1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3519 2017-04-09 23:15:58Z kaiwang27 $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_abiflags(struct readelf *re, struct section *s); 300 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 301 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 302 static void dump_mips_options(struct readelf *re, struct section *s); 303 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 304 uint64_t info); 305 static void dump_mips_reginfo(struct readelf *re, struct section *s); 306 static void dump_mips_specific_info(struct readelf *re); 307 static void dump_notes(struct readelf *re); 308 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 309 off_t off); 310 static void dump_svr4_hash(struct section *s); 311 static void dump_svr4_hash64(struct readelf *re, struct section *s); 312 static void dump_gnu_hash(struct readelf *re, struct section *s); 313 static void dump_hash(struct readelf *re); 314 static void dump_phdr(struct readelf *re); 315 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 316 static void dump_section_groups(struct readelf *re); 317 static void dump_symtab(struct readelf *re, int i); 318 static void dump_symtabs(struct readelf *re); 319 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 320 static void dump_ver(struct readelf *re); 321 static void dump_verdef(struct readelf *re, int dump); 322 static void dump_verneed(struct readelf *re, int dump); 323 static void dump_versym(struct readelf *re); 324 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 325 static const char *dwarf_regname(struct readelf *re, unsigned int num); 326 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 327 const char *sn, int op, int t); 328 static int get_ent_count(struct section *s, int *ent_count); 329 static int get_mips_register_size(uint8_t flag); 330 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 331 Dwarf_Addr off); 332 static const char *get_string(struct readelf *re, int strtab, size_t off); 333 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 334 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 335 static void load_sections(struct readelf *re); 336 static const char *mips_abi_fp(uint64_t fp); 337 static const char *note_type(const char *note_name, unsigned int et, 338 unsigned int nt); 339 static const char *note_type_freebsd(unsigned int nt); 340 static const char *note_type_freebsd_core(unsigned int nt); 341 static const char *note_type_linux_core(unsigned int nt); 342 static const char *note_type_gnu(unsigned int nt); 343 static const char *note_type_netbsd(unsigned int nt); 344 static const char *note_type_openbsd(unsigned int nt); 345 static const char *note_type_unknown(unsigned int nt); 346 static const char *note_type_xen(unsigned int nt); 347 static const char *option_kind(uint8_t kind); 348 static const char *phdr_type(unsigned int mach, unsigned int ptype); 349 static const char *ppc_abi_fp(uint64_t fp); 350 static const char *ppc_abi_vector(uint64_t vec); 351 static void readelf_usage(int status); 352 static void readelf_version(void); 353 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 354 Dwarf_Unsigned lowpc); 355 static void search_ver(struct readelf *re); 356 static const char *section_type(unsigned int mach, unsigned int stype); 357 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 358 Dwarf_Half osize, Dwarf_Half ver); 359 static const char *st_bind(unsigned int sbind); 360 static const char *st_shndx(unsigned int shndx); 361 static const char *st_type(unsigned int mach, unsigned int os, 362 unsigned int stype); 363 static const char *st_vis(unsigned int svis); 364 static const char *top_tag(unsigned int tag); 365 static void unload_sections(struct readelf *re); 366 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 369 int bytes_to_read); 370 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 371 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 372 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 373 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 374 375 static struct eflags_desc arm_eflags_desc[] = { 376 {EF_ARM_RELEXEC, "relocatable executable"}, 377 {EF_ARM_HASENTRY, "has entry point"}, 378 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 379 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 380 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 381 {EF_ARM_BE8, "BE8"}, 382 {EF_ARM_LE8, "LE8"}, 383 {EF_ARM_INTERWORK, "interworking enabled"}, 384 {EF_ARM_APCS_26, "uses APCS/26"}, 385 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 386 {EF_ARM_PIC, "position independent"}, 387 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 388 {EF_ARM_NEW_ABI, "uses new ABI"}, 389 {EF_ARM_OLD_ABI, "uses old ABI"}, 390 {EF_ARM_SOFT_FLOAT, "software FP"}, 391 {EF_ARM_VFP_FLOAT, "VFP"}, 392 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 393 {0, NULL} 394 }; 395 396 static struct eflags_desc mips_eflags_desc[] = { 397 {EF_MIPS_NOREORDER, "noreorder"}, 398 {EF_MIPS_PIC, "pic"}, 399 {EF_MIPS_CPIC, "cpic"}, 400 {EF_MIPS_UCODE, "ugen_reserved"}, 401 {EF_MIPS_ABI2, "abi2"}, 402 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 403 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 404 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 405 {0, NULL} 406 }; 407 408 static struct eflags_desc powerpc_eflags_desc[] = { 409 {EF_PPC_EMB, "emb"}, 410 {EF_PPC_RELOCATABLE, "relocatable"}, 411 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 412 {0, NULL} 413 }; 414 415 static struct eflags_desc sparc_eflags_desc[] = { 416 {EF_SPARC_32PLUS, "v8+"}, 417 {EF_SPARC_SUN_US1, "ultrasparcI"}, 418 {EF_SPARC_HAL_R1, "halr1"}, 419 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 420 {0, NULL} 421 }; 422 423 static const char * 424 elf_osabi(unsigned int abi) 425 { 426 static char s_abi[32]; 427 428 switch(abi) { 429 case ELFOSABI_NONE: return "NONE"; 430 case ELFOSABI_HPUX: return "HPUX"; 431 case ELFOSABI_NETBSD: return "NetBSD"; 432 case ELFOSABI_GNU: return "GNU"; 433 case ELFOSABI_HURD: return "HURD"; 434 case ELFOSABI_86OPEN: return "86OPEN"; 435 case ELFOSABI_SOLARIS: return "Solaris"; 436 case ELFOSABI_AIX: return "AIX"; 437 case ELFOSABI_IRIX: return "IRIX"; 438 case ELFOSABI_FREEBSD: return "FreeBSD"; 439 case ELFOSABI_TRU64: return "TRU64"; 440 case ELFOSABI_MODESTO: return "MODESTO"; 441 case ELFOSABI_OPENBSD: return "OpenBSD"; 442 case ELFOSABI_OPENVMS: return "OpenVMS"; 443 case ELFOSABI_NSK: return "NSK"; 444 case ELFOSABI_CLOUDABI: return "CloudABI"; 445 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 446 case ELFOSABI_ARM: return "ARM"; 447 case ELFOSABI_STANDALONE: return "StandAlone"; 448 default: 449 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 450 return (s_abi); 451 } 452 }; 453 454 static const char * 455 elf_machine(unsigned int mach) 456 { 457 static char s_mach[32]; 458 459 switch (mach) { 460 case EM_NONE: return "Unknown machine"; 461 case EM_M32: return "AT&T WE32100"; 462 case EM_SPARC: return "Sun SPARC"; 463 case EM_386: return "Intel i386"; 464 case EM_68K: return "Motorola 68000"; 465 case EM_IAMCU: return "Intel MCU"; 466 case EM_88K: return "Motorola 88000"; 467 case EM_860: return "Intel i860"; 468 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 469 case EM_S370: return "IBM System/370"; 470 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 471 case EM_PARISC: return "HP PA-RISC"; 472 case EM_VPP500: return "Fujitsu VPP500"; 473 case EM_SPARC32PLUS: return "SPARC v8plus"; 474 case EM_960: return "Intel 80960"; 475 case EM_PPC: return "PowerPC 32-bit"; 476 case EM_PPC64: return "PowerPC 64-bit"; 477 case EM_S390: return "IBM System/390"; 478 case EM_V800: return "NEC V800"; 479 case EM_FR20: return "Fujitsu FR20"; 480 case EM_RH32: return "TRW RH-32"; 481 case EM_RCE: return "Motorola RCE"; 482 case EM_ARM: return "ARM"; 483 case EM_SH: return "Hitachi SH"; 484 case EM_SPARCV9: return "SPARC v9 64-bit"; 485 case EM_TRICORE: return "Siemens TriCore embedded processor"; 486 case EM_ARC: return "Argonaut RISC Core"; 487 case EM_H8_300: return "Hitachi H8/300"; 488 case EM_H8_300H: return "Hitachi H8/300H"; 489 case EM_H8S: return "Hitachi H8S"; 490 case EM_H8_500: return "Hitachi H8/500"; 491 case EM_IA_64: return "Intel IA-64 Processor"; 492 case EM_MIPS_X: return "Stanford MIPS-X"; 493 case EM_COLDFIRE: return "Motorola ColdFire"; 494 case EM_68HC12: return "Motorola M68HC12"; 495 case EM_MMA: return "Fujitsu MMA"; 496 case EM_PCP: return "Siemens PCP"; 497 case EM_NCPU: return "Sony nCPU"; 498 case EM_NDR1: return "Denso NDR1 microprocessor"; 499 case EM_STARCORE: return "Motorola Star*Core processor"; 500 case EM_ME16: return "Toyota ME16 processor"; 501 case EM_ST100: return "STMicroelectronics ST100 processor"; 502 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 503 case EM_X86_64: return "Advanced Micro Devices x86-64"; 504 case EM_PDSP: return "Sony DSP Processor"; 505 case EM_FX66: return "Siemens FX66 microcontroller"; 506 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 507 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 508 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 509 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 510 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 511 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 512 case EM_SVX: return "Silicon Graphics SVx"; 513 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 514 case EM_VAX: return "Digital VAX"; 515 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 516 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 517 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 518 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 519 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 520 case EM_HUANY: return "Harvard University MI object files"; 521 case EM_PRISM: return "SiTera Prism"; 522 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 523 case EM_FR30: return "Fujitsu FR30"; 524 case EM_D10V: return "Mitsubishi D10V"; 525 case EM_D30V: return "Mitsubishi D30V"; 526 case EM_V850: return "NEC v850"; 527 case EM_M32R: return "Mitsubishi M32R"; 528 case EM_MN10300: return "Matsushita MN10300"; 529 case EM_MN10200: return "Matsushita MN10200"; 530 case EM_PJ: return "picoJava"; 531 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 532 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 533 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 534 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 535 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 536 case EM_NS32K: return "National Semiconductor 32000 series"; 537 case EM_TPC: return "Tenor Network TPC processor"; 538 case EM_SNP1K: return "Trebia SNP 1000 processor"; 539 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 540 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 541 case EM_MAX: return "MAX Processor"; 542 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 543 case EM_F2MC16: return "Fujitsu F2MC16"; 544 case EM_MSP430: return "TI embedded microcontroller msp430"; 545 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 546 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 547 case EM_SEP: return "Sharp embedded microprocessor"; 548 case EM_ARCA: return "Arca RISC Microprocessor"; 549 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 550 case EM_AARCH64: return "AArch64"; 551 case EM_RISCV: return "RISC-V"; 552 default: 553 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 554 return (s_mach); 555 } 556 557 } 558 559 static const char * 560 elf_class(unsigned int class) 561 { 562 static char s_class[32]; 563 564 switch (class) { 565 case ELFCLASSNONE: return "none"; 566 case ELFCLASS32: return "ELF32"; 567 case ELFCLASS64: return "ELF64"; 568 default: 569 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 570 return (s_class); 571 } 572 } 573 574 static const char * 575 elf_endian(unsigned int endian) 576 { 577 static char s_endian[32]; 578 579 switch (endian) { 580 case ELFDATANONE: return "none"; 581 case ELFDATA2LSB: return "2's complement, little endian"; 582 case ELFDATA2MSB: return "2's complement, big endian"; 583 default: 584 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 585 return (s_endian); 586 } 587 } 588 589 static const char * 590 elf_type(unsigned int type) 591 { 592 static char s_type[32]; 593 594 switch (type) { 595 case ET_NONE: return "NONE (None)"; 596 case ET_REL: return "REL (Relocatable file)"; 597 case ET_EXEC: return "EXEC (Executable file)"; 598 case ET_DYN: return "DYN (Shared object file)"; 599 case ET_CORE: return "CORE (Core file)"; 600 default: 601 if (type >= ET_LOPROC) 602 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 603 else if (type >= ET_LOOS && type <= ET_HIOS) 604 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 605 else 606 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 607 type); 608 return (s_type); 609 } 610 } 611 612 static const char * 613 elf_ver(unsigned int ver) 614 { 615 static char s_ver[32]; 616 617 switch (ver) { 618 case EV_CURRENT: return "(current)"; 619 case EV_NONE: return "(none)"; 620 default: 621 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 622 ver); 623 return (s_ver); 624 } 625 } 626 627 static const char * 628 phdr_type(unsigned int mach, unsigned int ptype) 629 { 630 static char s_ptype[32]; 631 632 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 633 switch (mach) { 634 case EM_ARM: 635 switch (ptype) { 636 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 637 case PT_ARM_EXIDX: return "ARM_EXIDX"; 638 } 639 break; 640 } 641 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 642 ptype - PT_LOPROC); 643 return (s_ptype); 644 } 645 646 switch (ptype) { 647 case PT_NULL: return "NULL"; 648 case PT_LOAD: return "LOAD"; 649 case PT_DYNAMIC: return "DYNAMIC"; 650 case PT_INTERP: return "INTERP"; 651 case PT_NOTE: return "NOTE"; 652 case PT_SHLIB: return "SHLIB"; 653 case PT_PHDR: return "PHDR"; 654 case PT_TLS: return "TLS"; 655 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 656 case PT_GNU_STACK: return "GNU_STACK"; 657 case PT_GNU_RELRO: return "GNU_RELRO"; 658 default: 659 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 660 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 661 ptype - PT_LOOS); 662 else 663 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 664 ptype); 665 return (s_ptype); 666 } 667 } 668 669 static const char * 670 section_type(unsigned int mach, unsigned int stype) 671 { 672 static char s_stype[32]; 673 674 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 675 switch (mach) { 676 case EM_ARM: 677 switch (stype) { 678 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 679 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 680 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 681 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 682 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 683 } 684 break; 685 case EM_X86_64: 686 switch (stype) { 687 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 688 default: 689 break; 690 } 691 break; 692 case EM_MIPS: 693 case EM_MIPS_RS3_LE: 694 switch (stype) { 695 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 696 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 697 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 698 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 699 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 700 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 701 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 702 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 703 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 704 case SHT_MIPS_RELD: return "MIPS_RELD"; 705 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 706 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 707 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 708 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 709 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 710 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 711 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 712 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 713 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 714 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 715 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 716 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 717 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 718 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 719 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 720 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 721 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 722 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 723 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 724 default: 725 break; 726 } 727 break; 728 default: 729 break; 730 } 731 732 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 733 stype - SHT_LOPROC); 734 return (s_stype); 735 } 736 737 switch (stype) { 738 case SHT_NULL: return "NULL"; 739 case SHT_PROGBITS: return "PROGBITS"; 740 case SHT_SYMTAB: return "SYMTAB"; 741 case SHT_STRTAB: return "STRTAB"; 742 case SHT_RELA: return "RELA"; 743 case SHT_HASH: return "HASH"; 744 case SHT_DYNAMIC: return "DYNAMIC"; 745 case SHT_NOTE: return "NOTE"; 746 case SHT_NOBITS: return "NOBITS"; 747 case SHT_REL: return "REL"; 748 case SHT_SHLIB: return "SHLIB"; 749 case SHT_DYNSYM: return "DYNSYM"; 750 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 751 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 752 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 753 case SHT_GROUP: return "GROUP"; 754 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 755 case SHT_SUNW_dof: return "SUNW_dof"; 756 case SHT_SUNW_cap: return "SUNW_cap"; 757 case SHT_GNU_HASH: return "GNU_HASH"; 758 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 759 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 760 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 761 case SHT_SUNW_move: return "SUNW_move"; 762 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 763 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 764 case SHT_SUNW_verdef: return "SUNW_verdef"; 765 case SHT_SUNW_verneed: return "SUNW_verneed"; 766 case SHT_SUNW_versym: return "SUNW_versym"; 767 default: 768 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 769 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 770 stype - SHT_LOOS); 771 else if (stype >= SHT_LOUSER) 772 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 773 stype - SHT_LOUSER); 774 else 775 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 776 stype); 777 return (s_stype); 778 } 779 } 780 781 static const char * 782 dt_type(unsigned int mach, unsigned int dtype) 783 { 784 static char s_dtype[32]; 785 786 switch (dtype) { 787 case DT_NULL: return "NULL"; 788 case DT_NEEDED: return "NEEDED"; 789 case DT_PLTRELSZ: return "PLTRELSZ"; 790 case DT_PLTGOT: return "PLTGOT"; 791 case DT_HASH: return "HASH"; 792 case DT_STRTAB: return "STRTAB"; 793 case DT_SYMTAB: return "SYMTAB"; 794 case DT_RELA: return "RELA"; 795 case DT_RELASZ: return "RELASZ"; 796 case DT_RELAENT: return "RELAENT"; 797 case DT_STRSZ: return "STRSZ"; 798 case DT_SYMENT: return "SYMENT"; 799 case DT_INIT: return "INIT"; 800 case DT_FINI: return "FINI"; 801 case DT_SONAME: return "SONAME"; 802 case DT_RPATH: return "RPATH"; 803 case DT_SYMBOLIC: return "SYMBOLIC"; 804 case DT_REL: return "REL"; 805 case DT_RELSZ: return "RELSZ"; 806 case DT_RELENT: return "RELENT"; 807 case DT_PLTREL: return "PLTREL"; 808 case DT_DEBUG: return "DEBUG"; 809 case DT_TEXTREL: return "TEXTREL"; 810 case DT_JMPREL: return "JMPREL"; 811 case DT_BIND_NOW: return "BIND_NOW"; 812 case DT_INIT_ARRAY: return "INIT_ARRAY"; 813 case DT_FINI_ARRAY: return "FINI_ARRAY"; 814 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 815 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 816 case DT_RUNPATH: return "RUNPATH"; 817 case DT_FLAGS: return "FLAGS"; 818 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 819 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 820 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 821 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 822 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 823 case DT_SUNW_FILTER: return "SUNW_FILTER"; 824 case DT_SUNW_CAP: return "SUNW_CAP"; 825 case DT_CHECKSUM: return "CHECKSUM"; 826 case DT_PLTPADSZ: return "PLTPADSZ"; 827 case DT_MOVEENT: return "MOVEENT"; 828 case DT_MOVESZ: return "MOVESZ"; 829 case DT_FEATURE: return "FEATURE"; 830 case DT_POSFLAG_1: return "POSFLAG_1"; 831 case DT_SYMINSZ: return "SYMINSZ"; 832 case DT_SYMINENT: return "SYMINENT"; 833 case DT_GNU_HASH: return "GNU_HASH"; 834 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 835 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 836 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 837 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 838 case DT_CONFIG: return "CONFIG"; 839 case DT_DEPAUDIT: return "DEPAUDIT"; 840 case DT_AUDIT: return "AUDIT"; 841 case DT_PLTPAD: return "PLTPAD"; 842 case DT_MOVETAB: return "MOVETAB"; 843 case DT_SYMINFO: return "SYMINFO"; 844 case DT_VERSYM: return "VERSYM"; 845 case DT_RELACOUNT: return "RELACOUNT"; 846 case DT_RELCOUNT: return "RELCOUNT"; 847 case DT_FLAGS_1: return "FLAGS_1"; 848 case DT_VERDEF: return "VERDEF"; 849 case DT_VERDEFNUM: return "VERDEFNUM"; 850 case DT_VERNEED: return "VERNEED"; 851 case DT_VERNEEDNUM: return "VERNEEDNUM"; 852 case DT_AUXILIARY: return "AUXILIARY"; 853 case DT_USED: return "USED"; 854 case DT_FILTER: return "FILTER"; 855 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 856 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 857 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 858 } 859 860 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 861 switch (mach) { 862 case EM_ARM: 863 switch (dtype) { 864 case DT_ARM_SYMTABSZ: 865 return "ARM_SYMTABSZ"; 866 default: 867 break; 868 } 869 break; 870 case EM_MIPS: 871 case EM_MIPS_RS3_LE: 872 switch (dtype) { 873 case DT_MIPS_RLD_VERSION: 874 return "MIPS_RLD_VERSION"; 875 case DT_MIPS_TIME_STAMP: 876 return "MIPS_TIME_STAMP"; 877 case DT_MIPS_ICHECKSUM: 878 return "MIPS_ICHECKSUM"; 879 case DT_MIPS_IVERSION: 880 return "MIPS_IVERSION"; 881 case DT_MIPS_FLAGS: 882 return "MIPS_FLAGS"; 883 case DT_MIPS_BASE_ADDRESS: 884 return "MIPS_BASE_ADDRESS"; 885 case DT_MIPS_CONFLICT: 886 return "MIPS_CONFLICT"; 887 case DT_MIPS_LIBLIST: 888 return "MIPS_LIBLIST"; 889 case DT_MIPS_LOCAL_GOTNO: 890 return "MIPS_LOCAL_GOTNO"; 891 case DT_MIPS_CONFLICTNO: 892 return "MIPS_CONFLICTNO"; 893 case DT_MIPS_LIBLISTNO: 894 return "MIPS_LIBLISTNO"; 895 case DT_MIPS_SYMTABNO: 896 return "MIPS_SYMTABNO"; 897 case DT_MIPS_UNREFEXTNO: 898 return "MIPS_UNREFEXTNO"; 899 case DT_MIPS_GOTSYM: 900 return "MIPS_GOTSYM"; 901 case DT_MIPS_HIPAGENO: 902 return "MIPS_HIPAGENO"; 903 case DT_MIPS_RLD_MAP: 904 return "MIPS_RLD_MAP"; 905 case DT_MIPS_DELTA_CLASS: 906 return "MIPS_DELTA_CLASS"; 907 case DT_MIPS_DELTA_CLASS_NO: 908 return "MIPS_DELTA_CLASS_NO"; 909 case DT_MIPS_DELTA_INSTANCE: 910 return "MIPS_DELTA_INSTANCE"; 911 case DT_MIPS_DELTA_INSTANCE_NO: 912 return "MIPS_DELTA_INSTANCE_NO"; 913 case DT_MIPS_DELTA_RELOC: 914 return "MIPS_DELTA_RELOC"; 915 case DT_MIPS_DELTA_RELOC_NO: 916 return "MIPS_DELTA_RELOC_NO"; 917 case DT_MIPS_DELTA_SYM: 918 return "MIPS_DELTA_SYM"; 919 case DT_MIPS_DELTA_SYM_NO: 920 return "MIPS_DELTA_SYM_NO"; 921 case DT_MIPS_DELTA_CLASSSYM: 922 return "MIPS_DELTA_CLASSSYM"; 923 case DT_MIPS_DELTA_CLASSSYM_NO: 924 return "MIPS_DELTA_CLASSSYM_NO"; 925 case DT_MIPS_CXX_FLAGS: 926 return "MIPS_CXX_FLAGS"; 927 case DT_MIPS_PIXIE_INIT: 928 return "MIPS_PIXIE_INIT"; 929 case DT_MIPS_SYMBOL_LIB: 930 return "MIPS_SYMBOL_LIB"; 931 case DT_MIPS_LOCALPAGE_GOTIDX: 932 return "MIPS_LOCALPAGE_GOTIDX"; 933 case DT_MIPS_LOCAL_GOTIDX: 934 return "MIPS_LOCAL_GOTIDX"; 935 case DT_MIPS_HIDDEN_GOTIDX: 936 return "MIPS_HIDDEN_GOTIDX"; 937 case DT_MIPS_PROTECTED_GOTIDX: 938 return "MIPS_PROTECTED_GOTIDX"; 939 case DT_MIPS_OPTIONS: 940 return "MIPS_OPTIONS"; 941 case DT_MIPS_INTERFACE: 942 return "MIPS_INTERFACE"; 943 case DT_MIPS_DYNSTR_ALIGN: 944 return "MIPS_DYNSTR_ALIGN"; 945 case DT_MIPS_INTERFACE_SIZE: 946 return "MIPS_INTERFACE_SIZE"; 947 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 948 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 949 case DT_MIPS_PERF_SUFFIX: 950 return "MIPS_PERF_SUFFIX"; 951 case DT_MIPS_COMPACT_SIZE: 952 return "MIPS_COMPACT_SIZE"; 953 case DT_MIPS_GP_VALUE: 954 return "MIPS_GP_VALUE"; 955 case DT_MIPS_AUX_DYNAMIC: 956 return "MIPS_AUX_DYNAMIC"; 957 case DT_MIPS_PLTGOT: 958 return "MIPS_PLTGOT"; 959 case DT_MIPS_RLD_OBJ_UPDATE: 960 return "MIPS_RLD_OBJ_UPDATE"; 961 case DT_MIPS_RWPLT: 962 return "MIPS_RWPLT"; 963 default: 964 break; 965 } 966 break; 967 case EM_SPARC: 968 case EM_SPARC32PLUS: 969 case EM_SPARCV9: 970 switch (dtype) { 971 case DT_SPARC_REGISTER: 972 return "DT_SPARC_REGISTER"; 973 default: 974 break; 975 } 976 break; 977 default: 978 break; 979 } 980 } 981 982 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 983 return (s_dtype); 984 } 985 986 static const char * 987 st_bind(unsigned int sbind) 988 { 989 static char s_sbind[32]; 990 991 switch (sbind) { 992 case STB_LOCAL: return "LOCAL"; 993 case STB_GLOBAL: return "GLOBAL"; 994 case STB_WEAK: return "WEAK"; 995 case STB_GNU_UNIQUE: return "UNIQUE"; 996 default: 997 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 998 return "OS"; 999 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1000 return "PROC"; 1001 else 1002 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1003 sbind); 1004 return (s_sbind); 1005 } 1006 } 1007 1008 static const char * 1009 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1010 { 1011 static char s_stype[32]; 1012 1013 switch (stype) { 1014 case STT_NOTYPE: return "NOTYPE"; 1015 case STT_OBJECT: return "OBJECT"; 1016 case STT_FUNC: return "FUNC"; 1017 case STT_SECTION: return "SECTION"; 1018 case STT_FILE: return "FILE"; 1019 case STT_COMMON: return "COMMON"; 1020 case STT_TLS: return "TLS"; 1021 default: 1022 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1023 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1024 stype == STT_GNU_IFUNC) 1025 return "IFUNC"; 1026 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1027 stype - STT_LOOS); 1028 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1029 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1030 return "REGISTER"; 1031 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1032 stype - STT_LOPROC); 1033 } else 1034 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1035 stype); 1036 return (s_stype); 1037 } 1038 } 1039 1040 static const char * 1041 st_vis(unsigned int svis) 1042 { 1043 static char s_svis[32]; 1044 1045 switch(svis) { 1046 case STV_DEFAULT: return "DEFAULT"; 1047 case STV_INTERNAL: return "INTERNAL"; 1048 case STV_HIDDEN: return "HIDDEN"; 1049 case STV_PROTECTED: return "PROTECTED"; 1050 default: 1051 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1052 return (s_svis); 1053 } 1054 } 1055 1056 static const char * 1057 st_shndx(unsigned int shndx) 1058 { 1059 static char s_shndx[32]; 1060 1061 switch (shndx) { 1062 case SHN_UNDEF: return "UND"; 1063 case SHN_ABS: return "ABS"; 1064 case SHN_COMMON: return "COM"; 1065 default: 1066 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1067 return "PRC"; 1068 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1069 return "OS"; 1070 else 1071 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1072 return (s_shndx); 1073 } 1074 } 1075 1076 static struct { 1077 const char *ln; 1078 char sn; 1079 int value; 1080 } section_flag[] = { 1081 {"WRITE", 'W', SHF_WRITE}, 1082 {"ALLOC", 'A', SHF_ALLOC}, 1083 {"EXEC", 'X', SHF_EXECINSTR}, 1084 {"MERGE", 'M', SHF_MERGE}, 1085 {"STRINGS", 'S', SHF_STRINGS}, 1086 {"INFO LINK", 'I', SHF_INFO_LINK}, 1087 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1088 {"GROUP", 'G', SHF_GROUP}, 1089 {"TLS", 'T', SHF_TLS}, 1090 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1091 {NULL, 0, 0} 1092 }; 1093 1094 static const char * 1095 note_type(const char *name, unsigned int et, unsigned int nt) 1096 { 1097 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1098 et == ET_CORE) 1099 return note_type_linux_core(nt); 1100 else if (strcmp(name, "FreeBSD") == 0) 1101 if (et == ET_CORE) 1102 return note_type_freebsd_core(nt); 1103 else 1104 return note_type_freebsd(nt); 1105 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1106 return note_type_gnu(nt); 1107 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1108 return note_type_netbsd(nt); 1109 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1110 return note_type_openbsd(nt); 1111 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1112 return note_type_xen(nt); 1113 return note_type_unknown(nt); 1114 } 1115 1116 static const char * 1117 note_type_freebsd(unsigned int nt) 1118 { 1119 switch (nt) { 1120 case 1: return "NT_FREEBSD_ABI_TAG"; 1121 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1122 case 3: return "NT_FREEBSD_ARCH_TAG"; 1123 default: return (note_type_unknown(nt)); 1124 } 1125 } 1126 1127 static const char * 1128 note_type_freebsd_core(unsigned int nt) 1129 { 1130 switch (nt) { 1131 case 1: return "NT_PRSTATUS"; 1132 case 2: return "NT_FPREGSET"; 1133 case 3: return "NT_PRPSINFO"; 1134 case 7: return "NT_THRMISC"; 1135 case 8: return "NT_PROCSTAT_PROC"; 1136 case 9: return "NT_PROCSTAT_FILES"; 1137 case 10: return "NT_PROCSTAT_VMMAP"; 1138 case 11: return "NT_PROCSTAT_GROUPS"; 1139 case 12: return "NT_PROCSTAT_UMASK"; 1140 case 13: return "NT_PROCSTAT_RLIMIT"; 1141 case 14: return "NT_PROCSTAT_OSREL"; 1142 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1143 case 16: return "NT_PROCSTAT_AUXV"; 1144 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1145 default: return (note_type_unknown(nt)); 1146 } 1147 } 1148 1149 static const char * 1150 note_type_linux_core(unsigned int nt) 1151 { 1152 switch (nt) { 1153 case 1: return "NT_PRSTATUS (Process status)"; 1154 case 2: return "NT_FPREGSET (Floating point information)"; 1155 case 3: return "NT_PRPSINFO (Process information)"; 1156 case 4: return "NT_TASKSTRUCT (Task structure)"; 1157 case 6: return "NT_AUXV (Auxiliary vector)"; 1158 case 10: return "NT_PSTATUS (Linux process status)"; 1159 case 12: return "NT_FPREGS (Linux floating point regset)"; 1160 case 13: return "NT_PSINFO (Linux process information)"; 1161 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1162 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1163 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1164 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1165 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1166 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1167 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1168 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1169 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1170 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1171 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1172 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1173 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1174 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1175 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1176 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1177 default: return (note_type_unknown(nt)); 1178 } 1179 } 1180 1181 static const char * 1182 note_type_gnu(unsigned int nt) 1183 { 1184 switch (nt) { 1185 case 1: return "NT_GNU_ABI_TAG"; 1186 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1187 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1188 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1189 default: return (note_type_unknown(nt)); 1190 } 1191 } 1192 1193 static const char * 1194 note_type_netbsd(unsigned int nt) 1195 { 1196 switch (nt) { 1197 case 1: return "NT_NETBSD_IDENT"; 1198 default: return (note_type_unknown(nt)); 1199 } 1200 } 1201 1202 static const char * 1203 note_type_openbsd(unsigned int nt) 1204 { 1205 switch (nt) { 1206 case 1: return "NT_OPENBSD_IDENT"; 1207 default: return (note_type_unknown(nt)); 1208 } 1209 } 1210 1211 static const char * 1212 note_type_unknown(unsigned int nt) 1213 { 1214 static char s_nt[32]; 1215 1216 snprintf(s_nt, sizeof(s_nt), 1217 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1218 return (s_nt); 1219 } 1220 1221 static const char * 1222 note_type_xen(unsigned int nt) 1223 { 1224 switch (nt) { 1225 case 0: return "XEN_ELFNOTE_INFO"; 1226 case 1: return "XEN_ELFNOTE_ENTRY"; 1227 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1228 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1229 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1230 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1231 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1232 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1233 case 8: return "XEN_ELFNOTE_LOADER"; 1234 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1235 case 10: return "XEN_ELFNOTE_FEATURES"; 1236 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1237 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1238 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1239 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1240 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1241 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1242 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1243 default: return (note_type_unknown(nt)); 1244 } 1245 } 1246 1247 static struct { 1248 const char *name; 1249 int value; 1250 } l_flag[] = { 1251 {"EXACT_MATCH", LL_EXACT_MATCH}, 1252 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1253 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1254 {"EXPORTS", LL_EXPORTS}, 1255 {"DELAY_LOAD", LL_DELAY_LOAD}, 1256 {"DELTA", LL_DELTA}, 1257 {NULL, 0} 1258 }; 1259 1260 static struct mips_option mips_exceptions_option[] = { 1261 {OEX_PAGE0, "PAGE0"}, 1262 {OEX_SMM, "SMM"}, 1263 {OEX_PRECISEFP, "PRECISEFP"}, 1264 {OEX_DISMISS, "DISMISS"}, 1265 {0, NULL} 1266 }; 1267 1268 static struct mips_option mips_pad_option[] = { 1269 {OPAD_PREFIX, "PREFIX"}, 1270 {OPAD_POSTFIX, "POSTFIX"}, 1271 {OPAD_SYMBOL, "SYMBOL"}, 1272 {0, NULL} 1273 }; 1274 1275 static struct mips_option mips_hwpatch_option[] = { 1276 {OHW_R4KEOP, "R4KEOP"}, 1277 {OHW_R8KPFETCH, "R8KPFETCH"}, 1278 {OHW_R5KEOP, "R5KEOP"}, 1279 {OHW_R5KCVTL, "R5KCVTL"}, 1280 {0, NULL} 1281 }; 1282 1283 static struct mips_option mips_hwa_option[] = { 1284 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1285 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1286 {0, NULL} 1287 }; 1288 1289 static struct mips_option mips_hwo_option[] = { 1290 {OHWO0_FIXADE, "FIXADE"}, 1291 {0, NULL} 1292 }; 1293 1294 static const char * 1295 option_kind(uint8_t kind) 1296 { 1297 static char s_kind[32]; 1298 1299 switch (kind) { 1300 case ODK_NULL: return "NULL"; 1301 case ODK_REGINFO: return "REGINFO"; 1302 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1303 case ODK_PAD: return "PAD"; 1304 case ODK_HWPATCH: return "HWPATCH"; 1305 case ODK_FILL: return "FILL"; 1306 case ODK_TAGS: return "TAGS"; 1307 case ODK_HWAND: return "HWAND"; 1308 case ODK_HWOR: return "HWOR"; 1309 case ODK_GP_GROUP: return "GP_GROUP"; 1310 case ODK_IDENT: return "IDENT"; 1311 default: 1312 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1313 return (s_kind); 1314 } 1315 } 1316 1317 static const char * 1318 top_tag(unsigned int tag) 1319 { 1320 static char s_top_tag[32]; 1321 1322 switch (tag) { 1323 case 1: return "File Attributes"; 1324 case 2: return "Section Attributes"; 1325 case 3: return "Symbol Attributes"; 1326 default: 1327 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1328 return (s_top_tag); 1329 } 1330 } 1331 1332 static const char * 1333 aeabi_cpu_arch(uint64_t arch) 1334 { 1335 static char s_cpu_arch[32]; 1336 1337 switch (arch) { 1338 case 0: return "Pre-V4"; 1339 case 1: return "ARM v4"; 1340 case 2: return "ARM v4T"; 1341 case 3: return "ARM v5T"; 1342 case 4: return "ARM v5TE"; 1343 case 5: return "ARM v5TEJ"; 1344 case 6: return "ARM v6"; 1345 case 7: return "ARM v6KZ"; 1346 case 8: return "ARM v6T2"; 1347 case 9: return "ARM v6K"; 1348 case 10: return "ARM v7"; 1349 case 11: return "ARM v6-M"; 1350 case 12: return "ARM v6S-M"; 1351 case 13: return "ARM v7E-M"; 1352 default: 1353 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1354 "Unknown (%ju)", (uintmax_t) arch); 1355 return (s_cpu_arch); 1356 } 1357 } 1358 1359 static const char * 1360 aeabi_cpu_arch_profile(uint64_t pf) 1361 { 1362 static char s_arch_profile[32]; 1363 1364 switch (pf) { 1365 case 0: 1366 return "Not applicable"; 1367 case 0x41: /* 'A' */ 1368 return "Application Profile"; 1369 case 0x52: /* 'R' */ 1370 return "Real-Time Profile"; 1371 case 0x4D: /* 'M' */ 1372 return "Microcontroller Profile"; 1373 case 0x53: /* 'S' */ 1374 return "Application or Real-Time Profile"; 1375 default: 1376 snprintf(s_arch_profile, sizeof(s_arch_profile), 1377 "Unknown (%ju)\n", (uintmax_t) pf); 1378 return (s_arch_profile); 1379 } 1380 } 1381 1382 static const char * 1383 aeabi_arm_isa(uint64_t ai) 1384 { 1385 static char s_ai[32]; 1386 1387 switch (ai) { 1388 case 0: return "No"; 1389 case 1: return "Yes"; 1390 default: 1391 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1392 (uintmax_t) ai); 1393 return (s_ai); 1394 } 1395 } 1396 1397 static const char * 1398 aeabi_thumb_isa(uint64_t ti) 1399 { 1400 static char s_ti[32]; 1401 1402 switch (ti) { 1403 case 0: return "No"; 1404 case 1: return "16-bit Thumb"; 1405 case 2: return "32-bit Thumb"; 1406 default: 1407 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1408 (uintmax_t) ti); 1409 return (s_ti); 1410 } 1411 } 1412 1413 static const char * 1414 aeabi_fp_arch(uint64_t fp) 1415 { 1416 static char s_fp_arch[32]; 1417 1418 switch (fp) { 1419 case 0: return "No"; 1420 case 1: return "VFPv1"; 1421 case 2: return "VFPv2"; 1422 case 3: return "VFPv3"; 1423 case 4: return "VFPv3-D16"; 1424 case 5: return "VFPv4"; 1425 case 6: return "VFPv4-D16"; 1426 default: 1427 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1428 (uintmax_t) fp); 1429 return (s_fp_arch); 1430 } 1431 } 1432 1433 static const char * 1434 aeabi_wmmx_arch(uint64_t wmmx) 1435 { 1436 static char s_wmmx[32]; 1437 1438 switch (wmmx) { 1439 case 0: return "No"; 1440 case 1: return "WMMXv1"; 1441 case 2: return "WMMXv2"; 1442 default: 1443 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1444 (uintmax_t) wmmx); 1445 return (s_wmmx); 1446 } 1447 } 1448 1449 static const char * 1450 aeabi_adv_simd_arch(uint64_t simd) 1451 { 1452 static char s_simd[32]; 1453 1454 switch (simd) { 1455 case 0: return "No"; 1456 case 1: return "NEONv1"; 1457 case 2: return "NEONv2"; 1458 default: 1459 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1460 (uintmax_t) simd); 1461 return (s_simd); 1462 } 1463 } 1464 1465 static const char * 1466 aeabi_pcs_config(uint64_t pcs) 1467 { 1468 static char s_pcs[32]; 1469 1470 switch (pcs) { 1471 case 0: return "None"; 1472 case 1: return "Bare platform"; 1473 case 2: return "Linux"; 1474 case 3: return "Linux DSO"; 1475 case 4: return "Palm OS 2004"; 1476 case 5: return "Palm OS (future)"; 1477 case 6: return "Symbian OS 2004"; 1478 case 7: return "Symbian OS (future)"; 1479 default: 1480 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1481 (uintmax_t) pcs); 1482 return (s_pcs); 1483 } 1484 } 1485 1486 static const char * 1487 aeabi_pcs_r9(uint64_t r9) 1488 { 1489 static char s_r9[32]; 1490 1491 switch (r9) { 1492 case 0: return "V6"; 1493 case 1: return "SB"; 1494 case 2: return "TLS pointer"; 1495 case 3: return "Unused"; 1496 default: 1497 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1498 return (s_r9); 1499 } 1500 } 1501 1502 static const char * 1503 aeabi_pcs_rw(uint64_t rw) 1504 { 1505 static char s_rw[32]; 1506 1507 switch (rw) { 1508 case 0: return "Absolute"; 1509 case 1: return "PC-relative"; 1510 case 2: return "SB-relative"; 1511 case 3: return "None"; 1512 default: 1513 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1514 return (s_rw); 1515 } 1516 } 1517 1518 static const char * 1519 aeabi_pcs_ro(uint64_t ro) 1520 { 1521 static char s_ro[32]; 1522 1523 switch (ro) { 1524 case 0: return "Absolute"; 1525 case 1: return "PC-relative"; 1526 case 2: return "None"; 1527 default: 1528 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1529 return (s_ro); 1530 } 1531 } 1532 1533 static const char * 1534 aeabi_pcs_got(uint64_t got) 1535 { 1536 static char s_got[32]; 1537 1538 switch (got) { 1539 case 0: return "None"; 1540 case 1: return "direct"; 1541 case 2: return "indirect via GOT"; 1542 default: 1543 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1544 (uintmax_t) got); 1545 return (s_got); 1546 } 1547 } 1548 1549 static const char * 1550 aeabi_pcs_wchar_t(uint64_t wt) 1551 { 1552 static char s_wt[32]; 1553 1554 switch (wt) { 1555 case 0: return "None"; 1556 case 2: return "wchar_t size 2"; 1557 case 4: return "wchar_t size 4"; 1558 default: 1559 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1560 return (s_wt); 1561 } 1562 } 1563 1564 static const char * 1565 aeabi_enum_size(uint64_t es) 1566 { 1567 static char s_es[32]; 1568 1569 switch (es) { 1570 case 0: return "None"; 1571 case 1: return "smallest"; 1572 case 2: return "32-bit"; 1573 case 3: return "visible 32-bit"; 1574 default: 1575 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1576 return (s_es); 1577 } 1578 } 1579 1580 static const char * 1581 aeabi_align_needed(uint64_t an) 1582 { 1583 static char s_align_n[64]; 1584 1585 switch (an) { 1586 case 0: return "No"; 1587 case 1: return "8-byte align"; 1588 case 2: return "4-byte align"; 1589 case 3: return "Reserved"; 1590 default: 1591 if (an >= 4 && an <= 12) 1592 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1593 " and up to 2^%ju-byte extended align", 1594 (uintmax_t) an); 1595 else 1596 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1597 (uintmax_t) an); 1598 return (s_align_n); 1599 } 1600 } 1601 1602 static const char * 1603 aeabi_align_preserved(uint64_t ap) 1604 { 1605 static char s_align_p[128]; 1606 1607 switch (ap) { 1608 case 0: return "No"; 1609 case 1: return "8-byte align"; 1610 case 2: return "8-byte align and SP % 8 == 0"; 1611 case 3: return "Reserved"; 1612 default: 1613 if (ap >= 4 && ap <= 12) 1614 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1615 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1616 " align", (uintmax_t) ap); 1617 else 1618 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1619 (uintmax_t) ap); 1620 return (s_align_p); 1621 } 1622 } 1623 1624 static const char * 1625 aeabi_fp_rounding(uint64_t fr) 1626 { 1627 static char s_fp_r[32]; 1628 1629 switch (fr) { 1630 case 0: return "Unused"; 1631 case 1: return "Needed"; 1632 default: 1633 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1634 (uintmax_t) fr); 1635 return (s_fp_r); 1636 } 1637 } 1638 1639 static const char * 1640 aeabi_fp_denormal(uint64_t fd) 1641 { 1642 static char s_fp_d[32]; 1643 1644 switch (fd) { 1645 case 0: return "Unused"; 1646 case 1: return "Needed"; 1647 case 2: return "Sign Only"; 1648 default: 1649 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1650 (uintmax_t) fd); 1651 return (s_fp_d); 1652 } 1653 } 1654 1655 static const char * 1656 aeabi_fp_exceptions(uint64_t fe) 1657 { 1658 static char s_fp_e[32]; 1659 1660 switch (fe) { 1661 case 0: return "Unused"; 1662 case 1: return "Needed"; 1663 default: 1664 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1665 (uintmax_t) fe); 1666 return (s_fp_e); 1667 } 1668 } 1669 1670 static const char * 1671 aeabi_fp_user_exceptions(uint64_t fu) 1672 { 1673 static char s_fp_u[32]; 1674 1675 switch (fu) { 1676 case 0: return "Unused"; 1677 case 1: return "Needed"; 1678 default: 1679 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1680 (uintmax_t) fu); 1681 return (s_fp_u); 1682 } 1683 } 1684 1685 static const char * 1686 aeabi_fp_number_model(uint64_t fn) 1687 { 1688 static char s_fp_n[32]; 1689 1690 switch (fn) { 1691 case 0: return "Unused"; 1692 case 1: return "IEEE 754 normal"; 1693 case 2: return "RTABI"; 1694 case 3: return "IEEE 754"; 1695 default: 1696 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1697 (uintmax_t) fn); 1698 return (s_fp_n); 1699 } 1700 } 1701 1702 static const char * 1703 aeabi_fp_16bit_format(uint64_t fp16) 1704 { 1705 static char s_fp_16[64]; 1706 1707 switch (fp16) { 1708 case 0: return "None"; 1709 case 1: return "IEEE 754"; 1710 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1711 default: 1712 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1713 (uintmax_t) fp16); 1714 return (s_fp_16); 1715 } 1716 } 1717 1718 static const char * 1719 aeabi_mpext(uint64_t mp) 1720 { 1721 static char s_mp[32]; 1722 1723 switch (mp) { 1724 case 0: return "Not allowed"; 1725 case 1: return "Allowed"; 1726 default: 1727 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1728 (uintmax_t) mp); 1729 return (s_mp); 1730 } 1731 } 1732 1733 static const char * 1734 aeabi_div(uint64_t du) 1735 { 1736 static char s_du[32]; 1737 1738 switch (du) { 1739 case 0: return "Yes (V7-R/V7-M)"; 1740 case 1: return "No"; 1741 case 2: return "Yes (V7-A)"; 1742 default: 1743 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1744 (uintmax_t) du); 1745 return (s_du); 1746 } 1747 } 1748 1749 static const char * 1750 aeabi_t2ee(uint64_t t2ee) 1751 { 1752 static char s_t2ee[32]; 1753 1754 switch (t2ee) { 1755 case 0: return "Not allowed"; 1756 case 1: return "Allowed"; 1757 default: 1758 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1759 (uintmax_t) t2ee); 1760 return (s_t2ee); 1761 } 1762 1763 } 1764 1765 static const char * 1766 aeabi_hardfp(uint64_t hfp) 1767 { 1768 static char s_hfp[32]; 1769 1770 switch (hfp) { 1771 case 0: return "Tag_FP_arch"; 1772 case 1: return "only SP"; 1773 case 2: return "only DP"; 1774 case 3: return "both SP and DP"; 1775 default: 1776 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1777 (uintmax_t) hfp); 1778 return (s_hfp); 1779 } 1780 } 1781 1782 static const char * 1783 aeabi_vfp_args(uint64_t va) 1784 { 1785 static char s_va[32]; 1786 1787 switch (va) { 1788 case 0: return "AAPCS (base variant)"; 1789 case 1: return "AAPCS (VFP variant)"; 1790 case 2: return "toolchain-specific"; 1791 default: 1792 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1793 return (s_va); 1794 } 1795 } 1796 1797 static const char * 1798 aeabi_wmmx_args(uint64_t wa) 1799 { 1800 static char s_wa[32]; 1801 1802 switch (wa) { 1803 case 0: return "AAPCS (base variant)"; 1804 case 1: return "Intel WMMX"; 1805 case 2: return "toolchain-specific"; 1806 default: 1807 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1808 return (s_wa); 1809 } 1810 } 1811 1812 static const char * 1813 aeabi_unaligned_access(uint64_t ua) 1814 { 1815 static char s_ua[32]; 1816 1817 switch (ua) { 1818 case 0: return "Not allowed"; 1819 case 1: return "Allowed"; 1820 default: 1821 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1822 return (s_ua); 1823 } 1824 } 1825 1826 static const char * 1827 aeabi_fp_hpext(uint64_t fh) 1828 { 1829 static char s_fh[32]; 1830 1831 switch (fh) { 1832 case 0: return "Not allowed"; 1833 case 1: return "Allowed"; 1834 default: 1835 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1836 return (s_fh); 1837 } 1838 } 1839 1840 static const char * 1841 aeabi_optm_goal(uint64_t og) 1842 { 1843 static char s_og[32]; 1844 1845 switch (og) { 1846 case 0: return "None"; 1847 case 1: return "Speed"; 1848 case 2: return "Speed aggressive"; 1849 case 3: return "Space"; 1850 case 4: return "Space aggressive"; 1851 case 5: return "Debugging"; 1852 case 6: return "Best Debugging"; 1853 default: 1854 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1855 return (s_og); 1856 } 1857 } 1858 1859 static const char * 1860 aeabi_fp_optm_goal(uint64_t fog) 1861 { 1862 static char s_fog[32]; 1863 1864 switch (fog) { 1865 case 0: return "None"; 1866 case 1: return "Speed"; 1867 case 2: return "Speed aggressive"; 1868 case 3: return "Space"; 1869 case 4: return "Space aggressive"; 1870 case 5: return "Accurary"; 1871 case 6: return "Best Accurary"; 1872 default: 1873 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1874 (uintmax_t) fog); 1875 return (s_fog); 1876 } 1877 } 1878 1879 static const char * 1880 aeabi_virtual(uint64_t vt) 1881 { 1882 static char s_virtual[64]; 1883 1884 switch (vt) { 1885 case 0: return "No"; 1886 case 1: return "TrustZone"; 1887 case 2: return "Virtualization extension"; 1888 case 3: return "TrustZone and virtualization extension"; 1889 default: 1890 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1891 (uintmax_t) vt); 1892 return (s_virtual); 1893 } 1894 } 1895 1896 static struct { 1897 uint64_t tag; 1898 const char *s_tag; 1899 const char *(*get_desc)(uint64_t val); 1900 } aeabi_tags[] = { 1901 {4, "Tag_CPU_raw_name", NULL}, 1902 {5, "Tag_CPU_name", NULL}, 1903 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1904 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1905 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1906 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1907 {10, "Tag_FP_arch", aeabi_fp_arch}, 1908 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1909 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1910 {13, "Tag_PCS_config", aeabi_pcs_config}, 1911 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1912 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1913 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1914 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1915 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1916 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1917 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1918 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1919 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1920 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1921 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1922 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1923 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1924 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1925 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1926 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1927 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1928 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1929 {32, "Tag_compatibility", NULL}, 1930 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1931 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1932 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1933 {42, "Tag_MPextension_use", aeabi_mpext}, 1934 {44, "Tag_DIV_use", aeabi_div}, 1935 {64, "Tag_nodefaults", NULL}, 1936 {65, "Tag_also_compatible_with", NULL}, 1937 {66, "Tag_T2EE_use", aeabi_t2ee}, 1938 {67, "Tag_conformance", NULL}, 1939 {68, "Tag_Virtualization_use", aeabi_virtual}, 1940 {70, "Tag_MPextension_use", aeabi_mpext}, 1941 }; 1942 1943 static const char * 1944 mips_abi_fp(uint64_t fp) 1945 { 1946 static char s_mips_abi_fp[64]; 1947 1948 switch (fp) { 1949 case 0: return "N/A"; 1950 case 1: return "Hard float (double precision)"; 1951 case 2: return "Hard float (single precision)"; 1952 case 3: return "Soft float"; 1953 case 4: return "64-bit float (-mips32r2 -mfp64)"; 1954 default: 1955 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 1956 (uintmax_t) fp); 1957 return (s_mips_abi_fp); 1958 } 1959 } 1960 1961 static const char * 1962 ppc_abi_fp(uint64_t fp) 1963 { 1964 static char s_ppc_abi_fp[64]; 1965 1966 switch (fp) { 1967 case 0: return "N/A"; 1968 case 1: return "Hard float (double precision)"; 1969 case 2: return "Soft float"; 1970 case 3: return "Hard float (single precision)"; 1971 default: 1972 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 1973 (uintmax_t) fp); 1974 return (s_ppc_abi_fp); 1975 } 1976 } 1977 1978 static const char * 1979 ppc_abi_vector(uint64_t vec) 1980 { 1981 static char s_vec[64]; 1982 1983 switch (vec) { 1984 case 0: return "N/A"; 1985 case 1: return "Generic purpose registers"; 1986 case 2: return "AltiVec registers"; 1987 case 3: return "SPE registers"; 1988 default: 1989 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 1990 return (s_vec); 1991 } 1992 } 1993 1994 static const char * 1995 dwarf_reg(unsigned int mach, unsigned int reg) 1996 { 1997 1998 switch (mach) { 1999 case EM_386: 2000 case EM_IAMCU: 2001 switch (reg) { 2002 case 0: return "eax"; 2003 case 1: return "ecx"; 2004 case 2: return "edx"; 2005 case 3: return "ebx"; 2006 case 4: return "esp"; 2007 case 5: return "ebp"; 2008 case 6: return "esi"; 2009 case 7: return "edi"; 2010 case 8: return "eip"; 2011 case 9: return "eflags"; 2012 case 11: return "st0"; 2013 case 12: return "st1"; 2014 case 13: return "st2"; 2015 case 14: return "st3"; 2016 case 15: return "st4"; 2017 case 16: return "st5"; 2018 case 17: return "st6"; 2019 case 18: return "st7"; 2020 case 21: return "xmm0"; 2021 case 22: return "xmm1"; 2022 case 23: return "xmm2"; 2023 case 24: return "xmm3"; 2024 case 25: return "xmm4"; 2025 case 26: return "xmm5"; 2026 case 27: return "xmm6"; 2027 case 28: return "xmm7"; 2028 case 29: return "mm0"; 2029 case 30: return "mm1"; 2030 case 31: return "mm2"; 2031 case 32: return "mm3"; 2032 case 33: return "mm4"; 2033 case 34: return "mm5"; 2034 case 35: return "mm6"; 2035 case 36: return "mm7"; 2036 case 37: return "fcw"; 2037 case 38: return "fsw"; 2038 case 39: return "mxcsr"; 2039 case 40: return "es"; 2040 case 41: return "cs"; 2041 case 42: return "ss"; 2042 case 43: return "ds"; 2043 case 44: return "fs"; 2044 case 45: return "gs"; 2045 case 48: return "tr"; 2046 case 49: return "ldtr"; 2047 default: return (NULL); 2048 } 2049 case EM_X86_64: 2050 switch (reg) { 2051 case 0: return "rax"; 2052 case 1: return "rdx"; 2053 case 2: return "rcx"; 2054 case 3: return "rbx"; 2055 case 4: return "rsi"; 2056 case 5: return "rdi"; 2057 case 6: return "rbp"; 2058 case 7: return "rsp"; 2059 case 16: return "rip"; 2060 case 17: return "xmm0"; 2061 case 18: return "xmm1"; 2062 case 19: return "xmm2"; 2063 case 20: return "xmm3"; 2064 case 21: return "xmm4"; 2065 case 22: return "xmm5"; 2066 case 23: return "xmm6"; 2067 case 24: return "xmm7"; 2068 case 25: return "xmm8"; 2069 case 26: return "xmm9"; 2070 case 27: return "xmm10"; 2071 case 28: return "xmm11"; 2072 case 29: return "xmm12"; 2073 case 30: return "xmm13"; 2074 case 31: return "xmm14"; 2075 case 32: return "xmm15"; 2076 case 33: return "st0"; 2077 case 34: return "st1"; 2078 case 35: return "st2"; 2079 case 36: return "st3"; 2080 case 37: return "st4"; 2081 case 38: return "st5"; 2082 case 39: return "st6"; 2083 case 40: return "st7"; 2084 case 41: return "mm0"; 2085 case 42: return "mm1"; 2086 case 43: return "mm2"; 2087 case 44: return "mm3"; 2088 case 45: return "mm4"; 2089 case 46: return "mm5"; 2090 case 47: return "mm6"; 2091 case 48: return "mm7"; 2092 case 49: return "rflags"; 2093 case 50: return "es"; 2094 case 51: return "cs"; 2095 case 52: return "ss"; 2096 case 53: return "ds"; 2097 case 54: return "fs"; 2098 case 55: return "gs"; 2099 case 58: return "fs.base"; 2100 case 59: return "gs.base"; 2101 case 62: return "tr"; 2102 case 63: return "ldtr"; 2103 case 64: return "mxcsr"; 2104 case 65: return "fcw"; 2105 case 66: return "fsw"; 2106 default: return (NULL); 2107 } 2108 default: 2109 return (NULL); 2110 } 2111 } 2112 2113 static void 2114 dump_ehdr(struct readelf *re) 2115 { 2116 size_t phnum, shnum, shstrndx; 2117 int i; 2118 2119 printf("ELF Header:\n"); 2120 2121 /* e_ident[]. */ 2122 printf(" Magic: "); 2123 for (i = 0; i < EI_NIDENT; i++) 2124 printf("%.2x ", re->ehdr.e_ident[i]); 2125 putchar('\n'); 2126 2127 /* EI_CLASS. */ 2128 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2129 2130 /* EI_DATA. */ 2131 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2132 2133 /* EI_VERSION. */ 2134 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2135 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2136 2137 /* EI_OSABI. */ 2138 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2139 2140 /* EI_ABIVERSION. */ 2141 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2142 2143 /* e_type. */ 2144 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2145 2146 /* e_machine. */ 2147 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2148 2149 /* e_version. */ 2150 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2151 2152 /* e_entry. */ 2153 printf("%-37s%#jx\n", " Entry point address:", 2154 (uintmax_t)re->ehdr.e_entry); 2155 2156 /* e_phoff. */ 2157 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2158 (uintmax_t)re->ehdr.e_phoff); 2159 2160 /* e_shoff. */ 2161 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2162 (uintmax_t)re->ehdr.e_shoff); 2163 2164 /* e_flags. */ 2165 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2166 dump_eflags(re, re->ehdr.e_flags); 2167 putchar('\n'); 2168 2169 /* e_ehsize. */ 2170 printf("%-37s%u (bytes)\n", " Size of this header:", 2171 re->ehdr.e_ehsize); 2172 2173 /* e_phentsize. */ 2174 printf("%-37s%u (bytes)\n", " Size of program headers:", 2175 re->ehdr.e_phentsize); 2176 2177 /* e_phnum. */ 2178 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2179 if (re->ehdr.e_phnum == PN_XNUM) { 2180 /* Extended program header numbering is in use. */ 2181 if (elf_getphnum(re->elf, &phnum)) 2182 printf(" (%zu)", phnum); 2183 } 2184 putchar('\n'); 2185 2186 /* e_shentsize. */ 2187 printf("%-37s%u (bytes)\n", " Size of section headers:", 2188 re->ehdr.e_shentsize); 2189 2190 /* e_shnum. */ 2191 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2192 if (re->ehdr.e_shnum == SHN_UNDEF) { 2193 /* Extended section numbering is in use. */ 2194 if (elf_getshnum(re->elf, &shnum)) 2195 printf(" (%ju)", (uintmax_t)shnum); 2196 } 2197 putchar('\n'); 2198 2199 /* e_shstrndx. */ 2200 printf("%-37s%u", " Section header string table index:", 2201 re->ehdr.e_shstrndx); 2202 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2203 /* Extended section numbering is in use. */ 2204 if (elf_getshstrndx(re->elf, &shstrndx)) 2205 printf(" (%ju)", (uintmax_t)shstrndx); 2206 } 2207 putchar('\n'); 2208 } 2209 2210 static void 2211 dump_eflags(struct readelf *re, uint64_t e_flags) 2212 { 2213 struct eflags_desc *edesc; 2214 int arm_eabi; 2215 2216 edesc = NULL; 2217 switch (re->ehdr.e_machine) { 2218 case EM_ARM: 2219 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2220 if (arm_eabi == 0) 2221 printf(", GNU EABI"); 2222 else if (arm_eabi <= 5) 2223 printf(", Version%d EABI", arm_eabi); 2224 edesc = arm_eflags_desc; 2225 break; 2226 case EM_MIPS: 2227 case EM_MIPS_RS3_LE: 2228 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2229 case 0: printf(", mips1"); break; 2230 case 1: printf(", mips2"); break; 2231 case 2: printf(", mips3"); break; 2232 case 3: printf(", mips4"); break; 2233 case 4: printf(", mips5"); break; 2234 case 5: printf(", mips32"); break; 2235 case 6: printf(", mips64"); break; 2236 case 7: printf(", mips32r2"); break; 2237 case 8: printf(", mips64r2"); break; 2238 default: break; 2239 } 2240 switch ((e_flags & 0x00FF0000) >> 16) { 2241 case 0x81: printf(", 3900"); break; 2242 case 0x82: printf(", 4010"); break; 2243 case 0x83: printf(", 4100"); break; 2244 case 0x85: printf(", 4650"); break; 2245 case 0x87: printf(", 4120"); break; 2246 case 0x88: printf(", 4111"); break; 2247 case 0x8a: printf(", sb1"); break; 2248 case 0x8b: printf(", octeon"); break; 2249 case 0x8c: printf(", xlr"); break; 2250 case 0x91: printf(", 5400"); break; 2251 case 0x98: printf(", 5500"); break; 2252 case 0x99: printf(", 9000"); break; 2253 case 0xa0: printf(", loongson-2e"); break; 2254 case 0xa1: printf(", loongson-2f"); break; 2255 default: break; 2256 } 2257 switch ((e_flags & 0x0000F000) >> 12) { 2258 case 1: printf(", o32"); break; 2259 case 2: printf(", o64"); break; 2260 case 3: printf(", eabi32"); break; 2261 case 4: printf(", eabi64"); break; 2262 default: break; 2263 } 2264 edesc = mips_eflags_desc; 2265 break; 2266 case EM_PPC: 2267 case EM_PPC64: 2268 edesc = powerpc_eflags_desc; 2269 break; 2270 case EM_SPARC: 2271 case EM_SPARC32PLUS: 2272 case EM_SPARCV9: 2273 switch ((e_flags & EF_SPARCV9_MM)) { 2274 case EF_SPARCV9_TSO: printf(", tso"); break; 2275 case EF_SPARCV9_PSO: printf(", pso"); break; 2276 case EF_SPARCV9_MM: printf(", rmo"); break; 2277 default: break; 2278 } 2279 edesc = sparc_eflags_desc; 2280 break; 2281 default: 2282 break; 2283 } 2284 2285 if (edesc != NULL) { 2286 while (edesc->desc != NULL) { 2287 if (e_flags & edesc->flag) 2288 printf(", %s", edesc->desc); 2289 edesc++; 2290 } 2291 } 2292 } 2293 2294 static void 2295 dump_phdr(struct readelf *re) 2296 { 2297 const char *rawfile; 2298 GElf_Phdr phdr; 2299 size_t phnum, size; 2300 int i, j; 2301 2302 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2303 "MemSiz", "Flg", "Align" 2304 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2305 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2306 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2307 (uintmax_t)phdr.p_memsz, \ 2308 phdr.p_flags & PF_R ? 'R' : ' ', \ 2309 phdr.p_flags & PF_W ? 'W' : ' ', \ 2310 phdr.p_flags & PF_X ? 'E' : ' ', \ 2311 (uintmax_t)phdr.p_align 2312 2313 if (elf_getphnum(re->elf, &phnum) == 0) { 2314 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2315 return; 2316 } 2317 if (phnum == 0) { 2318 printf("\nThere are no program headers in this file.\n"); 2319 return; 2320 } 2321 2322 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2323 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2324 printf("There are %ju program headers, starting at offset %ju\n", 2325 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2326 2327 /* Dump program headers. */ 2328 printf("\nProgram Headers:\n"); 2329 if (re->ec == ELFCLASS32) 2330 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2331 else if (re->options & RE_WW) 2332 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2333 else 2334 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2335 "%-7s%s\n", PH_HDR); 2336 for (i = 0; (size_t) i < phnum; i++) { 2337 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2338 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2339 continue; 2340 } 2341 /* TODO: Add arch-specific segment type dump. */ 2342 if (re->ec == ELFCLASS32) 2343 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2344 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2345 else if (re->options & RE_WW) 2346 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2347 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2348 else 2349 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2350 " 0x%16.16jx 0x%16.16jx %c%c%c" 2351 " %#jx\n", PH_CT); 2352 if (phdr.p_type == PT_INTERP) { 2353 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2354 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2355 continue; 2356 } 2357 if (phdr.p_offset >= size) { 2358 warnx("invalid program header offset"); 2359 continue; 2360 } 2361 printf(" [Requesting program interpreter: %s]\n", 2362 rawfile + phdr.p_offset); 2363 } 2364 } 2365 2366 /* Dump section to segment mapping. */ 2367 if (re->shnum == 0) 2368 return; 2369 printf("\n Section to Segment mapping:\n"); 2370 printf(" Segment Sections...\n"); 2371 for (i = 0; (size_t)i < phnum; i++) { 2372 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2373 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2374 continue; 2375 } 2376 printf(" %2.2d ", i); 2377 /* skip NULL section. */ 2378 for (j = 1; (size_t)j < re->shnum; j++) 2379 if (re->sl[j].addr >= phdr.p_vaddr && 2380 re->sl[j].addr + re->sl[j].sz <= 2381 phdr.p_vaddr + phdr.p_memsz) 2382 printf("%s ", re->sl[j].name); 2383 printf("\n"); 2384 } 2385 #undef PH_HDR 2386 #undef PH_CT 2387 } 2388 2389 static char * 2390 section_flags(struct readelf *re, struct section *s) 2391 { 2392 #define BUF_SZ 256 2393 static char buf[BUF_SZ]; 2394 int i, p, nb; 2395 2396 p = 0; 2397 nb = re->ec == ELFCLASS32 ? 8 : 16; 2398 if (re->options & RE_T) { 2399 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2400 (uintmax_t)s->flags); 2401 p += nb + 4; 2402 } 2403 for (i = 0; section_flag[i].ln != NULL; i++) { 2404 if ((s->flags & section_flag[i].value) == 0) 2405 continue; 2406 if (re->options & RE_T) { 2407 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2408 section_flag[i].ln); 2409 p += strlen(section_flag[i].ln) + 2; 2410 } else 2411 buf[p++] = section_flag[i].sn; 2412 } 2413 if (re->options & RE_T && p > nb + 4) 2414 p -= 2; 2415 buf[p] = '\0'; 2416 2417 return (buf); 2418 } 2419 2420 static void 2421 dump_shdr(struct readelf *re) 2422 { 2423 struct section *s; 2424 int i; 2425 2426 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2427 "Flg", "Lk", "Inf", "Al" 2428 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2429 "EntSize", "Flags", "Link", "Info", "Align" 2430 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2431 "Lk", "Inf", "Al", "Flags" 2432 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2433 "Size", "EntSize", "Info", "Align", "Flags" 2434 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2435 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2436 (uintmax_t)s->entsize, section_flags(re, s), \ 2437 s->link, s->info, (uintmax_t)s->align 2438 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2439 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2440 (uintmax_t)s->entsize, s->link, s->info, \ 2441 (uintmax_t)s->align, section_flags(re, s) 2442 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2443 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2444 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2445 (uintmax_t)s->align, section_flags(re, s) 2446 2447 if (re->shnum == 0) { 2448 printf("\nThere are no sections in this file.\n"); 2449 return; 2450 } 2451 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2452 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2453 printf("\nSection Headers:\n"); 2454 if (re->ec == ELFCLASS32) { 2455 if (re->options & RE_T) 2456 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2457 "%12s\n", ST_HDR); 2458 else 2459 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2460 S_HDR); 2461 } else if (re->options & RE_WW) { 2462 if (re->options & RE_T) 2463 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2464 "%12s\n", ST_HDR); 2465 else 2466 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2467 S_HDR); 2468 } else { 2469 if (re->options & RE_T) 2470 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2471 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2472 else 2473 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2474 "-6s%-6s%s\n", S_HDRL); 2475 } 2476 for (i = 0; (size_t)i < re->shnum; i++) { 2477 s = &re->sl[i]; 2478 if (re->ec == ELFCLASS32) { 2479 if (re->options & RE_T) 2480 printf(" [%2d] %s\n %-15.15s %8.8jx" 2481 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2482 " %s\n", ST_CT); 2483 else 2484 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2485 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2486 S_CT); 2487 } else if (re->options & RE_WW) { 2488 if (re->options & RE_T) 2489 printf(" [%2d] %s\n %-15.15s %16.16jx" 2490 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2491 " %s\n", ST_CT); 2492 else 2493 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2494 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2495 S_CT); 2496 } else { 2497 if (re->options & RE_T) 2498 printf(" [%2d] %s\n %-15.15s %16.16jx" 2499 " %16.16jx %u\n %16.16jx %16.16jx" 2500 " %-16u %ju\n %s\n", ST_CTL); 2501 else 2502 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2503 " %8.8jx\n %16.16jx %16.16jx " 2504 "%3s %2u %3u %ju\n", S_CT); 2505 } 2506 } 2507 if ((re->options & RE_T) == 0) 2508 printf("Key to Flags:\n W (write), A (alloc)," 2509 " X (execute), M (merge), S (strings)\n" 2510 " I (info), L (link order), G (group), x (unknown)\n" 2511 " O (extra OS processing required)" 2512 " o (OS specific), p (processor specific)\n"); 2513 2514 #undef S_HDR 2515 #undef S_HDRL 2516 #undef ST_HDR 2517 #undef ST_HDRL 2518 #undef S_CT 2519 #undef ST_CT 2520 #undef ST_CTL 2521 } 2522 2523 /* 2524 * Return number of entries in the given section. We'd prefer ent_count be a 2525 * size_t *, but libelf APIs already use int for section indices. 2526 */ 2527 static int 2528 get_ent_count(struct section *s, int *ent_count) 2529 { 2530 if (s->entsize == 0) { 2531 warnx("section %s has entry size 0", s->name); 2532 return (0); 2533 } else if (s->sz / s->entsize > INT_MAX) { 2534 warnx("section %s has invalid section count", s->name); 2535 return (0); 2536 } 2537 *ent_count = (int)(s->sz / s->entsize); 2538 return (1); 2539 } 2540 2541 static void 2542 dump_dynamic(struct readelf *re) 2543 { 2544 GElf_Dyn dyn; 2545 Elf_Data *d; 2546 struct section *s; 2547 int elferr, i, is_dynamic, j, jmax, nentries; 2548 2549 is_dynamic = 0; 2550 2551 for (i = 0; (size_t)i < re->shnum; i++) { 2552 s = &re->sl[i]; 2553 if (s->type != SHT_DYNAMIC) 2554 continue; 2555 (void) elf_errno(); 2556 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2557 elferr = elf_errno(); 2558 if (elferr != 0) 2559 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2560 continue; 2561 } 2562 if (d->d_size <= 0) 2563 continue; 2564 2565 is_dynamic = 1; 2566 2567 /* Determine the actual number of table entries. */ 2568 nentries = 0; 2569 if (!get_ent_count(s, &jmax)) 2570 continue; 2571 for (j = 0; j < jmax; j++) { 2572 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2573 warnx("gelf_getdyn failed: %s", 2574 elf_errmsg(-1)); 2575 continue; 2576 } 2577 nentries ++; 2578 if (dyn.d_tag == DT_NULL) 2579 break; 2580 } 2581 2582 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2583 printf(" contains %u entries:\n", nentries); 2584 2585 if (re->ec == ELFCLASS32) 2586 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2587 else 2588 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2589 2590 for (j = 0; j < nentries; j++) { 2591 if (gelf_getdyn(d, j, &dyn) != &dyn) 2592 continue; 2593 /* Dump dynamic entry type. */ 2594 if (re->ec == ELFCLASS32) 2595 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2596 else 2597 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2598 printf(" %-20s", dt_type(re->ehdr.e_machine, 2599 dyn.d_tag)); 2600 /* Dump dynamic entry value. */ 2601 dump_dyn_val(re, &dyn, s->link); 2602 } 2603 } 2604 2605 if (!is_dynamic) 2606 printf("\nThere is no dynamic section in this file.\n"); 2607 } 2608 2609 static char * 2610 timestamp(time_t ti) 2611 { 2612 static char ts[32]; 2613 struct tm *t; 2614 2615 t = gmtime(&ti); 2616 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2617 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2618 t->tm_min, t->tm_sec); 2619 2620 return (ts); 2621 } 2622 2623 static const char * 2624 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2625 { 2626 const char *name; 2627 2628 if (stab == SHN_UNDEF) 2629 name = "ERROR"; 2630 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2631 (void) elf_errno(); /* clear error */ 2632 name = "ERROR"; 2633 } 2634 2635 return (name); 2636 } 2637 2638 static void 2639 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn) 2640 { 2641 switch (re->ehdr.e_machine) { 2642 case EM_MIPS: 2643 case EM_MIPS_RS3_LE: 2644 switch (dyn->d_tag) { 2645 case DT_MIPS_RLD_VERSION: 2646 case DT_MIPS_LOCAL_GOTNO: 2647 case DT_MIPS_CONFLICTNO: 2648 case DT_MIPS_LIBLISTNO: 2649 case DT_MIPS_SYMTABNO: 2650 case DT_MIPS_UNREFEXTNO: 2651 case DT_MIPS_GOTSYM: 2652 case DT_MIPS_HIPAGENO: 2653 case DT_MIPS_DELTA_CLASS_NO: 2654 case DT_MIPS_DELTA_INSTANCE_NO: 2655 case DT_MIPS_DELTA_RELOC_NO: 2656 case DT_MIPS_DELTA_SYM_NO: 2657 case DT_MIPS_DELTA_CLASSSYM_NO: 2658 case DT_MIPS_LOCALPAGE_GOTIDX: 2659 case DT_MIPS_LOCAL_GOTIDX: 2660 case DT_MIPS_HIDDEN_GOTIDX: 2661 case DT_MIPS_PROTECTED_GOTIDX: 2662 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2663 break; 2664 case DT_MIPS_ICHECKSUM: 2665 case DT_MIPS_FLAGS: 2666 case DT_MIPS_BASE_ADDRESS: 2667 case DT_MIPS_CONFLICT: 2668 case DT_MIPS_LIBLIST: 2669 case DT_MIPS_RLD_MAP: 2670 case DT_MIPS_DELTA_CLASS: 2671 case DT_MIPS_DELTA_INSTANCE: 2672 case DT_MIPS_DELTA_RELOC: 2673 case DT_MIPS_DELTA_SYM: 2674 case DT_MIPS_DELTA_CLASSSYM: 2675 case DT_MIPS_CXX_FLAGS: 2676 case DT_MIPS_PIXIE_INIT: 2677 case DT_MIPS_SYMBOL_LIB: 2678 case DT_MIPS_OPTIONS: 2679 case DT_MIPS_INTERFACE: 2680 case DT_MIPS_DYNSTR_ALIGN: 2681 case DT_MIPS_INTERFACE_SIZE: 2682 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2683 case DT_MIPS_COMPACT_SIZE: 2684 case DT_MIPS_GP_VALUE: 2685 case DT_MIPS_AUX_DYNAMIC: 2686 case DT_MIPS_PLTGOT: 2687 case DT_MIPS_RLD_OBJ_UPDATE: 2688 case DT_MIPS_RWPLT: 2689 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2690 break; 2691 case DT_MIPS_IVERSION: 2692 case DT_MIPS_PERF_SUFFIX: 2693 case DT_MIPS_TIME_STAMP: 2694 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2695 break; 2696 } 2697 break; 2698 default: 2699 printf("\n"); 2700 break; 2701 } 2702 } 2703 2704 static void 2705 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2706 { 2707 const char *name; 2708 2709 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC && 2710 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) { 2711 dump_arch_dyn_val(re, dyn); 2712 return; 2713 } 2714 2715 /* These entry values are index into the string table. */ 2716 name = NULL; 2717 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER || 2718 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2719 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2720 name = dyn_str(re, stab, dyn->d_un.d_val); 2721 2722 switch(dyn->d_tag) { 2723 case DT_NULL: 2724 case DT_PLTGOT: 2725 case DT_HASH: 2726 case DT_STRTAB: 2727 case DT_SYMTAB: 2728 case DT_RELA: 2729 case DT_INIT: 2730 case DT_SYMBOLIC: 2731 case DT_REL: 2732 case DT_DEBUG: 2733 case DT_TEXTREL: 2734 case DT_JMPREL: 2735 case DT_FINI: 2736 case DT_VERDEF: 2737 case DT_VERNEED: 2738 case DT_VERSYM: 2739 case DT_GNU_HASH: 2740 case DT_GNU_LIBLIST: 2741 case DT_GNU_CONFLICT: 2742 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2743 break; 2744 case DT_PLTRELSZ: 2745 case DT_RELASZ: 2746 case DT_RELAENT: 2747 case DT_STRSZ: 2748 case DT_SYMENT: 2749 case DT_RELSZ: 2750 case DT_RELENT: 2751 case DT_INIT_ARRAYSZ: 2752 case DT_FINI_ARRAYSZ: 2753 case DT_GNU_CONFLICTSZ: 2754 case DT_GNU_LIBLISTSZ: 2755 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2756 break; 2757 case DT_RELACOUNT: 2758 case DT_RELCOUNT: 2759 case DT_VERDEFNUM: 2760 case DT_VERNEEDNUM: 2761 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2762 break; 2763 case DT_AUXILIARY: 2764 printf(" Auxiliary library: [%s]\n", name); 2765 break; 2766 case DT_FILTER: 2767 printf(" Filter library: [%s]\n", name); 2768 break; 2769 case DT_NEEDED: 2770 printf(" Shared library: [%s]\n", name); 2771 break; 2772 case DT_SONAME: 2773 printf(" Library soname: [%s]\n", name); 2774 break; 2775 case DT_RPATH: 2776 printf(" Library rpath: [%s]\n", name); 2777 break; 2778 case DT_RUNPATH: 2779 printf(" Library runpath: [%s]\n", name); 2780 break; 2781 case DT_PLTREL: 2782 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2783 break; 2784 case DT_GNU_PRELINKED: 2785 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2786 break; 2787 default: 2788 printf("\n"); 2789 } 2790 } 2791 2792 static void 2793 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2794 { 2795 GElf_Rel r; 2796 const char *symname; 2797 uint64_t symval; 2798 int i, len; 2799 uint32_t type; 2800 uint8_t type2, type3; 2801 2802 if (s->link >= re->shnum) 2803 return; 2804 2805 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2806 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2807 elftc_reloc_type_str(re->ehdr.e_machine, \ 2808 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2809 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2810 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2811 (uintmax_t)symval, symname 2812 2813 printf("\nRelocation section (%s):\n", s->name); 2814 if (re->ec == ELFCLASS32) 2815 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2816 else { 2817 if (re->options & RE_WW) 2818 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2819 else 2820 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2821 } 2822 assert(d->d_size == s->sz); 2823 if (!get_ent_count(s, &len)) 2824 return; 2825 for (i = 0; i < len; i++) { 2826 if (gelf_getrel(d, i, &r) != &r) { 2827 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2828 continue; 2829 } 2830 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2831 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2832 if (re->ec == ELFCLASS32) { 2833 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2834 ELF64_R_TYPE(r.r_info)); 2835 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2836 } else { 2837 type = ELF64_R_TYPE(r.r_info); 2838 if (re->ehdr.e_machine == EM_MIPS) { 2839 type2 = (type >> 8) & 0xFF; 2840 type3 = (type >> 16) & 0xFF; 2841 type = type & 0xFF; 2842 } else { 2843 type2 = type3 = 0; 2844 } 2845 if (re->options & RE_WW) 2846 printf("%16.16jx %16.16jx %-24.24s" 2847 " %16.16jx %s\n", REL_CT64); 2848 else 2849 printf("%12.12jx %12.12jx %-19.19s" 2850 " %16.16jx %s\n", REL_CT64); 2851 if (re->ehdr.e_machine == EM_MIPS) { 2852 if (re->options & RE_WW) { 2853 printf("%32s: %s\n", "Type2", 2854 elftc_reloc_type_str(EM_MIPS, 2855 type2)); 2856 printf("%32s: %s\n", "Type3", 2857 elftc_reloc_type_str(EM_MIPS, 2858 type3)); 2859 } else { 2860 printf("%24s: %s\n", "Type2", 2861 elftc_reloc_type_str(EM_MIPS, 2862 type2)); 2863 printf("%24s: %s\n", "Type3", 2864 elftc_reloc_type_str(EM_MIPS, 2865 type3)); 2866 } 2867 } 2868 } 2869 } 2870 2871 #undef REL_HDR 2872 #undef REL_CT 2873 } 2874 2875 static void 2876 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2877 { 2878 GElf_Rela r; 2879 const char *symname; 2880 uint64_t symval; 2881 int i, len; 2882 uint32_t type; 2883 uint8_t type2, type3; 2884 2885 if (s->link >= re->shnum) 2886 return; 2887 2888 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2889 "st_name + r_addend" 2890 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2891 elftc_reloc_type_str(re->ehdr.e_machine, \ 2892 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2893 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2894 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2895 (uintmax_t)symval, symname 2896 2897 printf("\nRelocation section with addend (%s):\n", s->name); 2898 if (re->ec == ELFCLASS32) 2899 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2900 else { 2901 if (re->options & RE_WW) 2902 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2903 else 2904 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2905 } 2906 assert(d->d_size == s->sz); 2907 if (!get_ent_count(s, &len)) 2908 return; 2909 for (i = 0; i < len; i++) { 2910 if (gelf_getrela(d, i, &r) != &r) { 2911 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2912 continue; 2913 } 2914 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2915 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2916 if (re->ec == ELFCLASS32) { 2917 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2918 ELF64_R_TYPE(r.r_info)); 2919 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2920 printf(" + %x\n", (uint32_t) r.r_addend); 2921 } else { 2922 type = ELF64_R_TYPE(r.r_info); 2923 if (re->ehdr.e_machine == EM_MIPS) { 2924 type2 = (type >> 8) & 0xFF; 2925 type3 = (type >> 16) & 0xFF; 2926 type = type & 0xFF; 2927 } else { 2928 type2 = type3 = 0; 2929 } 2930 if (re->options & RE_WW) 2931 printf("%16.16jx %16.16jx %-24.24s" 2932 " %16.16jx %s", RELA_CT64); 2933 else 2934 printf("%12.12jx %12.12jx %-19.19s" 2935 " %16.16jx %s", RELA_CT64); 2936 printf(" + %jx\n", (uintmax_t) r.r_addend); 2937 if (re->ehdr.e_machine == EM_MIPS) { 2938 if (re->options & RE_WW) { 2939 printf("%32s: %s\n", "Type2", 2940 elftc_reloc_type_str(EM_MIPS, 2941 type2)); 2942 printf("%32s: %s\n", "Type3", 2943 elftc_reloc_type_str(EM_MIPS, 2944 type3)); 2945 } else { 2946 printf("%24s: %s\n", "Type2", 2947 elftc_reloc_type_str(EM_MIPS, 2948 type2)); 2949 printf("%24s: %s\n", "Type3", 2950 elftc_reloc_type_str(EM_MIPS, 2951 type3)); 2952 } 2953 } 2954 } 2955 } 2956 2957 #undef RELA_HDR 2958 #undef RELA_CT 2959 } 2960 2961 static void 2962 dump_reloc(struct readelf *re) 2963 { 2964 struct section *s; 2965 Elf_Data *d; 2966 int i, elferr; 2967 2968 for (i = 0; (size_t)i < re->shnum; i++) { 2969 s = &re->sl[i]; 2970 if (s->type == SHT_REL || s->type == SHT_RELA) { 2971 (void) elf_errno(); 2972 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2973 elferr = elf_errno(); 2974 if (elferr != 0) 2975 warnx("elf_getdata failed: %s", 2976 elf_errmsg(elferr)); 2977 continue; 2978 } 2979 if (s->type == SHT_REL) 2980 dump_rel(re, s, d); 2981 else 2982 dump_rela(re, s, d); 2983 } 2984 } 2985 } 2986 2987 static void 2988 dump_symtab(struct readelf *re, int i) 2989 { 2990 struct section *s; 2991 Elf_Data *d; 2992 GElf_Sym sym; 2993 const char *name; 2994 uint32_t stab; 2995 int elferr, j, len; 2996 uint16_t vs; 2997 2998 s = &re->sl[i]; 2999 if (s->link >= re->shnum) 3000 return; 3001 stab = s->link; 3002 (void) elf_errno(); 3003 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3004 elferr = elf_errno(); 3005 if (elferr != 0) 3006 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3007 return; 3008 } 3009 if (d->d_size <= 0) 3010 return; 3011 if (!get_ent_count(s, &len)) 3012 return; 3013 printf("Symbol table (%s)", s->name); 3014 printf(" contains %d entries:\n", len); 3015 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3016 "Bind", "Vis", "Ndx", "Name"); 3017 3018 for (j = 0; j < len; j++) { 3019 if (gelf_getsym(d, j, &sym) != &sym) { 3020 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3021 continue; 3022 } 3023 printf("%6d:", j); 3024 printf(" %16.16jx", (uintmax_t) sym.st_value); 3025 printf(" %5ju", (uintmax_t) sym.st_size); 3026 printf(" %-7s", st_type(re->ehdr.e_machine, 3027 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3028 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3029 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3030 printf(" %3s", st_shndx(sym.st_shndx)); 3031 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3032 printf(" %s", name); 3033 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3034 if (s->type == SHT_DYNSYM && re->ver != NULL && 3035 re->vs != NULL && re->vs[j] > 1) { 3036 vs = re->vs[j] & VERSYM_VERSION; 3037 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3038 warnx("invalid versym version index %u", vs); 3039 break; 3040 } 3041 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3042 printf("@%s (%d)", re->ver[vs].name, vs); 3043 else 3044 printf("@@%s (%d)", re->ver[vs].name, vs); 3045 } 3046 putchar('\n'); 3047 } 3048 3049 } 3050 3051 static void 3052 dump_symtabs(struct readelf *re) 3053 { 3054 GElf_Dyn dyn; 3055 Elf_Data *d; 3056 struct section *s; 3057 uint64_t dyn_off; 3058 int elferr, i, len; 3059 3060 /* 3061 * If -D is specified, only dump the symbol table specified by 3062 * the DT_SYMTAB entry in the .dynamic section. 3063 */ 3064 dyn_off = 0; 3065 if (re->options & RE_DD) { 3066 s = NULL; 3067 for (i = 0; (size_t)i < re->shnum; i++) 3068 if (re->sl[i].type == SHT_DYNAMIC) { 3069 s = &re->sl[i]; 3070 break; 3071 } 3072 if (s == NULL) 3073 return; 3074 (void) elf_errno(); 3075 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3076 elferr = elf_errno(); 3077 if (elferr != 0) 3078 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3079 return; 3080 } 3081 if (d->d_size <= 0) 3082 return; 3083 if (!get_ent_count(s, &len)) 3084 return; 3085 3086 for (i = 0; i < len; i++) { 3087 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3088 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3089 continue; 3090 } 3091 if (dyn.d_tag == DT_SYMTAB) { 3092 dyn_off = dyn.d_un.d_val; 3093 break; 3094 } 3095 } 3096 } 3097 3098 /* Find and dump symbol tables. */ 3099 for (i = 0; (size_t)i < re->shnum; i++) { 3100 s = &re->sl[i]; 3101 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3102 if (re->options & RE_DD) { 3103 if (dyn_off == s->addr) { 3104 dump_symtab(re, i); 3105 break; 3106 } 3107 } else 3108 dump_symtab(re, i); 3109 } 3110 } 3111 } 3112 3113 static void 3114 dump_svr4_hash(struct section *s) 3115 { 3116 Elf_Data *d; 3117 uint32_t *buf; 3118 uint32_t nbucket, nchain; 3119 uint32_t *bucket, *chain; 3120 uint32_t *bl, *c, maxl, total; 3121 int elferr, i, j; 3122 3123 /* Read and parse the content of .hash section. */ 3124 (void) elf_errno(); 3125 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3126 elferr = elf_errno(); 3127 if (elferr != 0) 3128 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3129 return; 3130 } 3131 if (d->d_size < 2 * sizeof(uint32_t)) { 3132 warnx(".hash section too small"); 3133 return; 3134 } 3135 buf = d->d_buf; 3136 nbucket = buf[0]; 3137 nchain = buf[1]; 3138 if (nbucket <= 0 || nchain <= 0) { 3139 warnx("Malformed .hash section"); 3140 return; 3141 } 3142 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3143 warnx("Malformed .hash section"); 3144 return; 3145 } 3146 bucket = &buf[2]; 3147 chain = &buf[2 + nbucket]; 3148 3149 maxl = 0; 3150 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3151 errx(EXIT_FAILURE, "calloc failed"); 3152 for (i = 0; (uint32_t)i < nbucket; i++) 3153 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3154 if (++bl[i] > maxl) 3155 maxl = bl[i]; 3156 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3157 errx(EXIT_FAILURE, "calloc failed"); 3158 for (i = 0; (uint32_t)i < nbucket; i++) 3159 c[bl[i]]++; 3160 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3161 nbucket); 3162 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3163 total = 0; 3164 for (i = 0; (uint32_t)i <= maxl; i++) { 3165 total += c[i] * i; 3166 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3167 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3168 } 3169 free(c); 3170 free(bl); 3171 } 3172 3173 static void 3174 dump_svr4_hash64(struct readelf *re, struct section *s) 3175 { 3176 Elf_Data *d, dst; 3177 uint64_t *buf; 3178 uint64_t nbucket, nchain; 3179 uint64_t *bucket, *chain; 3180 uint64_t *bl, *c, maxl, total; 3181 int elferr, i, j; 3182 3183 /* 3184 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3185 * .hash section contains only 32-bit entry, an explicit 3186 * gelf_xlatetom is needed here. 3187 */ 3188 (void) elf_errno(); 3189 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3190 elferr = elf_errno(); 3191 if (elferr != 0) 3192 warnx("elf_rawdata failed: %s", 3193 elf_errmsg(elferr)); 3194 return; 3195 } 3196 d->d_type = ELF_T_XWORD; 3197 memcpy(&dst, d, sizeof(Elf_Data)); 3198 if (gelf_xlatetom(re->elf, &dst, d, 3199 re->ehdr.e_ident[EI_DATA]) != &dst) { 3200 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3201 return; 3202 } 3203 if (dst.d_size < 2 * sizeof(uint64_t)) { 3204 warnx(".hash section too small"); 3205 return; 3206 } 3207 buf = dst.d_buf; 3208 nbucket = buf[0]; 3209 nchain = buf[1]; 3210 if (nbucket <= 0 || nchain <= 0) { 3211 warnx("Malformed .hash section"); 3212 return; 3213 } 3214 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3215 warnx("Malformed .hash section"); 3216 return; 3217 } 3218 bucket = &buf[2]; 3219 chain = &buf[2 + nbucket]; 3220 3221 maxl = 0; 3222 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3223 errx(EXIT_FAILURE, "calloc failed"); 3224 for (i = 0; (uint32_t)i < nbucket; i++) 3225 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3226 if (++bl[i] > maxl) 3227 maxl = bl[i]; 3228 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3229 errx(EXIT_FAILURE, "calloc failed"); 3230 for (i = 0; (uint64_t)i < nbucket; i++) 3231 c[bl[i]]++; 3232 printf("Histogram for bucket list length (total of %ju buckets):\n", 3233 (uintmax_t)nbucket); 3234 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3235 total = 0; 3236 for (i = 0; (uint64_t)i <= maxl; i++) { 3237 total += c[i] * i; 3238 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3239 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3240 } 3241 free(c); 3242 free(bl); 3243 } 3244 3245 static void 3246 dump_gnu_hash(struct readelf *re, struct section *s) 3247 { 3248 struct section *ds; 3249 Elf_Data *d; 3250 uint32_t *buf; 3251 uint32_t *bucket, *chain; 3252 uint32_t nbucket, nchain, symndx, maskwords; 3253 uint32_t *bl, *c, maxl, total; 3254 int elferr, dynsymcount, i, j; 3255 3256 (void) elf_errno(); 3257 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3258 elferr = elf_errno(); 3259 if (elferr != 0) 3260 warnx("elf_getdata failed: %s", 3261 elf_errmsg(elferr)); 3262 return; 3263 } 3264 if (d->d_size < 4 * sizeof(uint32_t)) { 3265 warnx(".gnu.hash section too small"); 3266 return; 3267 } 3268 buf = d->d_buf; 3269 nbucket = buf[0]; 3270 symndx = buf[1]; 3271 maskwords = buf[2]; 3272 buf += 4; 3273 if (s->link >= re->shnum) 3274 return; 3275 ds = &re->sl[s->link]; 3276 if (!get_ent_count(ds, &dynsymcount)) 3277 return; 3278 if (symndx >= (uint32_t)dynsymcount) { 3279 warnx("Malformed .gnu.hash section (symndx out of range)"); 3280 return; 3281 } 3282 nchain = dynsymcount - symndx; 3283 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3284 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3285 (nbucket + nchain) * sizeof(uint32_t)) { 3286 warnx("Malformed .gnu.hash section"); 3287 return; 3288 } 3289 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3290 chain = bucket + nbucket; 3291 3292 maxl = 0; 3293 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3294 errx(EXIT_FAILURE, "calloc failed"); 3295 for (i = 0; (uint32_t)i < nbucket; i++) 3296 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3297 j++) { 3298 if (++bl[i] > maxl) 3299 maxl = bl[i]; 3300 if (chain[j - symndx] & 1) 3301 break; 3302 } 3303 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3304 errx(EXIT_FAILURE, "calloc failed"); 3305 for (i = 0; (uint32_t)i < nbucket; i++) 3306 c[bl[i]]++; 3307 printf("Histogram for bucket list length (total of %u buckets):\n", 3308 nbucket); 3309 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3310 total = 0; 3311 for (i = 0; (uint32_t)i <= maxl; i++) { 3312 total += c[i] * i; 3313 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3314 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3315 } 3316 free(c); 3317 free(bl); 3318 } 3319 3320 static void 3321 dump_hash(struct readelf *re) 3322 { 3323 struct section *s; 3324 int i; 3325 3326 for (i = 0; (size_t) i < re->shnum; i++) { 3327 s = &re->sl[i]; 3328 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3329 if (s->type == SHT_GNU_HASH) 3330 dump_gnu_hash(re, s); 3331 else if (re->ehdr.e_machine == EM_ALPHA && 3332 s->entsize == 8) 3333 dump_svr4_hash64(re, s); 3334 else 3335 dump_svr4_hash(s); 3336 } 3337 } 3338 } 3339 3340 static void 3341 dump_notes(struct readelf *re) 3342 { 3343 struct section *s; 3344 const char *rawfile; 3345 GElf_Phdr phdr; 3346 Elf_Data *d; 3347 size_t filesize, phnum; 3348 int i, elferr; 3349 3350 if (re->ehdr.e_type == ET_CORE) { 3351 /* 3352 * Search program headers in the core file for 3353 * PT_NOTE entry. 3354 */ 3355 if (elf_getphnum(re->elf, &phnum) == 0) { 3356 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3357 return; 3358 } 3359 if (phnum == 0) 3360 return; 3361 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3362 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3363 return; 3364 } 3365 for (i = 0; (size_t) i < phnum; i++) { 3366 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3367 warnx("gelf_getphdr failed: %s", 3368 elf_errmsg(-1)); 3369 continue; 3370 } 3371 if (phdr.p_type == PT_NOTE) { 3372 if (phdr.p_offset >= filesize || 3373 phdr.p_filesz > filesize - phdr.p_offset) { 3374 warnx("invalid PHDR offset"); 3375 continue; 3376 } 3377 dump_notes_content(re, rawfile + phdr.p_offset, 3378 phdr.p_filesz, phdr.p_offset); 3379 } 3380 } 3381 3382 } else { 3383 /* 3384 * For objects other than core files, Search for 3385 * SHT_NOTE sections. 3386 */ 3387 for (i = 0; (size_t) i < re->shnum; i++) { 3388 s = &re->sl[i]; 3389 if (s->type == SHT_NOTE) { 3390 (void) elf_errno(); 3391 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3392 elferr = elf_errno(); 3393 if (elferr != 0) 3394 warnx("elf_getdata failed: %s", 3395 elf_errmsg(elferr)); 3396 continue; 3397 } 3398 dump_notes_content(re, d->d_buf, d->d_size, 3399 s->off); 3400 } 3401 } 3402 } 3403 } 3404 3405 static void 3406 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3407 { 3408 Elf_Note *note; 3409 const char *end, *name; 3410 3411 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3412 (uintmax_t) off, (uintmax_t) sz); 3413 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3414 end = buf + sz; 3415 while (buf < end) { 3416 if (buf + sizeof(*note) > end) { 3417 warnx("invalid note header"); 3418 return; 3419 } 3420 note = (Elf_Note *)(uintptr_t) buf; 3421 name = (char *)(uintptr_t)(note + 1); 3422 /* 3423 * The name field is required to be nul-terminated, and 3424 * n_namesz includes the terminating nul in observed 3425 * implementations (contrary to the ELF-64 spec). A special 3426 * case is needed for cores generated by some older Linux 3427 * versions, which write a note named "CORE" without a nul 3428 * terminator and n_namesz = 4. 3429 */ 3430 if (note->n_namesz == 0) 3431 name = ""; 3432 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3433 name = "CORE"; 3434 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3435 name = "<invalid>"; 3436 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3437 printf(" %s\n", note_type(name, re->ehdr.e_type, 3438 note->n_type)); 3439 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3440 roundup2(note->n_descsz, 4); 3441 } 3442 } 3443 3444 /* 3445 * Symbol versioning sections are the same for 32bit and 64bit 3446 * ELF objects. 3447 */ 3448 #define Elf_Verdef Elf32_Verdef 3449 #define Elf_Verdaux Elf32_Verdaux 3450 #define Elf_Verneed Elf32_Verneed 3451 #define Elf_Vernaux Elf32_Vernaux 3452 3453 #define SAVE_VERSION_NAME(x, n, t) \ 3454 do { \ 3455 while (x >= re->ver_sz) { \ 3456 nv = realloc(re->ver, \ 3457 sizeof(*re->ver) * re->ver_sz * 2); \ 3458 if (nv == NULL) { \ 3459 warn("realloc failed"); \ 3460 free(re->ver); \ 3461 return; \ 3462 } \ 3463 re->ver = nv; \ 3464 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3465 re->ver[i].name = NULL; \ 3466 re->ver[i].type = 0; \ 3467 } \ 3468 re->ver_sz *= 2; \ 3469 } \ 3470 if (x > 1) { \ 3471 re->ver[x].name = n; \ 3472 re->ver[x].type = t; \ 3473 } \ 3474 } while (0) 3475 3476 3477 static void 3478 dump_verdef(struct readelf *re, int dump) 3479 { 3480 struct section *s; 3481 struct symver *nv; 3482 Elf_Data *d; 3483 Elf_Verdef *vd; 3484 Elf_Verdaux *vda; 3485 uint8_t *buf, *end, *buf2; 3486 const char *name; 3487 int elferr, i, j; 3488 3489 if ((s = re->vd_s) == NULL) 3490 return; 3491 if (s->link >= re->shnum) 3492 return; 3493 3494 if (re->ver == NULL) { 3495 re->ver_sz = 16; 3496 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3497 NULL) { 3498 warn("calloc failed"); 3499 return; 3500 } 3501 re->ver[0].name = "*local*"; 3502 re->ver[1].name = "*global*"; 3503 } 3504 3505 if (dump) 3506 printf("\nVersion definition section (%s):\n", s->name); 3507 (void) elf_errno(); 3508 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3509 elferr = elf_errno(); 3510 if (elferr != 0) 3511 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3512 return; 3513 } 3514 if (d->d_size == 0) 3515 return; 3516 3517 buf = d->d_buf; 3518 end = buf + d->d_size; 3519 while (buf + sizeof(Elf_Verdef) <= end) { 3520 vd = (Elf_Verdef *) (uintptr_t) buf; 3521 if (dump) { 3522 printf(" 0x%4.4lx", (unsigned long) 3523 (buf - (uint8_t *)d->d_buf)); 3524 printf(" vd_version: %u vd_flags: %d" 3525 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3526 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3527 } 3528 buf2 = buf + vd->vd_aux; 3529 j = 0; 3530 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3531 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3532 name = get_string(re, s->link, vda->vda_name); 3533 if (j == 0) { 3534 if (dump) 3535 printf(" vda_name: %s\n", name); 3536 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3537 } else if (dump) 3538 printf(" 0x%4.4lx parent: %s\n", 3539 (unsigned long) (buf2 - 3540 (uint8_t *)d->d_buf), name); 3541 if (vda->vda_next == 0) 3542 break; 3543 buf2 += vda->vda_next; 3544 j++; 3545 } 3546 if (vd->vd_next == 0) 3547 break; 3548 buf += vd->vd_next; 3549 } 3550 } 3551 3552 static void 3553 dump_verneed(struct readelf *re, int dump) 3554 { 3555 struct section *s; 3556 struct symver *nv; 3557 Elf_Data *d; 3558 Elf_Verneed *vn; 3559 Elf_Vernaux *vna; 3560 uint8_t *buf, *end, *buf2; 3561 const char *name; 3562 int elferr, i, j; 3563 3564 if ((s = re->vn_s) == NULL) 3565 return; 3566 if (s->link >= re->shnum) 3567 return; 3568 3569 if (re->ver == NULL) { 3570 re->ver_sz = 16; 3571 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3572 NULL) { 3573 warn("calloc failed"); 3574 return; 3575 } 3576 re->ver[0].name = "*local*"; 3577 re->ver[1].name = "*global*"; 3578 } 3579 3580 if (dump) 3581 printf("\nVersion needed section (%s):\n", s->name); 3582 (void) elf_errno(); 3583 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3584 elferr = elf_errno(); 3585 if (elferr != 0) 3586 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3587 return; 3588 } 3589 if (d->d_size == 0) 3590 return; 3591 3592 buf = d->d_buf; 3593 end = buf + d->d_size; 3594 while (buf + sizeof(Elf_Verneed) <= end) { 3595 vn = (Elf_Verneed *) (uintptr_t) buf; 3596 if (dump) { 3597 printf(" 0x%4.4lx", (unsigned long) 3598 (buf - (uint8_t *)d->d_buf)); 3599 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3600 vn->vn_version, 3601 get_string(re, s->link, vn->vn_file), 3602 vn->vn_cnt); 3603 } 3604 buf2 = buf + vn->vn_aux; 3605 j = 0; 3606 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3607 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3608 if (dump) 3609 printf(" 0x%4.4lx", (unsigned long) 3610 (buf2 - (uint8_t *)d->d_buf)); 3611 name = get_string(re, s->link, vna->vna_name); 3612 if (dump) 3613 printf(" vna_name: %s vna_flags: %u" 3614 " vna_other: %u\n", name, 3615 vna->vna_flags, vna->vna_other); 3616 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3617 if (vna->vna_next == 0) 3618 break; 3619 buf2 += vna->vna_next; 3620 j++; 3621 } 3622 if (vn->vn_next == 0) 3623 break; 3624 buf += vn->vn_next; 3625 } 3626 } 3627 3628 static void 3629 dump_versym(struct readelf *re) 3630 { 3631 int i; 3632 uint16_t vs; 3633 3634 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3635 return; 3636 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3637 for (i = 0; i < re->vs_sz; i++) { 3638 if ((i & 3) == 0) { 3639 if (i > 0) 3640 putchar('\n'); 3641 printf(" %03x:", i); 3642 } 3643 vs = re->vs[i] & VERSYM_VERSION; 3644 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3645 warnx("invalid versym version index %u", re->vs[i]); 3646 break; 3647 } 3648 if (re->vs[i] & VERSYM_HIDDEN) 3649 printf(" %3xh %-12s ", vs, 3650 re->ver[re->vs[i] & VERSYM_VERSION].name); 3651 else 3652 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 3653 } 3654 putchar('\n'); 3655 } 3656 3657 static void 3658 dump_ver(struct readelf *re) 3659 { 3660 3661 if (re->vs_s && re->ver && re->vs) 3662 dump_versym(re); 3663 if (re->vd_s) 3664 dump_verdef(re, 1); 3665 if (re->vn_s) 3666 dump_verneed(re, 1); 3667 } 3668 3669 static void 3670 search_ver(struct readelf *re) 3671 { 3672 struct section *s; 3673 Elf_Data *d; 3674 int elferr, i; 3675 3676 for (i = 0; (size_t) i < re->shnum; i++) { 3677 s = &re->sl[i]; 3678 if (s->type == SHT_SUNW_versym) 3679 re->vs_s = s; 3680 if (s->type == SHT_SUNW_verneed) 3681 re->vn_s = s; 3682 if (s->type == SHT_SUNW_verdef) 3683 re->vd_s = s; 3684 } 3685 if (re->vd_s) 3686 dump_verdef(re, 0); 3687 if (re->vn_s) 3688 dump_verneed(re, 0); 3689 if (re->vs_s && re->ver != NULL) { 3690 (void) elf_errno(); 3691 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3692 elferr = elf_errno(); 3693 if (elferr != 0) 3694 warnx("elf_getdata failed: %s", 3695 elf_errmsg(elferr)); 3696 return; 3697 } 3698 if (d->d_size == 0) 3699 return; 3700 re->vs = d->d_buf; 3701 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3702 } 3703 } 3704 3705 #undef Elf_Verdef 3706 #undef Elf_Verdaux 3707 #undef Elf_Verneed 3708 #undef Elf_Vernaux 3709 #undef SAVE_VERSION_NAME 3710 3711 /* 3712 * Elf32_Lib and Elf64_Lib are identical. 3713 */ 3714 #define Elf_Lib Elf32_Lib 3715 3716 static void 3717 dump_liblist(struct readelf *re) 3718 { 3719 struct section *s; 3720 struct tm *t; 3721 time_t ti; 3722 char tbuf[20]; 3723 Elf_Data *d; 3724 Elf_Lib *lib; 3725 int i, j, k, elferr, first, len; 3726 3727 for (i = 0; (size_t) i < re->shnum; i++) { 3728 s = &re->sl[i]; 3729 if (s->type != SHT_GNU_LIBLIST) 3730 continue; 3731 if (s->link >= re->shnum) 3732 continue; 3733 (void) elf_errno(); 3734 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3735 elferr = elf_errno(); 3736 if (elferr != 0) 3737 warnx("elf_getdata failed: %s", 3738 elf_errmsg(elferr)); 3739 continue; 3740 } 3741 if (d->d_size <= 0) 3742 continue; 3743 lib = d->d_buf; 3744 if (!get_ent_count(s, &len)) 3745 continue; 3746 printf("\nLibrary list section '%s' ", s->name); 3747 printf("contains %d entries:\n", len); 3748 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3749 "Checksum", "Version", "Flags"); 3750 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3751 printf("%3d: ", j); 3752 printf("%-20.20s ", 3753 get_string(re, s->link, lib->l_name)); 3754 ti = lib->l_time_stamp; 3755 t = gmtime(&ti); 3756 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3757 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3758 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3759 printf("%-19.19s ", tbuf); 3760 printf("0x%08x ", lib->l_checksum); 3761 printf("%-7d %#x", lib->l_version, lib->l_flags); 3762 if (lib->l_flags != 0) { 3763 first = 1; 3764 putchar('('); 3765 for (k = 0; l_flag[k].name != NULL; k++) { 3766 if ((l_flag[k].value & lib->l_flags) == 3767 0) 3768 continue; 3769 if (!first) 3770 putchar(','); 3771 else 3772 first = 0; 3773 printf("%s", l_flag[k].name); 3774 } 3775 putchar(')'); 3776 } 3777 putchar('\n'); 3778 lib++; 3779 } 3780 } 3781 } 3782 3783 #undef Elf_Lib 3784 3785 static void 3786 dump_section_groups(struct readelf *re) 3787 { 3788 struct section *s; 3789 const char *symname; 3790 Elf_Data *d; 3791 uint32_t *w; 3792 int i, j, elferr; 3793 size_t n; 3794 3795 for (i = 0; (size_t) i < re->shnum; i++) { 3796 s = &re->sl[i]; 3797 if (s->type != SHT_GROUP) 3798 continue; 3799 if (s->link >= re->shnum) 3800 continue; 3801 (void) elf_errno(); 3802 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3803 elferr = elf_errno(); 3804 if (elferr != 0) 3805 warnx("elf_getdata failed: %s", 3806 elf_errmsg(elferr)); 3807 continue; 3808 } 3809 if (d->d_size <= 0) 3810 continue; 3811 3812 w = d->d_buf; 3813 3814 /* We only support COMDAT section. */ 3815 #ifndef GRP_COMDAT 3816 #define GRP_COMDAT 0x1 3817 #endif 3818 if ((*w++ & GRP_COMDAT) == 0) 3819 return; 3820 3821 if (s->entsize == 0) 3822 s->entsize = 4; 3823 3824 symname = get_symbol_name(re, s->link, s->info); 3825 n = s->sz / s->entsize; 3826 if (n-- < 1) 3827 return; 3828 3829 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 3830 " sections:\n", i, s->name, symname, (uintmax_t)n); 3831 printf(" %-10.10s %s\n", "[Index]", "Name"); 3832 for (j = 0; (size_t) j < n; j++, w++) { 3833 if (*w >= re->shnum) { 3834 warnx("invalid section index: %u", *w); 3835 continue; 3836 } 3837 printf(" [%5u] %s\n", *w, re->sl[*w].name); 3838 } 3839 } 3840 } 3841 3842 static uint8_t * 3843 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 3844 { 3845 uint64_t val; 3846 3847 /* 3848 * According to ARM EABI: For tags > 32, even numbered tags have 3849 * a ULEB128 param and odd numbered ones have NUL-terminated 3850 * string param. This rule probably also applies for tags <= 32 3851 * if the object arch is not ARM. 3852 */ 3853 3854 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3855 3856 if (tag & 1) { 3857 printf("%s\n", (char *) p); 3858 p += strlen((char *) p) + 1; 3859 } else { 3860 val = _decode_uleb128(&p, pe); 3861 printf("%ju\n", (uintmax_t) val); 3862 } 3863 3864 return (p); 3865 } 3866 3867 static uint8_t * 3868 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 3869 { 3870 uint64_t val; 3871 3872 val = _decode_uleb128(&p, pe); 3873 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 3874 p += strlen((char *) p) + 1; 3875 3876 return (p); 3877 } 3878 3879 static void 3880 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3881 { 3882 uint64_t tag, val; 3883 size_t i; 3884 int found, desc; 3885 3886 (void) re; 3887 3888 while (p < pe) { 3889 tag = _decode_uleb128(&p, pe); 3890 found = desc = 0; 3891 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3892 i++) { 3893 if (tag == aeabi_tags[i].tag) { 3894 found = 1; 3895 printf(" %s: ", aeabi_tags[i].s_tag); 3896 if (aeabi_tags[i].get_desc) { 3897 desc = 1; 3898 val = _decode_uleb128(&p, pe); 3899 printf("%s\n", 3900 aeabi_tags[i].get_desc(val)); 3901 } 3902 break; 3903 } 3904 if (tag < aeabi_tags[i].tag) 3905 break; 3906 } 3907 if (!found) { 3908 p = dump_unknown_tag(tag, p, pe); 3909 continue; 3910 } 3911 if (desc) 3912 continue; 3913 3914 switch (tag) { 3915 case 4: /* Tag_CPU_raw_name */ 3916 case 5: /* Tag_CPU_name */ 3917 case 67: /* Tag_conformance */ 3918 printf("%s\n", (char *) p); 3919 p += strlen((char *) p) + 1; 3920 break; 3921 case 32: /* Tag_compatibility */ 3922 p = dump_compatibility_tag(p, pe); 3923 break; 3924 case 64: /* Tag_nodefaults */ 3925 /* ignored, written as 0. */ 3926 (void) _decode_uleb128(&p, pe); 3927 printf("True\n"); 3928 break; 3929 case 65: /* Tag_also_compatible_with */ 3930 val = _decode_uleb128(&p, pe); 3931 /* Must be Tag_CPU_arch */ 3932 if (val != 6) { 3933 printf("unknown\n"); 3934 break; 3935 } 3936 val = _decode_uleb128(&p, pe); 3937 printf("%s\n", aeabi_cpu_arch(val)); 3938 /* Skip NUL terminator. */ 3939 p++; 3940 break; 3941 default: 3942 putchar('\n'); 3943 break; 3944 } 3945 } 3946 } 3947 3948 #ifndef Tag_GNU_MIPS_ABI_FP 3949 #define Tag_GNU_MIPS_ABI_FP 4 3950 #endif 3951 3952 static void 3953 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3954 { 3955 uint64_t tag, val; 3956 3957 (void) re; 3958 3959 while (p < pe) { 3960 tag = _decode_uleb128(&p, pe); 3961 switch (tag) { 3962 case Tag_GNU_MIPS_ABI_FP: 3963 val = _decode_uleb128(&p, pe); 3964 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3965 break; 3966 case 32: /* Tag_compatibility */ 3967 p = dump_compatibility_tag(p, pe); 3968 break; 3969 default: 3970 p = dump_unknown_tag(tag, p, pe); 3971 break; 3972 } 3973 } 3974 } 3975 3976 #ifndef Tag_GNU_Power_ABI_FP 3977 #define Tag_GNU_Power_ABI_FP 4 3978 #endif 3979 3980 #ifndef Tag_GNU_Power_ABI_Vector 3981 #define Tag_GNU_Power_ABI_Vector 8 3982 #endif 3983 3984 static void 3985 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 3986 { 3987 uint64_t tag, val; 3988 3989 while (p < pe) { 3990 tag = _decode_uleb128(&p, pe); 3991 switch (tag) { 3992 case Tag_GNU_Power_ABI_FP: 3993 val = _decode_uleb128(&p, pe); 3994 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 3995 break; 3996 case Tag_GNU_Power_ABI_Vector: 3997 val = _decode_uleb128(&p, pe); 3998 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 3999 ppc_abi_vector(val)); 4000 break; 4001 case 32: /* Tag_compatibility */ 4002 p = dump_compatibility_tag(p, pe); 4003 break; 4004 default: 4005 p = dump_unknown_tag(tag, p, pe); 4006 break; 4007 } 4008 } 4009 } 4010 4011 static void 4012 dump_attributes(struct readelf *re) 4013 { 4014 struct section *s; 4015 Elf_Data *d; 4016 uint8_t *p, *pe, *sp; 4017 size_t len, seclen, nlen, sublen; 4018 uint64_t val; 4019 int tag, i, elferr; 4020 4021 for (i = 0; (size_t) i < re->shnum; i++) { 4022 s = &re->sl[i]; 4023 if (s->type != SHT_GNU_ATTRIBUTES && 4024 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4025 continue; 4026 (void) elf_errno(); 4027 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4028 elferr = elf_errno(); 4029 if (elferr != 0) 4030 warnx("elf_rawdata failed: %s", 4031 elf_errmsg(elferr)); 4032 continue; 4033 } 4034 if (d->d_size <= 0) 4035 continue; 4036 p = d->d_buf; 4037 pe = p + d->d_size; 4038 if (*p != 'A') { 4039 printf("Unknown Attribute Section Format: %c\n", 4040 (char) *p); 4041 continue; 4042 } 4043 len = d->d_size - 1; 4044 p++; 4045 while (len > 0) { 4046 if (len < 4) { 4047 warnx("truncated attribute section length"); 4048 return; 4049 } 4050 seclen = re->dw_decode(&p, 4); 4051 if (seclen > len) { 4052 warnx("invalid attribute section length"); 4053 return; 4054 } 4055 len -= seclen; 4056 nlen = strlen((char *) p) + 1; 4057 if (nlen + 4 > seclen) { 4058 warnx("invalid attribute section name"); 4059 return; 4060 } 4061 printf("Attribute Section: %s\n", (char *) p); 4062 p += nlen; 4063 seclen -= nlen + 4; 4064 while (seclen > 0) { 4065 sp = p; 4066 tag = *p++; 4067 sublen = re->dw_decode(&p, 4); 4068 if (sublen > seclen) { 4069 warnx("invalid attribute sub-section" 4070 " length"); 4071 return; 4072 } 4073 seclen -= sublen; 4074 printf("%s", top_tag(tag)); 4075 if (tag == 2 || tag == 3) { 4076 putchar(':'); 4077 for (;;) { 4078 val = _decode_uleb128(&p, pe); 4079 if (val == 0) 4080 break; 4081 printf(" %ju", (uintmax_t) val); 4082 } 4083 } 4084 putchar('\n'); 4085 if (re->ehdr.e_machine == EM_ARM && 4086 s->type == SHT_LOPROC + 3) 4087 dump_arm_attributes(re, p, sp + sublen); 4088 else if (re->ehdr.e_machine == EM_MIPS || 4089 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4090 dump_mips_attributes(re, p, 4091 sp + sublen); 4092 else if (re->ehdr.e_machine == EM_PPC) 4093 dump_ppc_attributes(p, sp + sublen); 4094 p = sp + sublen; 4095 } 4096 } 4097 } 4098 } 4099 4100 static void 4101 dump_mips_specific_info(struct readelf *re) 4102 { 4103 struct section *s; 4104 int i; 4105 4106 s = NULL; 4107 for (i = 0; (size_t) i < re->shnum; i++) { 4108 s = &re->sl[i]; 4109 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4110 (s->type == SHT_MIPS_OPTIONS))) { 4111 dump_mips_options(re, s); 4112 } 4113 } 4114 4115 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4116 (s->type == SHT_MIPS_ABIFLAGS))) 4117 dump_mips_abiflags(re, s); 4118 4119 /* 4120 * Dump .reginfo if present (although it will be ignored by an OS if a 4121 * .MIPS.options section is present, according to SGI mips64 spec). 4122 */ 4123 for (i = 0; (size_t) i < re->shnum; i++) { 4124 s = &re->sl[i]; 4125 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4126 (s->type == SHT_MIPS_REGINFO))) 4127 dump_mips_reginfo(re, s); 4128 } 4129 } 4130 4131 static void 4132 dump_mips_abiflags(struct readelf *re, struct section *s) 4133 { 4134 Elf_Data *d; 4135 uint8_t *p; 4136 int elferr; 4137 uint32_t isa_ext, ases, flags1, flags2; 4138 uint16_t version; 4139 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4140 4141 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4142 elferr = elf_errno(); 4143 if (elferr != 0) 4144 warnx("elf_rawdata failed: %s", 4145 elf_errmsg(elferr)); 4146 return; 4147 } 4148 if (d->d_size != 24) { 4149 warnx("invalid MIPS abiflags section size"); 4150 return; 4151 } 4152 4153 p = d->d_buf; 4154 version = re->dw_decode(&p, 2); 4155 printf("MIPS ABI Flags Version: %u", version); 4156 if (version != 0) { 4157 printf(" (unknown)\n\n"); 4158 return; 4159 } 4160 printf("\n\n"); 4161 4162 isa_level = re->dw_decode(&p, 1); 4163 isa_rev = re->dw_decode(&p, 1); 4164 gpr_size = re->dw_decode(&p, 1); 4165 cpr1_size = re->dw_decode(&p, 1); 4166 cpr2_size = re->dw_decode(&p, 1); 4167 fp_abi = re->dw_decode(&p, 1); 4168 isa_ext = re->dw_decode(&p, 4); 4169 ases = re->dw_decode(&p, 4); 4170 flags1 = re->dw_decode(&p, 4); 4171 flags2 = re->dw_decode(&p, 4); 4172 4173 printf("ISA: "); 4174 if (isa_rev <= 1) 4175 printf("MIPS%u\n", isa_level); 4176 else 4177 printf("MIPS%ur%u\n", isa_level, isa_rev); 4178 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4179 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4180 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4181 printf("FP ABI: "); 4182 switch (fp_abi) { 4183 case 3: 4184 printf("Soft float"); 4185 break; 4186 default: 4187 printf("%u", fp_abi); 4188 break; 4189 } 4190 printf("\nISA Extension: %u\n", isa_ext); 4191 printf("ASEs: %u\n", ases); 4192 printf("FLAGS 1: %08x\n", flags1); 4193 printf("FLAGS 2: %08x\n", flags2); 4194 } 4195 4196 static int 4197 get_mips_register_size(uint8_t flag) 4198 { 4199 switch (flag) { 4200 case 0: return 0; 4201 case 1: return 32; 4202 case 2: return 64; 4203 case 3: return 128; 4204 default: return -1; 4205 } 4206 } 4207 static void 4208 dump_mips_reginfo(struct readelf *re, struct section *s) 4209 { 4210 Elf_Data *d; 4211 int elferr, len; 4212 4213 (void) elf_errno(); 4214 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4215 elferr = elf_errno(); 4216 if (elferr != 0) 4217 warnx("elf_rawdata failed: %s", 4218 elf_errmsg(elferr)); 4219 return; 4220 } 4221 if (d->d_size <= 0) 4222 return; 4223 if (!get_ent_count(s, &len)) 4224 return; 4225 4226 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4227 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4228 } 4229 4230 static void 4231 dump_mips_options(struct readelf *re, struct section *s) 4232 { 4233 Elf_Data *d; 4234 uint32_t info; 4235 uint16_t sndx; 4236 uint8_t *p, *pe; 4237 uint8_t kind, size; 4238 int elferr; 4239 4240 (void) elf_errno(); 4241 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4242 elferr = elf_errno(); 4243 if (elferr != 0) 4244 warnx("elf_rawdata failed: %s", 4245 elf_errmsg(elferr)); 4246 return; 4247 } 4248 if (d->d_size == 0) 4249 return; 4250 4251 printf("\nSection %s contains:\n", s->name); 4252 p = d->d_buf; 4253 pe = p + d->d_size; 4254 while (p < pe) { 4255 if (pe - p < 8) { 4256 warnx("Truncated MIPS option header"); 4257 return; 4258 } 4259 kind = re->dw_decode(&p, 1); 4260 size = re->dw_decode(&p, 1); 4261 sndx = re->dw_decode(&p, 2); 4262 info = re->dw_decode(&p, 4); 4263 if (size < 8 || size - 8 > pe - p) { 4264 warnx("Malformed MIPS option header"); 4265 return; 4266 } 4267 size -= 8; 4268 switch (kind) { 4269 case ODK_REGINFO: 4270 dump_mips_odk_reginfo(re, p, size); 4271 break; 4272 case ODK_EXCEPTIONS: 4273 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4274 info & OEX_FPU_MIN); 4275 printf("%11.11s FPU_MAX: %#x\n", "", 4276 info & OEX_FPU_MAX); 4277 dump_mips_option_flags("", mips_exceptions_option, 4278 info); 4279 break; 4280 case ODK_PAD: 4281 printf(" %-10.10s section: %ju\n", "OPAD", 4282 (uintmax_t) sndx); 4283 dump_mips_option_flags("", mips_pad_option, info); 4284 break; 4285 case ODK_HWPATCH: 4286 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4287 info); 4288 break; 4289 case ODK_HWAND: 4290 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4291 break; 4292 case ODK_HWOR: 4293 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4294 break; 4295 case ODK_FILL: 4296 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4297 break; 4298 case ODK_TAGS: 4299 printf(" %-10.10s\n", "TAGS"); 4300 break; 4301 case ODK_GP_GROUP: 4302 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4303 info & 0xFFFF); 4304 if (info & 0x10000) 4305 printf(" %-10.10s GP group is " 4306 "self-contained\n", ""); 4307 break; 4308 case ODK_IDENT: 4309 printf(" %-10.10s default GP group number: %#x\n", 4310 "IDENT", info & 0xFFFF); 4311 if (info & 0x10000) 4312 printf(" %-10.10s default GP group is " 4313 "self-contained\n", ""); 4314 break; 4315 case ODK_PAGESIZE: 4316 printf(" %-10.10s\n", "PAGESIZE"); 4317 break; 4318 default: 4319 break; 4320 } 4321 p += size; 4322 } 4323 } 4324 4325 static void 4326 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4327 { 4328 int first; 4329 4330 first = 1; 4331 for (; opt->desc != NULL; opt++) { 4332 if (info & opt->flag) { 4333 printf(" %-10.10s %s\n", first ? name : "", 4334 opt->desc); 4335 first = 0; 4336 } 4337 } 4338 } 4339 4340 static void 4341 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4342 { 4343 uint32_t ri_gprmask; 4344 uint32_t ri_cprmask[4]; 4345 uint64_t ri_gp_value; 4346 uint8_t *pe; 4347 int i; 4348 4349 pe = p + sz; 4350 while (p < pe) { 4351 ri_gprmask = re->dw_decode(&p, 4); 4352 /* Skip ri_pad padding field for mips64. */ 4353 if (re->ec == ELFCLASS64) 4354 re->dw_decode(&p, 4); 4355 for (i = 0; i < 4; i++) 4356 ri_cprmask[i] = re->dw_decode(&p, 4); 4357 if (re->ec == ELFCLASS32) 4358 ri_gp_value = re->dw_decode(&p, 4); 4359 else 4360 ri_gp_value = re->dw_decode(&p, 8); 4361 printf(" %s ", option_kind(ODK_REGINFO)); 4362 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4363 for (i = 0; i < 4; i++) 4364 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4365 (uintmax_t) ri_cprmask[i]); 4366 printf("%12.12s", ""); 4367 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4368 } 4369 } 4370 4371 static void 4372 dump_arch_specific_info(struct readelf *re) 4373 { 4374 4375 dump_liblist(re); 4376 dump_attributes(re); 4377 4378 switch (re->ehdr.e_machine) { 4379 case EM_MIPS: 4380 case EM_MIPS_RS3_LE: 4381 dump_mips_specific_info(re); 4382 default: 4383 break; 4384 } 4385 } 4386 4387 static const char * 4388 dwarf_regname(struct readelf *re, unsigned int num) 4389 { 4390 static char rx[32]; 4391 const char *rn; 4392 4393 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4394 return (rn); 4395 4396 snprintf(rx, sizeof(rx), "r%u", num); 4397 4398 return (rx); 4399 } 4400 4401 static void 4402 dump_dwarf_line(struct readelf *re) 4403 { 4404 struct section *s; 4405 Dwarf_Die die; 4406 Dwarf_Error de; 4407 Dwarf_Half tag, version, pointer_size; 4408 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4409 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4410 Elf_Data *d; 4411 char *pn; 4412 uint64_t address, file, line, column, isa, opsize, udelta; 4413 int64_t sdelta; 4414 uint8_t *p, *pe; 4415 int8_t lbase; 4416 int i, is_stmt, dwarf_size, elferr, ret; 4417 4418 printf("\nDump of debug contents of section .debug_line:\n"); 4419 4420 s = NULL; 4421 for (i = 0; (size_t) i < re->shnum; i++) { 4422 s = &re->sl[i]; 4423 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4424 break; 4425 } 4426 if ((size_t) i >= re->shnum) 4427 return; 4428 4429 (void) elf_errno(); 4430 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4431 elferr = elf_errno(); 4432 if (elferr != 0) 4433 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4434 return; 4435 } 4436 if (d->d_size <= 0) 4437 return; 4438 4439 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4440 NULL, &de)) == DW_DLV_OK) { 4441 die = NULL; 4442 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4443 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4444 warnx("dwarf_tag failed: %s", 4445 dwarf_errmsg(de)); 4446 return; 4447 } 4448 /* XXX: What about DW_TAG_partial_unit? */ 4449 if (tag == DW_TAG_compile_unit) 4450 break; 4451 } 4452 if (die == NULL) { 4453 warnx("could not find DW_TAG_compile_unit die"); 4454 return; 4455 } 4456 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4457 &de) != DW_DLV_OK) 4458 continue; 4459 4460 length = re->dw_read(d, &offset, 4); 4461 if (length == 0xffffffff) { 4462 dwarf_size = 8; 4463 length = re->dw_read(d, &offset, 8); 4464 } else 4465 dwarf_size = 4; 4466 4467 if (length > d->d_size - offset) { 4468 warnx("invalid .dwarf_line section"); 4469 continue; 4470 } 4471 4472 endoff = offset + length; 4473 pe = (uint8_t *) d->d_buf + endoff; 4474 version = re->dw_read(d, &offset, 2); 4475 hdrlen = re->dw_read(d, &offset, dwarf_size); 4476 minlen = re->dw_read(d, &offset, 1); 4477 defstmt = re->dw_read(d, &offset, 1); 4478 lbase = re->dw_read(d, &offset, 1); 4479 lrange = re->dw_read(d, &offset, 1); 4480 opbase = re->dw_read(d, &offset, 1); 4481 4482 printf("\n"); 4483 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4484 printf(" DWARF version:\t\t%u\n", version); 4485 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4486 printf(" Minimum Instruction Length:\t%u\n", minlen); 4487 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4488 printf(" Line Base:\t\t\t%d\n", lbase); 4489 printf(" Line Range:\t\t\t%u\n", lrange); 4490 printf(" Opcode Base:\t\t\t%u\n", opbase); 4491 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4492 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4493 4494 printf("\n"); 4495 printf(" Opcodes:\n"); 4496 for (i = 1; i < opbase; i++) { 4497 oplen = re->dw_read(d, &offset, 1); 4498 printf(" Opcode %d has %u args\n", i, oplen); 4499 } 4500 4501 printf("\n"); 4502 printf(" The Directory Table:\n"); 4503 p = (uint8_t *) d->d_buf + offset; 4504 while (*p != '\0') { 4505 printf(" %s\n", (char *) p); 4506 p += strlen((char *) p) + 1; 4507 } 4508 4509 p++; 4510 printf("\n"); 4511 printf(" The File Name Table:\n"); 4512 printf(" Entry\tDir\tTime\tSize\tName\n"); 4513 i = 0; 4514 while (*p != '\0') { 4515 i++; 4516 pn = (char *) p; 4517 p += strlen(pn) + 1; 4518 dirndx = _decode_uleb128(&p, pe); 4519 mtime = _decode_uleb128(&p, pe); 4520 fsize = _decode_uleb128(&p, pe); 4521 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4522 (uintmax_t) dirndx, (uintmax_t) mtime, 4523 (uintmax_t) fsize, pn); 4524 } 4525 4526 #define RESET_REGISTERS \ 4527 do { \ 4528 address = 0; \ 4529 file = 1; \ 4530 line = 1; \ 4531 column = 0; \ 4532 is_stmt = defstmt; \ 4533 } while(0) 4534 4535 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4536 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4537 4538 p++; 4539 printf("\n"); 4540 printf(" Line Number Statements:\n"); 4541 4542 RESET_REGISTERS; 4543 4544 while (p < pe) { 4545 4546 if (*p == 0) { 4547 /* 4548 * Extended Opcodes. 4549 */ 4550 p++; 4551 opsize = _decode_uleb128(&p, pe); 4552 printf(" Extended opcode %u: ", *p); 4553 switch (*p) { 4554 case DW_LNE_end_sequence: 4555 p++; 4556 RESET_REGISTERS; 4557 printf("End of Sequence\n"); 4558 break; 4559 case DW_LNE_set_address: 4560 p++; 4561 address = re->dw_decode(&p, 4562 pointer_size); 4563 printf("set Address to %#jx\n", 4564 (uintmax_t) address); 4565 break; 4566 case DW_LNE_define_file: 4567 p++; 4568 pn = (char *) p; 4569 p += strlen(pn) + 1; 4570 dirndx = _decode_uleb128(&p, pe); 4571 mtime = _decode_uleb128(&p, pe); 4572 fsize = _decode_uleb128(&p, pe); 4573 printf("define new file: %s\n", pn); 4574 break; 4575 default: 4576 /* Unrecognized extened opcodes. */ 4577 p += opsize; 4578 printf("unknown opcode\n"); 4579 } 4580 } else if (*p > 0 && *p < opbase) { 4581 /* 4582 * Standard Opcodes. 4583 */ 4584 switch(*p++) { 4585 case DW_LNS_copy: 4586 printf(" Copy\n"); 4587 break; 4588 case DW_LNS_advance_pc: 4589 udelta = _decode_uleb128(&p, pe) * 4590 minlen; 4591 address += udelta; 4592 printf(" Advance PC by %ju to %#jx\n", 4593 (uintmax_t) udelta, 4594 (uintmax_t) address); 4595 break; 4596 case DW_LNS_advance_line: 4597 sdelta = _decode_sleb128(&p, pe); 4598 line += sdelta; 4599 printf(" Advance Line by %jd to %ju\n", 4600 (intmax_t) sdelta, 4601 (uintmax_t) line); 4602 break; 4603 case DW_LNS_set_file: 4604 file = _decode_uleb128(&p, pe); 4605 printf(" Set File to %ju\n", 4606 (uintmax_t) file); 4607 break; 4608 case DW_LNS_set_column: 4609 column = _decode_uleb128(&p, pe); 4610 printf(" Set Column to %ju\n", 4611 (uintmax_t) column); 4612 break; 4613 case DW_LNS_negate_stmt: 4614 is_stmt = !is_stmt; 4615 printf(" Set is_stmt to %d\n", is_stmt); 4616 break; 4617 case DW_LNS_set_basic_block: 4618 printf(" Set basic block flag\n"); 4619 break; 4620 case DW_LNS_const_add_pc: 4621 address += ADDRESS(255); 4622 printf(" Advance PC by constant %ju" 4623 " to %#jx\n", 4624 (uintmax_t) ADDRESS(255), 4625 (uintmax_t) address); 4626 break; 4627 case DW_LNS_fixed_advance_pc: 4628 udelta = re->dw_decode(&p, 2); 4629 address += udelta; 4630 printf(" Advance PC by fixed value " 4631 "%ju to %#jx\n", 4632 (uintmax_t) udelta, 4633 (uintmax_t) address); 4634 break; 4635 case DW_LNS_set_prologue_end: 4636 printf(" Set prologue end flag\n"); 4637 break; 4638 case DW_LNS_set_epilogue_begin: 4639 printf(" Set epilogue begin flag\n"); 4640 break; 4641 case DW_LNS_set_isa: 4642 isa = _decode_uleb128(&p, pe); 4643 printf(" Set isa to %ju\n", 4644 (uintmax_t) isa); 4645 break; 4646 default: 4647 /* Unrecognized extended opcodes. */ 4648 printf(" Unknown extended opcode %u\n", 4649 *(p - 1)); 4650 break; 4651 } 4652 4653 } else { 4654 /* 4655 * Special Opcodes. 4656 */ 4657 line += LINE(*p); 4658 address += ADDRESS(*p); 4659 printf(" Special opcode %u: advance Address " 4660 "by %ju to %#jx and Line by %jd to %ju\n", 4661 *p - opbase, (uintmax_t) ADDRESS(*p), 4662 (uintmax_t) address, (intmax_t) LINE(*p), 4663 (uintmax_t) line); 4664 p++; 4665 } 4666 4667 4668 } 4669 } 4670 if (ret == DW_DLV_ERROR) 4671 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4672 4673 #undef RESET_REGISTERS 4674 #undef LINE 4675 #undef ADDRESS 4676 } 4677 4678 static void 4679 dump_dwarf_line_decoded(struct readelf *re) 4680 { 4681 Dwarf_Die die; 4682 Dwarf_Line *linebuf, ln; 4683 Dwarf_Addr lineaddr; 4684 Dwarf_Signed linecount, srccount; 4685 Dwarf_Unsigned lineno, fn; 4686 Dwarf_Error de; 4687 const char *dir, *file; 4688 char **srcfiles; 4689 int i, ret; 4690 4691 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4692 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4693 NULL, &de)) == DW_DLV_OK) { 4694 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4695 continue; 4696 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4697 DW_DLV_OK) 4698 file = NULL; 4699 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4700 DW_DLV_OK) 4701 dir = NULL; 4702 printf("CU: "); 4703 if (dir && file) 4704 printf("%s/", dir); 4705 if (file) 4706 printf("%s", file); 4707 putchar('\n'); 4708 printf("%-37s %11s %s\n", "Filename", "Line Number", 4709 "Starting Address"); 4710 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4711 continue; 4712 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4713 continue; 4714 for (i = 0; i < linecount; i++) { 4715 ln = linebuf[i]; 4716 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4717 continue; 4718 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4719 continue; 4720 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4721 continue; 4722 printf("%-37s %11ju %#18jx\n", 4723 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4724 (uintmax_t) lineaddr); 4725 } 4726 putchar('\n'); 4727 } 4728 } 4729 4730 static void 4731 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4732 { 4733 Dwarf_Attribute *attr_list; 4734 Dwarf_Die ret_die; 4735 Dwarf_Off dieoff, cuoff, culen, attroff; 4736 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4737 Dwarf_Signed attr_count, v_sdata; 4738 Dwarf_Off v_off; 4739 Dwarf_Addr v_addr; 4740 Dwarf_Half tag, attr, form; 4741 Dwarf_Block *v_block; 4742 Dwarf_Bool v_bool, is_info; 4743 Dwarf_Sig8 v_sig8; 4744 Dwarf_Error de; 4745 Dwarf_Ptr v_expr; 4746 const char *tag_str, *attr_str, *ate_str, *lang_str; 4747 char unk_tag[32], unk_attr[32]; 4748 char *v_str; 4749 uint8_t *b, *p; 4750 int i, j, abc, ret; 4751 4752 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4753 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4754 goto cont_search; 4755 } 4756 4757 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4758 4759 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4760 warnx("dwarf_die_CU_offset_range failed: %s", 4761 dwarf_errmsg(de)); 4762 cuoff = 0; 4763 } 4764 4765 abc = dwarf_die_abbrev_code(die); 4766 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4767 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4768 goto cont_search; 4769 } 4770 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4771 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4772 tag_str = unk_tag; 4773 } 4774 4775 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4776 4777 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4778 DW_DLV_OK) { 4779 if (ret == DW_DLV_ERROR) 4780 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4781 goto cont_search; 4782 } 4783 4784 for (i = 0; i < attr_count; i++) { 4785 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4786 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4787 continue; 4788 } 4789 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4790 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4791 continue; 4792 } 4793 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4794 snprintf(unk_attr, sizeof(unk_attr), 4795 "[Unknown AT: %#x]", attr); 4796 attr_str = unk_attr; 4797 } 4798 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4799 DW_DLV_OK) { 4800 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4801 attroff = 0; 4802 } 4803 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4804 switch (form) { 4805 case DW_FORM_ref_addr: 4806 case DW_FORM_sec_offset: 4807 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4808 DW_DLV_OK) { 4809 warnx("dwarf_global_formref failed: %s", 4810 dwarf_errmsg(de)); 4811 continue; 4812 } 4813 if (form == DW_FORM_ref_addr) 4814 printf("<0x%jx>", (uintmax_t) v_off); 4815 else 4816 printf("0x%jx", (uintmax_t) v_off); 4817 break; 4818 4819 case DW_FORM_ref1: 4820 case DW_FORM_ref2: 4821 case DW_FORM_ref4: 4822 case DW_FORM_ref8: 4823 case DW_FORM_ref_udata: 4824 if (dwarf_formref(attr_list[i], &v_off, &de) != 4825 DW_DLV_OK) { 4826 warnx("dwarf_formref failed: %s", 4827 dwarf_errmsg(de)); 4828 continue; 4829 } 4830 v_off += cuoff; 4831 printf("<0x%jx>", (uintmax_t) v_off); 4832 break; 4833 4834 case DW_FORM_addr: 4835 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4836 DW_DLV_OK) { 4837 warnx("dwarf_formaddr failed: %s", 4838 dwarf_errmsg(de)); 4839 continue; 4840 } 4841 printf("%#jx", (uintmax_t) v_addr); 4842 break; 4843 4844 case DW_FORM_data1: 4845 case DW_FORM_data2: 4846 case DW_FORM_data4: 4847 case DW_FORM_data8: 4848 case DW_FORM_udata: 4849 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4850 DW_DLV_OK) { 4851 warnx("dwarf_formudata failed: %s", 4852 dwarf_errmsg(de)); 4853 continue; 4854 } 4855 if (attr == DW_AT_high_pc) 4856 printf("0x%jx", (uintmax_t) v_udata); 4857 else 4858 printf("%ju", (uintmax_t) v_udata); 4859 break; 4860 4861 case DW_FORM_sdata: 4862 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4863 DW_DLV_OK) { 4864 warnx("dwarf_formudata failed: %s", 4865 dwarf_errmsg(de)); 4866 continue; 4867 } 4868 printf("%jd", (intmax_t) v_sdata); 4869 break; 4870 4871 case DW_FORM_flag: 4872 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4873 DW_DLV_OK) { 4874 warnx("dwarf_formflag failed: %s", 4875 dwarf_errmsg(de)); 4876 continue; 4877 } 4878 printf("%jd", (intmax_t) v_bool); 4879 break; 4880 4881 case DW_FORM_flag_present: 4882 putchar('1'); 4883 break; 4884 4885 case DW_FORM_string: 4886 case DW_FORM_strp: 4887 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4888 DW_DLV_OK) { 4889 warnx("dwarf_formstring failed: %s", 4890 dwarf_errmsg(de)); 4891 continue; 4892 } 4893 if (form == DW_FORM_string) 4894 printf("%s", v_str); 4895 else 4896 printf("(indirect string) %s", v_str); 4897 break; 4898 4899 case DW_FORM_block: 4900 case DW_FORM_block1: 4901 case DW_FORM_block2: 4902 case DW_FORM_block4: 4903 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4904 DW_DLV_OK) { 4905 warnx("dwarf_formblock failed: %s", 4906 dwarf_errmsg(de)); 4907 continue; 4908 } 4909 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4910 b = v_block->bl_data; 4911 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4912 printf(" %x", b[j]); 4913 printf("\t("); 4914 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4915 putchar(')'); 4916 break; 4917 4918 case DW_FORM_exprloc: 4919 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 4920 &de) != DW_DLV_OK) { 4921 warnx("dwarf_formexprloc failed: %s", 4922 dwarf_errmsg(de)); 4923 continue; 4924 } 4925 printf("%ju byte block:", (uintmax_t) v_udata); 4926 b = v_expr; 4927 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 4928 printf(" %x", b[j]); 4929 printf("\t("); 4930 dump_dwarf_block(re, v_expr, v_udata); 4931 putchar(')'); 4932 break; 4933 4934 case DW_FORM_ref_sig8: 4935 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 4936 DW_DLV_OK) { 4937 warnx("dwarf_formsig8 failed: %s", 4938 dwarf_errmsg(de)); 4939 continue; 4940 } 4941 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 4942 v_sig = re->dw_decode(&p, 8); 4943 printf("signature: 0x%jx", (uintmax_t) v_sig); 4944 } 4945 switch (attr) { 4946 case DW_AT_encoding: 4947 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4948 DW_DLV_OK) 4949 break; 4950 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4951 ate_str = "DW_ATE_UNKNOWN"; 4952 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4953 break; 4954 4955 case DW_AT_language: 4956 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 4957 DW_DLV_OK) 4958 break; 4959 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 4960 break; 4961 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 4962 break; 4963 4964 case DW_AT_location: 4965 case DW_AT_string_length: 4966 case DW_AT_return_addr: 4967 case DW_AT_data_member_location: 4968 case DW_AT_frame_base: 4969 case DW_AT_segment: 4970 case DW_AT_static_link: 4971 case DW_AT_use_location: 4972 case DW_AT_vtable_elem_location: 4973 switch (form) { 4974 case DW_FORM_data4: 4975 case DW_FORM_data8: 4976 case DW_FORM_sec_offset: 4977 printf("\t(location list)"); 4978 break; 4979 default: 4980 break; 4981 } 4982 4983 default: 4984 break; 4985 } 4986 putchar('\n'); 4987 } 4988 4989 4990 cont_search: 4991 /* Search children. */ 4992 ret = dwarf_child(die, &ret_die, &de); 4993 if (ret == DW_DLV_ERROR) 4994 warnx("dwarf_child: %s", dwarf_errmsg(de)); 4995 else if (ret == DW_DLV_OK) 4996 dump_dwarf_die(re, ret_die, level + 1); 4997 4998 /* Search sibling. */ 4999 is_info = dwarf_get_die_infotypes_flag(die); 5000 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5001 if (ret == DW_DLV_ERROR) 5002 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5003 else if (ret == DW_DLV_OK) 5004 dump_dwarf_die(re, ret_die, level); 5005 5006 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5007 } 5008 5009 static void 5010 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5011 Dwarf_Half ver) 5012 { 5013 5014 re->cu_psize = psize; 5015 re->cu_osize = osize; 5016 re->cu_ver = ver; 5017 } 5018 5019 static void 5020 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5021 { 5022 struct section *s; 5023 Dwarf_Die die; 5024 Dwarf_Error de; 5025 Dwarf_Half tag, version, pointer_size, off_size; 5026 Dwarf_Off cu_offset, cu_length; 5027 Dwarf_Off aboff; 5028 Dwarf_Unsigned typeoff; 5029 Dwarf_Sig8 sig8; 5030 Dwarf_Unsigned sig; 5031 uint8_t *p; 5032 const char *sn; 5033 int i, ret; 5034 5035 sn = is_info ? ".debug_info" : ".debug_types"; 5036 5037 s = NULL; 5038 for (i = 0; (size_t) i < re->shnum; i++) { 5039 s = &re->sl[i]; 5040 if (s->name != NULL && !strcmp(s->name, sn)) 5041 break; 5042 } 5043 if ((size_t) i >= re->shnum) 5044 return; 5045 5046 do { 5047 printf("\nDump of debug contents of section %s:\n", sn); 5048 5049 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5050 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5051 &typeoff, NULL, &de)) == DW_DLV_OK) { 5052 set_cu_context(re, pointer_size, off_size, version); 5053 die = NULL; 5054 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5055 &de) == DW_DLV_OK) { 5056 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5057 warnx("dwarf_tag failed: %s", 5058 dwarf_errmsg(de)); 5059 continue; 5060 } 5061 /* XXX: What about DW_TAG_partial_unit? */ 5062 if ((is_info && tag == DW_TAG_compile_unit) || 5063 (!is_info && tag == DW_TAG_type_unit)) 5064 break; 5065 } 5066 if (die == NULL && is_info) { 5067 warnx("could not find DW_TAG_compile_unit " 5068 "die"); 5069 continue; 5070 } else if (die == NULL && !is_info) { 5071 warnx("could not find DW_TAG_type_unit die"); 5072 continue; 5073 } 5074 5075 if (dwarf_die_CU_offset_range(die, &cu_offset, 5076 &cu_length, &de) != DW_DLV_OK) { 5077 warnx("dwarf_die_CU_offset failed: %s", 5078 dwarf_errmsg(de)); 5079 continue; 5080 } 5081 5082 cu_length -= off_size == 4 ? 4 : 12; 5083 5084 sig = 0; 5085 if (!is_info) { 5086 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5087 sig = re->dw_decode(&p, 8); 5088 } 5089 5090 printf("\n Type Unit @ offset 0x%jx:\n", 5091 (uintmax_t) cu_offset); 5092 printf(" Length:\t\t%#jx (%d-bit)\n", 5093 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5094 printf(" Version:\t\t%u\n", version); 5095 printf(" Abbrev Offset:\t0x%jx\n", 5096 (uintmax_t) aboff); 5097 printf(" Pointer Size:\t%u\n", pointer_size); 5098 if (!is_info) { 5099 printf(" Signature:\t\t0x%016jx\n", 5100 (uintmax_t) sig); 5101 printf(" Type Offset:\t0x%jx\n", 5102 (uintmax_t) typeoff); 5103 } 5104 5105 dump_dwarf_die(re, die, 0); 5106 } 5107 if (ret == DW_DLV_ERROR) 5108 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5109 if (is_info) 5110 break; 5111 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5112 } 5113 5114 static void 5115 dump_dwarf_abbrev(struct readelf *re) 5116 { 5117 Dwarf_Abbrev ab; 5118 Dwarf_Off aboff, atoff; 5119 Dwarf_Unsigned length, attr_count; 5120 Dwarf_Signed flag, form; 5121 Dwarf_Half tag, attr; 5122 Dwarf_Error de; 5123 const char *tag_str, *attr_str, *form_str; 5124 char unk_tag[32], unk_attr[32], unk_form[32]; 5125 int i, j, ret; 5126 5127 printf("\nContents of section .debug_abbrev:\n\n"); 5128 5129 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5130 NULL, NULL, &de)) == DW_DLV_OK) { 5131 printf(" Number TAG\n"); 5132 i = 0; 5133 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5134 &attr_count, &de)) == DW_DLV_OK) { 5135 if (length == 1) { 5136 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5137 break; 5138 } 5139 aboff += length; 5140 printf("%4d", ++i); 5141 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5142 warnx("dwarf_get_abbrev_tag failed: %s", 5143 dwarf_errmsg(de)); 5144 goto next_abbrev; 5145 } 5146 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5147 snprintf(unk_tag, sizeof(unk_tag), 5148 "[Unknown Tag: %#x]", tag); 5149 tag_str = unk_tag; 5150 } 5151 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5152 DW_DLV_OK) { 5153 warnx("dwarf_get_abbrev_children_flag failed:" 5154 " %s", dwarf_errmsg(de)); 5155 goto next_abbrev; 5156 } 5157 printf(" %s %s\n", tag_str, 5158 flag ? "[has children]" : "[no children]"); 5159 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5160 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5161 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5162 warnx("dwarf_get_abbrev_entry failed:" 5163 " %s", dwarf_errmsg(de)); 5164 continue; 5165 } 5166 if (dwarf_get_AT_name(attr, &attr_str) != 5167 DW_DLV_OK) { 5168 snprintf(unk_attr, sizeof(unk_attr), 5169 "[Unknown AT: %#x]", attr); 5170 attr_str = unk_attr; 5171 } 5172 if (dwarf_get_FORM_name(form, &form_str) != 5173 DW_DLV_OK) { 5174 snprintf(unk_form, sizeof(unk_form), 5175 "[Unknown Form: %#x]", 5176 (Dwarf_Half) form); 5177 form_str = unk_form; 5178 } 5179 printf(" %-18s %s\n", attr_str, form_str); 5180 } 5181 next_abbrev: 5182 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5183 } 5184 if (ret != DW_DLV_OK) 5185 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5186 } 5187 if (ret == DW_DLV_ERROR) 5188 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5189 } 5190 5191 static void 5192 dump_dwarf_pubnames(struct readelf *re) 5193 { 5194 struct section *s; 5195 Dwarf_Off die_off; 5196 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5197 Dwarf_Signed cnt; 5198 Dwarf_Global *globs; 5199 Dwarf_Half nt_version; 5200 Dwarf_Error de; 5201 Elf_Data *d; 5202 char *glob_name; 5203 int i, dwarf_size, elferr; 5204 5205 printf("\nContents of the .debug_pubnames section:\n"); 5206 5207 s = NULL; 5208 for (i = 0; (size_t) i < re->shnum; i++) { 5209 s = &re->sl[i]; 5210 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5211 break; 5212 } 5213 if ((size_t) i >= re->shnum) 5214 return; 5215 5216 (void) elf_errno(); 5217 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5218 elferr = elf_errno(); 5219 if (elferr != 0) 5220 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5221 return; 5222 } 5223 if (d->d_size <= 0) 5224 return; 5225 5226 /* Read in .debug_pubnames section table header. */ 5227 offset = 0; 5228 length = re->dw_read(d, &offset, 4); 5229 if (length == 0xffffffff) { 5230 dwarf_size = 8; 5231 length = re->dw_read(d, &offset, 8); 5232 } else 5233 dwarf_size = 4; 5234 5235 if (length > d->d_size - offset) { 5236 warnx("invalid .dwarf_pubnames section"); 5237 return; 5238 } 5239 5240 nt_version = re->dw_read(d, &offset, 2); 5241 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5242 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5243 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5244 printf(" Version:\t\t\t\t%u\n", nt_version); 5245 printf(" Offset into .debug_info section:\t%ju\n", 5246 (uintmax_t) nt_cu_offset); 5247 printf(" Size of area in .debug_info section:\t%ju\n", 5248 (uintmax_t) nt_cu_length); 5249 5250 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5251 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5252 return; 5253 } 5254 5255 printf("\n Offset Name\n"); 5256 for (i = 0; i < cnt; i++) { 5257 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5258 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5259 continue; 5260 } 5261 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5262 DW_DLV_OK) { 5263 warnx("dwarf_global_die_offset failed: %s", 5264 dwarf_errmsg(de)); 5265 continue; 5266 } 5267 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5268 } 5269 } 5270 5271 static void 5272 dump_dwarf_aranges(struct readelf *re) 5273 { 5274 struct section *s; 5275 Dwarf_Arange *aranges; 5276 Dwarf_Addr start; 5277 Dwarf_Unsigned offset, length, as_cu_offset; 5278 Dwarf_Off die_off; 5279 Dwarf_Signed cnt; 5280 Dwarf_Half as_version, as_addrsz, as_segsz; 5281 Dwarf_Error de; 5282 Elf_Data *d; 5283 int i, dwarf_size, elferr; 5284 5285 printf("\nContents of section .debug_aranges:\n"); 5286 5287 s = NULL; 5288 for (i = 0; (size_t) i < re->shnum; i++) { 5289 s = &re->sl[i]; 5290 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5291 break; 5292 } 5293 if ((size_t) i >= re->shnum) 5294 return; 5295 5296 (void) elf_errno(); 5297 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5298 elferr = elf_errno(); 5299 if (elferr != 0) 5300 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5301 return; 5302 } 5303 if (d->d_size <= 0) 5304 return; 5305 5306 /* Read in the .debug_aranges section table header. */ 5307 offset = 0; 5308 length = re->dw_read(d, &offset, 4); 5309 if (length == 0xffffffff) { 5310 dwarf_size = 8; 5311 length = re->dw_read(d, &offset, 8); 5312 } else 5313 dwarf_size = 4; 5314 5315 if (length > d->d_size - offset) { 5316 warnx("invalid .dwarf_aranges section"); 5317 return; 5318 } 5319 5320 as_version = re->dw_read(d, &offset, 2); 5321 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5322 as_addrsz = re->dw_read(d, &offset, 1); 5323 as_segsz = re->dw_read(d, &offset, 1); 5324 5325 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5326 printf(" Version:\t\t\t%u\n", as_version); 5327 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5328 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5329 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5330 5331 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5332 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5333 return; 5334 } 5335 5336 printf("\n Address Length\n"); 5337 for (i = 0; i < cnt; i++) { 5338 if (dwarf_get_arange_info(aranges[i], &start, &length, 5339 &die_off, &de) != DW_DLV_OK) { 5340 warnx("dwarf_get_arange_info failed: %s", 5341 dwarf_errmsg(de)); 5342 continue; 5343 } 5344 printf(" %08jx %ju\n", (uintmax_t) start, 5345 (uintmax_t) length); 5346 } 5347 } 5348 5349 static void 5350 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5351 { 5352 Dwarf_Attribute *attr_list; 5353 Dwarf_Ranges *ranges; 5354 Dwarf_Die ret_die; 5355 Dwarf_Error de; 5356 Dwarf_Addr base0; 5357 Dwarf_Half attr; 5358 Dwarf_Signed attr_count, cnt; 5359 Dwarf_Unsigned off, bytecnt; 5360 int i, j, ret; 5361 5362 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5363 DW_DLV_OK) { 5364 if (ret == DW_DLV_ERROR) 5365 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5366 goto cont_search; 5367 } 5368 5369 for (i = 0; i < attr_count; i++) { 5370 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5371 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5372 continue; 5373 } 5374 if (attr != DW_AT_ranges) 5375 continue; 5376 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5377 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5378 continue; 5379 } 5380 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5381 &bytecnt, &de) != DW_DLV_OK) 5382 continue; 5383 base0 = base; 5384 for (j = 0; j < cnt; j++) { 5385 printf(" %08jx ", (uintmax_t) off); 5386 if (ranges[j].dwr_type == DW_RANGES_END) { 5387 printf("%s\n", "<End of list>"); 5388 continue; 5389 } else if (ranges[j].dwr_type == 5390 DW_RANGES_ADDRESS_SELECTION) { 5391 base0 = ranges[j].dwr_addr2; 5392 continue; 5393 } 5394 if (re->ec == ELFCLASS32) 5395 printf("%08jx %08jx\n", 5396 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5397 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5398 else 5399 printf("%016jx %016jx\n", 5400 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5401 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5402 } 5403 } 5404 5405 cont_search: 5406 /* Search children. */ 5407 ret = dwarf_child(die, &ret_die, &de); 5408 if (ret == DW_DLV_ERROR) 5409 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5410 else if (ret == DW_DLV_OK) 5411 dump_dwarf_ranges_foreach(re, ret_die, base); 5412 5413 /* Search sibling. */ 5414 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5415 if (ret == DW_DLV_ERROR) 5416 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5417 else if (ret == DW_DLV_OK) 5418 dump_dwarf_ranges_foreach(re, ret_die, base); 5419 } 5420 5421 static void 5422 dump_dwarf_ranges(struct readelf *re) 5423 { 5424 Dwarf_Ranges *ranges; 5425 Dwarf_Die die; 5426 Dwarf_Signed cnt; 5427 Dwarf_Unsigned bytecnt; 5428 Dwarf_Half tag; 5429 Dwarf_Error de; 5430 Dwarf_Unsigned lowpc; 5431 int ret; 5432 5433 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5434 DW_DLV_OK) 5435 return; 5436 5437 printf("Contents of the .debug_ranges section:\n\n"); 5438 if (re->ec == ELFCLASS32) 5439 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5440 else 5441 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5442 5443 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5444 NULL, &de)) == DW_DLV_OK) { 5445 die = NULL; 5446 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5447 continue; 5448 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5449 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5450 continue; 5451 } 5452 /* XXX: What about DW_TAG_partial_unit? */ 5453 lowpc = 0; 5454 if (tag == DW_TAG_compile_unit) { 5455 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5456 &de) != DW_DLV_OK) 5457 lowpc = 0; 5458 } 5459 5460 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5461 } 5462 putchar('\n'); 5463 } 5464 5465 static void 5466 dump_dwarf_macinfo(struct readelf *re) 5467 { 5468 Dwarf_Unsigned offset; 5469 Dwarf_Signed cnt; 5470 Dwarf_Macro_Details *md; 5471 Dwarf_Error de; 5472 const char *mi_str; 5473 char unk_mi[32]; 5474 int i; 5475 5476 #define _MAX_MACINFO_ENTRY 65535 5477 5478 printf("\nContents of section .debug_macinfo:\n\n"); 5479 5480 offset = 0; 5481 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5482 &cnt, &md, &de) == DW_DLV_OK) { 5483 for (i = 0; i < cnt; i++) { 5484 offset = md[i].dmd_offset + 1; 5485 if (md[i].dmd_type == 0) 5486 break; 5487 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5488 DW_DLV_OK) { 5489 snprintf(unk_mi, sizeof(unk_mi), 5490 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5491 mi_str = unk_mi; 5492 } 5493 printf(" %s", mi_str); 5494 switch (md[i].dmd_type) { 5495 case DW_MACINFO_define: 5496 case DW_MACINFO_undef: 5497 printf(" - lineno : %jd macro : %s\n", 5498 (intmax_t) md[i].dmd_lineno, 5499 md[i].dmd_macro); 5500 break; 5501 case DW_MACINFO_start_file: 5502 printf(" - lineno : %jd filenum : %jd\n", 5503 (intmax_t) md[i].dmd_lineno, 5504 (intmax_t) md[i].dmd_fileindex); 5505 break; 5506 default: 5507 putchar('\n'); 5508 break; 5509 } 5510 } 5511 } 5512 5513 #undef _MAX_MACINFO_ENTRY 5514 } 5515 5516 static void 5517 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5518 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5519 Dwarf_Debug dbg) 5520 { 5521 Dwarf_Frame_Op *oplist; 5522 Dwarf_Signed opcnt, delta; 5523 Dwarf_Small op; 5524 Dwarf_Error de; 5525 const char *op_str; 5526 char unk_op[32]; 5527 int i; 5528 5529 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5530 &opcnt, &de) != DW_DLV_OK) { 5531 warnx("dwarf_expand_frame_instructions failed: %s", 5532 dwarf_errmsg(de)); 5533 return; 5534 } 5535 5536 for (i = 0; i < opcnt; i++) { 5537 if (oplist[i].fp_base_op != 0) 5538 op = oplist[i].fp_base_op << 6; 5539 else 5540 op = oplist[i].fp_extended_op; 5541 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5542 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5543 op); 5544 op_str = unk_op; 5545 } 5546 printf(" %s", op_str); 5547 switch (op) { 5548 case DW_CFA_advance_loc: 5549 delta = oplist[i].fp_offset * caf; 5550 pc += delta; 5551 printf(": %ju to %08jx", (uintmax_t) delta, 5552 (uintmax_t) pc); 5553 break; 5554 case DW_CFA_offset: 5555 case DW_CFA_offset_extended: 5556 case DW_CFA_offset_extended_sf: 5557 delta = oplist[i].fp_offset * daf; 5558 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5559 dwarf_regname(re, oplist[i].fp_register), 5560 (intmax_t) delta); 5561 break; 5562 case DW_CFA_restore: 5563 printf(": r%u (%s)", oplist[i].fp_register, 5564 dwarf_regname(re, oplist[i].fp_register)); 5565 break; 5566 case DW_CFA_set_loc: 5567 pc = oplist[i].fp_offset; 5568 printf(": to %08jx", (uintmax_t) pc); 5569 break; 5570 case DW_CFA_advance_loc1: 5571 case DW_CFA_advance_loc2: 5572 case DW_CFA_advance_loc4: 5573 pc += oplist[i].fp_offset; 5574 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5575 (uintmax_t) pc); 5576 break; 5577 case DW_CFA_def_cfa: 5578 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5579 dwarf_regname(re, oplist[i].fp_register), 5580 (uintmax_t) oplist[i].fp_offset); 5581 break; 5582 case DW_CFA_def_cfa_sf: 5583 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5584 dwarf_regname(re, oplist[i].fp_register), 5585 (intmax_t) (oplist[i].fp_offset * daf)); 5586 break; 5587 case DW_CFA_def_cfa_register: 5588 printf(": r%u (%s)", oplist[i].fp_register, 5589 dwarf_regname(re, oplist[i].fp_register)); 5590 break; 5591 case DW_CFA_def_cfa_offset: 5592 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5593 break; 5594 case DW_CFA_def_cfa_offset_sf: 5595 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5596 break; 5597 default: 5598 break; 5599 } 5600 putchar('\n'); 5601 } 5602 5603 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5604 } 5605 5606 static char * 5607 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5608 { 5609 static char rs[16]; 5610 5611 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5612 snprintf(rs, sizeof(rs), "%c", 'u'); 5613 else if (reg == DW_FRAME_CFA_COL) 5614 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5615 else 5616 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5617 (intmax_t) off); 5618 5619 return (rs); 5620 } 5621 5622 static int 5623 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5624 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5625 { 5626 Dwarf_Regtable rt; 5627 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5628 Dwarf_Error de; 5629 char *vec; 5630 int i; 5631 5632 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5633 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5634 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5635 #define RT(x) rt.rules[(x)] 5636 5637 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5638 if (vec == NULL) 5639 err(EXIT_FAILURE, "calloc failed"); 5640 5641 pre_pc = ~((Dwarf_Addr) 0); 5642 cur_pc = pc; 5643 end_pc = pc + func_len; 5644 for (; cur_pc < end_pc; cur_pc++) { 5645 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5646 &de) != DW_DLV_OK) { 5647 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5648 dwarf_errmsg(de)); 5649 return (-1); 5650 } 5651 if (row_pc == pre_pc) 5652 continue; 5653 pre_pc = row_pc; 5654 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5655 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5656 BIT_SET(vec, i); 5657 } 5658 } 5659 5660 printf(" LOC CFA "); 5661 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5662 if (BIT_ISSET(vec, i)) { 5663 if ((Dwarf_Half) i == cie_ra) 5664 printf("ra "); 5665 else 5666 printf("%-5s", 5667 dwarf_regname(re, (unsigned int) i)); 5668 } 5669 } 5670 putchar('\n'); 5671 5672 pre_pc = ~((Dwarf_Addr) 0); 5673 cur_pc = pc; 5674 end_pc = pc + func_len; 5675 for (; cur_pc < end_pc; cur_pc++) { 5676 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5677 &de) != DW_DLV_OK) { 5678 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5679 dwarf_errmsg(de)); 5680 return (-1); 5681 } 5682 if (row_pc == pre_pc) 5683 continue; 5684 pre_pc = row_pc; 5685 printf("%08jx ", (uintmax_t) row_pc); 5686 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5687 RT(0).dw_offset)); 5688 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5689 if (BIT_ISSET(vec, i)) { 5690 printf("%-5s", get_regoff_str(re, 5691 RT(i).dw_regnum, RT(i).dw_offset)); 5692 } 5693 } 5694 putchar('\n'); 5695 } 5696 5697 free(vec); 5698 5699 return (0); 5700 5701 #undef BIT_SET 5702 #undef BIT_CLR 5703 #undef BIT_ISSET 5704 #undef RT 5705 } 5706 5707 static void 5708 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5709 { 5710 Dwarf_Cie *cie_list, cie, pre_cie; 5711 Dwarf_Fde *fde_list, fde; 5712 Dwarf_Off cie_offset, fde_offset; 5713 Dwarf_Unsigned cie_length, fde_instlen; 5714 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5715 Dwarf_Signed cie_count, fde_count, cie_index; 5716 Dwarf_Addr low_pc; 5717 Dwarf_Half cie_ra; 5718 Dwarf_Small cie_version; 5719 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5720 char *cie_aug, c; 5721 int i, eh_frame; 5722 Dwarf_Error de; 5723 5724 printf("\nThe section %s contains:\n\n", s->name); 5725 5726 if (!strcmp(s->name, ".debug_frame")) { 5727 eh_frame = 0; 5728 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5729 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5730 warnx("dwarf_get_fde_list failed: %s", 5731 dwarf_errmsg(de)); 5732 return; 5733 } 5734 } else if (!strcmp(s->name, ".eh_frame")) { 5735 eh_frame = 1; 5736 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5737 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5738 warnx("dwarf_get_fde_list_eh failed: %s", 5739 dwarf_errmsg(de)); 5740 return; 5741 } 5742 } else 5743 return; 5744 5745 pre_cie = NULL; 5746 for (i = 0; i < fde_count; i++) { 5747 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5748 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5749 continue; 5750 } 5751 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5752 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5753 continue; 5754 } 5755 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5756 &fde_length, &cie_offset, &cie_index, &fde_offset, 5757 &de) != DW_DLV_OK) { 5758 warnx("dwarf_get_fde_range failed: %s", 5759 dwarf_errmsg(de)); 5760 continue; 5761 } 5762 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5763 &de) != DW_DLV_OK) { 5764 warnx("dwarf_get_fde_instr_bytes failed: %s", 5765 dwarf_errmsg(de)); 5766 continue; 5767 } 5768 if (pre_cie == NULL || cie != pre_cie) { 5769 pre_cie = cie; 5770 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5771 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5772 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5773 warnx("dwarf_get_cie_info failed: %s", 5774 dwarf_errmsg(de)); 5775 continue; 5776 } 5777 printf("%08jx %08jx %8.8jx CIE", 5778 (uintmax_t) cie_offset, 5779 (uintmax_t) cie_length, 5780 (uintmax_t) (eh_frame ? 0 : ~0U)); 5781 if (!alt) { 5782 putchar('\n'); 5783 printf(" Version:\t\t\t%u\n", cie_version); 5784 printf(" Augmentation:\t\t\t\""); 5785 while ((c = *cie_aug++) != '\0') 5786 putchar(c); 5787 printf("\"\n"); 5788 printf(" Code alignment factor:\t%ju\n", 5789 (uintmax_t) cie_caf); 5790 printf(" Data alignment factor:\t%jd\n", 5791 (intmax_t) cie_daf); 5792 printf(" Return address column:\t%ju\n", 5793 (uintmax_t) cie_ra); 5794 putchar('\n'); 5795 dump_dwarf_frame_inst(re, cie, cie_inst, 5796 cie_instlen, cie_caf, cie_daf, 0, 5797 re->dbg); 5798 putchar('\n'); 5799 } else { 5800 printf(" \""); 5801 while ((c = *cie_aug++) != '\0') 5802 putchar(c); 5803 putchar('"'); 5804 printf(" cf=%ju df=%jd ra=%ju\n", 5805 (uintmax_t) cie_caf, 5806 (uintmax_t) cie_daf, 5807 (uintmax_t) cie_ra); 5808 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5809 cie_ra); 5810 putchar('\n'); 5811 } 5812 } 5813 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5814 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5815 (uintmax_t) cie_offset, 5816 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5817 cie_offset), 5818 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5819 if (!alt) 5820 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5821 cie_caf, cie_daf, low_pc, re->dbg); 5822 else 5823 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5824 cie_ra); 5825 putchar('\n'); 5826 } 5827 } 5828 5829 static void 5830 dump_dwarf_frame(struct readelf *re, int alt) 5831 { 5832 struct section *s; 5833 int i; 5834 5835 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5836 5837 for (i = 0; (size_t) i < re->shnum; i++) { 5838 s = &re->sl[i]; 5839 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5840 !strcmp(s->name, ".eh_frame"))) 5841 dump_dwarf_frame_section(re, s, alt); 5842 } 5843 } 5844 5845 static void 5846 dump_dwarf_str(struct readelf *re) 5847 { 5848 struct section *s; 5849 Elf_Data *d; 5850 unsigned char *p; 5851 int elferr, end, i, j; 5852 5853 printf("\nContents of section .debug_str:\n"); 5854 5855 s = NULL; 5856 for (i = 0; (size_t) i < re->shnum; i++) { 5857 s = &re->sl[i]; 5858 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5859 break; 5860 } 5861 if ((size_t) i >= re->shnum) 5862 return; 5863 5864 (void) elf_errno(); 5865 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5866 elferr = elf_errno(); 5867 if (elferr != 0) 5868 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5869 return; 5870 } 5871 if (d->d_size <= 0) 5872 return; 5873 5874 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5875 printf(" 0x%08x", (unsigned int) i); 5876 if ((size_t) i + 16 > d->d_size) 5877 end = d->d_size; 5878 else 5879 end = i + 16; 5880 for (j = i; j < i + 16; j++) { 5881 if ((j - i) % 4 == 0) 5882 putchar(' '); 5883 if (j >= end) { 5884 printf(" "); 5885 continue; 5886 } 5887 printf("%02x", (uint8_t) p[j]); 5888 } 5889 putchar(' '); 5890 for (j = i; j < end; j++) { 5891 if (isprint(p[j])) 5892 putchar(p[j]); 5893 else if (p[j] == 0) 5894 putchar('.'); 5895 else 5896 putchar(' '); 5897 } 5898 putchar('\n'); 5899 } 5900 } 5901 5902 struct loc_at { 5903 Dwarf_Attribute la_at; 5904 Dwarf_Unsigned la_off; 5905 Dwarf_Unsigned la_lowpc; 5906 Dwarf_Half la_cu_psize; 5907 Dwarf_Half la_cu_osize; 5908 Dwarf_Half la_cu_ver; 5909 TAILQ_ENTRY(loc_at) la_next; 5910 }; 5911 5912 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5913 5914 static void 5915 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5916 { 5917 Dwarf_Attribute *attr_list; 5918 Dwarf_Die ret_die; 5919 Dwarf_Unsigned off; 5920 Dwarf_Off ref; 5921 Dwarf_Signed attr_count; 5922 Dwarf_Half attr, form; 5923 Dwarf_Bool is_info; 5924 Dwarf_Error de; 5925 struct loc_at *la, *nla; 5926 int i, ret; 5927 5928 is_info = dwarf_get_die_infotypes_flag(die); 5929 5930 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5931 DW_DLV_OK) { 5932 if (ret == DW_DLV_ERROR) 5933 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5934 goto cont_search; 5935 } 5936 for (i = 0; i < attr_count; i++) { 5937 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5938 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5939 continue; 5940 } 5941 if (attr != DW_AT_location && 5942 attr != DW_AT_string_length && 5943 attr != DW_AT_return_addr && 5944 attr != DW_AT_data_member_location && 5945 attr != DW_AT_frame_base && 5946 attr != DW_AT_segment && 5947 attr != DW_AT_static_link && 5948 attr != DW_AT_use_location && 5949 attr != DW_AT_vtable_elem_location) 5950 continue; 5951 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5952 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5953 continue; 5954 } 5955 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 5956 if (dwarf_formudata(attr_list[i], &off, &de) != 5957 DW_DLV_OK) { 5958 warnx("dwarf_formudata failed: %s", 5959 dwarf_errmsg(de)); 5960 continue; 5961 } 5962 } else if (form == DW_FORM_sec_offset) { 5963 if (dwarf_global_formref(attr_list[i], &ref, &de) != 5964 DW_DLV_OK) { 5965 warnx("dwarf_global_formref failed: %s", 5966 dwarf_errmsg(de)); 5967 continue; 5968 } 5969 off = ref; 5970 } else 5971 continue; 5972 5973 TAILQ_FOREACH(la, &lalist, la_next) { 5974 if (off == la->la_off) 5975 break; 5976 if (off < la->la_off) { 5977 if ((nla = malloc(sizeof(*nla))) == NULL) 5978 err(EXIT_FAILURE, "malloc failed"); 5979 nla->la_at = attr_list[i]; 5980 nla->la_off = off; 5981 nla->la_lowpc = lowpc; 5982 nla->la_cu_psize = re->cu_psize; 5983 nla->la_cu_osize = re->cu_osize; 5984 nla->la_cu_ver = re->cu_ver; 5985 TAILQ_INSERT_BEFORE(la, nla, la_next); 5986 break; 5987 } 5988 } 5989 if (la == NULL) { 5990 if ((nla = malloc(sizeof(*nla))) == NULL) 5991 err(EXIT_FAILURE, "malloc failed"); 5992 nla->la_at = attr_list[i]; 5993 nla->la_off = off; 5994 nla->la_lowpc = lowpc; 5995 nla->la_cu_psize = re->cu_psize; 5996 nla->la_cu_osize = re->cu_osize; 5997 nla->la_cu_ver = re->cu_ver; 5998 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 5999 } 6000 } 6001 6002 cont_search: 6003 /* Search children. */ 6004 ret = dwarf_child(die, &ret_die, &de); 6005 if (ret == DW_DLV_ERROR) 6006 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6007 else if (ret == DW_DLV_OK) 6008 search_loclist_at(re, ret_die, lowpc); 6009 6010 /* Search sibling. */ 6011 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6012 if (ret == DW_DLV_ERROR) 6013 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6014 else if (ret == DW_DLV_OK) 6015 search_loclist_at(re, ret_die, lowpc); 6016 } 6017 6018 static void 6019 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6020 { 6021 const char *op_str; 6022 char unk_op[32]; 6023 uint8_t *b, n; 6024 int i; 6025 6026 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6027 DW_DLV_OK) { 6028 snprintf(unk_op, sizeof(unk_op), 6029 "[Unknown OP: %#x]", lr->lr_atom); 6030 op_str = unk_op; 6031 } 6032 6033 printf("%s", op_str); 6034 6035 switch (lr->lr_atom) { 6036 case DW_OP_reg0: 6037 case DW_OP_reg1: 6038 case DW_OP_reg2: 6039 case DW_OP_reg3: 6040 case DW_OP_reg4: 6041 case DW_OP_reg5: 6042 case DW_OP_reg6: 6043 case DW_OP_reg7: 6044 case DW_OP_reg8: 6045 case DW_OP_reg9: 6046 case DW_OP_reg10: 6047 case DW_OP_reg11: 6048 case DW_OP_reg12: 6049 case DW_OP_reg13: 6050 case DW_OP_reg14: 6051 case DW_OP_reg15: 6052 case DW_OP_reg16: 6053 case DW_OP_reg17: 6054 case DW_OP_reg18: 6055 case DW_OP_reg19: 6056 case DW_OP_reg20: 6057 case DW_OP_reg21: 6058 case DW_OP_reg22: 6059 case DW_OP_reg23: 6060 case DW_OP_reg24: 6061 case DW_OP_reg25: 6062 case DW_OP_reg26: 6063 case DW_OP_reg27: 6064 case DW_OP_reg28: 6065 case DW_OP_reg29: 6066 case DW_OP_reg30: 6067 case DW_OP_reg31: 6068 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6069 break; 6070 6071 case DW_OP_deref: 6072 case DW_OP_lit0: 6073 case DW_OP_lit1: 6074 case DW_OP_lit2: 6075 case DW_OP_lit3: 6076 case DW_OP_lit4: 6077 case DW_OP_lit5: 6078 case DW_OP_lit6: 6079 case DW_OP_lit7: 6080 case DW_OP_lit8: 6081 case DW_OP_lit9: 6082 case DW_OP_lit10: 6083 case DW_OP_lit11: 6084 case DW_OP_lit12: 6085 case DW_OP_lit13: 6086 case DW_OP_lit14: 6087 case DW_OP_lit15: 6088 case DW_OP_lit16: 6089 case DW_OP_lit17: 6090 case DW_OP_lit18: 6091 case DW_OP_lit19: 6092 case DW_OP_lit20: 6093 case DW_OP_lit21: 6094 case DW_OP_lit22: 6095 case DW_OP_lit23: 6096 case DW_OP_lit24: 6097 case DW_OP_lit25: 6098 case DW_OP_lit26: 6099 case DW_OP_lit27: 6100 case DW_OP_lit28: 6101 case DW_OP_lit29: 6102 case DW_OP_lit30: 6103 case DW_OP_lit31: 6104 case DW_OP_dup: 6105 case DW_OP_drop: 6106 case DW_OP_over: 6107 case DW_OP_swap: 6108 case DW_OP_rot: 6109 case DW_OP_xderef: 6110 case DW_OP_abs: 6111 case DW_OP_and: 6112 case DW_OP_div: 6113 case DW_OP_minus: 6114 case DW_OP_mod: 6115 case DW_OP_mul: 6116 case DW_OP_neg: 6117 case DW_OP_not: 6118 case DW_OP_or: 6119 case DW_OP_plus: 6120 case DW_OP_shl: 6121 case DW_OP_shr: 6122 case DW_OP_shra: 6123 case DW_OP_xor: 6124 case DW_OP_eq: 6125 case DW_OP_ge: 6126 case DW_OP_gt: 6127 case DW_OP_le: 6128 case DW_OP_lt: 6129 case DW_OP_ne: 6130 case DW_OP_nop: 6131 case DW_OP_push_object_address: 6132 case DW_OP_form_tls_address: 6133 case DW_OP_call_frame_cfa: 6134 case DW_OP_stack_value: 6135 case DW_OP_GNU_push_tls_address: 6136 case DW_OP_GNU_uninit: 6137 break; 6138 6139 case DW_OP_const1u: 6140 case DW_OP_pick: 6141 case DW_OP_deref_size: 6142 case DW_OP_xderef_size: 6143 case DW_OP_const2u: 6144 case DW_OP_bra: 6145 case DW_OP_skip: 6146 case DW_OP_const4u: 6147 case DW_OP_const8u: 6148 case DW_OP_constu: 6149 case DW_OP_plus_uconst: 6150 case DW_OP_regx: 6151 case DW_OP_piece: 6152 printf(": %ju", (uintmax_t) 6153 lr->lr_number); 6154 break; 6155 6156 case DW_OP_const1s: 6157 case DW_OP_const2s: 6158 case DW_OP_const4s: 6159 case DW_OP_const8s: 6160 case DW_OP_consts: 6161 printf(": %jd", (intmax_t) 6162 lr->lr_number); 6163 break; 6164 6165 case DW_OP_breg0: 6166 case DW_OP_breg1: 6167 case DW_OP_breg2: 6168 case DW_OP_breg3: 6169 case DW_OP_breg4: 6170 case DW_OP_breg5: 6171 case DW_OP_breg6: 6172 case DW_OP_breg7: 6173 case DW_OP_breg8: 6174 case DW_OP_breg9: 6175 case DW_OP_breg10: 6176 case DW_OP_breg11: 6177 case DW_OP_breg12: 6178 case DW_OP_breg13: 6179 case DW_OP_breg14: 6180 case DW_OP_breg15: 6181 case DW_OP_breg16: 6182 case DW_OP_breg17: 6183 case DW_OP_breg18: 6184 case DW_OP_breg19: 6185 case DW_OP_breg20: 6186 case DW_OP_breg21: 6187 case DW_OP_breg22: 6188 case DW_OP_breg23: 6189 case DW_OP_breg24: 6190 case DW_OP_breg25: 6191 case DW_OP_breg26: 6192 case DW_OP_breg27: 6193 case DW_OP_breg28: 6194 case DW_OP_breg29: 6195 case DW_OP_breg30: 6196 case DW_OP_breg31: 6197 printf(" (%s): %jd", 6198 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6199 (intmax_t) lr->lr_number); 6200 break; 6201 6202 case DW_OP_fbreg: 6203 printf(": %jd", (intmax_t) 6204 lr->lr_number); 6205 break; 6206 6207 case DW_OP_bregx: 6208 printf(": %ju (%s) %jd", 6209 (uintmax_t) lr->lr_number, 6210 dwarf_regname(re, (unsigned int) lr->lr_number), 6211 (intmax_t) lr->lr_number2); 6212 break; 6213 6214 case DW_OP_addr: 6215 case DW_OP_GNU_encoded_addr: 6216 printf(": %#jx", (uintmax_t) 6217 lr->lr_number); 6218 break; 6219 6220 case DW_OP_GNU_implicit_pointer: 6221 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6222 (intmax_t) lr->lr_number2); 6223 break; 6224 6225 case DW_OP_implicit_value: 6226 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6227 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6228 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6229 printf(" %x", b[i]); 6230 break; 6231 6232 case DW_OP_GNU_entry_value: 6233 printf(": ("); 6234 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6235 lr->lr_number); 6236 putchar(')'); 6237 break; 6238 6239 case DW_OP_GNU_const_type: 6240 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6241 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6242 n = *b; 6243 for (i = 1; (uint8_t) i < n; i++) 6244 printf(" %x", b[i]); 6245 break; 6246 6247 case DW_OP_GNU_regval_type: 6248 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6249 dwarf_regname(re, (unsigned int) lr->lr_number), 6250 (uintmax_t) lr->lr_number2); 6251 break; 6252 6253 case DW_OP_GNU_convert: 6254 case DW_OP_GNU_deref_type: 6255 case DW_OP_GNU_parameter_ref: 6256 case DW_OP_GNU_reinterpret: 6257 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6258 break; 6259 6260 default: 6261 break; 6262 } 6263 } 6264 6265 static void 6266 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6267 { 6268 Dwarf_Locdesc *llbuf; 6269 Dwarf_Signed lcnt; 6270 Dwarf_Error de; 6271 int i; 6272 6273 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6274 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6275 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6276 return; 6277 } 6278 6279 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6280 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6281 if (i < llbuf->ld_cents - 1) 6282 printf("; "); 6283 } 6284 6285 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6286 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6287 } 6288 6289 static void 6290 dump_dwarf_loclist(struct readelf *re) 6291 { 6292 Dwarf_Die die; 6293 Dwarf_Locdesc **llbuf; 6294 Dwarf_Unsigned lowpc; 6295 Dwarf_Signed lcnt; 6296 Dwarf_Half tag, version, pointer_size, off_size; 6297 Dwarf_Error de; 6298 struct loc_at *la; 6299 int i, j, ret, has_content; 6300 6301 /* Search .debug_info section. */ 6302 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6303 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6304 set_cu_context(re, pointer_size, off_size, version); 6305 die = NULL; 6306 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6307 continue; 6308 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6309 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6310 continue; 6311 } 6312 /* XXX: What about DW_TAG_partial_unit? */ 6313 lowpc = 0; 6314 if (tag == DW_TAG_compile_unit) { 6315 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6316 &lowpc, &de) != DW_DLV_OK) 6317 lowpc = 0; 6318 } 6319 6320 /* Search attributes for reference to .debug_loc section. */ 6321 search_loclist_at(re, die, lowpc); 6322 } 6323 if (ret == DW_DLV_ERROR) 6324 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6325 6326 /* Search .debug_types section. */ 6327 do { 6328 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6329 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6330 NULL, NULL, &de)) == DW_DLV_OK) { 6331 set_cu_context(re, pointer_size, off_size, version); 6332 die = NULL; 6333 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6334 DW_DLV_OK) 6335 continue; 6336 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6337 warnx("dwarf_tag failed: %s", 6338 dwarf_errmsg(de)); 6339 continue; 6340 } 6341 6342 lowpc = 0; 6343 if (tag == DW_TAG_type_unit) { 6344 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6345 &lowpc, &de) != DW_DLV_OK) 6346 lowpc = 0; 6347 } 6348 6349 /* 6350 * Search attributes for reference to .debug_loc 6351 * section. 6352 */ 6353 search_loclist_at(re, die, lowpc); 6354 } 6355 if (ret == DW_DLV_ERROR) 6356 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6357 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6358 6359 if (TAILQ_EMPTY(&lalist)) 6360 return; 6361 6362 has_content = 0; 6363 TAILQ_FOREACH(la, &lalist, la_next) { 6364 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6365 DW_DLV_OK) { 6366 if (ret != DW_DLV_NO_ENTRY) 6367 warnx("dwarf_loclist_n failed: %s", 6368 dwarf_errmsg(de)); 6369 continue; 6370 } 6371 if (!has_content) { 6372 has_content = 1; 6373 printf("\nContents of section .debug_loc:\n"); 6374 printf(" Offset Begin End Expression\n"); 6375 } 6376 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6377 la->la_cu_ver); 6378 for (i = 0; i < lcnt; i++) { 6379 printf(" %8.8jx ", (uintmax_t) la->la_off); 6380 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6381 printf("<End of list>\n"); 6382 continue; 6383 } 6384 6385 /* TODO: handle base selection entry. */ 6386 6387 printf("%8.8jx %8.8jx ", 6388 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6389 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6390 6391 putchar('('); 6392 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6393 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6394 if (j < llbuf[i]->ld_cents - 1) 6395 printf("; "); 6396 } 6397 putchar(')'); 6398 6399 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6400 printf(" (start == end)"); 6401 putchar('\n'); 6402 } 6403 for (i = 0; i < lcnt; i++) { 6404 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6405 DW_DLA_LOC_BLOCK); 6406 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6407 } 6408 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6409 } 6410 6411 if (!has_content) 6412 printf("\nSection '.debug_loc' has no debugging data.\n"); 6413 } 6414 6415 /* 6416 * Retrieve a string using string table section index and the string offset. 6417 */ 6418 static const char* 6419 get_string(struct readelf *re, int strtab, size_t off) 6420 { 6421 const char *name; 6422 6423 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6424 return (""); 6425 6426 return (name); 6427 } 6428 6429 /* 6430 * Retrieve the name of a symbol using the section index of the symbol 6431 * table and the index of the symbol within that table. 6432 */ 6433 static const char * 6434 get_symbol_name(struct readelf *re, int symtab, int i) 6435 { 6436 struct section *s; 6437 const char *name; 6438 GElf_Sym sym; 6439 Elf_Data *data; 6440 int elferr; 6441 6442 s = &re->sl[symtab]; 6443 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6444 return (""); 6445 (void) elf_errno(); 6446 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6447 elferr = elf_errno(); 6448 if (elferr != 0) 6449 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6450 return (""); 6451 } 6452 if (gelf_getsym(data, i, &sym) != &sym) 6453 return (""); 6454 /* Return section name for STT_SECTION symbol. */ 6455 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6456 if (sym.st_shndx < re->shnum && 6457 re->sl[sym.st_shndx].name != NULL) 6458 return (re->sl[sym.st_shndx].name); 6459 return (""); 6460 } 6461 if (s->link >= re->shnum || 6462 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6463 return (""); 6464 6465 return (name); 6466 } 6467 6468 static uint64_t 6469 get_symbol_value(struct readelf *re, int symtab, int i) 6470 { 6471 struct section *s; 6472 GElf_Sym sym; 6473 Elf_Data *data; 6474 int elferr; 6475 6476 s = &re->sl[symtab]; 6477 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6478 return (0); 6479 (void) elf_errno(); 6480 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6481 elferr = elf_errno(); 6482 if (elferr != 0) 6483 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6484 return (0); 6485 } 6486 if (gelf_getsym(data, i, &sym) != &sym) 6487 return (0); 6488 6489 return (sym.st_value); 6490 } 6491 6492 static void 6493 hex_dump(struct readelf *re) 6494 { 6495 struct section *s; 6496 Elf_Data *d; 6497 uint8_t *buf; 6498 size_t sz, nbytes; 6499 uint64_t addr; 6500 int elferr, i, j; 6501 6502 for (i = 1; (size_t) i < re->shnum; i++) { 6503 s = &re->sl[i]; 6504 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6505 continue; 6506 (void) elf_errno(); 6507 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6508 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6509 elferr = elf_errno(); 6510 if (elferr != 0) 6511 warnx("elf_getdata failed: %s", 6512 elf_errmsg(elferr)); 6513 continue; 6514 } 6515 (void) elf_errno(); 6516 if (d->d_size <= 0 || d->d_buf == NULL) { 6517 printf("\nSection '%s' has no data to dump.\n", 6518 s->name); 6519 continue; 6520 } 6521 buf = d->d_buf; 6522 sz = d->d_size; 6523 addr = s->addr; 6524 printf("\nHex dump of section '%s':\n", s->name); 6525 while (sz > 0) { 6526 printf(" 0x%8.8jx ", (uintmax_t)addr); 6527 nbytes = sz > 16? 16 : sz; 6528 for (j = 0; j < 16; j++) { 6529 if ((size_t)j < nbytes) 6530 printf("%2.2x", buf[j]); 6531 else 6532 printf(" "); 6533 if ((j & 3) == 3) 6534 printf(" "); 6535 } 6536 for (j = 0; (size_t)j < nbytes; j++) { 6537 if (isprint(buf[j])) 6538 printf("%c", buf[j]); 6539 else 6540 printf("."); 6541 } 6542 printf("\n"); 6543 buf += nbytes; 6544 addr += nbytes; 6545 sz -= nbytes; 6546 } 6547 } 6548 } 6549 6550 static void 6551 str_dump(struct readelf *re) 6552 { 6553 struct section *s; 6554 Elf_Data *d; 6555 unsigned char *start, *end, *buf_end; 6556 unsigned int len; 6557 int i, j, elferr, found; 6558 6559 for (i = 1; (size_t) i < re->shnum; i++) { 6560 s = &re->sl[i]; 6561 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6562 continue; 6563 (void) elf_errno(); 6564 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6565 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6566 elferr = elf_errno(); 6567 if (elferr != 0) 6568 warnx("elf_getdata failed: %s", 6569 elf_errmsg(elferr)); 6570 continue; 6571 } 6572 (void) elf_errno(); 6573 if (d->d_size <= 0 || d->d_buf == NULL) { 6574 printf("\nSection '%s' has no data to dump.\n", 6575 s->name); 6576 continue; 6577 } 6578 buf_end = (unsigned char *) d->d_buf + d->d_size; 6579 start = (unsigned char *) d->d_buf; 6580 found = 0; 6581 printf("\nString dump of section '%s':\n", s->name); 6582 for (;;) { 6583 while (start < buf_end && !isprint(*start)) 6584 start++; 6585 if (start >= buf_end) 6586 break; 6587 end = start + 1; 6588 while (end < buf_end && isprint(*end)) 6589 end++; 6590 printf(" [%6lx] ", 6591 (long) (start - (unsigned char *) d->d_buf)); 6592 len = end - start; 6593 for (j = 0; (unsigned int) j < len; j++) 6594 putchar(start[j]); 6595 putchar('\n'); 6596 found = 1; 6597 if (end >= buf_end) 6598 break; 6599 start = end + 1; 6600 } 6601 if (!found) 6602 printf(" No strings found in this section."); 6603 putchar('\n'); 6604 } 6605 } 6606 6607 static void 6608 load_sections(struct readelf *re) 6609 { 6610 struct section *s; 6611 const char *name; 6612 Elf_Scn *scn; 6613 GElf_Shdr sh; 6614 size_t shstrndx, ndx; 6615 int elferr; 6616 6617 /* Allocate storage for internal section list. */ 6618 if (!elf_getshnum(re->elf, &re->shnum)) { 6619 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6620 return; 6621 } 6622 if (re->sl != NULL) 6623 free(re->sl); 6624 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6625 err(EXIT_FAILURE, "calloc failed"); 6626 6627 /* Get the index of .shstrtab section. */ 6628 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6629 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6630 return; 6631 } 6632 6633 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6634 return; 6635 6636 (void) elf_errno(); 6637 do { 6638 if (gelf_getshdr(scn, &sh) == NULL) { 6639 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6640 (void) elf_errno(); 6641 continue; 6642 } 6643 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6644 (void) elf_errno(); 6645 name = "<no-name>"; 6646 } 6647 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6648 if ((elferr = elf_errno()) != 0) { 6649 warnx("elf_ndxscn failed: %s", 6650 elf_errmsg(elferr)); 6651 continue; 6652 } 6653 } 6654 if (ndx >= re->shnum) { 6655 warnx("section index of '%s' out of range", name); 6656 continue; 6657 } 6658 if (sh.sh_link >= re->shnum) 6659 warnx("section link %llu of '%s' out of range", 6660 (unsigned long long)sh.sh_link, name); 6661 s = &re->sl[ndx]; 6662 s->name = name; 6663 s->scn = scn; 6664 s->off = sh.sh_offset; 6665 s->sz = sh.sh_size; 6666 s->entsize = sh.sh_entsize; 6667 s->align = sh.sh_addralign; 6668 s->type = sh.sh_type; 6669 s->flags = sh.sh_flags; 6670 s->addr = sh.sh_addr; 6671 s->link = sh.sh_link; 6672 s->info = sh.sh_info; 6673 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6674 elferr = elf_errno(); 6675 if (elferr != 0) 6676 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6677 } 6678 6679 static void 6680 unload_sections(struct readelf *re) 6681 { 6682 6683 if (re->sl != NULL) { 6684 free(re->sl); 6685 re->sl = NULL; 6686 } 6687 re->shnum = 0; 6688 re->vd_s = NULL; 6689 re->vn_s = NULL; 6690 re->vs_s = NULL; 6691 re->vs = NULL; 6692 re->vs_sz = 0; 6693 if (re->ver != NULL) { 6694 free(re->ver); 6695 re->ver = NULL; 6696 re->ver_sz = 0; 6697 } 6698 } 6699 6700 static void 6701 dump_elf(struct readelf *re) 6702 { 6703 6704 /* Fetch ELF header. No need to continue if it fails. */ 6705 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6706 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6707 return; 6708 } 6709 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6710 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6711 return; 6712 } 6713 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6714 re->dw_read = _read_msb; 6715 re->dw_decode = _decode_msb; 6716 } else { 6717 re->dw_read = _read_lsb; 6718 re->dw_decode = _decode_lsb; 6719 } 6720 6721 if (re->options & ~RE_H) 6722 load_sections(re); 6723 if ((re->options & RE_VV) || (re->options & RE_S)) 6724 search_ver(re); 6725 if (re->options & RE_H) 6726 dump_ehdr(re); 6727 if (re->options & RE_L) 6728 dump_phdr(re); 6729 if (re->options & RE_SS) 6730 dump_shdr(re); 6731 if (re->options & RE_G) 6732 dump_section_groups(re); 6733 if (re->options & RE_D) 6734 dump_dynamic(re); 6735 if (re->options & RE_R) 6736 dump_reloc(re); 6737 if (re->options & RE_S) 6738 dump_symtabs(re); 6739 if (re->options & RE_N) 6740 dump_notes(re); 6741 if (re->options & RE_II) 6742 dump_hash(re); 6743 if (re->options & RE_X) 6744 hex_dump(re); 6745 if (re->options & RE_P) 6746 str_dump(re); 6747 if (re->options & RE_VV) 6748 dump_ver(re); 6749 if (re->options & RE_AA) 6750 dump_arch_specific_info(re); 6751 if (re->options & RE_W) 6752 dump_dwarf(re); 6753 if (re->options & ~RE_H) 6754 unload_sections(re); 6755 } 6756 6757 static void 6758 dump_dwarf(struct readelf *re) 6759 { 6760 struct loc_at *la, *_la; 6761 Dwarf_Error de; 6762 int error; 6763 6764 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6765 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6766 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6767 dwarf_errmsg(de)); 6768 return; 6769 } 6770 6771 if (re->dop & DW_A) 6772 dump_dwarf_abbrev(re); 6773 if (re->dop & DW_L) 6774 dump_dwarf_line(re); 6775 if (re->dop & DW_LL) 6776 dump_dwarf_line_decoded(re); 6777 if (re->dop & DW_I) { 6778 dump_dwarf_info(re, 0); 6779 dump_dwarf_info(re, 1); 6780 } 6781 if (re->dop & DW_P) 6782 dump_dwarf_pubnames(re); 6783 if (re->dop & DW_R) 6784 dump_dwarf_aranges(re); 6785 if (re->dop & DW_RR) 6786 dump_dwarf_ranges(re); 6787 if (re->dop & DW_M) 6788 dump_dwarf_macinfo(re); 6789 if (re->dop & DW_F) 6790 dump_dwarf_frame(re, 0); 6791 else if (re->dop & DW_FF) 6792 dump_dwarf_frame(re, 1); 6793 if (re->dop & DW_S) 6794 dump_dwarf_str(re); 6795 if (re->dop & DW_O) 6796 dump_dwarf_loclist(re); 6797 6798 TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) { 6799 TAILQ_REMOVE(&lalist, la, la_next); 6800 free(la); 6801 } 6802 6803 dwarf_finish(re->dbg, &de); 6804 } 6805 6806 static void 6807 dump_ar(struct readelf *re, int fd) 6808 { 6809 Elf_Arsym *arsym; 6810 Elf_Arhdr *arhdr; 6811 Elf_Cmd cmd; 6812 Elf *e; 6813 size_t sz; 6814 off_t off; 6815 int i; 6816 6817 re->ar = re->elf; 6818 6819 if (re->options & RE_C) { 6820 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6821 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6822 goto process_members; 6823 } 6824 printf("Index of archive %s: (%ju entries)\n", re->filename, 6825 (uintmax_t) sz - 1); 6826 off = 0; 6827 for (i = 0; (size_t) i < sz; i++) { 6828 if (arsym[i].as_name == NULL) 6829 break; 6830 if (arsym[i].as_off != off) { 6831 off = arsym[i].as_off; 6832 if (elf_rand(re->ar, off) != off) { 6833 warnx("elf_rand() failed: %s", 6834 elf_errmsg(-1)); 6835 continue; 6836 } 6837 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6838 NULL) { 6839 warnx("elf_begin() failed: %s", 6840 elf_errmsg(-1)); 6841 continue; 6842 } 6843 if ((arhdr = elf_getarhdr(e)) == NULL) { 6844 warnx("elf_getarhdr() failed: %s", 6845 elf_errmsg(-1)); 6846 elf_end(e); 6847 continue; 6848 } 6849 printf("Binary %s(%s) contains:\n", 6850 re->filename, arhdr->ar_name); 6851 } 6852 printf("\t%s\n", arsym[i].as_name); 6853 } 6854 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6855 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6856 return; 6857 } 6858 } 6859 6860 process_members: 6861 6862 if ((re->options & ~RE_C) == 0) 6863 return; 6864 6865 cmd = ELF_C_READ; 6866 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6867 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6868 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6869 goto next_member; 6870 } 6871 if (strcmp(arhdr->ar_name, "/") == 0 || 6872 strcmp(arhdr->ar_name, "//") == 0 || 6873 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6874 goto next_member; 6875 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6876 dump_elf(re); 6877 6878 next_member: 6879 cmd = elf_next(re->elf); 6880 elf_end(re->elf); 6881 } 6882 re->elf = re->ar; 6883 } 6884 6885 static void 6886 dump_object(struct readelf *re) 6887 { 6888 int fd; 6889 6890 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6891 warn("open %s failed", re->filename); 6892 return; 6893 } 6894 6895 if ((re->flags & DISPLAY_FILENAME) != 0) 6896 printf("\nFile: %s\n", re->filename); 6897 6898 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6899 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6900 return; 6901 } 6902 6903 switch (elf_kind(re->elf)) { 6904 case ELF_K_NONE: 6905 warnx("Not an ELF file."); 6906 return; 6907 case ELF_K_ELF: 6908 dump_elf(re); 6909 break; 6910 case ELF_K_AR: 6911 dump_ar(re, fd); 6912 break; 6913 default: 6914 warnx("Internal: libelf returned unknown elf kind."); 6915 return; 6916 } 6917 6918 elf_end(re->elf); 6919 } 6920 6921 static void 6922 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6923 { 6924 struct dumpop *d; 6925 6926 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6927 if ((d = calloc(1, sizeof(*d))) == NULL) 6928 err(EXIT_FAILURE, "calloc failed"); 6929 if (t == DUMP_BY_INDEX) 6930 d->u.si = si; 6931 else 6932 d->u.sn = sn; 6933 d->type = t; 6934 d->op = op; 6935 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6936 } else 6937 d->op |= op; 6938 } 6939 6940 static struct dumpop * 6941 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6942 { 6943 struct dumpop *d; 6944 6945 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6946 if ((op == -1 || op & d->op) && 6947 (t == -1 || (unsigned) t == d->type)) { 6948 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6949 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6950 return (d); 6951 } 6952 } 6953 6954 return (NULL); 6955 } 6956 6957 static struct { 6958 const char *ln; 6959 char sn; 6960 int value; 6961 } dwarf_op[] = { 6962 {"rawline", 'l', DW_L}, 6963 {"decodedline", 'L', DW_LL}, 6964 {"info", 'i', DW_I}, 6965 {"abbrev", 'a', DW_A}, 6966 {"pubnames", 'p', DW_P}, 6967 {"aranges", 'r', DW_R}, 6968 {"ranges", 'r', DW_R}, 6969 {"Ranges", 'R', DW_RR}, 6970 {"macro", 'm', DW_M}, 6971 {"frames", 'f', DW_F}, 6972 {"frames-interp", 'F', DW_FF}, 6973 {"str", 's', DW_S}, 6974 {"loc", 'o', DW_O}, 6975 {NULL, 0, 0} 6976 }; 6977 6978 static void 6979 parse_dwarf_op_short(struct readelf *re, const char *op) 6980 { 6981 int i; 6982 6983 if (op == NULL) { 6984 re->dop |= DW_DEFAULT_OPTIONS; 6985 return; 6986 } 6987 6988 for (; *op != '\0'; op++) { 6989 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6990 if (dwarf_op[i].sn == *op) { 6991 re->dop |= dwarf_op[i].value; 6992 break; 6993 } 6994 } 6995 } 6996 } 6997 6998 static void 6999 parse_dwarf_op_long(struct readelf *re, const char *op) 7000 { 7001 char *p, *token, *bp; 7002 int i; 7003 7004 if (op == NULL) { 7005 re->dop |= DW_DEFAULT_OPTIONS; 7006 return; 7007 } 7008 7009 if ((p = strdup(op)) == NULL) 7010 err(EXIT_FAILURE, "strdup failed"); 7011 bp = p; 7012 7013 while ((token = strsep(&p, ",")) != NULL) { 7014 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7015 if (!strcmp(token, dwarf_op[i].ln)) { 7016 re->dop |= dwarf_op[i].value; 7017 break; 7018 } 7019 } 7020 } 7021 7022 free(bp); 7023 } 7024 7025 static uint64_t 7026 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7027 { 7028 uint64_t ret; 7029 uint8_t *src; 7030 7031 src = (uint8_t *) d->d_buf + *offsetp; 7032 7033 ret = 0; 7034 switch (bytes_to_read) { 7035 case 8: 7036 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7037 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7038 /* FALLTHROUGH */ 7039 case 4: 7040 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7041 /* FALLTHROUGH */ 7042 case 2: 7043 ret |= ((uint64_t) src[1]) << 8; 7044 /* FALLTHROUGH */ 7045 case 1: 7046 ret |= src[0]; 7047 break; 7048 default: 7049 return (0); 7050 } 7051 7052 *offsetp += bytes_to_read; 7053 7054 return (ret); 7055 } 7056 7057 static uint64_t 7058 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7059 { 7060 uint64_t ret; 7061 uint8_t *src; 7062 7063 src = (uint8_t *) d->d_buf + *offsetp; 7064 7065 switch (bytes_to_read) { 7066 case 1: 7067 ret = src[0]; 7068 break; 7069 case 2: 7070 ret = src[1] | ((uint64_t) src[0]) << 8; 7071 break; 7072 case 4: 7073 ret = src[3] | ((uint64_t) src[2]) << 8; 7074 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7075 break; 7076 case 8: 7077 ret = src[7] | ((uint64_t) src[6]) << 8; 7078 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7079 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7080 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7081 break; 7082 default: 7083 return (0); 7084 } 7085 7086 *offsetp += bytes_to_read; 7087 7088 return (ret); 7089 } 7090 7091 static uint64_t 7092 _decode_lsb(uint8_t **data, int bytes_to_read) 7093 { 7094 uint64_t ret; 7095 uint8_t *src; 7096 7097 src = *data; 7098 7099 ret = 0; 7100 switch (bytes_to_read) { 7101 case 8: 7102 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7103 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7104 /* FALLTHROUGH */ 7105 case 4: 7106 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7107 /* FALLTHROUGH */ 7108 case 2: 7109 ret |= ((uint64_t) src[1]) << 8; 7110 /* FALLTHROUGH */ 7111 case 1: 7112 ret |= src[0]; 7113 break; 7114 default: 7115 return (0); 7116 } 7117 7118 *data += bytes_to_read; 7119 7120 return (ret); 7121 } 7122 7123 static uint64_t 7124 _decode_msb(uint8_t **data, int bytes_to_read) 7125 { 7126 uint64_t ret; 7127 uint8_t *src; 7128 7129 src = *data; 7130 7131 ret = 0; 7132 switch (bytes_to_read) { 7133 case 1: 7134 ret = src[0]; 7135 break; 7136 case 2: 7137 ret = src[1] | ((uint64_t) src[0]) << 8; 7138 break; 7139 case 4: 7140 ret = src[3] | ((uint64_t) src[2]) << 8; 7141 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7142 break; 7143 case 8: 7144 ret = src[7] | ((uint64_t) src[6]) << 8; 7145 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7146 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7147 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7148 break; 7149 default: 7150 return (0); 7151 break; 7152 } 7153 7154 *data += bytes_to_read; 7155 7156 return (ret); 7157 } 7158 7159 static int64_t 7160 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7161 { 7162 int64_t ret = 0; 7163 uint8_t b = 0; 7164 int shift = 0; 7165 7166 uint8_t *src = *dp; 7167 7168 do { 7169 if (src >= dpe) 7170 break; 7171 b = *src++; 7172 ret |= ((b & 0x7f) << shift); 7173 shift += 7; 7174 } while ((b & 0x80) != 0); 7175 7176 if (shift < 32 && (b & 0x40) != 0) 7177 ret |= (-1 << shift); 7178 7179 *dp = src; 7180 7181 return (ret); 7182 } 7183 7184 static uint64_t 7185 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7186 { 7187 uint64_t ret = 0; 7188 uint8_t b; 7189 int shift = 0; 7190 7191 uint8_t *src = *dp; 7192 7193 do { 7194 if (src >= dpe) 7195 break; 7196 b = *src++; 7197 ret |= ((b & 0x7f) << shift); 7198 shift += 7; 7199 } while ((b & 0x80) != 0); 7200 7201 *dp = src; 7202 7203 return (ret); 7204 } 7205 7206 static void 7207 readelf_version(void) 7208 { 7209 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7210 elftc_version()); 7211 exit(EXIT_SUCCESS); 7212 } 7213 7214 #define USAGE_MESSAGE "\ 7215 Usage: %s [options] file...\n\ 7216 Display information about ELF objects and ar(1) archives.\n\n\ 7217 Options:\n\ 7218 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7219 -c | --archive-index Print the archive symbol table for archives.\n\ 7220 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7221 -e | --headers Print all headers in the object.\n\ 7222 -g | --section-groups Print the contents of the section groups.\n\ 7223 -h | --file-header Print the file header for the object.\n\ 7224 -l | --program-headers Print the PHDR table for the object.\n\ 7225 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7226 -p INDEX | --string-dump=INDEX\n\ 7227 Print the contents of section at index INDEX.\n\ 7228 -r | --relocs Print relocation information.\n\ 7229 -s | --syms | --symbols Print symbol tables.\n\ 7230 -t | --section-details Print additional information about sections.\n\ 7231 -v | --version Print a version identifier and exit.\n\ 7232 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7233 frames-interp,info,loc,macro,pubnames,\n\ 7234 ranges,Ranges,rawline,str}\n\ 7235 Display DWARF information.\n\ 7236 -x INDEX | --hex-dump=INDEX\n\ 7237 Display contents of a section as hexadecimal.\n\ 7238 -A | --arch-specific (accepted, but ignored)\n\ 7239 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7240 entry in the \".dynamic\" section.\n\ 7241 -H | --help Print a help message.\n\ 7242 -I | --histogram Print information on bucket list lengths for \n\ 7243 hash sections.\n\ 7244 -N | --full-section-name (accepted, but ignored)\n\ 7245 -S | --sections | --section-headers\n\ 7246 Print information about section headers.\n\ 7247 -V | --version-info Print symbol versoning information.\n\ 7248 -W | --wide Print information without wrapping long lines.\n" 7249 7250 7251 static void 7252 readelf_usage(int status) 7253 { 7254 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7255 exit(status); 7256 } 7257 7258 int 7259 main(int argc, char **argv) 7260 { 7261 struct readelf *re, re_storage; 7262 unsigned long si; 7263 int opt, i; 7264 char *ep; 7265 7266 re = &re_storage; 7267 memset(re, 0, sizeof(*re)); 7268 STAILQ_INIT(&re->v_dumpop); 7269 7270 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7271 longopts, NULL)) != -1) { 7272 switch(opt) { 7273 case '?': 7274 readelf_usage(EXIT_SUCCESS); 7275 break; 7276 case 'A': 7277 re->options |= RE_AA; 7278 break; 7279 case 'a': 7280 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7281 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7282 break; 7283 case 'c': 7284 re->options |= RE_C; 7285 break; 7286 case 'D': 7287 re->options |= RE_DD; 7288 break; 7289 case 'd': 7290 re->options |= RE_D; 7291 break; 7292 case 'e': 7293 re->options |= RE_H | RE_L | RE_SS; 7294 break; 7295 case 'g': 7296 re->options |= RE_G; 7297 break; 7298 case 'H': 7299 readelf_usage(EXIT_SUCCESS); 7300 break; 7301 case 'h': 7302 re->options |= RE_H; 7303 break; 7304 case 'I': 7305 re->options |= RE_II; 7306 break; 7307 case 'i': 7308 /* Not implemented yet. */ 7309 break; 7310 case 'l': 7311 re->options |= RE_L; 7312 break; 7313 case 'N': 7314 re->options |= RE_NN; 7315 break; 7316 case 'n': 7317 re->options |= RE_N; 7318 break; 7319 case 'p': 7320 re->options |= RE_P; 7321 si = strtoul(optarg, &ep, 10); 7322 if (*ep == '\0') 7323 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7324 DUMP_BY_INDEX); 7325 else 7326 add_dumpop(re, 0, optarg, STR_DUMP, 7327 DUMP_BY_NAME); 7328 break; 7329 case 'r': 7330 re->options |= RE_R; 7331 break; 7332 case 'S': 7333 re->options |= RE_SS; 7334 break; 7335 case 's': 7336 re->options |= RE_S; 7337 break; 7338 case 't': 7339 re->options |= RE_T; 7340 break; 7341 case 'u': 7342 re->options |= RE_U; 7343 break; 7344 case 'V': 7345 re->options |= RE_VV; 7346 break; 7347 case 'v': 7348 readelf_version(); 7349 break; 7350 case 'W': 7351 re->options |= RE_WW; 7352 break; 7353 case 'w': 7354 re->options |= RE_W; 7355 parse_dwarf_op_short(re, optarg); 7356 break; 7357 case 'x': 7358 re->options |= RE_X; 7359 si = strtoul(optarg, &ep, 10); 7360 if (*ep == '\0') 7361 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7362 DUMP_BY_INDEX); 7363 else 7364 add_dumpop(re, 0, optarg, HEX_DUMP, 7365 DUMP_BY_NAME); 7366 break; 7367 case OPTION_DEBUG_DUMP: 7368 re->options |= RE_W; 7369 parse_dwarf_op_long(re, optarg); 7370 } 7371 } 7372 7373 argv += optind; 7374 argc -= optind; 7375 7376 if (argc == 0 || re->options == 0) 7377 readelf_usage(EXIT_FAILURE); 7378 7379 if (argc > 1) 7380 re->flags |= DISPLAY_FILENAME; 7381 7382 if (elf_version(EV_CURRENT) == EV_NONE) 7383 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7384 elf_errmsg(-1)); 7385 7386 for (i = 0; i < argc; i++) { 7387 re->filename = argv[i]; 7388 dump_object(re); 7389 } 7390 7391 exit(EXIT_SUCCESS); 7392 } 7393