", 5811 (uintmax_t) cie_caf, 5812 (uintmax_t) cie_daf, 5813 (uintmax_t) cie_ra); 5814 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5815 cie_ra); 5816 putchar('\n'); 5817 } 5818 } 5819 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5820 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5821 (uintmax_t) cie_offset, 5822 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5823 cie_offset), 5824 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5825 if (!alt) 5826 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5827 cie_caf, cie_daf, low_pc, re->dbg); 5828 else 5829 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5830 cie_ra); 5831 putchar('\n'); 5832 } 5833 } 5834 5835 static void 5836 dump_dwarf_frame(struct readelf *re, int alt) 5837 { 5838 struct section *s; 5839 int i; 5840 5841 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5842 5843 for (i = 0; (size_t) i < re->shnum; i++) { 5844 s = &re->sl[i]; 5845 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5846 !strcmp(s->name, ".eh_frame"))) 5847 dump_dwarf_frame_section(re, s, alt); 5848 } 5849 } 5850 5851 static void 5852 dump_dwarf_str(struct readelf *re) 5853 { 5854 struct section *s; 5855 Elf_Data *d; 5856 unsigned char *p; 5857 int elferr, end, i, j; 5858 5859 printf("\nContents of section .debug_str:\n"); 5860 5861 s = NULL; 5862 for (i = 0; (size_t) i < re->shnum; i++) { 5863 s = &re->sl[i]; 5864 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5865 break; 5866 } 5867 if ((size_t) i >= re->shnum) 5868 return; 5869 5870 (void) elf_errno(); 5871 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5872 elferr = elf_errno(); 5873 if (elferr != 0) 5874 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5875 return; 5876 } 5877 if (d->d_size <= 0) 5878 return; 5879 5880 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5881 printf(" 0x%08x", (unsigned int) i); 5882 if ((size_t) i + 16 > d->d_size) 5883 end = d->d_size; 5884 else 5885 end = i + 16; 5886 for (j = i; j < i + 16; j++) { 5887 if ((j - i) % 4 == 0) 5888 putchar(' '); 5889 if (j >= end) { 5890 printf(" "); 5891 continue; 5892 } 5893 printf("%02x", (uint8_t) p[j]); 5894 } 5895 putchar(' '); 5896 for (j = i; j < end; j++) { 5897 if (isprint(p[j])) 5898 putchar(p[j]); 5899 else if (p[j] == 0) 5900 putchar('.'); 5901 else 5902 putchar(' '); 5903 } 5904 putchar('\n'); 5905 } 5906 } 5907 5908 struct loc_at { 5909 Dwarf_Attribute la_at; 5910 Dwarf_Unsigned la_off; 5911 Dwarf_Unsigned la_lowpc; 5912 Dwarf_Half la_cu_psize; 5913 Dwarf_Half la_cu_osize; 5914 Dwarf_Half la_cu_ver; 5915 TAILQ_ENTRY(loc_at) la_next; 5916 }; 5917 5918 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5919 5920 static void 5921 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5922 { 5923 Dwarf_Attribute *attr_list; 5924 Dwarf_Die ret_die; 5925 Dwarf_Unsigned off; 5926 Dwarf_Off ref; 5927 Dwarf_Signed attr_count; 5928 Dwarf_Half attr, form; 5929 Dwarf_Bool is_info; 5930 Dwarf_Error de; 5931 struct loc_at *la, *nla; 5932 int i, ret; 5933 5934 is_info = dwarf_get_die_infotypes_flag(die); 5935 5936 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5937 DW_DLV_OK) { 5938 if (ret == DW_DLV_ERROR) 5939 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5940 goto cont_search; 5941 } 5942 for (i = 0; i < attr_count; i++) { 5943 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5944 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5945 continue; 5946 } 5947 if (attr != DW_AT_location && 5948 attr != DW_AT_string_length && 5949 attr != DW_AT_return_addr && 5950 attr != DW_AT_data_member_location && 5951 attr != DW_AT_frame_base && 5952 attr != DW_AT_segment && 5953 attr != DW_AT_static_link && 5954 attr != DW_AT_use_location && 5955 attr != DW_AT_vtable_elem_location) 5956 continue; 5957 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5958 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5959 continue; 5960 } 5961 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 5962 if (dwarf_formudata(attr_list[i], &off, &de) != 5963 DW_DLV_OK) { 5964 warnx("dwarf_formudata failed: %s", 5965 dwarf_errmsg(de)); 5966 continue; 5967 } 5968 } else if (form == DW_FORM_sec_offset) { 5969 if (dwarf_global_formref(attr_list[i], &ref, &de) != 5970 DW_DLV_OK) { 5971 warnx("dwarf_global_formref failed: %s", 5972 dwarf_errmsg(de)); 5973 continue; 5974 } 5975 off = ref; 5976 } else 5977 continue; 5978 5979 TAILQ_FOREACH(la, &lalist, la_next) { 5980 if (off == la->la_off) 5981 break; 5982 if (off < la->la_off) { 5983 if ((nla = malloc(sizeof(*nla))) == NULL) 5984 err(EXIT_FAILURE, "malloc failed"); 5985 nla->la_at = attr_list[i]; 5986 nla->la_off = off; 5987 nla->la_lowpc = lowpc; 5988 nla->la_cu_psize = re->cu_psize; 5989 nla->la_cu_osize = re->cu_osize; 5990 nla->la_cu_ver = re->cu_ver; 5991 TAILQ_INSERT_BEFORE(la, nla, la_next); 5992 break; 5993 } 5994 } 5995 if (la == NULL) { 5996 if ((nla = malloc(sizeof(*nla))) == NULL) 5997 err(EXIT_FAILURE, "malloc failed"); 5998 nla->la_at = attr_list[i]; 5999 nla->la_off = off; 6000 nla->la_lowpc = lowpc; 6001 nla->la_cu_psize = re->cu_psize; 6002 nla->la_cu_osize = re->cu_osize; 6003 nla->la_cu_ver = re->cu_ver; 6004 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6005 } 6006 } 6007 6008 cont_search: 6009 /* Search children. */ 6010 ret = dwarf_child(die, &ret_die, &de); 6011 if (ret == DW_DLV_ERROR) 6012 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6013 else if (ret == DW_DLV_OK) 6014 search_loclist_at(re, ret_die, lowpc); 6015 6016 /* Search sibling. */ 6017 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6018 if (ret == DW_DLV_ERROR) 6019 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6020 else if (ret == DW_DLV_OK) 6021 search_loclist_at(re, ret_die, lowpc); 6022 } 6023 6024 static void 6025 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6026 { 6027 const char *op_str; 6028 char unk_op[32]; 6029 uint8_t *b, n; 6030 int i; 6031 6032 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6033 DW_DLV_OK) { 6034 snprintf(unk_op, sizeof(unk_op), 6035 "[Unknown OP: %#x]", lr->lr_atom); 6036 op_str = unk_op; 6037 } 6038 6039 printf("%s", op_str); 6040 6041 switch (lr->lr_atom) { 6042 case DW_OP_reg0: 6043 case DW_OP_reg1: 6044 case DW_OP_reg2: 6045 case DW_OP_reg3: 6046 case DW_OP_reg4: 6047 case DW_OP_reg5: 6048 case DW_OP_reg6: 6049 case DW_OP_reg7: 6050 case DW_OP_reg8: 6051 case DW_OP_reg9: 6052 case DW_OP_reg10: 6053 case DW_OP_reg11: 6054 case DW_OP_reg12: 6055 case DW_OP_reg13: 6056 case DW_OP_reg14: 6057 case DW_OP_reg15: 6058 case DW_OP_reg16: 6059 case DW_OP_reg17: 6060 case DW_OP_reg18: 6061 case DW_OP_reg19: 6062 case DW_OP_reg20: 6063 case DW_OP_reg21: 6064 case DW_OP_reg22: 6065 case DW_OP_reg23: 6066 case DW_OP_reg24: 6067 case DW_OP_reg25: 6068 case DW_OP_reg26: 6069 case DW_OP_reg27: 6070 case DW_OP_reg28: 6071 case DW_OP_reg29: 6072 case DW_OP_reg30: 6073 case DW_OP_reg31: 6074 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6075 break; 6076 6077 case DW_OP_deref: 6078 case DW_OP_lit0: 6079 case DW_OP_lit1: 6080 case DW_OP_lit2: 6081 case DW_OP_lit3: 6082 case DW_OP_lit4: 6083 case DW_OP_lit5: 6084 case DW_OP_lit6: 6085 case DW_OP_lit7: 6086 case DW_OP_lit8: 6087 case DW_OP_lit9: 6088 case DW_OP_lit10: 6089 case DW_OP_lit11: 6090 case DW_OP_lit12: 6091 case DW_OP_lit13: 6092 case DW_OP_lit14: 6093 case DW_OP_lit15: 6094 case DW_OP_lit16: 6095 case DW_OP_lit17: 6096 case DW_OP_lit18: 6097 case DW_OP_lit19: 6098 case DW_OP_lit20: 6099 case DW_OP_lit21: 6100 case DW_OP_lit22: 6101 case DW_OP_lit23: 6102 case DW_OP_lit24: 6103 case DW_OP_lit25: 6104 case DW_OP_lit26: 6105 case DW_OP_lit27: 6106 case DW_OP_lit28: 6107 case DW_OP_lit29: 6108 case DW_OP_lit30: 6109 case DW_OP_lit31: 6110 case DW_OP_dup: 6111 case DW_OP_drop: 6112 case DW_OP_over: 6113 case DW_OP_swap: 6114 case DW_OP_rot: 6115 case DW_OP_xderef: 6116 case DW_OP_abs: 6117 case DW_OP_and: 6118 case DW_OP_div: 6119 case DW_OP_minus: 6120 case DW_OP_mod: 6121 case DW_OP_mul: 6122 case DW_OP_neg: 6123 case DW_OP_not: 6124 case DW_OP_or: 6125 case DW_OP_plus: 6126 case DW_OP_shl: 6127 case DW_OP_shr: 6128 case DW_OP_shra: 6129 case DW_OP_xor: 6130 case DW_OP_eq: 6131 case DW_OP_ge: 6132 case DW_OP_gt: 6133 case DW_OP_le: 6134 case DW_OP_lt: 6135 case DW_OP_ne: 6136 case DW_OP_nop: 6137 case DW_OP_push_object_address: 6138 case DW_OP_form_tls_address: 6139 case DW_OP_call_frame_cfa: 6140 case DW_OP_stack_value: 6141 case DW_OP_GNU_push_tls_address: 6142 case DW_OP_GNU_uninit: 6143 break; 6144 6145 case DW_OP_const1u: 6146 case DW_OP_pick: 6147 case DW_OP_deref_size: 6148 case DW_OP_xderef_size: 6149 case DW_OP_const2u: 6150 case DW_OP_bra: 6151 case DW_OP_skip: 6152 case DW_OP_const4u: 6153 case DW_OP_const8u: 6154 case DW_OP_constu: 6155 case DW_OP_plus_uconst: 6156 case DW_OP_regx: 6157 case DW_OP_piece: 6158 printf(": %ju", (uintmax_t) 6159 lr->lr_number); 6160 break; 6161 6162 case DW_OP_const1s: 6163 case DW_OP_const2s: 6164 case DW_OP_const4s: 6165 case DW_OP_const8s: 6166 case DW_OP_consts: 6167 printf(": %jd", (intmax_t) 6168 lr->lr_number); 6169 break; 6170 6171 case DW_OP_breg0: 6172 case DW_OP_breg1: 6173 case DW_OP_breg2: 6174 case DW_OP_breg3: 6175 case DW_OP_breg4: 6176 case DW_OP_breg5: 6177 case DW_OP_breg6: 6178 case DW_OP_breg7: 6179 case DW_OP_breg8: 6180 case DW_OP_breg9: 6181 case DW_OP_breg10: 6182 case DW_OP_breg11: 6183 case DW_OP_breg12: 6184 case DW_OP_breg13: 6185 case DW_OP_breg14: 6186 case DW_OP_breg15: 6187 case DW_OP_breg16: 6188 case DW_OP_breg17: 6189 case DW_OP_breg18: 6190 case DW_OP_breg19: 6191 case DW_OP_breg20: 6192 case DW_OP_breg21: 6193 case DW_OP_breg22: 6194 case DW_OP_breg23: 6195 case DW_OP_breg24: 6196 case DW_OP_breg25: 6197 case DW_OP_breg26: 6198 case DW_OP_breg27: 6199 case DW_OP_breg28: 6200 case DW_OP_breg29: 6201 case DW_OP_breg30: 6202 case DW_OP_breg31: 6203 printf(" (%s): %jd", 6204 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6205 (intmax_t) lr->lr_number); 6206 break; 6207 6208 case DW_OP_fbreg: 6209 printf(": %jd", (intmax_t) 6210 lr->lr_number); 6211 break; 6212 6213 case DW_OP_bregx: 6214 printf(": %ju (%s) %jd", 6215 (uintmax_t) lr->lr_number, 6216 dwarf_regname(re, (unsigned int) lr->lr_number), 6217 (intmax_t) lr->lr_number2); 6218 break; 6219 6220 case DW_OP_addr: 6221 case DW_OP_GNU_encoded_addr: 6222 printf(": %#jx", (uintmax_t) 6223 lr->lr_number); 6224 break; 6225 6226 case DW_OP_GNU_implicit_pointer: 6227 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6228 (intmax_t) lr->lr_number2); 6229 break; 6230 6231 case DW_OP_implicit_value: 6232 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6233 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6234 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6235 printf(" %x", b[i]); 6236 break; 6237 6238 case DW_OP_GNU_entry_value: 6239 printf(": ("); 6240 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6241 lr->lr_number); 6242 putchar(')'); 6243 break; 6244 6245 case DW_OP_GNU_const_type: 6246 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6247 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6248 n = *b; 6249 for (i = 1; (uint8_t) i < n; i++) 6250 printf(" %x", b[i]); 6251 break; 6252 6253 case DW_OP_GNU_regval_type: 6254 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6255 dwarf_regname(re, (unsigned int) lr->lr_number), 6256 (uintmax_t) lr->lr_number2); 6257 break; 6258 6259 case DW_OP_GNU_convert: 6260 case DW_OP_GNU_deref_type: 6261 case DW_OP_GNU_parameter_ref: 6262 case DW_OP_GNU_reinterpret: 6263 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6264 break; 6265 6266 default: 6267 break; 6268 } 6269 } 6270 6271 static void 6272 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6273 { 6274 Dwarf_Locdesc *llbuf; 6275 Dwarf_Signed lcnt; 6276 Dwarf_Error de; 6277 int i; 6278 6279 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6280 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6281 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6282 return; 6283 } 6284 6285 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6286 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6287 if (i < llbuf->ld_cents - 1) 6288 printf("; "); 6289 } 6290 6291 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6292 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6293 } 6294 6295 static void 6296 dump_dwarf_loclist(struct readelf *re) 6297 { 6298 Dwarf_Die die; 6299 Dwarf_Locdesc **llbuf; 6300 Dwarf_Unsigned lowpc; 6301 Dwarf_Signed lcnt; 6302 Dwarf_Half tag, version, pointer_size, off_size; 6303 Dwarf_Error de; 6304 struct loc_at *la; 6305 int i, j, ret, has_content; 6306 6307 /* Search .debug_info section. */ 6308 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6309 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6310 set_cu_context(re, pointer_size, off_size, version); 6311 die = NULL; 6312 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6313 continue; 6314 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6315 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6316 continue; 6317 } 6318 /* XXX: What about DW_TAG_partial_unit? */ 6319 lowpc = 0; 6320 if (tag == DW_TAG_compile_unit) { 6321 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6322 &lowpc, &de) != DW_DLV_OK) 6323 lowpc = 0; 6324 } 6325 6326 /* Search attributes for reference to .debug_loc section. */ 6327 search_loclist_at(re, die, lowpc); 6328 } 6329 if (ret == DW_DLV_ERROR) 6330 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6331 6332 /* Search .debug_types section. */ 6333 do { 6334 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6335 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6336 NULL, NULL, &de)) == DW_DLV_OK) { 6337 set_cu_context(re, pointer_size, off_size, version); 6338 die = NULL; 6339 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6340 DW_DLV_OK) 6341 continue; 6342 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6343 warnx("dwarf_tag failed: %s", 6344 dwarf_errmsg(de)); 6345 continue; 6346 } 6347 6348 lowpc = 0; 6349 if (tag == DW_TAG_type_unit) { 6350 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6351 &lowpc, &de) != DW_DLV_OK) 6352 lowpc = 0; 6353 } 6354 6355 /* 6356 * Search attributes for reference to .debug_loc 6357 * section. 6358 */ 6359 search_loclist_at(re, die, lowpc); 6360 } 6361 if (ret == DW_DLV_ERROR) 6362 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6363 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6364 6365 if (TAILQ_EMPTY(&lalist)) 6366 return; 6367 6368 has_content = 0; 6369 TAILQ_FOREACH(la, &lalist, la_next) { 6370 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6371 DW_DLV_OK) { 6372 if (ret != DW_DLV_NO_ENTRY) 6373 warnx("dwarf_loclist_n failed: %s", 6374 dwarf_errmsg(de)); 6375 continue; 6376 } 6377 if (!has_content) { 6378 has_content = 1; 6379 printf("\nContents of section .debug_loc:\n"); 6380 printf(" Offset Begin End Expression\n"); 6381 } 6382 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6383 la->la_cu_ver); 6384 for (i = 0; i < lcnt; i++) { 6385 printf(" %8.8jx ", (uintmax_t) la->la_off); 6386 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6387 printf("<End of list>\n"); 6388 continue; 6389 } 6390 6391 /* TODO: handle base selection entry. */ 6392 6393 printf("%8.8jx %8.8jx ", 6394 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6395 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6396 6397 putchar('('); 6398 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6399 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6400 if (j < llbuf[i]->ld_cents - 1) 6401 printf("; "); 6402 } 6403 putchar(')'); 6404 6405 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6406 printf(" (start == end)"); 6407 putchar('\n'); 6408 } 6409 for (i = 0; i < lcnt; i++) { 6410 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6411 DW_DLA_LOC_BLOCK); 6412 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6413 } 6414 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6415 } 6416 6417 if (!has_content) 6418 printf("\nSection '.debug_loc' has no debugging data.\n"); 6419 } 6420 6421 /* 6422 * Retrieve a string using string table section index and the string offset. 6423 */ 6424 static const char* 6425 get_string(struct readelf *re, int strtab, size_t off) 6426 { 6427 const char *name; 6428 6429 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6430 return (""); 6431 6432 return (name); 6433 } 6434 6435 /* 6436 * Retrieve the name of a symbol using the section index of the symbol 6437 * table and the index of the symbol within that table. 6438 */ 6439 static const char * 6440 get_symbol_name(struct readelf *re, int symtab, int i) 6441 { 6442 struct section *s; 6443 const char *name; 6444 GElf_Sym sym; 6445 Elf_Data *data; 6446 int elferr; 6447 6448 s = &re->sl[symtab]; 6449 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6450 return (""); 6451 (void) elf_errno(); 6452 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6453 elferr = elf_errno(); 6454 if (elferr != 0) 6455 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6456 return (""); 6457 } 6458 if (gelf_getsym(data, i, &sym) != &sym) 6459 return (""); 6460 /* Return section name for STT_SECTION symbol. */ 6461 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6462 if (sym.st_shndx < re->shnum && 6463 re->sl[sym.st_shndx].name != NULL) 6464 return (re->sl[sym.st_shndx].name); 6465 return (""); 6466 } 6467 if (s->link >= re->shnum || 6468 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6469 return (""); 6470 6471 return (name); 6472 } 6473 6474 static uint64_t 6475 get_symbol_value(struct readelf *re, int symtab, int i) 6476 { 6477 struct section *s; 6478 GElf_Sym sym; 6479 Elf_Data *data; 6480 int elferr; 6481 6482 s = &re->sl[symtab]; 6483 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6484 return (0); 6485 (void) elf_errno(); 6486 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6487 elferr = elf_errno(); 6488 if (elferr != 0) 6489 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6490 return (0); 6491 } 6492 if (gelf_getsym(data, i, &sym) != &sym) 6493 return (0); 6494 6495 return (sym.st_value); 6496 } 6497 6498 static void 6499 hex_dump(struct readelf *re) 6500 { 6501 struct section *s; 6502 Elf_Data *d; 6503 uint8_t *buf; 6504 size_t sz, nbytes; 6505 uint64_t addr; 6506 int elferr, i, j; 6507 6508 for (i = 1; (size_t) i < re->shnum; i++) { 6509 s = &re->sl[i]; 6510 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6511 continue; 6512 (void) elf_errno(); 6513 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6514 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6515 elferr = elf_errno(); 6516 if (elferr != 0) 6517 warnx("elf_getdata failed: %s", 6518 elf_errmsg(elferr)); 6519 continue; 6520 } 6521 (void) elf_errno(); 6522 if (d->d_size <= 0 || d->d_buf == NULL) { 6523 printf("\nSection '%s' has no data to dump.\n", 6524 s->name); 6525 continue; 6526 } 6527 buf = d->d_buf; 6528 sz = d->d_size; 6529 addr = s->addr; 6530 printf("\nHex dump of section '%s':\n", s->name); 6531 while (sz > 0) { 6532 printf(" 0x%8.8jx ", (uintmax_t)addr); 6533 nbytes = sz > 16? 16 : sz; 6534 for (j = 0; j < 16; j++) { 6535 if ((size_t)j < nbytes) 6536 printf("%2.2x", buf[j]); 6537 else 6538 printf(" "); 6539 if ((j & 3) == 3) 6540 printf(" "); 6541 } 6542 for (j = 0; (size_t)j < nbytes; j++) { 6543 if (isprint(buf[j])) 6544 printf("%c", buf[j]); 6545 else 6546 printf("."); 6547 } 6548 printf("\n"); 6549 buf += nbytes; 6550 addr += nbytes; 6551 sz -= nbytes; 6552 } 6553 } 6554 } 6555 6556 static void 6557 str_dump(struct readelf *re) 6558 { 6559 struct section *s; 6560 Elf_Data *d; 6561 unsigned char *start, *end, *buf_end; 6562 unsigned int len; 6563 int i, j, elferr, found; 6564 6565 for (i = 1; (size_t) i < re->shnum; i++) { 6566 s = &re->sl[i]; 6567 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6568 continue; 6569 (void) elf_errno(); 6570 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6571 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6572 elferr = elf_errno(); 6573 if (elferr != 0) 6574 warnx("elf_getdata failed: %s", 6575 elf_errmsg(elferr)); 6576 continue; 6577 } 6578 (void) elf_errno(); 6579 if (d->d_size <= 0 || d->d_buf == NULL) { 6580 printf("\nSection '%s' has no data to dump.\n", 6581 s->name); 6582 continue; 6583 } 6584 buf_end = (unsigned char *) d->d_buf + d->d_size; 6585 start = (unsigned char *) d->d_buf; 6586 found = 0; 6587 printf("\nString dump of section '%s':\n", s->name); 6588 for (;;) { 6589 while (start < buf_end && !isprint(*start)) 6590 start++; 6591 if (start >= buf_end) 6592 break; 6593 end = start + 1; 6594 while (end < buf_end && isprint(*end)) 6595 end++; 6596 printf(" [%6lx] ", 6597 (long) (start - (unsigned char *) d->d_buf)); 6598 len = end - start; 6599 for (j = 0; (unsigned int) j < len; j++) 6600 putchar(start[j]); 6601 putchar('\n'); 6602 found = 1; 6603 if (end >= buf_end) 6604 break; 6605 start = end + 1; 6606 } 6607 if (!found) 6608 printf(" No strings found in this section."); 6609 putchar('\n'); 6610 } 6611 } 6612 6613 static void 6614 load_sections(struct readelf *re) 6615 { 6616 struct section *s; 6617 const char *name; 6618 Elf_Scn *scn; 6619 GElf_Shdr sh; 6620 size_t shstrndx, ndx; 6621 int elferr; 6622 6623 /* Allocate storage for internal section list. */ 6624 if (!elf_getshnum(re->elf, &re->shnum)) { 6625 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6626 return; 6627 } 6628 if (re->sl != NULL) 6629 free(re->sl); 6630 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6631 err(EXIT_FAILURE, "calloc failed"); 6632 6633 /* Get the index of .shstrtab section. */ 6634 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6635 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6636 return; 6637 } 6638 6639 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6640 return; 6641 6642 (void) elf_errno(); 6643 do { 6644 if (gelf_getshdr(scn, &sh) == NULL) { 6645 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6646 (void) elf_errno(); 6647 continue; 6648 } 6649 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6650 (void) elf_errno(); 6651 name = "<no-name>"; 6652 } 6653 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6654 if ((elferr = elf_errno()) != 0) { 6655 warnx("elf_ndxscn failed: %s", 6656 elf_errmsg(elferr)); 6657 continue; 6658 } 6659 } 6660 if (ndx >= re->shnum) { 6661 warnx("section index of '%s' out of range", name); 6662 continue; 6663 } 6664 if (sh.sh_link >= re->shnum) 6665 warnx("section link %llu of '%s' out of range", 6666 (unsigned long long)sh.sh_link, name); 6667 s = &re->sl[ndx]; 6668 s->name = name; 6669 s->scn = scn; 6670 s->off = sh.sh_offset; 6671 s->sz = sh.sh_size; 6672 s->entsize = sh.sh_entsize; 6673 s->align = sh.sh_addralign; 6674 s->type = sh.sh_type; 6675 s->flags = sh.sh_flags; 6676 s->addr = sh.sh_addr; 6677 s->link = sh.sh_link; 6678 s->info = sh.sh_info; 6679 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6680 elferr = elf_errno(); 6681 if (elferr != 0) 6682 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6683 } 6684 6685 static void 6686 unload_sections(struct readelf *re) 6687 { 6688 6689 if (re->sl != NULL) { 6690 free(re->sl); 6691 re->sl = NULL; 6692 } 6693 re->shnum = 0; 6694 re->vd_s = NULL; 6695 re->vn_s = NULL; 6696 re->vs_s = NULL; 6697 re->vs = NULL; 6698 re->vs_sz = 0; 6699 if (re->ver != NULL) { 6700 free(re->ver); 6701 re->ver = NULL; 6702 re->ver_sz = 0; 6703 } 6704 } 6705 6706 static void 6707 dump_elf(struct readelf *re) 6708 { 6709 6710 /* Fetch ELF header. No need to continue if it fails. */ 6711 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6712 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6713 return; 6714 } 6715 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6716 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6717 return; 6718 } 6719 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6720 re->dw_read = _read_msb; 6721 re->dw_decode = _decode_msb; 6722 } else { 6723 re->dw_read = _read_lsb; 6724 re->dw_decode = _decode_lsb; 6725 } 6726 6727 if (re->options & ~RE_H) 6728 load_sections(re); 6729 if ((re->options & RE_VV) || (re->options & RE_S)) 6730 search_ver(re); 6731 if (re->options & RE_H) 6732 dump_ehdr(re); 6733 if (re->options & RE_L) 6734 dump_phdr(re); 6735 if (re->options & RE_SS) 6736 dump_shdr(re); 6737 if (re->options & RE_G) 6738 dump_section_groups(re); 6739 if (re->options & RE_D) 6740 dump_dynamic(re); 6741 if (re->options & RE_R) 6742 dump_reloc(re); 6743 if (re->options & RE_S) 6744 dump_symtabs(re); 6745 if (re->options & RE_N) 6746 dump_notes(re); 6747 if (re->options & RE_II) 6748 dump_hash(re); 6749 if (re->options & RE_X) 6750 hex_dump(re); 6751 if (re->options & RE_P) 6752 str_dump(re); 6753 if (re->options & RE_VV) 6754 dump_ver(re); 6755 if (re->options & RE_AA) 6756 dump_arch_specific_info(re); 6757 if (re->options & RE_W) 6758 dump_dwarf(re); 6759 if (re->options & ~RE_H) 6760 unload_sections(re); 6761 } 6762 6763 static void 6764 dump_dwarf(struct readelf *re) 6765 { 6766 struct loc_at *la, *_la; 6767 Dwarf_Error de; 6768 int error; 6769 6770 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6771 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6772 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6773 dwarf_errmsg(de)); 6774 return; 6775 } 6776 6777 if (re->dop & DW_A) 6778 dump_dwarf_abbrev(re); 6779 if (re->dop & DW_L) 6780 dump_dwarf_line(re); 6781 if (re->dop & DW_LL) 6782 dump_dwarf_line_decoded(re); 6783 if (re->dop & DW_I) { 6784 dump_dwarf_info(re, 0); 6785 dump_dwarf_info(re, 1); 6786 } 6787 if (re->dop & DW_P) 6788 dump_dwarf_pubnames(re); 6789 if (re->dop & DW_R) 6790 dump_dwarf_aranges(re); 6791 if (re->dop & DW_RR) 6792 dump_dwarf_ranges(re); 6793 if (re->dop & DW_M) 6794 dump_dwarf_macinfo(re); 6795 if (re->dop & DW_F) 6796 dump_dwarf_frame(re, 0); 6797 else if (re->dop & DW_FF) 6798 dump_dwarf_frame(re, 1); 6799 if (re->dop & DW_S) 6800 dump_dwarf_str(re); 6801 if (re->dop & DW_O) 6802 dump_dwarf_loclist(re); 6803 6804 TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) { 6805 TAILQ_REMOVE(&lalist, la, la_next); 6806 free(la); 6807 } 6808 6809 dwarf_finish(re->dbg, &de); 6810 } 6811 6812 static void 6813 dump_ar(struct readelf *re, int fd) 6814 { 6815 Elf_Arsym *arsym; 6816 Elf_Arhdr *arhdr; 6817 Elf_Cmd cmd; 6818 Elf *e; 6819 size_t sz; 6820 off_t off; 6821 int i; 6822 6823 re->ar = re->elf; 6824 6825 if (re->options & RE_C) { 6826 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6827 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6828 goto process_members; 6829 } 6830 printf("Index of archive %s: (%ju entries)\n", re->filename, 6831 (uintmax_t) sz - 1); 6832 off = 0; 6833 for (i = 0; (size_t) i < sz; i++) { 6834 if (arsym[i].as_name == NULL) 6835 break; 6836 if (arsym[i].as_off != off) { 6837 off = arsym[i].as_off; 6838 if (elf_rand(re->ar, off) != off) { 6839 warnx("elf_rand() failed: %s", 6840 elf_errmsg(-1)); 6841 continue; 6842 } 6843 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6844 NULL) { 6845 warnx("elf_begin() failed: %s", 6846 elf_errmsg(-1)); 6847 continue; 6848 } 6849 if ((arhdr = elf_getarhdr(e)) == NULL) { 6850 warnx("elf_getarhdr() failed: %s", 6851 elf_errmsg(-1)); 6852 elf_end(e); 6853 continue; 6854 } 6855 printf("Binary %s(%s) contains:\n", 6856 re->filename, arhdr->ar_name); 6857 } 6858 printf("\t%s\n", arsym[i].as_name); 6859 } 6860 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6861 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6862 return; 6863 } 6864 } 6865 6866 process_members: 6867 6868 if ((re->options & ~RE_C) == 0) 6869 return; 6870 6871 cmd = ELF_C_READ; 6872 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6873 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6874 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6875 goto next_member; 6876 } 6877 if (strcmp(arhdr->ar_name, "/") == 0 || 6878 strcmp(arhdr->ar_name, "//") == 0 || 6879 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6880 goto next_member; 6881 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6882 dump_elf(re); 6883 6884 next_member: 6885 cmd = elf_next(re->elf); 6886 elf_end(re->elf); 6887 } 6888 re->elf = re->ar; 6889 } 6890 6891 static void 6892 dump_object(struct readelf *re) 6893 { 6894 int fd; 6895 6896 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6897 warn("open %s failed", re->filename); 6898 return; 6899 } 6900 6901 if ((re->flags & DISPLAY_FILENAME) != 0) 6902 printf("\nFile: %s\n", re->filename); 6903 6904 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6905 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6906 return; 6907 } 6908 6909 switch (elf_kind(re->elf)) { 6910 case ELF_K_NONE: 6911 warnx("Not an ELF file."); 6912 return; 6913 case ELF_K_ELF: 6914 dump_elf(re); 6915 break; 6916 case ELF_K_AR: 6917 dump_ar(re, fd); 6918 break; 6919 default: 6920 warnx("Internal: libelf returned unknown elf kind."); 6921 return; 6922 } 6923 6924 elf_end(re->elf); 6925 } 6926 6927 static void 6928 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6929 { 6930 struct dumpop *d; 6931 6932 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6933 if ((d = calloc(1, sizeof(*d))) == NULL) 6934 err(EXIT_FAILURE, "calloc failed"); 6935 if (t == DUMP_BY_INDEX) 6936 d->u.si = si; 6937 else 6938 d->u.sn = sn; 6939 d->type = t; 6940 d->op = op; 6941 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6942 } else 6943 d->op |= op; 6944 } 6945 6946 static struct dumpop * 6947 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6948 { 6949 struct dumpop *d; 6950 6951 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6952 if ((op == -1 || op & d->op) && 6953 (t == -1 || (unsigned) t == d->type)) { 6954 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6955 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6956 return (d); 6957 } 6958 } 6959 6960 return (NULL); 6961 } 6962 6963 static struct { 6964 const char *ln; 6965 char sn; 6966 int value; 6967 } dwarf_op[] = { 6968 {"rawline", 'l', DW_L}, 6969 {"decodedline", 'L', DW_LL}, 6970 {"info", 'i', DW_I}, 6971 {"abbrev", 'a', DW_A}, 6972 {"pubnames", 'p', DW_P}, 6973 {"aranges", 'r', DW_R}, 6974 {"ranges", 'r', DW_R}, 6975 {"Ranges", 'R', DW_RR}, 6976 {"macro", 'm', DW_M}, 6977 {"frames", 'f', DW_F}, 6978 {"frames-interp", 'F', DW_FF}, 6979 {"str", 's', DW_S}, 6980 {"loc", 'o', DW_O}, 6981 {NULL, 0, 0} 6982 }; 6983 6984 static void 6985 parse_dwarf_op_short(struct readelf *re, const char *op) 6986 { 6987 int i; 6988 6989 if (op == NULL) { 6990 re->dop |= DW_DEFAULT_OPTIONS; 6991 return; 6992 } 6993 6994 for (; *op != '\0'; op++) { 6995 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6996 if (dwarf_op[i].sn == *op) { 6997 re->dop |= dwarf_op[i].value; 6998 break; 6999 } 7000 } 7001 } 7002 } 7003 7004 static void 7005 parse_dwarf_op_long(struct readelf *re, const char *op) 7006 { 7007 char *p, *token, *bp; 7008 int i; 7009 7010 if (op == NULL) { 7011 re->dop |= DW_DEFAULT_OPTIONS; 7012 return; 7013 } 7014 7015 if ((p = strdup(op)) == NULL) 7016 err(EXIT_FAILURE, "strdup failed"); 7017 bp = p; 7018 7019 while ((token = strsep(&p, ",")) != NULL) { 7020 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7021 if (!strcmp(token, dwarf_op[i].ln)) { 7022 re->dop |= dwarf_op[i].value; 7023 break; 7024 } 7025 } 7026 } 7027 7028 free(bp); 7029 } 7030 7031 static uint64_t 7032 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7033 { 7034 uint64_t ret; 7035 uint8_t *src; 7036 7037 src = (uint8_t *) d->d_buf + *offsetp; 7038 7039 ret = 0; 7040 switch (bytes_to_read) { 7041 case 8: 7042 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7043 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7044 /* FALLTHROUGH */ 7045 case 4: 7046 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7047 /* FALLTHROUGH */ 7048 case 2: 7049 ret |= ((uint64_t) src[1]) << 8; 7050 /* FALLTHROUGH */ 7051 case 1: 7052 ret |= src[0]; 7053 break; 7054 default: 7055 return (0); 7056 } 7057 7058 *offsetp += bytes_to_read; 7059 7060 return (ret); 7061 } 7062 7063 static uint64_t 7064 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7065 { 7066 uint64_t ret; 7067 uint8_t *src; 7068 7069 src = (uint8_t *) d->d_buf + *offsetp; 7070 7071 switch (bytes_to_read) { 7072 case 1: 7073 ret = src[0]; 7074 break; 7075 case 2: 7076 ret = src[1] | ((uint64_t) src[0]) << 8; 7077 break; 7078 case 4: 7079 ret = src[3] | ((uint64_t) src[2]) << 8; 7080 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7081 break; 7082 case 8: 7083 ret = src[7] | ((uint64_t) src[6]) << 8; 7084 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7085 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7086 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7087 break; 7088 default: 7089 return (0); 7090 } 7091 7092 *offsetp += bytes_to_read; 7093 7094 return (ret); 7095 } 7096 7097 static uint64_t 7098 _decode_lsb(uint8_t **data, int bytes_to_read) 7099 { 7100 uint64_t ret; 7101 uint8_t *src; 7102 7103 src = *data; 7104 7105 ret = 0; 7106 switch (bytes_to_read) { 7107 case 8: 7108 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7109 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7110 /* FALLTHROUGH */ 7111 case 4: 7112 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7113 /* FALLTHROUGH */ 7114 case 2: 7115 ret |= ((uint64_t) src[1]) << 8; 7116 /* FALLTHROUGH */ 7117 case 1: 7118 ret |= src[0]; 7119 break; 7120 default: 7121 return (0); 7122 } 7123 7124 *data += bytes_to_read; 7125 7126 return (ret); 7127 } 7128 7129 static uint64_t 7130 _decode_msb(uint8_t **data, int bytes_to_read) 7131 { 7132 uint64_t ret; 7133 uint8_t *src; 7134 7135 src = *data; 7136 7137 ret = 0; 7138 switch (bytes_to_read) { 7139 case 1: 7140 ret = src[0]; 7141 break; 7142 case 2: 7143 ret = src[1] | ((uint64_t) src[0]) << 8; 7144 break; 7145 case 4: 7146 ret = src[3] | ((uint64_t) src[2]) << 8; 7147 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7148 break; 7149 case 8: 7150 ret = src[7] | ((uint64_t) src[6]) << 8; 7151 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7152 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7153 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7154 break; 7155 default: 7156 return (0); 7157 break; 7158 } 7159 7160 *data += bytes_to_read; 7161 7162 return (ret); 7163 } 7164 7165 static int64_t 7166 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7167 { 7168 int64_t ret = 0; 7169 uint8_t b = 0; 7170 int shift = 0; 7171 7172 uint8_t *src = *dp; 7173 7174 do { 7175 if (src >= dpe) 7176 break; 7177 b = *src++; 7178 ret |= ((b & 0x7f) << shift); 7179 shift += 7; 7180 } while ((b & 0x80) != 0); 7181 7182 if (shift < 32 && (b & 0x40) != 0) 7183 ret |= (-1 << shift); 7184 7185 *dp = src; 7186 7187 return (ret); 7188 } 7189 7190 static uint64_t 7191 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7192 { 7193 uint64_t ret = 0; 7194 uint8_t b; 7195 int shift = 0; 7196 7197 uint8_t *src = *dp; 7198 7199 do { 7200 if (src >= dpe) 7201 break; 7202 b = *src++; 7203 ret |= ((b & 0x7f) << shift); 7204 shift += 7; 7205 } while ((b & 0x80) != 0); 7206 7207 *dp = src; 7208 7209 return (ret); 7210 } 7211 7212 static void 7213 readelf_version(void) 7214 { 7215 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7216 elftc_version()); 7217 exit(EXIT_SUCCESS); 7218 } 7219 7220 #define USAGE_MESSAGE "\ 7221 Usage: %s [options] file...\n\ 7222 Display information about ELF objects and ar(1) archives.\n\n\ 7223 Options:\n\ 7224 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7225 -c | --archive-index Print the archive symbol table for archives.\n\ 7226 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7227 -e | --headers Print all headers in the object.\n\ 7228 -g | --section-groups Print the contents of the section groups.\n\ 7229 -h | --file-header Print the file header for the object.\n\ 7230 -l | --program-headers Print the PHDR table for the object.\n\ 7231 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7232 -p INDEX | --string-dump=INDEX\n\ 7233 Print the contents of section at index INDEX.\n\ 7234 -r | --relocs Print relocation information.\n\ 7235 -s | --syms | --symbols Print symbol tables.\n\ 7236 -t | --section-details Print additional information about sections.\n\ 7237 -v | --version Print a version identifier and exit.\n\ 7238 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7239 frames-interp,info,loc,macro,pubnames,\n\ 7240 ranges,Ranges,rawline,str}\n\ 7241 Display DWARF information.\n\ 7242 -x INDEX | --hex-dump=INDEX\n\ 7243 Display contents of a section as hexadecimal.\n\ 7244 -A | --arch-specific (accepted, but ignored)\n\ 7245 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7246 entry in the \".dynamic\" section.\n\ 7247 -H | --help Print a help message.\n\ 7248 -I | --histogram Print information on bucket list lengths for \n\ 7249 hash sections.\n\ 7250 -N | --full-section-name (accepted, but ignored)\n\ 7251 -S | --sections | --section-headers\n\ 7252 Print information about section headers.\n\ 7253 -V | --version-info Print symbol versoning information.\n\ 7254 -W | --wide Print information without wrapping long lines.\n" 7255 7256 7257 static void 7258 readelf_usage(int status) 7259 { 7260 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7261 exit(status); 7262 } 7263 7264 int 7265 main(int argc, char **argv) 7266 { 7267 struct readelf *re, re_storage; 7268 unsigned long si; 7269 int opt, i; 7270 char *ep; 7271 7272 re = &re_storage; 7273 memset(re, 0, sizeof(*re)); 7274 STAILQ_INIT(&re->v_dumpop); 7275 7276 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7277 longopts, NULL)) != -1) { 7278 switch(opt) { 7279 case '?': 7280 readelf_usage(EXIT_SUCCESS); 7281 break; 7282 case 'A': 7283 re->options |= RE_AA; 7284 break; 7285 case 'a': 7286 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7287 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7288 break; 7289 case 'c': 7290 re->options |= RE_C; 7291 break; 7292 case 'D': 7293 re->options |= RE_DD; 7294 break; 7295 case 'd': 7296 re->options |= RE_D; 7297 break; 7298 case 'e': 7299 re->options |= RE_H | RE_L | RE_SS; 7300 break; 7301 case 'g': 7302 re->options |= RE_G; 7303 break; 7304 case 'H': 7305 readelf_usage(EXIT_SUCCESS); 7306 break; 7307 case 'h': 7308 re->options |= RE_H; 7309 break; 7310 case 'I': 7311 re->options |= RE_II; 7312 break; 7313 case 'i': 7314 /* Not implemented yet. */ 7315 break; 7316 case 'l': 7317 re->options |= RE_L; 7318 break; 7319 case 'N': 7320 re->options |= RE_NN; 7321 break; 7322 case 'n': 7323 re->options |= RE_N; 7324 break; 7325 case 'p': 7326 re->options |= RE_P; 7327 si = strtoul(optarg, &ep, 10); 7328 if (*ep == '\0') 7329 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7330 DUMP_BY_INDEX); 7331 else 7332 add_dumpop(re, 0, optarg, STR_DUMP, 7333 DUMP_BY_NAME); 7334 break; 7335 case 'r': 7336 re->options |= RE_R; 7337 break; 7338 case 'S': 7339 re->options |= RE_SS; 7340 break; 7341 case 's': 7342 re->options |= RE_S; 7343 break; 7344 case 't': 7345 re->options |= RE_T; 7346 break; 7347 case 'u': 7348 re->options |= RE_U; 7349 break; 7350 case 'V': 7351 re->options |= RE_VV; 7352 break; 7353 case 'v': 7354 readelf_version(); 7355 break; 7356 case 'W': 7357 re->options |= RE_WW; 7358 break; 7359 case 'w': 7360 re->options |= RE_W; 7361 parse_dwarf_op_short(re, optarg); 7362 break; 7363 case 'x': 7364 re->options |= RE_X; 7365 si = strtoul(optarg, &ep, 10); 7366 if (*ep == '\0') 7367 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7368 DUMP_BY_INDEX); 7369 else 7370 add_dumpop(re, 0, optarg, HEX_DUMP, 7371 DUMP_BY_NAME); 7372 break; 7373 case OPTION_DEBUG_DUMP: 7374 re->options |= RE_W; 7375 parse_dwarf_op_long(re, optarg); 7376 } 7377 } 7378 7379 argv += optind; 7380 argc -= optind; 7381 7382 if (argc == 0 || re->options == 0) 7383 readelf_usage(EXIT_FAILURE); 7384 7385 if (argc > 1) 7386 re->flags |= DISPLAY_FILENAME; 7387 7388 if (elf_version(EV_CURRENT) == EV_NONE) 7389 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7390 elf_errmsg(-1)); 7391 7392 for (i = 0; i < argc; i++) { 7393 re->filename = argv[i]; 7394 dump_object(re); 7395 } 7396 7397 exit(EXIT_SUCCESS); 7398 } 7399