xref: /freebsd/contrib/elftoolchain/readelf/readelf.c (revision b79f74cc64d83c03851fd418f9437e653642607f)
1 /*-
2  * Copyright (c) 2009-2015 Kai Wang
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/queue.h>
29 #include <ar.h>
30 #include <assert.h>
31 #include <ctype.h>
32 #include <dwarf.h>
33 #include <err.h>
34 #include <fcntl.h>
35 #include <gelf.h>
36 #include <getopt.h>
37 #include <libdwarf.h>
38 #include <libelftc.h>
39 #include <libgen.h>
40 #include <stdarg.h>
41 #include <stdint.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <time.h>
46 #include <unistd.h>
47 
48 #include "_elftc.h"
49 
50 ELFTC_VCSID("$Id: readelf.c 3580 2017-09-15 23:29:59Z emaste $");
51 
52 /* Backwards compatability for older FreeBSD releases. */
53 #ifndef	STB_GNU_UNIQUE
54 #define	STB_GNU_UNIQUE 10
55 #endif
56 #ifndef	STT_SPARC_REGISTER
57 #define	STT_SPARC_REGISTER 13
58 #endif
59 
60 
61 /*
62  * readelf(1) options.
63  */
64 #define	RE_AA	0x00000001
65 #define	RE_C	0x00000002
66 #define	RE_DD	0x00000004
67 #define	RE_D	0x00000008
68 #define	RE_G	0x00000010
69 #define	RE_H	0x00000020
70 #define	RE_II	0x00000040
71 #define	RE_I	0x00000080
72 #define	RE_L	0x00000100
73 #define	RE_NN	0x00000200
74 #define	RE_N	0x00000400
75 #define	RE_P	0x00000800
76 #define	RE_R	0x00001000
77 #define	RE_SS	0x00002000
78 #define	RE_S	0x00004000
79 #define	RE_T	0x00008000
80 #define	RE_U	0x00010000
81 #define	RE_VV	0x00020000
82 #define	RE_WW	0x00040000
83 #define	RE_W	0x00080000
84 #define	RE_X	0x00100000
85 
86 /*
87  * dwarf dump options.
88  */
89 #define	DW_A	0x00000001
90 #define	DW_FF	0x00000002
91 #define	DW_F	0x00000004
92 #define	DW_I	0x00000008
93 #define	DW_LL	0x00000010
94 #define	DW_L	0x00000020
95 #define	DW_M	0x00000040
96 #define	DW_O	0x00000080
97 #define	DW_P	0x00000100
98 #define	DW_RR	0x00000200
99 #define	DW_R	0x00000400
100 #define	DW_S	0x00000800
101 
102 #define	DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
103 	    DW_R | DW_RR | DW_S)
104 
105 /*
106  * readelf(1) run control flags.
107  */
108 #define	DISPLAY_FILENAME	0x0001
109 
110 /*
111  * Internal data structure for sections.
112  */
113 struct section {
114 	const char	*name;		/* section name */
115 	Elf_Scn		*scn;		/* section scn */
116 	uint64_t	 off;		/* section offset */
117 	uint64_t	 sz;		/* section size */
118 	uint64_t	 entsize;	/* section entsize */
119 	uint64_t	 align;		/* section alignment */
120 	uint64_t	 type;		/* section type */
121 	uint64_t	 flags;		/* section flags */
122 	uint64_t	 addr;		/* section virtual addr */
123 	uint32_t	 link;		/* section link ndx */
124 	uint32_t	 info;		/* section info ndx */
125 };
126 
127 struct dumpop {
128 	union {
129 		size_t si;		/* section index */
130 		const char *sn;		/* section name */
131 	} u;
132 	enum {
133 		DUMP_BY_INDEX = 0,
134 		DUMP_BY_NAME
135 	} type;				/* dump type */
136 #define HEX_DUMP	0x0001
137 #define STR_DUMP	0x0002
138 	int op;				/* dump operation */
139 	STAILQ_ENTRY(dumpop) dumpop_list;
140 };
141 
142 struct symver {
143 	const char *name;
144 	int type;
145 };
146 
147 /*
148  * Structure encapsulates the global data for readelf(1).
149  */
150 struct readelf {
151 	const char	 *filename;	/* current processing file. */
152 	int		  options;	/* command line options. */
153 	int		  flags;	/* run control flags. */
154 	int		  dop;		/* dwarf dump options. */
155 	Elf		 *elf;		/* underlying ELF descriptor. */
156 	Elf		 *ar;		/* archive ELF descriptor. */
157 	Dwarf_Debug	  dbg;		/* DWARF handle. */
158 	Dwarf_Half	  cu_psize;	/* DWARF CU pointer size. */
159 	Dwarf_Half	  cu_osize;	/* DWARF CU offset size. */
160 	Dwarf_Half	  cu_ver;	/* DWARF CU version. */
161 	GElf_Ehdr	  ehdr;		/* ELF header. */
162 	int		  ec;		/* ELF class. */
163 	size_t		  shnum;	/* #sections. */
164 	struct section	 *vd_s;		/* Verdef section. */
165 	struct section	 *vn_s;		/* Verneed section. */
166 	struct section	 *vs_s;		/* Versym section. */
167 	uint16_t	 *vs;		/* Versym array. */
168 	int		  vs_sz;	/* Versym array size. */
169 	struct symver	 *ver;		/* Version array. */
170 	int		  ver_sz;	/* Size of version array. */
171 	struct section	 *sl;		/* list of sections. */
172 	STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
173 	uint64_t	(*dw_read)(Elf_Data *, uint64_t *, int);
174 	uint64_t	(*dw_decode)(uint8_t **, int);
175 };
176 
177 enum options
178 {
179 	OPTION_DEBUG_DUMP
180 };
181 
182 static struct option longopts[] = {
183 	{"all", no_argument, NULL, 'a'},
184 	{"arch-specific", no_argument, NULL, 'A'},
185 	{"archive-index", no_argument, NULL, 'c'},
186 	{"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
187 	{"dynamic", no_argument, NULL, 'd'},
188 	{"file-header", no_argument, NULL, 'h'},
189 	{"full-section-name", no_argument, NULL, 'N'},
190 	{"headers", no_argument, NULL, 'e'},
191 	{"help", no_argument, 0, 'H'},
192 	{"hex-dump", required_argument, NULL, 'x'},
193 	{"histogram", no_argument, NULL, 'I'},
194 	{"notes", no_argument, NULL, 'n'},
195 	{"program-headers", no_argument, NULL, 'l'},
196 	{"relocs", no_argument, NULL, 'r'},
197 	{"sections", no_argument, NULL, 'S'},
198 	{"section-headers", no_argument, NULL, 'S'},
199 	{"section-groups", no_argument, NULL, 'g'},
200 	{"section-details", no_argument, NULL, 't'},
201 	{"segments", no_argument, NULL, 'l'},
202 	{"string-dump", required_argument, NULL, 'p'},
203 	{"symbols", no_argument, NULL, 's'},
204 	{"syms", no_argument, NULL, 's'},
205 	{"unwind", no_argument, NULL, 'u'},
206 	{"use-dynamic", no_argument, NULL, 'D'},
207 	{"version-info", no_argument, 0, 'V'},
208 	{"version", no_argument, 0, 'v'},
209 	{"wide", no_argument, 0, 'W'},
210 	{NULL, 0, NULL, 0}
211 };
212 
213 struct eflags_desc {
214 	uint64_t flag;
215 	const char *desc;
216 };
217 
218 struct mips_option {
219 	uint64_t flag;
220 	const char *desc;
221 };
222 
223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
224     int t);
225 static const char *aeabi_adv_simd_arch(uint64_t simd);
226 static const char *aeabi_align_needed(uint64_t an);
227 static const char *aeabi_align_preserved(uint64_t ap);
228 static const char *aeabi_arm_isa(uint64_t ai);
229 static const char *aeabi_cpu_arch(uint64_t arch);
230 static const char *aeabi_cpu_arch_profile(uint64_t pf);
231 static const char *aeabi_div(uint64_t du);
232 static const char *aeabi_enum_size(uint64_t es);
233 static const char *aeabi_fp_16bit_format(uint64_t fp16);
234 static const char *aeabi_fp_arch(uint64_t fp);
235 static const char *aeabi_fp_denormal(uint64_t fd);
236 static const char *aeabi_fp_exceptions(uint64_t fe);
237 static const char *aeabi_fp_hpext(uint64_t fh);
238 static const char *aeabi_fp_number_model(uint64_t fn);
239 static const char *aeabi_fp_optm_goal(uint64_t fog);
240 static const char *aeabi_fp_rounding(uint64_t fr);
241 static const char *aeabi_hardfp(uint64_t hfp);
242 static const char *aeabi_mpext(uint64_t mp);
243 static const char *aeabi_optm_goal(uint64_t og);
244 static const char *aeabi_pcs_config(uint64_t pcs);
245 static const char *aeabi_pcs_got(uint64_t got);
246 static const char *aeabi_pcs_r9(uint64_t r9);
247 static const char *aeabi_pcs_ro(uint64_t ro);
248 static const char *aeabi_pcs_rw(uint64_t rw);
249 static const char *aeabi_pcs_wchar_t(uint64_t wt);
250 static const char *aeabi_t2ee(uint64_t t2ee);
251 static const char *aeabi_thumb_isa(uint64_t ti);
252 static const char *aeabi_fp_user_exceptions(uint64_t fu);
253 static const char *aeabi_unaligned_access(uint64_t ua);
254 static const char *aeabi_vfp_args(uint64_t va);
255 static const char *aeabi_virtual(uint64_t vt);
256 static const char *aeabi_wmmx_arch(uint64_t wmmx);
257 static const char *aeabi_wmmx_args(uint64_t wa);
258 static const char *elf_class(unsigned int class);
259 static const char *elf_endian(unsigned int endian);
260 static const char *elf_machine(unsigned int mach);
261 static const char *elf_osabi(unsigned int abi);
262 static const char *elf_type(unsigned int type);
263 static const char *elf_ver(unsigned int ver);
264 static const char *dt_type(unsigned int mach, unsigned int dtype);
265 static void dump_ar(struct readelf *re, int);
266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
267 static void dump_attributes(struct readelf *re);
268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe);
269 static void dump_dwarf(struct readelf *re);
270 static void dump_dwarf_abbrev(struct readelf *re);
271 static void dump_dwarf_aranges(struct readelf *re);
272 static void dump_dwarf_block(struct readelf *re, uint8_t *b,
273     Dwarf_Unsigned len);
274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
275 static void dump_dwarf_frame(struct readelf *re, int alt);
276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
277     uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
278     Dwarf_Addr pc, Dwarf_Debug dbg);
279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
280     Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
282     int alt);
283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
284 static void dump_dwarf_macinfo(struct readelf *re);
285 static void dump_dwarf_line(struct readelf *re);
286 static void dump_dwarf_line_decoded(struct readelf *re);
287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
288 static void dump_dwarf_loclist(struct readelf *re);
289 static void dump_dwarf_pubnames(struct readelf *re);
290 static void dump_dwarf_ranges(struct readelf *re);
291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
292     Dwarf_Addr base);
293 static void dump_dwarf_str(struct readelf *re);
294 static void dump_eflags(struct readelf *re, uint64_t e_flags);
295 static void dump_elf(struct readelf *re);
296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
297 static void dump_dynamic(struct readelf *re);
298 static void dump_liblist(struct readelf *re);
299 static void dump_mips_abiflags(struct readelf *re, struct section *s);
300 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
301 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
302 static void dump_mips_options(struct readelf *re, struct section *s);
303 static void dump_mips_option_flags(const char *name, struct mips_option *opt,
304     uint64_t info);
305 static void dump_mips_reginfo(struct readelf *re, struct section *s);
306 static void dump_mips_specific_info(struct readelf *re);
307 static void dump_notes(struct readelf *re);
308 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
309     off_t off);
310 static void dump_svr4_hash(struct section *s);
311 static void dump_svr4_hash64(struct readelf *re, struct section *s);
312 static void dump_gnu_hash(struct readelf *re, struct section *s);
313 static void dump_hash(struct readelf *re);
314 static void dump_phdr(struct readelf *re);
315 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
316 static void dump_section_groups(struct readelf *re);
317 static void dump_symtab(struct readelf *re, int i);
318 static void dump_symtabs(struct readelf *re);
319 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe);
320 static void dump_ver(struct readelf *re);
321 static void dump_verdef(struct readelf *re, int dump);
322 static void dump_verneed(struct readelf *re, int dump);
323 static void dump_versym(struct readelf *re);
324 static const char *dwarf_reg(unsigned int mach, unsigned int reg);
325 static const char *dwarf_regname(struct readelf *re, unsigned int num);
326 static struct dumpop *find_dumpop(struct readelf *re, size_t si,
327     const char *sn, int op, int t);
328 static int get_ent_count(struct section *s, int *ent_count);
329 static int get_mips_register_size(uint8_t flag);
330 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
331     Dwarf_Addr off);
332 static const char *get_string(struct readelf *re, int strtab, size_t off);
333 static const char *get_symbol_name(struct readelf *re, int symtab, int i);
334 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
335 static void load_sections(struct readelf *re);
336 static const char *mips_abi_fp(uint64_t fp);
337 static const char *note_type(const char *note_name, unsigned int et,
338     unsigned int nt);
339 static const char *note_type_freebsd(unsigned int nt);
340 static const char *note_type_freebsd_core(unsigned int nt);
341 static const char *note_type_linux_core(unsigned int nt);
342 static const char *note_type_gnu(unsigned int nt);
343 static const char *note_type_netbsd(unsigned int nt);
344 static const char *note_type_openbsd(unsigned int nt);
345 static const char *note_type_unknown(unsigned int nt);
346 static const char *note_type_xen(unsigned int nt);
347 static const char *option_kind(uint8_t kind);
348 static const char *phdr_type(unsigned int mach, unsigned int ptype);
349 static const char *ppc_abi_fp(uint64_t fp);
350 static const char *ppc_abi_vector(uint64_t vec);
351 static void readelf_usage(int status);
352 static void readelf_version(void);
353 static void search_loclist_at(struct readelf *re, Dwarf_Die die,
354     Dwarf_Unsigned lowpc);
355 static void search_ver(struct readelf *re);
356 static const char *section_type(unsigned int mach, unsigned int stype);
357 static void set_cu_context(struct readelf *re, Dwarf_Half psize,
358     Dwarf_Half osize, Dwarf_Half ver);
359 static const char *st_bind(unsigned int sbind);
360 static const char *st_shndx(unsigned int shndx);
361 static const char *st_type(unsigned int mach, unsigned int os,
362     unsigned int stype);
363 static const char *st_vis(unsigned int svis);
364 static const char *top_tag(unsigned int tag);
365 static void unload_sections(struct readelf *re);
366 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
367     int bytes_to_read);
368 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
369     int bytes_to_read);
370 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
371 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
372 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe);
373 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe);
374 
375 static struct eflags_desc arm_eflags_desc[] = {
376 	{EF_ARM_RELEXEC, "relocatable executable"},
377 	{EF_ARM_HASENTRY, "has entry point"},
378 	{EF_ARM_SYMSARESORTED, "sorted symbol tables"},
379 	{EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
380 	{EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
381 	{EF_ARM_BE8, "BE8"},
382 	{EF_ARM_LE8, "LE8"},
383 	{EF_ARM_INTERWORK, "interworking enabled"},
384 	{EF_ARM_APCS_26, "uses APCS/26"},
385 	{EF_ARM_APCS_FLOAT, "uses APCS/float"},
386 	{EF_ARM_PIC, "position independent"},
387 	{EF_ARM_ALIGN8, "8 bit structure alignment"},
388 	{EF_ARM_NEW_ABI, "uses new ABI"},
389 	{EF_ARM_OLD_ABI, "uses old ABI"},
390 	{EF_ARM_SOFT_FLOAT, "software FP"},
391 	{EF_ARM_VFP_FLOAT, "VFP"},
392 	{EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
393 	{0, NULL}
394 };
395 
396 static struct eflags_desc mips_eflags_desc[] = {
397 	{EF_MIPS_NOREORDER, "noreorder"},
398 	{EF_MIPS_PIC, "pic"},
399 	{EF_MIPS_CPIC, "cpic"},
400 	{EF_MIPS_UCODE, "ugen_reserved"},
401 	{EF_MIPS_ABI2, "abi2"},
402 	{EF_MIPS_OPTIONS_FIRST, "odk first"},
403 	{EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
404 	{EF_MIPS_ARCH_ASE_M16, "mips16"},
405 	{0, NULL}
406 };
407 
408 static struct eflags_desc powerpc_eflags_desc[] = {
409 	{EF_PPC_EMB, "emb"},
410 	{EF_PPC_RELOCATABLE, "relocatable"},
411 	{EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
412 	{0, NULL}
413 };
414 
415 static struct eflags_desc sparc_eflags_desc[] = {
416 	{EF_SPARC_32PLUS, "v8+"},
417 	{EF_SPARC_SUN_US1, "ultrasparcI"},
418 	{EF_SPARC_HAL_R1, "halr1"},
419 	{EF_SPARC_SUN_US3, "ultrasparcIII"},
420 	{0, NULL}
421 };
422 
423 static const char *
424 elf_osabi(unsigned int abi)
425 {
426 	static char s_abi[32];
427 
428 	switch(abi) {
429 	case ELFOSABI_NONE: return "NONE";
430 	case ELFOSABI_HPUX: return "HPUX";
431 	case ELFOSABI_NETBSD: return "NetBSD";
432 	case ELFOSABI_GNU: return "GNU";
433 	case ELFOSABI_HURD: return "HURD";
434 	case ELFOSABI_86OPEN: return "86OPEN";
435 	case ELFOSABI_SOLARIS: return "Solaris";
436 	case ELFOSABI_AIX: return "AIX";
437 	case ELFOSABI_IRIX: return "IRIX";
438 	case ELFOSABI_FREEBSD: return "FreeBSD";
439 	case ELFOSABI_TRU64: return "TRU64";
440 	case ELFOSABI_MODESTO: return "MODESTO";
441 	case ELFOSABI_OPENBSD: return "OpenBSD";
442 	case ELFOSABI_OPENVMS: return "OpenVMS";
443 	case ELFOSABI_NSK: return "NSK";
444 	case ELFOSABI_CLOUDABI: return "CloudABI";
445 	case ELFOSABI_ARM_AEABI: return "ARM EABI";
446 	case ELFOSABI_ARM: return "ARM";
447 	case ELFOSABI_STANDALONE: return "StandAlone";
448 	default:
449 		snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
450 		return (s_abi);
451 	}
452 };
453 
454 static const char *
455 elf_machine(unsigned int mach)
456 {
457 	static char s_mach[32];
458 
459 	switch (mach) {
460 	case EM_NONE: return "Unknown machine";
461 	case EM_M32: return "AT&T WE32100";
462 	case EM_SPARC: return "Sun SPARC";
463 	case EM_386: return "Intel i386";
464 	case EM_68K: return "Motorola 68000";
465 	case EM_IAMCU: return "Intel MCU";
466 	case EM_88K: return "Motorola 88000";
467 	case EM_860: return "Intel i860";
468 	case EM_MIPS: return "MIPS R3000 Big-Endian only";
469 	case EM_S370: return "IBM System/370";
470 	case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
471 	case EM_PARISC: return "HP PA-RISC";
472 	case EM_VPP500: return "Fujitsu VPP500";
473 	case EM_SPARC32PLUS: return "SPARC v8plus";
474 	case EM_960: return "Intel 80960";
475 	case EM_PPC: return "PowerPC 32-bit";
476 	case EM_PPC64: return "PowerPC 64-bit";
477 	case EM_S390: return "IBM System/390";
478 	case EM_V800: return "NEC V800";
479 	case EM_FR20: return "Fujitsu FR20";
480 	case EM_RH32: return "TRW RH-32";
481 	case EM_RCE: return "Motorola RCE";
482 	case EM_ARM: return "ARM";
483 	case EM_SH: return "Hitachi SH";
484 	case EM_SPARCV9: return "SPARC v9 64-bit";
485 	case EM_TRICORE: return "Siemens TriCore embedded processor";
486 	case EM_ARC: return "Argonaut RISC Core";
487 	case EM_H8_300: return "Hitachi H8/300";
488 	case EM_H8_300H: return "Hitachi H8/300H";
489 	case EM_H8S: return "Hitachi H8S";
490 	case EM_H8_500: return "Hitachi H8/500";
491 	case EM_IA_64: return "Intel IA-64 Processor";
492 	case EM_MIPS_X: return "Stanford MIPS-X";
493 	case EM_COLDFIRE: return "Motorola ColdFire";
494 	case EM_68HC12: return "Motorola M68HC12";
495 	case EM_MMA: return "Fujitsu MMA";
496 	case EM_PCP: return "Siemens PCP";
497 	case EM_NCPU: return "Sony nCPU";
498 	case EM_NDR1: return "Denso NDR1 microprocessor";
499 	case EM_STARCORE: return "Motorola Star*Core processor";
500 	case EM_ME16: return "Toyota ME16 processor";
501 	case EM_ST100: return "STMicroelectronics ST100 processor";
502 	case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
503 	case EM_X86_64: return "Advanced Micro Devices x86-64";
504 	case EM_PDSP: return "Sony DSP Processor";
505 	case EM_FX66: return "Siemens FX66 microcontroller";
506 	case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
507 	case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
508 	case EM_68HC16: return "Motorola MC68HC16 microcontroller";
509 	case EM_68HC11: return "Motorola MC68HC11 microcontroller";
510 	case EM_68HC08: return "Motorola MC68HC08 microcontroller";
511 	case EM_68HC05: return "Motorola MC68HC05 microcontroller";
512 	case EM_SVX: return "Silicon Graphics SVx";
513 	case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
514 	case EM_VAX: return "Digital VAX";
515 	case EM_CRIS: return "Axis Communications 32-bit embedded processor";
516 	case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
517 	case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
518 	case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
519 	case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
520 	case EM_HUANY: return "Harvard University MI object files";
521 	case EM_PRISM: return "SiTera Prism";
522 	case EM_AVR: return "Atmel AVR 8-bit microcontroller";
523 	case EM_FR30: return "Fujitsu FR30";
524 	case EM_D10V: return "Mitsubishi D10V";
525 	case EM_D30V: return "Mitsubishi D30V";
526 	case EM_V850: return "NEC v850";
527 	case EM_M32R: return "Mitsubishi M32R";
528 	case EM_MN10300: return "Matsushita MN10300";
529 	case EM_MN10200: return "Matsushita MN10200";
530 	case EM_PJ: return "picoJava";
531 	case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
532 	case EM_ARC_A5: return "ARC Cores Tangent-A5";
533 	case EM_XTENSA: return "Tensilica Xtensa Architecture";
534 	case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
535 	case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
536 	case EM_NS32K: return "National Semiconductor 32000 series";
537 	case EM_TPC: return "Tenor Network TPC processor";
538 	case EM_SNP1K: return "Trebia SNP 1000 processor";
539 	case EM_ST200: return "STMicroelectronics ST200 microcontroller";
540 	case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
541 	case EM_MAX: return "MAX Processor";
542 	case EM_CR: return "National Semiconductor CompactRISC microprocessor";
543 	case EM_F2MC16: return "Fujitsu F2MC16";
544 	case EM_MSP430: return "TI embedded microcontroller msp430";
545 	case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
546 	case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
547 	case EM_SEP: return "Sharp embedded microprocessor";
548 	case EM_ARCA: return "Arca RISC Microprocessor";
549 	case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
550 	case EM_AARCH64: return "AArch64";
551 	case EM_RISCV: return "RISC-V";
552 	default:
553 		snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
554 		return (s_mach);
555 	}
556 
557 }
558 
559 static const char *
560 elf_class(unsigned int class)
561 {
562 	static char s_class[32];
563 
564 	switch (class) {
565 	case ELFCLASSNONE: return "none";
566 	case ELFCLASS32: return "ELF32";
567 	case ELFCLASS64: return "ELF64";
568 	default:
569 		snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
570 		return (s_class);
571 	}
572 }
573 
574 static const char *
575 elf_endian(unsigned int endian)
576 {
577 	static char s_endian[32];
578 
579 	switch (endian) {
580 	case ELFDATANONE: return "none";
581 	case ELFDATA2LSB: return "2's complement, little endian";
582 	case ELFDATA2MSB: return "2's complement, big endian";
583 	default:
584 		snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
585 		return (s_endian);
586 	}
587 }
588 
589 static const char *
590 elf_type(unsigned int type)
591 {
592 	static char s_type[32];
593 
594 	switch (type) {
595 	case ET_NONE: return "NONE (None)";
596 	case ET_REL: return "REL (Relocatable file)";
597 	case ET_EXEC: return "EXEC (Executable file)";
598 	case ET_DYN: return "DYN (Shared object file)";
599 	case ET_CORE: return "CORE (Core file)";
600 	default:
601 		if (type >= ET_LOPROC)
602 			snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
603 		else if (type >= ET_LOOS && type <= ET_HIOS)
604 			snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
605 		else
606 			snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
607 			    type);
608 		return (s_type);
609 	}
610 }
611 
612 static const char *
613 elf_ver(unsigned int ver)
614 {
615 	static char s_ver[32];
616 
617 	switch (ver) {
618 	case EV_CURRENT: return "(current)";
619 	case EV_NONE: return "(none)";
620 	default:
621 		snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
622 		    ver);
623 		return (s_ver);
624 	}
625 }
626 
627 static const char *
628 phdr_type(unsigned int mach, unsigned int ptype)
629 {
630 	static char s_ptype[32];
631 
632 	if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) {
633 		switch (mach) {
634 		case EM_ARM:
635 			switch (ptype) {
636 			case PT_ARM_ARCHEXT: return "ARM_ARCHEXT";
637 			case PT_ARM_EXIDX: return "ARM_EXIDX";
638 			}
639 			break;
640 		}
641 		snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
642 		    ptype - PT_LOPROC);
643 		return (s_ptype);
644 	}
645 
646 	switch (ptype) {
647 	case PT_NULL: return "NULL";
648 	case PT_LOAD: return "LOAD";
649 	case PT_DYNAMIC: return "DYNAMIC";
650 	case PT_INTERP: return "INTERP";
651 	case PT_NOTE: return "NOTE";
652 	case PT_SHLIB: return "SHLIB";
653 	case PT_PHDR: return "PHDR";
654 	case PT_TLS: return "TLS";
655 	case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
656 	case PT_GNU_STACK: return "GNU_STACK";
657 	case PT_GNU_RELRO: return "GNU_RELRO";
658 	default:
659 		if (ptype >= PT_LOOS && ptype <= PT_HIOS)
660 			snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
661 			    ptype - PT_LOOS);
662 		else
663 			snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
664 			    ptype);
665 		return (s_ptype);
666 	}
667 }
668 
669 static const char *
670 section_type(unsigned int mach, unsigned int stype)
671 {
672 	static char s_stype[32];
673 
674 	if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
675 		switch (mach) {
676 		case EM_ARM:
677 			switch (stype) {
678 			case SHT_ARM_EXIDX: return "ARM_EXIDX";
679 			case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
680 			case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
681 			case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
682 			case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
683 			}
684 			break;
685 		case EM_X86_64:
686 			switch (stype) {
687 			case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
688 			default:
689 				break;
690 			}
691 			break;
692 		case EM_MIPS:
693 		case EM_MIPS_RS3_LE:
694 			switch (stype) {
695 			case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
696 			case SHT_MIPS_MSYM: return "MIPS_MSYM";
697 			case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
698 			case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
699 			case SHT_MIPS_UCODE: return "MIPS_UCODE";
700 			case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
701 			case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
702 			case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
703 			case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
704 			case SHT_MIPS_RELD: return "MIPS_RELD";
705 			case SHT_MIPS_IFACE: return "MIPS_IFACE";
706 			case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
707 			case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
708 			case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
709 			case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
710 			case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
711 			case SHT_MIPS_DWARF: return "MIPS_DWARF";
712 			case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
713 			case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
714 			case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
715 			case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
716 			case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
717 			case SHT_MIPS_XLATE: return "MIPS_XLATE";
718 			case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
719 			case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
720 			case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
721 			case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
722 			case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
723 			case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
724 			default:
725 				break;
726 			}
727 			break;
728 		default:
729 			break;
730 		}
731 
732 		snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
733 		    stype - SHT_LOPROC);
734 		return (s_stype);
735 	}
736 
737 	switch (stype) {
738 	case SHT_NULL: return "NULL";
739 	case SHT_PROGBITS: return "PROGBITS";
740 	case SHT_SYMTAB: return "SYMTAB";
741 	case SHT_STRTAB: return "STRTAB";
742 	case SHT_RELA: return "RELA";
743 	case SHT_HASH: return "HASH";
744 	case SHT_DYNAMIC: return "DYNAMIC";
745 	case SHT_NOTE: return "NOTE";
746 	case SHT_NOBITS: return "NOBITS";
747 	case SHT_REL: return "REL";
748 	case SHT_SHLIB: return "SHLIB";
749 	case SHT_DYNSYM: return "DYNSYM";
750 	case SHT_INIT_ARRAY: return "INIT_ARRAY";
751 	case SHT_FINI_ARRAY: return "FINI_ARRAY";
752 	case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
753 	case SHT_GROUP: return "GROUP";
754 	case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
755 	case SHT_SUNW_dof: return "SUNW_dof";
756 	case SHT_SUNW_cap: return "SUNW_cap";
757 	case SHT_GNU_HASH: return "GNU_HASH";
758 	case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
759 	case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
760 	case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
761 	case SHT_SUNW_move: return "SUNW_move";
762 	case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
763 	case SHT_SUNW_syminfo: return "SUNW_syminfo";
764 	case SHT_SUNW_verdef: return "SUNW_verdef";
765 	case SHT_SUNW_verneed: return "SUNW_verneed";
766 	case SHT_SUNW_versym: return "SUNW_versym";
767 	default:
768 		if (stype >= SHT_LOOS && stype <= SHT_HIOS)
769 			snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
770 			    stype - SHT_LOOS);
771 		else if (stype >= SHT_LOUSER)
772 			snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
773 			    stype - SHT_LOUSER);
774 		else
775 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
776 			    stype);
777 		return (s_stype);
778 	}
779 }
780 
781 static const char *
782 dt_type(unsigned int mach, unsigned int dtype)
783 {
784 	static char s_dtype[32];
785 
786 	switch (dtype) {
787 	case DT_NULL: return "NULL";
788 	case DT_NEEDED: return "NEEDED";
789 	case DT_PLTRELSZ: return "PLTRELSZ";
790 	case DT_PLTGOT: return "PLTGOT";
791 	case DT_HASH: return "HASH";
792 	case DT_STRTAB: return "STRTAB";
793 	case DT_SYMTAB: return "SYMTAB";
794 	case DT_RELA: return "RELA";
795 	case DT_RELASZ: return "RELASZ";
796 	case DT_RELAENT: return "RELAENT";
797 	case DT_STRSZ: return "STRSZ";
798 	case DT_SYMENT: return "SYMENT";
799 	case DT_INIT: return "INIT";
800 	case DT_FINI: return "FINI";
801 	case DT_SONAME: return "SONAME";
802 	case DT_RPATH: return "RPATH";
803 	case DT_SYMBOLIC: return "SYMBOLIC";
804 	case DT_REL: return "REL";
805 	case DT_RELSZ: return "RELSZ";
806 	case DT_RELENT: return "RELENT";
807 	case DT_PLTREL: return "PLTREL";
808 	case DT_DEBUG: return "DEBUG";
809 	case DT_TEXTREL: return "TEXTREL";
810 	case DT_JMPREL: return "JMPREL";
811 	case DT_BIND_NOW: return "BIND_NOW";
812 	case DT_INIT_ARRAY: return "INIT_ARRAY";
813 	case DT_FINI_ARRAY: return "FINI_ARRAY";
814 	case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
815 	case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
816 	case DT_RUNPATH: return "RUNPATH";
817 	case DT_FLAGS: return "FLAGS";
818 	case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
819 	case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
820 	case DT_MAXPOSTAGS: return "MAXPOSTAGS";
821 	case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
822 	case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
823 	case DT_SUNW_FILTER: return "SUNW_FILTER";
824 	case DT_SUNW_CAP: return "SUNW_CAP";
825 	case DT_SUNW_ASLR: return "SUNW_ASLR";
826 	case DT_CHECKSUM: return "CHECKSUM";
827 	case DT_PLTPADSZ: return "PLTPADSZ";
828 	case DT_MOVEENT: return "MOVEENT";
829 	case DT_MOVESZ: return "MOVESZ";
830 	case DT_FEATURE: return "FEATURE";
831 	case DT_POSFLAG_1: return "POSFLAG_1";
832 	case DT_SYMINSZ: return "SYMINSZ";
833 	case DT_SYMINENT: return "SYMINENT";
834 	case DT_GNU_HASH: return "GNU_HASH";
835 	case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT";
836 	case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT";
837 	case DT_GNU_CONFLICT: return "GNU_CONFLICT";
838 	case DT_GNU_LIBLIST: return "GNU_LIBLIST";
839 	case DT_CONFIG: return "CONFIG";
840 	case DT_DEPAUDIT: return "DEPAUDIT";
841 	case DT_AUDIT: return "AUDIT";
842 	case DT_PLTPAD: return "PLTPAD";
843 	case DT_MOVETAB: return "MOVETAB";
844 	case DT_SYMINFO: return "SYMINFO";
845 	case DT_VERSYM: return "VERSYM";
846 	case DT_RELACOUNT: return "RELACOUNT";
847 	case DT_RELCOUNT: return "RELCOUNT";
848 	case DT_FLAGS_1: return "FLAGS_1";
849 	case DT_VERDEF: return "VERDEF";
850 	case DT_VERDEFNUM: return "VERDEFNUM";
851 	case DT_VERNEED: return "VERNEED";
852 	case DT_VERNEEDNUM: return "VERNEEDNUM";
853 	case DT_AUXILIARY: return "AUXILIARY";
854 	case DT_USED: return "USED";
855 	case DT_FILTER: return "FILTER";
856 	case DT_GNU_PRELINKED: return "GNU_PRELINKED";
857 	case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
858 	case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
859 	}
860 
861 	if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
862 		switch (mach) {
863 		case EM_ARM:
864 			switch (dtype) {
865 			case DT_ARM_SYMTABSZ:
866 				return "ARM_SYMTABSZ";
867 			default:
868 				break;
869 			}
870 			break;
871 		case EM_MIPS:
872 		case EM_MIPS_RS3_LE:
873 			switch (dtype) {
874 			case DT_MIPS_RLD_VERSION:
875 				return "MIPS_RLD_VERSION";
876 			case DT_MIPS_TIME_STAMP:
877 				return "MIPS_TIME_STAMP";
878 			case DT_MIPS_ICHECKSUM:
879 				return "MIPS_ICHECKSUM";
880 			case DT_MIPS_IVERSION:
881 				return "MIPS_IVERSION";
882 			case DT_MIPS_FLAGS:
883 				return "MIPS_FLAGS";
884 			case DT_MIPS_BASE_ADDRESS:
885 				return "MIPS_BASE_ADDRESS";
886 			case DT_MIPS_CONFLICT:
887 				return "MIPS_CONFLICT";
888 			case DT_MIPS_LIBLIST:
889 				return "MIPS_LIBLIST";
890 			case DT_MIPS_LOCAL_GOTNO:
891 				return "MIPS_LOCAL_GOTNO";
892 			case DT_MIPS_CONFLICTNO:
893 				return "MIPS_CONFLICTNO";
894 			case DT_MIPS_LIBLISTNO:
895 				return "MIPS_LIBLISTNO";
896 			case DT_MIPS_SYMTABNO:
897 				return "MIPS_SYMTABNO";
898 			case DT_MIPS_UNREFEXTNO:
899 				return "MIPS_UNREFEXTNO";
900 			case DT_MIPS_GOTSYM:
901 				return "MIPS_GOTSYM";
902 			case DT_MIPS_HIPAGENO:
903 				return "MIPS_HIPAGENO";
904 			case DT_MIPS_RLD_MAP:
905 				return "MIPS_RLD_MAP";
906 			case DT_MIPS_DELTA_CLASS:
907 				return "MIPS_DELTA_CLASS";
908 			case DT_MIPS_DELTA_CLASS_NO:
909 				return "MIPS_DELTA_CLASS_NO";
910 			case DT_MIPS_DELTA_INSTANCE:
911 				return "MIPS_DELTA_INSTANCE";
912 			case DT_MIPS_DELTA_INSTANCE_NO:
913 				return "MIPS_DELTA_INSTANCE_NO";
914 			case DT_MIPS_DELTA_RELOC:
915 				return "MIPS_DELTA_RELOC";
916 			case DT_MIPS_DELTA_RELOC_NO:
917 				return "MIPS_DELTA_RELOC_NO";
918 			case DT_MIPS_DELTA_SYM:
919 				return "MIPS_DELTA_SYM";
920 			case DT_MIPS_DELTA_SYM_NO:
921 				return "MIPS_DELTA_SYM_NO";
922 			case DT_MIPS_DELTA_CLASSSYM:
923 				return "MIPS_DELTA_CLASSSYM";
924 			case DT_MIPS_DELTA_CLASSSYM_NO:
925 				return "MIPS_DELTA_CLASSSYM_NO";
926 			case DT_MIPS_CXX_FLAGS:
927 				return "MIPS_CXX_FLAGS";
928 			case DT_MIPS_PIXIE_INIT:
929 				return "MIPS_PIXIE_INIT";
930 			case DT_MIPS_SYMBOL_LIB:
931 				return "MIPS_SYMBOL_LIB";
932 			case DT_MIPS_LOCALPAGE_GOTIDX:
933 				return "MIPS_LOCALPAGE_GOTIDX";
934 			case DT_MIPS_LOCAL_GOTIDX:
935 				return "MIPS_LOCAL_GOTIDX";
936 			case DT_MIPS_HIDDEN_GOTIDX:
937 				return "MIPS_HIDDEN_GOTIDX";
938 			case DT_MIPS_PROTECTED_GOTIDX:
939 				return "MIPS_PROTECTED_GOTIDX";
940 			case DT_MIPS_OPTIONS:
941 				return "MIPS_OPTIONS";
942 			case DT_MIPS_INTERFACE:
943 				return "MIPS_INTERFACE";
944 			case DT_MIPS_DYNSTR_ALIGN:
945 				return "MIPS_DYNSTR_ALIGN";
946 			case DT_MIPS_INTERFACE_SIZE:
947 				return "MIPS_INTERFACE_SIZE";
948 			case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
949 				return "MIPS_RLD_TEXT_RESOLVE_ADDR";
950 			case DT_MIPS_PERF_SUFFIX:
951 				return "MIPS_PERF_SUFFIX";
952 			case DT_MIPS_COMPACT_SIZE:
953 				return "MIPS_COMPACT_SIZE";
954 			case DT_MIPS_GP_VALUE:
955 				return "MIPS_GP_VALUE";
956 			case DT_MIPS_AUX_DYNAMIC:
957 				return "MIPS_AUX_DYNAMIC";
958 			case DT_MIPS_PLTGOT:
959 				return "MIPS_PLTGOT";
960 			case DT_MIPS_RLD_OBJ_UPDATE:
961 				return "MIPS_RLD_OBJ_UPDATE";
962 			case DT_MIPS_RWPLT:
963 				return "MIPS_RWPLT";
964 			default:
965 				break;
966 			}
967 			break;
968 		case EM_SPARC:
969 		case EM_SPARC32PLUS:
970 		case EM_SPARCV9:
971 			switch (dtype) {
972 			case DT_SPARC_REGISTER:
973 				return "DT_SPARC_REGISTER";
974 			default:
975 				break;
976 			}
977 			break;
978 		default:
979 			break;
980 		}
981 	}
982 
983 	snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
984 	return (s_dtype);
985 }
986 
987 static const char *
988 st_bind(unsigned int sbind)
989 {
990 	static char s_sbind[32];
991 
992 	switch (sbind) {
993 	case STB_LOCAL: return "LOCAL";
994 	case STB_GLOBAL: return "GLOBAL";
995 	case STB_WEAK: return "WEAK";
996 	case STB_GNU_UNIQUE: return "UNIQUE";
997 	default:
998 		if (sbind >= STB_LOOS && sbind <= STB_HIOS)
999 			return "OS";
1000 		else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
1001 			return "PROC";
1002 		else
1003 			snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
1004 			    sbind);
1005 		return (s_sbind);
1006 	}
1007 }
1008 
1009 static const char *
1010 st_type(unsigned int mach, unsigned int os, unsigned int stype)
1011 {
1012 	static char s_stype[32];
1013 
1014 	switch (stype) {
1015 	case STT_NOTYPE: return "NOTYPE";
1016 	case STT_OBJECT: return "OBJECT";
1017 	case STT_FUNC: return "FUNC";
1018 	case STT_SECTION: return "SECTION";
1019 	case STT_FILE: return "FILE";
1020 	case STT_COMMON: return "COMMON";
1021 	case STT_TLS: return "TLS";
1022 	default:
1023 		if (stype >= STT_LOOS && stype <= STT_HIOS) {
1024 			if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) &&
1025 			    stype == STT_GNU_IFUNC)
1026 				return "IFUNC";
1027 			snprintf(s_stype, sizeof(s_stype), "OS+%#x",
1028 			    stype - STT_LOOS);
1029 		} else if (stype >= STT_LOPROC && stype <= STT_HIPROC) {
1030 			if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER)
1031 				return "REGISTER";
1032 			snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
1033 			    stype - STT_LOPROC);
1034 		} else
1035 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
1036 			    stype);
1037 		return (s_stype);
1038 	}
1039 }
1040 
1041 static const char *
1042 st_vis(unsigned int svis)
1043 {
1044 	static char s_svis[32];
1045 
1046 	switch(svis) {
1047 	case STV_DEFAULT: return "DEFAULT";
1048 	case STV_INTERNAL: return "INTERNAL";
1049 	case STV_HIDDEN: return "HIDDEN";
1050 	case STV_PROTECTED: return "PROTECTED";
1051 	default:
1052 		snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
1053 		return (s_svis);
1054 	}
1055 }
1056 
1057 static const char *
1058 st_shndx(unsigned int shndx)
1059 {
1060 	static char s_shndx[32];
1061 
1062 	switch (shndx) {
1063 	case SHN_UNDEF: return "UND";
1064 	case SHN_ABS: return "ABS";
1065 	case SHN_COMMON: return "COM";
1066 	default:
1067 		if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
1068 			return "PRC";
1069 		else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
1070 			return "OS";
1071 		else
1072 			snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
1073 		return (s_shndx);
1074 	}
1075 }
1076 
1077 static struct {
1078 	const char *ln;
1079 	char sn;
1080 	int value;
1081 } section_flag[] = {
1082 	{"WRITE", 'W', SHF_WRITE},
1083 	{"ALLOC", 'A', SHF_ALLOC},
1084 	{"EXEC", 'X', SHF_EXECINSTR},
1085 	{"MERGE", 'M', SHF_MERGE},
1086 	{"STRINGS", 'S', SHF_STRINGS},
1087 	{"INFO LINK", 'I', SHF_INFO_LINK},
1088 	{"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
1089 	{"GROUP", 'G', SHF_GROUP},
1090 	{"TLS", 'T', SHF_TLS},
1091 	{"COMPRESSED", 'C', SHF_COMPRESSED},
1092 	{NULL, 0, 0}
1093 };
1094 
1095 static const char *
1096 note_type(const char *name, unsigned int et, unsigned int nt)
1097 {
1098 	if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) &&
1099 	    et == ET_CORE)
1100 		return note_type_linux_core(nt);
1101 	else if (strcmp(name, "FreeBSD") == 0)
1102 		if (et == ET_CORE)
1103 			return note_type_freebsd_core(nt);
1104 		else
1105 			return note_type_freebsd(nt);
1106 	else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
1107 		return note_type_gnu(nt);
1108 	else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
1109 		return note_type_netbsd(nt);
1110 	else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
1111 		return note_type_openbsd(nt);
1112 	else if (strcmp(name, "Xen") == 0 && et != ET_CORE)
1113 		return note_type_xen(nt);
1114 	return note_type_unknown(nt);
1115 }
1116 
1117 static const char *
1118 note_type_freebsd(unsigned int nt)
1119 {
1120 	switch (nt) {
1121 	case 1: return "NT_FREEBSD_ABI_TAG";
1122 	case 2: return "NT_FREEBSD_NOINIT_TAG";
1123 	case 3: return "NT_FREEBSD_ARCH_TAG";
1124 	default: return (note_type_unknown(nt));
1125 	}
1126 }
1127 
1128 static const char *
1129 note_type_freebsd_core(unsigned int nt)
1130 {
1131 	switch (nt) {
1132 	case 1: return "NT_PRSTATUS";
1133 	case 2: return "NT_FPREGSET";
1134 	case 3: return "NT_PRPSINFO";
1135 	case 7: return "NT_THRMISC";
1136 	case 8: return "NT_PROCSTAT_PROC";
1137 	case 9: return "NT_PROCSTAT_FILES";
1138 	case 10: return "NT_PROCSTAT_VMMAP";
1139 	case 11: return "NT_PROCSTAT_GROUPS";
1140 	case 12: return "NT_PROCSTAT_UMASK";
1141 	case 13: return "NT_PROCSTAT_RLIMIT";
1142 	case 14: return "NT_PROCSTAT_OSREL";
1143 	case 15: return "NT_PROCSTAT_PSSTRINGS";
1144 	case 16: return "NT_PROCSTAT_AUXV";
1145 	case 17: return "NT_PTLWPINFO";
1146 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1147 	case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1148 	default: return (note_type_unknown(nt));
1149 	}
1150 }
1151 
1152 static const char *
1153 note_type_linux_core(unsigned int nt)
1154 {
1155 	switch (nt) {
1156 	case 1: return "NT_PRSTATUS (Process status)";
1157 	case 2: return "NT_FPREGSET (Floating point information)";
1158 	case 3: return "NT_PRPSINFO (Process information)";
1159 	case 4: return "NT_TASKSTRUCT (Task structure)";
1160 	case 6: return "NT_AUXV (Auxiliary vector)";
1161 	case 10: return "NT_PSTATUS (Linux process status)";
1162 	case 12: return "NT_FPREGS (Linux floating point regset)";
1163 	case 13: return "NT_PSINFO (Linux process information)";
1164 	case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
1165 	case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
1166 	case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)";
1167 	case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1168 	case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1169 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1170 	case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)";
1171 	case 0x301: return "NT_S390_TIMER (s390 timer register)";
1172 	case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)";
1173 	case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)";
1174 	case 0x304: return "NT_S390_CTRS (s390 control registers)";
1175 	case 0x305: return "NT_S390_PREFIX (s390 prefix register)";
1176 	case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1177 	case 0x46494c45UL: return "NT_FILE (mapped files)";
1178 	case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
1179 	case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)";
1180 	default: return (note_type_unknown(nt));
1181 	}
1182 }
1183 
1184 static const char *
1185 note_type_gnu(unsigned int nt)
1186 {
1187 	switch (nt) {
1188 	case 1: return "NT_GNU_ABI_TAG";
1189 	case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
1190 	case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
1191 	case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
1192 	default: return (note_type_unknown(nt));
1193 	}
1194 }
1195 
1196 static const char *
1197 note_type_netbsd(unsigned int nt)
1198 {
1199 	switch (nt) {
1200 	case 1: return "NT_NETBSD_IDENT";
1201 	default: return (note_type_unknown(nt));
1202 	}
1203 }
1204 
1205 static const char *
1206 note_type_openbsd(unsigned int nt)
1207 {
1208 	switch (nt) {
1209 	case 1: return "NT_OPENBSD_IDENT";
1210 	default: return (note_type_unknown(nt));
1211 	}
1212 }
1213 
1214 static const char *
1215 note_type_unknown(unsigned int nt)
1216 {
1217 	static char s_nt[32];
1218 
1219 	snprintf(s_nt, sizeof(s_nt),
1220 	    nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt);
1221 	return (s_nt);
1222 }
1223 
1224 static const char *
1225 note_type_xen(unsigned int nt)
1226 {
1227 	switch (nt) {
1228 	case 0: return "XEN_ELFNOTE_INFO";
1229 	case 1: return "XEN_ELFNOTE_ENTRY";
1230 	case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE";
1231 	case 3: return "XEN_ELFNOTE_VIRT_BASE";
1232 	case 4: return "XEN_ELFNOTE_PADDR_OFFSET";
1233 	case 5: return "XEN_ELFNOTE_XEN_VERSION";
1234 	case 6: return "XEN_ELFNOTE_GUEST_OS";
1235 	case 7: return "XEN_ELFNOTE_GUEST_VERSION";
1236 	case 8: return "XEN_ELFNOTE_LOADER";
1237 	case 9: return "XEN_ELFNOTE_PAE_MODE";
1238 	case 10: return "XEN_ELFNOTE_FEATURES";
1239 	case 11: return "XEN_ELFNOTE_BSD_SYMTAB";
1240 	case 12: return "XEN_ELFNOTE_HV_START_LOW";
1241 	case 13: return "XEN_ELFNOTE_L1_MFN_VALID";
1242 	case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL";
1243 	case 15: return "XEN_ELFNOTE_INIT_P2M";
1244 	case 16: return "XEN_ELFNOTE_MOD_START_PFN";
1245 	case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES";
1246 	default: return (note_type_unknown(nt));
1247 	}
1248 }
1249 
1250 static struct {
1251 	const char *name;
1252 	int value;
1253 } l_flag[] = {
1254 	{"EXACT_MATCH", LL_EXACT_MATCH},
1255 	{"IGNORE_INT_VER", LL_IGNORE_INT_VER},
1256 	{"REQUIRE_MINOR", LL_REQUIRE_MINOR},
1257 	{"EXPORTS", LL_EXPORTS},
1258 	{"DELAY_LOAD", LL_DELAY_LOAD},
1259 	{"DELTA", LL_DELTA},
1260 	{NULL, 0}
1261 };
1262 
1263 static struct mips_option mips_exceptions_option[] = {
1264 	{OEX_PAGE0, "PAGE0"},
1265 	{OEX_SMM, "SMM"},
1266 	{OEX_PRECISEFP, "PRECISEFP"},
1267 	{OEX_DISMISS, "DISMISS"},
1268 	{0, NULL}
1269 };
1270 
1271 static struct mips_option mips_pad_option[] = {
1272 	{OPAD_PREFIX, "PREFIX"},
1273 	{OPAD_POSTFIX, "POSTFIX"},
1274 	{OPAD_SYMBOL, "SYMBOL"},
1275 	{0, NULL}
1276 };
1277 
1278 static struct mips_option mips_hwpatch_option[] = {
1279 	{OHW_R4KEOP, "R4KEOP"},
1280 	{OHW_R8KPFETCH, "R8KPFETCH"},
1281 	{OHW_R5KEOP, "R5KEOP"},
1282 	{OHW_R5KCVTL, "R5KCVTL"},
1283 	{0, NULL}
1284 };
1285 
1286 static struct mips_option mips_hwa_option[] = {
1287 	{OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
1288 	{OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
1289 	{0, NULL}
1290 };
1291 
1292 static struct mips_option mips_hwo_option[] = {
1293 	{OHWO0_FIXADE, "FIXADE"},
1294 	{0, NULL}
1295 };
1296 
1297 static const char *
1298 option_kind(uint8_t kind)
1299 {
1300 	static char s_kind[32];
1301 
1302 	switch (kind) {
1303 	case ODK_NULL: return "NULL";
1304 	case ODK_REGINFO: return "REGINFO";
1305 	case ODK_EXCEPTIONS: return "EXCEPTIONS";
1306 	case ODK_PAD: return "PAD";
1307 	case ODK_HWPATCH: return "HWPATCH";
1308 	case ODK_FILL: return "FILL";
1309 	case ODK_TAGS: return "TAGS";
1310 	case ODK_HWAND: return "HWAND";
1311 	case ODK_HWOR: return "HWOR";
1312 	case ODK_GP_GROUP: return "GP_GROUP";
1313 	case ODK_IDENT: return "IDENT";
1314 	default:
1315 		snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
1316 		return (s_kind);
1317 	}
1318 }
1319 
1320 static const char *
1321 top_tag(unsigned int tag)
1322 {
1323 	static char s_top_tag[32];
1324 
1325 	switch (tag) {
1326 	case 1: return "File Attributes";
1327 	case 2: return "Section Attributes";
1328 	case 3: return "Symbol Attributes";
1329 	default:
1330 		snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
1331 		return (s_top_tag);
1332 	}
1333 }
1334 
1335 static const char *
1336 aeabi_cpu_arch(uint64_t arch)
1337 {
1338 	static char s_cpu_arch[32];
1339 
1340 	switch (arch) {
1341 	case 0: return "Pre-V4";
1342 	case 1: return "ARM v4";
1343 	case 2: return "ARM v4T";
1344 	case 3: return "ARM v5T";
1345 	case 4: return "ARM v5TE";
1346 	case 5: return "ARM v5TEJ";
1347 	case 6: return "ARM v6";
1348 	case 7: return "ARM v6KZ";
1349 	case 8: return "ARM v6T2";
1350 	case 9: return "ARM v6K";
1351 	case 10: return "ARM v7";
1352 	case 11: return "ARM v6-M";
1353 	case 12: return "ARM v6S-M";
1354 	case 13: return "ARM v7E-M";
1355 	default:
1356 		snprintf(s_cpu_arch, sizeof(s_cpu_arch),
1357 		    "Unknown (%ju)", (uintmax_t) arch);
1358 		return (s_cpu_arch);
1359 	}
1360 }
1361 
1362 static const char *
1363 aeabi_cpu_arch_profile(uint64_t pf)
1364 {
1365 	static char s_arch_profile[32];
1366 
1367 	switch (pf) {
1368 	case 0:
1369 		return "Not applicable";
1370 	case 0x41:		/* 'A' */
1371 		return "Application Profile";
1372 	case 0x52:		/* 'R' */
1373 		return "Real-Time Profile";
1374 	case 0x4D:		/* 'M' */
1375 		return "Microcontroller Profile";
1376 	case 0x53:		/* 'S' */
1377 		return "Application or Real-Time Profile";
1378 	default:
1379 		snprintf(s_arch_profile, sizeof(s_arch_profile),
1380 		    "Unknown (%ju)\n", (uintmax_t) pf);
1381 		return (s_arch_profile);
1382 	}
1383 }
1384 
1385 static const char *
1386 aeabi_arm_isa(uint64_t ai)
1387 {
1388 	static char s_ai[32];
1389 
1390 	switch (ai) {
1391 	case 0: return "No";
1392 	case 1: return "Yes";
1393 	default:
1394 		snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
1395 		    (uintmax_t) ai);
1396 		return (s_ai);
1397 	}
1398 }
1399 
1400 static const char *
1401 aeabi_thumb_isa(uint64_t ti)
1402 {
1403 	static char s_ti[32];
1404 
1405 	switch (ti) {
1406 	case 0: return "No";
1407 	case 1: return "16-bit Thumb";
1408 	case 2: return "32-bit Thumb";
1409 	default:
1410 		snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
1411 		    (uintmax_t) ti);
1412 		return (s_ti);
1413 	}
1414 }
1415 
1416 static const char *
1417 aeabi_fp_arch(uint64_t fp)
1418 {
1419 	static char s_fp_arch[32];
1420 
1421 	switch (fp) {
1422 	case 0: return "No";
1423 	case 1: return "VFPv1";
1424 	case 2: return "VFPv2";
1425 	case 3: return "VFPv3";
1426 	case 4: return "VFPv3-D16";
1427 	case 5: return "VFPv4";
1428 	case 6: return "VFPv4-D16";
1429 	default:
1430 		snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
1431 		    (uintmax_t) fp);
1432 		return (s_fp_arch);
1433 	}
1434 }
1435 
1436 static const char *
1437 aeabi_wmmx_arch(uint64_t wmmx)
1438 {
1439 	static char s_wmmx[32];
1440 
1441 	switch (wmmx) {
1442 	case 0: return "No";
1443 	case 1: return "WMMXv1";
1444 	case 2: return "WMMXv2";
1445 	default:
1446 		snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
1447 		    (uintmax_t) wmmx);
1448 		return (s_wmmx);
1449 	}
1450 }
1451 
1452 static const char *
1453 aeabi_adv_simd_arch(uint64_t simd)
1454 {
1455 	static char s_simd[32];
1456 
1457 	switch (simd) {
1458 	case 0: return "No";
1459 	case 1: return "NEONv1";
1460 	case 2: return "NEONv2";
1461 	default:
1462 		snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
1463 		    (uintmax_t) simd);
1464 		return (s_simd);
1465 	}
1466 }
1467 
1468 static const char *
1469 aeabi_pcs_config(uint64_t pcs)
1470 {
1471 	static char s_pcs[32];
1472 
1473 	switch (pcs) {
1474 	case 0: return "None";
1475 	case 1: return "Bare platform";
1476 	case 2: return "Linux";
1477 	case 3: return "Linux DSO";
1478 	case 4: return "Palm OS 2004";
1479 	case 5: return "Palm OS (future)";
1480 	case 6: return "Symbian OS 2004";
1481 	case 7: return "Symbian OS (future)";
1482 	default:
1483 		snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
1484 		    (uintmax_t) pcs);
1485 		return (s_pcs);
1486 	}
1487 }
1488 
1489 static const char *
1490 aeabi_pcs_r9(uint64_t r9)
1491 {
1492 	static char s_r9[32];
1493 
1494 	switch (r9) {
1495 	case 0: return "V6";
1496 	case 1: return "SB";
1497 	case 2: return "TLS pointer";
1498 	case 3: return "Unused";
1499 	default:
1500 		snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
1501 		return (s_r9);
1502 	}
1503 }
1504 
1505 static const char *
1506 aeabi_pcs_rw(uint64_t rw)
1507 {
1508 	static char s_rw[32];
1509 
1510 	switch (rw) {
1511 	case 0: return "Absolute";
1512 	case 1: return "PC-relative";
1513 	case 2: return "SB-relative";
1514 	case 3: return "None";
1515 	default:
1516 		snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
1517 		return (s_rw);
1518 	}
1519 }
1520 
1521 static const char *
1522 aeabi_pcs_ro(uint64_t ro)
1523 {
1524 	static char s_ro[32];
1525 
1526 	switch (ro) {
1527 	case 0: return "Absolute";
1528 	case 1: return "PC-relative";
1529 	case 2: return "None";
1530 	default:
1531 		snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
1532 		return (s_ro);
1533 	}
1534 }
1535 
1536 static const char *
1537 aeabi_pcs_got(uint64_t got)
1538 {
1539 	static char s_got[32];
1540 
1541 	switch (got) {
1542 	case 0: return "None";
1543 	case 1: return "direct";
1544 	case 2: return "indirect via GOT";
1545 	default:
1546 		snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
1547 		    (uintmax_t) got);
1548 		return (s_got);
1549 	}
1550 }
1551 
1552 static const char *
1553 aeabi_pcs_wchar_t(uint64_t wt)
1554 {
1555 	static char s_wt[32];
1556 
1557 	switch (wt) {
1558 	case 0: return "None";
1559 	case 2: return "wchar_t size 2";
1560 	case 4: return "wchar_t size 4";
1561 	default:
1562 		snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
1563 		return (s_wt);
1564 	}
1565 }
1566 
1567 static const char *
1568 aeabi_enum_size(uint64_t es)
1569 {
1570 	static char s_es[32];
1571 
1572 	switch (es) {
1573 	case 0: return "None";
1574 	case 1: return "smallest";
1575 	case 2: return "32-bit";
1576 	case 3: return "visible 32-bit";
1577 	default:
1578 		snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
1579 		return (s_es);
1580 	}
1581 }
1582 
1583 static const char *
1584 aeabi_align_needed(uint64_t an)
1585 {
1586 	static char s_align_n[64];
1587 
1588 	switch (an) {
1589 	case 0: return "No";
1590 	case 1: return "8-byte align";
1591 	case 2: return "4-byte align";
1592 	case 3: return "Reserved";
1593 	default:
1594 		if (an >= 4 && an <= 12)
1595 			snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
1596 			    " and up to 2^%ju-byte extended align",
1597 			    (uintmax_t) an);
1598 		else
1599 			snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
1600 			    (uintmax_t) an);
1601 		return (s_align_n);
1602 	}
1603 }
1604 
1605 static const char *
1606 aeabi_align_preserved(uint64_t ap)
1607 {
1608 	static char s_align_p[128];
1609 
1610 	switch (ap) {
1611 	case 0: return "No";
1612 	case 1: return "8-byte align";
1613 	case 2: return "8-byte align and SP % 8 == 0";
1614 	case 3: return "Reserved";
1615 	default:
1616 		if (ap >= 4 && ap <= 12)
1617 			snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
1618 			    " and SP %% 8 == 0 and up to 2^%ju-byte extended"
1619 			    " align", (uintmax_t) ap);
1620 		else
1621 			snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
1622 			    (uintmax_t) ap);
1623 		return (s_align_p);
1624 	}
1625 }
1626 
1627 static const char *
1628 aeabi_fp_rounding(uint64_t fr)
1629 {
1630 	static char s_fp_r[32];
1631 
1632 	switch (fr) {
1633 	case 0: return "Unused";
1634 	case 1: return "Needed";
1635 	default:
1636 		snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
1637 		    (uintmax_t) fr);
1638 		return (s_fp_r);
1639 	}
1640 }
1641 
1642 static const char *
1643 aeabi_fp_denormal(uint64_t fd)
1644 {
1645 	static char s_fp_d[32];
1646 
1647 	switch (fd) {
1648 	case 0: return "Unused";
1649 	case 1: return "Needed";
1650 	case 2: return "Sign Only";
1651 	default:
1652 		snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
1653 		    (uintmax_t) fd);
1654 		return (s_fp_d);
1655 	}
1656 }
1657 
1658 static const char *
1659 aeabi_fp_exceptions(uint64_t fe)
1660 {
1661 	static char s_fp_e[32];
1662 
1663 	switch (fe) {
1664 	case 0: return "Unused";
1665 	case 1: return "Needed";
1666 	default:
1667 		snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
1668 		    (uintmax_t) fe);
1669 		return (s_fp_e);
1670 	}
1671 }
1672 
1673 static const char *
1674 aeabi_fp_user_exceptions(uint64_t fu)
1675 {
1676 	static char s_fp_u[32];
1677 
1678 	switch (fu) {
1679 	case 0: return "Unused";
1680 	case 1: return "Needed";
1681 	default:
1682 		snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
1683 		    (uintmax_t) fu);
1684 		return (s_fp_u);
1685 	}
1686 }
1687 
1688 static const char *
1689 aeabi_fp_number_model(uint64_t fn)
1690 {
1691 	static char s_fp_n[32];
1692 
1693 	switch (fn) {
1694 	case 0: return "Unused";
1695 	case 1: return "IEEE 754 normal";
1696 	case 2: return "RTABI";
1697 	case 3: return "IEEE 754";
1698 	default:
1699 		snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
1700 		    (uintmax_t) fn);
1701 		return (s_fp_n);
1702 	}
1703 }
1704 
1705 static const char *
1706 aeabi_fp_16bit_format(uint64_t fp16)
1707 {
1708 	static char s_fp_16[64];
1709 
1710 	switch (fp16) {
1711 	case 0: return "None";
1712 	case 1: return "IEEE 754";
1713 	case 2: return "VFPv3/Advanced SIMD (alternative format)";
1714 	default:
1715 		snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
1716 		    (uintmax_t) fp16);
1717 		return (s_fp_16);
1718 	}
1719 }
1720 
1721 static const char *
1722 aeabi_mpext(uint64_t mp)
1723 {
1724 	static char s_mp[32];
1725 
1726 	switch (mp) {
1727 	case 0: return "Not allowed";
1728 	case 1: return "Allowed";
1729 	default:
1730 		snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
1731 		    (uintmax_t) mp);
1732 		return (s_mp);
1733 	}
1734 }
1735 
1736 static const char *
1737 aeabi_div(uint64_t du)
1738 {
1739 	static char s_du[32];
1740 
1741 	switch (du) {
1742 	case 0: return "Yes (V7-R/V7-M)";
1743 	case 1: return "No";
1744 	case 2: return "Yes (V7-A)";
1745 	default:
1746 		snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
1747 		    (uintmax_t) du);
1748 		return (s_du);
1749 	}
1750 }
1751 
1752 static const char *
1753 aeabi_t2ee(uint64_t t2ee)
1754 {
1755 	static char s_t2ee[32];
1756 
1757 	switch (t2ee) {
1758 	case 0: return "Not allowed";
1759 	case 1: return "Allowed";
1760 	default:
1761 		snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
1762 		    (uintmax_t) t2ee);
1763 		return (s_t2ee);
1764 	}
1765 
1766 }
1767 
1768 static const char *
1769 aeabi_hardfp(uint64_t hfp)
1770 {
1771 	static char s_hfp[32];
1772 
1773 	switch (hfp) {
1774 	case 0: return "Tag_FP_arch";
1775 	case 1: return "only SP";
1776 	case 2: return "only DP";
1777 	case 3: return "both SP and DP";
1778 	default:
1779 		snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
1780 		    (uintmax_t) hfp);
1781 		return (s_hfp);
1782 	}
1783 }
1784 
1785 static const char *
1786 aeabi_vfp_args(uint64_t va)
1787 {
1788 	static char s_va[32];
1789 
1790 	switch (va) {
1791 	case 0: return "AAPCS (base variant)";
1792 	case 1: return "AAPCS (VFP variant)";
1793 	case 2: return "toolchain-specific";
1794 	default:
1795 		snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
1796 		return (s_va);
1797 	}
1798 }
1799 
1800 static const char *
1801 aeabi_wmmx_args(uint64_t wa)
1802 {
1803 	static char s_wa[32];
1804 
1805 	switch (wa) {
1806 	case 0: return "AAPCS (base variant)";
1807 	case 1: return "Intel WMMX";
1808 	case 2: return "toolchain-specific";
1809 	default:
1810 		snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
1811 		return (s_wa);
1812 	}
1813 }
1814 
1815 static const char *
1816 aeabi_unaligned_access(uint64_t ua)
1817 {
1818 	static char s_ua[32];
1819 
1820 	switch (ua) {
1821 	case 0: return "Not allowed";
1822 	case 1: return "Allowed";
1823 	default:
1824 		snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
1825 		return (s_ua);
1826 	}
1827 }
1828 
1829 static const char *
1830 aeabi_fp_hpext(uint64_t fh)
1831 {
1832 	static char s_fh[32];
1833 
1834 	switch (fh) {
1835 	case 0: return "Not allowed";
1836 	case 1: return "Allowed";
1837 	default:
1838 		snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
1839 		return (s_fh);
1840 	}
1841 }
1842 
1843 static const char *
1844 aeabi_optm_goal(uint64_t og)
1845 {
1846 	static char s_og[32];
1847 
1848 	switch (og) {
1849 	case 0: return "None";
1850 	case 1: return "Speed";
1851 	case 2: return "Speed aggressive";
1852 	case 3: return "Space";
1853 	case 4: return "Space aggressive";
1854 	case 5: return "Debugging";
1855 	case 6: return "Best Debugging";
1856 	default:
1857 		snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
1858 		return (s_og);
1859 	}
1860 }
1861 
1862 static const char *
1863 aeabi_fp_optm_goal(uint64_t fog)
1864 {
1865 	static char s_fog[32];
1866 
1867 	switch (fog) {
1868 	case 0: return "None";
1869 	case 1: return "Speed";
1870 	case 2: return "Speed aggressive";
1871 	case 3: return "Space";
1872 	case 4: return "Space aggressive";
1873 	case 5: return "Accurary";
1874 	case 6: return "Best Accurary";
1875 	default:
1876 		snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
1877 		    (uintmax_t) fog);
1878 		return (s_fog);
1879 	}
1880 }
1881 
1882 static const char *
1883 aeabi_virtual(uint64_t vt)
1884 {
1885 	static char s_virtual[64];
1886 
1887 	switch (vt) {
1888 	case 0: return "No";
1889 	case 1: return "TrustZone";
1890 	case 2: return "Virtualization extension";
1891 	case 3: return "TrustZone and virtualization extension";
1892 	default:
1893 		snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
1894 		    (uintmax_t) vt);
1895 		return (s_virtual);
1896 	}
1897 }
1898 
1899 static struct {
1900 	uint64_t tag;
1901 	const char *s_tag;
1902 	const char *(*get_desc)(uint64_t val);
1903 } aeabi_tags[] = {
1904 	{4, "Tag_CPU_raw_name", NULL},
1905 	{5, "Tag_CPU_name", NULL},
1906 	{6, "Tag_CPU_arch", aeabi_cpu_arch},
1907 	{7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
1908 	{8, "Tag_ARM_ISA_use", aeabi_arm_isa},
1909 	{9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
1910 	{10, "Tag_FP_arch", aeabi_fp_arch},
1911 	{11, "Tag_WMMX_arch", aeabi_wmmx_arch},
1912 	{12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
1913 	{13, "Tag_PCS_config", aeabi_pcs_config},
1914 	{14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
1915 	{15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
1916 	{16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
1917 	{17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
1918 	{18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
1919 	{19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
1920 	{20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
1921 	{21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
1922 	{22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
1923 	{23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
1924 	{24, "Tag_ABI_align_needed", aeabi_align_needed},
1925 	{25, "Tag_ABI_align_preserved", aeabi_align_preserved},
1926 	{26, "Tag_ABI_enum_size", aeabi_enum_size},
1927 	{27, "Tag_ABI_HardFP_use", aeabi_hardfp},
1928 	{28, "Tag_ABI_VFP_args", aeabi_vfp_args},
1929 	{29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
1930 	{30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
1931 	{31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
1932 	{32, "Tag_compatibility", NULL},
1933 	{34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
1934 	{36, "Tag_FP_HP_extension", aeabi_fp_hpext},
1935 	{38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
1936 	{42, "Tag_MPextension_use", aeabi_mpext},
1937 	{44, "Tag_DIV_use", aeabi_div},
1938 	{64, "Tag_nodefaults", NULL},
1939 	{65, "Tag_also_compatible_with", NULL},
1940 	{66, "Tag_T2EE_use", aeabi_t2ee},
1941 	{67, "Tag_conformance", NULL},
1942 	{68, "Tag_Virtualization_use", aeabi_virtual},
1943 	{70, "Tag_MPextension_use", aeabi_mpext},
1944 };
1945 
1946 static const char *
1947 mips_abi_fp(uint64_t fp)
1948 {
1949 	static char s_mips_abi_fp[64];
1950 
1951 	switch (fp) {
1952 	case 0: return "N/A";
1953 	case 1: return "Hard float (double precision)";
1954 	case 2: return "Hard float (single precision)";
1955 	case 3: return "Soft float";
1956 	case 4: return "64-bit float (-mips32r2 -mfp64)";
1957 	default:
1958 		snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
1959 		    (uintmax_t) fp);
1960 		return (s_mips_abi_fp);
1961 	}
1962 }
1963 
1964 static const char *
1965 ppc_abi_fp(uint64_t fp)
1966 {
1967 	static char s_ppc_abi_fp[64];
1968 
1969 	switch (fp) {
1970 	case 0: return "N/A";
1971 	case 1: return "Hard float (double precision)";
1972 	case 2: return "Soft float";
1973 	case 3: return "Hard float (single precision)";
1974 	default:
1975 		snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
1976 		    (uintmax_t) fp);
1977 		return (s_ppc_abi_fp);
1978 	}
1979 }
1980 
1981 static const char *
1982 ppc_abi_vector(uint64_t vec)
1983 {
1984 	static char s_vec[64];
1985 
1986 	switch (vec) {
1987 	case 0: return "N/A";
1988 	case 1: return "Generic purpose registers";
1989 	case 2: return "AltiVec registers";
1990 	case 3: return "SPE registers";
1991 	default:
1992 		snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
1993 		return (s_vec);
1994 	}
1995 }
1996 
1997 static const char *
1998 dwarf_reg(unsigned int mach, unsigned int reg)
1999 {
2000 
2001 	switch (mach) {
2002 	case EM_386:
2003 	case EM_IAMCU:
2004 		switch (reg) {
2005 		case 0: return "eax";
2006 		case 1: return "ecx";
2007 		case 2: return "edx";
2008 		case 3: return "ebx";
2009 		case 4: return "esp";
2010 		case 5: return "ebp";
2011 		case 6: return "esi";
2012 		case 7: return "edi";
2013 		case 8: return "eip";
2014 		case 9: return "eflags";
2015 		case 11: return "st0";
2016 		case 12: return "st1";
2017 		case 13: return "st2";
2018 		case 14: return "st3";
2019 		case 15: return "st4";
2020 		case 16: return "st5";
2021 		case 17: return "st6";
2022 		case 18: return "st7";
2023 		case 21: return "xmm0";
2024 		case 22: return "xmm1";
2025 		case 23: return "xmm2";
2026 		case 24: return "xmm3";
2027 		case 25: return "xmm4";
2028 		case 26: return "xmm5";
2029 		case 27: return "xmm6";
2030 		case 28: return "xmm7";
2031 		case 29: return "mm0";
2032 		case 30: return "mm1";
2033 		case 31: return "mm2";
2034 		case 32: return "mm3";
2035 		case 33: return "mm4";
2036 		case 34: return "mm5";
2037 		case 35: return "mm6";
2038 		case 36: return "mm7";
2039 		case 37: return "fcw";
2040 		case 38: return "fsw";
2041 		case 39: return "mxcsr";
2042 		case 40: return "es";
2043 		case 41: return "cs";
2044 		case 42: return "ss";
2045 		case 43: return "ds";
2046 		case 44: return "fs";
2047 		case 45: return "gs";
2048 		case 48: return "tr";
2049 		case 49: return "ldtr";
2050 		default: return (NULL);
2051 		}
2052 	case EM_X86_64:
2053 		switch (reg) {
2054 		case 0: return "rax";
2055 		case 1: return "rdx";
2056 		case 2: return "rcx";
2057 		case 3: return "rbx";
2058 		case 4: return "rsi";
2059 		case 5: return "rdi";
2060 		case 6: return "rbp";
2061 		case 7: return "rsp";
2062 		case 16: return "rip";
2063 		case 17: return "xmm0";
2064 		case 18: return "xmm1";
2065 		case 19: return "xmm2";
2066 		case 20: return "xmm3";
2067 		case 21: return "xmm4";
2068 		case 22: return "xmm5";
2069 		case 23: return "xmm6";
2070 		case 24: return "xmm7";
2071 		case 25: return "xmm8";
2072 		case 26: return "xmm9";
2073 		case 27: return "xmm10";
2074 		case 28: return "xmm11";
2075 		case 29: return "xmm12";
2076 		case 30: return "xmm13";
2077 		case 31: return "xmm14";
2078 		case 32: return "xmm15";
2079 		case 33: return "st0";
2080 		case 34: return "st1";
2081 		case 35: return "st2";
2082 		case 36: return "st3";
2083 		case 37: return "st4";
2084 		case 38: return "st5";
2085 		case 39: return "st6";
2086 		case 40: return "st7";
2087 		case 41: return "mm0";
2088 		case 42: return "mm1";
2089 		case 43: return "mm2";
2090 		case 44: return "mm3";
2091 		case 45: return "mm4";
2092 		case 46: return "mm5";
2093 		case 47: return "mm6";
2094 		case 48: return "mm7";
2095 		case 49: return "rflags";
2096 		case 50: return "es";
2097 		case 51: return "cs";
2098 		case 52: return "ss";
2099 		case 53: return "ds";
2100 		case 54: return "fs";
2101 		case 55: return "gs";
2102 		case 58: return "fs.base";
2103 		case 59: return "gs.base";
2104 		case 62: return "tr";
2105 		case 63: return "ldtr";
2106 		case 64: return "mxcsr";
2107 		case 65: return "fcw";
2108 		case 66: return "fsw";
2109 		default: return (NULL);
2110 		}
2111 	default:
2112 		return (NULL);
2113 	}
2114 }
2115 
2116 static void
2117 dump_ehdr(struct readelf *re)
2118 {
2119 	size_t		 phnum, shnum, shstrndx;
2120 	int		 i;
2121 
2122 	printf("ELF Header:\n");
2123 
2124 	/* e_ident[]. */
2125 	printf("  Magic:   ");
2126 	for (i = 0; i < EI_NIDENT; i++)
2127 		printf("%.2x ", re->ehdr.e_ident[i]);
2128 	putchar('\n');
2129 
2130 	/* EI_CLASS. */
2131 	printf("%-37s%s\n", "  Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
2132 
2133 	/* EI_DATA. */
2134 	printf("%-37s%s\n", "  Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
2135 
2136 	/* EI_VERSION. */
2137 	printf("%-37s%d %s\n", "  Version:", re->ehdr.e_ident[EI_VERSION],
2138 	    elf_ver(re->ehdr.e_ident[EI_VERSION]));
2139 
2140 	/* EI_OSABI. */
2141 	printf("%-37s%s\n", "  OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
2142 
2143 	/* EI_ABIVERSION. */
2144 	printf("%-37s%d\n", "  ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
2145 
2146 	/* e_type. */
2147 	printf("%-37s%s\n", "  Type:", elf_type(re->ehdr.e_type));
2148 
2149 	/* e_machine. */
2150 	printf("%-37s%s\n", "  Machine:", elf_machine(re->ehdr.e_machine));
2151 
2152 	/* e_version. */
2153 	printf("%-37s%#x\n", "  Version:", re->ehdr.e_version);
2154 
2155 	/* e_entry. */
2156 	printf("%-37s%#jx\n", "  Entry point address:",
2157 	    (uintmax_t)re->ehdr.e_entry);
2158 
2159 	/* e_phoff. */
2160 	printf("%-37s%ju (bytes into file)\n", "  Start of program headers:",
2161 	    (uintmax_t)re->ehdr.e_phoff);
2162 
2163 	/* e_shoff. */
2164 	printf("%-37s%ju (bytes into file)\n", "  Start of section headers:",
2165 	    (uintmax_t)re->ehdr.e_shoff);
2166 
2167 	/* e_flags. */
2168 	printf("%-37s%#x", "  Flags:", re->ehdr.e_flags);
2169 	dump_eflags(re, re->ehdr.e_flags);
2170 	putchar('\n');
2171 
2172 	/* e_ehsize. */
2173 	printf("%-37s%u (bytes)\n", "  Size of this header:",
2174 	    re->ehdr.e_ehsize);
2175 
2176 	/* e_phentsize. */
2177 	printf("%-37s%u (bytes)\n", "  Size of program headers:",
2178 	    re->ehdr.e_phentsize);
2179 
2180 	/* e_phnum. */
2181 	printf("%-37s%u", "  Number of program headers:", re->ehdr.e_phnum);
2182 	if (re->ehdr.e_phnum == PN_XNUM) {
2183 		/* Extended program header numbering is in use. */
2184 		if (elf_getphnum(re->elf, &phnum))
2185 			printf(" (%zu)", phnum);
2186 	}
2187 	putchar('\n');
2188 
2189 	/* e_shentsize. */
2190 	printf("%-37s%u (bytes)\n", "  Size of section headers:",
2191 	    re->ehdr.e_shentsize);
2192 
2193 	/* e_shnum. */
2194 	printf("%-37s%u", "  Number of section headers:", re->ehdr.e_shnum);
2195 	if (re->ehdr.e_shnum == SHN_UNDEF) {
2196 		/* Extended section numbering is in use. */
2197 		if (elf_getshnum(re->elf, &shnum))
2198 			printf(" (%ju)", (uintmax_t)shnum);
2199 	}
2200 	putchar('\n');
2201 
2202 	/* e_shstrndx. */
2203 	printf("%-37s%u", "  Section header string table index:",
2204 	    re->ehdr.e_shstrndx);
2205 	if (re->ehdr.e_shstrndx == SHN_XINDEX) {
2206 		/* Extended section numbering is in use. */
2207 		if (elf_getshstrndx(re->elf, &shstrndx))
2208 			printf(" (%ju)", (uintmax_t)shstrndx);
2209 	}
2210 	putchar('\n');
2211 }
2212 
2213 static void
2214 dump_eflags(struct readelf *re, uint64_t e_flags)
2215 {
2216 	struct eflags_desc *edesc;
2217 	int arm_eabi;
2218 
2219 	edesc = NULL;
2220 	switch (re->ehdr.e_machine) {
2221 	case EM_ARM:
2222 		arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
2223 		if (arm_eabi == 0)
2224 			printf(", GNU EABI");
2225 		else if (arm_eabi <= 5)
2226 			printf(", Version%d EABI", arm_eabi);
2227 		edesc = arm_eflags_desc;
2228 		break;
2229 	case EM_MIPS:
2230 	case EM_MIPS_RS3_LE:
2231 		switch ((e_flags & EF_MIPS_ARCH) >> 28) {
2232 		case 0:	printf(", mips1"); break;
2233 		case 1: printf(", mips2"); break;
2234 		case 2: printf(", mips3"); break;
2235 		case 3: printf(", mips4"); break;
2236 		case 4: printf(", mips5"); break;
2237 		case 5: printf(", mips32"); break;
2238 		case 6: printf(", mips64"); break;
2239 		case 7: printf(", mips32r2"); break;
2240 		case 8: printf(", mips64r2"); break;
2241 		default: break;
2242 		}
2243 		switch ((e_flags & 0x00FF0000) >> 16) {
2244 		case 0x81: printf(", 3900"); break;
2245 		case 0x82: printf(", 4010"); break;
2246 		case 0x83: printf(", 4100"); break;
2247 		case 0x85: printf(", 4650"); break;
2248 		case 0x87: printf(", 4120"); break;
2249 		case 0x88: printf(", 4111"); break;
2250 		case 0x8a: printf(", sb1"); break;
2251 		case 0x8b: printf(", octeon"); break;
2252 		case 0x8c: printf(", xlr"); break;
2253 		case 0x91: printf(", 5400"); break;
2254 		case 0x98: printf(", 5500"); break;
2255 		case 0x99: printf(", 9000"); break;
2256 		case 0xa0: printf(", loongson-2e"); break;
2257 		case 0xa1: printf(", loongson-2f"); break;
2258 		default: break;
2259 		}
2260 		switch ((e_flags & 0x0000F000) >> 12) {
2261 		case 1: printf(", o32"); break;
2262 		case 2: printf(", o64"); break;
2263 		case 3: printf(", eabi32"); break;
2264 		case 4: printf(", eabi64"); break;
2265 		default: break;
2266 		}
2267 		edesc = mips_eflags_desc;
2268 		break;
2269 	case EM_PPC:
2270 	case EM_PPC64:
2271 		edesc = powerpc_eflags_desc;
2272 		break;
2273 	case EM_SPARC:
2274 	case EM_SPARC32PLUS:
2275 	case EM_SPARCV9:
2276 		switch ((e_flags & EF_SPARCV9_MM)) {
2277 		case EF_SPARCV9_TSO: printf(", tso"); break;
2278 		case EF_SPARCV9_PSO: printf(", pso"); break;
2279 		case EF_SPARCV9_MM: printf(", rmo"); break;
2280 		default: break;
2281 		}
2282 		edesc = sparc_eflags_desc;
2283 		break;
2284 	default:
2285 		break;
2286 	}
2287 
2288 	if (edesc != NULL) {
2289 		while (edesc->desc != NULL) {
2290 			if (e_flags & edesc->flag)
2291 				printf(", %s", edesc->desc);
2292 			edesc++;
2293 		}
2294 	}
2295 }
2296 
2297 static void
2298 dump_phdr(struct readelf *re)
2299 {
2300 	const char	*rawfile;
2301 	GElf_Phdr	 phdr;
2302 	size_t		 phnum, size;
2303 	int		 i, j;
2304 
2305 #define	PH_HDR	"Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz",	\
2306 		"MemSiz", "Flg", "Align"
2307 #define	PH_CT	phdr_type(re->ehdr.e_machine, phdr.p_type),		\
2308 		(uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr,	\
2309 		(uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz,	\
2310 		(uintmax_t)phdr.p_memsz,				\
2311 		phdr.p_flags & PF_R ? 'R' : ' ',			\
2312 		phdr.p_flags & PF_W ? 'W' : ' ',			\
2313 		phdr.p_flags & PF_X ? 'E' : ' ',			\
2314 		(uintmax_t)phdr.p_align
2315 
2316 	if (elf_getphnum(re->elf, &phnum) == 0) {
2317 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2318 		return;
2319 	}
2320 	if (phnum == 0) {
2321 		printf("\nThere are no program headers in this file.\n");
2322 		return;
2323 	}
2324 
2325 	printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
2326 	printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
2327 	printf("There are %ju program headers, starting at offset %ju\n",
2328 	    (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
2329 
2330 	/* Dump program headers. */
2331 	printf("\nProgram Headers:\n");
2332 	if (re->ec == ELFCLASS32)
2333 		printf("  %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
2334 	else if (re->options & RE_WW)
2335 		printf("  %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
2336 	else
2337 		printf("  %-15s%-19s%-19s%s\n                 %-19s%-20s"
2338 		    "%-7s%s\n", PH_HDR);
2339 	for (i = 0; (size_t) i < phnum; i++) {
2340 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2341 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2342 			continue;
2343 		}
2344 		/* TODO: Add arch-specific segment type dump. */
2345 		if (re->ec == ELFCLASS32)
2346 			printf("  %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
2347 			    "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
2348 		else if (re->options & RE_WW)
2349 			printf("  %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
2350 			    "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
2351 		else
2352 			printf("  %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
2353 			    "                 0x%16.16jx 0x%16.16jx  %c%c%c"
2354 			    "    %#jx\n", PH_CT);
2355 		if (phdr.p_type == PT_INTERP) {
2356 			if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) {
2357 				warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2358 				continue;
2359 			}
2360 			if (phdr.p_offset >= size) {
2361 				warnx("invalid program header offset");
2362 				continue;
2363 			}
2364 			printf("      [Requesting program interpreter: %s]\n",
2365 				rawfile + phdr.p_offset);
2366 		}
2367 	}
2368 
2369 	/* Dump section to segment mapping. */
2370 	if (re->shnum == 0)
2371 		return;
2372 	printf("\n Section to Segment mapping:\n");
2373 	printf("  Segment Sections...\n");
2374 	for (i = 0; (size_t)i < phnum; i++) {
2375 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2376 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2377 			continue;
2378 		}
2379 		printf("   %2.2d     ", i);
2380 		/* skip NULL section. */
2381 		for (j = 1; (size_t)j < re->shnum; j++)
2382 			if (re->sl[j].addr >= phdr.p_vaddr &&
2383 			    re->sl[j].addr + re->sl[j].sz <=
2384 			    phdr.p_vaddr + phdr.p_memsz)
2385 				printf("%s ", re->sl[j].name);
2386 		printf("\n");
2387 	}
2388 #undef	PH_HDR
2389 #undef	PH_CT
2390 }
2391 
2392 static char *
2393 section_flags(struct readelf *re, struct section *s)
2394 {
2395 #define BUF_SZ 256
2396 	static char	buf[BUF_SZ];
2397 	int		i, p, nb;
2398 
2399 	p = 0;
2400 	nb = re->ec == ELFCLASS32 ? 8 : 16;
2401 	if (re->options & RE_T) {
2402 		snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
2403 		    (uintmax_t)s->flags);
2404 		p += nb + 4;
2405 	}
2406 	for (i = 0; section_flag[i].ln != NULL; i++) {
2407 		if ((s->flags & section_flag[i].value) == 0)
2408 			continue;
2409 		if (re->options & RE_T) {
2410 			snprintf(&buf[p], BUF_SZ - p, "%s, ",
2411 			    section_flag[i].ln);
2412 			p += strlen(section_flag[i].ln) + 2;
2413 		} else
2414 			buf[p++] = section_flag[i].sn;
2415 	}
2416 	if (re->options & RE_T && p > nb + 4)
2417 		p -= 2;
2418 	buf[p] = '\0';
2419 
2420 	return (buf);
2421 }
2422 
2423 static void
2424 dump_shdr(struct readelf *re)
2425 {
2426 	struct section	*s;
2427 	int		 i;
2428 
2429 #define	S_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2430 		"Flg", "Lk", "Inf", "Al"
2431 #define	S_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Size",	\
2432 		"EntSize", "Flags", "Link", "Info", "Align"
2433 #define	ST_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2434 		"Lk", "Inf", "Al", "Flags"
2435 #define	ST_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Link",	\
2436 		"Size", "EntSize", "Info", "Align", "Flags"
2437 #define	S_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),	\
2438 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2439 		(uintmax_t)s->entsize, section_flags(re, s),		\
2440 		s->link, s->info, (uintmax_t)s->align
2441 #define	ST_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2442 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2443 		(uintmax_t)s->entsize, s->link, s->info,		\
2444 		(uintmax_t)s->align, section_flags(re, s)
2445 #define	ST_CTL	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2446 		(uintmax_t)s->addr, (uintmax_t)s->off, s->link,		\
2447 		(uintmax_t)s->sz, (uintmax_t)s->entsize, s->info,	\
2448 		(uintmax_t)s->align, section_flags(re, s)
2449 
2450 	if (re->shnum == 0) {
2451 		printf("\nThere are no sections in this file.\n");
2452 		return;
2453 	}
2454 	printf("There are %ju section headers, starting at offset 0x%jx:\n",
2455 	    (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
2456 	printf("\nSection Headers:\n");
2457 	if (re->ec == ELFCLASS32) {
2458 		if (re->options & RE_T)
2459 			printf("  %s\n       %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
2460 			    "%12s\n", ST_HDR);
2461 		else
2462 			printf("  %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2463 			    S_HDR);
2464 	} else if (re->options & RE_WW) {
2465 		if (re->options & RE_T)
2466 			printf("  %s\n       %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
2467 			    "%12s\n", ST_HDR);
2468 		else
2469 			printf("  %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2470 			    S_HDR);
2471 	} else {
2472 		if (re->options & RE_T)
2473 			printf("  %s\n       %-18s%-17s%-18s%s\n       %-18s"
2474 			    "%-17s%-18s%s\n%12s\n", ST_HDRL);
2475 		else
2476 			printf("  %-23s%-17s%-18s%s\n       %-18s%-17s%-7s%"
2477 			    "-6s%-6s%s\n", S_HDRL);
2478 	}
2479 	for (i = 0; (size_t)i < re->shnum; i++) {
2480 		s = &re->sl[i];
2481 		if (re->ec == ELFCLASS32) {
2482 			if (re->options & RE_T)
2483 				printf("  [%2d] %s\n       %-15.15s %8.8jx"
2484 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2485 				    "       %s\n", ST_CT);
2486 			else
2487 				printf("  [%2d] %-17.17s %-15.15s %8.8jx"
2488 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2489 				    S_CT);
2490 		} else if (re->options & RE_WW) {
2491 			if (re->options & RE_T)
2492 				printf("  [%2d] %s\n       %-15.15s %16.16jx"
2493 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2494 				    "       %s\n", ST_CT);
2495 			else
2496 				printf("  [%2d] %-17.17s %-15.15s %16.16jx"
2497 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2498 				    S_CT);
2499 		} else {
2500 			if (re->options & RE_T)
2501 				printf("  [%2d] %s\n       %-15.15s  %16.16jx"
2502 				    "  %16.16jx  %u\n       %16.16jx %16.16jx"
2503 				    "  %-16u  %ju\n       %s\n", ST_CTL);
2504 			else
2505 				printf("  [%2d] %-17.17s %-15.15s  %16.16jx"
2506 				    "  %8.8jx\n       %16.16jx  %16.16jx "
2507 				    "%3s      %2u   %3u     %ju\n", S_CT);
2508 		}
2509 	}
2510 	if ((re->options & RE_T) == 0)
2511 		printf("Key to Flags:\n  W (write), A (alloc),"
2512 		    " X (execute), M (merge), S (strings)\n"
2513 		    "  I (info), L (link order), G (group), x (unknown)\n"
2514 		    "  O (extra OS processing required)"
2515 		    " o (OS specific), p (processor specific)\n");
2516 
2517 #undef	S_HDR
2518 #undef	S_HDRL
2519 #undef	ST_HDR
2520 #undef	ST_HDRL
2521 #undef	S_CT
2522 #undef	ST_CT
2523 #undef	ST_CTL
2524 }
2525 
2526 /*
2527  * Return number of entries in the given section. We'd prefer ent_count be a
2528  * size_t *, but libelf APIs already use int for section indices.
2529  */
2530 static int
2531 get_ent_count(struct section *s, int *ent_count)
2532 {
2533 	if (s->entsize == 0) {
2534 		warnx("section %s has entry size 0", s->name);
2535 		return (0);
2536 	} else if (s->sz / s->entsize > INT_MAX) {
2537 		warnx("section %s has invalid section count", s->name);
2538 		return (0);
2539 	}
2540 	*ent_count = (int)(s->sz / s->entsize);
2541 	return (1);
2542 }
2543 
2544 static void
2545 dump_dynamic(struct readelf *re)
2546 {
2547 	GElf_Dyn	 dyn;
2548 	Elf_Data	*d;
2549 	struct section	*s;
2550 	int		 elferr, i, is_dynamic, j, jmax, nentries;
2551 
2552 	is_dynamic = 0;
2553 
2554 	for (i = 0; (size_t)i < re->shnum; i++) {
2555 		s = &re->sl[i];
2556 		if (s->type != SHT_DYNAMIC)
2557 			continue;
2558 		(void) elf_errno();
2559 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2560 			elferr = elf_errno();
2561 			if (elferr != 0)
2562 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
2563 			continue;
2564 		}
2565 		if (d->d_size <= 0)
2566 			continue;
2567 
2568 		is_dynamic = 1;
2569 
2570 		/* Determine the actual number of table entries. */
2571 		nentries = 0;
2572 		if (!get_ent_count(s, &jmax))
2573 			continue;
2574 		for (j = 0; j < jmax; j++) {
2575 			if (gelf_getdyn(d, j, &dyn) != &dyn) {
2576 				warnx("gelf_getdyn failed: %s",
2577 				    elf_errmsg(-1));
2578 				continue;
2579 			}
2580 			nentries ++;
2581 			if (dyn.d_tag == DT_NULL)
2582 				break;
2583                 }
2584 
2585 		printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
2586 		printf(" contains %u entries:\n", nentries);
2587 
2588 		if (re->ec == ELFCLASS32)
2589 			printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
2590 		else
2591 			printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
2592 
2593 		for (j = 0; j < nentries; j++) {
2594 			if (gelf_getdyn(d, j, &dyn) != &dyn)
2595 				continue;
2596 			/* Dump dynamic entry type. */
2597 			if (re->ec == ELFCLASS32)
2598 				printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
2599 			else
2600 				printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
2601 			printf(" %-20s", dt_type(re->ehdr.e_machine,
2602 			    dyn.d_tag));
2603 			/* Dump dynamic entry value. */
2604 			dump_dyn_val(re, &dyn, s->link);
2605 		}
2606 	}
2607 
2608 	if (!is_dynamic)
2609 		printf("\nThere is no dynamic section in this file.\n");
2610 }
2611 
2612 static char *
2613 timestamp(time_t ti)
2614 {
2615 	static char ts[32];
2616 	struct tm *t;
2617 
2618 	t = gmtime(&ti);
2619 	snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
2620 	    t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
2621 	    t->tm_min, t->tm_sec);
2622 
2623 	return (ts);
2624 }
2625 
2626 static const char *
2627 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
2628 {
2629 	const char *name;
2630 
2631 	if (stab == SHN_UNDEF)
2632 		name = "ERROR";
2633 	else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
2634 		(void) elf_errno(); /* clear error */
2635 		name = "ERROR";
2636 	}
2637 
2638 	return (name);
2639 }
2640 
2641 static void
2642 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn)
2643 {
2644 	switch (re->ehdr.e_machine) {
2645 	case EM_MIPS:
2646 	case EM_MIPS_RS3_LE:
2647 		switch (dyn->d_tag) {
2648 		case DT_MIPS_RLD_VERSION:
2649 		case DT_MIPS_LOCAL_GOTNO:
2650 		case DT_MIPS_CONFLICTNO:
2651 		case DT_MIPS_LIBLISTNO:
2652 		case DT_MIPS_SYMTABNO:
2653 		case DT_MIPS_UNREFEXTNO:
2654 		case DT_MIPS_GOTSYM:
2655 		case DT_MIPS_HIPAGENO:
2656 		case DT_MIPS_DELTA_CLASS_NO:
2657 		case DT_MIPS_DELTA_INSTANCE_NO:
2658 		case DT_MIPS_DELTA_RELOC_NO:
2659 		case DT_MIPS_DELTA_SYM_NO:
2660 		case DT_MIPS_DELTA_CLASSSYM_NO:
2661 		case DT_MIPS_LOCALPAGE_GOTIDX:
2662 		case DT_MIPS_LOCAL_GOTIDX:
2663 		case DT_MIPS_HIDDEN_GOTIDX:
2664 		case DT_MIPS_PROTECTED_GOTIDX:
2665 			printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
2666 			break;
2667 		case DT_MIPS_ICHECKSUM:
2668 		case DT_MIPS_FLAGS:
2669 		case DT_MIPS_BASE_ADDRESS:
2670 		case DT_MIPS_CONFLICT:
2671 		case DT_MIPS_LIBLIST:
2672 		case DT_MIPS_RLD_MAP:
2673 		case DT_MIPS_DELTA_CLASS:
2674 		case DT_MIPS_DELTA_INSTANCE:
2675 		case DT_MIPS_DELTA_RELOC:
2676 		case DT_MIPS_DELTA_SYM:
2677 		case DT_MIPS_DELTA_CLASSSYM:
2678 		case DT_MIPS_CXX_FLAGS:
2679 		case DT_MIPS_PIXIE_INIT:
2680 		case DT_MIPS_SYMBOL_LIB:
2681 		case DT_MIPS_OPTIONS:
2682 		case DT_MIPS_INTERFACE:
2683 		case DT_MIPS_DYNSTR_ALIGN:
2684 		case DT_MIPS_INTERFACE_SIZE:
2685 		case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2686 		case DT_MIPS_COMPACT_SIZE:
2687 		case DT_MIPS_GP_VALUE:
2688 		case DT_MIPS_AUX_DYNAMIC:
2689 		case DT_MIPS_PLTGOT:
2690 		case DT_MIPS_RLD_OBJ_UPDATE:
2691 		case DT_MIPS_RWPLT:
2692 			printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2693 			break;
2694 		case DT_MIPS_IVERSION:
2695 		case DT_MIPS_PERF_SUFFIX:
2696 		case DT_MIPS_TIME_STAMP:
2697 			printf(" %s\n", timestamp(dyn->d_un.d_val));
2698 			break;
2699 		default:
2700 			printf("\n");
2701 			break;
2702 		}
2703 		break;
2704 	default:
2705 		printf("\n");
2706 		break;
2707 	}
2708 }
2709 
2710 static void
2711 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
2712 {
2713 	const char *name;
2714 
2715 	if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC &&
2716 	    dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) {
2717 		dump_arch_dyn_val(re, dyn);
2718 		return;
2719 	}
2720 
2721 	/* These entry values are index into the string table. */
2722 	name = NULL;
2723 	if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER ||
2724 	    dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
2725 	    dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
2726 		name = dyn_str(re, stab, dyn->d_un.d_val);
2727 
2728 	switch(dyn->d_tag) {
2729 	case DT_NULL:
2730 	case DT_PLTGOT:
2731 	case DT_HASH:
2732 	case DT_STRTAB:
2733 	case DT_SYMTAB:
2734 	case DT_RELA:
2735 	case DT_INIT:
2736 	case DT_SYMBOLIC:
2737 	case DT_REL:
2738 	case DT_DEBUG:
2739 	case DT_TEXTREL:
2740 	case DT_JMPREL:
2741 	case DT_FINI:
2742 	case DT_VERDEF:
2743 	case DT_VERNEED:
2744 	case DT_VERSYM:
2745 	case DT_GNU_HASH:
2746 	case DT_GNU_LIBLIST:
2747 	case DT_GNU_CONFLICT:
2748 		printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2749 		break;
2750 	case DT_PLTRELSZ:
2751 	case DT_RELASZ:
2752 	case DT_RELAENT:
2753 	case DT_STRSZ:
2754 	case DT_SYMENT:
2755 	case DT_RELSZ:
2756 	case DT_RELENT:
2757 	case DT_PREINIT_ARRAYSZ:
2758 	case DT_INIT_ARRAYSZ:
2759 	case DT_FINI_ARRAYSZ:
2760 	case DT_GNU_CONFLICTSZ:
2761 	case DT_GNU_LIBLISTSZ:
2762 		printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
2763 		break;
2764  	case DT_RELACOUNT:
2765 	case DT_RELCOUNT:
2766 	case DT_VERDEFNUM:
2767 	case DT_VERNEEDNUM:
2768 		printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
2769 		break;
2770 	case DT_AUXILIARY:
2771 		printf(" Auxiliary library: [%s]\n", name);
2772 		break;
2773 	case DT_FILTER:
2774 		printf(" Filter library: [%s]\n", name);
2775 		break;
2776 	case DT_NEEDED:
2777 		printf(" Shared library: [%s]\n", name);
2778 		break;
2779 	case DT_SONAME:
2780 		printf(" Library soname: [%s]\n", name);
2781 		break;
2782 	case DT_RPATH:
2783 		printf(" Library rpath: [%s]\n", name);
2784 		break;
2785 	case DT_RUNPATH:
2786 		printf(" Library runpath: [%s]\n", name);
2787 		break;
2788 	case DT_PLTREL:
2789 		printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
2790 		break;
2791 	case DT_GNU_PRELINKED:
2792 		printf(" %s\n", timestamp(dyn->d_un.d_val));
2793 		break;
2794 	default:
2795 		printf("\n");
2796 	}
2797 }
2798 
2799 static void
2800 dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
2801 {
2802 	GElf_Rel r;
2803 	const char *symname;
2804 	uint64_t symval;
2805 	int i, len;
2806 	uint32_t type;
2807 	uint8_t type2, type3;
2808 
2809 	if (s->link >= re->shnum)
2810 		return;
2811 
2812 #define	REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
2813 #define	REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
2814 		elftc_reloc_type_str(re->ehdr.e_machine,	    \
2815 		ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
2816 #define	REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
2817 		elftc_reloc_type_str(re->ehdr.e_machine, type),	    \
2818 		(uintmax_t)symval, symname
2819 
2820 	printf("\nRelocation section (%s):\n", s->name);
2821 	if (re->ec == ELFCLASS32)
2822 		printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
2823 	else {
2824 		if (re->options & RE_WW)
2825 			printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
2826 		else
2827 			printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
2828 	}
2829 	assert(d->d_size == s->sz);
2830 	if (!get_ent_count(s, &len))
2831 		return;
2832 	for (i = 0; i < len; i++) {
2833 		if (gelf_getrel(d, i, &r) != &r) {
2834 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
2835 			continue;
2836 		}
2837 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
2838 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
2839 		if (re->ec == ELFCLASS32) {
2840 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
2841 			    ELF64_R_TYPE(r.r_info));
2842 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
2843 		} else {
2844 			type = ELF64_R_TYPE(r.r_info);
2845 			if (re->ehdr.e_machine == EM_MIPS) {
2846 				type2 = (type >> 8) & 0xFF;
2847 				type3 = (type >> 16) & 0xFF;
2848 				type = type & 0xFF;
2849 			} else {
2850 				type2 = type3 = 0;
2851 			}
2852 			if (re->options & RE_WW)
2853 				printf("%16.16jx %16.16jx %-24.24s"
2854 				    " %16.16jx %s\n", REL_CT64);
2855 			else
2856 				printf("%12.12jx %12.12jx %-19.19s"
2857 				    " %16.16jx %s\n", REL_CT64);
2858 			if (re->ehdr.e_machine == EM_MIPS) {
2859 				if (re->options & RE_WW) {
2860 					printf("%32s: %s\n", "Type2",
2861 					    elftc_reloc_type_str(EM_MIPS,
2862 					    type2));
2863 					printf("%32s: %s\n", "Type3",
2864 					    elftc_reloc_type_str(EM_MIPS,
2865 					    type3));
2866 				} else {
2867 					printf("%24s: %s\n", "Type2",
2868 					    elftc_reloc_type_str(EM_MIPS,
2869 					    type2));
2870 					printf("%24s: %s\n", "Type3",
2871 					    elftc_reloc_type_str(EM_MIPS,
2872 					    type3));
2873 				}
2874 			}
2875 		}
2876 	}
2877 
2878 #undef	REL_HDR
2879 #undef	REL_CT
2880 }
2881 
2882 static void
2883 dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
2884 {
2885 	GElf_Rela r;
2886 	const char *symname;
2887 	uint64_t symval;
2888 	int i, len;
2889 	uint32_t type;
2890 	uint8_t type2, type3;
2891 
2892 	if (s->link >= re->shnum)
2893 		return;
2894 
2895 #define	RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
2896 		"st_name + r_addend"
2897 #define	RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
2898 		elftc_reloc_type_str(re->ehdr.e_machine,	    \
2899 		ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
2900 #define	RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
2901 		elftc_reloc_type_str(re->ehdr.e_machine, type),	    \
2902 		(uintmax_t)symval, symname
2903 
2904 	printf("\nRelocation section with addend (%s):\n", s->name);
2905 	if (re->ec == ELFCLASS32)
2906 		printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
2907 	else {
2908 		if (re->options & RE_WW)
2909 			printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
2910 		else
2911 			printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
2912 	}
2913 	assert(d->d_size == s->sz);
2914 	if (!get_ent_count(s, &len))
2915 		return;
2916 	for (i = 0; i < len; i++) {
2917 		if (gelf_getrela(d, i, &r) != &r) {
2918 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
2919 			continue;
2920 		}
2921 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
2922 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
2923 		if (re->ec == ELFCLASS32) {
2924 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
2925 			    ELF64_R_TYPE(r.r_info));
2926 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
2927 			printf(" + %x\n", (uint32_t) r.r_addend);
2928 		} else {
2929 			type = ELF64_R_TYPE(r.r_info);
2930 			if (re->ehdr.e_machine == EM_MIPS) {
2931 				type2 = (type >> 8) & 0xFF;
2932 				type3 = (type >> 16) & 0xFF;
2933 				type = type & 0xFF;
2934 			} else {
2935 				type2 = type3 = 0;
2936 			}
2937 			if (re->options & RE_WW)
2938 				printf("%16.16jx %16.16jx %-24.24s"
2939 				    " %16.16jx %s", RELA_CT64);
2940 			else
2941 				printf("%12.12jx %12.12jx %-19.19s"
2942 				    " %16.16jx %s", RELA_CT64);
2943 			printf(" + %jx\n", (uintmax_t) r.r_addend);
2944 			if (re->ehdr.e_machine == EM_MIPS) {
2945 				if (re->options & RE_WW) {
2946 					printf("%32s: %s\n", "Type2",
2947 					    elftc_reloc_type_str(EM_MIPS,
2948 					    type2));
2949 					printf("%32s: %s\n", "Type3",
2950 					    elftc_reloc_type_str(EM_MIPS,
2951 					    type3));
2952 				} else {
2953 					printf("%24s: %s\n", "Type2",
2954 					    elftc_reloc_type_str(EM_MIPS,
2955 					    type2));
2956 					printf("%24s: %s\n", "Type3",
2957 					    elftc_reloc_type_str(EM_MIPS,
2958 					    type3));
2959 				}
2960 			}
2961 		}
2962 	}
2963 
2964 #undef	RELA_HDR
2965 #undef	RELA_CT
2966 }
2967 
2968 static void
2969 dump_reloc(struct readelf *re)
2970 {
2971 	struct section *s;
2972 	Elf_Data *d;
2973 	int i, elferr;
2974 
2975 	for (i = 0; (size_t)i < re->shnum; i++) {
2976 		s = &re->sl[i];
2977 		if (s->type == SHT_REL || s->type == SHT_RELA) {
2978 			(void) elf_errno();
2979 			if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2980 				elferr = elf_errno();
2981 				if (elferr != 0)
2982 					warnx("elf_getdata failed: %s",
2983 					    elf_errmsg(elferr));
2984 				continue;
2985 			}
2986 			if (s->type == SHT_REL)
2987 				dump_rel(re, s, d);
2988 			else
2989 				dump_rela(re, s, d);
2990 		}
2991 	}
2992 }
2993 
2994 static void
2995 dump_symtab(struct readelf *re, int i)
2996 {
2997 	struct section *s;
2998 	Elf_Data *d;
2999 	GElf_Sym sym;
3000 	const char *name;
3001 	uint32_t stab;
3002 	int elferr, j, len;
3003 	uint16_t vs;
3004 
3005 	s = &re->sl[i];
3006 	if (s->link >= re->shnum)
3007 		return;
3008 	stab = s->link;
3009 	(void) elf_errno();
3010 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3011 		elferr = elf_errno();
3012 		if (elferr != 0)
3013 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3014 		return;
3015 	}
3016 	if (d->d_size <= 0)
3017 		return;
3018 	if (!get_ent_count(s, &len))
3019 		return;
3020 	printf("Symbol table (%s)", s->name);
3021 	printf(" contains %d entries:\n", len);
3022 	printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
3023 	    "Bind", "Vis", "Ndx", "Name");
3024 
3025 	for (j = 0; j < len; j++) {
3026 		if (gelf_getsym(d, j, &sym) != &sym) {
3027 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
3028 			continue;
3029 		}
3030 		printf("%6d:", j);
3031 		printf(" %16.16jx", (uintmax_t) sym.st_value);
3032 		printf(" %5ju", (uintmax_t) sym.st_size);
3033 		printf(" %-7s", st_type(re->ehdr.e_machine,
3034 		    re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info)));
3035 		printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
3036 		printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
3037 		printf(" %3s", st_shndx(sym.st_shndx));
3038 		if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
3039 			printf(" %s", name);
3040 		/* Append symbol version string for SHT_DYNSYM symbol table. */
3041 		if (s->type == SHT_DYNSYM && re->ver != NULL &&
3042 		    re->vs != NULL && re->vs[j] > 1) {
3043 			vs = re->vs[j] & VERSYM_VERSION;
3044 			if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
3045 				warnx("invalid versym version index %u", vs);
3046 				break;
3047 			}
3048 			if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0)
3049 				printf("@%s (%d)", re->ver[vs].name, vs);
3050 			else
3051 				printf("@@%s (%d)", re->ver[vs].name, vs);
3052 		}
3053 		putchar('\n');
3054 	}
3055 
3056 }
3057 
3058 static void
3059 dump_symtabs(struct readelf *re)
3060 {
3061 	GElf_Dyn dyn;
3062 	Elf_Data *d;
3063 	struct section *s;
3064 	uint64_t dyn_off;
3065 	int elferr, i, len;
3066 
3067 	/*
3068 	 * If -D is specified, only dump the symbol table specified by
3069 	 * the DT_SYMTAB entry in the .dynamic section.
3070 	 */
3071 	dyn_off = 0;
3072 	if (re->options & RE_DD) {
3073 		s = NULL;
3074 		for (i = 0; (size_t)i < re->shnum; i++)
3075 			if (re->sl[i].type == SHT_DYNAMIC) {
3076 				s = &re->sl[i];
3077 				break;
3078 			}
3079 		if (s == NULL)
3080 			return;
3081 		(void) elf_errno();
3082 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3083 			elferr = elf_errno();
3084 			if (elferr != 0)
3085 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
3086 			return;
3087 		}
3088 		if (d->d_size <= 0)
3089 			return;
3090 		if (!get_ent_count(s, &len))
3091 			return;
3092 
3093 		for (i = 0; i < len; i++) {
3094 			if (gelf_getdyn(d, i, &dyn) != &dyn) {
3095 				warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
3096 				continue;
3097 			}
3098 			if (dyn.d_tag == DT_SYMTAB) {
3099 				dyn_off = dyn.d_un.d_val;
3100 				break;
3101 			}
3102 		}
3103 	}
3104 
3105 	/* Find and dump symbol tables. */
3106 	for (i = 0; (size_t)i < re->shnum; i++) {
3107 		s = &re->sl[i];
3108 		if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
3109 			if (re->options & RE_DD) {
3110 				if (dyn_off == s->addr) {
3111 					dump_symtab(re, i);
3112 					break;
3113 				}
3114 			} else
3115 				dump_symtab(re, i);
3116 		}
3117 	}
3118 }
3119 
3120 static void
3121 dump_svr4_hash(struct section *s)
3122 {
3123 	Elf_Data	*d;
3124 	uint32_t	*buf;
3125 	uint32_t	 nbucket, nchain;
3126 	uint32_t	*bucket, *chain;
3127 	uint32_t	*bl, *c, maxl, total;
3128 	int		 elferr, i, j;
3129 
3130 	/* Read and parse the content of .hash section. */
3131 	(void) elf_errno();
3132 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3133 		elferr = elf_errno();
3134 		if (elferr != 0)
3135 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3136 		return;
3137 	}
3138 	if (d->d_size < 2 * sizeof(uint32_t)) {
3139 		warnx(".hash section too small");
3140 		return;
3141 	}
3142 	buf = d->d_buf;
3143 	nbucket = buf[0];
3144 	nchain = buf[1];
3145 	if (nbucket <= 0 || nchain <= 0) {
3146 		warnx("Malformed .hash section");
3147 		return;
3148 	}
3149 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3150 		warnx("Malformed .hash section");
3151 		return;
3152 	}
3153 	bucket = &buf[2];
3154 	chain = &buf[2 + nbucket];
3155 
3156 	maxl = 0;
3157 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3158 		errx(EXIT_FAILURE, "calloc failed");
3159 	for (i = 0; (uint32_t)i < nbucket; i++)
3160 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3161 			if (++bl[i] > maxl)
3162 				maxl = bl[i];
3163 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3164 		errx(EXIT_FAILURE, "calloc failed");
3165 	for (i = 0; (uint32_t)i < nbucket; i++)
3166 		c[bl[i]]++;
3167 	printf("\nHistogram for bucket list length (total of %u buckets):\n",
3168 	    nbucket);
3169 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3170 	total = 0;
3171 	for (i = 0; (uint32_t)i <= maxl; i++) {
3172 		total += c[i] * i;
3173 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3174 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3175 	}
3176 	free(c);
3177 	free(bl);
3178 }
3179 
3180 static void
3181 dump_svr4_hash64(struct readelf *re, struct section *s)
3182 {
3183 	Elf_Data	*d, dst;
3184 	uint64_t	*buf;
3185 	uint64_t	 nbucket, nchain;
3186 	uint64_t	*bucket, *chain;
3187 	uint64_t	*bl, *c, maxl, total;
3188 	int		 elferr, i, j;
3189 
3190 	/*
3191 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
3192 	 * .hash section contains only 32-bit entry, an explicit
3193 	 * gelf_xlatetom is needed here.
3194 	 */
3195 	(void) elf_errno();
3196 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
3197 		elferr = elf_errno();
3198 		if (elferr != 0)
3199 			warnx("elf_rawdata failed: %s",
3200 			    elf_errmsg(elferr));
3201 		return;
3202 	}
3203 	d->d_type = ELF_T_XWORD;
3204 	memcpy(&dst, d, sizeof(Elf_Data));
3205 	if (gelf_xlatetom(re->elf, &dst, d,
3206 		re->ehdr.e_ident[EI_DATA]) != &dst) {
3207 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
3208 		return;
3209 	}
3210 	if (dst.d_size < 2 * sizeof(uint64_t)) {
3211 		warnx(".hash section too small");
3212 		return;
3213 	}
3214 	buf = dst.d_buf;
3215 	nbucket = buf[0];
3216 	nchain = buf[1];
3217 	if (nbucket <= 0 || nchain <= 0) {
3218 		warnx("Malformed .hash section");
3219 		return;
3220 	}
3221 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3222 		warnx("Malformed .hash section");
3223 		return;
3224 	}
3225 	bucket = &buf[2];
3226 	chain = &buf[2 + nbucket];
3227 
3228 	maxl = 0;
3229 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3230 		errx(EXIT_FAILURE, "calloc failed");
3231 	for (i = 0; (uint32_t)i < nbucket; i++)
3232 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3233 			if (++bl[i] > maxl)
3234 				maxl = bl[i];
3235 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3236 		errx(EXIT_FAILURE, "calloc failed");
3237 	for (i = 0; (uint64_t)i < nbucket; i++)
3238 		c[bl[i]]++;
3239 	printf("Histogram for bucket list length (total of %ju buckets):\n",
3240 	    (uintmax_t)nbucket);
3241 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3242 	total = 0;
3243 	for (i = 0; (uint64_t)i <= maxl; i++) {
3244 		total += c[i] * i;
3245 		printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
3246 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3247 	}
3248 	free(c);
3249 	free(bl);
3250 }
3251 
3252 static void
3253 dump_gnu_hash(struct readelf *re, struct section *s)
3254 {
3255 	struct section	*ds;
3256 	Elf_Data	*d;
3257 	uint32_t	*buf;
3258 	uint32_t	*bucket, *chain;
3259 	uint32_t	 nbucket, nchain, symndx, maskwords;
3260 	uint32_t	*bl, *c, maxl, total;
3261 	int		 elferr, dynsymcount, i, j;
3262 
3263 	(void) elf_errno();
3264 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3265 		elferr = elf_errno();
3266 		if (elferr != 0)
3267 			warnx("elf_getdata failed: %s",
3268 			    elf_errmsg(elferr));
3269 		return;
3270 	}
3271 	if (d->d_size < 4 * sizeof(uint32_t)) {
3272 		warnx(".gnu.hash section too small");
3273 		return;
3274 	}
3275 	buf = d->d_buf;
3276 	nbucket = buf[0];
3277 	symndx = buf[1];
3278 	maskwords = buf[2];
3279 	buf += 4;
3280 	if (s->link >= re->shnum)
3281 		return;
3282 	ds = &re->sl[s->link];
3283 	if (!get_ent_count(ds, &dynsymcount))
3284 		return;
3285 	if (symndx >= (uint32_t)dynsymcount) {
3286 		warnx("Malformed .gnu.hash section (symndx out of range)");
3287 		return;
3288 	}
3289 	nchain = dynsymcount - symndx;
3290 	if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
3291 	    (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
3292 	    (nbucket + nchain) * sizeof(uint32_t)) {
3293 		warnx("Malformed .gnu.hash section");
3294 		return;
3295 	}
3296 	bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
3297 	chain = bucket + nbucket;
3298 
3299 	maxl = 0;
3300 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3301 		errx(EXIT_FAILURE, "calloc failed");
3302 	for (i = 0; (uint32_t)i < nbucket; i++)
3303 		for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
3304 		     j++) {
3305 			if (++bl[i] > maxl)
3306 				maxl = bl[i];
3307 			if (chain[j - symndx] & 1)
3308 				break;
3309 		}
3310 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3311 		errx(EXIT_FAILURE, "calloc failed");
3312 	for (i = 0; (uint32_t)i < nbucket; i++)
3313 		c[bl[i]]++;
3314 	printf("Histogram for bucket list length (total of %u buckets):\n",
3315 	    nbucket);
3316 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3317 	total = 0;
3318 	for (i = 0; (uint32_t)i <= maxl; i++) {
3319 		total += c[i] * i;
3320 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3321 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3322 	}
3323 	free(c);
3324 	free(bl);
3325 }
3326 
3327 static void
3328 dump_hash(struct readelf *re)
3329 {
3330 	struct section	*s;
3331 	int		 i;
3332 
3333 	for (i = 0; (size_t) i < re->shnum; i++) {
3334 		s = &re->sl[i];
3335 		if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
3336 			if (s->type == SHT_GNU_HASH)
3337 				dump_gnu_hash(re, s);
3338 			else if (re->ehdr.e_machine == EM_ALPHA &&
3339 			    s->entsize == 8)
3340 				dump_svr4_hash64(re, s);
3341 			else
3342 				dump_svr4_hash(s);
3343 		}
3344 	}
3345 }
3346 
3347 static void
3348 dump_notes(struct readelf *re)
3349 {
3350 	struct section *s;
3351 	const char *rawfile;
3352 	GElf_Phdr phdr;
3353 	Elf_Data *d;
3354 	size_t filesize, phnum;
3355 	int i, elferr;
3356 
3357 	if (re->ehdr.e_type == ET_CORE) {
3358 		/*
3359 		 * Search program headers in the core file for
3360 		 * PT_NOTE entry.
3361 		 */
3362 		if (elf_getphnum(re->elf, &phnum) == 0) {
3363 			warnx("elf_getphnum failed: %s", elf_errmsg(-1));
3364 			return;
3365 		}
3366 		if (phnum == 0)
3367 			return;
3368 		if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) {
3369 			warnx("elf_rawfile failed: %s", elf_errmsg(-1));
3370 			return;
3371 		}
3372 		for (i = 0; (size_t) i < phnum; i++) {
3373 			if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
3374 				warnx("gelf_getphdr failed: %s",
3375 				    elf_errmsg(-1));
3376 				continue;
3377 			}
3378 			if (phdr.p_type == PT_NOTE) {
3379 				if (phdr.p_offset >= filesize ||
3380 				    phdr.p_filesz > filesize - phdr.p_offset) {
3381 					warnx("invalid PHDR offset");
3382 					continue;
3383 				}
3384 				dump_notes_content(re, rawfile + phdr.p_offset,
3385 				    phdr.p_filesz, phdr.p_offset);
3386 			}
3387 		}
3388 
3389 	} else {
3390 		/*
3391 		 * For objects other than core files, Search for
3392 		 * SHT_NOTE sections.
3393 		 */
3394 		for (i = 0; (size_t) i < re->shnum; i++) {
3395 			s = &re->sl[i];
3396 			if (s->type == SHT_NOTE) {
3397 				(void) elf_errno();
3398 				if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3399 					elferr = elf_errno();
3400 					if (elferr != 0)
3401 						warnx("elf_getdata failed: %s",
3402 						    elf_errmsg(elferr));
3403 					continue;
3404 				}
3405 				dump_notes_content(re, d->d_buf, d->d_size,
3406 				    s->off);
3407 			}
3408 		}
3409 	}
3410 }
3411 
3412 static void
3413 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
3414 {
3415 	Elf_Note *note;
3416 	const char *end, *name;
3417 
3418 	printf("\nNotes at offset %#010jx with length %#010jx:\n",
3419 	    (uintmax_t) off, (uintmax_t) sz);
3420 	printf("  %-13s %-15s %s\n", "Owner", "Data size", "Description");
3421 	end = buf + sz;
3422 	while (buf < end) {
3423 		if (buf + sizeof(*note) > end) {
3424 			warnx("invalid note header");
3425 			return;
3426 		}
3427 		note = (Elf_Note *)(uintptr_t) buf;
3428 		name = (char *)(uintptr_t)(note + 1);
3429 		/*
3430 		 * The name field is required to be nul-terminated, and
3431 		 * n_namesz includes the terminating nul in observed
3432 		 * implementations (contrary to the ELF-64 spec). A special
3433 		 * case is needed for cores generated by some older Linux
3434 		 * versions, which write a note named "CORE" without a nul
3435 		 * terminator and n_namesz = 4.
3436 		 */
3437 		if (note->n_namesz == 0)
3438 			name = "";
3439 		else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
3440 			name = "CORE";
3441 		else if (strnlen(name, note->n_namesz) >= note->n_namesz)
3442 			name = "<invalid>";
3443 		printf("  %-13s %#010jx", name, (uintmax_t) note->n_descsz);
3444 		printf("      %s\n", note_type(name, re->ehdr.e_type,
3445 		    note->n_type));
3446 		buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) +
3447 		    roundup2(note->n_descsz, 4);
3448 	}
3449 }
3450 
3451 /*
3452  * Symbol versioning sections are the same for 32bit and 64bit
3453  * ELF objects.
3454  */
3455 #define Elf_Verdef	Elf32_Verdef
3456 #define	Elf_Verdaux	Elf32_Verdaux
3457 #define	Elf_Verneed	Elf32_Verneed
3458 #define	Elf_Vernaux	Elf32_Vernaux
3459 
3460 #define	SAVE_VERSION_NAME(x, n, t)					\
3461 	do {								\
3462 		while (x >= re->ver_sz) {				\
3463 			nv = realloc(re->ver,				\
3464 			    sizeof(*re->ver) * re->ver_sz * 2);		\
3465 			if (nv == NULL) {				\
3466 				warn("realloc failed");			\
3467 				free(re->ver);				\
3468 				return;					\
3469 			}						\
3470 			re->ver = nv;					\
3471 			for (i = re->ver_sz; i < re->ver_sz * 2; i++) {	\
3472 				re->ver[i].name = NULL;			\
3473 				re->ver[i].type = 0;			\
3474 			}						\
3475 			re->ver_sz *= 2;				\
3476 		}							\
3477 		if (x > 1) {						\
3478 			re->ver[x].name = n;				\
3479 			re->ver[x].type = t;				\
3480 		}							\
3481 	} while (0)
3482 
3483 
3484 static void
3485 dump_verdef(struct readelf *re, int dump)
3486 {
3487 	struct section *s;
3488 	struct symver *nv;
3489 	Elf_Data *d;
3490 	Elf_Verdef *vd;
3491 	Elf_Verdaux *vda;
3492 	uint8_t *buf, *end, *buf2;
3493 	const char *name;
3494 	int elferr, i, j;
3495 
3496 	if ((s = re->vd_s) == NULL)
3497 		return;
3498 	if (s->link >= re->shnum)
3499 		return;
3500 
3501 	if (re->ver == NULL) {
3502 		re->ver_sz = 16;
3503 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3504 		    NULL) {
3505 			warn("calloc failed");
3506 			return;
3507 		}
3508 		re->ver[0].name = "*local*";
3509 		re->ver[1].name = "*global*";
3510 	}
3511 
3512 	if (dump)
3513 		printf("\nVersion definition section (%s):\n", s->name);
3514 	(void) elf_errno();
3515 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3516 		elferr = elf_errno();
3517 		if (elferr != 0)
3518 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3519 		return;
3520 	}
3521 	if (d->d_size == 0)
3522 		return;
3523 
3524 	buf = d->d_buf;
3525 	end = buf + d->d_size;
3526 	while (buf + sizeof(Elf_Verdef) <= end) {
3527 		vd = (Elf_Verdef *) (uintptr_t) buf;
3528 		if (dump) {
3529 			printf("  0x%4.4lx", (unsigned long)
3530 			    (buf - (uint8_t *)d->d_buf));
3531 			printf(" vd_version: %u vd_flags: %d"
3532 			    " vd_ndx: %u vd_cnt: %u", vd->vd_version,
3533 			    vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
3534 		}
3535 		buf2 = buf + vd->vd_aux;
3536 		j = 0;
3537 		while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
3538 			vda = (Elf_Verdaux *) (uintptr_t) buf2;
3539 			name = get_string(re, s->link, vda->vda_name);
3540 			if (j == 0) {
3541 				if (dump)
3542 					printf(" vda_name: %s\n", name);
3543 				SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
3544 			} else if (dump)
3545 				printf("  0x%4.4lx parent: %s\n",
3546 				    (unsigned long) (buf2 -
3547 				    (uint8_t *)d->d_buf), name);
3548 			if (vda->vda_next == 0)
3549 				break;
3550 			buf2 += vda->vda_next;
3551 			j++;
3552 		}
3553 		if (vd->vd_next == 0)
3554 			break;
3555 		buf += vd->vd_next;
3556 	}
3557 }
3558 
3559 static void
3560 dump_verneed(struct readelf *re, int dump)
3561 {
3562 	struct section *s;
3563 	struct symver *nv;
3564 	Elf_Data *d;
3565 	Elf_Verneed *vn;
3566 	Elf_Vernaux *vna;
3567 	uint8_t *buf, *end, *buf2;
3568 	const char *name;
3569 	int elferr, i, j;
3570 
3571 	if ((s = re->vn_s) == NULL)
3572 		return;
3573 	if (s->link >= re->shnum)
3574 		return;
3575 
3576 	if (re->ver == NULL) {
3577 		re->ver_sz = 16;
3578 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3579 		    NULL) {
3580 			warn("calloc failed");
3581 			return;
3582 		}
3583 		re->ver[0].name = "*local*";
3584 		re->ver[1].name = "*global*";
3585 	}
3586 
3587 	if (dump)
3588 		printf("\nVersion needed section (%s):\n", s->name);
3589 	(void) elf_errno();
3590 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3591 		elferr = elf_errno();
3592 		if (elferr != 0)
3593 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3594 		return;
3595 	}
3596 	if (d->d_size == 0)
3597 		return;
3598 
3599 	buf = d->d_buf;
3600 	end = buf + d->d_size;
3601 	while (buf + sizeof(Elf_Verneed) <= end) {
3602 		vn = (Elf_Verneed *) (uintptr_t) buf;
3603 		if (dump) {
3604 			printf("  0x%4.4lx", (unsigned long)
3605 			    (buf - (uint8_t *)d->d_buf));
3606 			printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
3607 			    vn->vn_version,
3608 			    get_string(re, s->link, vn->vn_file),
3609 			    vn->vn_cnt);
3610 		}
3611 		buf2 = buf + vn->vn_aux;
3612 		j = 0;
3613 		while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
3614 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
3615 			if (dump)
3616 				printf("  0x%4.4lx", (unsigned long)
3617 				    (buf2 - (uint8_t *)d->d_buf));
3618 			name = get_string(re, s->link, vna->vna_name);
3619 			if (dump)
3620 				printf("   vna_name: %s vna_flags: %u"
3621 				    " vna_other: %u\n", name,
3622 				    vna->vna_flags, vna->vna_other);
3623 			SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
3624 			if (vna->vna_next == 0)
3625 				break;
3626 			buf2 += vna->vna_next;
3627 			j++;
3628 		}
3629 		if (vn->vn_next == 0)
3630 			break;
3631 		buf += vn->vn_next;
3632 	}
3633 }
3634 
3635 static void
3636 dump_versym(struct readelf *re)
3637 {
3638 	int i;
3639 	uint16_t vs;
3640 
3641 	if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
3642 		return;
3643 	printf("\nVersion symbol section (%s):\n", re->vs_s->name);
3644 	for (i = 0; i < re->vs_sz; i++) {
3645 		if ((i & 3) == 0) {
3646 			if (i > 0)
3647 				putchar('\n');
3648 			printf("  %03x:", i);
3649 		}
3650 		vs = re->vs[i] & VERSYM_VERSION;
3651 		if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
3652 			warnx("invalid versym version index %u", re->vs[i]);
3653 			break;
3654 		}
3655 		if (re->vs[i] & VERSYM_HIDDEN)
3656 			printf(" %3xh %-12s ", vs,
3657 			    re->ver[re->vs[i] & VERSYM_VERSION].name);
3658 		else
3659 			printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name);
3660 	}
3661 	putchar('\n');
3662 }
3663 
3664 static void
3665 dump_ver(struct readelf *re)
3666 {
3667 
3668 	if (re->vs_s && re->ver && re->vs)
3669 		dump_versym(re);
3670 	if (re->vd_s)
3671 		dump_verdef(re, 1);
3672 	if (re->vn_s)
3673 		dump_verneed(re, 1);
3674 }
3675 
3676 static void
3677 search_ver(struct readelf *re)
3678 {
3679 	struct section *s;
3680 	Elf_Data *d;
3681 	int elferr, i;
3682 
3683 	for (i = 0; (size_t) i < re->shnum; i++) {
3684 		s = &re->sl[i];
3685 		if (s->type == SHT_SUNW_versym)
3686 			re->vs_s = s;
3687 		if (s->type == SHT_SUNW_verneed)
3688 			re->vn_s = s;
3689 		if (s->type == SHT_SUNW_verdef)
3690 			re->vd_s = s;
3691 	}
3692 	if (re->vd_s)
3693 		dump_verdef(re, 0);
3694 	if (re->vn_s)
3695 		dump_verneed(re, 0);
3696 	if (re->vs_s && re->ver != NULL) {
3697 		(void) elf_errno();
3698 		if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
3699 			elferr = elf_errno();
3700 			if (elferr != 0)
3701 				warnx("elf_getdata failed: %s",
3702 				    elf_errmsg(elferr));
3703 			return;
3704 		}
3705 		if (d->d_size == 0)
3706 			return;
3707 		re->vs = d->d_buf;
3708 		re->vs_sz = d->d_size / sizeof(Elf32_Half);
3709 	}
3710 }
3711 
3712 #undef	Elf_Verdef
3713 #undef	Elf_Verdaux
3714 #undef	Elf_Verneed
3715 #undef	Elf_Vernaux
3716 #undef	SAVE_VERSION_NAME
3717 
3718 /*
3719  * Elf32_Lib and Elf64_Lib are identical.
3720  */
3721 #define	Elf_Lib		Elf32_Lib
3722 
3723 static void
3724 dump_liblist(struct readelf *re)
3725 {
3726 	struct section *s;
3727 	struct tm *t;
3728 	time_t ti;
3729 	char tbuf[20];
3730 	Elf_Data *d;
3731 	Elf_Lib *lib;
3732 	int i, j, k, elferr, first, len;
3733 
3734 	for (i = 0; (size_t) i < re->shnum; i++) {
3735 		s = &re->sl[i];
3736 		if (s->type != SHT_GNU_LIBLIST)
3737 			continue;
3738 		if (s->link >= re->shnum)
3739 			continue;
3740 		(void) elf_errno();
3741 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3742 			elferr = elf_errno();
3743 			if (elferr != 0)
3744 				warnx("elf_getdata failed: %s",
3745 				    elf_errmsg(elferr));
3746 			continue;
3747 		}
3748 		if (d->d_size <= 0)
3749 			continue;
3750 		lib = d->d_buf;
3751 		if (!get_ent_count(s, &len))
3752 			continue;
3753 		printf("\nLibrary list section '%s' ", s->name);
3754 		printf("contains %d entries:\n", len);
3755 		printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
3756 		    "Checksum", "Version", "Flags");
3757 		for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
3758 			printf("%3d: ", j);
3759 			printf("%-20.20s ",
3760 			    get_string(re, s->link, lib->l_name));
3761 			ti = lib->l_time_stamp;
3762 			t = gmtime(&ti);
3763 			snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
3764 			    ":%2d", t->tm_year + 1900, t->tm_mon + 1,
3765 			    t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
3766 			printf("%-19.19s ", tbuf);
3767 			printf("0x%08x ", lib->l_checksum);
3768 			printf("%-7d %#x", lib->l_version, lib->l_flags);
3769 			if (lib->l_flags != 0) {
3770 				first = 1;
3771 				putchar('(');
3772 				for (k = 0; l_flag[k].name != NULL; k++) {
3773 					if ((l_flag[k].value & lib->l_flags) ==
3774 					    0)
3775 						continue;
3776 					if (!first)
3777 						putchar(',');
3778 					else
3779 						first = 0;
3780 					printf("%s", l_flag[k].name);
3781 				}
3782 				putchar(')');
3783 			}
3784 			putchar('\n');
3785 			lib++;
3786 		}
3787 	}
3788 }
3789 
3790 #undef Elf_Lib
3791 
3792 static void
3793 dump_section_groups(struct readelf *re)
3794 {
3795 	struct section *s;
3796 	const char *symname;
3797 	Elf_Data *d;
3798 	uint32_t *w;
3799 	int i, j, elferr;
3800 	size_t n;
3801 
3802 	for (i = 0; (size_t) i < re->shnum; i++) {
3803 		s = &re->sl[i];
3804 		if (s->type != SHT_GROUP)
3805 			continue;
3806 		if (s->link >= re->shnum)
3807 			continue;
3808 		(void) elf_errno();
3809 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3810 			elferr = elf_errno();
3811 			if (elferr != 0)
3812 				warnx("elf_getdata failed: %s",
3813 				    elf_errmsg(elferr));
3814 			continue;
3815 		}
3816 		if (d->d_size <= 0)
3817 			continue;
3818 
3819 		w = d->d_buf;
3820 
3821 		/* We only support COMDAT section. */
3822 #ifndef GRP_COMDAT
3823 #define	GRP_COMDAT 0x1
3824 #endif
3825 		if ((*w++ & GRP_COMDAT) == 0)
3826 			return;
3827 
3828 		if (s->entsize == 0)
3829 			s->entsize = 4;
3830 
3831 		symname = get_symbol_name(re, s->link, s->info);
3832 		n = s->sz / s->entsize;
3833 		if (n-- < 1)
3834 			return;
3835 
3836 		printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju"
3837 		    " sections:\n", i, s->name, symname, (uintmax_t)n);
3838 		printf("   %-10.10s %s\n", "[Index]", "Name");
3839 		for (j = 0; (size_t) j < n; j++, w++) {
3840 			if (*w >= re->shnum) {
3841 				warnx("invalid section index: %u", *w);
3842 				continue;
3843 			}
3844 			printf("   [%5u]   %s\n", *w, re->sl[*w].name);
3845 		}
3846 	}
3847 }
3848 
3849 static uint8_t *
3850 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe)
3851 {
3852 	uint64_t val;
3853 
3854 	/*
3855 	 * According to ARM EABI: For tags > 32, even numbered tags have
3856 	 * a ULEB128 param and odd numbered ones have NUL-terminated
3857 	 * string param. This rule probably also applies for tags <= 32
3858 	 * if the object arch is not ARM.
3859 	 */
3860 
3861 	printf("  Tag_unknown_%ju: ", (uintmax_t) tag);
3862 
3863 	if (tag & 1) {
3864 		printf("%s\n", (char *) p);
3865 		p += strlen((char *) p) + 1;
3866 	} else {
3867 		val = _decode_uleb128(&p, pe);
3868 		printf("%ju\n", (uintmax_t) val);
3869 	}
3870 
3871 	return (p);
3872 }
3873 
3874 static uint8_t *
3875 dump_compatibility_tag(uint8_t *p, uint8_t *pe)
3876 {
3877 	uint64_t val;
3878 
3879 	val = _decode_uleb128(&p, pe);
3880 	printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p);
3881 	p += strlen((char *) p) + 1;
3882 
3883 	return (p);
3884 }
3885 
3886 static void
3887 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
3888 {
3889 	uint64_t tag, val;
3890 	size_t i;
3891 	int found, desc;
3892 
3893 	(void) re;
3894 
3895 	while (p < pe) {
3896 		tag = _decode_uleb128(&p, pe);
3897 		found = desc = 0;
3898 		for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
3899 		     i++) {
3900 			if (tag == aeabi_tags[i].tag) {
3901 				found = 1;
3902 				printf("  %s: ", aeabi_tags[i].s_tag);
3903 				if (aeabi_tags[i].get_desc) {
3904 					desc = 1;
3905 					val = _decode_uleb128(&p, pe);
3906 					printf("%s\n",
3907 					    aeabi_tags[i].get_desc(val));
3908 				}
3909 				break;
3910 			}
3911 			if (tag < aeabi_tags[i].tag)
3912 				break;
3913 		}
3914 		if (!found) {
3915 			p = dump_unknown_tag(tag, p, pe);
3916 			continue;
3917 		}
3918 		if (desc)
3919 			continue;
3920 
3921 		switch (tag) {
3922 		case 4:		/* Tag_CPU_raw_name */
3923 		case 5:		/* Tag_CPU_name */
3924 		case 67:	/* Tag_conformance */
3925 			printf("%s\n", (char *) p);
3926 			p += strlen((char *) p) + 1;
3927 			break;
3928 		case 32:	/* Tag_compatibility */
3929 			p = dump_compatibility_tag(p, pe);
3930 			break;
3931 		case 64:	/* Tag_nodefaults */
3932 			/* ignored, written as 0. */
3933 			(void) _decode_uleb128(&p, pe);
3934 			printf("True\n");
3935 			break;
3936 		case 65:	/* Tag_also_compatible_with */
3937 			val = _decode_uleb128(&p, pe);
3938 			/* Must be Tag_CPU_arch */
3939 			if (val != 6) {
3940 				printf("unknown\n");
3941 				break;
3942 			}
3943 			val = _decode_uleb128(&p, pe);
3944 			printf("%s\n", aeabi_cpu_arch(val));
3945 			/* Skip NUL terminator. */
3946 			p++;
3947 			break;
3948 		default:
3949 			putchar('\n');
3950 			break;
3951 		}
3952 	}
3953 }
3954 
3955 #ifndef	Tag_GNU_MIPS_ABI_FP
3956 #define	Tag_GNU_MIPS_ABI_FP	4
3957 #endif
3958 
3959 static void
3960 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
3961 {
3962 	uint64_t tag, val;
3963 
3964 	(void) re;
3965 
3966 	while (p < pe) {
3967 		tag = _decode_uleb128(&p, pe);
3968 		switch (tag) {
3969 		case Tag_GNU_MIPS_ABI_FP:
3970 			val = _decode_uleb128(&p, pe);
3971 			printf("  Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
3972 			break;
3973 		case 32:	/* Tag_compatibility */
3974 			p = dump_compatibility_tag(p, pe);
3975 			break;
3976 		default:
3977 			p = dump_unknown_tag(tag, p, pe);
3978 			break;
3979 		}
3980 	}
3981 }
3982 
3983 #ifndef Tag_GNU_Power_ABI_FP
3984 #define	Tag_GNU_Power_ABI_FP	4
3985 #endif
3986 
3987 #ifndef Tag_GNU_Power_ABI_Vector
3988 #define	Tag_GNU_Power_ABI_Vector	8
3989 #endif
3990 
3991 static void
3992 dump_ppc_attributes(uint8_t *p, uint8_t *pe)
3993 {
3994 	uint64_t tag, val;
3995 
3996 	while (p < pe) {
3997 		tag = _decode_uleb128(&p, pe);
3998 		switch (tag) {
3999 		case Tag_GNU_Power_ABI_FP:
4000 			val = _decode_uleb128(&p, pe);
4001 			printf("  Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
4002 			break;
4003 		case Tag_GNU_Power_ABI_Vector:
4004 			val = _decode_uleb128(&p, pe);
4005 			printf("  Tag_GNU_Power_ABI_Vector: %s\n",
4006 			    ppc_abi_vector(val));
4007 			break;
4008 		case 32:	/* Tag_compatibility */
4009 			p = dump_compatibility_tag(p, pe);
4010 			break;
4011 		default:
4012 			p = dump_unknown_tag(tag, p, pe);
4013 			break;
4014 		}
4015 	}
4016 }
4017 
4018 static void
4019 dump_attributes(struct readelf *re)
4020 {
4021 	struct section *s;
4022 	Elf_Data *d;
4023 	uint8_t *p, *pe, *sp;
4024 	size_t len, seclen, nlen, sublen;
4025 	uint64_t val;
4026 	int tag, i, elferr;
4027 
4028 	for (i = 0; (size_t) i < re->shnum; i++) {
4029 		s = &re->sl[i];
4030 		if (s->type != SHT_GNU_ATTRIBUTES &&
4031 		    (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
4032 			continue;
4033 		(void) elf_errno();
4034 		if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4035 			elferr = elf_errno();
4036 			if (elferr != 0)
4037 				warnx("elf_rawdata failed: %s",
4038 				    elf_errmsg(elferr));
4039 			continue;
4040 		}
4041 		if (d->d_size <= 0)
4042 			continue;
4043 		p = d->d_buf;
4044 		pe = p + d->d_size;
4045 		if (*p != 'A') {
4046 			printf("Unknown Attribute Section Format: %c\n",
4047 			    (char) *p);
4048 			continue;
4049 		}
4050 		len = d->d_size - 1;
4051 		p++;
4052 		while (len > 0) {
4053 			if (len < 4) {
4054 				warnx("truncated attribute section length");
4055 				return;
4056 			}
4057 			seclen = re->dw_decode(&p, 4);
4058 			if (seclen > len) {
4059 				warnx("invalid attribute section length");
4060 				return;
4061 			}
4062 			len -= seclen;
4063 			nlen = strlen((char *) p) + 1;
4064 			if (nlen + 4 > seclen) {
4065 				warnx("invalid attribute section name");
4066 				return;
4067 			}
4068 			printf("Attribute Section: %s\n", (char *) p);
4069 			p += nlen;
4070 			seclen -= nlen + 4;
4071 			while (seclen > 0) {
4072 				sp = p;
4073 				tag = *p++;
4074 				sublen = re->dw_decode(&p, 4);
4075 				if (sublen > seclen) {
4076 					warnx("invalid attribute sub-section"
4077 					    " length");
4078 					return;
4079 				}
4080 				seclen -= sublen;
4081 				printf("%s", top_tag(tag));
4082 				if (tag == 2 || tag == 3) {
4083 					putchar(':');
4084 					for (;;) {
4085 						val = _decode_uleb128(&p, pe);
4086 						if (val == 0)
4087 							break;
4088 						printf(" %ju", (uintmax_t) val);
4089 					}
4090 				}
4091 				putchar('\n');
4092 				if (re->ehdr.e_machine == EM_ARM &&
4093 				    s->type == SHT_LOPROC + 3)
4094 					dump_arm_attributes(re, p, sp + sublen);
4095 				else if (re->ehdr.e_machine == EM_MIPS ||
4096 				    re->ehdr.e_machine == EM_MIPS_RS3_LE)
4097 					dump_mips_attributes(re, p,
4098 					    sp + sublen);
4099 				else if (re->ehdr.e_machine == EM_PPC)
4100 					dump_ppc_attributes(p, sp + sublen);
4101 				p = sp + sublen;
4102 			}
4103 		}
4104 	}
4105 }
4106 
4107 static void
4108 dump_mips_specific_info(struct readelf *re)
4109 {
4110 	struct section *s;
4111 	int i;
4112 
4113 	s = NULL;
4114 	for (i = 0; (size_t) i < re->shnum; i++) {
4115 		s = &re->sl[i];
4116 		if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
4117 		    (s->type == SHT_MIPS_OPTIONS))) {
4118 			dump_mips_options(re, s);
4119 		}
4120 	}
4121 
4122 	if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") ||
4123 	    (s->type == SHT_MIPS_ABIFLAGS)))
4124 		dump_mips_abiflags(re, s);
4125 
4126 	/*
4127 	 * Dump .reginfo if present (although it will be ignored by an OS if a
4128 	 * .MIPS.options section is present, according to SGI mips64 spec).
4129 	 */
4130 	for (i = 0; (size_t) i < re->shnum; i++) {
4131 		s = &re->sl[i];
4132 		if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
4133 		    (s->type == SHT_MIPS_REGINFO)))
4134 			dump_mips_reginfo(re, s);
4135 	}
4136 }
4137 
4138 static void
4139 dump_mips_abiflags(struct readelf *re, struct section *s)
4140 {
4141 	Elf_Data *d;
4142 	uint8_t *p;
4143 	int elferr;
4144 	uint32_t isa_ext, ases, flags1, flags2;
4145 	uint16_t version;
4146 	uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi;
4147 
4148 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4149 		elferr = elf_errno();
4150 		if (elferr != 0)
4151 			warnx("elf_rawdata failed: %s",
4152 			    elf_errmsg(elferr));
4153 		return;
4154 	}
4155 	if (d->d_size != 24) {
4156 		warnx("invalid MIPS abiflags section size");
4157 		return;
4158 	}
4159 
4160 	p = d->d_buf;
4161 	version = re->dw_decode(&p, 2);
4162 	printf("MIPS ABI Flags Version: %u", version);
4163 	if (version != 0) {
4164 		printf(" (unknown)\n\n");
4165 		return;
4166 	}
4167 	printf("\n\n");
4168 
4169 	isa_level = re->dw_decode(&p, 1);
4170 	isa_rev = re->dw_decode(&p, 1);
4171 	gpr_size = re->dw_decode(&p, 1);
4172 	cpr1_size = re->dw_decode(&p, 1);
4173 	cpr2_size = re->dw_decode(&p, 1);
4174 	fp_abi = re->dw_decode(&p, 1);
4175 	isa_ext = re->dw_decode(&p, 4);
4176 	ases = re->dw_decode(&p, 4);
4177 	flags1 = re->dw_decode(&p, 4);
4178 	flags2 = re->dw_decode(&p, 4);
4179 
4180 	printf("ISA: ");
4181 	if (isa_rev <= 1)
4182 		printf("MIPS%u\n", isa_level);
4183 	else
4184 		printf("MIPS%ur%u\n", isa_level, isa_rev);
4185 	printf("GPR size: %d\n", get_mips_register_size(gpr_size));
4186 	printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size));
4187 	printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size));
4188 	printf("FP ABI: ");
4189 	switch (fp_abi) {
4190 	case 3:
4191 		printf("Soft float");
4192 		break;
4193 	default:
4194 		printf("%u", fp_abi);
4195 		break;
4196 	}
4197 	printf("\nISA Extension: %u\n", isa_ext);
4198 	printf("ASEs: %u\n", ases);
4199 	printf("FLAGS 1: %08x\n", flags1);
4200 	printf("FLAGS 2: %08x\n", flags2);
4201 }
4202 
4203 static int
4204 get_mips_register_size(uint8_t flag)
4205 {
4206 	switch (flag) {
4207 	case 0: return 0;
4208 	case 1: return 32;
4209 	case 2: return 64;
4210 	case 3: return 128;
4211 	default: return -1;
4212 	}
4213 }
4214 static void
4215 dump_mips_reginfo(struct readelf *re, struct section *s)
4216 {
4217 	Elf_Data *d;
4218 	int elferr, len;
4219 
4220 	(void) elf_errno();
4221 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4222 		elferr = elf_errno();
4223 		if (elferr != 0)
4224 			warnx("elf_rawdata failed: %s",
4225 			    elf_errmsg(elferr));
4226 		return;
4227 	}
4228 	if (d->d_size <= 0)
4229 		return;
4230 	if (!get_ent_count(s, &len))
4231 		return;
4232 
4233 	printf("\nSection '%s' contains %d entries:\n", s->name, len);
4234 	dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
4235 }
4236 
4237 static void
4238 dump_mips_options(struct readelf *re, struct section *s)
4239 {
4240 	Elf_Data *d;
4241 	uint32_t info;
4242 	uint16_t sndx;
4243 	uint8_t *p, *pe;
4244 	uint8_t kind, size;
4245 	int elferr;
4246 
4247 	(void) elf_errno();
4248 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4249 		elferr = elf_errno();
4250 		if (elferr != 0)
4251 			warnx("elf_rawdata failed: %s",
4252 			    elf_errmsg(elferr));
4253 		return;
4254 	}
4255 	if (d->d_size == 0)
4256 		return;
4257 
4258 	printf("\nSection %s contains:\n", s->name);
4259 	p = d->d_buf;
4260 	pe = p + d->d_size;
4261 	while (p < pe) {
4262 		if (pe - p < 8) {
4263 			warnx("Truncated MIPS option header");
4264 			return;
4265 		}
4266 		kind = re->dw_decode(&p, 1);
4267 		size = re->dw_decode(&p, 1);
4268 		sndx = re->dw_decode(&p, 2);
4269 		info = re->dw_decode(&p, 4);
4270 		if (size < 8 || size - 8 > pe - p) {
4271 			warnx("Malformed MIPS option header");
4272 			return;
4273 		}
4274 		size -= 8;
4275 		switch (kind) {
4276 		case ODK_REGINFO:
4277 			dump_mips_odk_reginfo(re, p, size);
4278 			break;
4279 		case ODK_EXCEPTIONS:
4280 			printf(" EXCEPTIONS FPU_MIN: %#x\n",
4281 			    info & OEX_FPU_MIN);
4282 			printf("%11.11s FPU_MAX: %#x\n", "",
4283 			    info & OEX_FPU_MAX);
4284 			dump_mips_option_flags("", mips_exceptions_option,
4285 			    info);
4286 			break;
4287 		case ODK_PAD:
4288 			printf(" %-10.10s section: %ju\n", "OPAD",
4289 			    (uintmax_t) sndx);
4290 			dump_mips_option_flags("", mips_pad_option, info);
4291 			break;
4292 		case ODK_HWPATCH:
4293 			dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
4294 			    info);
4295 			break;
4296 		case ODK_HWAND:
4297 			dump_mips_option_flags("HWAND", mips_hwa_option, info);
4298 			break;
4299 		case ODK_HWOR:
4300 			dump_mips_option_flags("HWOR", mips_hwo_option, info);
4301 			break;
4302 		case ODK_FILL:
4303 			printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
4304 			break;
4305 		case ODK_TAGS:
4306 			printf(" %-10.10s\n", "TAGS");
4307 			break;
4308 		case ODK_GP_GROUP:
4309 			printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
4310 			    info & 0xFFFF);
4311 			if (info & 0x10000)
4312 				printf(" %-10.10s GP group is "
4313 				    "self-contained\n", "");
4314 			break;
4315 		case ODK_IDENT:
4316 			printf(" %-10.10s default GP group number: %#x\n",
4317 			    "IDENT", info & 0xFFFF);
4318 			if (info & 0x10000)
4319 				printf(" %-10.10s default GP group is "
4320 				    "self-contained\n", "");
4321 			break;
4322 		case ODK_PAGESIZE:
4323 			printf(" %-10.10s\n", "PAGESIZE");
4324 			break;
4325 		default:
4326 			break;
4327 		}
4328 		p += size;
4329 	}
4330 }
4331 
4332 static void
4333 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
4334 {
4335 	int first;
4336 
4337 	first = 1;
4338 	for (; opt->desc != NULL; opt++) {
4339 		if (info & opt->flag) {
4340 			printf(" %-10.10s %s\n", first ? name : "",
4341 			    opt->desc);
4342 			first = 0;
4343 		}
4344 	}
4345 }
4346 
4347 static void
4348 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
4349 {
4350 	uint32_t ri_gprmask;
4351 	uint32_t ri_cprmask[4];
4352 	uint64_t ri_gp_value;
4353 	uint8_t *pe;
4354 	int i;
4355 
4356 	pe = p + sz;
4357 	while (p < pe) {
4358 		ri_gprmask = re->dw_decode(&p, 4);
4359 		/* Skip ri_pad padding field for mips64. */
4360 		if (re->ec == ELFCLASS64)
4361 			re->dw_decode(&p, 4);
4362 		for (i = 0; i < 4; i++)
4363 			ri_cprmask[i] = re->dw_decode(&p, 4);
4364 		if (re->ec == ELFCLASS32)
4365 			ri_gp_value = re->dw_decode(&p, 4);
4366 		else
4367 			ri_gp_value = re->dw_decode(&p, 8);
4368 		printf(" %s    ", option_kind(ODK_REGINFO));
4369 		printf("ri_gprmask:    0x%08jx\n", (uintmax_t) ri_gprmask);
4370 		for (i = 0; i < 4; i++)
4371 			printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
4372 			    (uintmax_t) ri_cprmask[i]);
4373 		printf("%12.12s", "");
4374 		printf("ri_gp_value:   %#jx\n", (uintmax_t) ri_gp_value);
4375 	}
4376 }
4377 
4378 static void
4379 dump_arch_specific_info(struct readelf *re)
4380 {
4381 
4382 	dump_liblist(re);
4383 	dump_attributes(re);
4384 
4385 	switch (re->ehdr.e_machine) {
4386 	case EM_MIPS:
4387 	case EM_MIPS_RS3_LE:
4388 		dump_mips_specific_info(re);
4389 	default:
4390 		break;
4391 	}
4392 }
4393 
4394 static const char *
4395 dwarf_regname(struct readelf *re, unsigned int num)
4396 {
4397 	static char rx[32];
4398 	const char *rn;
4399 
4400 	if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
4401 		return (rn);
4402 
4403 	snprintf(rx, sizeof(rx), "r%u", num);
4404 
4405 	return (rx);
4406 }
4407 
4408 static void
4409 dump_dwarf_line(struct readelf *re)
4410 {
4411 	struct section *s;
4412 	Dwarf_Die die;
4413 	Dwarf_Error de;
4414 	Dwarf_Half tag, version, pointer_size;
4415 	Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
4416 	Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
4417 	Elf_Data *d;
4418 	char *pn;
4419 	uint64_t address, file, line, column, isa, opsize, udelta;
4420 	int64_t sdelta;
4421 	uint8_t *p, *pe;
4422 	int8_t lbase;
4423 	int i, is_stmt, dwarf_size, elferr, ret;
4424 
4425 	printf("\nDump of debug contents of section .debug_line:\n");
4426 
4427 	s = NULL;
4428 	for (i = 0; (size_t) i < re->shnum; i++) {
4429 		s = &re->sl[i];
4430 		if (s->name != NULL && !strcmp(s->name, ".debug_line"))
4431 			break;
4432 	}
4433 	if ((size_t) i >= re->shnum)
4434 		return;
4435 
4436 	(void) elf_errno();
4437 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4438 		elferr = elf_errno();
4439 		if (elferr != 0)
4440 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
4441 		return;
4442 	}
4443 	if (d->d_size <= 0)
4444 		return;
4445 
4446 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4447 	    NULL, &de)) ==  DW_DLV_OK) {
4448 		die = NULL;
4449 		while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
4450 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4451 				warnx("dwarf_tag failed: %s",
4452 				    dwarf_errmsg(de));
4453 				return;
4454 			}
4455 			/* XXX: What about DW_TAG_partial_unit? */
4456 			if (tag == DW_TAG_compile_unit)
4457 				break;
4458 		}
4459 		if (die == NULL) {
4460 			warnx("could not find DW_TAG_compile_unit die");
4461 			return;
4462 		}
4463 		if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
4464 		    &de) != DW_DLV_OK)
4465 			continue;
4466 
4467 		length = re->dw_read(d, &offset, 4);
4468 		if (length == 0xffffffff) {
4469 			dwarf_size = 8;
4470 			length = re->dw_read(d, &offset, 8);
4471 		} else
4472 			dwarf_size = 4;
4473 
4474 		if (length > d->d_size - offset) {
4475 			warnx("invalid .dwarf_line section");
4476 			continue;
4477 		}
4478 
4479 		endoff = offset + length;
4480 		pe = (uint8_t *) d->d_buf + endoff;
4481 		version = re->dw_read(d, &offset, 2);
4482 		hdrlen = re->dw_read(d, &offset, dwarf_size);
4483 		minlen = re->dw_read(d, &offset, 1);
4484 		defstmt = re->dw_read(d, &offset, 1);
4485 		lbase = re->dw_read(d, &offset, 1);
4486 		lrange = re->dw_read(d, &offset, 1);
4487 		opbase = re->dw_read(d, &offset, 1);
4488 
4489 		printf("\n");
4490 		printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
4491 		printf("  DWARF version:\t\t%u\n", version);
4492 		printf("  Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
4493 		printf("  Minimum Instruction Length:\t%u\n", minlen);
4494 		printf("  Initial value of 'is_stmt':\t%u\n", defstmt);
4495 		printf("  Line Base:\t\t\t%d\n", lbase);
4496 		printf("  Line Range:\t\t\t%u\n", lrange);
4497 		printf("  Opcode Base:\t\t\t%u\n", opbase);
4498 		(void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
4499 		printf("  (Pointer size:\t\t%u)\n", pointer_size);
4500 
4501 		printf("\n");
4502 		printf(" Opcodes:\n");
4503 		for (i = 1; i < opbase; i++) {
4504 			oplen = re->dw_read(d, &offset, 1);
4505 			printf("  Opcode %d has %u args\n", i, oplen);
4506 		}
4507 
4508 		printf("\n");
4509 		printf(" The Directory Table:\n");
4510 		p = (uint8_t *) d->d_buf + offset;
4511 		while (*p != '\0') {
4512 			printf("  %s\n", (char *) p);
4513 			p += strlen((char *) p) + 1;
4514 		}
4515 
4516 		p++;
4517 		printf("\n");
4518 		printf(" The File Name Table:\n");
4519 		printf("  Entry\tDir\tTime\tSize\tName\n");
4520 		i = 0;
4521 		while (*p != '\0') {
4522 			i++;
4523 			pn = (char *) p;
4524 			p += strlen(pn) + 1;
4525 			dirndx = _decode_uleb128(&p, pe);
4526 			mtime = _decode_uleb128(&p, pe);
4527 			fsize = _decode_uleb128(&p, pe);
4528 			printf("  %d\t%ju\t%ju\t%ju\t%s\n", i,
4529 			    (uintmax_t) dirndx, (uintmax_t) mtime,
4530 			    (uintmax_t) fsize, pn);
4531 		}
4532 
4533 #define	RESET_REGISTERS						\
4534 	do {							\
4535 		address	       = 0;				\
4536 		file	       = 1;				\
4537 		line	       = 1;				\
4538 		column	       = 0;				\
4539 		is_stmt	       = defstmt;			\
4540 	} while(0)
4541 
4542 #define	LINE(x) (lbase + (((x) - opbase) % lrange))
4543 #define	ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
4544 
4545 		p++;
4546 		printf("\n");
4547 		printf(" Line Number Statements:\n");
4548 
4549 		RESET_REGISTERS;
4550 
4551 		while (p < pe) {
4552 
4553 			if (*p == 0) {
4554 				/*
4555 				 * Extended Opcodes.
4556 				 */
4557 				p++;
4558 				opsize = _decode_uleb128(&p, pe);
4559 				printf("  Extended opcode %u: ", *p);
4560 				switch (*p) {
4561 				case DW_LNE_end_sequence:
4562 					p++;
4563 					RESET_REGISTERS;
4564 					printf("End of Sequence\n");
4565 					break;
4566 				case DW_LNE_set_address:
4567 					p++;
4568 					address = re->dw_decode(&p,
4569 					    pointer_size);
4570 					printf("set Address to %#jx\n",
4571 					    (uintmax_t) address);
4572 					break;
4573 				case DW_LNE_define_file:
4574 					p++;
4575 					pn = (char *) p;
4576 					p += strlen(pn) + 1;
4577 					dirndx = _decode_uleb128(&p, pe);
4578 					mtime = _decode_uleb128(&p, pe);
4579 					fsize = _decode_uleb128(&p, pe);
4580 					printf("define new file: %s\n", pn);
4581 					break;
4582 				default:
4583 					/* Unrecognized extened opcodes. */
4584 					p += opsize;
4585 					printf("unknown opcode\n");
4586 				}
4587 			} else if (*p > 0 && *p < opbase) {
4588 				/*
4589 				 * Standard Opcodes.
4590 				 */
4591 				switch(*p++) {
4592 				case DW_LNS_copy:
4593 					printf("  Copy\n");
4594 					break;
4595 				case DW_LNS_advance_pc:
4596 					udelta = _decode_uleb128(&p, pe) *
4597 					    minlen;
4598 					address += udelta;
4599 					printf("  Advance PC by %ju to %#jx\n",
4600 					    (uintmax_t) udelta,
4601 					    (uintmax_t) address);
4602 					break;
4603 				case DW_LNS_advance_line:
4604 					sdelta = _decode_sleb128(&p, pe);
4605 					line += sdelta;
4606 					printf("  Advance Line by %jd to %ju\n",
4607 					    (intmax_t) sdelta,
4608 					    (uintmax_t) line);
4609 					break;
4610 				case DW_LNS_set_file:
4611 					file = _decode_uleb128(&p, pe);
4612 					printf("  Set File to %ju\n",
4613 					    (uintmax_t) file);
4614 					break;
4615 				case DW_LNS_set_column:
4616 					column = _decode_uleb128(&p, pe);
4617 					printf("  Set Column to %ju\n",
4618 					    (uintmax_t) column);
4619 					break;
4620 				case DW_LNS_negate_stmt:
4621 					is_stmt = !is_stmt;
4622 					printf("  Set is_stmt to %d\n", is_stmt);
4623 					break;
4624 				case DW_LNS_set_basic_block:
4625 					printf("  Set basic block flag\n");
4626 					break;
4627 				case DW_LNS_const_add_pc:
4628 					address += ADDRESS(255);
4629 					printf("  Advance PC by constant %ju"
4630 					    " to %#jx\n",
4631 					    (uintmax_t) ADDRESS(255),
4632 					    (uintmax_t) address);
4633 					break;
4634 				case DW_LNS_fixed_advance_pc:
4635 					udelta = re->dw_decode(&p, 2);
4636 					address += udelta;
4637 					printf("  Advance PC by fixed value "
4638 					    "%ju to %#jx\n",
4639 					    (uintmax_t) udelta,
4640 					    (uintmax_t) address);
4641 					break;
4642 				case DW_LNS_set_prologue_end:
4643 					printf("  Set prologue end flag\n");
4644 					break;
4645 				case DW_LNS_set_epilogue_begin:
4646 					printf("  Set epilogue begin flag\n");
4647 					break;
4648 				case DW_LNS_set_isa:
4649 					isa = _decode_uleb128(&p, pe);
4650 					printf("  Set isa to %ju\n",
4651 					    (uintmax_t) isa);
4652 					break;
4653 				default:
4654 					/* Unrecognized extended opcodes. */
4655 					printf("  Unknown extended opcode %u\n",
4656 					    *(p - 1));
4657 					break;
4658 				}
4659 
4660 			} else {
4661 				/*
4662 				 * Special Opcodes.
4663 				 */
4664 				line += LINE(*p);
4665 				address += ADDRESS(*p);
4666 				printf("  Special opcode %u: advance Address "
4667 				    "by %ju to %#jx and Line by %jd to %ju\n",
4668 				    *p - opbase, (uintmax_t) ADDRESS(*p),
4669 				    (uintmax_t) address, (intmax_t) LINE(*p),
4670 				    (uintmax_t) line);
4671 				p++;
4672 			}
4673 
4674 
4675 		}
4676 	}
4677 	if (ret == DW_DLV_ERROR)
4678 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
4679 
4680 #undef	RESET_REGISTERS
4681 #undef	LINE
4682 #undef	ADDRESS
4683 }
4684 
4685 static void
4686 dump_dwarf_line_decoded(struct readelf *re)
4687 {
4688 	Dwarf_Die die;
4689 	Dwarf_Line *linebuf, ln;
4690 	Dwarf_Addr lineaddr;
4691 	Dwarf_Signed linecount, srccount;
4692 	Dwarf_Unsigned lineno, fn;
4693 	Dwarf_Error de;
4694 	const char *dir, *file;
4695 	char **srcfiles;
4696 	int i, ret;
4697 
4698 	printf("Decoded dump of debug contents of section .debug_line:\n\n");
4699 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4700 	    NULL, &de)) == DW_DLV_OK) {
4701 		if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
4702 			continue;
4703 		if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
4704 		    DW_DLV_OK)
4705 			file = NULL;
4706 		if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
4707 		    DW_DLV_OK)
4708 			dir = NULL;
4709 		printf("CU: ");
4710 		if (dir && file)
4711 			printf("%s/", dir);
4712 		if (file)
4713 			printf("%s", file);
4714 		putchar('\n');
4715 		printf("%-37s %11s   %s\n", "Filename", "Line Number",
4716 		    "Starting Address");
4717 		if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
4718 			continue;
4719 		if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
4720 			continue;
4721 		for (i = 0; i < linecount; i++) {
4722 			ln = linebuf[i];
4723 			if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
4724 				continue;
4725 			if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
4726 				continue;
4727 			if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
4728 				continue;
4729 			printf("%-37s %11ju %#18jx\n",
4730 			    basename(srcfiles[fn - 1]), (uintmax_t) lineno,
4731 			    (uintmax_t) lineaddr);
4732 		}
4733 		putchar('\n');
4734 	}
4735 }
4736 
4737 static void
4738 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
4739 {
4740 	Dwarf_Attribute *attr_list;
4741 	Dwarf_Die ret_die;
4742 	Dwarf_Off dieoff, cuoff, culen, attroff;
4743 	Dwarf_Unsigned ate, lang, v_udata, v_sig;
4744 	Dwarf_Signed attr_count, v_sdata;
4745 	Dwarf_Off v_off;
4746 	Dwarf_Addr v_addr;
4747 	Dwarf_Half tag, attr, form;
4748 	Dwarf_Block *v_block;
4749 	Dwarf_Bool v_bool, is_info;
4750 	Dwarf_Sig8 v_sig8;
4751 	Dwarf_Error de;
4752 	Dwarf_Ptr v_expr;
4753 	const char *tag_str, *attr_str, *ate_str, *lang_str;
4754 	char unk_tag[32], unk_attr[32];
4755 	char *v_str;
4756 	uint8_t *b, *p;
4757 	int i, j, abc, ret;
4758 
4759 	if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
4760 		warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
4761 		goto cont_search;
4762 	}
4763 
4764 	printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
4765 
4766 	if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
4767 		warnx("dwarf_die_CU_offset_range failed: %s",
4768 		      dwarf_errmsg(de));
4769 		cuoff = 0;
4770 	}
4771 
4772 	abc = dwarf_die_abbrev_code(die);
4773 	if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4774 		warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
4775 		goto cont_search;
4776 	}
4777 	if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
4778 		snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
4779 		tag_str = unk_tag;
4780 	}
4781 
4782 	printf("Abbrev Number: %d (%s)\n", abc, tag_str);
4783 
4784 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
4785 	    DW_DLV_OK) {
4786 		if (ret == DW_DLV_ERROR)
4787 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
4788 		goto cont_search;
4789 	}
4790 
4791 	for (i = 0; i < attr_count; i++) {
4792 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
4793 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
4794 			continue;
4795 		}
4796 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
4797 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
4798 			continue;
4799 		}
4800 		if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
4801 			snprintf(unk_attr, sizeof(unk_attr),
4802 			    "[Unknown AT: %#x]", attr);
4803 			attr_str = unk_attr;
4804 		}
4805 		if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
4806 		    DW_DLV_OK) {
4807 			warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
4808 			attroff = 0;
4809 		}
4810 		printf("    <%jx>   %-18s: ", (uintmax_t) attroff, attr_str);
4811 		switch (form) {
4812 		case DW_FORM_ref_addr:
4813 		case DW_FORM_sec_offset:
4814 			if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
4815 			    DW_DLV_OK) {
4816 				warnx("dwarf_global_formref failed: %s",
4817 				    dwarf_errmsg(de));
4818 				continue;
4819 			}
4820 			if (form == DW_FORM_ref_addr)
4821 				printf("<0x%jx>", (uintmax_t) v_off);
4822 			else
4823 				printf("0x%jx", (uintmax_t) v_off);
4824 			break;
4825 
4826 		case DW_FORM_ref1:
4827 		case DW_FORM_ref2:
4828 		case DW_FORM_ref4:
4829 		case DW_FORM_ref8:
4830 		case DW_FORM_ref_udata:
4831 			if (dwarf_formref(attr_list[i], &v_off, &de) !=
4832 			    DW_DLV_OK) {
4833 				warnx("dwarf_formref failed: %s",
4834 				    dwarf_errmsg(de));
4835 				continue;
4836 			}
4837 			v_off += cuoff;
4838 			printf("<0x%jx>", (uintmax_t) v_off);
4839 			break;
4840 
4841 		case DW_FORM_addr:
4842 			if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
4843 			    DW_DLV_OK) {
4844 				warnx("dwarf_formaddr failed: %s",
4845 				    dwarf_errmsg(de));
4846 				continue;
4847 			}
4848 			printf("%#jx", (uintmax_t) v_addr);
4849 			break;
4850 
4851 		case DW_FORM_data1:
4852 		case DW_FORM_data2:
4853 		case DW_FORM_data4:
4854 		case DW_FORM_data8:
4855 		case DW_FORM_udata:
4856 			if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
4857 			    DW_DLV_OK) {
4858 				warnx("dwarf_formudata failed: %s",
4859 				    dwarf_errmsg(de));
4860 				continue;
4861 			}
4862 			if (attr == DW_AT_high_pc)
4863 				printf("0x%jx", (uintmax_t) v_udata);
4864 			else
4865 				printf("%ju", (uintmax_t) v_udata);
4866 			break;
4867 
4868 		case DW_FORM_sdata:
4869 			if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
4870 			    DW_DLV_OK) {
4871 				warnx("dwarf_formudata failed: %s",
4872 				    dwarf_errmsg(de));
4873 				continue;
4874 			}
4875 			printf("%jd", (intmax_t) v_sdata);
4876 			break;
4877 
4878 		case DW_FORM_flag:
4879 			if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
4880 			    DW_DLV_OK) {
4881 				warnx("dwarf_formflag failed: %s",
4882 				    dwarf_errmsg(de));
4883 				continue;
4884 			}
4885 			printf("%jd", (intmax_t) v_bool);
4886 			break;
4887 
4888 		case DW_FORM_flag_present:
4889 			putchar('1');
4890 			break;
4891 
4892 		case DW_FORM_string:
4893 		case DW_FORM_strp:
4894 			if (dwarf_formstring(attr_list[i], &v_str, &de) !=
4895 			    DW_DLV_OK) {
4896 				warnx("dwarf_formstring failed: %s",
4897 				    dwarf_errmsg(de));
4898 				continue;
4899 			}
4900 			if (form == DW_FORM_string)
4901 				printf("%s", v_str);
4902 			else
4903 				printf("(indirect string) %s", v_str);
4904 			break;
4905 
4906 		case DW_FORM_block:
4907 		case DW_FORM_block1:
4908 		case DW_FORM_block2:
4909 		case DW_FORM_block4:
4910 			if (dwarf_formblock(attr_list[i], &v_block, &de) !=
4911 			    DW_DLV_OK) {
4912 				warnx("dwarf_formblock failed: %s",
4913 				    dwarf_errmsg(de));
4914 				continue;
4915 			}
4916 			printf("%ju byte block:", (uintmax_t) v_block->bl_len);
4917 			b = v_block->bl_data;
4918 			for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
4919 				printf(" %x", b[j]);
4920 			printf("\t(");
4921 			dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
4922 			putchar(')');
4923 			break;
4924 
4925 		case DW_FORM_exprloc:
4926 			if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
4927 			    &de) != DW_DLV_OK) {
4928 				warnx("dwarf_formexprloc failed: %s",
4929 				    dwarf_errmsg(de));
4930 				continue;
4931 			}
4932 			printf("%ju byte block:", (uintmax_t) v_udata);
4933 			b = v_expr;
4934 			for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
4935 				printf(" %x", b[j]);
4936 			printf("\t(");
4937 			dump_dwarf_block(re, v_expr, v_udata);
4938 			putchar(')');
4939 			break;
4940 
4941 		case DW_FORM_ref_sig8:
4942 			if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
4943 			    DW_DLV_OK) {
4944 				warnx("dwarf_formsig8 failed: %s",
4945 				    dwarf_errmsg(de));
4946 				continue;
4947 			}
4948 			p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
4949 			v_sig = re->dw_decode(&p, 8);
4950 			printf("signature: 0x%jx", (uintmax_t) v_sig);
4951 		}
4952 		switch (attr) {
4953 		case DW_AT_encoding:
4954 			if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
4955 			    DW_DLV_OK)
4956 				break;
4957 			if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
4958 				ate_str = "DW_ATE_UNKNOWN";
4959 			printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
4960 			break;
4961 
4962 		case DW_AT_language:
4963 			if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
4964 			    DW_DLV_OK)
4965 				break;
4966 			if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
4967 				break;
4968 			printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
4969 			break;
4970 
4971 		case DW_AT_location:
4972 		case DW_AT_string_length:
4973 		case DW_AT_return_addr:
4974 		case DW_AT_data_member_location:
4975 		case DW_AT_frame_base:
4976 		case DW_AT_segment:
4977 		case DW_AT_static_link:
4978 		case DW_AT_use_location:
4979 		case DW_AT_vtable_elem_location:
4980 			switch (form) {
4981 			case DW_FORM_data4:
4982 			case DW_FORM_data8:
4983 			case DW_FORM_sec_offset:
4984 				printf("\t(location list)");
4985 				break;
4986 			default:
4987 				break;
4988 			}
4989 
4990 		default:
4991 			break;
4992 		}
4993 		putchar('\n');
4994 	}
4995 
4996 
4997 cont_search:
4998 	/* Search children. */
4999 	ret = dwarf_child(die, &ret_die, &de);
5000 	if (ret == DW_DLV_ERROR)
5001 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5002 	else if (ret == DW_DLV_OK)
5003 		dump_dwarf_die(re, ret_die, level + 1);
5004 
5005 	/* Search sibling. */
5006 	is_info = dwarf_get_die_infotypes_flag(die);
5007 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
5008 	if (ret == DW_DLV_ERROR)
5009 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5010 	else if (ret == DW_DLV_OK)
5011 		dump_dwarf_die(re, ret_die, level);
5012 
5013 	dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5014 }
5015 
5016 static void
5017 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
5018     Dwarf_Half ver)
5019 {
5020 
5021 	re->cu_psize = psize;
5022 	re->cu_osize = osize;
5023 	re->cu_ver = ver;
5024 }
5025 
5026 static void
5027 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
5028 {
5029 	struct section *s;
5030 	Dwarf_Die die;
5031 	Dwarf_Error de;
5032 	Dwarf_Half tag, version, pointer_size, off_size;
5033 	Dwarf_Off cu_offset, cu_length;
5034 	Dwarf_Off aboff;
5035 	Dwarf_Unsigned typeoff;
5036 	Dwarf_Sig8 sig8;
5037 	Dwarf_Unsigned sig;
5038 	uint8_t *p;
5039 	const char *sn;
5040 	int i, ret;
5041 
5042 	sn = is_info ? ".debug_info" : ".debug_types";
5043 
5044 	s = NULL;
5045 	for (i = 0; (size_t) i < re->shnum; i++) {
5046 		s = &re->sl[i];
5047 		if (s->name != NULL && !strcmp(s->name, sn))
5048 			break;
5049 	}
5050 	if ((size_t) i >= re->shnum)
5051 		return;
5052 
5053 	do {
5054 		printf("\nDump of debug contents of section %s:\n", sn);
5055 
5056 		while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
5057 		    &version, &aboff, &pointer_size, &off_size, NULL, &sig8,
5058 		    &typeoff, NULL, &de)) == DW_DLV_OK) {
5059 			set_cu_context(re, pointer_size, off_size, version);
5060 			die = NULL;
5061 			while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
5062 			    &de) == DW_DLV_OK) {
5063 				if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5064 					warnx("dwarf_tag failed: %s",
5065 					    dwarf_errmsg(de));
5066 					continue;
5067 				}
5068 				/* XXX: What about DW_TAG_partial_unit? */
5069 				if ((is_info && tag == DW_TAG_compile_unit) ||
5070 				    (!is_info && tag == DW_TAG_type_unit))
5071 					break;
5072 			}
5073 			if (die == NULL && is_info) {
5074 				warnx("could not find DW_TAG_compile_unit "
5075 				    "die");
5076 				continue;
5077 			} else if (die == NULL && !is_info) {
5078 				warnx("could not find DW_TAG_type_unit die");
5079 				continue;
5080 			}
5081 
5082 			if (dwarf_die_CU_offset_range(die, &cu_offset,
5083 			    &cu_length, &de) != DW_DLV_OK) {
5084 				warnx("dwarf_die_CU_offset failed: %s",
5085 				    dwarf_errmsg(de));
5086 				continue;
5087 			}
5088 
5089 			cu_length -= off_size == 4 ? 4 : 12;
5090 
5091 			sig = 0;
5092 			if (!is_info) {
5093 				p = (uint8_t *)(uintptr_t) &sig8.signature[0];
5094 				sig = re->dw_decode(&p, 8);
5095 			}
5096 
5097 			printf("\n  Type Unit @ offset 0x%jx:\n",
5098 			    (uintmax_t) cu_offset);
5099 			printf("    Length:\t\t%#jx (%d-bit)\n",
5100 			    (uintmax_t) cu_length, off_size == 4 ? 32 : 64);
5101 			printf("    Version:\t\t%u\n", version);
5102 			printf("    Abbrev Offset:\t0x%jx\n",
5103 			    (uintmax_t) aboff);
5104 			printf("    Pointer Size:\t%u\n", pointer_size);
5105 			if (!is_info) {
5106 				printf("    Signature:\t\t0x%016jx\n",
5107 				    (uintmax_t) sig);
5108 				printf("    Type Offset:\t0x%jx\n",
5109 				    (uintmax_t) typeoff);
5110 			}
5111 
5112 			dump_dwarf_die(re, die, 0);
5113 		}
5114 		if (ret == DW_DLV_ERROR)
5115 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5116 		if (is_info)
5117 			break;
5118 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
5119 }
5120 
5121 static void
5122 dump_dwarf_abbrev(struct readelf *re)
5123 {
5124 	Dwarf_Abbrev ab;
5125 	Dwarf_Off aboff, atoff;
5126 	Dwarf_Unsigned length, attr_count;
5127 	Dwarf_Signed flag, form;
5128 	Dwarf_Half tag, attr;
5129 	Dwarf_Error de;
5130 	const char *tag_str, *attr_str, *form_str;
5131 	char unk_tag[32], unk_attr[32], unk_form[32];
5132 	int i, j, ret;
5133 
5134 	printf("\nContents of section .debug_abbrev:\n\n");
5135 
5136 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
5137 	    NULL, NULL, &de)) ==  DW_DLV_OK) {
5138 		printf("  Number TAG\n");
5139 		i = 0;
5140 		while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
5141 		    &attr_count, &de)) == DW_DLV_OK) {
5142 			if (length == 1) {
5143 				dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5144 				break;
5145 			}
5146 			aboff += length;
5147 			printf("%4d", ++i);
5148 			if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
5149 				warnx("dwarf_get_abbrev_tag failed: %s",
5150 				    dwarf_errmsg(de));
5151 				goto next_abbrev;
5152 			}
5153 			if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5154 				snprintf(unk_tag, sizeof(unk_tag),
5155 				    "[Unknown Tag: %#x]", tag);
5156 				tag_str = unk_tag;
5157 			}
5158 			if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
5159 			    DW_DLV_OK) {
5160 				warnx("dwarf_get_abbrev_children_flag failed:"
5161 				    " %s", dwarf_errmsg(de));
5162 				goto next_abbrev;
5163 			}
5164 			printf("      %s    %s\n", tag_str,
5165 			    flag ? "[has children]" : "[no children]");
5166 			for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
5167 				if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
5168 				    &attr, &form, &atoff, &de) != DW_DLV_OK) {
5169 					warnx("dwarf_get_abbrev_entry failed:"
5170 					    " %s", dwarf_errmsg(de));
5171 					continue;
5172 				}
5173 				if (dwarf_get_AT_name(attr, &attr_str) !=
5174 				    DW_DLV_OK) {
5175 					snprintf(unk_attr, sizeof(unk_attr),
5176 					    "[Unknown AT: %#x]", attr);
5177 					attr_str = unk_attr;
5178 				}
5179 				if (dwarf_get_FORM_name(form, &form_str) !=
5180 				    DW_DLV_OK) {
5181 					snprintf(unk_form, sizeof(unk_form),
5182 					    "[Unknown Form: %#x]",
5183 					    (Dwarf_Half) form);
5184 					form_str = unk_form;
5185 				}
5186 				printf("    %-18s %s\n", attr_str, form_str);
5187 			}
5188 		next_abbrev:
5189 			dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5190 		}
5191 		if (ret != DW_DLV_OK)
5192 			warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
5193 	}
5194 	if (ret == DW_DLV_ERROR)
5195 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5196 }
5197 
5198 static void
5199 dump_dwarf_pubnames(struct readelf *re)
5200 {
5201 	struct section *s;
5202 	Dwarf_Off die_off;
5203 	Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
5204 	Dwarf_Signed cnt;
5205 	Dwarf_Global *globs;
5206 	Dwarf_Half nt_version;
5207 	Dwarf_Error de;
5208 	Elf_Data *d;
5209 	char *glob_name;
5210 	int i, dwarf_size, elferr;
5211 
5212 	printf("\nContents of the .debug_pubnames section:\n");
5213 
5214 	s = NULL;
5215 	for (i = 0; (size_t) i < re->shnum; i++) {
5216 		s = &re->sl[i];
5217 		if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
5218 			break;
5219 	}
5220 	if ((size_t) i >= re->shnum)
5221 		return;
5222 
5223 	(void) elf_errno();
5224 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5225 		elferr = elf_errno();
5226 		if (elferr != 0)
5227 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5228 		return;
5229 	}
5230 	if (d->d_size <= 0)
5231 		return;
5232 
5233 	/* Read in .debug_pubnames section table header. */
5234 	offset = 0;
5235 	length = re->dw_read(d, &offset, 4);
5236 	if (length == 0xffffffff) {
5237 		dwarf_size = 8;
5238 		length = re->dw_read(d, &offset, 8);
5239 	} else
5240 		dwarf_size = 4;
5241 
5242 	if (length > d->d_size - offset) {
5243 		warnx("invalid .dwarf_pubnames section");
5244 		return;
5245 	}
5246 
5247 	nt_version = re->dw_read(d, &offset, 2);
5248 	nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
5249 	nt_cu_length = re->dw_read(d, &offset, dwarf_size);
5250 	printf("  Length:\t\t\t\t%ju\n", (uintmax_t) length);
5251 	printf("  Version:\t\t\t\t%u\n", nt_version);
5252 	printf("  Offset into .debug_info section:\t%ju\n",
5253 	    (uintmax_t) nt_cu_offset);
5254 	printf("  Size of area in .debug_info section:\t%ju\n",
5255 	    (uintmax_t) nt_cu_length);
5256 
5257 	if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
5258 		warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
5259 		return;
5260 	}
5261 
5262 	printf("\n    Offset      Name\n");
5263 	for (i = 0; i < cnt; i++) {
5264 		if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
5265 			warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
5266 			continue;
5267 		}
5268 		if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
5269 		    DW_DLV_OK) {
5270 			warnx("dwarf_global_die_offset failed: %s",
5271 			    dwarf_errmsg(de));
5272 			continue;
5273 		}
5274 		printf("    %-11ju %s\n", (uintmax_t) die_off, glob_name);
5275 	}
5276 }
5277 
5278 static void
5279 dump_dwarf_aranges(struct readelf *re)
5280 {
5281 	struct section *s;
5282 	Dwarf_Arange *aranges;
5283 	Dwarf_Addr start;
5284 	Dwarf_Unsigned offset, length, as_cu_offset;
5285 	Dwarf_Off die_off;
5286 	Dwarf_Signed cnt;
5287 	Dwarf_Half as_version, as_addrsz, as_segsz;
5288 	Dwarf_Error de;
5289 	Elf_Data *d;
5290 	int i, dwarf_size, elferr;
5291 
5292 	printf("\nContents of section .debug_aranges:\n");
5293 
5294 	s = NULL;
5295 	for (i = 0; (size_t) i < re->shnum; i++) {
5296 		s = &re->sl[i];
5297 		if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
5298 			break;
5299 	}
5300 	if ((size_t) i >= re->shnum)
5301 		return;
5302 
5303 	(void) elf_errno();
5304 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5305 		elferr = elf_errno();
5306 		if (elferr != 0)
5307 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5308 		return;
5309 	}
5310 	if (d->d_size <= 0)
5311 		return;
5312 
5313 	/* Read in the .debug_aranges section table header. */
5314 	offset = 0;
5315 	length = re->dw_read(d, &offset, 4);
5316 	if (length == 0xffffffff) {
5317 		dwarf_size = 8;
5318 		length = re->dw_read(d, &offset, 8);
5319 	} else
5320 		dwarf_size = 4;
5321 
5322 	if (length > d->d_size - offset) {
5323 		warnx("invalid .dwarf_aranges section");
5324 		return;
5325 	}
5326 
5327 	as_version = re->dw_read(d, &offset, 2);
5328 	as_cu_offset = re->dw_read(d, &offset, dwarf_size);
5329 	as_addrsz = re->dw_read(d, &offset, 1);
5330 	as_segsz = re->dw_read(d, &offset, 1);
5331 
5332 	printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
5333 	printf("  Version:\t\t\t%u\n", as_version);
5334 	printf("  Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
5335 	printf("  Pointer Size:\t\t\t%u\n", as_addrsz);
5336 	printf("  Segment Size:\t\t\t%u\n", as_segsz);
5337 
5338 	if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
5339 		warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
5340 		return;
5341 	}
5342 
5343 	printf("\n    Address  Length\n");
5344 	for (i = 0; i < cnt; i++) {
5345 		if (dwarf_get_arange_info(aranges[i], &start, &length,
5346 		    &die_off, &de) != DW_DLV_OK) {
5347 			warnx("dwarf_get_arange_info failed: %s",
5348 			    dwarf_errmsg(de));
5349 			continue;
5350 		}
5351 		printf("    %08jx %ju\n", (uintmax_t) start,
5352 		    (uintmax_t) length);
5353 	}
5354 }
5355 
5356 static void
5357 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
5358 {
5359 	Dwarf_Attribute *attr_list;
5360 	Dwarf_Ranges *ranges;
5361 	Dwarf_Die ret_die;
5362 	Dwarf_Error de;
5363 	Dwarf_Addr base0;
5364 	Dwarf_Half attr;
5365 	Dwarf_Signed attr_count, cnt;
5366 	Dwarf_Unsigned off, bytecnt;
5367 	int i, j, ret;
5368 
5369 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5370 	    DW_DLV_OK) {
5371 		if (ret == DW_DLV_ERROR)
5372 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5373 		goto cont_search;
5374 	}
5375 
5376 	for (i = 0; i < attr_count; i++) {
5377 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5378 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5379 			continue;
5380 		}
5381 		if (attr != DW_AT_ranges)
5382 			continue;
5383 		if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) {
5384 			warnx("dwarf_formudata failed: %s", dwarf_errmsg(de));
5385 			continue;
5386 		}
5387 		if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt,
5388 		    &bytecnt, &de) != DW_DLV_OK)
5389 			continue;
5390 		base0 = base;
5391 		for (j = 0; j < cnt; j++) {
5392 			printf("    %08jx ", (uintmax_t) off);
5393 			if (ranges[j].dwr_type == DW_RANGES_END) {
5394 				printf("%s\n", "<End of list>");
5395 				continue;
5396 			} else if (ranges[j].dwr_type ==
5397 			    DW_RANGES_ADDRESS_SELECTION) {
5398 				base0 = ranges[j].dwr_addr2;
5399 				continue;
5400 			}
5401 			if (re->ec == ELFCLASS32)
5402 				printf("%08jx %08jx\n",
5403 				    (uintmax_t) (ranges[j].dwr_addr1 + base0),
5404 				    (uintmax_t) (ranges[j].dwr_addr2 + base0));
5405 			else
5406 				printf("%016jx %016jx\n",
5407 				    (uintmax_t) (ranges[j].dwr_addr1 + base0),
5408 				    (uintmax_t) (ranges[j].dwr_addr2 + base0));
5409 		}
5410 	}
5411 
5412 cont_search:
5413 	/* Search children. */
5414 	ret = dwarf_child(die, &ret_die, &de);
5415 	if (ret == DW_DLV_ERROR)
5416 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5417 	else if (ret == DW_DLV_OK)
5418 		dump_dwarf_ranges_foreach(re, ret_die, base);
5419 
5420 	/* Search sibling. */
5421 	ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
5422 	if (ret == DW_DLV_ERROR)
5423 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5424 	else if (ret == DW_DLV_OK)
5425 		dump_dwarf_ranges_foreach(re, ret_die, base);
5426 }
5427 
5428 static void
5429 dump_dwarf_ranges(struct readelf *re)
5430 {
5431 	Dwarf_Ranges *ranges;
5432 	Dwarf_Die die;
5433 	Dwarf_Signed cnt;
5434 	Dwarf_Unsigned bytecnt;
5435 	Dwarf_Half tag;
5436 	Dwarf_Error de;
5437 	Dwarf_Unsigned lowpc;
5438 	int ret;
5439 
5440 	if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
5441 	    DW_DLV_OK)
5442 		return;
5443 
5444 	printf("Contents of the .debug_ranges section:\n\n");
5445 	if (re->ec == ELFCLASS32)
5446 		printf("    %-8s %-8s %s\n", "Offset", "Begin", "End");
5447 	else
5448 		printf("    %-8s %-16s %s\n", "Offset", "Begin", "End");
5449 
5450 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5451 	    NULL, &de)) == DW_DLV_OK) {
5452 		die = NULL;
5453 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
5454 			continue;
5455 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5456 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5457 			continue;
5458 		}
5459 		/* XXX: What about DW_TAG_partial_unit? */
5460 		lowpc = 0;
5461 		if (tag == DW_TAG_compile_unit) {
5462 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
5463 			    &de) != DW_DLV_OK)
5464 				lowpc = 0;
5465 		}
5466 
5467 		dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
5468 	}
5469 	putchar('\n');
5470 }
5471 
5472 static void
5473 dump_dwarf_macinfo(struct readelf *re)
5474 {
5475 	Dwarf_Unsigned offset;
5476 	Dwarf_Signed cnt;
5477 	Dwarf_Macro_Details *md;
5478 	Dwarf_Error de;
5479 	const char *mi_str;
5480 	char unk_mi[32];
5481 	int i;
5482 
5483 #define	_MAX_MACINFO_ENTRY	65535
5484 
5485 	printf("\nContents of section .debug_macinfo:\n\n");
5486 
5487 	offset = 0;
5488 	while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
5489 	    &cnt, &md, &de) == DW_DLV_OK) {
5490 		for (i = 0; i < cnt; i++) {
5491 			offset = md[i].dmd_offset + 1;
5492 			if (md[i].dmd_type == 0)
5493 				break;
5494 			if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
5495 			    DW_DLV_OK) {
5496 				snprintf(unk_mi, sizeof(unk_mi),
5497 				    "[Unknown MACINFO: %#x]", md[i].dmd_type);
5498 				mi_str = unk_mi;
5499 			}
5500 			printf(" %s", mi_str);
5501 			switch (md[i].dmd_type) {
5502 			case DW_MACINFO_define:
5503 			case DW_MACINFO_undef:
5504 				printf(" - lineno : %jd macro : %s\n",
5505 				    (intmax_t) md[i].dmd_lineno,
5506 				    md[i].dmd_macro);
5507 				break;
5508 			case DW_MACINFO_start_file:
5509 				printf(" - lineno : %jd filenum : %jd\n",
5510 				    (intmax_t) md[i].dmd_lineno,
5511 				    (intmax_t) md[i].dmd_fileindex);
5512 				break;
5513 			default:
5514 				putchar('\n');
5515 				break;
5516 			}
5517 		}
5518 	}
5519 
5520 #undef	_MAX_MACINFO_ENTRY
5521 }
5522 
5523 static void
5524 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
5525     Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
5526     Dwarf_Debug dbg)
5527 {
5528 	Dwarf_Frame_Op *oplist;
5529 	Dwarf_Signed opcnt, delta;
5530 	Dwarf_Small op;
5531 	Dwarf_Error de;
5532 	const char *op_str;
5533 	char unk_op[32];
5534 	int i;
5535 
5536 	if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
5537 	    &opcnt, &de) != DW_DLV_OK) {
5538 		warnx("dwarf_expand_frame_instructions failed: %s",
5539 		    dwarf_errmsg(de));
5540 		return;
5541 	}
5542 
5543 	for (i = 0; i < opcnt; i++) {
5544 		if (oplist[i].fp_base_op != 0)
5545 			op = oplist[i].fp_base_op << 6;
5546 		else
5547 			op = oplist[i].fp_extended_op;
5548 		if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
5549 			snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
5550 			    op);
5551 			op_str = unk_op;
5552 		}
5553 		printf("  %s", op_str);
5554 		switch (op) {
5555 		case DW_CFA_advance_loc:
5556 			delta = oplist[i].fp_offset * caf;
5557 			pc += delta;
5558 			printf(": %ju to %08jx", (uintmax_t) delta,
5559 			    (uintmax_t) pc);
5560 			break;
5561 		case DW_CFA_offset:
5562 		case DW_CFA_offset_extended:
5563 		case DW_CFA_offset_extended_sf:
5564 			delta = oplist[i].fp_offset * daf;
5565 			printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
5566 			    dwarf_regname(re, oplist[i].fp_register),
5567 			    (intmax_t) delta);
5568 			break;
5569 		case DW_CFA_restore:
5570 			printf(": r%u (%s)", oplist[i].fp_register,
5571 			    dwarf_regname(re, oplist[i].fp_register));
5572 			break;
5573 		case DW_CFA_set_loc:
5574 			pc = oplist[i].fp_offset;
5575 			printf(": to %08jx", (uintmax_t) pc);
5576 			break;
5577 		case DW_CFA_advance_loc1:
5578 		case DW_CFA_advance_loc2:
5579 		case DW_CFA_advance_loc4:
5580 			pc += oplist[i].fp_offset;
5581 			printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
5582 			    (uintmax_t) pc);
5583 			break;
5584 		case DW_CFA_def_cfa:
5585 			printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
5586 			    dwarf_regname(re, oplist[i].fp_register),
5587 			    (uintmax_t) oplist[i].fp_offset);
5588 			break;
5589 		case DW_CFA_def_cfa_sf:
5590 			printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
5591 			    dwarf_regname(re, oplist[i].fp_register),
5592 			    (intmax_t) (oplist[i].fp_offset * daf));
5593 			break;
5594 		case DW_CFA_def_cfa_register:
5595 			printf(": r%u (%s)", oplist[i].fp_register,
5596 			    dwarf_regname(re, oplist[i].fp_register));
5597 			break;
5598 		case DW_CFA_def_cfa_offset:
5599 			printf(": %ju", (uintmax_t) oplist[i].fp_offset);
5600 			break;
5601 		case DW_CFA_def_cfa_offset_sf:
5602 			printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
5603 			break;
5604 		default:
5605 			break;
5606 		}
5607 		putchar('\n');
5608 	}
5609 
5610 	dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
5611 }
5612 
5613 static char *
5614 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
5615 {
5616 	static char rs[16];
5617 
5618 	if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
5619 		snprintf(rs, sizeof(rs), "%c", 'u');
5620 	else if (reg == DW_FRAME_CFA_COL)
5621 		snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
5622 	else
5623 		snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
5624 		    (intmax_t) off);
5625 
5626 	return (rs);
5627 }
5628 
5629 static int
5630 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
5631     Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
5632 {
5633 	Dwarf_Regtable rt;
5634 	Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
5635 	Dwarf_Error de;
5636 	char *vec;
5637 	int i;
5638 
5639 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
5640 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
5641 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
5642 #define	RT(x) rt.rules[(x)]
5643 
5644 	vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
5645 	if (vec == NULL)
5646 		err(EXIT_FAILURE, "calloc failed");
5647 
5648 	pre_pc = ~((Dwarf_Addr) 0);
5649 	cur_pc = pc;
5650 	end_pc = pc + func_len;
5651 	for (; cur_pc < end_pc; cur_pc++) {
5652 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5653 		    &de) != DW_DLV_OK) {
5654 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5655 			    dwarf_errmsg(de));
5656 			return (-1);
5657 		}
5658 		if (row_pc == pre_pc)
5659 			continue;
5660 		pre_pc = row_pc;
5661 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5662 			if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
5663 				BIT_SET(vec, i);
5664 		}
5665 	}
5666 
5667 	printf("   LOC   CFA      ");
5668 	for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5669 		if (BIT_ISSET(vec, i)) {
5670 			if ((Dwarf_Half) i == cie_ra)
5671 				printf("ra   ");
5672 			else
5673 				printf("%-5s",
5674 				    dwarf_regname(re, (unsigned int) i));
5675 		}
5676 	}
5677 	putchar('\n');
5678 
5679 	pre_pc = ~((Dwarf_Addr) 0);
5680 	cur_pc = pc;
5681 	end_pc = pc + func_len;
5682 	for (; cur_pc < end_pc; cur_pc++) {
5683 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5684 		    &de) != DW_DLV_OK) {
5685 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5686 			    dwarf_errmsg(de));
5687 			return (-1);
5688 		}
5689 		if (row_pc == pre_pc)
5690 			continue;
5691 		pre_pc = row_pc;
5692 		printf("%08jx ", (uintmax_t) row_pc);
5693 		printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
5694 		    RT(0).dw_offset));
5695 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5696 			if (BIT_ISSET(vec, i)) {
5697 				printf("%-5s", get_regoff_str(re,
5698 				    RT(i).dw_regnum, RT(i).dw_offset));
5699 			}
5700 		}
5701 		putchar('\n');
5702 	}
5703 
5704 	free(vec);
5705 
5706 	return (0);
5707 
5708 #undef	BIT_SET
5709 #undef	BIT_CLR
5710 #undef	BIT_ISSET
5711 #undef	RT
5712 }
5713 
5714 static void
5715 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
5716 {
5717 	Dwarf_Cie *cie_list, cie, pre_cie;
5718 	Dwarf_Fde *fde_list, fde;
5719 	Dwarf_Off cie_offset, fde_offset;
5720 	Dwarf_Unsigned cie_length, fde_instlen;
5721 	Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
5722 	Dwarf_Signed cie_count, fde_count, cie_index;
5723 	Dwarf_Addr low_pc;
5724 	Dwarf_Half cie_ra;
5725 	Dwarf_Small cie_version;
5726 	Dwarf_Ptr fde_addr, fde_inst, cie_inst;
5727 	char *cie_aug, c;
5728 	int i, eh_frame;
5729 	Dwarf_Error de;
5730 
5731 	printf("\nThe section %s contains:\n\n", s->name);
5732 
5733 	if (!strcmp(s->name, ".debug_frame")) {
5734 		eh_frame = 0;
5735 		if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
5736 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5737 			warnx("dwarf_get_fde_list failed: %s",
5738 			    dwarf_errmsg(de));
5739 			return;
5740 		}
5741 	} else if (!strcmp(s->name, ".eh_frame")) {
5742 		eh_frame = 1;
5743 		if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
5744 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5745 			warnx("dwarf_get_fde_list_eh failed: %s",
5746 			    dwarf_errmsg(de));
5747 			return;
5748 		}
5749 	} else
5750 		return;
5751 
5752 	pre_cie = NULL;
5753 	for (i = 0; i < fde_count; i++) {
5754 		if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
5755 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5756 			continue;
5757 		}
5758 		if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
5759 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5760 			continue;
5761 		}
5762 		if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
5763 		    &fde_length, &cie_offset, &cie_index, &fde_offset,
5764 		    &de) != DW_DLV_OK) {
5765 			warnx("dwarf_get_fde_range failed: %s",
5766 			    dwarf_errmsg(de));
5767 			continue;
5768 		}
5769 		if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
5770 		    &de) != DW_DLV_OK) {
5771 			warnx("dwarf_get_fde_instr_bytes failed: %s",
5772 			    dwarf_errmsg(de));
5773 			continue;
5774 		}
5775 		if (pre_cie == NULL || cie != pre_cie) {
5776 			pre_cie = cie;
5777 			if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
5778 			    &cie_aug, &cie_caf, &cie_daf, &cie_ra,
5779 			    &cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
5780 				warnx("dwarf_get_cie_info failed: %s",
5781 				    dwarf_errmsg(de));
5782 				continue;
5783 			}
5784 			printf("%08jx %08jx %8.8jx CIE",
5785 			    (uintmax_t) cie_offset,
5786 			    (uintmax_t) cie_length,
5787 			    (uintmax_t) (eh_frame ? 0 : ~0U));
5788 			if (!alt) {
5789 				putchar('\n');
5790 				printf("  Version:\t\t\t%u\n", cie_version);
5791 				printf("  Augmentation:\t\t\t\"");
5792 				while ((c = *cie_aug++) != '\0')
5793 					putchar(c);
5794 				printf("\"\n");
5795 				printf("  Code alignment factor:\t%ju\n",
5796 				    (uintmax_t) cie_caf);
5797 				printf("  Data alignment factor:\t%jd\n",
5798 				    (intmax_t) cie_daf);
5799 				printf("  Return address column:\t%ju\n",
5800 				    (uintmax_t) cie_ra);
5801 				putchar('\n');
5802 				dump_dwarf_frame_inst(re, cie, cie_inst,
5803 				    cie_instlen, cie_caf, cie_daf, 0,
5804 				    re->dbg);
5805 				putchar('\n');
5806 			} else {
5807 				printf(" \"");
5808 				while ((c = *cie_aug++) != '\0')
5809 					putchar(c);
5810 				putchar('"');
5811 				printf(" cf=%ju df=%jd ra=%ju\n",
5812 				    (uintmax_t) cie_caf,
5813 				    (uintmax_t) cie_daf,
5814 				    (uintmax_t) cie_ra);
5815 				dump_dwarf_frame_regtable(re, fde, low_pc, 1,
5816 				    cie_ra);
5817 				putchar('\n');
5818 			}
5819 		}
5820 		printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
5821 		    (uintmax_t) fde_offset, (uintmax_t) fde_length,
5822 		    (uintmax_t) cie_offset,
5823 		    (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
5824 			cie_offset),
5825 		    (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
5826 		if (!alt)
5827 			dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
5828 			    cie_caf, cie_daf, low_pc, re->dbg);
5829 		else
5830 			dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
5831 			    cie_ra);
5832 		putchar('\n');
5833 	}
5834 }
5835 
5836 static void
5837 dump_dwarf_frame(struct readelf *re, int alt)
5838 {
5839 	struct section *s;
5840 	int i;
5841 
5842 	(void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
5843 
5844 	for (i = 0; (size_t) i < re->shnum; i++) {
5845 		s = &re->sl[i];
5846 		if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
5847 		    !strcmp(s->name, ".eh_frame")))
5848 			dump_dwarf_frame_section(re, s, alt);
5849 	}
5850 }
5851 
5852 static void
5853 dump_dwarf_str(struct readelf *re)
5854 {
5855 	struct section *s;
5856 	Elf_Data *d;
5857 	unsigned char *p;
5858 	int elferr, end, i, j;
5859 
5860 	printf("\nContents of section .debug_str:\n");
5861 
5862 	s = NULL;
5863 	for (i = 0; (size_t) i < re->shnum; i++) {
5864 		s = &re->sl[i];
5865 		if (s->name != NULL && !strcmp(s->name, ".debug_str"))
5866 			break;
5867 	}
5868 	if ((size_t) i >= re->shnum)
5869 		return;
5870 
5871 	(void) elf_errno();
5872 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5873 		elferr = elf_errno();
5874 		if (elferr != 0)
5875 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5876 		return;
5877 	}
5878 	if (d->d_size <= 0)
5879 		return;
5880 
5881 	for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
5882 		printf("  0x%08x", (unsigned int) i);
5883 		if ((size_t) i + 16 > d->d_size)
5884 			end = d->d_size;
5885 		else
5886 			end = i + 16;
5887 		for (j = i; j < i + 16; j++) {
5888 			if ((j - i) % 4 == 0)
5889 				putchar(' ');
5890 			if (j >= end) {
5891 				printf("  ");
5892 				continue;
5893 			}
5894 			printf("%02x", (uint8_t) p[j]);
5895 		}
5896 		putchar(' ');
5897 		for (j = i; j < end; j++) {
5898 			if (isprint(p[j]))
5899 				putchar(p[j]);
5900 			else if (p[j] == 0)
5901 				putchar('.');
5902 			else
5903 				putchar(' ');
5904 		}
5905 		putchar('\n');
5906 	}
5907 }
5908 
5909 struct loc_at {
5910 	Dwarf_Attribute la_at;
5911 	Dwarf_Unsigned la_off;
5912 	Dwarf_Unsigned la_lowpc;
5913 	Dwarf_Half la_cu_psize;
5914 	Dwarf_Half la_cu_osize;
5915 	Dwarf_Half la_cu_ver;
5916 	TAILQ_ENTRY(loc_at) la_next;
5917 };
5918 
5919 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist);
5920 
5921 static void
5922 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc)
5923 {
5924 	Dwarf_Attribute *attr_list;
5925 	Dwarf_Die ret_die;
5926 	Dwarf_Unsigned off;
5927 	Dwarf_Off ref;
5928 	Dwarf_Signed attr_count;
5929 	Dwarf_Half attr, form;
5930 	Dwarf_Bool is_info;
5931 	Dwarf_Error de;
5932 	struct loc_at *la, *nla;
5933 	int i, ret;
5934 
5935 	is_info = dwarf_get_die_infotypes_flag(die);
5936 
5937 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5938 	    DW_DLV_OK) {
5939 		if (ret == DW_DLV_ERROR)
5940 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5941 		goto cont_search;
5942 	}
5943 	for (i = 0; i < attr_count; i++) {
5944 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5945 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5946 			continue;
5947 		}
5948 		if (attr != DW_AT_location &&
5949 		    attr != DW_AT_string_length &&
5950 		    attr != DW_AT_return_addr &&
5951 		    attr != DW_AT_data_member_location &&
5952 		    attr != DW_AT_frame_base &&
5953 		    attr != DW_AT_segment &&
5954 		    attr != DW_AT_static_link &&
5955 		    attr != DW_AT_use_location &&
5956 		    attr != DW_AT_vtable_elem_location)
5957 			continue;
5958 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
5959 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
5960 			continue;
5961 		}
5962 		if (form == DW_FORM_data4 || form == DW_FORM_data8) {
5963 			if (dwarf_formudata(attr_list[i], &off, &de) !=
5964 			    DW_DLV_OK) {
5965 				warnx("dwarf_formudata failed: %s",
5966 				    dwarf_errmsg(de));
5967 				continue;
5968 			}
5969 		} else if (form == DW_FORM_sec_offset) {
5970 			if (dwarf_global_formref(attr_list[i], &ref, &de) !=
5971 			    DW_DLV_OK) {
5972 				warnx("dwarf_global_formref failed: %s",
5973 				    dwarf_errmsg(de));
5974 				continue;
5975 			}
5976 			off = ref;
5977 		} else
5978 			continue;
5979 
5980 		TAILQ_FOREACH(la, &lalist, la_next) {
5981 			if (off == la->la_off)
5982 				break;
5983 			if (off < la->la_off) {
5984 				if ((nla = malloc(sizeof(*nla))) == NULL)
5985 					err(EXIT_FAILURE, "malloc failed");
5986 				nla->la_at = attr_list[i];
5987 				nla->la_off = off;
5988 				nla->la_lowpc = lowpc;
5989 				nla->la_cu_psize = re->cu_psize;
5990 				nla->la_cu_osize = re->cu_osize;
5991 				nla->la_cu_ver = re->cu_ver;
5992 				TAILQ_INSERT_BEFORE(la, nla, la_next);
5993 				break;
5994 			}
5995 		}
5996 		if (la == NULL) {
5997 			if ((nla = malloc(sizeof(*nla))) == NULL)
5998 				err(EXIT_FAILURE, "malloc failed");
5999 			nla->la_at = attr_list[i];
6000 			nla->la_off = off;
6001 			nla->la_lowpc = lowpc;
6002 			nla->la_cu_psize = re->cu_psize;
6003 			nla->la_cu_osize = re->cu_osize;
6004 			nla->la_cu_ver = re->cu_ver;
6005 			TAILQ_INSERT_TAIL(&lalist, nla, la_next);
6006 		}
6007 	}
6008 
6009 cont_search:
6010 	/* Search children. */
6011 	ret = dwarf_child(die, &ret_die, &de);
6012 	if (ret == DW_DLV_ERROR)
6013 		warnx("dwarf_child: %s", dwarf_errmsg(de));
6014 	else if (ret == DW_DLV_OK)
6015 		search_loclist_at(re, ret_die, lowpc);
6016 
6017 	/* Search sibling. */
6018 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
6019 	if (ret == DW_DLV_ERROR)
6020 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
6021 	else if (ret == DW_DLV_OK)
6022 		search_loclist_at(re, ret_die, lowpc);
6023 }
6024 
6025 static void
6026 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
6027 {
6028 	const char *op_str;
6029 	char unk_op[32];
6030 	uint8_t *b, n;
6031 	int i;
6032 
6033 	if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
6034 	    DW_DLV_OK) {
6035 		snprintf(unk_op, sizeof(unk_op),
6036 		    "[Unknown OP: %#x]", lr->lr_atom);
6037 		op_str = unk_op;
6038 	}
6039 
6040 	printf("%s", op_str);
6041 
6042 	switch (lr->lr_atom) {
6043 	case DW_OP_reg0:
6044 	case DW_OP_reg1:
6045 	case DW_OP_reg2:
6046 	case DW_OP_reg3:
6047 	case DW_OP_reg4:
6048 	case DW_OP_reg5:
6049 	case DW_OP_reg6:
6050 	case DW_OP_reg7:
6051 	case DW_OP_reg8:
6052 	case DW_OP_reg9:
6053 	case DW_OP_reg10:
6054 	case DW_OP_reg11:
6055 	case DW_OP_reg12:
6056 	case DW_OP_reg13:
6057 	case DW_OP_reg14:
6058 	case DW_OP_reg15:
6059 	case DW_OP_reg16:
6060 	case DW_OP_reg17:
6061 	case DW_OP_reg18:
6062 	case DW_OP_reg19:
6063 	case DW_OP_reg20:
6064 	case DW_OP_reg21:
6065 	case DW_OP_reg22:
6066 	case DW_OP_reg23:
6067 	case DW_OP_reg24:
6068 	case DW_OP_reg25:
6069 	case DW_OP_reg26:
6070 	case DW_OP_reg27:
6071 	case DW_OP_reg28:
6072 	case DW_OP_reg29:
6073 	case DW_OP_reg30:
6074 	case DW_OP_reg31:
6075 		printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
6076 		break;
6077 
6078 	case DW_OP_deref:
6079 	case DW_OP_lit0:
6080 	case DW_OP_lit1:
6081 	case DW_OP_lit2:
6082 	case DW_OP_lit3:
6083 	case DW_OP_lit4:
6084 	case DW_OP_lit5:
6085 	case DW_OP_lit6:
6086 	case DW_OP_lit7:
6087 	case DW_OP_lit8:
6088 	case DW_OP_lit9:
6089 	case DW_OP_lit10:
6090 	case DW_OP_lit11:
6091 	case DW_OP_lit12:
6092 	case DW_OP_lit13:
6093 	case DW_OP_lit14:
6094 	case DW_OP_lit15:
6095 	case DW_OP_lit16:
6096 	case DW_OP_lit17:
6097 	case DW_OP_lit18:
6098 	case DW_OP_lit19:
6099 	case DW_OP_lit20:
6100 	case DW_OP_lit21:
6101 	case DW_OP_lit22:
6102 	case DW_OP_lit23:
6103 	case DW_OP_lit24:
6104 	case DW_OP_lit25:
6105 	case DW_OP_lit26:
6106 	case DW_OP_lit27:
6107 	case DW_OP_lit28:
6108 	case DW_OP_lit29:
6109 	case DW_OP_lit30:
6110 	case DW_OP_lit31:
6111 	case DW_OP_dup:
6112 	case DW_OP_drop:
6113 	case DW_OP_over:
6114 	case DW_OP_swap:
6115 	case DW_OP_rot:
6116 	case DW_OP_xderef:
6117 	case DW_OP_abs:
6118 	case DW_OP_and:
6119 	case DW_OP_div:
6120 	case DW_OP_minus:
6121 	case DW_OP_mod:
6122 	case DW_OP_mul:
6123 	case DW_OP_neg:
6124 	case DW_OP_not:
6125 	case DW_OP_or:
6126 	case DW_OP_plus:
6127 	case DW_OP_shl:
6128 	case DW_OP_shr:
6129 	case DW_OP_shra:
6130 	case DW_OP_xor:
6131 	case DW_OP_eq:
6132 	case DW_OP_ge:
6133 	case DW_OP_gt:
6134 	case DW_OP_le:
6135 	case DW_OP_lt:
6136 	case DW_OP_ne:
6137 	case DW_OP_nop:
6138 	case DW_OP_push_object_address:
6139 	case DW_OP_form_tls_address:
6140 	case DW_OP_call_frame_cfa:
6141 	case DW_OP_stack_value:
6142 	case DW_OP_GNU_push_tls_address:
6143 	case DW_OP_GNU_uninit:
6144 		break;
6145 
6146 	case DW_OP_const1u:
6147 	case DW_OP_pick:
6148 	case DW_OP_deref_size:
6149 	case DW_OP_xderef_size:
6150 	case DW_OP_const2u:
6151 	case DW_OP_bra:
6152 	case DW_OP_skip:
6153 	case DW_OP_const4u:
6154 	case DW_OP_const8u:
6155 	case DW_OP_constu:
6156 	case DW_OP_plus_uconst:
6157 	case DW_OP_regx:
6158 	case DW_OP_piece:
6159 		printf(": %ju", (uintmax_t)
6160 		    lr->lr_number);
6161 		break;
6162 
6163 	case DW_OP_const1s:
6164 	case DW_OP_const2s:
6165 	case DW_OP_const4s:
6166 	case DW_OP_const8s:
6167 	case DW_OP_consts:
6168 		printf(": %jd", (intmax_t)
6169 		    lr->lr_number);
6170 		break;
6171 
6172 	case DW_OP_breg0:
6173 	case DW_OP_breg1:
6174 	case DW_OP_breg2:
6175 	case DW_OP_breg3:
6176 	case DW_OP_breg4:
6177 	case DW_OP_breg5:
6178 	case DW_OP_breg6:
6179 	case DW_OP_breg7:
6180 	case DW_OP_breg8:
6181 	case DW_OP_breg9:
6182 	case DW_OP_breg10:
6183 	case DW_OP_breg11:
6184 	case DW_OP_breg12:
6185 	case DW_OP_breg13:
6186 	case DW_OP_breg14:
6187 	case DW_OP_breg15:
6188 	case DW_OP_breg16:
6189 	case DW_OP_breg17:
6190 	case DW_OP_breg18:
6191 	case DW_OP_breg19:
6192 	case DW_OP_breg20:
6193 	case DW_OP_breg21:
6194 	case DW_OP_breg22:
6195 	case DW_OP_breg23:
6196 	case DW_OP_breg24:
6197 	case DW_OP_breg25:
6198 	case DW_OP_breg26:
6199 	case DW_OP_breg27:
6200 	case DW_OP_breg28:
6201 	case DW_OP_breg29:
6202 	case DW_OP_breg30:
6203 	case DW_OP_breg31:
6204 		printf(" (%s): %jd",
6205 		    dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
6206 		    (intmax_t) lr->lr_number);
6207 		break;
6208 
6209 	case DW_OP_fbreg:
6210 		printf(": %jd", (intmax_t)
6211 		    lr->lr_number);
6212 		break;
6213 
6214 	case DW_OP_bregx:
6215 		printf(": %ju (%s) %jd",
6216 		    (uintmax_t) lr->lr_number,
6217 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6218 		    (intmax_t) lr->lr_number2);
6219 		break;
6220 
6221 	case DW_OP_addr:
6222 	case DW_OP_GNU_encoded_addr:
6223 		printf(": %#jx", (uintmax_t)
6224 		    lr->lr_number);
6225 		break;
6226 
6227 	case DW_OP_GNU_implicit_pointer:
6228 		printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
6229 		    (intmax_t) lr->lr_number2);
6230 		break;
6231 
6232 	case DW_OP_implicit_value:
6233 		printf(": %ju byte block:", (uintmax_t) lr->lr_number);
6234 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6235 		for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
6236 			printf(" %x", b[i]);
6237 		break;
6238 
6239 	case DW_OP_GNU_entry_value:
6240 		printf(": (");
6241 		dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
6242 		    lr->lr_number);
6243 		putchar(')');
6244 		break;
6245 
6246 	case DW_OP_GNU_const_type:
6247 		printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
6248 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6249 		n = *b;
6250 		for (i = 1; (uint8_t) i < n; i++)
6251 			printf(" %x", b[i]);
6252 		break;
6253 
6254 	case DW_OP_GNU_regval_type:
6255 		printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
6256 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6257 		    (uintmax_t) lr->lr_number2);
6258 		break;
6259 
6260 	case DW_OP_GNU_convert:
6261 	case DW_OP_GNU_deref_type:
6262 	case DW_OP_GNU_parameter_ref:
6263 	case DW_OP_GNU_reinterpret:
6264 		printf(": <0x%jx>", (uintmax_t) lr->lr_number);
6265 		break;
6266 
6267 	default:
6268 		break;
6269 	}
6270 }
6271 
6272 static void
6273 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
6274 {
6275 	Dwarf_Locdesc *llbuf;
6276 	Dwarf_Signed lcnt;
6277 	Dwarf_Error de;
6278 	int i;
6279 
6280 	if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
6281 	    re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
6282 		warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
6283 		return;
6284 	}
6285 
6286 	for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
6287 		dump_dwarf_loc(re, &llbuf->ld_s[i]);
6288 		if (i < llbuf->ld_cents - 1)
6289 			printf("; ");
6290 	}
6291 
6292 	dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
6293 	dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
6294 }
6295 
6296 static void
6297 dump_dwarf_loclist(struct readelf *re)
6298 {
6299 	Dwarf_Die die;
6300 	Dwarf_Locdesc **llbuf;
6301 	Dwarf_Unsigned lowpc;
6302 	Dwarf_Signed lcnt;
6303 	Dwarf_Half tag, version, pointer_size, off_size;
6304 	Dwarf_Error de;
6305 	struct loc_at *la;
6306 	int i, j, ret, has_content;
6307 
6308 	/* Search .debug_info section. */
6309 	while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
6310 	    &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
6311 		set_cu_context(re, pointer_size, off_size, version);
6312 		die = NULL;
6313 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
6314 			continue;
6315 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6316 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
6317 			continue;
6318 		}
6319 		/* XXX: What about DW_TAG_partial_unit? */
6320 		lowpc = 0;
6321 		if (tag == DW_TAG_compile_unit) {
6322 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6323 			    &lowpc, &de) != DW_DLV_OK)
6324 				lowpc = 0;
6325 		}
6326 
6327 		/* Search attributes for reference to .debug_loc section. */
6328 		search_loclist_at(re, die, lowpc);
6329 	}
6330 	if (ret == DW_DLV_ERROR)
6331 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6332 
6333 	/* Search .debug_types section. */
6334 	do {
6335 		while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
6336 		    &version, NULL, &pointer_size, &off_size, NULL, NULL,
6337 		    NULL, NULL, &de)) == DW_DLV_OK) {
6338 			set_cu_context(re, pointer_size, off_size, version);
6339 			die = NULL;
6340 			if (dwarf_siblingof(re->dbg, die, &die, &de) !=
6341 			    DW_DLV_OK)
6342 				continue;
6343 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6344 				warnx("dwarf_tag failed: %s",
6345 				    dwarf_errmsg(de));
6346 				continue;
6347 			}
6348 
6349 			lowpc = 0;
6350 			if (tag == DW_TAG_type_unit) {
6351 				if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6352 				    &lowpc, &de) != DW_DLV_OK)
6353 					lowpc = 0;
6354 			}
6355 
6356 			/*
6357 			 * Search attributes for reference to .debug_loc
6358 			 * section.
6359 			 */
6360 			search_loclist_at(re, die, lowpc);
6361 		}
6362 		if (ret == DW_DLV_ERROR)
6363 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6364 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
6365 
6366 	if (TAILQ_EMPTY(&lalist))
6367 		return;
6368 
6369 	has_content = 0;
6370 	TAILQ_FOREACH(la, &lalist, la_next) {
6371 		if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) !=
6372 		    DW_DLV_OK) {
6373 			if (ret != DW_DLV_NO_ENTRY)
6374 				warnx("dwarf_loclist_n failed: %s",
6375 				    dwarf_errmsg(de));
6376 			continue;
6377 		}
6378 		if (!has_content) {
6379 			has_content = 1;
6380 			printf("\nContents of section .debug_loc:\n");
6381 			printf("    Offset   Begin    End      Expression\n");
6382 		}
6383 		set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
6384 		    la->la_cu_ver);
6385 		for (i = 0; i < lcnt; i++) {
6386 			printf("    %8.8jx ", (uintmax_t) la->la_off);
6387 			if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
6388 				printf("<End of list>\n");
6389 				continue;
6390 			}
6391 
6392 			/* TODO: handle base selection entry. */
6393 
6394 			printf("%8.8jx %8.8jx ",
6395 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
6396 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
6397 
6398 			putchar('(');
6399 			for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
6400 				dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
6401 				if (j < llbuf[i]->ld_cents - 1)
6402 					printf("; ");
6403 			}
6404 			putchar(')');
6405 
6406 			if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
6407 				printf(" (start == end)");
6408 			putchar('\n');
6409 		}
6410 		for (i = 0; i < lcnt; i++) {
6411 			dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
6412 			    DW_DLA_LOC_BLOCK);
6413 			dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
6414 		}
6415 		dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
6416 	}
6417 
6418 	if (!has_content)
6419 		printf("\nSection '.debug_loc' has no debugging data.\n");
6420 }
6421 
6422 /*
6423  * Retrieve a string using string table section index and the string offset.
6424  */
6425 static const char*
6426 get_string(struct readelf *re, int strtab, size_t off)
6427 {
6428 	const char *name;
6429 
6430 	if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
6431 		return ("");
6432 
6433 	return (name);
6434 }
6435 
6436 /*
6437  * Retrieve the name of a symbol using the section index of the symbol
6438  * table and the index of the symbol within that table.
6439  */
6440 static const char *
6441 get_symbol_name(struct readelf *re, int symtab, int i)
6442 {
6443 	struct section	*s;
6444 	const char	*name;
6445 	GElf_Sym	 sym;
6446 	Elf_Data	*data;
6447 	int		 elferr;
6448 
6449 	s = &re->sl[symtab];
6450 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6451 		return ("");
6452 	(void) elf_errno();
6453 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6454 		elferr = elf_errno();
6455 		if (elferr != 0)
6456 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6457 		return ("");
6458 	}
6459 	if (gelf_getsym(data, i, &sym) != &sym)
6460 		return ("");
6461 	/* Return section name for STT_SECTION symbol. */
6462 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
6463 		if (sym.st_shndx < re->shnum &&
6464 		    re->sl[sym.st_shndx].name != NULL)
6465 			return (re->sl[sym.st_shndx].name);
6466 		return ("");
6467 	}
6468 	if (s->link >= re->shnum ||
6469 	    (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
6470 		return ("");
6471 
6472 	return (name);
6473 }
6474 
6475 static uint64_t
6476 get_symbol_value(struct readelf *re, int symtab, int i)
6477 {
6478 	struct section	*s;
6479 	GElf_Sym	 sym;
6480 	Elf_Data	*data;
6481 	int		 elferr;
6482 
6483 	s = &re->sl[symtab];
6484 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6485 		return (0);
6486 	(void) elf_errno();
6487 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6488 		elferr = elf_errno();
6489 		if (elferr != 0)
6490 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6491 		return (0);
6492 	}
6493 	if (gelf_getsym(data, i, &sym) != &sym)
6494 		return (0);
6495 
6496 	return (sym.st_value);
6497 }
6498 
6499 static void
6500 hex_dump(struct readelf *re)
6501 {
6502 	struct section *s;
6503 	Elf_Data *d;
6504 	uint8_t *buf;
6505 	size_t sz, nbytes;
6506 	uint64_t addr;
6507 	int elferr, i, j;
6508 
6509 	for (i = 1; (size_t) i < re->shnum; i++) {
6510 		s = &re->sl[i];
6511 		if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
6512 			continue;
6513 		(void) elf_errno();
6514 		if ((d = elf_getdata(s->scn, NULL)) == NULL &&
6515 		    (d = elf_rawdata(s->scn, NULL)) == NULL) {
6516 			elferr = elf_errno();
6517 			if (elferr != 0)
6518 				warnx("elf_getdata failed: %s",
6519 				    elf_errmsg(elferr));
6520 			continue;
6521 		}
6522 		(void) elf_errno();
6523 		if (d->d_size <= 0 || d->d_buf == NULL) {
6524 			printf("\nSection '%s' has no data to dump.\n",
6525 			    s->name);
6526 			continue;
6527 		}
6528 		buf = d->d_buf;
6529 		sz = d->d_size;
6530 		addr = s->addr;
6531 		printf("\nHex dump of section '%s':\n", s->name);
6532 		while (sz > 0) {
6533 			printf("  0x%8.8jx ", (uintmax_t)addr);
6534 			nbytes = sz > 16? 16 : sz;
6535 			for (j = 0; j < 16; j++) {
6536 				if ((size_t)j < nbytes)
6537 					printf("%2.2x", buf[j]);
6538 				else
6539 					printf("  ");
6540 				if ((j & 3) == 3)
6541 					printf(" ");
6542 			}
6543 			for (j = 0; (size_t)j < nbytes; j++) {
6544 				if (isprint(buf[j]))
6545 					printf("%c", buf[j]);
6546 				else
6547 					printf(".");
6548 			}
6549 			printf("\n");
6550 			buf += nbytes;
6551 			addr += nbytes;
6552 			sz -= nbytes;
6553 		}
6554 	}
6555 }
6556 
6557 static void
6558 str_dump(struct readelf *re)
6559 {
6560 	struct section *s;
6561 	Elf_Data *d;
6562 	unsigned char *start, *end, *buf_end;
6563 	unsigned int len;
6564 	int i, j, elferr, found;
6565 
6566 	for (i = 1; (size_t) i < re->shnum; i++) {
6567 		s = &re->sl[i];
6568 		if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
6569 			continue;
6570 		(void) elf_errno();
6571 		if ((d = elf_getdata(s->scn, NULL)) == NULL &&
6572 		    (d = elf_rawdata(s->scn, NULL)) == NULL) {
6573 			elferr = elf_errno();
6574 			if (elferr != 0)
6575 				warnx("elf_getdata failed: %s",
6576 				    elf_errmsg(elferr));
6577 			continue;
6578 		}
6579 		(void) elf_errno();
6580 		if (d->d_size <= 0 || d->d_buf == NULL) {
6581 			printf("\nSection '%s' has no data to dump.\n",
6582 			    s->name);
6583 			continue;
6584 		}
6585 		buf_end = (unsigned char *) d->d_buf + d->d_size;
6586 		start = (unsigned char *) d->d_buf;
6587 		found = 0;
6588 		printf("\nString dump of section '%s':\n", s->name);
6589 		for (;;) {
6590 			while (start < buf_end && !isprint(*start))
6591 				start++;
6592 			if (start >= buf_end)
6593 				break;
6594 			end = start + 1;
6595 			while (end < buf_end && isprint(*end))
6596 				end++;
6597 			printf("  [%6lx]  ",
6598 			    (long) (start - (unsigned char *) d->d_buf));
6599 			len = end - start;
6600 			for (j = 0; (unsigned int) j < len; j++)
6601 				putchar(start[j]);
6602 			putchar('\n');
6603 			found = 1;
6604 			if (end >= buf_end)
6605 				break;
6606 			start = end + 1;
6607 		}
6608 		if (!found)
6609 			printf("  No strings found in this section.");
6610 		putchar('\n');
6611 	}
6612 }
6613 
6614 static void
6615 load_sections(struct readelf *re)
6616 {
6617 	struct section	*s;
6618 	const char	*name;
6619 	Elf_Scn		*scn;
6620 	GElf_Shdr	 sh;
6621 	size_t		 shstrndx, ndx;
6622 	int		 elferr;
6623 
6624 	/* Allocate storage for internal section list. */
6625 	if (!elf_getshnum(re->elf, &re->shnum)) {
6626 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
6627 		return;
6628 	}
6629 	if (re->sl != NULL)
6630 		free(re->sl);
6631 	if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
6632 		err(EXIT_FAILURE, "calloc failed");
6633 
6634 	/* Get the index of .shstrtab section. */
6635 	if (!elf_getshstrndx(re->elf, &shstrndx)) {
6636 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
6637 		return;
6638 	}
6639 
6640 	if ((scn = elf_getscn(re->elf, 0)) == NULL)
6641 		return;
6642 
6643 	(void) elf_errno();
6644 	do {
6645 		if (gelf_getshdr(scn, &sh) == NULL) {
6646 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
6647 			(void) elf_errno();
6648 			continue;
6649 		}
6650 		if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
6651 			(void) elf_errno();
6652 			name = "<no-name>";
6653 		}
6654 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
6655 			if ((elferr = elf_errno()) != 0) {
6656 				warnx("elf_ndxscn failed: %s",
6657 				    elf_errmsg(elferr));
6658 				continue;
6659 			}
6660 		}
6661 		if (ndx >= re->shnum) {
6662 			warnx("section index of '%s' out of range", name);
6663 			continue;
6664 		}
6665 		if (sh.sh_link >= re->shnum)
6666 			warnx("section link %llu of '%s' out of range",
6667 			    (unsigned long long)sh.sh_link, name);
6668 		s = &re->sl[ndx];
6669 		s->name = name;
6670 		s->scn = scn;
6671 		s->off = sh.sh_offset;
6672 		s->sz = sh.sh_size;
6673 		s->entsize = sh.sh_entsize;
6674 		s->align = sh.sh_addralign;
6675 		s->type = sh.sh_type;
6676 		s->flags = sh.sh_flags;
6677 		s->addr = sh.sh_addr;
6678 		s->link = sh.sh_link;
6679 		s->info = sh.sh_info;
6680 	} while ((scn = elf_nextscn(re->elf, scn)) != NULL);
6681 	elferr = elf_errno();
6682 	if (elferr != 0)
6683 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
6684 }
6685 
6686 static void
6687 unload_sections(struct readelf *re)
6688 {
6689 
6690 	if (re->sl != NULL) {
6691 		free(re->sl);
6692 		re->sl = NULL;
6693 	}
6694 	re->shnum = 0;
6695 	re->vd_s = NULL;
6696 	re->vn_s = NULL;
6697 	re->vs_s = NULL;
6698 	re->vs = NULL;
6699 	re->vs_sz = 0;
6700 	if (re->ver != NULL) {
6701 		free(re->ver);
6702 		re->ver = NULL;
6703 		re->ver_sz = 0;
6704 	}
6705 }
6706 
6707 static void
6708 dump_elf(struct readelf *re)
6709 {
6710 
6711 	/* Fetch ELF header. No need to continue if it fails. */
6712 	if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
6713 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
6714 		return;
6715 	}
6716 	if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
6717 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
6718 		return;
6719 	}
6720 	if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
6721 		re->dw_read = _read_msb;
6722 		re->dw_decode = _decode_msb;
6723 	} else {
6724 		re->dw_read = _read_lsb;
6725 		re->dw_decode = _decode_lsb;
6726 	}
6727 
6728 	if (re->options & ~RE_H)
6729 		load_sections(re);
6730 	if ((re->options & RE_VV) || (re->options & RE_S))
6731 		search_ver(re);
6732 	if (re->options & RE_H)
6733 		dump_ehdr(re);
6734 	if (re->options & RE_L)
6735 		dump_phdr(re);
6736 	if (re->options & RE_SS)
6737 		dump_shdr(re);
6738 	if (re->options & RE_G)
6739 		dump_section_groups(re);
6740 	if (re->options & RE_D)
6741 		dump_dynamic(re);
6742 	if (re->options & RE_R)
6743 		dump_reloc(re);
6744 	if (re->options & RE_S)
6745 		dump_symtabs(re);
6746 	if (re->options & RE_N)
6747 		dump_notes(re);
6748 	if (re->options & RE_II)
6749 		dump_hash(re);
6750 	if (re->options & RE_X)
6751 		hex_dump(re);
6752 	if (re->options & RE_P)
6753 		str_dump(re);
6754 	if (re->options & RE_VV)
6755 		dump_ver(re);
6756 	if (re->options & RE_AA)
6757 		dump_arch_specific_info(re);
6758 	if (re->options & RE_W)
6759 		dump_dwarf(re);
6760 	if (re->options & ~RE_H)
6761 		unload_sections(re);
6762 }
6763 
6764 static void
6765 dump_dwarf(struct readelf *re)
6766 {
6767 	struct loc_at *la, *_la;
6768 	Dwarf_Error de;
6769 	int error;
6770 
6771 	if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
6772 		if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
6773 			errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
6774 			    dwarf_errmsg(de));
6775 		return;
6776 	}
6777 
6778 	if (re->dop & DW_A)
6779 		dump_dwarf_abbrev(re);
6780 	if (re->dop & DW_L)
6781 		dump_dwarf_line(re);
6782 	if (re->dop & DW_LL)
6783 		dump_dwarf_line_decoded(re);
6784 	if (re->dop & DW_I) {
6785 		dump_dwarf_info(re, 0);
6786 		dump_dwarf_info(re, 1);
6787 	}
6788 	if (re->dop & DW_P)
6789 		dump_dwarf_pubnames(re);
6790 	if (re->dop & DW_R)
6791 		dump_dwarf_aranges(re);
6792 	if (re->dop & DW_RR)
6793 		dump_dwarf_ranges(re);
6794 	if (re->dop & DW_M)
6795 		dump_dwarf_macinfo(re);
6796 	if (re->dop & DW_F)
6797 		dump_dwarf_frame(re, 0);
6798 	else if (re->dop & DW_FF)
6799 		dump_dwarf_frame(re, 1);
6800 	if (re->dop & DW_S)
6801 		dump_dwarf_str(re);
6802 	if (re->dop & DW_O)
6803 		dump_dwarf_loclist(re);
6804 
6805 	TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) {
6806 		TAILQ_REMOVE(&lalist, la, la_next);
6807 		free(la);
6808 	}
6809 
6810 	dwarf_finish(re->dbg, &de);
6811 }
6812 
6813 static void
6814 dump_ar(struct readelf *re, int fd)
6815 {
6816 	Elf_Arsym *arsym;
6817 	Elf_Arhdr *arhdr;
6818 	Elf_Cmd cmd;
6819 	Elf *e;
6820 	size_t sz;
6821 	off_t off;
6822 	int i;
6823 
6824 	re->ar = re->elf;
6825 
6826 	if (re->options & RE_C) {
6827 		if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
6828 			warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
6829 			goto process_members;
6830 		}
6831 		printf("Index of archive %s: (%ju entries)\n", re->filename,
6832 		    (uintmax_t) sz - 1);
6833 		off = 0;
6834 		for (i = 0; (size_t) i < sz; i++) {
6835 			if (arsym[i].as_name == NULL)
6836 				break;
6837 			if (arsym[i].as_off != off) {
6838 				off = arsym[i].as_off;
6839 				if (elf_rand(re->ar, off) != off) {
6840 					warnx("elf_rand() failed: %s",
6841 					    elf_errmsg(-1));
6842 					continue;
6843 				}
6844 				if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
6845 				    NULL) {
6846 					warnx("elf_begin() failed: %s",
6847 					    elf_errmsg(-1));
6848 					continue;
6849 				}
6850 				if ((arhdr = elf_getarhdr(e)) == NULL) {
6851 					warnx("elf_getarhdr() failed: %s",
6852 					    elf_errmsg(-1));
6853 					elf_end(e);
6854 					continue;
6855 				}
6856 				printf("Binary %s(%s) contains:\n",
6857 				    re->filename, arhdr->ar_name);
6858 			}
6859 			printf("\t%s\n", arsym[i].as_name);
6860 		}
6861 		if (elf_rand(re->ar, SARMAG) != SARMAG) {
6862 			warnx("elf_rand() failed: %s", elf_errmsg(-1));
6863 			return;
6864 		}
6865 	}
6866 
6867 process_members:
6868 
6869 	if ((re->options & ~RE_C) == 0)
6870 		return;
6871 
6872 	cmd = ELF_C_READ;
6873 	while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
6874 		if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
6875 			warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
6876 			goto next_member;
6877 		}
6878 		if (strcmp(arhdr->ar_name, "/") == 0 ||
6879 		    strcmp(arhdr->ar_name, "//") == 0 ||
6880 		    strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
6881 			goto next_member;
6882 		printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
6883 		dump_elf(re);
6884 
6885 	next_member:
6886 		cmd = elf_next(re->elf);
6887 		elf_end(re->elf);
6888 	}
6889 	re->elf = re->ar;
6890 }
6891 
6892 static void
6893 dump_object(struct readelf *re)
6894 {
6895 	int fd;
6896 
6897 	if ((fd = open(re->filename, O_RDONLY)) == -1) {
6898 		warn("open %s failed", re->filename);
6899 		return;
6900 	}
6901 
6902 	if ((re->flags & DISPLAY_FILENAME) != 0)
6903 		printf("\nFile: %s\n", re->filename);
6904 
6905 	if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
6906 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
6907 		return;
6908 	}
6909 
6910 	switch (elf_kind(re->elf)) {
6911 	case ELF_K_NONE:
6912 		warnx("Not an ELF file.");
6913 		return;
6914 	case ELF_K_ELF:
6915 		dump_elf(re);
6916 		break;
6917 	case ELF_K_AR:
6918 		dump_ar(re, fd);
6919 		break;
6920 	default:
6921 		warnx("Internal: libelf returned unknown elf kind.");
6922 		return;
6923 	}
6924 
6925 	elf_end(re->elf);
6926 }
6927 
6928 static void
6929 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
6930 {
6931 	struct dumpop *d;
6932 
6933 	if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
6934 		if ((d = calloc(1, sizeof(*d))) == NULL)
6935 			err(EXIT_FAILURE, "calloc failed");
6936 		if (t == DUMP_BY_INDEX)
6937 			d->u.si = si;
6938 		else
6939 			d->u.sn = sn;
6940 		d->type = t;
6941 		d->op = op;
6942 		STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
6943 	} else
6944 		d->op |= op;
6945 }
6946 
6947 static struct dumpop *
6948 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
6949 {
6950 	struct dumpop *d;
6951 
6952 	STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
6953 		if ((op == -1 || op & d->op) &&
6954 		    (t == -1 || (unsigned) t == d->type)) {
6955 			if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
6956 			    (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
6957 				return (d);
6958 		}
6959 	}
6960 
6961 	return (NULL);
6962 }
6963 
6964 static struct {
6965 	const char *ln;
6966 	char sn;
6967 	int value;
6968 } dwarf_op[] = {
6969 	{"rawline", 'l', DW_L},
6970 	{"decodedline", 'L', DW_LL},
6971 	{"info", 'i', DW_I},
6972 	{"abbrev", 'a', DW_A},
6973 	{"pubnames", 'p', DW_P},
6974 	{"aranges", 'r', DW_R},
6975 	{"ranges", 'r', DW_R},
6976 	{"Ranges", 'R', DW_RR},
6977 	{"macro", 'm', DW_M},
6978 	{"frames", 'f', DW_F},
6979 	{"frames-interp", 'F', DW_FF},
6980 	{"str", 's', DW_S},
6981 	{"loc", 'o', DW_O},
6982 	{NULL, 0, 0}
6983 };
6984 
6985 static void
6986 parse_dwarf_op_short(struct readelf *re, const char *op)
6987 {
6988 	int i;
6989 
6990 	if (op == NULL) {
6991 		re->dop |= DW_DEFAULT_OPTIONS;
6992 		return;
6993 	}
6994 
6995 	for (; *op != '\0'; op++) {
6996 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
6997 			if (dwarf_op[i].sn == *op) {
6998 				re->dop |= dwarf_op[i].value;
6999 				break;
7000 			}
7001 		}
7002 	}
7003 }
7004 
7005 static void
7006 parse_dwarf_op_long(struct readelf *re, const char *op)
7007 {
7008 	char *p, *token, *bp;
7009 	int i;
7010 
7011 	if (op == NULL) {
7012 		re->dop |= DW_DEFAULT_OPTIONS;
7013 		return;
7014 	}
7015 
7016 	if ((p = strdup(op)) == NULL)
7017 		err(EXIT_FAILURE, "strdup failed");
7018 	bp = p;
7019 
7020 	while ((token = strsep(&p, ",")) != NULL) {
7021 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7022 			if (!strcmp(token, dwarf_op[i].ln)) {
7023 				re->dop |= dwarf_op[i].value;
7024 				break;
7025 			}
7026 		}
7027 	}
7028 
7029 	free(bp);
7030 }
7031 
7032 static uint64_t
7033 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7034 {
7035 	uint64_t ret;
7036 	uint8_t *src;
7037 
7038 	src = (uint8_t *) d->d_buf + *offsetp;
7039 
7040 	ret = 0;
7041 	switch (bytes_to_read) {
7042 	case 8:
7043 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7044 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7045 		/* FALLTHROUGH */
7046 	case 4:
7047 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7048 		/* FALLTHROUGH */
7049 	case 2:
7050 		ret |= ((uint64_t) src[1]) << 8;
7051 		/* FALLTHROUGH */
7052 	case 1:
7053 		ret |= src[0];
7054 		break;
7055 	default:
7056 		return (0);
7057 	}
7058 
7059 	*offsetp += bytes_to_read;
7060 
7061 	return (ret);
7062 }
7063 
7064 static uint64_t
7065 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7066 {
7067 	uint64_t ret;
7068 	uint8_t *src;
7069 
7070 	src = (uint8_t *) d->d_buf + *offsetp;
7071 
7072 	switch (bytes_to_read) {
7073 	case 1:
7074 		ret = src[0];
7075 		break;
7076 	case 2:
7077 		ret = src[1] | ((uint64_t) src[0]) << 8;
7078 		break;
7079 	case 4:
7080 		ret = src[3] | ((uint64_t) src[2]) << 8;
7081 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7082 		break;
7083 	case 8:
7084 		ret = src[7] | ((uint64_t) src[6]) << 8;
7085 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7086 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7087 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7088 		break;
7089 	default:
7090 		return (0);
7091 	}
7092 
7093 	*offsetp += bytes_to_read;
7094 
7095 	return (ret);
7096 }
7097 
7098 static uint64_t
7099 _decode_lsb(uint8_t **data, int bytes_to_read)
7100 {
7101 	uint64_t ret;
7102 	uint8_t *src;
7103 
7104 	src = *data;
7105 
7106 	ret = 0;
7107 	switch (bytes_to_read) {
7108 	case 8:
7109 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7110 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7111 		/* FALLTHROUGH */
7112 	case 4:
7113 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7114 		/* FALLTHROUGH */
7115 	case 2:
7116 		ret |= ((uint64_t) src[1]) << 8;
7117 		/* FALLTHROUGH */
7118 	case 1:
7119 		ret |= src[0];
7120 		break;
7121 	default:
7122 		return (0);
7123 	}
7124 
7125 	*data += bytes_to_read;
7126 
7127 	return (ret);
7128 }
7129 
7130 static uint64_t
7131 _decode_msb(uint8_t **data, int bytes_to_read)
7132 {
7133 	uint64_t ret;
7134 	uint8_t *src;
7135 
7136 	src = *data;
7137 
7138 	ret = 0;
7139 	switch (bytes_to_read) {
7140 	case 1:
7141 		ret = src[0];
7142 		break;
7143 	case 2:
7144 		ret = src[1] | ((uint64_t) src[0]) << 8;
7145 		break;
7146 	case 4:
7147 		ret = src[3] | ((uint64_t) src[2]) << 8;
7148 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7149 		break;
7150 	case 8:
7151 		ret = src[7] | ((uint64_t) src[6]) << 8;
7152 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7153 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7154 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7155 		break;
7156 	default:
7157 		return (0);
7158 		break;
7159 	}
7160 
7161 	*data += bytes_to_read;
7162 
7163 	return (ret);
7164 }
7165 
7166 static int64_t
7167 _decode_sleb128(uint8_t **dp, uint8_t *dpe)
7168 {
7169 	int64_t ret = 0;
7170 	uint8_t b = 0;
7171 	int shift = 0;
7172 
7173 	uint8_t *src = *dp;
7174 
7175 	do {
7176 		if (src >= dpe)
7177 			break;
7178 		b = *src++;
7179 		ret |= ((b & 0x7f) << shift);
7180 		shift += 7;
7181 	} while ((b & 0x80) != 0);
7182 
7183 	if (shift < 32 && (b & 0x40) != 0)
7184 		ret |= (-1 << shift);
7185 
7186 	*dp = src;
7187 
7188 	return (ret);
7189 }
7190 
7191 static uint64_t
7192 _decode_uleb128(uint8_t **dp, uint8_t *dpe)
7193 {
7194 	uint64_t ret = 0;
7195 	uint8_t b;
7196 	int shift = 0;
7197 
7198 	uint8_t *src = *dp;
7199 
7200 	do {
7201 		if (src >= dpe)
7202 			break;
7203 		b = *src++;
7204 		ret |= ((b & 0x7f) << shift);
7205 		shift += 7;
7206 	} while ((b & 0x80) != 0);
7207 
7208 	*dp = src;
7209 
7210 	return (ret);
7211 }
7212 
7213 static void
7214 readelf_version(void)
7215 {
7216 	(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
7217 	    elftc_version());
7218 	exit(EXIT_SUCCESS);
7219 }
7220 
7221 #define	USAGE_MESSAGE	"\
7222 Usage: %s [options] file...\n\
7223   Display information about ELF objects and ar(1) archives.\n\n\
7224   Options:\n\
7225   -a | --all               Equivalent to specifying options '-dhIlrsASV'.\n\
7226   -c | --archive-index     Print the archive symbol table for archives.\n\
7227   -d | --dynamic           Print the contents of SHT_DYNAMIC sections.\n\
7228   -e | --headers           Print all headers in the object.\n\
7229   -g | --section-groups    Print the contents of the section groups.\n\
7230   -h | --file-header       Print the file header for the object.\n\
7231   -l | --program-headers   Print the PHDR table for the object.\n\
7232   -n | --notes             Print the contents of SHT_NOTE sections.\n\
7233   -p INDEX | --string-dump=INDEX\n\
7234                            Print the contents of section at index INDEX.\n\
7235   -r | --relocs            Print relocation information.\n\
7236   -s | --syms | --symbols  Print symbol tables.\n\
7237   -t | --section-details   Print additional information about sections.\n\
7238   -v | --version           Print a version identifier and exit.\n\
7239   -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\
7240                                frames-interp,info,loc,macro,pubnames,\n\
7241                                ranges,Ranges,rawline,str}\n\
7242                            Display DWARF information.\n\
7243   -x INDEX | --hex-dump=INDEX\n\
7244                            Display contents of a section as hexadecimal.\n\
7245   -A | --arch-specific     (accepted, but ignored)\n\
7246   -D | --use-dynamic       Print the symbol table specified by the DT_SYMTAB\n\
7247                            entry in the \".dynamic\" section.\n\
7248   -H | --help              Print a help message.\n\
7249   -I | --histogram         Print information on bucket list lengths for \n\
7250                            hash sections.\n\
7251   -N | --full-section-name (accepted, but ignored)\n\
7252   -S | --sections | --section-headers\n\
7253                            Print information about section headers.\n\
7254   -V | --version-info      Print symbol versoning information.\n\
7255   -W | --wide              Print information without wrapping long lines.\n"
7256 
7257 
7258 static void
7259 readelf_usage(int status)
7260 {
7261 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
7262 	exit(status);
7263 }
7264 
7265 int
7266 main(int argc, char **argv)
7267 {
7268 	struct readelf	*re, re_storage;
7269 	unsigned long	 si;
7270 	int		 opt, i;
7271 	char		*ep;
7272 
7273 	re = &re_storage;
7274 	memset(re, 0, sizeof(*re));
7275 	STAILQ_INIT(&re->v_dumpop);
7276 
7277 	while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:",
7278 	    longopts, NULL)) != -1) {
7279 		switch(opt) {
7280 		case '?':
7281 			readelf_usage(EXIT_SUCCESS);
7282 			break;
7283 		case 'A':
7284 			re->options |= RE_AA;
7285 			break;
7286 		case 'a':
7287 			re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II |
7288 			    RE_L | RE_R | RE_SS | RE_S | RE_VV;
7289 			break;
7290 		case 'c':
7291 			re->options |= RE_C;
7292 			break;
7293 		case 'D':
7294 			re->options |= RE_DD;
7295 			break;
7296 		case 'd':
7297 			re->options |= RE_D;
7298 			break;
7299 		case 'e':
7300 			re->options |= RE_H | RE_L | RE_SS;
7301 			break;
7302 		case 'g':
7303 			re->options |= RE_G;
7304 			break;
7305 		case 'H':
7306 			readelf_usage(EXIT_SUCCESS);
7307 			break;
7308 		case 'h':
7309 			re->options |= RE_H;
7310 			break;
7311 		case 'I':
7312 			re->options |= RE_II;
7313 			break;
7314 		case 'i':
7315 			/* Not implemented yet. */
7316 			break;
7317 		case 'l':
7318 			re->options |= RE_L;
7319 			break;
7320 		case 'N':
7321 			re->options |= RE_NN;
7322 			break;
7323 		case 'n':
7324 			re->options |= RE_N;
7325 			break;
7326 		case 'p':
7327 			re->options |= RE_P;
7328 			si = strtoul(optarg, &ep, 10);
7329 			if (*ep == '\0')
7330 				add_dumpop(re, (size_t) si, NULL, STR_DUMP,
7331 				    DUMP_BY_INDEX);
7332 			else
7333 				add_dumpop(re, 0, optarg, STR_DUMP,
7334 				    DUMP_BY_NAME);
7335 			break;
7336 		case 'r':
7337 			re->options |= RE_R;
7338 			break;
7339 		case 'S':
7340 			re->options |= RE_SS;
7341 			break;
7342 		case 's':
7343 			re->options |= RE_S;
7344 			break;
7345 		case 't':
7346 			re->options |= RE_T;
7347 			break;
7348 		case 'u':
7349 			re->options |= RE_U;
7350 			break;
7351 		case 'V':
7352 			re->options |= RE_VV;
7353 			break;
7354 		case 'v':
7355 			readelf_version();
7356 			break;
7357 		case 'W':
7358 			re->options |= RE_WW;
7359 			break;
7360 		case 'w':
7361 			re->options |= RE_W;
7362 			parse_dwarf_op_short(re, optarg);
7363 			break;
7364 		case 'x':
7365 			re->options |= RE_X;
7366 			si = strtoul(optarg, &ep, 10);
7367 			if (*ep == '\0')
7368 				add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
7369 				    DUMP_BY_INDEX);
7370 			else
7371 				add_dumpop(re, 0, optarg, HEX_DUMP,
7372 				    DUMP_BY_NAME);
7373 			break;
7374 		case OPTION_DEBUG_DUMP:
7375 			re->options |= RE_W;
7376 			parse_dwarf_op_long(re, optarg);
7377 		}
7378 	}
7379 
7380 	argv += optind;
7381 	argc -= optind;
7382 
7383 	if (argc == 0 || re->options == 0)
7384 		readelf_usage(EXIT_FAILURE);
7385 
7386 	if (argc > 1)
7387 		re->flags |= DISPLAY_FILENAME;
7388 
7389 	if (elf_version(EV_CURRENT) == EV_NONE)
7390 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
7391 		    elf_errmsg(-1));
7392 
7393 	for (i = 0; i < argc; i++) {
7394 		re->filename = argv[i];
7395 		dump_object(re);
7396 	}
7397 
7398 	exit(EXIT_SUCCESS);
7399 }
7400