xref: /freebsd/contrib/elftoolchain/readelf/readelf.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (c) 2009-2014 Kai Wang
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/queue.h>
29 #include <ar.h>
30 #include <ctype.h>
31 #include <dwarf.h>
32 #include <err.h>
33 #include <fcntl.h>
34 #include <gelf.h>
35 #include <getopt.h>
36 #include <libdwarf.h>
37 #include <libelftc.h>
38 #include <libgen.h>
39 #include <stdarg.h>
40 #include <stdint.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <time.h>
45 #include <unistd.h>
46 
47 #include "_elftc.h"
48 
49 ELFTC_VCSID("$Id: readelf.c 3178 2015-03-30 18:29:13Z emaste $");
50 
51 /*
52  * readelf(1) options.
53  */
54 #define	RE_AA	0x00000001
55 #define	RE_C	0x00000002
56 #define	RE_DD	0x00000004
57 #define	RE_D	0x00000008
58 #define	RE_G	0x00000010
59 #define	RE_H	0x00000020
60 #define	RE_II	0x00000040
61 #define	RE_I	0x00000080
62 #define	RE_L	0x00000100
63 #define	RE_NN	0x00000200
64 #define	RE_N	0x00000400
65 #define	RE_P	0x00000800
66 #define	RE_R	0x00001000
67 #define	RE_SS	0x00002000
68 #define	RE_S	0x00004000
69 #define	RE_T	0x00008000
70 #define	RE_U	0x00010000
71 #define	RE_VV	0x00020000
72 #define	RE_WW	0x00040000
73 #define	RE_W	0x00080000
74 #define	RE_X	0x00100000
75 
76 /*
77  * dwarf dump options.
78  */
79 #define	DW_A	0x00000001
80 #define	DW_FF	0x00000002
81 #define	DW_F	0x00000004
82 #define	DW_I	0x00000008
83 #define	DW_LL	0x00000010
84 #define	DW_L	0x00000020
85 #define	DW_M	0x00000040
86 #define	DW_O	0x00000080
87 #define	DW_P	0x00000100
88 #define	DW_RR	0x00000200
89 #define	DW_R	0x00000400
90 #define	DW_S	0x00000800
91 
92 #define	DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
93 	    DW_R | DW_RR | DW_S)
94 
95 /*
96  * readelf(1) run control flags.
97  */
98 #define	DISPLAY_FILENAME	0x0001
99 
100 /*
101  * Internal data structure for sections.
102  */
103 struct section {
104 	const char	*name;		/* section name */
105 	Elf_Scn		*scn;		/* section scn */
106 	uint64_t	 off;		/* section offset */
107 	uint64_t	 sz;		/* section size */
108 	uint64_t	 entsize;	/* section entsize */
109 	uint64_t	 align;		/* section alignment */
110 	uint64_t	 type;		/* section type */
111 	uint64_t	 flags;		/* section flags */
112 	uint64_t	 addr;		/* section virtual addr */
113 	uint32_t	 link;		/* section link ndx */
114 	uint32_t	 info;		/* section info ndx */
115 };
116 
117 struct dumpop {
118 	union {
119 		size_t si;		/* section index */
120 		const char *sn;		/* section name */
121 	} u;
122 	enum {
123 		DUMP_BY_INDEX = 0,
124 		DUMP_BY_NAME
125 	} type;				/* dump type */
126 #define HEX_DUMP	0x0001
127 #define STR_DUMP	0x0002
128 	int op;				/* dump operation */
129 	STAILQ_ENTRY(dumpop) dumpop_list;
130 };
131 
132 struct symver {
133 	const char *name;
134 	int type;
135 };
136 
137 /*
138  * Structure encapsulates the global data for readelf(1).
139  */
140 struct readelf {
141 	const char	 *filename;	/* current processing file. */
142 	int		  options;	/* command line options. */
143 	int		  flags;	/* run control flags. */
144 	int		  dop;		/* dwarf dump options. */
145 	Elf		 *elf;		/* underlying ELF descriptor. */
146 	Elf		 *ar;		/* archive ELF descriptor. */
147 	Dwarf_Debug	  dbg;		/* DWARF handle. */
148 	Dwarf_Half	  cu_psize;	/* DWARF CU pointer size. */
149 	Dwarf_Half	  cu_osize;	/* DWARF CU offset size. */
150 	Dwarf_Half	  cu_ver;	/* DWARF CU version. */
151 	GElf_Ehdr	  ehdr;		/* ELF header. */
152 	int		  ec;		/* ELF class. */
153 	size_t		  shnum;	/* #sections. */
154 	struct section	 *vd_s;		/* Verdef section. */
155 	struct section	 *vn_s;		/* Verneed section. */
156 	struct section	 *vs_s;		/* Versym section. */
157 	uint16_t	 *vs;		/* Versym array. */
158 	int		  vs_sz;	/* Versym array size. */
159 	struct symver	 *ver;		/* Version array. */
160 	int		  ver_sz;	/* Size of version array. */
161 	struct section	 *sl;		/* list of sections. */
162 	STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
163 	uint64_t	(*dw_read)(Elf_Data *, uint64_t *, int);
164 	uint64_t	(*dw_decode)(uint8_t **, int);
165 };
166 
167 enum options
168 {
169 	OPTION_DEBUG_DUMP
170 };
171 
172 static struct option longopts[] = {
173 	{"all", no_argument, NULL, 'a'},
174 	{"arch-specific", no_argument, NULL, 'A'},
175 	{"archive-index", no_argument, NULL, 'c'},
176 	{"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
177 	{"dynamic", no_argument, NULL, 'd'},
178 	{"file-header", no_argument, NULL, 'h'},
179 	{"full-section-name", no_argument, NULL, 'N'},
180 	{"headers", no_argument, NULL, 'e'},
181 	{"help", no_argument, 0, 'H'},
182 	{"hex-dump", required_argument, NULL, 'x'},
183 	{"histogram", no_argument, NULL, 'I'},
184 	{"notes", no_argument, NULL, 'n'},
185 	{"program-headers", no_argument, NULL, 'l'},
186 	{"relocs", no_argument, NULL, 'r'},
187 	{"sections", no_argument, NULL, 'S'},
188 	{"section-headers", no_argument, NULL, 'S'},
189 	{"section-groups", no_argument, NULL, 'g'},
190 	{"section-details", no_argument, NULL, 't'},
191 	{"segments", no_argument, NULL, 'l'},
192 	{"string-dump", required_argument, NULL, 'p'},
193 	{"symbols", no_argument, NULL, 's'},
194 	{"syms", no_argument, NULL, 's'},
195 	{"unwind", no_argument, NULL, 'u'},
196 	{"use-dynamic", no_argument, NULL, 'D'},
197 	{"version-info", no_argument, 0, 'V'},
198 	{"version", no_argument, 0, 'v'},
199 	{"wide", no_argument, 0, 'W'},
200 	{NULL, 0, NULL, 0}
201 };
202 
203 struct eflags_desc {
204 	uint64_t flag;
205 	const char *desc;
206 };
207 
208 struct mips_option {
209 	uint64_t flag;
210 	const char *desc;
211 };
212 
213 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
214     int t);
215 static const char *aeabi_adv_simd_arch(uint64_t simd);
216 static const char *aeabi_align_needed(uint64_t an);
217 static const char *aeabi_align_preserved(uint64_t ap);
218 static const char *aeabi_arm_isa(uint64_t ai);
219 static const char *aeabi_cpu_arch(uint64_t arch);
220 static const char *aeabi_cpu_arch_profile(uint64_t pf);
221 static const char *aeabi_div(uint64_t du);
222 static const char *aeabi_enum_size(uint64_t es);
223 static const char *aeabi_fp_16bit_format(uint64_t fp16);
224 static const char *aeabi_fp_arch(uint64_t fp);
225 static const char *aeabi_fp_denormal(uint64_t fd);
226 static const char *aeabi_fp_exceptions(uint64_t fe);
227 static const char *aeabi_fp_hpext(uint64_t fh);
228 static const char *aeabi_fp_number_model(uint64_t fn);
229 static const char *aeabi_fp_optm_goal(uint64_t fog);
230 static const char *aeabi_fp_rounding(uint64_t fr);
231 static const char *aeabi_hardfp(uint64_t hfp);
232 static const char *aeabi_mpext(uint64_t mp);
233 static const char *aeabi_optm_goal(uint64_t og);
234 static const char *aeabi_pcs_config(uint64_t pcs);
235 static const char *aeabi_pcs_got(uint64_t got);
236 static const char *aeabi_pcs_r9(uint64_t r9);
237 static const char *aeabi_pcs_ro(uint64_t ro);
238 static const char *aeabi_pcs_rw(uint64_t rw);
239 static const char *aeabi_pcs_wchar_t(uint64_t wt);
240 static const char *aeabi_t2ee(uint64_t t2ee);
241 static const char *aeabi_thumb_isa(uint64_t ti);
242 static const char *aeabi_fp_user_exceptions(uint64_t fu);
243 static const char *aeabi_unaligned_access(uint64_t ua);
244 static const char *aeabi_vfp_args(uint64_t va);
245 static const char *aeabi_virtual(uint64_t vt);
246 static const char *aeabi_wmmx_arch(uint64_t wmmx);
247 static const char *aeabi_wmmx_args(uint64_t wa);
248 static const char *elf_class(unsigned int class);
249 static const char *elf_endian(unsigned int endian);
250 static const char *elf_machine(unsigned int mach);
251 static const char *elf_osabi(unsigned int abi);
252 static const char *elf_type(unsigned int type);
253 static const char *elf_ver(unsigned int ver);
254 static const char *dt_type(unsigned int mach, unsigned int dtype);
255 static void dump_ar(struct readelf *re, int);
256 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
257 static void dump_attributes(struct readelf *re);
258 static uint8_t *dump_compatibility_tag(uint8_t *p);
259 static void dump_dwarf(struct readelf *re);
260 static void dump_dwarf_abbrev(struct readelf *re);
261 static void dump_dwarf_aranges(struct readelf *re);
262 static void dump_dwarf_block(struct readelf *re, uint8_t *b,
263     Dwarf_Unsigned len);
264 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
265 static void dump_dwarf_frame(struct readelf *re, int alt);
266 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
267     uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
268     Dwarf_Addr pc, Dwarf_Debug dbg);
269 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
270     Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
271 static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
272     int alt);
273 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
274 static void dump_dwarf_macinfo(struct readelf *re);
275 static void dump_dwarf_line(struct readelf *re);
276 static void dump_dwarf_line_decoded(struct readelf *re);
277 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
278 static void dump_dwarf_loclist(struct readelf *re);
279 static void dump_dwarf_pubnames(struct readelf *re);
280 static void dump_dwarf_ranges(struct readelf *re);
281 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
282     Dwarf_Addr base);
283 static void dump_dwarf_str(struct readelf *re);
284 static void dump_eflags(struct readelf *re, uint64_t e_flags);
285 static void dump_elf(struct readelf *re);
286 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
287 static void dump_dynamic(struct readelf *re);
288 static void dump_liblist(struct readelf *re);
289 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
290 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
291 static void dump_mips_options(struct readelf *re, struct section *s);
292 static void dump_mips_option_flags(const char *name, struct mips_option *opt,
293     uint64_t info);
294 static void dump_mips_reginfo(struct readelf *re, struct section *s);
295 static void dump_mips_specific_info(struct readelf *re);
296 static void dump_notes(struct readelf *re);
297 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
298     off_t off);
299 static void dump_svr4_hash(struct section *s);
300 static void dump_svr4_hash64(struct readelf *re, struct section *s);
301 static void dump_gnu_hash(struct readelf *re, struct section *s);
302 static void dump_hash(struct readelf *re);
303 static void dump_phdr(struct readelf *re);
304 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
305 static void dump_symtab(struct readelf *re, int i);
306 static void dump_symtabs(struct readelf *re);
307 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p);
308 static void dump_ver(struct readelf *re);
309 static void dump_verdef(struct readelf *re, int dump);
310 static void dump_verneed(struct readelf *re, int dump);
311 static void dump_versym(struct readelf *re);
312 static const char *dwarf_reg(unsigned int mach, unsigned int reg);
313 static const char *dwarf_regname(struct readelf *re, unsigned int num);
314 static struct dumpop *find_dumpop(struct readelf *re, size_t si,
315     const char *sn, int op, int t);
316 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
317     Dwarf_Addr off);
318 static const char *get_string(struct readelf *re, int strtab, size_t off);
319 static const char *get_symbol_name(struct readelf *re, int symtab, int i);
320 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
321 static void load_sections(struct readelf *re);
322 static const char *mips_abi_fp(uint64_t fp);
323 static const char *note_type(const char *note_name, unsigned int et,
324     unsigned int nt);
325 static const char *note_type_freebsd(unsigned int nt);
326 static const char *note_type_freebsd_core(unsigned int nt);
327 static const char *note_type_linux_core(unsigned int nt);
328 static const char *note_type_gnu(unsigned int nt);
329 static const char *note_type_netbsd(unsigned int nt);
330 static const char *note_type_openbsd(unsigned int nt);
331 static const char *note_type_unknown(unsigned int nt);
332 static const char *option_kind(uint8_t kind);
333 static const char *phdr_type(unsigned int ptype);
334 static const char *ppc_abi_fp(uint64_t fp);
335 static const char *ppc_abi_vector(uint64_t vec);
336 static const char *r_type(unsigned int mach, unsigned int type);
337 static void readelf_usage(void);
338 static void readelf_version(void);
339 static void search_loclist_at(struct readelf *re, Dwarf_Die die,
340     Dwarf_Unsigned lowpc);
341 static void search_ver(struct readelf *re);
342 static const char *section_type(unsigned int mach, unsigned int stype);
343 static void set_cu_context(struct readelf *re, Dwarf_Half psize,
344     Dwarf_Half osize, Dwarf_Half ver);
345 static const char *st_bind(unsigned int sbind);
346 static const char *st_shndx(unsigned int shndx);
347 static const char *st_type(unsigned int stype);
348 static const char *st_vis(unsigned int svis);
349 static const char *top_tag(unsigned int tag);
350 static void unload_sections(struct readelf *re);
351 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
352     int bytes_to_read);
353 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
354     int bytes_to_read);
355 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
356 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
357 static int64_t _decode_sleb128(uint8_t **dp);
358 static uint64_t _decode_uleb128(uint8_t **dp);
359 
360 static struct eflags_desc arm_eflags_desc[] = {
361 	{EF_ARM_RELEXEC, "relocatable executable"},
362 	{EF_ARM_HASENTRY, "has entry point"},
363 	{EF_ARM_SYMSARESORTED, "sorted symbol tables"},
364 	{EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
365 	{EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
366 	{EF_ARM_BE8, "BE8"},
367 	{EF_ARM_LE8, "LE8"},
368 	{EF_ARM_INTERWORK, "interworking enabled"},
369 	{EF_ARM_APCS_26, "uses APCS/26"},
370 	{EF_ARM_APCS_FLOAT, "uses APCS/float"},
371 	{EF_ARM_PIC, "position independent"},
372 	{EF_ARM_ALIGN8, "8 bit structure alignment"},
373 	{EF_ARM_NEW_ABI, "uses new ABI"},
374 	{EF_ARM_OLD_ABI, "uses old ABI"},
375 	{EF_ARM_SOFT_FLOAT, "software FP"},
376 	{EF_ARM_VFP_FLOAT, "VFP"},
377 	{EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
378 	{0, NULL}
379 };
380 
381 static struct eflags_desc mips_eflags_desc[] = {
382 	{EF_MIPS_NOREORDER, "noreorder"},
383 	{EF_MIPS_PIC, "pic"},
384 	{EF_MIPS_CPIC, "cpic"},
385 	{EF_MIPS_UCODE, "ugen_reserved"},
386 	{EF_MIPS_ABI2, "abi2"},
387 	{EF_MIPS_OPTIONS_FIRST, "odk first"},
388 	{EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
389 	{EF_MIPS_ARCH_ASE_M16, "mips16"},
390 	{0, NULL}
391 };
392 
393 static struct eflags_desc powerpc_eflags_desc[] = {
394 	{EF_PPC_EMB, "emb"},
395 	{EF_PPC_RELOCATABLE, "relocatable"},
396 	{EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
397 	{0, NULL}
398 };
399 
400 static struct eflags_desc sparc_eflags_desc[] = {
401 	{EF_SPARC_32PLUS, "v8+"},
402 	{EF_SPARC_SUN_US1, "ultrasparcI"},
403 	{EF_SPARC_HAL_R1, "halr1"},
404 	{EF_SPARC_SUN_US3, "ultrasparcIII"},
405 	{0, NULL}
406 };
407 
408 static const char *
409 elf_osabi(unsigned int abi)
410 {
411 	static char s_abi[32];
412 
413 	switch(abi) {
414 	case ELFOSABI_SYSV: return "SYSV";
415 	case ELFOSABI_HPUX: return "HPUS";
416 	case ELFOSABI_NETBSD: return "NetBSD";
417 	case ELFOSABI_GNU: return "GNU";
418 	case ELFOSABI_HURD: return "HURD";
419 	case ELFOSABI_86OPEN: return "86OPEN";
420 	case ELFOSABI_SOLARIS: return "Solaris";
421 	case ELFOSABI_AIX: return "AIX";
422 	case ELFOSABI_IRIX: return "IRIX";
423 	case ELFOSABI_FREEBSD: return "FreeBSD";
424 	case ELFOSABI_TRU64: return "TRU64";
425 	case ELFOSABI_MODESTO: return "MODESTO";
426 	case ELFOSABI_OPENBSD: return "OpenBSD";
427 	case ELFOSABI_OPENVMS: return "OpenVMS";
428 	case ELFOSABI_NSK: return "NSK";
429 	case ELFOSABI_ARM: return "ARM";
430 	case ELFOSABI_STANDALONE: return "StandAlone";
431 	default:
432 		snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
433 		return (s_abi);
434 	}
435 };
436 
437 static const char *
438 elf_machine(unsigned int mach)
439 {
440 	static char s_mach[32];
441 
442 	switch (mach) {
443 	case EM_NONE: return "Unknown machine";
444 	case EM_M32: return "AT&T WE32100";
445 	case EM_SPARC: return "Sun SPARC";
446 	case EM_386: return "Intel i386";
447 	case EM_68K: return "Motorola 68000";
448 	case EM_88K: return "Motorola 88000";
449 	case EM_860: return "Intel i860";
450 	case EM_MIPS: return "MIPS R3000 Big-Endian only";
451 	case EM_S370: return "IBM System/370";
452 	case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
453 	case EM_PARISC: return "HP PA-RISC";
454 	case EM_VPP500: return "Fujitsu VPP500";
455 	case EM_SPARC32PLUS: return "SPARC v8plus";
456 	case EM_960: return "Intel 80960";
457 	case EM_PPC: return "PowerPC 32-bit";
458 	case EM_PPC64: return "PowerPC 64-bit";
459 	case EM_S390: return "IBM System/390";
460 	case EM_V800: return "NEC V800";
461 	case EM_FR20: return "Fujitsu FR20";
462 	case EM_RH32: return "TRW RH-32";
463 	case EM_RCE: return "Motorola RCE";
464 	case EM_ARM: return "ARM";
465 	case EM_SH: return "Hitachi SH";
466 	case EM_SPARCV9: return "SPARC v9 64-bit";
467 	case EM_TRICORE: return "Siemens TriCore embedded processor";
468 	case EM_ARC: return "Argonaut RISC Core";
469 	case EM_H8_300: return "Hitachi H8/300";
470 	case EM_H8_300H: return "Hitachi H8/300H";
471 	case EM_H8S: return "Hitachi H8S";
472 	case EM_H8_500: return "Hitachi H8/500";
473 	case EM_IA_64: return "Intel IA-64 Processor";
474 	case EM_MIPS_X: return "Stanford MIPS-X";
475 	case EM_COLDFIRE: return "Motorola ColdFire";
476 	case EM_68HC12: return "Motorola M68HC12";
477 	case EM_MMA: return "Fujitsu MMA";
478 	case EM_PCP: return "Siemens PCP";
479 	case EM_NCPU: return "Sony nCPU";
480 	case EM_NDR1: return "Denso NDR1 microprocessor";
481 	case EM_STARCORE: return "Motorola Star*Core processor";
482 	case EM_ME16: return "Toyota ME16 processor";
483 	case EM_ST100: return "STMicroelectronics ST100 processor";
484 	case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
485 	case EM_X86_64: return "Advanced Micro Devices x86-64";
486 	case EM_PDSP: return "Sony DSP Processor";
487 	case EM_FX66: return "Siemens FX66 microcontroller";
488 	case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
489 	case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
490 	case EM_68HC16: return "Motorola MC68HC16 microcontroller";
491 	case EM_68HC11: return "Motorola MC68HC11 microcontroller";
492 	case EM_68HC08: return "Motorola MC68HC08 microcontroller";
493 	case EM_68HC05: return "Motorola MC68HC05 microcontroller";
494 	case EM_SVX: return "Silicon Graphics SVx";
495 	case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
496 	case EM_VAX: return "Digital VAX";
497 	case EM_CRIS: return "Axis Communications 32-bit embedded processor";
498 	case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
499 	case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
500 	case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
501 	case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
502 	case EM_HUANY: return "Harvard University MI object files";
503 	case EM_PRISM: return "SiTera Prism";
504 	case EM_AVR: return "Atmel AVR 8-bit microcontroller";
505 	case EM_FR30: return "Fujitsu FR30";
506 	case EM_D10V: return "Mitsubishi D10V";
507 	case EM_D30V: return "Mitsubishi D30V";
508 	case EM_V850: return "NEC v850";
509 	case EM_M32R: return "Mitsubishi M32R";
510 	case EM_MN10300: return "Matsushita MN10300";
511 	case EM_MN10200: return "Matsushita MN10200";
512 	case EM_PJ: return "picoJava";
513 	case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
514 	case EM_ARC_A5: return "ARC Cores Tangent-A5";
515 	case EM_XTENSA: return "Tensilica Xtensa Architecture";
516 	case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
517 	case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
518 	case EM_NS32K: return "National Semiconductor 32000 series";
519 	case EM_TPC: return "Tenor Network TPC processor";
520 	case EM_SNP1K: return "Trebia SNP 1000 processor";
521 	case EM_ST200: return "STMicroelectronics ST200 microcontroller";
522 	case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
523 	case EM_MAX: return "MAX Processor";
524 	case EM_CR: return "National Semiconductor CompactRISC microprocessor";
525 	case EM_F2MC16: return "Fujitsu F2MC16";
526 	case EM_MSP430: return "TI embedded microcontroller msp430";
527 	case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
528 	case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
529 	case EM_SEP: return "Sharp embedded microprocessor";
530 	case EM_ARCA: return "Arca RISC Microprocessor";
531 	case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
532 	case EM_AARCH64: return "AArch64";
533 	default:
534 		snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
535 		return (s_mach);
536 	}
537 
538 }
539 
540 static const char *
541 elf_class(unsigned int class)
542 {
543 	static char s_class[32];
544 
545 	switch (class) {
546 	case ELFCLASSNONE: return "none";
547 	case ELFCLASS32: return "ELF32";
548 	case ELFCLASS64: return "ELF64";
549 	default:
550 		snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
551 		return (s_class);
552 	}
553 }
554 
555 static const char *
556 elf_endian(unsigned int endian)
557 {
558 	static char s_endian[32];
559 
560 	switch (endian) {
561 	case ELFDATANONE: return "none";
562 	case ELFDATA2LSB: return "2's complement, little endian";
563 	case ELFDATA2MSB: return "2's complement, big endian";
564 	default:
565 		snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
566 		return (s_endian);
567 	}
568 }
569 
570 static const char *
571 elf_type(unsigned int type)
572 {
573 	static char s_type[32];
574 
575 	switch (type) {
576 	case ET_NONE: return "NONE (None)";
577 	case ET_REL: return "REL (Relocatable file)";
578 	case ET_EXEC: return "EXEC (Executable file)";
579 	case ET_DYN: return "DYN (Shared object file)";
580 	case ET_CORE: return "CORE (Core file)";
581 	default:
582 		if (type >= ET_LOPROC)
583 			snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
584 		else if (type >= ET_LOOS && type <= ET_HIOS)
585 			snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
586 		else
587 			snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
588 			    type);
589 		return (s_type);
590 	}
591 }
592 
593 static const char *
594 elf_ver(unsigned int ver)
595 {
596 	static char s_ver[32];
597 
598 	switch (ver) {
599 	case EV_CURRENT: return "(current)";
600 	case EV_NONE: return "(none)";
601 	default:
602 		snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
603 		    ver);
604 		return (s_ver);
605 	}
606 }
607 
608 static const char *
609 phdr_type(unsigned int ptype)
610 {
611 	static char s_ptype[32];
612 
613 	switch (ptype) {
614 	case PT_NULL: return "NULL";
615 	case PT_LOAD: return "LOAD";
616 	case PT_DYNAMIC: return "DYNAMIC";
617 	case PT_INTERP: return "INTERP";
618 	case PT_NOTE: return "NOTE";
619 	case PT_SHLIB: return "SHLIB";
620 	case PT_PHDR: return "PHDR";
621 	case PT_TLS: return "TLS";
622 	case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
623 	case PT_GNU_STACK: return "GNU_STACK";
624 	case PT_GNU_RELRO: return "GNU_RELRO";
625 	default:
626 		if (ptype >= PT_LOPROC && ptype <= PT_HIPROC)
627 			snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
628 			    ptype - PT_LOPROC);
629 		else if (ptype >= PT_LOOS && ptype <= PT_HIOS)
630 			snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
631 			    ptype - PT_LOOS);
632 		else
633 			snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
634 			    ptype);
635 		return (s_ptype);
636 	}
637 }
638 
639 static const char *
640 section_type(unsigned int mach, unsigned int stype)
641 {
642 	static char s_stype[32];
643 
644 	if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
645 		switch (mach) {
646 		case EM_X86_64:
647 			switch (stype) {
648 			case SHT_AMD64_UNWIND: return "AMD64_UNWIND";
649 			default:
650 				break;
651 			}
652 			break;
653 		case EM_MIPS:
654 		case EM_MIPS_RS3_LE:
655 			switch (stype) {
656 			case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
657 			case SHT_MIPS_MSYM: return "MIPS_MSYM";
658 			case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
659 			case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
660 			case SHT_MIPS_UCODE: return "MIPS_UCODE";
661 			case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
662 			case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
663 			case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
664 			case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
665 			case SHT_MIPS_RELD: return "MIPS_RELD";
666 			case SHT_MIPS_IFACE: return "MIPS_IFACE";
667 			case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
668 			case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
669 			case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
670 			case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
671 			case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
672 			case SHT_MIPS_DWARF: return "MIPS_DWARF";
673 			case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
674 			case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
675 			case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
676 			case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
677 			case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
678 			case SHT_MIPS_XLATE: return "MIPS_XLATE";
679 			case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
680 			case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
681 			case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
682 			case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
683 			case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
684 			default:
685 				break;
686 			}
687 			break;
688 		default:
689 			break;
690 		}
691 
692 		snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
693 		    stype - SHT_LOPROC);
694 		return (s_stype);
695 	}
696 
697 	switch (stype) {
698 	case SHT_NULL: return "NULL";
699 	case SHT_PROGBITS: return "PROGBITS";
700 	case SHT_SYMTAB: return "SYMTAB";
701 	case SHT_STRTAB: return "STRTAB";
702 	case SHT_RELA: return "RELA";
703 	case SHT_HASH: return "HASH";
704 	case SHT_DYNAMIC: return "DYNAMIC";
705 	case SHT_NOTE: return "NOTE";
706 	case SHT_NOBITS: return "NOBITS";
707 	case SHT_REL: return "REL";
708 	case SHT_SHLIB: return "SHLIB";
709 	case SHT_DYNSYM: return "DYNSYM";
710 	case SHT_INIT_ARRAY: return "INIT_ARRAY";
711 	case SHT_FINI_ARRAY: return "FINI_ARRAY";
712 	case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
713 	case SHT_GROUP: return "GROUP";
714 	case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
715 	case SHT_SUNW_dof: return "SUNW_dof";
716 	case SHT_SUNW_cap: return "SUNW_cap";
717 	case SHT_GNU_HASH: return "GNU_HASH";
718 	case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
719 	case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
720 	case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
721 	case SHT_SUNW_move: return "SUNW_move";
722 	case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
723 	case SHT_SUNW_syminfo: return "SUNW_syminfo";
724 	case SHT_SUNW_verdef: return "SUNW_verdef";
725 	case SHT_SUNW_verneed: return "SUNW_verneed";
726 	case SHT_SUNW_versym: return "SUNW_versym";
727 	default:
728 		if (stype >= SHT_LOOS && stype <= SHT_HIOS)
729 			snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
730 			    stype - SHT_LOOS);
731 		else if (stype >= SHT_LOUSER)
732 			snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
733 			    stype - SHT_LOUSER);
734 		else
735 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
736 			    stype);
737 		return (s_stype);
738 	}
739 }
740 
741 static const char *
742 dt_type(unsigned int mach, unsigned int dtype)
743 {
744 	static char s_dtype[32];
745 
746 	if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
747 		switch (mach) {
748 		case EM_ARM:
749 			switch (dtype) {
750 			case DT_ARM_SYMTABSZ:
751 				return "ARM_SYMTABSZ";
752 			default:
753 				break;
754 			}
755 			break;
756 		case EM_MIPS:
757 		case EM_MIPS_RS3_LE:
758 			switch (dtype) {
759 			case DT_MIPS_RLD_VERSION:
760 				return "MIPS_RLD_VERSION";
761 			case DT_MIPS_TIME_STAMP:
762 				return "MIPS_TIME_STAMP";
763 			case DT_MIPS_ICHECKSUM:
764 				return "MIPS_ICHECKSUM";
765 			case DT_MIPS_IVERSION:
766 				return "MIPS_IVERSION";
767 			case DT_MIPS_FLAGS:
768 				return "MIPS_FLAGS";
769 			case DT_MIPS_BASE_ADDRESS:
770 				return "MIPS_BASE_ADDRESS";
771 			case DT_MIPS_CONFLICT:
772 				return "MIPS_CONFLICT";
773 			case DT_MIPS_LIBLIST:
774 				return "MIPS_LIBLIST";
775 			case DT_MIPS_LOCAL_GOTNO:
776 				return "MIPS_LOCAL_GOTNO";
777 			case DT_MIPS_CONFLICTNO:
778 				return "MIPS_CONFLICTNO";
779 			case DT_MIPS_LIBLISTNO:
780 				return "MIPS_LIBLISTNO";
781 			case DT_MIPS_SYMTABNO:
782 				return "MIPS_SYMTABNO";
783 			case DT_MIPS_UNREFEXTNO:
784 				return "MIPS_UNREFEXTNO";
785 			case DT_MIPS_GOTSYM:
786 				return "MIPS_GOTSYM";
787 			case DT_MIPS_HIPAGENO:
788 				return "MIPS_HIPAGENO";
789 			case DT_MIPS_RLD_MAP:
790 				return "MIPS_RLD_MAP";
791 			case DT_MIPS_DELTA_CLASS:
792 				return "MIPS_DELTA_CLASS";
793 			case DT_MIPS_DELTA_CLASS_NO:
794 				return "MIPS_DELTA_CLASS_NO";
795 			case DT_MIPS_DELTA_INSTANCE:
796 				return "MIPS_DELTA_INSTANCE";
797 			case DT_MIPS_DELTA_INSTANCE_NO:
798 				return "MIPS_DELTA_INSTANCE_NO";
799 			case DT_MIPS_DELTA_RELOC:
800 				return "MIPS_DELTA_RELOC";
801 			case DT_MIPS_DELTA_RELOC_NO:
802 				return "MIPS_DELTA_RELOC_NO";
803 			case DT_MIPS_DELTA_SYM:
804 				return "MIPS_DELTA_SYM";
805 			case DT_MIPS_DELTA_SYM_NO:
806 				return "MIPS_DELTA_SYM_NO";
807 			case DT_MIPS_DELTA_CLASSSYM:
808 				return "MIPS_DELTA_CLASSSYM";
809 			case DT_MIPS_DELTA_CLASSSYM_NO:
810 				return "MIPS_DELTA_CLASSSYM_NO";
811 			case DT_MIPS_CXX_FLAGS:
812 				return "MIPS_CXX_FLAGS";
813 			case DT_MIPS_PIXIE_INIT:
814 				return "MIPS_PIXIE_INIT";
815 			case DT_MIPS_SYMBOL_LIB:
816 				return "MIPS_SYMBOL_LIB";
817 			case DT_MIPS_LOCALPAGE_GOTIDX:
818 				return "MIPS_LOCALPAGE_GOTIDX";
819 			case DT_MIPS_LOCAL_GOTIDX:
820 				return "MIPS_LOCAL_GOTIDX";
821 			case DT_MIPS_HIDDEN_GOTIDX:
822 				return "MIPS_HIDDEN_GOTIDX";
823 			case DT_MIPS_PROTECTED_GOTIDX:
824 				return "MIPS_PROTECTED_GOTIDX";
825 			case DT_MIPS_OPTIONS:
826 				return "MIPS_OPTIONS";
827 			case DT_MIPS_INTERFACE:
828 				return "MIPS_INTERFACE";
829 			case DT_MIPS_DYNSTR_ALIGN:
830 				return "MIPS_DYNSTR_ALIGN";
831 			case DT_MIPS_INTERFACE_SIZE:
832 				return "MIPS_INTERFACE_SIZE";
833 			case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
834 				return "MIPS_RLD_TEXT_RESOLVE_ADDR";
835 			case DT_MIPS_PERF_SUFFIX:
836 				return "MIPS_PERF_SUFFIX";
837 			case DT_MIPS_COMPACT_SIZE:
838 				return "MIPS_COMPACT_SIZE";
839 			case DT_MIPS_GP_VALUE:
840 				return "MIPS_GP_VALUE";
841 			case DT_MIPS_AUX_DYNAMIC:
842 				return "MIPS_AUX_DYNAMIC";
843 			case DT_MIPS_PLTGOT:
844 				return "MIPS_PLTGOT";
845 			case DT_MIPS_RLD_OBJ_UPDATE:
846 				return "MIPS_RLD_OBJ_UPDATE";
847 			case DT_MIPS_RWPLT:
848 				return "MIPS_RWPLT";
849 			default:
850 				break;
851 			}
852 			break;
853 		case EM_SPARC:
854 		case EM_SPARC32PLUS:
855 		case EM_SPARCV9:
856 			switch (dtype) {
857 			case DT_SPARC_REGISTER:
858 				return "DT_SPARC_REGISTER";
859 			default:
860 				break;
861 			}
862 			break;
863 		default:
864 			break;
865 		}
866 		snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
867 		return (s_dtype);
868 	}
869 
870 	switch (dtype) {
871 	case DT_NULL: return "NULL";
872 	case DT_NEEDED: return "NEEDED";
873 	case DT_PLTRELSZ: return "PLTRELSZ";
874 	case DT_PLTGOT: return "PLTGOT";
875 	case DT_HASH: return "HASH";
876 	case DT_STRTAB: return "STRTAB";
877 	case DT_SYMTAB: return "SYMTAB";
878 	case DT_RELA: return "RELA";
879 	case DT_RELASZ: return "RELASZ";
880 	case DT_RELAENT: return "RELAENT";
881 	case DT_STRSZ: return "STRSZ";
882 	case DT_SYMENT: return "SYMENT";
883 	case DT_INIT: return "INIT";
884 	case DT_FINI: return "FINI";
885 	case DT_SONAME: return "SONAME";
886 	case DT_RPATH: return "RPATH";
887 	case DT_SYMBOLIC: return "SYMBOLIC";
888 	case DT_REL: return "REL";
889 	case DT_RELSZ: return "RELSZ";
890 	case DT_RELENT: return "RELENT";
891 	case DT_PLTREL: return "PLTREL";
892 	case DT_DEBUG: return "DEBUG";
893 	case DT_TEXTREL: return "TEXTREL";
894 	case DT_JMPREL: return "JMPREL";
895 	case DT_BIND_NOW: return "BIND_NOW";
896 	case DT_INIT_ARRAY: return "INIT_ARRAY";
897 	case DT_FINI_ARRAY: return "FINI_ARRAY";
898 	case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
899 	case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
900 	case DT_RUNPATH: return "RUNPATH";
901 	case DT_FLAGS: return "FLAGS";
902 	case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
903 	case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
904 	case DT_MAXPOSTAGS: return "MAXPOSTAGS";
905 	case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
906 	case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
907 	case DT_SUNW_FILTER: return "SUNW_FILTER";
908 	case DT_SUNW_CAP: return "SUNW_CAP";
909 	case DT_CHECKSUM: return "CHECKSUM";
910 	case DT_PLTPADSZ: return "PLTPADSZ";
911 	case DT_MOVEENT: return "MOVEENT";
912 	case DT_MOVESZ: return "MOVESZ";
913 	case DT_FEATURE: return "FEATURE";
914 	case DT_POSFLAG_1: return "POSFLAG_1";
915 	case DT_SYMINSZ: return "SYMINSZ";
916 	case DT_SYMINENT: return "SYMINENT";
917 	case DT_GNU_HASH: return "GNU_HASH";
918 	case DT_GNU_CONFLICT: return "GNU_CONFLICT";
919 	case DT_GNU_LIBLIST: return "GNU_LIBLIST";
920 	case DT_CONFIG: return "CONFIG";
921 	case DT_DEPAUDIT: return "DEPAUDIT";
922 	case DT_AUDIT: return "AUDIT";
923 	case DT_PLTPAD: return "PLTPAD";
924 	case DT_MOVETAB: return "MOVETAB";
925 	case DT_SYMINFO: return "SYMINFO";
926 	case DT_VERSYM: return "VERSYM";
927 	case DT_RELACOUNT: return "RELACOUNT";
928 	case DT_RELCOUNT: return "RELCOUNT";
929 	case DT_FLAGS_1: return "FLAGS_1";
930 	case DT_VERDEF: return "VERDEF";
931 	case DT_VERDEFNUM: return "VERDEFNUM";
932 	case DT_VERNEED: return "VERNEED";
933 	case DT_VERNEEDNUM: return "VERNEEDNUM";
934 	case DT_AUXILIARY: return "AUXILIARY";
935 	case DT_USED: return "USED";
936 	case DT_FILTER: return "FILTER";
937 	case DT_GNU_PRELINKED: return "GNU_PRELINKED";
938 	case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
939 	case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
940 	default:
941 		snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
942 		return (s_dtype);
943 	}
944 }
945 
946 static const char *
947 st_bind(unsigned int sbind)
948 {
949 	static char s_sbind[32];
950 
951 	switch (sbind) {
952 	case STB_LOCAL: return "LOCAL";
953 	case STB_GLOBAL: return "GLOBAL";
954 	case STB_WEAK: return "WEAK";
955 	default:
956 		if (sbind >= STB_LOOS && sbind <= STB_HIOS)
957 			return "OS";
958 		else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
959 			return "PROC";
960 		else
961 			snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
962 			    sbind);
963 		return (s_sbind);
964 	}
965 }
966 
967 static const char *
968 st_type(unsigned int stype)
969 {
970 	static char s_stype[32];
971 
972 	switch (stype) {
973 	case STT_NOTYPE: return "NOTYPE";
974 	case STT_OBJECT: return "OBJECT";
975 	case STT_FUNC: return "FUNC";
976 	case STT_SECTION: return "SECTION";
977 	case STT_FILE: return "FILE";
978 	case STT_COMMON: return "COMMON";
979 	case STT_TLS: return "TLS";
980 	default:
981 		if (stype >= STT_LOOS && stype <= STT_HIOS)
982 			snprintf(s_stype, sizeof(s_stype), "OS+%#x",
983 			    stype - STT_LOOS);
984 		else if (stype >= STT_LOPROC && stype <= STT_HIPROC)
985 			snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
986 			    stype - STT_LOPROC);
987 		else
988 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
989 			    stype);
990 		return (s_stype);
991 	}
992 }
993 
994 static const char *
995 st_vis(unsigned int svis)
996 {
997 	static char s_svis[32];
998 
999 	switch(svis) {
1000 	case STV_DEFAULT: return "DEFAULT";
1001 	case STV_INTERNAL: return "INTERNAL";
1002 	case STV_HIDDEN: return "HIDDEN";
1003 	case STV_PROTECTED: return "PROTECTED";
1004 	default:
1005 		snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
1006 		return (s_svis);
1007 	}
1008 }
1009 
1010 static const char *
1011 st_shndx(unsigned int shndx)
1012 {
1013 	static char s_shndx[32];
1014 
1015 	switch (shndx) {
1016 	case SHN_UNDEF: return "UND";
1017 	case SHN_ABS: return "ABS";
1018 	case SHN_COMMON: return "COM";
1019 	default:
1020 		if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
1021 			return "PRC";
1022 		else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
1023 			return "OS";
1024 		else
1025 			snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
1026 		return (s_shndx);
1027 	}
1028 }
1029 
1030 static struct {
1031 	const char *ln;
1032 	char sn;
1033 	int value;
1034 } section_flag[] = {
1035 	{"WRITE", 'W', SHF_WRITE},
1036 	{"ALLOC", 'A', SHF_ALLOC},
1037 	{"EXEC", 'X', SHF_EXECINSTR},
1038 	{"MERGE", 'M', SHF_MERGE},
1039 	{"STRINGS", 'S', SHF_STRINGS},
1040 	{"INFO LINK", 'I', SHF_INFO_LINK},
1041 	{"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
1042 	{"GROUP", 'G', SHF_GROUP},
1043 	{"TLS", 'T', SHF_TLS},
1044 	{NULL, 0, 0}
1045 };
1046 
1047 static const char *
1048 r_type(unsigned int mach, unsigned int type)
1049 {
1050 	switch(mach) {
1051 	case EM_NONE: return "";
1052 	case EM_386:
1053 		switch(type) {
1054 		case 0: return "R_386_NONE";
1055 		case 1: return "R_386_32";
1056 		case 2: return "R_386_PC32";
1057 		case 3: return "R_386_GOT32";
1058 		case 4: return "R_386_PLT32";
1059 		case 5: return "R_386_COPY";
1060 		case 6: return "R_386_GLOB_DAT";
1061 		case 7: return "R_386_JMP_SLOT";
1062 		case 8: return "R_386_RELATIVE";
1063 		case 9: return "R_386_GOTOFF";
1064 		case 10: return "R_386_GOTPC";
1065 		case 14: return "R_386_TLS_TPOFF";
1066 		case 15: return "R_386_TLS_IE";
1067 		case 16: return "R_386_TLS_GOTIE";
1068 		case 17: return "R_386_TLS_LE";
1069 		case 18: return "R_386_TLS_GD";
1070 		case 19: return "R_386_TLS_LDM";
1071 		case 24: return "R_386_TLS_GD_32";
1072 		case 25: return "R_386_TLS_GD_PUSH";
1073 		case 26: return "R_386_TLS_GD_CALL";
1074 		case 27: return "R_386_TLS_GD_POP";
1075 		case 28: return "R_386_TLS_LDM_32";
1076 		case 29: return "R_386_TLS_LDM_PUSH";
1077 		case 30: return "R_386_TLS_LDM_CALL";
1078 		case 31: return "R_386_TLS_LDM_POP";
1079 		case 32: return "R_386_TLS_LDO_32";
1080 		case 33: return "R_386_TLS_IE_32";
1081 		case 34: return "R_386_TLS_LE_32";
1082 		case 35: return "R_386_TLS_DTPMOD32";
1083 		case 36: return "R_386_TLS_DTPOFF32";
1084 		case 37: return "R_386_TLS_TPOFF32";
1085 		default: return "";
1086 		}
1087 	case EM_AARCH64:
1088 		switch(type) {
1089 		case 0: return "R_AARCH64_NONE";
1090 		case 257: return "R_AARCH64_ABS64";
1091 		case 258: return "R_AARCH64_ABS32";
1092 		case 259: return "R_AARCH64_ABS16";
1093 		case 260: return "R_AARCH64_PREL64";
1094 		case 261: return "R_AARCH64_PREL32";
1095 		case 262: return "R_AARCH64_PREL16";
1096 		case 263: return "R_AARCH64_MOVW_UABS_G0";
1097 		case 264: return "R_AARCH64_MOVW_UABS_G0_NC";
1098 		case 265: return "R_AARCH64_MOVW_UABS_G1";
1099 		case 266: return "R_AARCH64_MOVW_UABS_G1_NC";
1100 		case 267: return "R_AARCH64_MOVW_UABS_G2";
1101 		case 268: return "R_AARCH64_MOVW_UABS_G2_NC";
1102 		case 269: return "R_AARCH64_MOVW_UABS_G3";
1103 		case 270: return "R_AARCH64_MOVW_SABS_G0";
1104 		case 271: return "R_AARCH64_MOVW_SABS_G1";
1105 		case 272: return "R_AARCH64_MOVW_SABS_G2";
1106 		case 273: return "R_AARCH64_LD_PREL_LO19";
1107 		case 274: return "R_AARCH64_ADR_PREL_LO21";
1108 		case 275: return "R_AARCH64_ADR_PREL_PG_HI21";
1109 		case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC";
1110 		case 277: return "R_AARCH64_ADD_ABS_LO12_NC";
1111 		case 278: return "R_AARCH64_LDST8_ABS_LO12_NC";
1112 		case 279: return "R_AARCH64_TSTBR14";
1113 		case 280: return "R_AARCH64_CONDBR19";
1114 		case 282: return "R_AARCH64_JUMP26";
1115 		case 283: return "R_AARCH64_CALL26";
1116 		case 284: return "R_AARCH64_LDST16_ABS_LO12_NC";
1117 		case 285: return "R_AARCH64_LDST32_ABS_LO12_NC";
1118 		case 286: return "R_AARCH64_LDST64_ABS_LO12_NC";
1119 		case 287: return "R_AARCH64_MOVW_PREL_G0";
1120 		case 288: return "R_AARCH64_MOVW_PREL_G0_NC";
1121 		case 289: return "R_AARCH64_MOVW_PREL_G1";
1122 		case 290: return "R_AARCH64_MOVW_PREL_G1_NC";
1123 		case 291: return "R_AARCH64_MOVW_PREL_G2";
1124 		case 292: return "R_AARCH64_MOVW_PREL_G2_NC";
1125 		case 293: return "R_AARCH64_MOVW_PREL_G3";
1126 		case 299: return "R_AARCH64_LDST128_ABS_LO12_NC";
1127 		case 300: return "R_AARCH64_MOVW_GOTOFF_G0";
1128 		case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC";
1129 		case 302: return "R_AARCH64_MOVW_GOTOFF_G1";
1130 		case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC";
1131 		case 304: return "R_AARCH64_MOVW_GOTOFF_G2";
1132 		case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC";
1133 		case 306: return "R_AARCH64_MOVW_GOTOFF_G3";
1134 		case 307: return "R_AARCH64_GOTREL64";
1135 		case 308: return "R_AARCH64_GOTREL32";
1136 		case 309: return "R_AARCH64_GOT_LD_PREL19";
1137 		case 310: return "R_AARCH64_LD64_GOTOFF_LO15";
1138 		case 311: return "R_AARCH64_ADR_GOT_PAGE";
1139 		case 312: return "R_AARCH64_LD64_GOT_LO12_NC";
1140 		case 313: return "R_AARCH64_LD64_GOTPAGE_LO15";
1141 		case 1024: return "R_AARCH64_COPY";
1142 		case 1025: return "R_AARCH64_GLOB_DAT";
1143 		case 1026: return "R_AARCH64_JUMP_SLOT";
1144 		case 1027: return "R_AARCH64_RELATIVE";
1145 		case 1028: return "R_AARCH64_TLS_DTPREL64";
1146 		case 1029: return "R_AARCH64_TLS_DTPMOD64";
1147 		case 1030: return "R_AARCH64_TLS_TPREL64";
1148 		case 1031: return "R_AARCH64_TLSDESC";
1149 		case 1032: return "R_AARCH64_IRELATIVE";
1150 		default: return "";
1151 		}
1152 	case EM_ARM:
1153 		switch(type) {
1154 		case 0: return "R_ARM_NONE";
1155 		case 1: return "R_ARM_PC24";
1156 		case 2: return "R_ARM_ABS32";
1157 		case 3: return "R_ARM_REL32";
1158 		case 4: return "R_ARM_PC13";
1159 		case 5: return "R_ARM_ABS16";
1160 		case 6: return "R_ARM_ABS12";
1161 		case 7: return "R_ARM_THM_ABS5";
1162 		case 8: return "R_ARM_ABS8";
1163 		case 9: return "R_ARM_SBREL32";
1164 		case 10: return "R_ARM_THM_PC22";
1165 		case 11: return "R_ARM_THM_PC8";
1166 		case 12: return "R_ARM_AMP_VCALL9";
1167 		case 13: return "R_ARM_SWI24";
1168 		case 14: return "R_ARM_THM_SWI8";
1169 		case 15: return "R_ARM_XPC25";
1170 		case 16: return "R_ARM_THM_XPC22";
1171 		case 20: return "R_ARM_COPY";
1172 		case 21: return "R_ARM_GLOB_DAT";
1173 		case 22: return "R_ARM_JUMP_SLOT";
1174 		case 23: return "R_ARM_RELATIVE";
1175 		case 24: return "R_ARM_GOTOFF";
1176 		case 25: return "R_ARM_GOTPC";
1177 		case 26: return "R_ARM_GOT32";
1178 		case 27: return "R_ARM_PLT32";
1179 		case 100: return "R_ARM_GNU_VTENTRY";
1180 		case 101: return "R_ARM_GNU_VTINHERIT";
1181 		case 250: return "R_ARM_RSBREL32";
1182 		case 251: return "R_ARM_THM_RPC22";
1183 		case 252: return "R_ARM_RREL32";
1184 		case 253: return "R_ARM_RABS32";
1185 		case 254: return "R_ARM_RPC24";
1186 		case 255: return "R_ARM_RBASE";
1187 		default: return "";
1188 		}
1189 	case EM_IA_64:
1190 		switch(type) {
1191 		case 0: return "R_IA_64_NONE";
1192 		case 33: return "R_IA_64_IMM14";
1193 		case 34: return "R_IA_64_IMM22";
1194 		case 35: return "R_IA_64_IMM64";
1195 		case 36: return "R_IA_64_DIR32MSB";
1196 		case 37: return "R_IA_64_DIR32LSB";
1197 		case 38: return "R_IA_64_DIR64MSB";
1198 		case 39: return "R_IA_64_DIR64LSB";
1199 		case 42: return "R_IA_64_GPREL22";
1200 		case 43: return "R_IA_64_GPREL64I";
1201 		case 44: return "R_IA_64_GPREL32MSB";
1202 		case 45: return "R_IA_64_GPREL32LSB";
1203 		case 46: return "R_IA_64_GPREL64MSB";
1204 		case 47: return "R_IA_64_GPREL64LSB";
1205 		case 50: return "R_IA_64_LTOFF22";
1206 		case 51: return "R_IA_64_LTOFF64I";
1207 		case 58: return "R_IA_64_PLTOFF22";
1208 		case 59: return "R_IA_64_PLTOFF64I";
1209 		case 62: return "R_IA_64_PLTOFF64MSB";
1210 		case 63: return "R_IA_64_PLTOFF64LSB";
1211 		case 67: return "R_IA_64_FPTR64I";
1212 		case 68: return "R_IA_64_FPTR32MSB";
1213 		case 69: return "R_IA_64_FPTR32LSB";
1214 		case 70: return "R_IA_64_FPTR64MSB";
1215 		case 71: return "R_IA_64_FPTR64LSB";
1216 		case 72: return "R_IA_64_PCREL60B";
1217 		case 73: return "R_IA_64_PCREL21B";
1218 		case 74: return "R_IA_64_PCREL21M";
1219 		case 75: return "R_IA_64_PCREL21F";
1220 		case 76: return "R_IA_64_PCREL32MSB";
1221 		case 77: return "R_IA_64_PCREL32LSB";
1222 		case 78: return "R_IA_64_PCREL64MSB";
1223 		case 79: return "R_IA_64_PCREL64LSB";
1224 		case 82: return "R_IA_64_LTOFF_FPTR22";
1225 		case 83: return "R_IA_64_LTOFF_FPTR64I";
1226 		case 84: return "R_IA_64_LTOFF_FPTR32MSB";
1227 		case 85: return "R_IA_64_LTOFF_FPTR32LSB";
1228 		case 86: return "R_IA_64_LTOFF_FPTR64MSB";
1229 		case 87: return "R_IA_64_LTOFF_FPTR64LSB";
1230 		case 92: return "R_IA_64_SEGREL32MSB";
1231 		case 93: return "R_IA_64_SEGREL32LSB";
1232 		case 94: return "R_IA_64_SEGREL64MSB";
1233 		case 95: return "R_IA_64_SEGREL64LSB";
1234 		case 100: return "R_IA_64_SECREL32MSB";
1235 		case 101: return "R_IA_64_SECREL32LSB";
1236 		case 102: return "R_IA_64_SECREL64MSB";
1237 		case 103: return "R_IA_64_SECREL64LSB";
1238 		case 108: return "R_IA_64_REL32MSB";
1239 		case 109: return "R_IA_64_REL32LSB";
1240 		case 110: return "R_IA_64_REL64MSB";
1241 		case 111: return "R_IA_64_REL64LSB";
1242 		case 116: return "R_IA_64_LTV32MSB";
1243 		case 117: return "R_IA_64_LTV32LSB";
1244 		case 118: return "R_IA_64_LTV64MSB";
1245 		case 119: return "R_IA_64_LTV64LSB";
1246 		case 121: return "R_IA_64_PCREL21BI";
1247 		case 122: return "R_IA_64_PCREL22";
1248 		case 123: return "R_IA_64_PCREL64I";
1249 		case 128: return "R_IA_64_IPLTMSB";
1250 		case 129: return "R_IA_64_IPLTLSB";
1251 		case 133: return "R_IA_64_SUB";
1252 		case 134: return "R_IA_64_LTOFF22X";
1253 		case 135: return "R_IA_64_LDXMOV";
1254 		case 145: return "R_IA_64_TPREL14";
1255 		case 146: return "R_IA_64_TPREL22";
1256 		case 147: return "R_IA_64_TPREL64I";
1257 		case 150: return "R_IA_64_TPREL64MSB";
1258 		case 151: return "R_IA_64_TPREL64LSB";
1259 		case 154: return "R_IA_64_LTOFF_TPREL22";
1260 		case 166: return "R_IA_64_DTPMOD64MSB";
1261 		case 167: return "R_IA_64_DTPMOD64LSB";
1262 		case 170: return "R_IA_64_LTOFF_DTPMOD22";
1263 		case 177: return "R_IA_64_DTPREL14";
1264 		case 178: return "R_IA_64_DTPREL22";
1265 		case 179: return "R_IA_64_DTPREL64I";
1266 		case 180: return "R_IA_64_DTPREL32MSB";
1267 		case 181: return "R_IA_64_DTPREL32LSB";
1268 		case 182: return "R_IA_64_DTPREL64MSB";
1269 		case 183: return "R_IA_64_DTPREL64LSB";
1270 		case 186: return "R_IA_64_LTOFF_DTPREL22";
1271 		default: return "";
1272 		}
1273 	case EM_MIPS:
1274 		switch(type) {
1275 		case 0: return "R_MIPS_NONE";
1276 		case 1: return "R_MIPS_16";
1277 		case 2: return "R_MIPS_32";
1278 		case 3: return "R_MIPS_REL32";
1279 		case 4: return "R_MIPS_26";
1280 		case 5: return "R_MIPS_HI16";
1281 		case 6: return "R_MIPS_LO16";
1282 		case 7: return "R_MIPS_GPREL16";
1283 		case 8: return "R_MIPS_LITERAL";
1284 		case 9: return "R_MIPS_GOT16";
1285 		case 10: return "R_MIPS_PC16";
1286 		case 11: return "R_MIPS_CALL16";
1287 		case 12: return "R_MIPS_GPREL32";
1288 		case 21: return "R_MIPS_GOTHI16";
1289 		case 22: return "R_MIPS_GOTLO16";
1290 		case 30: return "R_MIPS_CALLHI16";
1291 		case 31: return "R_MIPS_CALLLO16";
1292 		default: return "";
1293 		}
1294 	case EM_PPC:
1295 		switch(type) {
1296 		case 0: return "R_PPC_NONE";
1297 		case 1: return "R_PPC_ADDR32";
1298 		case 2: return "R_PPC_ADDR24";
1299 		case 3: return "R_PPC_ADDR16";
1300 		case 4: return "R_PPC_ADDR16_LO";
1301 		case 5: return "R_PPC_ADDR16_HI";
1302 		case 6: return "R_PPC_ADDR16_HA";
1303 		case 7: return "R_PPC_ADDR14";
1304 		case 8: return "R_PPC_ADDR14_BRTAKEN";
1305 		case 9: return "R_PPC_ADDR14_BRNTAKEN";
1306 		case 10: return "R_PPC_REL24";
1307 		case 11: return "R_PPC_REL14";
1308 		case 12: return "R_PPC_REL14_BRTAKEN";
1309 		case 13: return "R_PPC_REL14_BRNTAKEN";
1310 		case 14: return "R_PPC_GOT16";
1311 		case 15: return "R_PPC_GOT16_LO";
1312 		case 16: return "R_PPC_GOT16_HI";
1313 		case 17: return "R_PPC_GOT16_HA";
1314 		case 18: return "R_PPC_PLTREL24";
1315 		case 19: return "R_PPC_COPY";
1316 		case 20: return "R_PPC_GLOB_DAT";
1317 		case 21: return "R_PPC_JMP_SLOT";
1318 		case 22: return "R_PPC_RELATIVE";
1319 		case 23: return "R_PPC_LOCAL24PC";
1320 		case 24: return "R_PPC_UADDR32";
1321 		case 25: return "R_PPC_UADDR16";
1322 		case 26: return "R_PPC_REL32";
1323 		case 27: return "R_PPC_PLT32";
1324 		case 28: return "R_PPC_PLTREL32";
1325 		case 29: return "R_PPC_PLT16_LO";
1326 		case 30: return "R_PPC_PLT16_HI";
1327 		case 31: return "R_PPC_PLT16_HA";
1328 		case 32: return "R_PPC_SDAREL16";
1329 		case 33: return "R_PPC_SECTOFF";
1330 		case 34: return "R_PPC_SECTOFF_LO";
1331 		case 35: return "R_PPC_SECTOFF_HI";
1332 		case 36: return "R_PPC_SECTOFF_HA";
1333 		case 67: return "R_PPC_TLS";
1334 		case 68: return "R_PPC_DTPMOD32";
1335 		case 69: return "R_PPC_TPREL16";
1336 		case 70: return "R_PPC_TPREL16_LO";
1337 		case 71: return "R_PPC_TPREL16_HI";
1338 		case 72: return "R_PPC_TPREL16_HA";
1339 		case 73: return "R_PPC_TPREL32";
1340 		case 74: return "R_PPC_DTPREL16";
1341 		case 75: return "R_PPC_DTPREL16_LO";
1342 		case 76: return "R_PPC_DTPREL16_HI";
1343 		case 77: return "R_PPC_DTPREL16_HA";
1344 		case 78: return "R_PPC_DTPREL32";
1345 		case 79: return "R_PPC_GOT_TLSGD16";
1346 		case 80: return "R_PPC_GOT_TLSGD16_LO";
1347 		case 81: return "R_PPC_GOT_TLSGD16_HI";
1348 		case 82: return "R_PPC_GOT_TLSGD16_HA";
1349 		case 83: return "R_PPC_GOT_TLSLD16";
1350 		case 84: return "R_PPC_GOT_TLSLD16_LO";
1351 		case 85: return "R_PPC_GOT_TLSLD16_HI";
1352 		case 86: return "R_PPC_GOT_TLSLD16_HA";
1353 		case 87: return "R_PPC_GOT_TPREL16";
1354 		case 88: return "R_PPC_GOT_TPREL16_LO";
1355 		case 89: return "R_PPC_GOT_TPREL16_HI";
1356 		case 90: return "R_PPC_GOT_TPREL16_HA";
1357 		case 101: return "R_PPC_EMB_NADDR32";
1358 		case 102: return "R_PPC_EMB_NADDR16";
1359 		case 103: return "R_PPC_EMB_NADDR16_LO";
1360 		case 104: return "R_PPC_EMB_NADDR16_HI";
1361 		case 105: return "R_PPC_EMB_NADDR16_HA";
1362 		case 106: return "R_PPC_EMB_SDAI16";
1363 		case 107: return "R_PPC_EMB_SDA2I16";
1364 		case 108: return "R_PPC_EMB_SDA2REL";
1365 		case 109: return "R_PPC_EMB_SDA21";
1366 		case 110: return "R_PPC_EMB_MRKREF";
1367 		case 111: return "R_PPC_EMB_RELSEC16";
1368 		case 112: return "R_PPC_EMB_RELST_LO";
1369 		case 113: return "R_PPC_EMB_RELST_HI";
1370 		case 114: return "R_PPC_EMB_RELST_HA";
1371 		case 115: return "R_PPC_EMB_BIT_FLD";
1372 		case 116: return "R_PPC_EMB_RELSDA";
1373 		default: return "";
1374 		}
1375 	case EM_SPARC:
1376 	case EM_SPARCV9:
1377 		switch(type) {
1378 		case 0: return "R_SPARC_NONE";
1379 		case 1: return "R_SPARC_8";
1380 		case 2: return "R_SPARC_16";
1381 		case 3: return "R_SPARC_32";
1382 		case 4: return "R_SPARC_DISP8";
1383 		case 5: return "R_SPARC_DISP16";
1384 		case 6: return "R_SPARC_DISP32";
1385 		case 7: return "R_SPARC_WDISP30";
1386 		case 8: return "R_SPARC_WDISP22";
1387 		case 9: return "R_SPARC_HI22";
1388 		case 10: return "R_SPARC_22";
1389 		case 11: return "R_SPARC_13";
1390 		case 12: return "R_SPARC_LO10";
1391 		case 13: return "R_SPARC_GOT10";
1392 		case 14: return "R_SPARC_GOT13";
1393 		case 15: return "R_SPARC_GOT22";
1394 		case 16: return "R_SPARC_PC10";
1395 		case 17: return "R_SPARC_PC22";
1396 		case 18: return "R_SPARC_WPLT30";
1397 		case 19: return "R_SPARC_COPY";
1398 		case 20: return "R_SPARC_GLOB_DAT";
1399 		case 21: return "R_SPARC_JMP_SLOT";
1400 		case 22: return "R_SPARC_RELATIVE";
1401 		case 23: return "R_SPARC_UA32";
1402 		case 24: return "R_SPARC_PLT32";
1403 		case 25: return "R_SPARC_HIPLT22";
1404 		case 26: return "R_SPARC_LOPLT10";
1405 		case 27: return "R_SPARC_PCPLT32";
1406 		case 28: return "R_SPARC_PCPLT22";
1407 		case 29: return "R_SPARC_PCPLT10";
1408 		case 30: return "R_SPARC_10";
1409 		case 31: return "R_SPARC_11";
1410 		case 32: return "R_SPARC_64";
1411 		case 33: return "R_SPARC_OLO10";
1412 		case 34: return "R_SPARC_HH22";
1413 		case 35: return "R_SPARC_HM10";
1414 		case 36: return "R_SPARC_LM22";
1415 		case 37: return "R_SPARC_PC_HH22";
1416 		case 38: return "R_SPARC_PC_HM10";
1417 		case 39: return "R_SPARC_PC_LM22";
1418 		case 40: return "R_SPARC_WDISP16";
1419 		case 41: return "R_SPARC_WDISP19";
1420 		case 42: return "R_SPARC_GLOB_JMP";
1421 		case 43: return "R_SPARC_7";
1422 		case 44: return "R_SPARC_5";
1423 		case 45: return "R_SPARC_6";
1424 		case 46: return "R_SPARC_DISP64";
1425 		case 47: return "R_SPARC_PLT64";
1426 		case 48: return "R_SPARC_HIX22";
1427 		case 49: return "R_SPARC_LOX10";
1428 		case 50: return "R_SPARC_H44";
1429 		case 51: return "R_SPARC_M44";
1430 		case 52: return "R_SPARC_L44";
1431 		case 53: return "R_SPARC_REGISTER";
1432 		case 54: return "R_SPARC_UA64";
1433 		case 55: return "R_SPARC_UA16";
1434 		case 56: return "R_SPARC_TLS_GD_HI22";
1435 		case 57: return "R_SPARC_TLS_GD_LO10";
1436 		case 58: return "R_SPARC_TLS_GD_ADD";
1437 		case 59: return "R_SPARC_TLS_GD_CALL";
1438 		case 60: return "R_SPARC_TLS_LDM_HI22";
1439 		case 61: return "R_SPARC_TLS_LDM_LO10";
1440 		case 62: return "R_SPARC_TLS_LDM_ADD";
1441 		case 63: return "R_SPARC_TLS_LDM_CALL";
1442 		case 64: return "R_SPARC_TLS_LDO_HIX22";
1443 		case 65: return "R_SPARC_TLS_LDO_LOX10";
1444 		case 66: return "R_SPARC_TLS_LDO_ADD";
1445 		case 67: return "R_SPARC_TLS_IE_HI22";
1446 		case 68: return "R_SPARC_TLS_IE_LO10";
1447 		case 69: return "R_SPARC_TLS_IE_LD";
1448 		case 70: return "R_SPARC_TLS_IE_LDX";
1449 		case 71: return "R_SPARC_TLS_IE_ADD";
1450 		case 72: return "R_SPARC_TLS_LE_HIX22";
1451 		case 73: return "R_SPARC_TLS_LE_LOX10";
1452 		case 74: return "R_SPARC_TLS_DTPMOD32";
1453 		case 75: return "R_SPARC_TLS_DTPMOD64";
1454 		case 76: return "R_SPARC_TLS_DTPOFF32";
1455 		case 77: return "R_SPARC_TLS_DTPOFF64";
1456 		case 78: return "R_SPARC_TLS_TPOFF32";
1457 		case 79: return "R_SPARC_TLS_TPOFF64";
1458 		default: return "";
1459 		}
1460 	case EM_X86_64:
1461 		switch(type) {
1462 		case 0: return "R_X86_64_NONE";
1463 		case 1: return "R_X86_64_64";
1464 		case 2: return "R_X86_64_PC32";
1465 		case 3: return "R_X86_64_GOT32";
1466 		case 4: return "R_X86_64_PLT32";
1467 		case 5: return "R_X86_64_COPY";
1468 		case 6: return "R_X86_64_GLOB_DAT";
1469 		case 7: return "R_X86_64_JMP_SLOT";
1470 		case 8: return "R_X86_64_RELATIVE";
1471 		case 9: return "R_X86_64_GOTPCREL";
1472 		case 10: return "R_X86_64_32";
1473 		case 11: return "R_X86_64_32S";
1474 		case 12: return "R_X86_64_16";
1475 		case 13: return "R_X86_64_PC16";
1476 		case 14: return "R_X86_64_8";
1477 		case 15: return "R_X86_64_PC8";
1478 		case 16: return "R_X86_64_DTPMOD64";
1479 		case 17: return "R_X86_64_DTPOFF64";
1480 		case 18: return "R_X86_64_TPOFF64";
1481 		case 19: return "R_X86_64_TLSGD";
1482 		case 20: return "R_X86_64_TLSLD";
1483 		case 21: return "R_X86_64_DTPOFF32";
1484 		case 22: return "R_X86_64_GOTTPOFF";
1485 		case 23: return "R_X86_64_TPOFF32";
1486 		case 24: return "R_X86_64_PC64";
1487 		case 25: return "R_X86_64_GOTOFF64";
1488 		case 26: return "R_X86_64_GOTPC32";
1489 		case 27: return "R_X86_64_GOT64";
1490 		case 28: return "R_X86_64_GOTPCREL64";
1491 		case 29: return "R_X86_64_GOTPC64";
1492 		case 30: return "R_X86_64_GOTPLT64";
1493 		case 31: return "R_X86_64_PLTOFF64";
1494 		case 32: return "R_X86_64_SIZE32";
1495 		case 33: return "R_X86_64_SIZE64";
1496 		case 34: return "R_X86_64_GOTPC32_TLSDESC";
1497 		case 35: return "R_X86_64_TLSDESC_CALL";
1498 		case 36: return "R_X86_64_TLSDESC";
1499 		case 37: return "R_X86_64_IRELATIVE";
1500 		default: return "";
1501 		}
1502 	default: return "";
1503 	}
1504 }
1505 
1506 static const char *
1507 note_type(const char *name, unsigned int et, unsigned int nt)
1508 {
1509 	if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) &&
1510 	    et == ET_CORE)
1511 		return note_type_linux_core(nt);
1512 	else if (strcmp(name, "FreeBSD") == 0)
1513 		if (et == ET_CORE)
1514 			return note_type_freebsd_core(nt);
1515 		else
1516 			return note_type_freebsd(nt);
1517 	else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
1518 		return note_type_gnu(nt);
1519 	else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
1520 		return note_type_netbsd(nt);
1521 	else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
1522 		return note_type_openbsd(nt);
1523 	return note_type_unknown(nt);
1524 }
1525 
1526 static const char *
1527 note_type_freebsd(unsigned int nt)
1528 {
1529 	switch (nt) {
1530 	case 1: return "NT_FREEBSD_ABI_TAG";
1531 	case 2: return "NT_FREEBSD_NOINIT_TAG";
1532 	case 3: return "NT_FREEBSD_ARCH_TAG";
1533 	default: return (note_type_unknown(nt));
1534 	}
1535 }
1536 
1537 static const char *
1538 note_type_freebsd_core(unsigned int nt)
1539 {
1540 	switch (nt) {
1541 	case 1: return "NT_PRSTATUS";
1542 	case 2: return "NT_FPREGSET";
1543 	case 3: return "NT_PRPSINFO";
1544 	case 7: return "NT_THRMISC";
1545 	case 8: return "NT_PROCSTAT_PROC";
1546 	case 9: return "NT_PROCSTAT_FILES";
1547 	case 10: return "NT_PROCSTAT_VMMAP";
1548 	case 11: return "NT_PROCSTAT_GROUPS";
1549 	case 12: return "NT_PROCSTAT_UMASK";
1550 	case 13: return "NT_PROCSTAT_RLIMIT";
1551 	case 14: return "NT_PROCSTAT_OSREL";
1552 	case 15: return "NT_PROCSTAT_PSSTRINGS";
1553 	case 16: return "NT_PROCSTAT_AUXV";
1554 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1555 	default: return (note_type_unknown(nt));
1556 	}
1557 }
1558 
1559 static const char *
1560 note_type_linux_core(unsigned int nt)
1561 {
1562 	switch (nt) {
1563 	case 1: return "NT_PRSTATUS (Process status)";
1564 	case 2: return "NT_FPREGSET (Floating point information)";
1565 	case 3: return "NT_PRPSINFO (Process information)";
1566 	case 4: return "NT_TASKSTRUCT (Task structure)";
1567 	case 6: return "NT_AUXV (Auxiliary vector)";
1568 	case 10: return "NT_PSTATUS (Linux process status)";
1569 	case 12: return "NT_FPREGS (Linux floating point regset)";
1570 	case 13: return "NT_PSINFO (Linux process information)";
1571 	case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
1572 	case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
1573 	case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)";
1574 	case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1575 	case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1576 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1577 	case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)";
1578 	case 0x301: return "NT_S390_TIMER (s390 timer register)";
1579 	case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)";
1580 	case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)";
1581 	case 0x304: return "NT_S390_CTRS (s390 control registers)";
1582 	case 0x305: return "NT_S390_PREFIX (s390 prefix register)";
1583 	case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1584 	case 0x46494c45UL: return "NT_FILE (mapped files)";
1585 	case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
1586 	case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)";
1587 	default: return (note_type_unknown(nt));
1588 	}
1589 }
1590 
1591 static const char *
1592 note_type_gnu(unsigned int nt)
1593 {
1594 	switch (nt) {
1595 	case 1: return "NT_GNU_ABI_TAG";
1596 	case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
1597 	case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
1598 	case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
1599 	default: return (note_type_unknown(nt));
1600 	}
1601 }
1602 
1603 static const char *
1604 note_type_netbsd(unsigned int nt)
1605 {
1606 	switch (nt) {
1607 	case 1: return "NT_NETBSD_IDENT";
1608 	default: return (note_type_unknown(nt));
1609 	}
1610 }
1611 
1612 static const char *
1613 note_type_openbsd(unsigned int nt)
1614 {
1615 	switch (nt) {
1616 	case 1: return "NT_OPENBSD_IDENT";
1617 	default: return (note_type_unknown(nt));
1618 	}
1619 }
1620 
1621 static const char *
1622 note_type_unknown(unsigned int nt)
1623 {
1624 	static char s_nt[32];
1625 
1626 	snprintf(s_nt, sizeof(s_nt),
1627 	    nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt);
1628 	return (s_nt);
1629 }
1630 
1631 static struct {
1632 	const char *name;
1633 	int value;
1634 } l_flag[] = {
1635 	{"EXACT_MATCH", LL_EXACT_MATCH},
1636 	{"IGNORE_INT_VER", LL_IGNORE_INT_VER},
1637 	{"REQUIRE_MINOR", LL_REQUIRE_MINOR},
1638 	{"EXPORTS", LL_EXPORTS},
1639 	{"DELAY_LOAD", LL_DELAY_LOAD},
1640 	{"DELTA", LL_DELTA},
1641 	{NULL, 0}
1642 };
1643 
1644 static struct mips_option mips_exceptions_option[] = {
1645 	{OEX_PAGE0, "PAGE0"},
1646 	{OEX_SMM, "SMM"},
1647 	{OEX_PRECISEFP, "PRECISEFP"},
1648 	{OEX_DISMISS, "DISMISS"},
1649 	{0, NULL}
1650 };
1651 
1652 static struct mips_option mips_pad_option[] = {
1653 	{OPAD_PREFIX, "PREFIX"},
1654 	{OPAD_POSTFIX, "POSTFIX"},
1655 	{OPAD_SYMBOL, "SYMBOL"},
1656 	{0, NULL}
1657 };
1658 
1659 static struct mips_option mips_hwpatch_option[] = {
1660 	{OHW_R4KEOP, "R4KEOP"},
1661 	{OHW_R8KPFETCH, "R8KPFETCH"},
1662 	{OHW_R5KEOP, "R5KEOP"},
1663 	{OHW_R5KCVTL, "R5KCVTL"},
1664 	{0, NULL}
1665 };
1666 
1667 static struct mips_option mips_hwa_option[] = {
1668 	{OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
1669 	{OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
1670 	{0, NULL}
1671 };
1672 
1673 static struct mips_option mips_hwo_option[] = {
1674 	{OHWO0_FIXADE, "FIXADE"},
1675 	{0, NULL}
1676 };
1677 
1678 static const char *
1679 option_kind(uint8_t kind)
1680 {
1681 	static char s_kind[32];
1682 
1683 	switch (kind) {
1684 	case ODK_NULL: return "NULL";
1685 	case ODK_REGINFO: return "REGINFO";
1686 	case ODK_EXCEPTIONS: return "EXCEPTIONS";
1687 	case ODK_PAD: return "PAD";
1688 	case ODK_HWPATCH: return "HWPATCH";
1689 	case ODK_FILL: return "FILL";
1690 	case ODK_TAGS: return "TAGS";
1691 	case ODK_HWAND: return "HWAND";
1692 	case ODK_HWOR: return "HWOR";
1693 	case ODK_GP_GROUP: return "GP_GROUP";
1694 	case ODK_IDENT: return "IDENT";
1695 	default:
1696 		snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
1697 		return (s_kind);
1698 	}
1699 }
1700 
1701 static const char *
1702 top_tag(unsigned int tag)
1703 {
1704 	static char s_top_tag[32];
1705 
1706 	switch (tag) {
1707 	case 1: return "File Attributes";
1708 	case 2: return "Section Attributes";
1709 	case 3: return "Symbol Attributes";
1710 	default:
1711 		snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
1712 		return (s_top_tag);
1713 	}
1714 }
1715 
1716 static const char *
1717 aeabi_cpu_arch(uint64_t arch)
1718 {
1719 	static char s_cpu_arch[32];
1720 
1721 	switch (arch) {
1722 	case 0: return "Pre-V4";
1723 	case 1: return "ARM v4";
1724 	case 2: return "ARM v4T";
1725 	case 3: return "ARM v5T";
1726 	case 4: return "ARM v5TE";
1727 	case 5: return "ARM v5TEJ";
1728 	case 6: return "ARM v6";
1729 	case 7: return "ARM v6KZ";
1730 	case 8: return "ARM v6T2";
1731 	case 9: return "ARM v6K";
1732 	case 10: return "ARM v7";
1733 	case 11: return "ARM v6-M";
1734 	case 12: return "ARM v6S-M";
1735 	case 13: return "ARM v7E-M";
1736 	default:
1737 		snprintf(s_cpu_arch, sizeof(s_cpu_arch),
1738 		    "Unknown (%ju)", (uintmax_t) arch);
1739 		return (s_cpu_arch);
1740 	}
1741 }
1742 
1743 static const char *
1744 aeabi_cpu_arch_profile(uint64_t pf)
1745 {
1746 	static char s_arch_profile[32];
1747 
1748 	switch (pf) {
1749 	case 0:
1750 		return "Not applicable";
1751 	case 0x41:		/* 'A' */
1752 		return "Application Profile";
1753 	case 0x52:		/* 'R' */
1754 		return "Real-Time Profile";
1755 	case 0x4D:		/* 'M' */
1756 		return "Microcontroller Profile";
1757 	case 0x53:		/* 'S' */
1758 		return "Application or Real-Time Profile";
1759 	default:
1760 		snprintf(s_arch_profile, sizeof(s_arch_profile),
1761 		    "Unknown (%ju)\n", (uintmax_t) pf);
1762 		return (s_arch_profile);
1763 	}
1764 }
1765 
1766 static const char *
1767 aeabi_arm_isa(uint64_t ai)
1768 {
1769 	static char s_ai[32];
1770 
1771 	switch (ai) {
1772 	case 0: return "No";
1773 	case 1: return "Yes";
1774 	default:
1775 		snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
1776 		    (uintmax_t) ai);
1777 		return (s_ai);
1778 	}
1779 }
1780 
1781 static const char *
1782 aeabi_thumb_isa(uint64_t ti)
1783 {
1784 	static char s_ti[32];
1785 
1786 	switch (ti) {
1787 	case 0: return "No";
1788 	case 1: return "16-bit Thumb";
1789 	case 2: return "32-bit Thumb";
1790 	default:
1791 		snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
1792 		    (uintmax_t) ti);
1793 		return (s_ti);
1794 	}
1795 }
1796 
1797 static const char *
1798 aeabi_fp_arch(uint64_t fp)
1799 {
1800 	static char s_fp_arch[32];
1801 
1802 	switch (fp) {
1803 	case 0: return "No";
1804 	case 1: return "VFPv1";
1805 	case 2: return "VFPv2";
1806 	case 3: return "VFPv3";
1807 	case 4: return "VFPv3-D16";
1808 	case 5: return "VFPv4";
1809 	case 6: return "VFPv4-D16";
1810 	default:
1811 		snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
1812 		    (uintmax_t) fp);
1813 		return (s_fp_arch);
1814 	}
1815 }
1816 
1817 static const char *
1818 aeabi_wmmx_arch(uint64_t wmmx)
1819 {
1820 	static char s_wmmx[32];
1821 
1822 	switch (wmmx) {
1823 	case 0: return "No";
1824 	case 1: return "WMMXv1";
1825 	case 2: return "WMMXv2";
1826 	default:
1827 		snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
1828 		    (uintmax_t) wmmx);
1829 		return (s_wmmx);
1830 	}
1831 }
1832 
1833 static const char *
1834 aeabi_adv_simd_arch(uint64_t simd)
1835 {
1836 	static char s_simd[32];
1837 
1838 	switch (simd) {
1839 	case 0: return "No";
1840 	case 1: return "NEONv1";
1841 	case 2: return "NEONv2";
1842 	default:
1843 		snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
1844 		    (uintmax_t) simd);
1845 		return (s_simd);
1846 	}
1847 }
1848 
1849 static const char *
1850 aeabi_pcs_config(uint64_t pcs)
1851 {
1852 	static char s_pcs[32];
1853 
1854 	switch (pcs) {
1855 	case 0: return "None";
1856 	case 1: return "Bare platform";
1857 	case 2: return "Linux";
1858 	case 3: return "Linux DSO";
1859 	case 4: return "Palm OS 2004";
1860 	case 5: return "Palm OS (future)";
1861 	case 6: return "Symbian OS 2004";
1862 	case 7: return "Symbian OS (future)";
1863 	default:
1864 		snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
1865 		    (uintmax_t) pcs);
1866 		return (s_pcs);
1867 	}
1868 }
1869 
1870 static const char *
1871 aeabi_pcs_r9(uint64_t r9)
1872 {
1873 	static char s_r9[32];
1874 
1875 	switch (r9) {
1876 	case 0: return "V6";
1877 	case 1: return "SB";
1878 	case 2: return "TLS pointer";
1879 	case 3: return "Unused";
1880 	default:
1881 		snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
1882 		return (s_r9);
1883 	}
1884 }
1885 
1886 static const char *
1887 aeabi_pcs_rw(uint64_t rw)
1888 {
1889 	static char s_rw[32];
1890 
1891 	switch (rw) {
1892 	case 0: return "Absolute";
1893 	case 1: return "PC-relative";
1894 	case 2: return "SB-relative";
1895 	case 3: return "None";
1896 	default:
1897 		snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
1898 		return (s_rw);
1899 	}
1900 }
1901 
1902 static const char *
1903 aeabi_pcs_ro(uint64_t ro)
1904 {
1905 	static char s_ro[32];
1906 
1907 	switch (ro) {
1908 	case 0: return "Absolute";
1909 	case 1: return "PC-relative";
1910 	case 2: return "None";
1911 	default:
1912 		snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
1913 		return (s_ro);
1914 	}
1915 }
1916 
1917 static const char *
1918 aeabi_pcs_got(uint64_t got)
1919 {
1920 	static char s_got[32];
1921 
1922 	switch (got) {
1923 	case 0: return "None";
1924 	case 1: return "direct";
1925 	case 2: return "indirect via GOT";
1926 	default:
1927 		snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
1928 		    (uintmax_t) got);
1929 		return (s_got);
1930 	}
1931 }
1932 
1933 static const char *
1934 aeabi_pcs_wchar_t(uint64_t wt)
1935 {
1936 	static char s_wt[32];
1937 
1938 	switch (wt) {
1939 	case 0: return "None";
1940 	case 2: return "wchar_t size 2";
1941 	case 4: return "wchar_t size 4";
1942 	default:
1943 		snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
1944 		return (s_wt);
1945 	}
1946 }
1947 
1948 static const char *
1949 aeabi_enum_size(uint64_t es)
1950 {
1951 	static char s_es[32];
1952 
1953 	switch (es) {
1954 	case 0: return "None";
1955 	case 1: return "smallest";
1956 	case 2: return "32-bit";
1957 	case 3: return "visible 32-bit";
1958 	default:
1959 		snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
1960 		return (s_es);
1961 	}
1962 }
1963 
1964 static const char *
1965 aeabi_align_needed(uint64_t an)
1966 {
1967 	static char s_align_n[64];
1968 
1969 	switch (an) {
1970 	case 0: return "No";
1971 	case 1: return "8-byte align";
1972 	case 2: return "4-byte align";
1973 	case 3: return "Reserved";
1974 	default:
1975 		if (an >= 4 && an <= 12)
1976 			snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
1977 			    " and up to 2^%ju-byte extended align",
1978 			    (uintmax_t) an);
1979 		else
1980 			snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
1981 			    (uintmax_t) an);
1982 		return (s_align_n);
1983 	}
1984 }
1985 
1986 static const char *
1987 aeabi_align_preserved(uint64_t ap)
1988 {
1989 	static char s_align_p[128];
1990 
1991 	switch (ap) {
1992 	case 0: return "No";
1993 	case 1: return "8-byte align";
1994 	case 2: return "8-byte align and SP % 8 == 0";
1995 	case 3: return "Reserved";
1996 	default:
1997 		if (ap >= 4 && ap <= 12)
1998 			snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
1999 			    " and SP %% 8 == 0 and up to 2^%ju-byte extended"
2000 			    " align", (uintmax_t) ap);
2001 		else
2002 			snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
2003 			    (uintmax_t) ap);
2004 		return (s_align_p);
2005 	}
2006 }
2007 
2008 static const char *
2009 aeabi_fp_rounding(uint64_t fr)
2010 {
2011 	static char s_fp_r[32];
2012 
2013 	switch (fr) {
2014 	case 0: return "Unused";
2015 	case 1: return "Needed";
2016 	default:
2017 		snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
2018 		    (uintmax_t) fr);
2019 		return (s_fp_r);
2020 	}
2021 }
2022 
2023 static const char *
2024 aeabi_fp_denormal(uint64_t fd)
2025 {
2026 	static char s_fp_d[32];
2027 
2028 	switch (fd) {
2029 	case 0: return "Unused";
2030 	case 1: return "Needed";
2031 	case 2: return "Sign Only";
2032 	default:
2033 		snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
2034 		    (uintmax_t) fd);
2035 		return (s_fp_d);
2036 	}
2037 }
2038 
2039 static const char *
2040 aeabi_fp_exceptions(uint64_t fe)
2041 {
2042 	static char s_fp_e[32];
2043 
2044 	switch (fe) {
2045 	case 0: return "Unused";
2046 	case 1: return "Needed";
2047 	default:
2048 		snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
2049 		    (uintmax_t) fe);
2050 		return (s_fp_e);
2051 	}
2052 }
2053 
2054 static const char *
2055 aeabi_fp_user_exceptions(uint64_t fu)
2056 {
2057 	static char s_fp_u[32];
2058 
2059 	switch (fu) {
2060 	case 0: return "Unused";
2061 	case 1: return "Needed";
2062 	default:
2063 		snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
2064 		    (uintmax_t) fu);
2065 		return (s_fp_u);
2066 	}
2067 }
2068 
2069 static const char *
2070 aeabi_fp_number_model(uint64_t fn)
2071 {
2072 	static char s_fp_n[32];
2073 
2074 	switch (fn) {
2075 	case 0: return "Unused";
2076 	case 1: return "IEEE 754 normal";
2077 	case 2: return "RTABI";
2078 	case 3: return "IEEE 754";
2079 	default:
2080 		snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
2081 		    (uintmax_t) fn);
2082 		return (s_fp_n);
2083 	}
2084 }
2085 
2086 static const char *
2087 aeabi_fp_16bit_format(uint64_t fp16)
2088 {
2089 	static char s_fp_16[64];
2090 
2091 	switch (fp16) {
2092 	case 0: return "None";
2093 	case 1: return "IEEE 754";
2094 	case 2: return "VFPv3/Advanced SIMD (alternative format)";
2095 	default:
2096 		snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
2097 		    (uintmax_t) fp16);
2098 		return (s_fp_16);
2099 	}
2100 }
2101 
2102 static const char *
2103 aeabi_mpext(uint64_t mp)
2104 {
2105 	static char s_mp[32];
2106 
2107 	switch (mp) {
2108 	case 0: return "Not allowed";
2109 	case 1: return "Allowed";
2110 	default:
2111 		snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
2112 		    (uintmax_t) mp);
2113 		return (s_mp);
2114 	}
2115 }
2116 
2117 static const char *
2118 aeabi_div(uint64_t du)
2119 {
2120 	static char s_du[32];
2121 
2122 	switch (du) {
2123 	case 0: return "Yes (V7-R/V7-M)";
2124 	case 1: return "No";
2125 	case 2: return "Yes (V7-A)";
2126 	default:
2127 		snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
2128 		    (uintmax_t) du);
2129 		return (s_du);
2130 	}
2131 }
2132 
2133 static const char *
2134 aeabi_t2ee(uint64_t t2ee)
2135 {
2136 	static char s_t2ee[32];
2137 
2138 	switch (t2ee) {
2139 	case 0: return "Not allowed";
2140 	case 1: return "Allowed";
2141 	default:
2142 		snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
2143 		    (uintmax_t) t2ee);
2144 		return (s_t2ee);
2145 	}
2146 
2147 }
2148 
2149 static const char *
2150 aeabi_hardfp(uint64_t hfp)
2151 {
2152 	static char s_hfp[32];
2153 
2154 	switch (hfp) {
2155 	case 0: return "Tag_FP_arch";
2156 	case 1: return "only SP";
2157 	case 2: return "only DP";
2158 	case 3: return "both SP and DP";
2159 	default:
2160 		snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
2161 		    (uintmax_t) hfp);
2162 		return (s_hfp);
2163 	}
2164 }
2165 
2166 static const char *
2167 aeabi_vfp_args(uint64_t va)
2168 {
2169 	static char s_va[32];
2170 
2171 	switch (va) {
2172 	case 0: return "AAPCS (base variant)";
2173 	case 1: return "AAPCS (VFP variant)";
2174 	case 2: return "toolchain-specific";
2175 	default:
2176 		snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
2177 		return (s_va);
2178 	}
2179 }
2180 
2181 static const char *
2182 aeabi_wmmx_args(uint64_t wa)
2183 {
2184 	static char s_wa[32];
2185 
2186 	switch (wa) {
2187 	case 0: return "AAPCS (base variant)";
2188 	case 1: return "Intel WMMX";
2189 	case 2: return "toolchain-specific";
2190 	default:
2191 		snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
2192 		return (s_wa);
2193 	}
2194 }
2195 
2196 static const char *
2197 aeabi_unaligned_access(uint64_t ua)
2198 {
2199 	static char s_ua[32];
2200 
2201 	switch (ua) {
2202 	case 0: return "Not allowed";
2203 	case 1: return "Allowed";
2204 	default:
2205 		snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
2206 		return (s_ua);
2207 	}
2208 }
2209 
2210 static const char *
2211 aeabi_fp_hpext(uint64_t fh)
2212 {
2213 	static char s_fh[32];
2214 
2215 	switch (fh) {
2216 	case 0: return "Not allowed";
2217 	case 1: return "Allowed";
2218 	default:
2219 		snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
2220 		return (s_fh);
2221 	}
2222 }
2223 
2224 static const char *
2225 aeabi_optm_goal(uint64_t og)
2226 {
2227 	static char s_og[32];
2228 
2229 	switch (og) {
2230 	case 0: return "None";
2231 	case 1: return "Speed";
2232 	case 2: return "Speed aggressive";
2233 	case 3: return "Space";
2234 	case 4: return "Space aggressive";
2235 	case 5: return "Debugging";
2236 	case 6: return "Best Debugging";
2237 	default:
2238 		snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
2239 		return (s_og);
2240 	}
2241 }
2242 
2243 static const char *
2244 aeabi_fp_optm_goal(uint64_t fog)
2245 {
2246 	static char s_fog[32];
2247 
2248 	switch (fog) {
2249 	case 0: return "None";
2250 	case 1: return "Speed";
2251 	case 2: return "Speed aggressive";
2252 	case 3: return "Space";
2253 	case 4: return "Space aggressive";
2254 	case 5: return "Accurary";
2255 	case 6: return "Best Accurary";
2256 	default:
2257 		snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
2258 		    (uintmax_t) fog);
2259 		return (s_fog);
2260 	}
2261 }
2262 
2263 static const char *
2264 aeabi_virtual(uint64_t vt)
2265 {
2266 	static char s_virtual[64];
2267 
2268 	switch (vt) {
2269 	case 0: return "No";
2270 	case 1: return "TrustZone";
2271 	case 2: return "Virtualization extension";
2272 	case 3: return "TrustZone and virtualization extension";
2273 	default:
2274 		snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
2275 		    (uintmax_t) vt);
2276 		return (s_virtual);
2277 	}
2278 }
2279 
2280 static struct {
2281 	uint64_t tag;
2282 	const char *s_tag;
2283 	const char *(*get_desc)(uint64_t val);
2284 } aeabi_tags[] = {
2285 	{4, "Tag_CPU_raw_name", NULL},
2286 	{5, "Tag_CPU_name", NULL},
2287 	{6, "Tag_CPU_arch", aeabi_cpu_arch},
2288 	{7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
2289 	{8, "Tag_ARM_ISA_use", aeabi_arm_isa},
2290 	{9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
2291 	{10, "Tag_FP_arch", aeabi_fp_arch},
2292 	{11, "Tag_WMMX_arch", aeabi_wmmx_arch},
2293 	{12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
2294 	{13, "Tag_PCS_config", aeabi_pcs_config},
2295 	{14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
2296 	{15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
2297 	{16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
2298 	{17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
2299 	{18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
2300 	{19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
2301 	{20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
2302 	{21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
2303 	{22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
2304 	{23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
2305 	{24, "Tag_ABI_align_needed", aeabi_align_needed},
2306 	{25, "Tag_ABI_align_preserved", aeabi_align_preserved},
2307 	{26, "Tag_ABI_enum_size", aeabi_enum_size},
2308 	{27, "Tag_ABI_HardFP_use", aeabi_hardfp},
2309 	{28, "Tag_ABI_VFP_args", aeabi_vfp_args},
2310 	{29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
2311 	{30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
2312 	{31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
2313 	{32, "Tag_compatibility", NULL},
2314 	{34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
2315 	{36, "Tag_FP_HP_extension", aeabi_fp_hpext},
2316 	{38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
2317 	{42, "Tag_MPextension_use", aeabi_mpext},
2318 	{44, "Tag_DIV_use", aeabi_div},
2319 	{64, "Tag_nodefaults", NULL},
2320 	{65, "Tag_also_compatible_with", NULL},
2321 	{66, "Tag_T2EE_use", aeabi_t2ee},
2322 	{67, "Tag_conformance", NULL},
2323 	{68, "Tag_Virtualization_use", aeabi_virtual},
2324 	{70, "Tag_MPextension_use", aeabi_mpext},
2325 };
2326 
2327 static const char *
2328 mips_abi_fp(uint64_t fp)
2329 {
2330 	static char s_mips_abi_fp[64];
2331 
2332 	switch (fp) {
2333 	case 0: return "N/A";
2334 	case 1: return "Hard float (double precision)";
2335 	case 2: return "Hard float (single precision)";
2336 	case 3: return "Soft float";
2337 	case 4: return "64-bit float (-mips32r2 -mfp64)";
2338 	default:
2339 		snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
2340 		    (uintmax_t) fp);
2341 		return (s_mips_abi_fp);
2342 	}
2343 }
2344 
2345 static const char *
2346 ppc_abi_fp(uint64_t fp)
2347 {
2348 	static char s_ppc_abi_fp[64];
2349 
2350 	switch (fp) {
2351 	case 0: return "N/A";
2352 	case 1: return "Hard float (double precision)";
2353 	case 2: return "Soft float";
2354 	case 3: return "Hard float (single precision)";
2355 	default:
2356 		snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
2357 		    (uintmax_t) fp);
2358 		return (s_ppc_abi_fp);
2359 	}
2360 }
2361 
2362 static const char *
2363 ppc_abi_vector(uint64_t vec)
2364 {
2365 	static char s_vec[64];
2366 
2367 	switch (vec) {
2368 	case 0: return "N/A";
2369 	case 1: return "Generic purpose registers";
2370 	case 2: return "AltiVec registers";
2371 	case 3: return "SPE registers";
2372 	default:
2373 		snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
2374 		return (s_vec);
2375 	}
2376 }
2377 
2378 static const char *
2379 dwarf_reg(unsigned int mach, unsigned int reg)
2380 {
2381 
2382 	switch (mach) {
2383 	case EM_386:
2384 		switch (reg) {
2385 		case 0: return "eax";
2386 		case 1: return "ecx";
2387 		case 2: return "edx";
2388 		case 3: return "ebx";
2389 		case 4: return "esp";
2390 		case 5: return "ebp";
2391 		case 6: return "esi";
2392 		case 7: return "edi";
2393 		case 8: return "eip";
2394 		case 9: return "eflags";
2395 		case 11: return "st0";
2396 		case 12: return "st1";
2397 		case 13: return "st2";
2398 		case 14: return "st3";
2399 		case 15: return "st4";
2400 		case 16: return "st5";
2401 		case 17: return "st6";
2402 		case 18: return "st7";
2403 		case 21: return "xmm0";
2404 		case 22: return "xmm1";
2405 		case 23: return "xmm2";
2406 		case 24: return "xmm3";
2407 		case 25: return "xmm4";
2408 		case 26: return "xmm5";
2409 		case 27: return "xmm6";
2410 		case 28: return "xmm7";
2411 		case 29: return "mm0";
2412 		case 30: return "mm1";
2413 		case 31: return "mm2";
2414 		case 32: return "mm3";
2415 		case 33: return "mm4";
2416 		case 34: return "mm5";
2417 		case 35: return "mm6";
2418 		case 36: return "mm7";
2419 		case 37: return "fcw";
2420 		case 38: return "fsw";
2421 		case 39: return "mxcsr";
2422 		case 40: return "es";
2423 		case 41: return "cs";
2424 		case 42: return "ss";
2425 		case 43: return "ds";
2426 		case 44: return "fs";
2427 		case 45: return "gs";
2428 		case 48: return "tr";
2429 		case 49: return "ldtr";
2430 		default: return (NULL);
2431 		}
2432 	case EM_X86_64:
2433 		switch (reg) {
2434 		case 0: return "rax";
2435 		case 1: return "rdx";
2436 		case 2: return "rcx";
2437 		case 3: return "rbx";
2438 		case 4: return "rsi";
2439 		case 5: return "rdi";
2440 		case 6: return "rbp";
2441 		case 7: return "rsp";
2442 		case 16: return "rip";
2443 		case 17: return "xmm0";
2444 		case 18: return "xmm1";
2445 		case 19: return "xmm2";
2446 		case 20: return "xmm3";
2447 		case 21: return "xmm4";
2448 		case 22: return "xmm5";
2449 		case 23: return "xmm6";
2450 		case 24: return "xmm7";
2451 		case 25: return "xmm8";
2452 		case 26: return "xmm9";
2453 		case 27: return "xmm10";
2454 		case 28: return "xmm11";
2455 		case 29: return "xmm12";
2456 		case 30: return "xmm13";
2457 		case 31: return "xmm14";
2458 		case 32: return "xmm15";
2459 		case 33: return "st0";
2460 		case 34: return "st1";
2461 		case 35: return "st2";
2462 		case 36: return "st3";
2463 		case 37: return "st4";
2464 		case 38: return "st5";
2465 		case 39: return "st6";
2466 		case 40: return "st7";
2467 		case 41: return "mm0";
2468 		case 42: return "mm1";
2469 		case 43: return "mm2";
2470 		case 44: return "mm3";
2471 		case 45: return "mm4";
2472 		case 46: return "mm5";
2473 		case 47: return "mm6";
2474 		case 48: return "mm7";
2475 		case 49: return "rflags";
2476 		case 50: return "es";
2477 		case 51: return "cs";
2478 		case 52: return "ss";
2479 		case 53: return "ds";
2480 		case 54: return "fs";
2481 		case 55: return "gs";
2482 		case 58: return "fs.base";
2483 		case 59: return "gs.base";
2484 		case 62: return "tr";
2485 		case 63: return "ldtr";
2486 		case 64: return "mxcsr";
2487 		case 65: return "fcw";
2488 		case 66: return "fsw";
2489 		default: return (NULL);
2490 		}
2491 	default:
2492 		return (NULL);
2493 	}
2494 }
2495 
2496 static void
2497 dump_ehdr(struct readelf *re)
2498 {
2499 	size_t		 shnum, shstrndx;
2500 	int		 i;
2501 
2502 	printf("ELF Header:\n");
2503 
2504 	/* e_ident[]. */
2505 	printf("  Magic:   ");
2506 	for (i = 0; i < EI_NIDENT; i++)
2507 		printf("%.2x ", re->ehdr.e_ident[i]);
2508 	putchar('\n');
2509 
2510 	/* EI_CLASS. */
2511 	printf("%-37s%s\n", "  Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
2512 
2513 	/* EI_DATA. */
2514 	printf("%-37s%s\n", "  Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
2515 
2516 	/* EI_VERSION. */
2517 	printf("%-37s%d %s\n", "  Version:", re->ehdr.e_ident[EI_VERSION],
2518 	    elf_ver(re->ehdr.e_ident[EI_VERSION]));
2519 
2520 	/* EI_OSABI. */
2521 	printf("%-37s%s\n", "  OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
2522 
2523 	/* EI_ABIVERSION. */
2524 	printf("%-37s%d\n", "  ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
2525 
2526 	/* e_type. */
2527 	printf("%-37s%s\n", "  Type:", elf_type(re->ehdr.e_type));
2528 
2529 	/* e_machine. */
2530 	printf("%-37s%s\n", "  Machine:", elf_machine(re->ehdr.e_machine));
2531 
2532 	/* e_version. */
2533 	printf("%-37s%#x\n", "  Version:", re->ehdr.e_version);
2534 
2535 	/* e_entry. */
2536 	printf("%-37s%#jx\n", "  Entry point address:",
2537 	    (uintmax_t)re->ehdr.e_entry);
2538 
2539 	/* e_phoff. */
2540 	printf("%-37s%ju (bytes into file)\n", "  Start of program headers:",
2541 	    (uintmax_t)re->ehdr.e_phoff);
2542 
2543 	/* e_shoff. */
2544 	printf("%-37s%ju (bytes into file)\n", "  Start of section headers:",
2545 	    (uintmax_t)re->ehdr.e_shoff);
2546 
2547 	/* e_flags. */
2548 	printf("%-37s%#x", "  Flags:", re->ehdr.e_flags);
2549 	dump_eflags(re, re->ehdr.e_flags);
2550 	putchar('\n');
2551 
2552 	/* e_ehsize. */
2553 	printf("%-37s%u (bytes)\n", "  Size of this header:",
2554 	    re->ehdr.e_ehsize);
2555 
2556 	/* e_phentsize. */
2557 	printf("%-37s%u (bytes)\n", "  Size of program headers:",
2558 	    re->ehdr.e_phentsize);
2559 
2560 	/* e_phnum. */
2561 	printf("%-37s%u\n", "  Number of program headers:", re->ehdr.e_phnum);
2562 
2563 	/* e_shentsize. */
2564 	printf("%-37s%u (bytes)\n", "  Size of section headers:",
2565 	    re->ehdr.e_shentsize);
2566 
2567 	/* e_shnum. */
2568 	printf("%-37s%u", "  Number of section headers:", re->ehdr.e_shnum);
2569 	if (re->ehdr.e_shnum == SHN_UNDEF) {
2570 		/* Extended section numbering is in use. */
2571 		if (elf_getshnum(re->elf, &shnum))
2572 			printf(" (%ju)", (uintmax_t)shnum);
2573 	}
2574 	putchar('\n');
2575 
2576 	/* e_shstrndx. */
2577 	printf("%-37s%u", "  Section header string table index:",
2578 	    re->ehdr.e_shstrndx);
2579 	if (re->ehdr.e_shstrndx == SHN_XINDEX) {
2580 		/* Extended section numbering is in use. */
2581 		if (elf_getshstrndx(re->elf, &shstrndx))
2582 			printf(" (%ju)", (uintmax_t)shstrndx);
2583 	}
2584 	putchar('\n');
2585 }
2586 
2587 static void
2588 dump_eflags(struct readelf *re, uint64_t e_flags)
2589 {
2590 	struct eflags_desc *edesc;
2591 	int arm_eabi;
2592 
2593 	edesc = NULL;
2594 	switch (re->ehdr.e_machine) {
2595 	case EM_ARM:
2596 		arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
2597 		if (arm_eabi == 0)
2598 			printf(", GNU EABI");
2599 		else if (arm_eabi <= 5)
2600 			printf(", Version%d EABI", arm_eabi);
2601 		edesc = arm_eflags_desc;
2602 		break;
2603 	case EM_MIPS:
2604 	case EM_MIPS_RS3_LE:
2605 		switch ((e_flags & EF_MIPS_ARCH) >> 28) {
2606 		case 0:	printf(", mips1"); break;
2607 		case 1: printf(", mips2"); break;
2608 		case 2: printf(", mips3"); break;
2609 		case 3: printf(", mips4"); break;
2610 		case 4: printf(", mips5"); break;
2611 		case 5: printf(", mips32"); break;
2612 		case 6: printf(", mips64"); break;
2613 		case 7: printf(", mips32r2"); break;
2614 		case 8: printf(", mips64r2"); break;
2615 		default: break;
2616 		}
2617 		switch ((e_flags & 0x00FF0000) >> 16) {
2618 		case 0x81: printf(", 3900"); break;
2619 		case 0x82: printf(", 4010"); break;
2620 		case 0x83: printf(", 4100"); break;
2621 		case 0x85: printf(", 4650"); break;
2622 		case 0x87: printf(", 4120"); break;
2623 		case 0x88: printf(", 4111"); break;
2624 		case 0x8a: printf(", sb1"); break;
2625 		case 0x8b: printf(", octeon"); break;
2626 		case 0x8c: printf(", xlr"); break;
2627 		case 0x91: printf(", 5400"); break;
2628 		case 0x98: printf(", 5500"); break;
2629 		case 0x99: printf(", 9000"); break;
2630 		case 0xa0: printf(", loongson-2e"); break;
2631 		case 0xa1: printf(", loongson-2f"); break;
2632 		default: break;
2633 		}
2634 		switch ((e_flags & 0x0000F000) >> 12) {
2635 		case 1: printf(", o32"); break;
2636 		case 2: printf(", o64"); break;
2637 		case 3: printf(", eabi32"); break;
2638 		case 4: printf(", eabi64"); break;
2639 		default: break;
2640 		}
2641 		edesc = mips_eflags_desc;
2642 		break;
2643 	case EM_PPC:
2644 	case EM_PPC64:
2645 		edesc = powerpc_eflags_desc;
2646 		break;
2647 	case EM_SPARC:
2648 	case EM_SPARC32PLUS:
2649 	case EM_SPARCV9:
2650 		switch ((e_flags & EF_SPARCV9_MM)) {
2651 		case EF_SPARCV9_TSO: printf(", tso"); break;
2652 		case EF_SPARCV9_PSO: printf(", pso"); break;
2653 		case EF_SPARCV9_MM: printf(", rmo"); break;
2654 		default: break;
2655 		}
2656 		edesc = sparc_eflags_desc;
2657 		break;
2658 	default:
2659 		break;
2660 	}
2661 
2662 	if (edesc != NULL) {
2663 		while (edesc->desc != NULL) {
2664 			if (e_flags & edesc->flag)
2665 				printf(", %s", edesc->desc);
2666 			edesc++;
2667 		}
2668 	}
2669 }
2670 
2671 static void
2672 dump_phdr(struct readelf *re)
2673 {
2674 	const char	*rawfile;
2675 	GElf_Phdr	 phdr;
2676 	size_t		 phnum;
2677 	int		 i, j;
2678 
2679 #define	PH_HDR	"Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz",	\
2680 		"MemSiz", "Flg", "Align"
2681 #define	PH_CT	phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset,	\
2682 		(uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr,	\
2683 		(uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz,	\
2684 		phdr.p_flags & PF_R ? 'R' : ' ',			\
2685 		phdr.p_flags & PF_W ? 'W' : ' ',			\
2686 		phdr.p_flags & PF_X ? 'E' : ' ',			\
2687 		(uintmax_t)phdr.p_align
2688 
2689 	if (elf_getphnum(re->elf, &phnum) == 0) {
2690 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2691 		return;
2692 	}
2693 	if (phnum == 0) {
2694 		printf("\nThere are no program headers in this file.\n");
2695 		return;
2696 	}
2697 
2698 	printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
2699 	printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
2700 	printf("There are %ju program headers, starting at offset %ju\n",
2701 	    (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
2702 
2703 	/* Dump program headers. */
2704 	printf("\nProgram Headers:\n");
2705 	if (re->ec == ELFCLASS32)
2706 		printf("  %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
2707 	else if (re->options & RE_WW)
2708 		printf("  %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
2709 	else
2710 		printf("  %-15s%-19s%-19s%s\n                 %-19s%-20s"
2711 		    "%-7s%s\n", PH_HDR);
2712 	for (i = 0; (size_t) i < phnum; i++) {
2713 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2714 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2715 			continue;
2716 		}
2717 		/* TODO: Add arch-specific segment type dump. */
2718 		if (re->ec == ELFCLASS32)
2719 			printf("  %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
2720 			    "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
2721 		else if (re->options & RE_WW)
2722 			printf("  %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
2723 			    "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
2724 		else
2725 			printf("  %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
2726 			    "                 0x%16.16jx 0x%16.16jx  %c%c%c"
2727 			    "    %#jx\n", PH_CT);
2728 		if (phdr.p_type == PT_INTERP) {
2729 			if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) {
2730 				warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2731 				continue;
2732 			}
2733 			printf("      [Requesting program interpreter: %s]\n",
2734 				rawfile + phdr.p_offset);
2735 		}
2736 	}
2737 
2738 	/* Dump section to segment mapping. */
2739 	if (re->shnum == 0)
2740 		return;
2741 	printf("\n Section to Segment mapping:\n");
2742 	printf("  Segment Sections...\n");
2743 	for (i = 0; (size_t)i < phnum; i++) {
2744 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2745 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2746 			continue;
2747 		}
2748 		printf("   %2.2d     ", i);
2749 		/* skip NULL section. */
2750 		for (j = 1; (size_t)j < re->shnum; j++)
2751 			if (re->sl[j].off >= phdr.p_offset &&
2752 			    re->sl[j].off + re->sl[j].sz <=
2753 			    phdr.p_offset + phdr.p_memsz)
2754 				printf("%s ", re->sl[j].name);
2755 		printf("\n");
2756 	}
2757 #undef	PH_HDR
2758 #undef	PH_CT
2759 }
2760 
2761 static char *
2762 section_flags(struct readelf *re, struct section *s)
2763 {
2764 #define BUF_SZ 256
2765 	static char	buf[BUF_SZ];
2766 	int		i, p, nb;
2767 
2768 	p = 0;
2769 	nb = re->ec == ELFCLASS32 ? 8 : 16;
2770 	if (re->options & RE_T) {
2771 		snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
2772 		    (uintmax_t)s->flags);
2773 		p += nb + 4;
2774 	}
2775 	for (i = 0; section_flag[i].ln != NULL; i++) {
2776 		if ((s->flags & section_flag[i].value) == 0)
2777 			continue;
2778 		if (re->options & RE_T) {
2779 			snprintf(&buf[p], BUF_SZ - p, "%s, ",
2780 			    section_flag[i].ln);
2781 			p += strlen(section_flag[i].ln) + 2;
2782 		} else
2783 			buf[p++] = section_flag[i].sn;
2784 	}
2785 	if (re->options & RE_T && p > nb + 4)
2786 		p -= 2;
2787 	buf[p] = '\0';
2788 
2789 	return (buf);
2790 }
2791 
2792 static void
2793 dump_shdr(struct readelf *re)
2794 {
2795 	struct section	*s;
2796 	int		 i;
2797 
2798 #define	S_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2799 		"Flg", "Lk", "Inf", "Al"
2800 #define	S_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Size",	\
2801 		"EntSize", "Flags", "Link", "Info", "Align"
2802 #define	ST_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2803 		"Lk", "Inf", "Al", "Flags"
2804 #define	ST_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Link",	\
2805 		"Size", "EntSize", "Info", "Align", "Flags"
2806 #define	S_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),	\
2807 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2808 		(uintmax_t)s->entsize, section_flags(re, s),		\
2809 		s->link, s->info, (uintmax_t)s->align
2810 #define	ST_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2811 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2812 		(uintmax_t)s->entsize, s->link, s->info,		\
2813 		(uintmax_t)s->align, section_flags(re, s)
2814 #define	ST_CTL	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2815 		(uintmax_t)s->addr, (uintmax_t)s->off, s->link,		\
2816 		(uintmax_t)s->sz, (uintmax_t)s->entsize, s->info,	\
2817 		(uintmax_t)s->align, section_flags(re, s)
2818 
2819 	if (re->shnum == 0) {
2820 		printf("\nThere are no sections in this file.\n");
2821 		return;
2822 	}
2823 	printf("There are %ju section headers, starting at offset 0x%jx:\n",
2824 	    (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
2825 	printf("\nSection Headers:\n");
2826 	if (re->ec == ELFCLASS32) {
2827 		if (re->options & RE_T)
2828 			printf("  %s\n       %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
2829 			    "%12s\n", ST_HDR);
2830 		else
2831 			printf("  %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2832 			    S_HDR);
2833 	} else if (re->options & RE_WW) {
2834 		if (re->options & RE_T)
2835 			printf("  %s\n       %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
2836 			    "%12s\n", ST_HDR);
2837 		else
2838 			printf("  %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2839 			    S_HDR);
2840 	} else {
2841 		if (re->options & RE_T)
2842 			printf("  %s\n       %-18s%-17s%-18s%s\n       %-18s"
2843 			    "%-17s%-18s%s\n%12s\n", ST_HDRL);
2844 		else
2845 			printf("  %-23s%-17s%-18s%s\n       %-18s%-17s%-7s%"
2846 			    "-6s%-6s%s\n", S_HDRL);
2847 	}
2848 	for (i = 0; (size_t)i < re->shnum; i++) {
2849 		s = &re->sl[i];
2850 		if (re->ec == ELFCLASS32) {
2851 			if (re->options & RE_T)
2852 				printf("  [%2d] %s\n       %-15.15s %8.8jx"
2853 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2854 				    "       %s\n", ST_CT);
2855 			else
2856 				printf("  [%2d] %-17.17s %-15.15s %8.8jx"
2857 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2858 				    S_CT);
2859 		} else if (re->options & RE_WW) {
2860 			if (re->options & RE_T)
2861 				printf("  [%2d] %s\n       %-15.15s %16.16jx"
2862 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2863 				    "       %s\n", ST_CT);
2864 			else
2865 				printf("  [%2d] %-17.17s %-15.15s %16.16jx"
2866 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2867 				    S_CT);
2868 		} else {
2869 			if (re->options & RE_T)
2870 				printf("  [%2d] %s\n       %-15.15s  %16.16jx"
2871 				    "  %16.16jx  %u\n       %16.16jx %16.16jx"
2872 				    "  %-16u  %ju\n       %s\n", ST_CTL);
2873 			else
2874 				printf("  [%2d] %-17.17s %-15.15s  %16.16jx"
2875 				    "  %8.8jx\n       %16.16jx  %16.16jx "
2876 				    "%3s      %2u   %3u     %ju\n", S_CT);
2877 		}
2878 	}
2879 	if ((re->options & RE_T) == 0)
2880 		printf("Key to Flags:\n  W (write), A (alloc),"
2881 		    " X (execute), M (merge), S (strings)\n"
2882 		    "  I (info), L (link order), G (group), x (unknown)\n"
2883 		    "  O (extra OS processing required)"
2884 		    " o (OS specific), p (processor specific)\n");
2885 
2886 #undef	S_HDR
2887 #undef	S_HDRL
2888 #undef	ST_HDR
2889 #undef	ST_HDRL
2890 #undef	S_CT
2891 #undef	ST_CT
2892 #undef	ST_CTL
2893 }
2894 
2895 static void
2896 dump_dynamic(struct readelf *re)
2897 {
2898 	GElf_Dyn	 dyn;
2899 	Elf_Data	*d;
2900 	struct section	*s;
2901 	int		 elferr, i, is_dynamic, j, jmax, nentries;
2902 
2903 	is_dynamic = 0;
2904 
2905 	for (i = 0; (size_t)i < re->shnum; i++) {
2906 		s = &re->sl[i];
2907 		if (s->type != SHT_DYNAMIC)
2908 			continue;
2909 		(void) elf_errno();
2910 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2911 			elferr = elf_errno();
2912 			if (elferr != 0)
2913 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
2914 			continue;
2915 		}
2916 		if (d->d_size <= 0)
2917 			continue;
2918 
2919 		is_dynamic = 1;
2920 
2921 		/* Determine the actual number of table entries. */
2922 		nentries = 0;
2923 		jmax = (int) (s->sz / s->entsize);
2924 
2925 		for (j = 0; j < jmax; j++) {
2926 			if (gelf_getdyn(d, j, &dyn) != &dyn) {
2927 				warnx("gelf_getdyn failed: %s",
2928 				    elf_errmsg(-1));
2929 				continue;
2930 			}
2931 			nentries ++;
2932 			if (dyn.d_tag == DT_NULL)
2933 				break;
2934                 }
2935 
2936 		printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
2937 		printf(" contains %u entries:\n", nentries);
2938 
2939 		if (re->ec == ELFCLASS32)
2940 			printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
2941 		else
2942 			printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
2943 
2944 		for (j = 0; j < nentries; j++) {
2945 			if (gelf_getdyn(d, j, &dyn) != &dyn)
2946 				continue;
2947 			/* Dump dynamic entry type. */
2948 			if (re->ec == ELFCLASS32)
2949 				printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
2950 			else
2951 				printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
2952 			printf(" %-20s", dt_type(re->ehdr.e_machine,
2953 			    dyn.d_tag));
2954 			/* Dump dynamic entry value. */
2955 			dump_dyn_val(re, &dyn, s->link);
2956 		}
2957 	}
2958 
2959 	if (!is_dynamic)
2960 		printf("\nThere is no dynamic section in this file.\n");
2961 }
2962 
2963 static char *
2964 timestamp(time_t ti)
2965 {
2966 	static char ts[32];
2967 	struct tm *t;
2968 
2969 	t = gmtime(&ti);
2970 	snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
2971 	    t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
2972 	    t->tm_min, t->tm_sec);
2973 
2974 	return (ts);
2975 }
2976 
2977 static const char *
2978 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
2979 {
2980 	const char *name;
2981 
2982 	if (stab == SHN_UNDEF)
2983 		name = "ERROR";
2984 	else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
2985 		(void) elf_errno(); /* clear error */
2986 		name = "ERROR";
2987 	}
2988 
2989 	return (name);
2990 }
2991 
2992 static void
2993 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
2994 {
2995 	const char *name;
2996 
2997 	switch (re->ehdr.e_machine) {
2998 	case EM_MIPS:
2999 	case EM_MIPS_RS3_LE:
3000 		switch (dyn->d_tag) {
3001 		case DT_MIPS_RLD_VERSION:
3002 		case DT_MIPS_LOCAL_GOTNO:
3003 		case DT_MIPS_CONFLICTNO:
3004 		case DT_MIPS_LIBLISTNO:
3005 		case DT_MIPS_SYMTABNO:
3006 		case DT_MIPS_UNREFEXTNO:
3007 		case DT_MIPS_GOTSYM:
3008 		case DT_MIPS_HIPAGENO:
3009 		case DT_MIPS_DELTA_CLASS_NO:
3010 		case DT_MIPS_DELTA_INSTANCE_NO:
3011 		case DT_MIPS_DELTA_RELOC_NO:
3012 		case DT_MIPS_DELTA_SYM_NO:
3013 		case DT_MIPS_DELTA_CLASSSYM_NO:
3014 		case DT_MIPS_LOCALPAGE_GOTIDX:
3015 		case DT_MIPS_LOCAL_GOTIDX:
3016 		case DT_MIPS_HIDDEN_GOTIDX:
3017 		case DT_MIPS_PROTECTED_GOTIDX:
3018 			printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
3019 			break;
3020 		case DT_MIPS_ICHECKSUM:
3021 		case DT_MIPS_FLAGS:
3022 		case DT_MIPS_BASE_ADDRESS:
3023 		case DT_MIPS_CONFLICT:
3024 		case DT_MIPS_LIBLIST:
3025 		case DT_MIPS_RLD_MAP:
3026 		case DT_MIPS_DELTA_CLASS:
3027 		case DT_MIPS_DELTA_INSTANCE:
3028 		case DT_MIPS_DELTA_RELOC:
3029 		case DT_MIPS_DELTA_SYM:
3030 		case DT_MIPS_DELTA_CLASSSYM:
3031 		case DT_MIPS_CXX_FLAGS:
3032 		case DT_MIPS_PIXIE_INIT:
3033 		case DT_MIPS_SYMBOL_LIB:
3034 		case DT_MIPS_OPTIONS:
3035 		case DT_MIPS_INTERFACE:
3036 		case DT_MIPS_DYNSTR_ALIGN:
3037 		case DT_MIPS_INTERFACE_SIZE:
3038 		case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
3039 		case DT_MIPS_COMPACT_SIZE:
3040 		case DT_MIPS_GP_VALUE:
3041 		case DT_MIPS_AUX_DYNAMIC:
3042 		case DT_MIPS_PLTGOT:
3043 		case DT_MIPS_RLD_OBJ_UPDATE:
3044 		case DT_MIPS_RWPLT:
3045 			printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
3046 			break;
3047 		case DT_MIPS_IVERSION:
3048 		case DT_MIPS_PERF_SUFFIX:
3049 		case DT_AUXILIARY:
3050 		case DT_FILTER:
3051 			name = dyn_str(re, stab, dyn->d_un.d_val);
3052 			printf(" %s\n", name);
3053 			break;
3054 		case DT_MIPS_TIME_STAMP:
3055 			printf(" %s\n", timestamp(dyn->d_un.d_val));
3056 			break;
3057 		}
3058 		break;
3059 	default:
3060 		printf("\n");
3061 		break;
3062 	}
3063 }
3064 
3065 static void
3066 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
3067 {
3068 	const char *name;
3069 
3070 	if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) {
3071 		dump_arch_dyn_val(re, dyn, stab);
3072 		return;
3073 	}
3074 
3075 	/* These entry values are index into the string table. */
3076 	name = NULL;
3077 	if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
3078 	    dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
3079 		name = dyn_str(re, stab, dyn->d_un.d_val);
3080 
3081 	switch(dyn->d_tag) {
3082 	case DT_NULL:
3083 	case DT_PLTGOT:
3084 	case DT_HASH:
3085 	case DT_STRTAB:
3086 	case DT_SYMTAB:
3087 	case DT_RELA:
3088 	case DT_INIT:
3089 	case DT_SYMBOLIC:
3090 	case DT_REL:
3091 	case DT_DEBUG:
3092 	case DT_TEXTREL:
3093 	case DT_JMPREL:
3094 	case DT_FINI:
3095 	case DT_VERDEF:
3096 	case DT_VERNEED:
3097 	case DT_VERSYM:
3098 	case DT_GNU_HASH:
3099 	case DT_GNU_LIBLIST:
3100 	case DT_GNU_CONFLICT:
3101 		printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
3102 		break;
3103 	case DT_PLTRELSZ:
3104 	case DT_RELASZ:
3105 	case DT_RELAENT:
3106 	case DT_STRSZ:
3107 	case DT_SYMENT:
3108 	case DT_RELSZ:
3109 	case DT_RELENT:
3110 	case DT_INIT_ARRAYSZ:
3111 	case DT_FINI_ARRAYSZ:
3112 	case DT_GNU_CONFLICTSZ:
3113 	case DT_GNU_LIBLISTSZ:
3114 		printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
3115 		break;
3116  	case DT_RELACOUNT:
3117 	case DT_RELCOUNT:
3118 	case DT_VERDEFNUM:
3119 	case DT_VERNEEDNUM:
3120 		printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
3121 		break;
3122 	case DT_NEEDED:
3123 		printf(" Shared library: [%s]\n", name);
3124 		break;
3125 	case DT_SONAME:
3126 		printf(" Library soname: [%s]\n", name);
3127 		break;
3128 	case DT_RPATH:
3129 		printf(" Library rpath: [%s]\n", name);
3130 		break;
3131 	case DT_RUNPATH:
3132 		printf(" Library runpath: [%s]\n", name);
3133 		break;
3134 	case DT_PLTREL:
3135 		printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
3136 		break;
3137 	case DT_GNU_PRELINKED:
3138 		printf(" %s\n", timestamp(dyn->d_un.d_val));
3139 		break;
3140 	default:
3141 		printf("\n");
3142 	}
3143 }
3144 
3145 static void
3146 dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
3147 {
3148 	GElf_Rel r;
3149 	const char *symname;
3150 	uint64_t symval;
3151 	int i, len;
3152 
3153 #define	REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
3154 #define	REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3155 		r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \
3156 		(uintmax_t)symval, symname
3157 #define	REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3158 		r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \
3159 		(uintmax_t)symval, symname
3160 
3161 	printf("\nRelocation section (%s):\n", s->name);
3162 	if (re->ec == ELFCLASS32)
3163 		printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
3164 	else {
3165 		if (re->options & RE_WW)
3166 			printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
3167 		else
3168 			printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
3169 	}
3170 	len = d->d_size / s->entsize;
3171 	for (i = 0; i < len; i++) {
3172 		if (gelf_getrel(d, i, &r) != &r) {
3173 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3174 			continue;
3175 		}
3176 		if (s->link >= re->shnum) {
3177 			warnx("invalid section link index %u", s->link);
3178 			continue;
3179 		}
3180 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3181 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3182 		if (re->ec == ELFCLASS32) {
3183 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3184 			    ELF64_R_TYPE(r.r_info));
3185 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
3186 		} else {
3187 			if (re->options & RE_WW)
3188 				printf("%16.16jx %16.16jx %-24.24s"
3189 				    " %16.16jx %s\n", REL_CT64);
3190 			else
3191 				printf("%12.12jx %12.12jx %-19.19s"
3192 				    " %16.16jx %s\n", REL_CT64);
3193 		}
3194 	}
3195 
3196 #undef	REL_HDR
3197 #undef	REL_CT
3198 }
3199 
3200 static void
3201 dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
3202 {
3203 	GElf_Rela r;
3204 	const char *symname;
3205 	uint64_t symval;
3206 	int i, len;
3207 
3208 #define	RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
3209 		"st_name + r_addend"
3210 #define	RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3211 		r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \
3212 		(uintmax_t)symval, symname
3213 #define	RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3214 		r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \
3215 		(uintmax_t)symval, symname
3216 
3217 	printf("\nRelocation section with addend (%s):\n", s->name);
3218 	if (re->ec == ELFCLASS32)
3219 		printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
3220 	else {
3221 		if (re->options & RE_WW)
3222 			printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
3223 		else
3224 			printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
3225 	}
3226 	len = d->d_size / s->entsize;
3227 	for (i = 0; i < len; i++) {
3228 		if (gelf_getrela(d, i, &r) != &r) {
3229 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3230 			continue;
3231 		}
3232 		if (s->link >= re->shnum) {
3233 			warnx("invalid section link index %u", s->link);
3234 			continue;
3235 		}
3236 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3237 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3238 		if (re->ec == ELFCLASS32) {
3239 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3240 			    ELF64_R_TYPE(r.r_info));
3241 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
3242 			printf(" + %x\n", (uint32_t) r.r_addend);
3243 		} else {
3244 			if (re->options & RE_WW)
3245 				printf("%16.16jx %16.16jx %-24.24s"
3246 				    " %16.16jx %s", RELA_CT64);
3247 			else
3248 				printf("%12.12jx %12.12jx %-19.19s"
3249 				    " %16.16jx %s", RELA_CT64);
3250 			printf(" + %jx\n", (uintmax_t) r.r_addend);
3251 		}
3252 	}
3253 
3254 #undef	RELA_HDR
3255 #undef	RELA_CT
3256 }
3257 
3258 static void
3259 dump_reloc(struct readelf *re)
3260 {
3261 	struct section *s;
3262 	Elf_Data *d;
3263 	int i, elferr;
3264 
3265 	for (i = 0; (size_t)i < re->shnum; i++) {
3266 		s = &re->sl[i];
3267 		if (s->type == SHT_REL || s->type == SHT_RELA) {
3268 			(void) elf_errno();
3269 			if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3270 				elferr = elf_errno();
3271 				if (elferr != 0)
3272 					warnx("elf_getdata failed: %s",
3273 					    elf_errmsg(elferr));
3274 				continue;
3275 			}
3276 			if (s->type == SHT_REL)
3277 				dump_rel(re, s, d);
3278 			else
3279 				dump_rela(re, s, d);
3280 		}
3281 	}
3282 }
3283 
3284 static void
3285 dump_symtab(struct readelf *re, int i)
3286 {
3287 	struct section *s;
3288 	Elf_Data *d;
3289 	GElf_Sym sym;
3290 	const char *name;
3291 	int elferr, stab, j;
3292 
3293 	s = &re->sl[i];
3294 	stab = s->link;
3295 	(void) elf_errno();
3296 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3297 		elferr = elf_errno();
3298 		if (elferr != 0)
3299 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3300 		return;
3301 	}
3302 	if (d->d_size <= 0)
3303 		return;
3304 	printf("Symbol table (%s)", s->name);
3305 	printf(" contains %ju entries:\n", s->sz / s->entsize);
3306 	printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
3307 	    "Bind", "Vis", "Ndx", "Name");
3308 
3309 	for (j = 0; (uint64_t)j < s->sz / s->entsize; j++) {
3310 		if (gelf_getsym(d, j, &sym) != &sym) {
3311 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
3312 			continue;
3313 		}
3314 		printf("%6d:", j);
3315 		printf(" %16.16jx", (uintmax_t)sym.st_value);
3316 		printf(" %5ju", sym.st_size);
3317 		printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info)));
3318 		printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
3319 		printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
3320 		printf(" %3s", st_shndx(sym.st_shndx));
3321 		if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
3322 			printf(" %s", name);
3323 		/* Append symbol version string for SHT_DYNSYM symbol table. */
3324 		if (s->type == SHT_DYNSYM && re->ver != NULL &&
3325 		    re->vs != NULL && re->vs[j] > 1) {
3326 			if (re->vs[j] & 0x8000 ||
3327 			    re->ver[re->vs[j] & 0x7fff].type == 0)
3328 				printf("@%s (%d)",
3329 				    re->ver[re->vs[j] & 0x7fff].name,
3330 				    re->vs[j] & 0x7fff);
3331 			else
3332 				printf("@@%s (%d)", re->ver[re->vs[j]].name,
3333 				    re->vs[j]);
3334 		}
3335 		putchar('\n');
3336 	}
3337 
3338 }
3339 
3340 static void
3341 dump_symtabs(struct readelf *re)
3342 {
3343 	GElf_Dyn dyn;
3344 	Elf_Data *d;
3345 	struct section *s;
3346 	uint64_t dyn_off;
3347 	int elferr, i;
3348 
3349 	/*
3350 	 * If -D is specified, only dump the symbol table specified by
3351 	 * the DT_SYMTAB entry in the .dynamic section.
3352 	 */
3353 	dyn_off = 0;
3354 	if (re->options & RE_DD) {
3355 		s = NULL;
3356 		for (i = 0; (size_t)i < re->shnum; i++)
3357 			if (re->sl[i].type == SHT_DYNAMIC) {
3358 				s = &re->sl[i];
3359 				break;
3360 			}
3361 		if (s == NULL)
3362 			return;
3363 		(void) elf_errno();
3364 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3365 			elferr = elf_errno();
3366 			if (elferr != 0)
3367 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
3368 			return;
3369 		}
3370 		if (d->d_size <= 0)
3371 			return;
3372 
3373 		for (i = 0; (uint64_t)i < s->sz / s->entsize; i++) {
3374 			if (gelf_getdyn(d, i, &dyn) != &dyn) {
3375 				warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
3376 				continue;
3377 			}
3378 			if (dyn.d_tag == DT_SYMTAB) {
3379 				dyn_off = dyn.d_un.d_val;
3380 				break;
3381 			}
3382 		}
3383 	}
3384 
3385 	/* Find and dump symbol tables. */
3386 	for (i = 0; (size_t)i < re->shnum; i++) {
3387 		s = &re->sl[i];
3388 		if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
3389 			if (re->options & RE_DD) {
3390 				if (dyn_off == s->addr) {
3391 					dump_symtab(re, i);
3392 					break;
3393 				}
3394 			} else
3395 				dump_symtab(re, i);
3396 		}
3397 	}
3398 }
3399 
3400 static void
3401 dump_svr4_hash(struct section *s)
3402 {
3403 	Elf_Data	*d;
3404 	uint32_t	*buf;
3405 	uint32_t	 nbucket, nchain;
3406 	uint32_t	*bucket, *chain;
3407 	uint32_t	*bl, *c, maxl, total;
3408 	int		 elferr, i, j;
3409 
3410 	/* Read and parse the content of .hash section. */
3411 	(void) elf_errno();
3412 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3413 		elferr = elf_errno();
3414 		if (elferr != 0)
3415 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3416 		return;
3417 	}
3418 	if (d->d_size < 2 * sizeof(uint32_t)) {
3419 		warnx(".hash section too small");
3420 		return;
3421 	}
3422 	buf = d->d_buf;
3423 	nbucket = buf[0];
3424 	nchain = buf[1];
3425 	if (nbucket <= 0 || nchain <= 0) {
3426 		warnx("Malformed .hash section");
3427 		return;
3428 	}
3429 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3430 		warnx("Malformed .hash section");
3431 		return;
3432 	}
3433 	bucket = &buf[2];
3434 	chain = &buf[2 + nbucket];
3435 
3436 	maxl = 0;
3437 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3438 		errx(EXIT_FAILURE, "calloc failed");
3439 	for (i = 0; (uint32_t)i < nbucket; i++)
3440 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3441 			if (++bl[i] > maxl)
3442 				maxl = bl[i];
3443 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3444 		errx(EXIT_FAILURE, "calloc failed");
3445 	for (i = 0; (uint32_t)i < nbucket; i++)
3446 		c[bl[i]]++;
3447 	printf("\nHistogram for bucket list length (total of %u buckets):\n",
3448 	    nbucket);
3449 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3450 	total = 0;
3451 	for (i = 0; (uint32_t)i <= maxl; i++) {
3452 		total += c[i] * i;
3453 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3454 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3455 	}
3456 	free(c);
3457 	free(bl);
3458 }
3459 
3460 static void
3461 dump_svr4_hash64(struct readelf *re, struct section *s)
3462 {
3463 	Elf_Data	*d, dst;
3464 	uint64_t	*buf;
3465 	uint64_t	 nbucket, nchain;
3466 	uint64_t	*bucket, *chain;
3467 	uint64_t	*bl, *c, maxl, total;
3468 	int		 elferr, i, j;
3469 
3470 	/*
3471 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
3472 	 * .hash section contains only 32-bit entry, an explicit
3473 	 * gelf_xlatetom is needed here.
3474 	 */
3475 	(void) elf_errno();
3476 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
3477 		elferr = elf_errno();
3478 		if (elferr != 0)
3479 			warnx("elf_rawdata failed: %s",
3480 			    elf_errmsg(elferr));
3481 		return;
3482 	}
3483 	d->d_type = ELF_T_XWORD;
3484 	memcpy(&dst, d, sizeof(Elf_Data));
3485 	if (gelf_xlatetom(re->elf, &dst, d,
3486 		re->ehdr.e_ident[EI_DATA]) != &dst) {
3487 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
3488 		return;
3489 	}
3490 	if (dst.d_size < 2 * sizeof(uint64_t)) {
3491 		warnx(".hash section too small");
3492 		return;
3493 	}
3494 	buf = dst.d_buf;
3495 	nbucket = buf[0];
3496 	nchain = buf[1];
3497 	if (nbucket <= 0 || nchain <= 0) {
3498 		warnx("Malformed .hash section");
3499 		return;
3500 	}
3501 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3502 		warnx("Malformed .hash section");
3503 		return;
3504 	}
3505 	bucket = &buf[2];
3506 	chain = &buf[2 + nbucket];
3507 
3508 	maxl = 0;
3509 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3510 		errx(EXIT_FAILURE, "calloc failed");
3511 	for (i = 0; (uint32_t)i < nbucket; i++)
3512 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3513 			if (++bl[i] > maxl)
3514 				maxl = bl[i];
3515 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3516 		errx(EXIT_FAILURE, "calloc failed");
3517 	for (i = 0; (uint64_t)i < nbucket; i++)
3518 		c[bl[i]]++;
3519 	printf("Histogram for bucket list length (total of %ju buckets):\n",
3520 	    (uintmax_t)nbucket);
3521 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3522 	total = 0;
3523 	for (i = 0; (uint64_t)i <= maxl; i++) {
3524 		total += c[i] * i;
3525 		printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
3526 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3527 	}
3528 	free(c);
3529 	free(bl);
3530 }
3531 
3532 static void
3533 dump_gnu_hash(struct readelf *re, struct section *s)
3534 {
3535 	struct section	*ds;
3536 	Elf_Data	*d;
3537 	uint32_t	*buf;
3538 	uint32_t	*bucket, *chain;
3539 	uint32_t	 nbucket, nchain, symndx, maskwords;
3540 	uint32_t	*bl, *c, maxl, total;
3541 	int		 elferr, dynsymcount, i, j;
3542 
3543 	(void) elf_errno();
3544 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3545 		elferr = elf_errno();
3546 		if (elferr != 0)
3547 			warnx("elf_getdata failed: %s",
3548 			    elf_errmsg(elferr));
3549 		return;
3550 	}
3551 	if (d->d_size < 4 * sizeof(uint32_t)) {
3552 		warnx(".gnu.hash section too small");
3553 		return;
3554 	}
3555 	buf = d->d_buf;
3556 	nbucket = buf[0];
3557 	symndx = buf[1];
3558 	maskwords = buf[2];
3559 	buf += 4;
3560 	ds = &re->sl[s->link];
3561 	dynsymcount = ds->sz / ds->entsize;
3562 	nchain = dynsymcount - symndx;
3563 	if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
3564 	    (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
3565 	    (nbucket + nchain) * sizeof(uint32_t)) {
3566 		warnx("Malformed .gnu.hash section");
3567 		return;
3568 	}
3569 	bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
3570 	chain = bucket + nbucket;
3571 
3572 	maxl = 0;
3573 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3574 		errx(EXIT_FAILURE, "calloc failed");
3575 	for (i = 0; (uint32_t)i < nbucket; i++)
3576 		for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
3577 		     j++) {
3578 			if (++bl[i] > maxl)
3579 				maxl = bl[i];
3580 			if (chain[j - symndx] & 1)
3581 				break;
3582 		}
3583 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3584 		errx(EXIT_FAILURE, "calloc failed");
3585 	for (i = 0; (uint32_t)i < nbucket; i++)
3586 		c[bl[i]]++;
3587 	printf("Histogram for bucket list length (total of %u buckets):\n",
3588 	    nbucket);
3589 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3590 	total = 0;
3591 	for (i = 0; (uint32_t)i <= maxl; i++) {
3592 		total += c[i] * i;
3593 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3594 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3595 	}
3596 	free(c);
3597 	free(bl);
3598 }
3599 
3600 static void
3601 dump_hash(struct readelf *re)
3602 {
3603 	struct section	*s;
3604 	int		 i;
3605 
3606 	for (i = 0; (size_t) i < re->shnum; i++) {
3607 		s = &re->sl[i];
3608 		if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
3609 			if (s->type == SHT_GNU_HASH)
3610 				dump_gnu_hash(re, s);
3611 			else if (re->ehdr.e_machine == EM_ALPHA &&
3612 			    s->entsize == 8)
3613 				dump_svr4_hash64(re, s);
3614 			else
3615 				dump_svr4_hash(s);
3616 		}
3617 	}
3618 }
3619 
3620 static void
3621 dump_notes(struct readelf *re)
3622 {
3623 	struct section *s;
3624 	const char *rawfile;
3625 	GElf_Phdr phdr;
3626 	Elf_Data *d;
3627 	size_t phnum;
3628 	int i, elferr;
3629 
3630 	if (re->ehdr.e_type == ET_CORE) {
3631 		/*
3632 		 * Search program headers in the core file for
3633 		 * PT_NOTE entry.
3634 		 */
3635 		if (elf_getphnum(re->elf, &phnum) == 0) {
3636 			warnx("elf_getphnum failed: %s", elf_errmsg(-1));
3637 			return;
3638 		}
3639 		if (phnum == 0)
3640 			return;
3641 		if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) {
3642 			warnx("elf_rawfile failed: %s", elf_errmsg(-1));
3643 			return;
3644 		}
3645 		for (i = 0; (size_t) i < phnum; i++) {
3646 			if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
3647 				warnx("gelf_getphdr failed: %s",
3648 				    elf_errmsg(-1));
3649 				continue;
3650 			}
3651 			if (phdr.p_type == PT_NOTE)
3652 				dump_notes_content(re, rawfile + phdr.p_offset,
3653 				    phdr.p_filesz, phdr.p_offset);
3654 		}
3655 
3656 	} else {
3657 		/*
3658 		 * For objects other than core files, Search for
3659 		 * SHT_NOTE sections.
3660 		 */
3661 		for (i = 0; (size_t) i < re->shnum; i++) {
3662 			s = &re->sl[i];
3663 			if (s->type == SHT_NOTE) {
3664 				(void) elf_errno();
3665 				if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3666 					elferr = elf_errno();
3667 					if (elferr != 0)
3668 						warnx("elf_getdata failed: %s",
3669 						    elf_errmsg(elferr));
3670 					continue;
3671 				}
3672 				dump_notes_content(re, d->d_buf, d->d_size,
3673 				    s->off);
3674 			}
3675 		}
3676 	}
3677 }
3678 
3679 static void
3680 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
3681 {
3682 	Elf_Note *note;
3683 	const char *end, *name;
3684 
3685 	printf("\nNotes at offset %#010jx with length %#010jx:\n",
3686 	    (uintmax_t) off, (uintmax_t) sz);
3687 	printf("  %-13s %-15s %s\n", "Owner", "Data size", "Description");
3688 	end = buf + sz;
3689 	while (buf < end) {
3690 		if (buf + sizeof(*note) > end) {
3691 			warnx("invalid note header");
3692 			return;
3693 		}
3694 		note = (Elf_Note *)(uintptr_t) buf;
3695 		name = (char *)(uintptr_t)(note + 1);
3696 		/*
3697 		 * The name field is required to be nul-terminated, and
3698 		 * n_namesz includes the terminating nul in observed
3699 		 * implementations (contrary to the ELF-64 spec). A special
3700 		 * case is needed for cores generated by some older Linux
3701 		 * versions, which write a note named "CORE" without a nul
3702 		 * terminator and n_namesz = 4.
3703 		 */
3704 		if (note->n_namesz == 0)
3705 			name = "";
3706 		else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
3707 			name = "CORE";
3708 		else if (strnlen(name, note->n_namesz) >= note->n_namesz)
3709 			name = "<invalid>";
3710 		printf("  %-13s %#010jx", name, (uintmax_t) note->n_descsz);
3711 		printf("      %s\n", note_type(name, re->ehdr.e_type,
3712 		    note->n_type));
3713 		buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) +
3714 		    roundup2(note->n_descsz, 4);
3715 	}
3716 }
3717 
3718 /*
3719  * Symbol versioning sections are the same for 32bit and 64bit
3720  * ELF objects.
3721  */
3722 #define Elf_Verdef	Elf32_Verdef
3723 #define	Elf_Verdaux	Elf32_Verdaux
3724 #define	Elf_Verneed	Elf32_Verneed
3725 #define	Elf_Vernaux	Elf32_Vernaux
3726 
3727 #define	SAVE_VERSION_NAME(x, n, t)					\
3728 	do {								\
3729 		while (x >= re->ver_sz) {				\
3730 			nv = realloc(re->ver,				\
3731 			    sizeof(*re->ver) * re->ver_sz * 2);		\
3732 			if (nv == NULL) {				\
3733 				warn("realloc failed");			\
3734 				free(re->ver);				\
3735 				return;					\
3736 			}						\
3737 			re->ver = nv;					\
3738 			for (i = re->ver_sz; i < re->ver_sz * 2; i++) {	\
3739 				re->ver[i].name = NULL;			\
3740 				re->ver[i].type = 0;			\
3741 			}						\
3742 			re->ver_sz *= 2;				\
3743 		}							\
3744 		if (x > 1) {						\
3745 			re->ver[x].name = n;				\
3746 			re->ver[x].type = t;				\
3747 		}							\
3748 	} while (0)
3749 
3750 
3751 static void
3752 dump_verdef(struct readelf *re, int dump)
3753 {
3754 	struct section *s;
3755 	struct symver *nv;
3756 	Elf_Data *d;
3757 	Elf_Verdef *vd;
3758 	Elf_Verdaux *vda;
3759 	uint8_t *buf, *end, *buf2;
3760 	const char *name;
3761 	int elferr, i, j;
3762 
3763 	if ((s = re->vd_s) == NULL)
3764 		return;
3765 
3766 	if (re->ver == NULL) {
3767 		re->ver_sz = 16;
3768 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3769 		    NULL) {
3770 			warn("calloc failed");
3771 			return;
3772 		}
3773 		re->ver[0].name = "*local*";
3774 		re->ver[1].name = "*global*";
3775 	}
3776 
3777 	if (dump)
3778 		printf("\nVersion definition section (%s):\n", s->name);
3779 	(void) elf_errno();
3780 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3781 		elferr = elf_errno();
3782 		if (elferr != 0)
3783 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3784 		return;
3785 	}
3786 	if (d->d_size == 0)
3787 		return;
3788 
3789 	buf = d->d_buf;
3790 	end = buf + d->d_size;
3791 	while (buf + sizeof(Elf_Verdef) <= end) {
3792 		vd = (Elf_Verdef *) (uintptr_t) buf;
3793 		if (dump) {
3794 			printf("  0x%4.4lx", (unsigned long)
3795 			    (buf - (uint8_t *)d->d_buf));
3796 			printf(" vd_version: %u vd_flags: %d"
3797 			    " vd_ndx: %u vd_cnt: %u", vd->vd_version,
3798 			    vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
3799 		}
3800 		buf2 = buf + vd->vd_aux;
3801 		j = 0;
3802 		while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
3803 			vda = (Elf_Verdaux *) (uintptr_t) buf2;
3804 			name = get_string(re, s->link, vda->vda_name);
3805 			if (j == 0) {
3806 				if (dump)
3807 					printf(" vda_name: %s\n", name);
3808 				SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
3809 			} else if (dump)
3810 				printf("  0x%4.4lx parent: %s\n",
3811 				    (unsigned long) (buf2 -
3812 				    (uint8_t *)d->d_buf), name);
3813 			if (vda->vda_next == 0)
3814 				break;
3815 			buf2 += vda->vda_next;
3816 			j++;
3817 		}
3818 		if (vd->vd_next == 0)
3819 			break;
3820 		buf += vd->vd_next;
3821 	}
3822 }
3823 
3824 static void
3825 dump_verneed(struct readelf *re, int dump)
3826 {
3827 	struct section *s;
3828 	struct symver *nv;
3829 	Elf_Data *d;
3830 	Elf_Verneed *vn;
3831 	Elf_Vernaux *vna;
3832 	uint8_t *buf, *end, *buf2;
3833 	const char *name;
3834 	int elferr, i, j;
3835 
3836 	if ((s = re->vn_s) == NULL)
3837 		return;
3838 
3839 	if (re->ver == NULL) {
3840 		re->ver_sz = 16;
3841 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3842 		    NULL) {
3843 			warn("calloc failed");
3844 			return;
3845 		}
3846 		re->ver[0].name = "*local*";
3847 		re->ver[1].name = "*global*";
3848 	}
3849 
3850 	if (dump)
3851 		printf("\nVersion needed section (%s):\n", s->name);
3852 	(void) elf_errno();
3853 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3854 		elferr = elf_errno();
3855 		if (elferr != 0)
3856 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3857 		return;
3858 	}
3859 	if (d->d_size == 0)
3860 		return;
3861 
3862 	buf = d->d_buf;
3863 	end = buf + d->d_size;
3864 	while (buf + sizeof(Elf_Verneed) <= end) {
3865 		vn = (Elf_Verneed *) (uintptr_t) buf;
3866 		if (dump) {
3867 			printf("  0x%4.4lx", (unsigned long)
3868 			    (buf - (uint8_t *)d->d_buf));
3869 			printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
3870 			    vn->vn_version,
3871 			    get_string(re, s->link, vn->vn_file),
3872 			    vn->vn_cnt);
3873 		}
3874 		buf2 = buf + vn->vn_aux;
3875 		j = 0;
3876 		while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
3877 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
3878 			if (dump)
3879 				printf("  0x%4.4lx", (unsigned long)
3880 				    (buf2 - (uint8_t *)d->d_buf));
3881 			name = get_string(re, s->link, vna->vna_name);
3882 			if (dump)
3883 				printf("   vna_name: %s vna_flags: %u"
3884 				    " vna_other: %u\n", name,
3885 				    vna->vna_flags, vna->vna_other);
3886 			SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
3887 			if (vna->vna_next == 0)
3888 				break;
3889 			buf2 += vna->vna_next;
3890 			j++;
3891 		}
3892 		if (vn->vn_next == 0)
3893 			break;
3894 		buf += vn->vn_next;
3895 	}
3896 }
3897 
3898 static void
3899 dump_versym(struct readelf *re)
3900 {
3901 	int i;
3902 
3903 	if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
3904 		return;
3905 	printf("\nVersion symbol section (%s):\n", re->vs_s->name);
3906 	for (i = 0; i < re->vs_sz; i++) {
3907 		if ((i & 3) == 0) {
3908 			if (i > 0)
3909 				putchar('\n');
3910 			printf("  %03x:", i);
3911 		}
3912 		if (re->vs[i] & 0x8000)
3913 			printf(" %3xh %-12s ", re->vs[i] & 0x7fff,
3914 			    re->ver[re->vs[i] & 0x7fff].name);
3915 		else
3916 			printf(" %3x %-12s ", re->vs[i],
3917 			    re->ver[re->vs[i]].name);
3918 	}
3919 	putchar('\n');
3920 }
3921 
3922 static void
3923 dump_ver(struct readelf *re)
3924 {
3925 
3926 	if (re->vs_s && re->ver && re->vs)
3927 		dump_versym(re);
3928 	if (re->vd_s)
3929 		dump_verdef(re, 1);
3930 	if (re->vn_s)
3931 		dump_verneed(re, 1);
3932 }
3933 
3934 static void
3935 search_ver(struct readelf *re)
3936 {
3937 	struct section *s;
3938 	Elf_Data *d;
3939 	int elferr, i;
3940 
3941 	for (i = 0; (size_t) i < re->shnum; i++) {
3942 		s = &re->sl[i];
3943 		if (s->type == SHT_SUNW_versym)
3944 			re->vs_s = s;
3945 		if (s->type == SHT_SUNW_verneed)
3946 			re->vn_s = s;
3947 		if (s->type == SHT_SUNW_verdef)
3948 			re->vd_s = s;
3949 	}
3950 	if (re->vd_s)
3951 		dump_verdef(re, 0);
3952 	if (re->vn_s)
3953 		dump_verneed(re, 0);
3954 	if (re->vs_s && re->ver != NULL) {
3955 		(void) elf_errno();
3956 		if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
3957 			elferr = elf_errno();
3958 			if (elferr != 0)
3959 				warnx("elf_getdata failed: %s",
3960 				    elf_errmsg(elferr));
3961 			return;
3962 		}
3963 		if (d->d_size == 0)
3964 			return;
3965 		re->vs = d->d_buf;
3966 		re->vs_sz = d->d_size / sizeof(Elf32_Half);
3967 	}
3968 }
3969 
3970 #undef	Elf_Verdef
3971 #undef	Elf_Verdaux
3972 #undef	Elf_Verneed
3973 #undef	Elf_Vernaux
3974 #undef	SAVE_VERSION_NAME
3975 
3976 /*
3977  * Elf32_Lib and Elf64_Lib are identical.
3978  */
3979 #define	Elf_Lib		Elf32_Lib
3980 
3981 static void
3982 dump_liblist(struct readelf *re)
3983 {
3984 	struct section *s;
3985 	struct tm *t;
3986 	time_t ti;
3987 	char tbuf[20];
3988 	Elf_Data *d;
3989 	Elf_Lib *lib;
3990 	int i, j, k, elferr, first;
3991 
3992 	for (i = 0; (size_t) i < re->shnum; i++) {
3993 		s = &re->sl[i];
3994 		if (s->type != SHT_GNU_LIBLIST)
3995 			continue;
3996 		(void) elf_errno();
3997 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3998 			elferr = elf_errno();
3999 			if (elferr != 0)
4000 				warnx("elf_getdata failed: %s",
4001 				    elf_errmsg(elferr));
4002 			continue;
4003 		}
4004 		if (d->d_size <= 0)
4005 			continue;
4006 		lib = d->d_buf;
4007 		printf("\nLibrary list section '%s' ", s->name);
4008 		printf("contains %ju entries:\n", s->sz / s->entsize);
4009 		printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
4010 		    "Checksum", "Version", "Flags");
4011 		for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
4012 			printf("%3d: ", j);
4013 			printf("%-20.20s ",
4014 			    get_string(re, s->link, lib->l_name));
4015 			ti = lib->l_time_stamp;
4016 			t = gmtime(&ti);
4017 			snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
4018 			    ":%2d", t->tm_year + 1900, t->tm_mon + 1,
4019 			    t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
4020 			printf("%-19.19s ", tbuf);
4021 			printf("0x%08x ", lib->l_checksum);
4022 			printf("%-7d %#x", lib->l_version, lib->l_flags);
4023 			if (lib->l_flags != 0) {
4024 				first = 1;
4025 				putchar('(');
4026 				for (k = 0; l_flag[k].name != NULL; k++) {
4027 					if ((l_flag[k].value & lib->l_flags) ==
4028 					    0)
4029 						continue;
4030 					if (!first)
4031 						putchar(',');
4032 					else
4033 						first = 0;
4034 					printf("%s", l_flag[k].name);
4035 				}
4036 				putchar(')');
4037 			}
4038 			putchar('\n');
4039 			lib++;
4040 		}
4041 	}
4042 }
4043 
4044 #undef Elf_Lib
4045 
4046 static uint8_t *
4047 dump_unknown_tag(uint64_t tag, uint8_t *p)
4048 {
4049 	uint64_t val;
4050 
4051 	/*
4052 	 * According to ARM EABI: For tags > 32, even numbered tags have
4053 	 * a ULEB128 param and odd numbered ones have NUL-terminated
4054 	 * string param. This rule probably also applies for tags <= 32
4055 	 * if the object arch is not ARM.
4056 	 */
4057 
4058 	printf("  Tag_unknown_%ju: ", (uintmax_t) tag);
4059 
4060 	if (tag & 1) {
4061 		printf("%s\n", (char *) p);
4062 		p += strlen((char *) p) + 1;
4063 	} else {
4064 		val = _decode_uleb128(&p);
4065 		printf("%ju\n", (uintmax_t) val);
4066 	}
4067 
4068 	return (p);
4069 }
4070 
4071 static uint8_t *
4072 dump_compatibility_tag(uint8_t *p)
4073 {
4074 	uint64_t val;
4075 
4076 	val = _decode_uleb128(&p);
4077 	printf("flag = %ju, vendor = %s\n", val, p);
4078 	p += strlen((char *) p) + 1;
4079 
4080 	return (p);
4081 }
4082 
4083 static void
4084 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4085 {
4086 	uint64_t tag, val;
4087 	size_t i;
4088 	int found, desc;
4089 
4090 	(void) re;
4091 
4092 	while (p < pe) {
4093 		tag = _decode_uleb128(&p);
4094 		found = desc = 0;
4095 		for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
4096 		     i++) {
4097 			if (tag == aeabi_tags[i].tag) {
4098 				found = 1;
4099 				printf("  %s: ", aeabi_tags[i].s_tag);
4100 				if (aeabi_tags[i].get_desc) {
4101 					desc = 1;
4102 					val = _decode_uleb128(&p);
4103 					printf("%s\n",
4104 					    aeabi_tags[i].get_desc(val));
4105 				}
4106 				break;
4107 			}
4108 			if (tag < aeabi_tags[i].tag)
4109 				break;
4110 		}
4111 		if (!found) {
4112 			p = dump_unknown_tag(tag, p);
4113 			continue;
4114 		}
4115 		if (desc)
4116 			continue;
4117 
4118 		switch (tag) {
4119 		case 4:		/* Tag_CPU_raw_name */
4120 		case 5:		/* Tag_CPU_name */
4121 		case 67:	/* Tag_conformance */
4122 			printf("%s\n", (char *) p);
4123 			p += strlen((char *) p) + 1;
4124 			break;
4125 		case 32:	/* Tag_compatibility */
4126 			p = dump_compatibility_tag(p);
4127 			break;
4128 		case 64:	/* Tag_nodefaults */
4129 			/* ignored, written as 0. */
4130 			(void) _decode_uleb128(&p);
4131 			printf("True\n");
4132 			break;
4133 		case 65:	/* Tag_also_compatible_with */
4134 			val = _decode_uleb128(&p);
4135 			/* Must be Tag_CPU_arch */
4136 			if (val != 6) {
4137 				printf("unknown\n");
4138 				break;
4139 			}
4140 			val = _decode_uleb128(&p);
4141 			printf("%s\n", aeabi_cpu_arch(val));
4142 			/* Skip NUL terminator. */
4143 			p++;
4144 			break;
4145 		default:
4146 			putchar('\n');
4147 			break;
4148 		}
4149 	}
4150 }
4151 
4152 #ifndef	Tag_GNU_MIPS_ABI_FP
4153 #define	Tag_GNU_MIPS_ABI_FP	4
4154 #endif
4155 
4156 static void
4157 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4158 {
4159 	uint64_t tag, val;
4160 
4161 	(void) re;
4162 
4163 	while (p < pe) {
4164 		tag = _decode_uleb128(&p);
4165 		switch (tag) {
4166 		case Tag_GNU_MIPS_ABI_FP:
4167 			val = _decode_uleb128(&p);
4168 			printf("  Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
4169 			break;
4170 		case 32:	/* Tag_compatibility */
4171 			p = dump_compatibility_tag(p);
4172 			break;
4173 		default:
4174 			p = dump_unknown_tag(tag, p);
4175 			break;
4176 		}
4177 	}
4178 }
4179 
4180 #ifndef Tag_GNU_Power_ABI_FP
4181 #define	Tag_GNU_Power_ABI_FP	4
4182 #endif
4183 
4184 #ifndef Tag_GNU_Power_ABI_Vector
4185 #define	Tag_GNU_Power_ABI_Vector	8
4186 #endif
4187 
4188 static void
4189 dump_ppc_attributes(uint8_t *p, uint8_t *pe)
4190 {
4191 	uint64_t tag, val;
4192 
4193 	while (p < pe) {
4194 		tag = _decode_uleb128(&p);
4195 		switch (tag) {
4196 		case Tag_GNU_Power_ABI_FP:
4197 			val = _decode_uleb128(&p);
4198 			printf("  Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
4199 			break;
4200 		case Tag_GNU_Power_ABI_Vector:
4201 			val = _decode_uleb128(&p);
4202 			printf("  Tag_GNU_Power_ABI_Vector: %s\n",
4203 			    ppc_abi_vector(val));
4204 			break;
4205 		case 32:	/* Tag_compatibility */
4206 			p = dump_compatibility_tag(p);
4207 			break;
4208 		default:
4209 			p = dump_unknown_tag(tag, p);
4210 			break;
4211 		}
4212 	}
4213 }
4214 
4215 static void
4216 dump_attributes(struct readelf *re)
4217 {
4218 	struct section *s;
4219 	Elf_Data *d;
4220 	uint8_t *p, *sp;
4221 	size_t len, seclen, nlen, sublen;
4222 	uint64_t val;
4223 	int tag, i, elferr;
4224 
4225 	for (i = 0; (size_t) i < re->shnum; i++) {
4226 		s = &re->sl[i];
4227 		if (s->type != SHT_GNU_ATTRIBUTES &&
4228 		    (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
4229 			continue;
4230 		(void) elf_errno();
4231 		if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4232 			elferr = elf_errno();
4233 			if (elferr != 0)
4234 				warnx("elf_rawdata failed: %s",
4235 				    elf_errmsg(elferr));
4236 			continue;
4237 		}
4238 		if (d->d_size <= 0)
4239 			continue;
4240 		p = d->d_buf;
4241 		if (*p != 'A') {
4242 			printf("Unknown Attribute Section Format: %c\n",
4243 			    (char) *p);
4244 			continue;
4245 		}
4246 		len = d->d_size - 1;
4247 		p++;
4248 		while (len > 0) {
4249 			if (len < 4) {
4250 				warnx("truncated attribute section length");
4251 				break;
4252 			}
4253 			seclen = re->dw_decode(&p, 4);
4254 			if (seclen > len) {
4255 				warnx("invalid attribute section length");
4256 				break;
4257 			}
4258 			len -= seclen;
4259 			nlen = strlen((char *) p) + 1;
4260 			if (nlen + 4 > seclen) {
4261 				warnx("invalid attribute section name");
4262 				break;
4263 			}
4264 			printf("Attribute Section: %s\n", (char *) p);
4265 			p += nlen;
4266 			seclen -= nlen + 4;
4267 			while (seclen > 0) {
4268 				sp = p;
4269 				tag = *p++;
4270 				sublen = re->dw_decode(&p, 4);
4271 				if (sublen > seclen) {
4272 					warnx("invalid attribute sub-section"
4273 					    " length");
4274 					break;
4275 				}
4276 				seclen -= sublen;
4277 				printf("%s", top_tag(tag));
4278 				if (tag == 2 || tag == 3) {
4279 					putchar(':');
4280 					for (;;) {
4281 						val = _decode_uleb128(&p);
4282 						if (val == 0)
4283 							break;
4284 						printf(" %ju", (uintmax_t) val);
4285 					}
4286 				}
4287 				putchar('\n');
4288 				if (re->ehdr.e_machine == EM_ARM &&
4289 				    s->type == SHT_LOPROC + 3)
4290 					dump_arm_attributes(re, p, sp + sublen);
4291 				else if (re->ehdr.e_machine == EM_MIPS ||
4292 				    re->ehdr.e_machine == EM_MIPS_RS3_LE)
4293 					dump_mips_attributes(re, p,
4294 					    sp + sublen);
4295 				else if (re->ehdr.e_machine == EM_PPC)
4296 					dump_ppc_attributes(p, sp + sublen);
4297 				p = sp + sublen;
4298 			}
4299 		}
4300 	}
4301 }
4302 
4303 static void
4304 dump_mips_specific_info(struct readelf *re)
4305 {
4306 	struct section *s;
4307 	int i, options_found;
4308 
4309 	options_found = 0;
4310 	s = NULL;
4311 	for (i = 0; (size_t) i < re->shnum; i++) {
4312 		s = &re->sl[i];
4313 		if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
4314 		    (s->type == SHT_MIPS_OPTIONS))) {
4315 			dump_mips_options(re, s);
4316 			options_found = 1;
4317 		}
4318 	}
4319 
4320 	/*
4321 	 * According to SGI mips64 spec, .reginfo should be ignored if
4322 	 * .MIPS.options section is present.
4323 	 */
4324 	if (!options_found) {
4325 		for (i = 0; (size_t) i < re->shnum; i++) {
4326 			s = &re->sl[i];
4327 			if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
4328 			    (s->type == SHT_MIPS_REGINFO)))
4329 				dump_mips_reginfo(re, s);
4330 		}
4331 	}
4332 }
4333 
4334 static void
4335 dump_mips_reginfo(struct readelf *re, struct section *s)
4336 {
4337 	Elf_Data *d;
4338 	int elferr;
4339 
4340 	(void) elf_errno();
4341 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4342 		elferr = elf_errno();
4343 		if (elferr != 0)
4344 			warnx("elf_rawdata failed: %s",
4345 			    elf_errmsg(elferr));
4346 		return;
4347 	}
4348 	if (d->d_size <= 0)
4349 		return;
4350 
4351 	printf("\nSection '%s' contains %ju entries:\n", s->name,
4352 	    s->sz / s->entsize);
4353 	dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
4354 }
4355 
4356 static void
4357 dump_mips_options(struct readelf *re, struct section *s)
4358 {
4359 	Elf_Data *d;
4360 	uint32_t info;
4361 	uint16_t sndx;
4362 	uint8_t *p, *pe;
4363 	uint8_t kind, size;
4364 	int elferr;
4365 
4366 	(void) elf_errno();
4367 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4368 		elferr = elf_errno();
4369 		if (elferr != 0)
4370 			warnx("elf_rawdata failed: %s",
4371 			    elf_errmsg(elferr));
4372 		return;
4373 	}
4374 	if (d->d_size == 0)
4375 		return;
4376 
4377 	printf("\nSection %s contains:\n", s->name);
4378 	p = d->d_buf;
4379 	pe = p + d->d_size;
4380 	while (p < pe) {
4381 		kind = re->dw_decode(&p, 1);
4382 		size = re->dw_decode(&p, 1);
4383 		sndx = re->dw_decode(&p, 2);
4384 		info = re->dw_decode(&p, 4);
4385 		switch (kind) {
4386 		case ODK_REGINFO:
4387 			dump_mips_odk_reginfo(re, p, size - 8);
4388 			break;
4389 		case ODK_EXCEPTIONS:
4390 			printf(" EXCEPTIONS FPU_MIN: %#x\n",
4391 			    info & OEX_FPU_MIN);
4392 			printf("%11.11s FPU_MAX: %#x\n", "",
4393 			    info & OEX_FPU_MAX);
4394 			dump_mips_option_flags("", mips_exceptions_option,
4395 			    info);
4396 			break;
4397 		case ODK_PAD:
4398 			printf(" %-10.10s section: %ju\n", "OPAD",
4399 			    (uintmax_t) sndx);
4400 			dump_mips_option_flags("", mips_pad_option, info);
4401 			break;
4402 		case ODK_HWPATCH:
4403 			dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
4404 			    info);
4405 			break;
4406 		case ODK_HWAND:
4407 			dump_mips_option_flags("HWAND", mips_hwa_option, info);
4408 			break;
4409 		case ODK_HWOR:
4410 			dump_mips_option_flags("HWOR", mips_hwo_option, info);
4411 			break;
4412 		case ODK_FILL:
4413 			printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
4414 			break;
4415 		case ODK_TAGS:
4416 			printf(" %-10.10s\n", "TAGS");
4417 			break;
4418 		case ODK_GP_GROUP:
4419 			printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
4420 			    info & 0xFFFF);
4421 			if (info & 0x10000)
4422 				printf(" %-10.10s GP group is "
4423 				    "self-contained\n", "");
4424 			break;
4425 		case ODK_IDENT:
4426 			printf(" %-10.10s default GP group number: %#x\n",
4427 			    "IDENT", info & 0xFFFF);
4428 			if (info & 0x10000)
4429 				printf(" %-10.10s default GP group is "
4430 				    "self-contained\n", "");
4431 			break;
4432 		case ODK_PAGESIZE:
4433 			printf(" %-10.10s\n", "PAGESIZE");
4434 			break;
4435 		default:
4436 			break;
4437 		}
4438 		p += size - 8;
4439 	}
4440 }
4441 
4442 static void
4443 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
4444 {
4445 	int first;
4446 
4447 	first = 1;
4448 	for (; opt->desc != NULL; opt++) {
4449 		if (info & opt->flag) {
4450 			printf(" %-10.10s %s\n", first ? name : "",
4451 			    opt->desc);
4452 			first = 0;
4453 		}
4454 	}
4455 }
4456 
4457 static void
4458 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
4459 {
4460 	uint32_t ri_gprmask;
4461 	uint32_t ri_cprmask[4];
4462 	uint64_t ri_gp_value;
4463 	uint8_t *pe;
4464 	int i;
4465 
4466 	pe = p + sz;
4467 	while (p < pe) {
4468 		ri_gprmask = re->dw_decode(&p, 4);
4469 		/* Skip ri_pad padding field for mips64. */
4470 		if (re->ec == ELFCLASS64)
4471 			re->dw_decode(&p, 4);
4472 		for (i = 0; i < 4; i++)
4473 			ri_cprmask[i] = re->dw_decode(&p, 4);
4474 		if (re->ec == ELFCLASS32)
4475 			ri_gp_value = re->dw_decode(&p, 4);
4476 		else
4477 			ri_gp_value = re->dw_decode(&p, 8);
4478 		printf(" %s    ", option_kind(ODK_REGINFO));
4479 		printf("ri_gprmask:    0x%08jx\n", (uintmax_t) ri_gprmask);
4480 		for (i = 0; i < 4; i++)
4481 			printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
4482 			    (uintmax_t) ri_cprmask[i]);
4483 		printf("%12.12s", "");
4484 		printf("ri_gp_value:   %#jx\n", (uintmax_t) ri_gp_value);
4485 	}
4486 }
4487 
4488 static void
4489 dump_arch_specific_info(struct readelf *re)
4490 {
4491 
4492 	dump_liblist(re);
4493 	dump_attributes(re);
4494 
4495 	switch (re->ehdr.e_machine) {
4496 	case EM_MIPS:
4497 	case EM_MIPS_RS3_LE:
4498 		dump_mips_specific_info(re);
4499 	default:
4500 		break;
4501 	}
4502 }
4503 
4504 static const char *
4505 dwarf_regname(struct readelf *re, unsigned int num)
4506 {
4507 	static char rx[32];
4508 	const char *rn;
4509 
4510 	if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
4511 		return (rn);
4512 
4513 	snprintf(rx, sizeof(rx), "r%u", num);
4514 
4515 	return (rx);
4516 }
4517 
4518 static void
4519 dump_dwarf_line(struct readelf *re)
4520 {
4521 	struct section *s;
4522 	Dwarf_Die die;
4523 	Dwarf_Error de;
4524 	Dwarf_Half tag, version, pointer_size;
4525 	Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
4526 	Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
4527 	Elf_Data *d;
4528 	char *pn;
4529 	uint64_t address, file, line, column, isa, opsize, udelta;
4530 	int64_t sdelta;
4531 	uint8_t *p, *pe;
4532 	int8_t lbase;
4533 	int i, is_stmt, dwarf_size, elferr, ret;
4534 
4535 	printf("\nDump of debug contents of section .debug_line:\n");
4536 
4537 	s = NULL;
4538 	for (i = 0; (size_t) i < re->shnum; i++) {
4539 		s = &re->sl[i];
4540 		if (s->name != NULL && !strcmp(s->name, ".debug_line"))
4541 			break;
4542 	}
4543 	if ((size_t) i >= re->shnum)
4544 		return;
4545 
4546 	(void) elf_errno();
4547 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4548 		elferr = elf_errno();
4549 		if (elferr != 0)
4550 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
4551 		return;
4552 	}
4553 	if (d->d_size <= 0)
4554 		return;
4555 
4556 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4557 	    NULL, &de)) ==  DW_DLV_OK) {
4558 		die = NULL;
4559 		while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
4560 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4561 				warnx("dwarf_tag failed: %s",
4562 				    dwarf_errmsg(de));
4563 				return;
4564 			}
4565 			/* XXX: What about DW_TAG_partial_unit? */
4566 			if (tag == DW_TAG_compile_unit)
4567 				break;
4568 		}
4569 		if (die == NULL) {
4570 			warnx("could not find DW_TAG_compile_unit die");
4571 			return;
4572 		}
4573 		if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
4574 		    &de) != DW_DLV_OK)
4575 			continue;
4576 
4577 		length = re->dw_read(d, &offset, 4);
4578 		if (length == 0xffffffff) {
4579 			dwarf_size = 8;
4580 			length = re->dw_read(d, &offset, 8);
4581 		} else
4582 			dwarf_size = 4;
4583 
4584 		if (length > d->d_size - offset) {
4585 			warnx("invalid .dwarf_line section");
4586 			continue;
4587 		}
4588 
4589 		endoff = offset + length;
4590 		version = re->dw_read(d, &offset, 2);
4591 		hdrlen = re->dw_read(d, &offset, dwarf_size);
4592 		minlen = re->dw_read(d, &offset, 1);
4593 		defstmt = re->dw_read(d, &offset, 1);
4594 		lbase = re->dw_read(d, &offset, 1);
4595 		lrange = re->dw_read(d, &offset, 1);
4596 		opbase = re->dw_read(d, &offset, 1);
4597 
4598 		printf("\n");
4599 		printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
4600 		printf("  DWARF version:\t\t%u\n", version);
4601 		printf("  Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
4602 		printf("  Minimum Instruction Length:\t%u\n", minlen);
4603 		printf("  Initial value of 'is_stmt':\t%u\n", defstmt);
4604 		printf("  Line Base:\t\t\t%d\n", lbase);
4605 		printf("  Line Range:\t\t\t%u\n", lrange);
4606 		printf("  Opcode Base:\t\t\t%u\n", opbase);
4607 		(void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
4608 		printf("  (Pointer size:\t\t%u)\n", pointer_size);
4609 
4610 		printf("\n");
4611 		printf(" Opcodes:\n");
4612 		for (i = 1; i < opbase; i++) {
4613 			oplen = re->dw_read(d, &offset, 1);
4614 			printf("  Opcode %d has %u args\n", i, oplen);
4615 		}
4616 
4617 		printf("\n");
4618 		printf(" The Directory Table:\n");
4619 		p = (uint8_t *) d->d_buf + offset;
4620 		while (*p != '\0') {
4621 			printf("  %s\n", (char *) p);
4622 			p += strlen((char *) p) + 1;
4623 		}
4624 
4625 		p++;
4626 		printf("\n");
4627 		printf(" The File Name Table:\n");
4628 		printf("  Entry\tDir\tTime\tSize\tName\n");
4629 		i = 0;
4630 		while (*p != '\0') {
4631 			i++;
4632 			pn = (char *) p;
4633 			p += strlen(pn) + 1;
4634 			dirndx = _decode_uleb128(&p);
4635 			mtime = _decode_uleb128(&p);
4636 			fsize = _decode_uleb128(&p);
4637 			printf("  %d\t%ju\t%ju\t%ju\t%s\n", i,
4638 			    (uintmax_t) dirndx, (uintmax_t) mtime,
4639 			    (uintmax_t) fsize, pn);
4640 		}
4641 
4642 #define	RESET_REGISTERS						\
4643 	do {							\
4644 		address	       = 0;				\
4645 		file	       = 1;				\
4646 		line	       = 1;				\
4647 		column	       = 0;				\
4648 		is_stmt	       = defstmt;			\
4649 	} while(0)
4650 
4651 #define	LINE(x) (lbase + (((x) - opbase) % lrange))
4652 #define	ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
4653 
4654 		p++;
4655 		pe = (uint8_t *) d->d_buf + endoff;
4656 		printf("\n");
4657 		printf(" Line Number Statements:\n");
4658 
4659 		RESET_REGISTERS;
4660 
4661 		while (p < pe) {
4662 
4663 			if (*p == 0) {
4664 				/*
4665 				 * Extended Opcodes.
4666 				 */
4667 				p++;
4668 				opsize = _decode_uleb128(&p);
4669 				printf("  Extended opcode %u: ", *p);
4670 				switch (*p) {
4671 				case DW_LNE_end_sequence:
4672 					p++;
4673 					RESET_REGISTERS;
4674 					printf("End of Sequence\n");
4675 					break;
4676 				case DW_LNE_set_address:
4677 					p++;
4678 					address = re->dw_decode(&p,
4679 					    pointer_size);
4680 					printf("set Address to %#jx\n",
4681 					    (uintmax_t) address);
4682 					break;
4683 				case DW_LNE_define_file:
4684 					p++;
4685 					pn = (char *) p;
4686 					p += strlen(pn) + 1;
4687 					dirndx = _decode_uleb128(&p);
4688 					mtime = _decode_uleb128(&p);
4689 					fsize = _decode_uleb128(&p);
4690 					printf("define new file: %s\n", pn);
4691 					break;
4692 				default:
4693 					/* Unrecognized extened opcodes. */
4694 					p += opsize;
4695 					printf("unknown opcode\n");
4696 				}
4697 			} else if (*p > 0 && *p < opbase) {
4698 				/*
4699 				 * Standard Opcodes.
4700 				 */
4701 				switch(*p++) {
4702 				case DW_LNS_copy:
4703 					printf("  Copy\n");
4704 					break;
4705 				case DW_LNS_advance_pc:
4706 					udelta = _decode_uleb128(&p) *
4707 					    minlen;
4708 					address += udelta;
4709 					printf("  Advance PC by %ju to %#jx\n",
4710 					    (uintmax_t) udelta,
4711 					    (uintmax_t) address);
4712 					break;
4713 				case DW_LNS_advance_line:
4714 					sdelta = _decode_sleb128(&p);
4715 					line += sdelta;
4716 					printf("  Advance Line by %jd to %ju\n",
4717 					    (intmax_t) sdelta,
4718 					    (uintmax_t) line);
4719 					break;
4720 				case DW_LNS_set_file:
4721 					file = _decode_uleb128(&p);
4722 					printf("  Set File to %ju\n",
4723 					    (uintmax_t) file);
4724 					break;
4725 				case DW_LNS_set_column:
4726 					column = _decode_uleb128(&p);
4727 					printf("  Set Column to %ju\n",
4728 					    (uintmax_t) column);
4729 					break;
4730 				case DW_LNS_negate_stmt:
4731 					is_stmt = !is_stmt;
4732 					printf("  Set is_stmt to %d\n", is_stmt);
4733 					break;
4734 				case DW_LNS_set_basic_block:
4735 					printf("  Set basic block flag\n");
4736 					break;
4737 				case DW_LNS_const_add_pc:
4738 					address += ADDRESS(255);
4739 					printf("  Advance PC by constant %ju"
4740 					    " to %#jx\n",
4741 					    (uintmax_t) ADDRESS(255),
4742 					    (uintmax_t) address);
4743 					break;
4744 				case DW_LNS_fixed_advance_pc:
4745 					udelta = re->dw_decode(&p, 2);
4746 					address += udelta;
4747 					printf("  Advance PC by fixed value "
4748 					    "%ju to %#jx\n",
4749 					    (uintmax_t) udelta,
4750 					    (uintmax_t) address);
4751 					break;
4752 				case DW_LNS_set_prologue_end:
4753 					printf("  Set prologue end flag\n");
4754 					break;
4755 				case DW_LNS_set_epilogue_begin:
4756 					printf("  Set epilogue begin flag\n");
4757 					break;
4758 				case DW_LNS_set_isa:
4759 					isa = _decode_uleb128(&p);
4760 					printf("  Set isa to %ju\n", isa);
4761 					break;
4762 				default:
4763 					/* Unrecognized extended opcodes. */
4764 					printf("  Unknown extended opcode %u\n",
4765 					    *(p - 1));
4766 					break;
4767 				}
4768 
4769 			} else {
4770 				/*
4771 				 * Special Opcodes.
4772 				 */
4773 				line += LINE(*p);
4774 				address += ADDRESS(*p);
4775 				printf("  Special opcode %u: advance Address "
4776 				    "by %ju to %#jx and Line by %jd to %ju\n",
4777 				    *p - opbase, (uintmax_t) ADDRESS(*p),
4778 				    (uintmax_t) address, (intmax_t) LINE(*p),
4779 				    (uintmax_t) line);
4780 				p++;
4781 			}
4782 
4783 
4784 		}
4785 	}
4786 	if (ret == DW_DLV_ERROR)
4787 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
4788 
4789 #undef	RESET_REGISTERS
4790 #undef	LINE
4791 #undef	ADDRESS
4792 }
4793 
4794 static void
4795 dump_dwarf_line_decoded(struct readelf *re)
4796 {
4797 	Dwarf_Die die;
4798 	Dwarf_Line *linebuf, ln;
4799 	Dwarf_Addr lineaddr;
4800 	Dwarf_Signed linecount, srccount;
4801 	Dwarf_Unsigned lineno, fn;
4802 	Dwarf_Error de;
4803 	const char *dir, *file;
4804 	char **srcfiles;
4805 	int i, ret;
4806 
4807 	printf("Decoded dump of debug contents of section .debug_line:\n\n");
4808 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4809 	    NULL, &de)) == DW_DLV_OK) {
4810 		if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
4811 			continue;
4812 		if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
4813 		    DW_DLV_OK)
4814 			file = NULL;
4815 		if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
4816 		    DW_DLV_OK)
4817 			dir = NULL;
4818 		printf("CU: ");
4819 		if (dir && file)
4820 			printf("%s/", dir);
4821 		if (file)
4822 			printf("%s", file);
4823 		putchar('\n');
4824 		printf("%-37s %11s   %s\n", "Filename", "Line Number",
4825 		    "Starting Address");
4826 		if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
4827 			continue;
4828 		if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
4829 			continue;
4830 		for (i = 0; i < linecount; i++) {
4831 			ln = linebuf[i];
4832 			if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
4833 				continue;
4834 			if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
4835 				continue;
4836 			if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
4837 				continue;
4838 			printf("%-37s %11ju %#18jx\n",
4839 			    basename(srcfiles[fn - 1]), (uintmax_t) lineno,
4840 			    (uintmax_t) lineaddr);
4841 		}
4842 		putchar('\n');
4843 	}
4844 }
4845 
4846 static void
4847 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
4848 {
4849 	Dwarf_Attribute *attr_list;
4850 	Dwarf_Die ret_die;
4851 	Dwarf_Off dieoff, cuoff, culen, attroff;
4852 	Dwarf_Unsigned ate, lang, v_udata, v_sig;
4853 	Dwarf_Signed attr_count, v_sdata;
4854 	Dwarf_Off v_off;
4855 	Dwarf_Addr v_addr;
4856 	Dwarf_Half tag, attr, form;
4857 	Dwarf_Block *v_block;
4858 	Dwarf_Bool v_bool, is_info;
4859 	Dwarf_Sig8 v_sig8;
4860 	Dwarf_Error de;
4861 	Dwarf_Ptr v_expr;
4862 	const char *tag_str, *attr_str, *ate_str, *lang_str;
4863 	char unk_tag[32], unk_attr[32];
4864 	char *v_str;
4865 	uint8_t *b, *p;
4866 	int i, j, abc, ret;
4867 
4868 	if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
4869 		warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
4870 		goto cont_search;
4871 	}
4872 
4873 	printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
4874 
4875 	if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
4876 		warnx("dwarf_die_CU_offset_range failed: %s",
4877 		      dwarf_errmsg(de));
4878 		cuoff = 0;
4879 	}
4880 
4881 	abc = dwarf_die_abbrev_code(die);
4882 	if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4883 		warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
4884 		goto cont_search;
4885 	}
4886 	if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
4887 		snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
4888 		tag_str = unk_tag;
4889 	}
4890 
4891 	printf("Abbrev Number: %d (%s)\n", abc, tag_str);
4892 
4893 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
4894 	    DW_DLV_OK) {
4895 		if (ret == DW_DLV_ERROR)
4896 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
4897 		goto cont_search;
4898 	}
4899 
4900 	for (i = 0; i < attr_count; i++) {
4901 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
4902 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
4903 			continue;
4904 		}
4905 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
4906 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
4907 			continue;
4908 		}
4909 		if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
4910 			snprintf(unk_attr, sizeof(unk_attr),
4911 			    "[Unknown AT: %#x]", attr);
4912 			attr_str = unk_attr;
4913 		}
4914 		if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
4915 		    DW_DLV_OK) {
4916 			warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
4917 			attroff = 0;
4918 		}
4919 		printf("    <%jx>   %-18s: ", (uintmax_t) attroff, attr_str);
4920 		switch (form) {
4921 		case DW_FORM_ref_addr:
4922 		case DW_FORM_sec_offset:
4923 			if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
4924 			    DW_DLV_OK) {
4925 				warnx("dwarf_global_formref failed: %s",
4926 				    dwarf_errmsg(de));
4927 				continue;
4928 			}
4929 			if (form == DW_FORM_ref_addr)
4930 				printf("<0x%jx>", (uintmax_t) v_off);
4931 			else
4932 				printf("0x%jx", (uintmax_t) v_off);
4933 			break;
4934 
4935 		case DW_FORM_ref1:
4936 		case DW_FORM_ref2:
4937 		case DW_FORM_ref4:
4938 		case DW_FORM_ref8:
4939 		case DW_FORM_ref_udata:
4940 			if (dwarf_formref(attr_list[i], &v_off, &de) !=
4941 			    DW_DLV_OK) {
4942 				warnx("dwarf_formref failed: %s",
4943 				    dwarf_errmsg(de));
4944 				continue;
4945 			}
4946 			v_off += cuoff;
4947 			printf("<0x%jx>", (uintmax_t) v_off);
4948 			break;
4949 
4950 		case DW_FORM_addr:
4951 			if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
4952 			    DW_DLV_OK) {
4953 				warnx("dwarf_formaddr failed: %s",
4954 				    dwarf_errmsg(de));
4955 				continue;
4956 			}
4957 			printf("%#jx", (uintmax_t) v_addr);
4958 			break;
4959 
4960 		case DW_FORM_data1:
4961 		case DW_FORM_data2:
4962 		case DW_FORM_data4:
4963 		case DW_FORM_data8:
4964 		case DW_FORM_udata:
4965 			if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
4966 			    DW_DLV_OK) {
4967 				warnx("dwarf_formudata failed: %s",
4968 				    dwarf_errmsg(de));
4969 				continue;
4970 			}
4971 			if (attr == DW_AT_high_pc)
4972 				printf("0x%jx", (uintmax_t) v_udata);
4973 			else
4974 				printf("%ju", (uintmax_t) v_udata);
4975 			break;
4976 
4977 		case DW_FORM_sdata:
4978 			if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
4979 			    DW_DLV_OK) {
4980 				warnx("dwarf_formudata failed: %s",
4981 				    dwarf_errmsg(de));
4982 				continue;
4983 			}
4984 			printf("%jd", (intmax_t) v_sdata);
4985 			break;
4986 
4987 		case DW_FORM_flag:
4988 			if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
4989 			    DW_DLV_OK) {
4990 				warnx("dwarf_formflag failed: %s",
4991 				    dwarf_errmsg(de));
4992 				continue;
4993 			}
4994 			printf("%jd", (intmax_t) v_bool);
4995 			break;
4996 
4997 		case DW_FORM_flag_present:
4998 			putchar('1');
4999 			break;
5000 
5001 		case DW_FORM_string:
5002 		case DW_FORM_strp:
5003 			if (dwarf_formstring(attr_list[i], &v_str, &de) !=
5004 			    DW_DLV_OK) {
5005 				warnx("dwarf_formstring failed: %s",
5006 				    dwarf_errmsg(de));
5007 				continue;
5008 			}
5009 			if (form == DW_FORM_string)
5010 				printf("%s", v_str);
5011 			else
5012 				printf("(indirect string) %s", v_str);
5013 			break;
5014 
5015 		case DW_FORM_block:
5016 		case DW_FORM_block1:
5017 		case DW_FORM_block2:
5018 		case DW_FORM_block4:
5019 			if (dwarf_formblock(attr_list[i], &v_block, &de) !=
5020 			    DW_DLV_OK) {
5021 				warnx("dwarf_formblock failed: %s",
5022 				    dwarf_errmsg(de));
5023 				continue;
5024 			}
5025 			printf("%ju byte block:", (uintmax_t) v_block->bl_len);
5026 			b = v_block->bl_data;
5027 			for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
5028 				printf(" %x", b[j]);
5029 			printf("\t(");
5030 			dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
5031 			putchar(')');
5032 			break;
5033 
5034 		case DW_FORM_exprloc:
5035 			if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
5036 			    &de) != DW_DLV_OK) {
5037 				warnx("dwarf_formexprloc failed: %s",
5038 				    dwarf_errmsg(de));
5039 				continue;
5040 			}
5041 			printf("%ju byte block:", (uintmax_t) v_udata);
5042 			b = v_expr;
5043 			for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
5044 				printf(" %x", b[j]);
5045 			printf("\t(");
5046 			dump_dwarf_block(re, v_expr, v_udata);
5047 			putchar(')');
5048 			break;
5049 
5050 		case DW_FORM_ref_sig8:
5051 			if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
5052 			    DW_DLV_OK) {
5053 				warnx("dwarf_formsig8 failed: %s",
5054 				    dwarf_errmsg(de));
5055 				continue;
5056 			}
5057 			p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
5058 			v_sig = re->dw_decode(&p, 8);
5059 			printf("signature: 0x%jx", (uintmax_t) v_sig);
5060 		}
5061 		switch (attr) {
5062 		case DW_AT_encoding:
5063 			if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
5064 			    DW_DLV_OK)
5065 				break;
5066 			if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
5067 				ate_str = "DW_ATE_UNKNOWN";
5068 			printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
5069 			break;
5070 
5071 		case DW_AT_language:
5072 			if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
5073 			    DW_DLV_OK)
5074 				break;
5075 			if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
5076 				break;
5077 			printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
5078 			break;
5079 
5080 		case DW_AT_location:
5081 		case DW_AT_string_length:
5082 		case DW_AT_return_addr:
5083 		case DW_AT_data_member_location:
5084 		case DW_AT_frame_base:
5085 		case DW_AT_segment:
5086 		case DW_AT_static_link:
5087 		case DW_AT_use_location:
5088 		case DW_AT_vtable_elem_location:
5089 			switch (form) {
5090 			case DW_FORM_data4:
5091 			case DW_FORM_data8:
5092 			case DW_FORM_sec_offset:
5093 				printf("\t(location list)");
5094 				break;
5095 			default:
5096 				break;
5097 			}
5098 
5099 		default:
5100 			break;
5101 		}
5102 		putchar('\n');
5103 	}
5104 
5105 
5106 cont_search:
5107 	/* Search children. */
5108 	ret = dwarf_child(die, &ret_die, &de);
5109 	if (ret == DW_DLV_ERROR)
5110 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5111 	else if (ret == DW_DLV_OK)
5112 		dump_dwarf_die(re, ret_die, level + 1);
5113 
5114 	/* Search sibling. */
5115 	is_info = dwarf_get_die_infotypes_flag(die);
5116 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
5117 	if (ret == DW_DLV_ERROR)
5118 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5119 	else if (ret == DW_DLV_OK)
5120 		dump_dwarf_die(re, ret_die, level);
5121 
5122 	dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5123 }
5124 
5125 static void
5126 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
5127     Dwarf_Half ver)
5128 {
5129 
5130 	re->cu_psize = psize;
5131 	re->cu_osize = osize;
5132 	re->cu_ver = ver;
5133 }
5134 
5135 static void
5136 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
5137 {
5138 	struct section *s;
5139 	Dwarf_Die die;
5140 	Dwarf_Error de;
5141 	Dwarf_Half tag, version, pointer_size, off_size;
5142 	Dwarf_Off cu_offset, cu_length;
5143 	Dwarf_Off aboff;
5144 	Dwarf_Unsigned typeoff;
5145 	Dwarf_Sig8 sig8;
5146 	Dwarf_Unsigned sig;
5147 	uint8_t *p;
5148 	const char *sn;
5149 	int i, ret;
5150 
5151 	sn = is_info ? ".debug_info" : ".debug_types";
5152 
5153 	s = NULL;
5154 	for (i = 0; (size_t) i < re->shnum; i++) {
5155 		s = &re->sl[i];
5156 		if (s->name != NULL && !strcmp(s->name, sn))
5157 			break;
5158 	}
5159 	if ((size_t) i >= re->shnum)
5160 		return;
5161 
5162 	do {
5163 		printf("\nDump of debug contents of section %s:\n", sn);
5164 
5165 		while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
5166 		    &version, &aboff, &pointer_size, &off_size, NULL, &sig8,
5167 		    &typeoff, NULL, &de)) == DW_DLV_OK) {
5168 			set_cu_context(re, pointer_size, off_size, version);
5169 			die = NULL;
5170 			while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
5171 			    &de) == DW_DLV_OK) {
5172 				if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5173 					warnx("dwarf_tag failed: %s",
5174 					    dwarf_errmsg(de));
5175 					continue;
5176 				}
5177 				/* XXX: What about DW_TAG_partial_unit? */
5178 				if ((is_info && tag == DW_TAG_compile_unit) ||
5179 				    (!is_info && tag == DW_TAG_type_unit))
5180 					break;
5181 			}
5182 			if (die == NULL && is_info) {
5183 				warnx("could not find DW_TAG_compile_unit "
5184 				    "die");
5185 				continue;
5186 			} else if (die == NULL && !is_info) {
5187 				warnx("could not find DW_TAG_type_unit die");
5188 				continue;
5189 			}
5190 
5191 			if (dwarf_die_CU_offset_range(die, &cu_offset,
5192 			    &cu_length, &de) != DW_DLV_OK) {
5193 				warnx("dwarf_die_CU_offset failed: %s",
5194 				    dwarf_errmsg(de));
5195 				continue;
5196 			}
5197 
5198 			cu_length -= off_size == 4 ? 4 : 12;
5199 
5200 			sig = 0;
5201 			if (!is_info) {
5202 				p = (uint8_t *)(uintptr_t) &sig8.signature[0];
5203 				sig = re->dw_decode(&p, 8);
5204 			}
5205 
5206 			printf("\n  Type Unit @ offset 0x%jx:\n",
5207 			    (uintmax_t) cu_offset);
5208 			printf("    Length:\t\t%#jx (%d-bit)\n",
5209 			    (uintmax_t) cu_length, off_size == 4 ? 32 : 64);
5210 			printf("    Version:\t\t%u\n", version);
5211 			printf("    Abbrev Offset:\t0x%jx\n",
5212 			    (uintmax_t) aboff);
5213 			printf("    Pointer Size:\t%u\n", pointer_size);
5214 			if (!is_info) {
5215 				printf("    Signature:\t\t0x%016jx\n",
5216 				    (uintmax_t) sig);
5217 				printf("    Type Offset:\t0x%jx\n",
5218 				    (uintmax_t) typeoff);
5219 			}
5220 
5221 			dump_dwarf_die(re, die, 0);
5222 		}
5223 		if (ret == DW_DLV_ERROR)
5224 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5225 		if (is_info)
5226 			break;
5227 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
5228 }
5229 
5230 static void
5231 dump_dwarf_abbrev(struct readelf *re)
5232 {
5233 	Dwarf_Abbrev ab;
5234 	Dwarf_Off aboff, atoff;
5235 	Dwarf_Unsigned length, attr_count;
5236 	Dwarf_Signed flag, form;
5237 	Dwarf_Half tag, attr;
5238 	Dwarf_Error de;
5239 	const char *tag_str, *attr_str, *form_str;
5240 	char unk_tag[32], unk_attr[32], unk_form[32];
5241 	int i, j, ret;
5242 
5243 	printf("\nContents of section .debug_abbrev:\n\n");
5244 
5245 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
5246 	    NULL, NULL, &de)) ==  DW_DLV_OK) {
5247 		printf("  Number TAG\n");
5248 		i = 0;
5249 		while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
5250 		    &attr_count, &de)) == DW_DLV_OK) {
5251 			if (length == 1) {
5252 				dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5253 				break;
5254 			}
5255 			aboff += length;
5256 			printf("%4d", ++i);
5257 			if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
5258 				warnx("dwarf_get_abbrev_tag failed: %s",
5259 				    dwarf_errmsg(de));
5260 				goto next_abbrev;
5261 			}
5262 			if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5263 				snprintf(unk_tag, sizeof(unk_tag),
5264 				    "[Unknown Tag: %#x]", tag);
5265 				tag_str = unk_tag;
5266 			}
5267 			if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
5268 			    DW_DLV_OK) {
5269 				warnx("dwarf_get_abbrev_children_flag failed:"
5270 				    " %s", dwarf_errmsg(de));
5271 				goto next_abbrev;
5272 			}
5273 			printf("      %s    %s\n", tag_str,
5274 			    flag ? "[has children]" : "[no children]");
5275 			for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
5276 				if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
5277 				    &attr, &form, &atoff, &de) != DW_DLV_OK) {
5278 					warnx("dwarf_get_abbrev_entry failed:"
5279 					    " %s", dwarf_errmsg(de));
5280 					continue;
5281 				}
5282 				if (dwarf_get_AT_name(attr, &attr_str) !=
5283 				    DW_DLV_OK) {
5284 					snprintf(unk_attr, sizeof(unk_attr),
5285 					    "[Unknown AT: %#x]", attr);
5286 					attr_str = unk_attr;
5287 				}
5288 				if (dwarf_get_FORM_name(form, &form_str) !=
5289 				    DW_DLV_OK) {
5290 					snprintf(unk_form, sizeof(unk_form),
5291 					    "[Unknown Form: %#x]",
5292 					    (Dwarf_Half) form);
5293 					form_str = unk_form;
5294 				}
5295 				printf("    %-18s %s\n", attr_str, form_str);
5296 			}
5297 		next_abbrev:
5298 			dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5299 		}
5300 		if (ret != DW_DLV_OK)
5301 			warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
5302 	}
5303 	if (ret == DW_DLV_ERROR)
5304 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5305 }
5306 
5307 static void
5308 dump_dwarf_pubnames(struct readelf *re)
5309 {
5310 	struct section *s;
5311 	Dwarf_Off die_off;
5312 	Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
5313 	Dwarf_Signed cnt;
5314 	Dwarf_Global *globs;
5315 	Dwarf_Half nt_version;
5316 	Dwarf_Error de;
5317 	Elf_Data *d;
5318 	char *glob_name;
5319 	int i, dwarf_size, elferr;
5320 
5321 	printf("\nContents of the .debug_pubnames section:\n");
5322 
5323 	s = NULL;
5324 	for (i = 0; (size_t) i < re->shnum; i++) {
5325 		s = &re->sl[i];
5326 		if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
5327 			break;
5328 	}
5329 	if ((size_t) i >= re->shnum)
5330 		return;
5331 
5332 	(void) elf_errno();
5333 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5334 		elferr = elf_errno();
5335 		if (elferr != 0)
5336 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5337 		return;
5338 	}
5339 	if (d->d_size <= 0)
5340 		return;
5341 
5342 	/* Read in .debug_pubnames section table header. */
5343 	offset = 0;
5344 	length = re->dw_read(d, &offset, 4);
5345 	if (length == 0xffffffff) {
5346 		dwarf_size = 8;
5347 		length = re->dw_read(d, &offset, 8);
5348 	} else
5349 		dwarf_size = 4;
5350 
5351 	if (length > d->d_size - offset) {
5352 		warnx("invalid .dwarf_pubnames section");
5353 		return;
5354 	}
5355 
5356 	nt_version = re->dw_read(d, &offset, 2);
5357 	nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
5358 	nt_cu_length = re->dw_read(d, &offset, dwarf_size);
5359 	printf("  Length:\t\t\t\t%ju\n", (uintmax_t) length);
5360 	printf("  Version:\t\t\t\t%u\n", nt_version);
5361 	printf("  Offset into .debug_info section:\t%ju\n",
5362 	    (uintmax_t) nt_cu_offset);
5363 	printf("  Size of area in .debug_info section:\t%ju\n",
5364 	    (uintmax_t) nt_cu_length);
5365 
5366 	if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
5367 		warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
5368 		return;
5369 	}
5370 
5371 	printf("\n    Offset      Name\n");
5372 	for (i = 0; i < cnt; i++) {
5373 		if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
5374 			warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
5375 			continue;
5376 		}
5377 		if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
5378 		    DW_DLV_OK) {
5379 			warnx("dwarf_global_die_offset failed: %s",
5380 			    dwarf_errmsg(de));
5381 			continue;
5382 		}
5383 		printf("    %-11ju %s\n", (uintmax_t) die_off, glob_name);
5384 	}
5385 }
5386 
5387 static void
5388 dump_dwarf_aranges(struct readelf *re)
5389 {
5390 	struct section *s;
5391 	Dwarf_Arange *aranges;
5392 	Dwarf_Addr start;
5393 	Dwarf_Unsigned offset, length, as_cu_offset;
5394 	Dwarf_Off die_off;
5395 	Dwarf_Signed cnt;
5396 	Dwarf_Half as_version, as_addrsz, as_segsz;
5397 	Dwarf_Error de;
5398 	Elf_Data *d;
5399 	int i, dwarf_size, elferr;
5400 
5401 	printf("\nContents of section .debug_aranges:\n");
5402 
5403 	s = NULL;
5404 	for (i = 0; (size_t) i < re->shnum; i++) {
5405 		s = &re->sl[i];
5406 		if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
5407 			break;
5408 	}
5409 	if ((size_t) i >= re->shnum)
5410 		return;
5411 
5412 	(void) elf_errno();
5413 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5414 		elferr = elf_errno();
5415 		if (elferr != 0)
5416 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5417 		return;
5418 	}
5419 	if (d->d_size <= 0)
5420 		return;
5421 
5422 	/* Read in the .debug_aranges section table header. */
5423 	offset = 0;
5424 	length = re->dw_read(d, &offset, 4);
5425 	if (length == 0xffffffff) {
5426 		dwarf_size = 8;
5427 		length = re->dw_read(d, &offset, 8);
5428 	} else
5429 		dwarf_size = 4;
5430 
5431 	if (length > d->d_size - offset) {
5432 		warnx("invalid .dwarf_aranges section");
5433 		return;
5434 	}
5435 
5436 	as_version = re->dw_read(d, &offset, 2);
5437 	as_cu_offset = re->dw_read(d, &offset, dwarf_size);
5438 	as_addrsz = re->dw_read(d, &offset, 1);
5439 	as_segsz = re->dw_read(d, &offset, 1);
5440 
5441 	printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
5442 	printf("  Version:\t\t\t%u\n", as_version);
5443 	printf("  Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
5444 	printf("  Pointer Size:\t\t\t%u\n", as_addrsz);
5445 	printf("  Segment Size:\t\t\t%u\n", as_segsz);
5446 
5447 	if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
5448 		warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
5449 		return;
5450 	}
5451 
5452 	printf("\n    Address  Length\n");
5453 	for (i = 0; i < cnt; i++) {
5454 		if (dwarf_get_arange_info(aranges[i], &start, &length,
5455 		    &die_off, &de) != DW_DLV_OK) {
5456 			warnx("dwarf_get_arange_info failed: %s",
5457 			    dwarf_errmsg(de));
5458 			continue;
5459 		}
5460 		printf("    %08jx %ju\n", (uintmax_t) start,
5461 		    (uintmax_t) length);
5462 	}
5463 }
5464 
5465 static void
5466 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
5467 {
5468 	Dwarf_Attribute *attr_list;
5469 	Dwarf_Ranges *ranges;
5470 	Dwarf_Die ret_die;
5471 	Dwarf_Error de;
5472 	Dwarf_Addr base0;
5473 	Dwarf_Half attr;
5474 	Dwarf_Signed attr_count, cnt;
5475 	Dwarf_Unsigned off, bytecnt;
5476 	int i, j, ret;
5477 
5478 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5479 	    DW_DLV_OK) {
5480 		if (ret == DW_DLV_ERROR)
5481 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5482 		goto cont_search;
5483 	}
5484 
5485 	for (i = 0; i < attr_count; i++) {
5486 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5487 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5488 			continue;
5489 		}
5490 		if (attr != DW_AT_ranges)
5491 			continue;
5492 		if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) {
5493 			warnx("dwarf_formudata failed: %s", dwarf_errmsg(de));
5494 			continue;
5495 		}
5496 		if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt,
5497 		    &bytecnt, &de) != DW_DLV_OK)
5498 			continue;
5499 		base0 = base;
5500 		for (j = 0; j < cnt; j++) {
5501 			printf("    %08jx ", (uintmax_t) off);
5502 			if (ranges[j].dwr_type == DW_RANGES_END) {
5503 				printf("%s\n", "<End of list>");
5504 				continue;
5505 			} else if (ranges[j].dwr_type ==
5506 			    DW_RANGES_ADDRESS_SELECTION) {
5507 				base0 = ranges[j].dwr_addr2;
5508 				continue;
5509 			}
5510 			if (re->ec == ELFCLASS32)
5511 				printf("%08jx %08jx\n",
5512 				    ranges[j].dwr_addr1 + base0,
5513 				    ranges[j].dwr_addr2 + base0);
5514 			else
5515 				printf("%016jx %016jx\n",
5516 				    ranges[j].dwr_addr1 + base0,
5517 				    ranges[j].dwr_addr2 + base0);
5518 		}
5519 	}
5520 
5521 cont_search:
5522 	/* Search children. */
5523 	ret = dwarf_child(die, &ret_die, &de);
5524 	if (ret == DW_DLV_ERROR)
5525 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5526 	else if (ret == DW_DLV_OK)
5527 		dump_dwarf_ranges_foreach(re, ret_die, base);
5528 
5529 	/* Search sibling. */
5530 	ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
5531 	if (ret == DW_DLV_ERROR)
5532 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5533 	else if (ret == DW_DLV_OK)
5534 		dump_dwarf_ranges_foreach(re, ret_die, base);
5535 }
5536 
5537 static void
5538 dump_dwarf_ranges(struct readelf *re)
5539 {
5540 	Dwarf_Ranges *ranges;
5541 	Dwarf_Die die;
5542 	Dwarf_Signed cnt;
5543 	Dwarf_Unsigned bytecnt;
5544 	Dwarf_Half tag;
5545 	Dwarf_Error de;
5546 	Dwarf_Unsigned lowpc;
5547 	int ret;
5548 
5549 	if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
5550 	    DW_DLV_OK)
5551 		return;
5552 
5553 	printf("Contents of the .debug_ranges section:\n\n");
5554 	if (re->ec == ELFCLASS32)
5555 		printf("    %-8s %-8s %s\n", "Offset", "Begin", "End");
5556 	else
5557 		printf("    %-8s %-16s %s\n", "Offset", "Begin", "End");
5558 
5559 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5560 	    NULL, &de)) == DW_DLV_OK) {
5561 		die = NULL;
5562 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
5563 			continue;
5564 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5565 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5566 			continue;
5567 		}
5568 		/* XXX: What about DW_TAG_partial_unit? */
5569 		lowpc = 0;
5570 		if (tag == DW_TAG_compile_unit) {
5571 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
5572 			    &de) != DW_DLV_OK)
5573 				lowpc = 0;
5574 		}
5575 
5576 		dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
5577 	}
5578 	putchar('\n');
5579 }
5580 
5581 static void
5582 dump_dwarf_macinfo(struct readelf *re)
5583 {
5584 	Dwarf_Unsigned offset;
5585 	Dwarf_Signed cnt;
5586 	Dwarf_Macro_Details *md;
5587 	Dwarf_Error de;
5588 	const char *mi_str;
5589 	char unk_mi[32];
5590 	int i;
5591 
5592 #define	_MAX_MACINFO_ENTRY	65535
5593 
5594 	printf("\nContents of section .debug_macinfo:\n\n");
5595 
5596 	offset = 0;
5597 	while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
5598 	    &cnt, &md, &de) == DW_DLV_OK) {
5599 		for (i = 0; i < cnt; i++) {
5600 			offset = md[i].dmd_offset + 1;
5601 			if (md[i].dmd_type == 0)
5602 				break;
5603 			if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
5604 			    DW_DLV_OK) {
5605 				snprintf(unk_mi, sizeof(unk_mi),
5606 				    "[Unknown MACINFO: %#x]", md[i].dmd_type);
5607 				mi_str = unk_mi;
5608 			}
5609 			printf(" %s", mi_str);
5610 			switch (md[i].dmd_type) {
5611 			case DW_MACINFO_define:
5612 			case DW_MACINFO_undef:
5613 				printf(" - lineno : %jd macro : %s\n",
5614 				    (intmax_t) md[i].dmd_lineno,
5615 				    md[i].dmd_macro);
5616 				break;
5617 			case DW_MACINFO_start_file:
5618 				printf(" - lineno : %jd filenum : %jd\n",
5619 				    (intmax_t) md[i].dmd_lineno,
5620 				    (intmax_t) md[i].dmd_fileindex);
5621 				break;
5622 			default:
5623 				putchar('\n');
5624 				break;
5625 			}
5626 		}
5627 	}
5628 
5629 #undef	_MAX_MACINFO_ENTRY
5630 }
5631 
5632 static void
5633 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
5634     Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
5635     Dwarf_Debug dbg)
5636 {
5637 	Dwarf_Frame_Op *oplist;
5638 	Dwarf_Signed opcnt, delta;
5639 	Dwarf_Small op;
5640 	Dwarf_Error de;
5641 	const char *op_str;
5642 	char unk_op[32];
5643 	int i;
5644 
5645 	if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
5646 	    &opcnt, &de) != DW_DLV_OK) {
5647 		warnx("dwarf_expand_frame_instructions failed: %s",
5648 		    dwarf_errmsg(de));
5649 		return;
5650 	}
5651 
5652 	for (i = 0; i < opcnt; i++) {
5653 		if (oplist[i].fp_base_op != 0)
5654 			op = oplist[i].fp_base_op << 6;
5655 		else
5656 			op = oplist[i].fp_extended_op;
5657 		if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
5658 			snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
5659 			    op);
5660 			op_str = unk_op;
5661 		}
5662 		printf("  %s", op_str);
5663 		switch (op) {
5664 		case DW_CFA_advance_loc:
5665 			delta = oplist[i].fp_offset * caf;
5666 			pc += delta;
5667 			printf(": %ju to %08jx", (uintmax_t) delta,
5668 			    (uintmax_t) pc);
5669 			break;
5670 		case DW_CFA_offset:
5671 		case DW_CFA_offset_extended:
5672 		case DW_CFA_offset_extended_sf:
5673 			delta = oplist[i].fp_offset * daf;
5674 			printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
5675 			    dwarf_regname(re, oplist[i].fp_register),
5676 			    (intmax_t) delta);
5677 			break;
5678 		case DW_CFA_restore:
5679 			printf(": r%u (%s)", oplist[i].fp_register,
5680 			    dwarf_regname(re, oplist[i].fp_register));
5681 			break;
5682 		case DW_CFA_set_loc:
5683 			pc = oplist[i].fp_offset;
5684 			printf(": to %08jx", (uintmax_t) pc);
5685 			break;
5686 		case DW_CFA_advance_loc1:
5687 		case DW_CFA_advance_loc2:
5688 		case DW_CFA_advance_loc4:
5689 			pc += oplist[i].fp_offset;
5690 			printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
5691 			    (uintmax_t) pc);
5692 			break;
5693 		case DW_CFA_def_cfa:
5694 			printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
5695 			    dwarf_regname(re, oplist[i].fp_register),
5696 			    (uintmax_t) oplist[i].fp_offset);
5697 			break;
5698 		case DW_CFA_def_cfa_sf:
5699 			printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
5700 			    dwarf_regname(re, oplist[i].fp_register),
5701 			    (intmax_t) (oplist[i].fp_offset * daf));
5702 			break;
5703 		case DW_CFA_def_cfa_register:
5704 			printf(": r%u (%s)", oplist[i].fp_register,
5705 			    dwarf_regname(re, oplist[i].fp_register));
5706 			break;
5707 		case DW_CFA_def_cfa_offset:
5708 			printf(": %ju", (uintmax_t) oplist[i].fp_offset);
5709 			break;
5710 		case DW_CFA_def_cfa_offset_sf:
5711 			printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
5712 			break;
5713 		default:
5714 			break;
5715 		}
5716 		putchar('\n');
5717 	}
5718 
5719 	dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
5720 }
5721 
5722 static char *
5723 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
5724 {
5725 	static char rs[16];
5726 
5727 	if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
5728 		snprintf(rs, sizeof(rs), "%c", 'u');
5729 	else if (reg == DW_FRAME_CFA_COL)
5730 		snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
5731 	else
5732 		snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
5733 		    (intmax_t) off);
5734 
5735 	return (rs);
5736 }
5737 
5738 static int
5739 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
5740     Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
5741 {
5742 	Dwarf_Regtable rt;
5743 	Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
5744 	Dwarf_Error de;
5745 	char *vec;
5746 	int i;
5747 
5748 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
5749 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
5750 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
5751 #define	RT(x) rt.rules[(x)]
5752 
5753 	vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
5754 	if (vec == NULL)
5755 		err(EXIT_FAILURE, "calloc failed");
5756 
5757 	pre_pc = ~((Dwarf_Addr) 0);
5758 	cur_pc = pc;
5759 	end_pc = pc + func_len;
5760 	for (; cur_pc < end_pc; cur_pc++) {
5761 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5762 		    &de) != DW_DLV_OK) {
5763 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5764 			    dwarf_errmsg(de));
5765 			return (-1);
5766 		}
5767 		if (row_pc == pre_pc)
5768 			continue;
5769 		pre_pc = row_pc;
5770 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5771 			if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
5772 				BIT_SET(vec, i);
5773 		}
5774 	}
5775 
5776 	printf("   LOC   CFA      ");
5777 	for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5778 		if (BIT_ISSET(vec, i)) {
5779 			if ((Dwarf_Half) i == cie_ra)
5780 				printf("ra   ");
5781 			else
5782 				printf("%-5s",
5783 				    dwarf_regname(re, (unsigned int) i));
5784 		}
5785 	}
5786 	putchar('\n');
5787 
5788 	pre_pc = ~((Dwarf_Addr) 0);
5789 	cur_pc = pc;
5790 	end_pc = pc + func_len;
5791 	for (; cur_pc < end_pc; cur_pc++) {
5792 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
5793 		    &de) != DW_DLV_OK) {
5794 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
5795 			    dwarf_errmsg(de));
5796 			return (-1);
5797 		}
5798 		if (row_pc == pre_pc)
5799 			continue;
5800 		pre_pc = row_pc;
5801 		printf("%08jx ", (uintmax_t) row_pc);
5802 		printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
5803 		    RT(0).dw_offset));
5804 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
5805 			if (BIT_ISSET(vec, i)) {
5806 				printf("%-5s", get_regoff_str(re,
5807 				    RT(i).dw_regnum, RT(i).dw_offset));
5808 			}
5809 		}
5810 		putchar('\n');
5811 	}
5812 
5813 	free(vec);
5814 
5815 	return (0);
5816 
5817 #undef	BIT_SET
5818 #undef	BIT_CLR
5819 #undef	BIT_ISSET
5820 #undef	RT
5821 }
5822 
5823 static void
5824 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
5825 {
5826 	Dwarf_Cie *cie_list, cie, pre_cie;
5827 	Dwarf_Fde *fde_list, fde;
5828 	Dwarf_Off cie_offset, fde_offset;
5829 	Dwarf_Unsigned cie_length, fde_instlen;
5830 	Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
5831 	Dwarf_Signed cie_count, fde_count, cie_index;
5832 	Dwarf_Addr low_pc;
5833 	Dwarf_Half cie_ra;
5834 	Dwarf_Small cie_version;
5835 	Dwarf_Ptr fde_addr, fde_inst, cie_inst;
5836 	char *cie_aug, c;
5837 	int i, eh_frame;
5838 	Dwarf_Error de;
5839 
5840 	printf("\nThe section %s contains:\n\n", s->name);
5841 
5842 	if (!strcmp(s->name, ".debug_frame")) {
5843 		eh_frame = 0;
5844 		if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
5845 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5846 			warnx("dwarf_get_fde_list failed: %s",
5847 			    dwarf_errmsg(de));
5848 			return;
5849 		}
5850 	} else if (!strcmp(s->name, ".eh_frame")) {
5851 		eh_frame = 1;
5852 		if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
5853 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
5854 			warnx("dwarf_get_fde_list_eh failed: %s",
5855 			    dwarf_errmsg(de));
5856 			return;
5857 		}
5858 	} else
5859 		return;
5860 
5861 	pre_cie = NULL;
5862 	for (i = 0; i < fde_count; i++) {
5863 		if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
5864 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5865 			continue;
5866 		}
5867 		if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
5868 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
5869 			continue;
5870 		}
5871 		if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
5872 		    &fde_length, &cie_offset, &cie_index, &fde_offset,
5873 		    &de) != DW_DLV_OK) {
5874 			warnx("dwarf_get_fde_range failed: %s",
5875 			    dwarf_errmsg(de));
5876 			continue;
5877 		}
5878 		if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
5879 		    &de) != DW_DLV_OK) {
5880 			warnx("dwarf_get_fde_instr_bytes failed: %s",
5881 			    dwarf_errmsg(de));
5882 			continue;
5883 		}
5884 		if (pre_cie == NULL || cie != pre_cie) {
5885 			pre_cie = cie;
5886 			if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
5887 			    &cie_aug, &cie_caf, &cie_daf, &cie_ra,
5888 			    &cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
5889 				warnx("dwarf_get_cie_info failed: %s",
5890 				    dwarf_errmsg(de));
5891 				continue;
5892 			}
5893 			printf("%08jx %08jx %8.8jx CIE",
5894 			    (uintmax_t) cie_offset,
5895 			    (uintmax_t) cie_length,
5896 			    (uintmax_t) (eh_frame ? 0 : ~0U));
5897 			if (!alt) {
5898 				putchar('\n');
5899 				printf("  Version:\t\t\t%u\n", cie_version);
5900 				printf("  Augmentation:\t\t\t\"");
5901 				while ((c = *cie_aug++) != '\0')
5902 					putchar(c);
5903 				printf("\"\n");
5904 				printf("  Code alignment factor:\t%ju\n",
5905 				    (uintmax_t) cie_caf);
5906 				printf("  Data alignment factor:\t%jd\n",
5907 				    (intmax_t) cie_daf);
5908 				printf("  Return address column:\t%ju\n",
5909 				    (uintmax_t) cie_ra);
5910 				putchar('\n');
5911 				dump_dwarf_frame_inst(re, cie, cie_inst,
5912 				    cie_instlen, cie_caf, cie_daf, 0,
5913 				    re->dbg);
5914 				putchar('\n');
5915 			} else {
5916 				printf(" \"");
5917 				while ((c = *cie_aug++) != '\0')
5918 					putchar(c);
5919 				putchar('"');
5920 				printf(" cf=%ju df=%jd ra=%ju\n",
5921 				    (uintmax_t) cie_caf,
5922 				    (uintmax_t) cie_daf,
5923 				    (uintmax_t) cie_ra);
5924 				dump_dwarf_frame_regtable(re, fde, low_pc, 1,
5925 				    cie_ra);
5926 				putchar('\n');
5927 			}
5928 		}
5929 		printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
5930 		    (uintmax_t) fde_offset, (uintmax_t) fde_length,
5931 		    (uintmax_t) cie_offset,
5932 		    (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
5933 			cie_offset),
5934 		    (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
5935 		if (!alt)
5936 			dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
5937 			    cie_caf, cie_daf, low_pc, re->dbg);
5938 		else
5939 			dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
5940 			    cie_ra);
5941 		putchar('\n');
5942 	}
5943 }
5944 
5945 static void
5946 dump_dwarf_frame(struct readelf *re, int alt)
5947 {
5948 	struct section *s;
5949 	int i;
5950 
5951 	(void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
5952 
5953 	for (i = 0; (size_t) i < re->shnum; i++) {
5954 		s = &re->sl[i];
5955 		if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
5956 		    !strcmp(s->name, ".eh_frame")))
5957 			dump_dwarf_frame_section(re, s, alt);
5958 	}
5959 }
5960 
5961 static void
5962 dump_dwarf_str(struct readelf *re)
5963 {
5964 	struct section *s;
5965 	Elf_Data *d;
5966 	unsigned char *p;
5967 	int elferr, end, i, j;
5968 
5969 	printf("\nContents of section .debug_str:\n");
5970 
5971 	s = NULL;
5972 	for (i = 0; (size_t) i < re->shnum; i++) {
5973 		s = &re->sl[i];
5974 		if (s->name != NULL && !strcmp(s->name, ".debug_str"))
5975 			break;
5976 	}
5977 	if ((size_t) i >= re->shnum)
5978 		return;
5979 
5980 	(void) elf_errno();
5981 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5982 		elferr = elf_errno();
5983 		if (elferr != 0)
5984 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5985 		return;
5986 	}
5987 	if (d->d_size <= 0)
5988 		return;
5989 
5990 	for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
5991 		printf("  0x%08x", (unsigned int) i);
5992 		if ((size_t) i + 16 > d->d_size)
5993 			end = d->d_size;
5994 		else
5995 			end = i + 16;
5996 		for (j = i; j < i + 16; j++) {
5997 			if ((j - i) % 4 == 0)
5998 				putchar(' ');
5999 			if (j >= end) {
6000 				printf("  ");
6001 				continue;
6002 			}
6003 			printf("%02x", (uint8_t) p[j]);
6004 		}
6005 		putchar(' ');
6006 		for (j = i; j < end; j++) {
6007 			if (isprint(p[j]))
6008 				putchar(p[j]);
6009 			else if (p[j] == 0)
6010 				putchar('.');
6011 			else
6012 				putchar(' ');
6013 		}
6014 		putchar('\n');
6015 	}
6016 }
6017 
6018 struct loc_at {
6019 	Dwarf_Attribute la_at;
6020 	Dwarf_Unsigned la_off;
6021 	Dwarf_Unsigned la_lowpc;
6022 	Dwarf_Half la_cu_psize;
6023 	Dwarf_Half la_cu_osize;
6024 	Dwarf_Half la_cu_ver;
6025 	TAILQ_ENTRY(loc_at) la_next;
6026 };
6027 
6028 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist);
6029 
6030 static void
6031 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc)
6032 {
6033 	Dwarf_Attribute *attr_list;
6034 	Dwarf_Die ret_die;
6035 	Dwarf_Unsigned off;
6036 	Dwarf_Off ref;
6037 	Dwarf_Signed attr_count;
6038 	Dwarf_Half attr, form;
6039 	Dwarf_Bool is_info;
6040 	Dwarf_Error de;
6041 	struct loc_at *la, *nla;
6042 	int i, ret;
6043 
6044 	is_info = dwarf_get_die_infotypes_flag(die);
6045 
6046 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
6047 	    DW_DLV_OK) {
6048 		if (ret == DW_DLV_ERROR)
6049 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
6050 		goto cont_search;
6051 	}
6052 	for (i = 0; i < attr_count; i++) {
6053 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
6054 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
6055 			continue;
6056 		}
6057 		if (attr != DW_AT_location &&
6058 		    attr != DW_AT_string_length &&
6059 		    attr != DW_AT_return_addr &&
6060 		    attr != DW_AT_data_member_location &&
6061 		    attr != DW_AT_frame_base &&
6062 		    attr != DW_AT_segment &&
6063 		    attr != DW_AT_static_link &&
6064 		    attr != DW_AT_use_location &&
6065 		    attr != DW_AT_vtable_elem_location)
6066 			continue;
6067 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
6068 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
6069 			continue;
6070 		}
6071 		if (form == DW_FORM_data4 || form == DW_FORM_data8) {
6072 			if (dwarf_formudata(attr_list[i], &off, &de) !=
6073 			    DW_DLV_OK) {
6074 				warnx("dwarf_formudata failed: %s",
6075 				    dwarf_errmsg(de));
6076 				continue;
6077 			}
6078 		} else if (form == DW_FORM_sec_offset) {
6079 			if (dwarf_global_formref(attr_list[i], &ref, &de) !=
6080 			    DW_DLV_OK) {
6081 				warnx("dwarf_global_formref failed: %s",
6082 				    dwarf_errmsg(de));
6083 				continue;
6084 			}
6085 			off = ref;
6086 		} else
6087 			continue;
6088 
6089 		TAILQ_FOREACH(la, &lalist, la_next) {
6090 			if (off == la->la_off)
6091 				break;
6092 			if (off < la->la_off) {
6093 				if ((nla = malloc(sizeof(*nla))) == NULL)
6094 					err(EXIT_FAILURE, "malloc failed");
6095 				nla->la_at = attr_list[i];
6096 				nla->la_off = off;
6097 				nla->la_lowpc = lowpc;
6098 				nla->la_cu_psize = re->cu_psize;
6099 				nla->la_cu_osize = re->cu_osize;
6100 				nla->la_cu_ver = re->cu_ver;
6101 				TAILQ_INSERT_BEFORE(la, nla, la_next);
6102 				break;
6103 			}
6104 		}
6105 		if (la == NULL) {
6106 			if ((nla = malloc(sizeof(*nla))) == NULL)
6107 				err(EXIT_FAILURE, "malloc failed");
6108 			nla->la_at = attr_list[i];
6109 			nla->la_off = off;
6110 			nla->la_lowpc = lowpc;
6111 			nla->la_cu_psize = re->cu_psize;
6112 			nla->la_cu_osize = re->cu_osize;
6113 			nla->la_cu_ver = re->cu_ver;
6114 			TAILQ_INSERT_TAIL(&lalist, nla, la_next);
6115 		}
6116 	}
6117 
6118 cont_search:
6119 	/* Search children. */
6120 	ret = dwarf_child(die, &ret_die, &de);
6121 	if (ret == DW_DLV_ERROR)
6122 		warnx("dwarf_child: %s", dwarf_errmsg(de));
6123 	else if (ret == DW_DLV_OK)
6124 		search_loclist_at(re, ret_die, lowpc);
6125 
6126 	/* Search sibling. */
6127 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
6128 	if (ret == DW_DLV_ERROR)
6129 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
6130 	else if (ret == DW_DLV_OK)
6131 		search_loclist_at(re, ret_die, lowpc);
6132 }
6133 
6134 static void
6135 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
6136 {
6137 	const char *op_str;
6138 	char unk_op[32];
6139 	uint8_t *b, n;
6140 	int i;
6141 
6142 	if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
6143 	    DW_DLV_OK) {
6144 		snprintf(unk_op, sizeof(unk_op),
6145 		    "[Unknown OP: %#x]", lr->lr_atom);
6146 		op_str = unk_op;
6147 	}
6148 
6149 	printf("%s", op_str);
6150 
6151 	switch (lr->lr_atom) {
6152 	case DW_OP_reg0:
6153 	case DW_OP_reg1:
6154 	case DW_OP_reg2:
6155 	case DW_OP_reg3:
6156 	case DW_OP_reg4:
6157 	case DW_OP_reg5:
6158 	case DW_OP_reg6:
6159 	case DW_OP_reg7:
6160 	case DW_OP_reg8:
6161 	case DW_OP_reg9:
6162 	case DW_OP_reg10:
6163 	case DW_OP_reg11:
6164 	case DW_OP_reg12:
6165 	case DW_OP_reg13:
6166 	case DW_OP_reg14:
6167 	case DW_OP_reg15:
6168 	case DW_OP_reg16:
6169 	case DW_OP_reg17:
6170 	case DW_OP_reg18:
6171 	case DW_OP_reg19:
6172 	case DW_OP_reg20:
6173 	case DW_OP_reg21:
6174 	case DW_OP_reg22:
6175 	case DW_OP_reg23:
6176 	case DW_OP_reg24:
6177 	case DW_OP_reg25:
6178 	case DW_OP_reg26:
6179 	case DW_OP_reg27:
6180 	case DW_OP_reg28:
6181 	case DW_OP_reg29:
6182 	case DW_OP_reg30:
6183 	case DW_OP_reg31:
6184 		printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
6185 		break;
6186 
6187 	case DW_OP_deref:
6188 	case DW_OP_lit0:
6189 	case DW_OP_lit1:
6190 	case DW_OP_lit2:
6191 	case DW_OP_lit3:
6192 	case DW_OP_lit4:
6193 	case DW_OP_lit5:
6194 	case DW_OP_lit6:
6195 	case DW_OP_lit7:
6196 	case DW_OP_lit8:
6197 	case DW_OP_lit9:
6198 	case DW_OP_lit10:
6199 	case DW_OP_lit11:
6200 	case DW_OP_lit12:
6201 	case DW_OP_lit13:
6202 	case DW_OP_lit14:
6203 	case DW_OP_lit15:
6204 	case DW_OP_lit16:
6205 	case DW_OP_lit17:
6206 	case DW_OP_lit18:
6207 	case DW_OP_lit19:
6208 	case DW_OP_lit20:
6209 	case DW_OP_lit21:
6210 	case DW_OP_lit22:
6211 	case DW_OP_lit23:
6212 	case DW_OP_lit24:
6213 	case DW_OP_lit25:
6214 	case DW_OP_lit26:
6215 	case DW_OP_lit27:
6216 	case DW_OP_lit28:
6217 	case DW_OP_lit29:
6218 	case DW_OP_lit30:
6219 	case DW_OP_lit31:
6220 	case DW_OP_dup:
6221 	case DW_OP_drop:
6222 	case DW_OP_over:
6223 	case DW_OP_swap:
6224 	case DW_OP_rot:
6225 	case DW_OP_xderef:
6226 	case DW_OP_abs:
6227 	case DW_OP_and:
6228 	case DW_OP_div:
6229 	case DW_OP_minus:
6230 	case DW_OP_mod:
6231 	case DW_OP_mul:
6232 	case DW_OP_neg:
6233 	case DW_OP_not:
6234 	case DW_OP_or:
6235 	case DW_OP_plus:
6236 	case DW_OP_shl:
6237 	case DW_OP_shr:
6238 	case DW_OP_shra:
6239 	case DW_OP_xor:
6240 	case DW_OP_eq:
6241 	case DW_OP_ge:
6242 	case DW_OP_gt:
6243 	case DW_OP_le:
6244 	case DW_OP_lt:
6245 	case DW_OP_ne:
6246 	case DW_OP_nop:
6247 	case DW_OP_push_object_address:
6248 	case DW_OP_form_tls_address:
6249 	case DW_OP_call_frame_cfa:
6250 	case DW_OP_stack_value:
6251 	case DW_OP_GNU_push_tls_address:
6252 	case DW_OP_GNU_uninit:
6253 		break;
6254 
6255 	case DW_OP_const1u:
6256 	case DW_OP_pick:
6257 	case DW_OP_deref_size:
6258 	case DW_OP_xderef_size:
6259 	case DW_OP_const2u:
6260 	case DW_OP_bra:
6261 	case DW_OP_skip:
6262 	case DW_OP_const4u:
6263 	case DW_OP_const8u:
6264 	case DW_OP_constu:
6265 	case DW_OP_plus_uconst:
6266 	case DW_OP_regx:
6267 	case DW_OP_piece:
6268 		printf(": %ju", (uintmax_t)
6269 		    lr->lr_number);
6270 		break;
6271 
6272 	case DW_OP_const1s:
6273 	case DW_OP_const2s:
6274 	case DW_OP_const4s:
6275 	case DW_OP_const8s:
6276 	case DW_OP_consts:
6277 		printf(": %jd", (intmax_t)
6278 		    lr->lr_number);
6279 		break;
6280 
6281 	case DW_OP_breg0:
6282 	case DW_OP_breg1:
6283 	case DW_OP_breg2:
6284 	case DW_OP_breg3:
6285 	case DW_OP_breg4:
6286 	case DW_OP_breg5:
6287 	case DW_OP_breg6:
6288 	case DW_OP_breg7:
6289 	case DW_OP_breg8:
6290 	case DW_OP_breg9:
6291 	case DW_OP_breg10:
6292 	case DW_OP_breg11:
6293 	case DW_OP_breg12:
6294 	case DW_OP_breg13:
6295 	case DW_OP_breg14:
6296 	case DW_OP_breg15:
6297 	case DW_OP_breg16:
6298 	case DW_OP_breg17:
6299 	case DW_OP_breg18:
6300 	case DW_OP_breg19:
6301 	case DW_OP_breg20:
6302 	case DW_OP_breg21:
6303 	case DW_OP_breg22:
6304 	case DW_OP_breg23:
6305 	case DW_OP_breg24:
6306 	case DW_OP_breg25:
6307 	case DW_OP_breg26:
6308 	case DW_OP_breg27:
6309 	case DW_OP_breg28:
6310 	case DW_OP_breg29:
6311 	case DW_OP_breg30:
6312 	case DW_OP_breg31:
6313 		printf(" (%s): %jd",
6314 		    dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
6315 		    (intmax_t) lr->lr_number);
6316 		break;
6317 
6318 	case DW_OP_fbreg:
6319 		printf(": %jd", (intmax_t)
6320 		    lr->lr_number);
6321 		break;
6322 
6323 	case DW_OP_bregx:
6324 		printf(": %ju (%s) %jd",
6325 		    (uintmax_t) lr->lr_number,
6326 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6327 		    (intmax_t) lr->lr_number2);
6328 		break;
6329 
6330 	case DW_OP_addr:
6331 	case DW_OP_GNU_encoded_addr:
6332 		printf(": %#jx", (uintmax_t)
6333 		    lr->lr_number);
6334 		break;
6335 
6336 	case DW_OP_GNU_implicit_pointer:
6337 		printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
6338 		    (intmax_t) lr->lr_number2);
6339 		break;
6340 
6341 	case DW_OP_implicit_value:
6342 		printf(": %ju byte block:", (uintmax_t) lr->lr_number);
6343 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6344 		for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
6345 			printf(" %x", b[i]);
6346 		break;
6347 
6348 	case DW_OP_GNU_entry_value:
6349 		printf(": (");
6350 		dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
6351 		    lr->lr_number);
6352 		putchar(')');
6353 		break;
6354 
6355 	case DW_OP_GNU_const_type:
6356 		printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
6357 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6358 		n = *b;
6359 		for (i = 1; (uint8_t) i < n; i++)
6360 			printf(" %x", b[i]);
6361 		break;
6362 
6363 	case DW_OP_GNU_regval_type:
6364 		printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
6365 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6366 		    (uintmax_t) lr->lr_number2);
6367 		break;
6368 
6369 	case DW_OP_GNU_convert:
6370 	case DW_OP_GNU_deref_type:
6371 	case DW_OP_GNU_parameter_ref:
6372 	case DW_OP_GNU_reinterpret:
6373 		printf(": <0x%jx>", (uintmax_t) lr->lr_number);
6374 		break;
6375 
6376 	default:
6377 		break;
6378 	}
6379 }
6380 
6381 static void
6382 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
6383 {
6384 	Dwarf_Locdesc *llbuf;
6385 	Dwarf_Signed lcnt;
6386 	Dwarf_Error de;
6387 	int i;
6388 
6389 	if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
6390 	    re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
6391 		warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
6392 		return;
6393 	}
6394 
6395 	for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
6396 		dump_dwarf_loc(re, &llbuf->ld_s[i]);
6397 		if (i < llbuf->ld_cents - 1)
6398 			printf("; ");
6399 	}
6400 
6401 	dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
6402 	dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
6403 }
6404 
6405 static void
6406 dump_dwarf_loclist(struct readelf *re)
6407 {
6408 	Dwarf_Die die;
6409 	Dwarf_Locdesc **llbuf;
6410 	Dwarf_Unsigned lowpc;
6411 	Dwarf_Signed lcnt;
6412 	Dwarf_Half tag, version, pointer_size, off_size;
6413 	Dwarf_Error de;
6414 	struct loc_at *la;
6415 	int i, j, ret;
6416 
6417 	printf("\nContents of section .debug_loc:\n");
6418 
6419 	/* Search .debug_info section. */
6420 	while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
6421 	    &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
6422 		set_cu_context(re, pointer_size, off_size, version);
6423 		die = NULL;
6424 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
6425 			continue;
6426 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6427 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
6428 			continue;
6429 		}
6430 		/* XXX: What about DW_TAG_partial_unit? */
6431 		lowpc = 0;
6432 		if (tag == DW_TAG_compile_unit) {
6433 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6434 				&lowpc, &de) != DW_DLV_OK)
6435 				lowpc = 0;
6436 		}
6437 
6438 		/* Search attributes for reference to .debug_loc section. */
6439 		search_loclist_at(re, die, lowpc);
6440 	}
6441 	if (ret == DW_DLV_ERROR)
6442 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6443 
6444 	/* Search .debug_types section. */
6445 	do {
6446 		while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
6447 		    &version, NULL, &pointer_size, &off_size, NULL, NULL,
6448 		    NULL, NULL, &de)) == DW_DLV_OK) {
6449 			set_cu_context(re, pointer_size, off_size, version);
6450 			die = NULL;
6451 			if (dwarf_siblingof(re->dbg, die, &die, &de) !=
6452 			    DW_DLV_OK)
6453 				continue;
6454 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6455 				warnx("dwarf_tag failed: %s",
6456 				    dwarf_errmsg(de));
6457 				continue;
6458 			}
6459 
6460 			lowpc = 0;
6461 			if (tag == DW_TAG_type_unit) {
6462 				if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6463 				    &lowpc, &de) != DW_DLV_OK)
6464 					lowpc = 0;
6465 			}
6466 
6467 			/*
6468 			 * Search attributes for reference to .debug_loc
6469 			 * section.
6470 			 */
6471 			search_loclist_at(re, die, lowpc);
6472 		}
6473 		if (ret == DW_DLV_ERROR)
6474 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6475 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
6476 
6477 	if (TAILQ_EMPTY(&lalist))
6478 		return;
6479 
6480 	printf("    Offset   Begin    End      Expression\n");
6481 
6482 	TAILQ_FOREACH(la, &lalist, la_next) {
6483 		if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) !=
6484 		    DW_DLV_OK) {
6485 			warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de));
6486 			continue;
6487 		}
6488 		set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
6489 		    la->la_cu_ver);
6490 		for (i = 0; i < lcnt; i++) {
6491 			printf("    %8.8jx ", la->la_off);
6492 			if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
6493 				printf("<End of list>\n");
6494 				continue;
6495 			}
6496 
6497 			/* TODO: handle base selection entry. */
6498 
6499 			printf("%8.8jx %8.8jx ",
6500 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
6501 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
6502 
6503 			putchar('(');
6504 			for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
6505 				dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
6506 				if (j < llbuf[i]->ld_cents - 1)
6507 					printf("; ");
6508 			}
6509 			putchar(')');
6510 
6511 			if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
6512 				printf(" (start == end)");
6513 			putchar('\n');
6514 		}
6515 		for (i = 0; i < lcnt; i++) {
6516 			dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
6517 			    DW_DLA_LOC_BLOCK);
6518 			dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
6519 		}
6520 		dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
6521 	}
6522 }
6523 
6524 /*
6525  * Retrieve a string using string table section index and the string offset.
6526  */
6527 static const char*
6528 get_string(struct readelf *re, int strtab, size_t off)
6529 {
6530 	const char *name;
6531 
6532 	if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
6533 		return ("");
6534 
6535 	return (name);
6536 }
6537 
6538 /*
6539  * Retrieve the name of a symbol using the section index of the symbol
6540  * table and the index of the symbol within that table.
6541  */
6542 static const char *
6543 get_symbol_name(struct readelf *re, int symtab, int i)
6544 {
6545 	struct section	*s;
6546 	const char	*name;
6547 	GElf_Sym	 sym;
6548 	Elf_Data	*data;
6549 	int		 elferr;
6550 
6551 	s = &re->sl[symtab];
6552 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6553 		return ("");
6554 	(void) elf_errno();
6555 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6556 		elferr = elf_errno();
6557 		if (elferr != 0)
6558 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6559 		return ("");
6560 	}
6561 	if (gelf_getsym(data, i, &sym) != &sym)
6562 		return ("");
6563 	/* Return section name for STT_SECTION symbol. */
6564 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
6565 	    re->sl[sym.st_shndx].name != NULL)
6566 		return (re->sl[sym.st_shndx].name);
6567 	if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
6568 		return ("");
6569 
6570 	return (name);
6571 }
6572 
6573 static uint64_t
6574 get_symbol_value(struct readelf *re, int symtab, int i)
6575 {
6576 	struct section	*s;
6577 	GElf_Sym	 sym;
6578 	Elf_Data	*data;
6579 	int		 elferr;
6580 
6581 	s = &re->sl[symtab];
6582 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6583 		return (0);
6584 	(void) elf_errno();
6585 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6586 		elferr = elf_errno();
6587 		if (elferr != 0)
6588 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6589 		return (0);
6590 	}
6591 	if (gelf_getsym(data, i, &sym) != &sym)
6592 		return (0);
6593 
6594 	return (sym.st_value);
6595 }
6596 
6597 static void
6598 hex_dump(struct readelf *re)
6599 {
6600 	struct section *s;
6601 	Elf_Data *d;
6602 	uint8_t *buf;
6603 	size_t sz, nbytes;
6604 	uint64_t addr;
6605 	int elferr, i, j;
6606 
6607 	for (i = 1; (size_t) i < re->shnum; i++) {
6608 		s = &re->sl[i];
6609 		if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
6610 			continue;
6611 		(void) elf_errno();
6612 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6613 			elferr = elf_errno();
6614 			if (elferr != 0)
6615 				warnx("elf_getdata failed: %s",
6616 				    elf_errmsg(elferr));
6617 			continue;
6618 		}
6619 		if (d->d_size <= 0 || d->d_buf == NULL) {
6620 			printf("\nSection '%s' has no data to dump.\n",
6621 			    s->name);
6622 			continue;
6623 		}
6624 		buf = d->d_buf;
6625 		sz = d->d_size;
6626 		addr = s->addr;
6627 		printf("\nHex dump of section '%s':\n", s->name);
6628 		while (sz > 0) {
6629 			printf("  0x%8.8jx ", (uintmax_t)addr);
6630 			nbytes = sz > 16? 16 : sz;
6631 			for (j = 0; j < 16; j++) {
6632 				if ((size_t)j < nbytes)
6633 					printf("%2.2x", buf[j]);
6634 				else
6635 					printf("  ");
6636 				if ((j & 3) == 3)
6637 					printf(" ");
6638 			}
6639 			for (j = 0; (size_t)j < nbytes; j++) {
6640 				if (isprint(buf[j]))
6641 					printf("%c", buf[j]);
6642 				else
6643 					printf(".");
6644 			}
6645 			printf("\n");
6646 			buf += nbytes;
6647 			addr += nbytes;
6648 			sz -= nbytes;
6649 		}
6650 	}
6651 }
6652 
6653 static void
6654 str_dump(struct readelf *re)
6655 {
6656 	struct section *s;
6657 	Elf_Data *d;
6658 	unsigned char *start, *end, *buf_end;
6659 	unsigned int len;
6660 	int i, j, elferr, found;
6661 
6662 	for (i = 1; (size_t) i < re->shnum; i++) {
6663 		s = &re->sl[i];
6664 		if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
6665 			continue;
6666 		(void) elf_errno();
6667 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6668 			elferr = elf_errno();
6669 			if (elferr != 0)
6670 				warnx("elf_getdata failed: %s",
6671 				    elf_errmsg(elferr));
6672 			continue;
6673 		}
6674 		if (d->d_size <= 0 || d->d_buf == NULL) {
6675 			printf("\nSection '%s' has no data to dump.\n",
6676 			    s->name);
6677 			continue;
6678 		}
6679 		buf_end = (unsigned char *) d->d_buf + d->d_size;
6680 		start = (unsigned char *) d->d_buf;
6681 		found = 0;
6682 		printf("\nString dump of section '%s':\n", s->name);
6683 		for (;;) {
6684 			while (start < buf_end && !isprint(*start))
6685 				start++;
6686 			if (start >= buf_end)
6687 				break;
6688 			end = start + 1;
6689 			while (end < buf_end && isprint(*end))
6690 				end++;
6691 			printf("  [%6lx]  ",
6692 			    (long) (start - (unsigned char *) d->d_buf));
6693 			len = end - start;
6694 			for (j = 0; (unsigned int) j < len; j++)
6695 				putchar(start[j]);
6696 			putchar('\n');
6697 			found = 1;
6698 			if (end >= buf_end)
6699 				break;
6700 			start = end + 1;
6701 		}
6702 		if (!found)
6703 			printf("  No strings found in this section.");
6704 		putchar('\n');
6705 	}
6706 }
6707 
6708 static void
6709 load_sections(struct readelf *re)
6710 {
6711 	struct section	*s;
6712 	const char	*name;
6713 	Elf_Scn		*scn;
6714 	GElf_Shdr	 sh;
6715 	size_t		 shstrndx, ndx;
6716 	int		 elferr;
6717 
6718 	/* Allocate storage for internal section list. */
6719 	if (!elf_getshnum(re->elf, &re->shnum)) {
6720 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
6721 		return;
6722 	}
6723 	if (re->sl != NULL)
6724 		free(re->sl);
6725 	if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
6726 		err(EXIT_FAILURE, "calloc failed");
6727 
6728 	/* Get the index of .shstrtab section. */
6729 	if (!elf_getshstrndx(re->elf, &shstrndx)) {
6730 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
6731 		return;
6732 	}
6733 
6734 	if ((scn = elf_getscn(re->elf, 0)) == NULL)
6735 		return;
6736 
6737 	(void) elf_errno();
6738 	do {
6739 		if (gelf_getshdr(scn, &sh) == NULL) {
6740 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
6741 			(void) elf_errno();
6742 			continue;
6743 		}
6744 		if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
6745 			(void) elf_errno();
6746 			name = "ERROR";
6747 		}
6748 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
6749 			if ((elferr = elf_errno()) != 0)
6750 				warnx("elf_ndxscn failed: %s",
6751 				    elf_errmsg(elferr));
6752 			continue;
6753 		}
6754 		if (ndx >= re->shnum) {
6755 			warnx("section index of '%s' out of range", name);
6756 			continue;
6757 		}
6758 		s = &re->sl[ndx];
6759 		s->name = name;
6760 		s->scn = scn;
6761 		s->off = sh.sh_offset;
6762 		s->sz = sh.sh_size;
6763 		s->entsize = sh.sh_entsize;
6764 		s->align = sh.sh_addralign;
6765 		s->type = sh.sh_type;
6766 		s->flags = sh.sh_flags;
6767 		s->addr = sh.sh_addr;
6768 		s->link = sh.sh_link;
6769 		s->info = sh.sh_info;
6770 	} while ((scn = elf_nextscn(re->elf, scn)) != NULL);
6771 	elferr = elf_errno();
6772 	if (elferr != 0)
6773 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
6774 }
6775 
6776 static void
6777 unload_sections(struct readelf *re)
6778 {
6779 
6780 	if (re->sl != NULL) {
6781 		free(re->sl);
6782 		re->sl = NULL;
6783 	}
6784 	re->shnum = 0;
6785 	re->vd_s = NULL;
6786 	re->vn_s = NULL;
6787 	re->vs_s = NULL;
6788 	re->vs = NULL;
6789 	re->vs_sz = 0;
6790 	if (re->ver != NULL) {
6791 		free(re->ver);
6792 		re->ver = NULL;
6793 		re->ver_sz = 0;
6794 	}
6795 }
6796 
6797 static void
6798 dump_elf(struct readelf *re)
6799 {
6800 
6801 	/* Fetch ELF header. No need to continue if it fails. */
6802 	if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
6803 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
6804 		return;
6805 	}
6806 	if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
6807 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
6808 		return;
6809 	}
6810 	if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
6811 		re->dw_read = _read_msb;
6812 		re->dw_decode = _decode_msb;
6813 	} else {
6814 		re->dw_read = _read_lsb;
6815 		re->dw_decode = _decode_lsb;
6816 	}
6817 
6818 	if (re->options & ~RE_H)
6819 		load_sections(re);
6820 	if ((re->options & RE_VV) || (re->options & RE_S))
6821 		search_ver(re);
6822 	if (re->options & RE_H)
6823 		dump_ehdr(re);
6824 	if (re->options & RE_L)
6825 		dump_phdr(re);
6826 	if (re->options & RE_SS)
6827 		dump_shdr(re);
6828 	if (re->options & RE_D)
6829 		dump_dynamic(re);
6830 	if (re->options & RE_R)
6831 		dump_reloc(re);
6832 	if (re->options & RE_S)
6833 		dump_symtabs(re);
6834 	if (re->options & RE_N)
6835 		dump_notes(re);
6836 	if (re->options & RE_II)
6837 		dump_hash(re);
6838 	if (re->options & RE_X)
6839 		hex_dump(re);
6840 	if (re->options & RE_P)
6841 		str_dump(re);
6842 	if (re->options & RE_VV)
6843 		dump_ver(re);
6844 	if (re->options & RE_AA)
6845 		dump_arch_specific_info(re);
6846 	if (re->options & RE_W)
6847 		dump_dwarf(re);
6848 	if (re->options & ~RE_H)
6849 		unload_sections(re);
6850 }
6851 
6852 static void
6853 dump_dwarf(struct readelf *re)
6854 {
6855 	int error;
6856 	Dwarf_Error de;
6857 
6858 	if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
6859 		if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
6860 			errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
6861 			    dwarf_errmsg(de));
6862 		return;
6863 	}
6864 
6865 	if (re->dop & DW_A)
6866 		dump_dwarf_abbrev(re);
6867 	if (re->dop & DW_L)
6868 		dump_dwarf_line(re);
6869 	if (re->dop & DW_LL)
6870 		dump_dwarf_line_decoded(re);
6871 	if (re->dop & DW_I) {
6872 		dump_dwarf_info(re, 0);
6873 		dump_dwarf_info(re, 1);
6874 	}
6875 	if (re->dop & DW_P)
6876 		dump_dwarf_pubnames(re);
6877 	if (re->dop & DW_R)
6878 		dump_dwarf_aranges(re);
6879 	if (re->dop & DW_RR)
6880 		dump_dwarf_ranges(re);
6881 	if (re->dop & DW_M)
6882 		dump_dwarf_macinfo(re);
6883 	if (re->dop & DW_F)
6884 		dump_dwarf_frame(re, 0);
6885 	else if (re->dop & DW_FF)
6886 		dump_dwarf_frame(re, 1);
6887 	if (re->dop & DW_S)
6888 		dump_dwarf_str(re);
6889 	if (re->dop & DW_O)
6890 		dump_dwarf_loclist(re);
6891 
6892 	dwarf_finish(re->dbg, &de);
6893 }
6894 
6895 static void
6896 dump_ar(struct readelf *re, int fd)
6897 {
6898 	Elf_Arsym *arsym;
6899 	Elf_Arhdr *arhdr;
6900 	Elf_Cmd cmd;
6901 	Elf *e;
6902 	size_t sz;
6903 	off_t off;
6904 	int i;
6905 
6906 	re->ar = re->elf;
6907 
6908 	if (re->options & RE_C) {
6909 		if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
6910 			warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
6911 			goto process_members;
6912 		}
6913 		printf("Index of archive %s: (%ju entries)\n", re->filename,
6914 		    (uintmax_t) sz - 1);
6915 		off = 0;
6916 		for (i = 0; (size_t) i < sz; i++) {
6917 			if (arsym[i].as_name == NULL)
6918 				break;
6919 			if (arsym[i].as_off != off) {
6920 				off = arsym[i].as_off;
6921 				if (elf_rand(re->ar, off) != off) {
6922 					warnx("elf_rand() failed: %s",
6923 					    elf_errmsg(-1));
6924 					continue;
6925 				}
6926 				if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
6927 				    NULL) {
6928 					warnx("elf_begin() failed: %s",
6929 					    elf_errmsg(-1));
6930 					continue;
6931 				}
6932 				if ((arhdr = elf_getarhdr(e)) == NULL) {
6933 					warnx("elf_getarhdr() failed: %s",
6934 					    elf_errmsg(-1));
6935 					elf_end(e);
6936 					continue;
6937 				}
6938 				printf("Binary %s(%s) contains:\n",
6939 				    re->filename, arhdr->ar_name);
6940 			}
6941 			printf("\t%s\n", arsym[i].as_name);
6942 		}
6943 		if (elf_rand(re->ar, SARMAG) != SARMAG) {
6944 			warnx("elf_rand() failed: %s", elf_errmsg(-1));
6945 			return;
6946 		}
6947 	}
6948 
6949 process_members:
6950 
6951 	if ((re->options & ~RE_C) == 0)
6952 		return;
6953 
6954 	cmd = ELF_C_READ;
6955 	while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
6956 		if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
6957 			warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
6958 			goto next_member;
6959 		}
6960 		if (strcmp(arhdr->ar_name, "/") == 0 ||
6961 		    strcmp(arhdr->ar_name, "//") == 0 ||
6962 		    strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
6963 			goto next_member;
6964 		printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
6965 		dump_elf(re);
6966 
6967 	next_member:
6968 		cmd = elf_next(re->elf);
6969 		elf_end(re->elf);
6970 	}
6971 	re->elf = re->ar;
6972 }
6973 
6974 static void
6975 dump_object(struct readelf *re)
6976 {
6977 	int fd;
6978 
6979 	if ((fd = open(re->filename, O_RDONLY)) == -1) {
6980 		warn("open %s failed", re->filename);
6981 		return;
6982 	}
6983 
6984 	if ((re->flags & DISPLAY_FILENAME) != 0)
6985 		printf("\nFile: %s\n", re->filename);
6986 
6987 	if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
6988 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
6989 		return;
6990 	}
6991 
6992 	switch (elf_kind(re->elf)) {
6993 	case ELF_K_NONE:
6994 		warnx("Not an ELF file.");
6995 		return;
6996 	case ELF_K_ELF:
6997 		dump_elf(re);
6998 		break;
6999 	case ELF_K_AR:
7000 		dump_ar(re, fd);
7001 		break;
7002 	default:
7003 		warnx("Internal: libelf returned unknown elf kind.");
7004 		return;
7005 	}
7006 
7007 	elf_end(re->elf);
7008 }
7009 
7010 static void
7011 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7012 {
7013 	struct dumpop *d;
7014 
7015 	if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
7016 		if ((d = calloc(1, sizeof(*d))) == NULL)
7017 			err(EXIT_FAILURE, "calloc failed");
7018 		if (t == DUMP_BY_INDEX)
7019 			d->u.si = si;
7020 		else
7021 			d->u.sn = sn;
7022 		d->type = t;
7023 		d->op = op;
7024 		STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
7025 	} else
7026 		d->op |= op;
7027 }
7028 
7029 static struct dumpop *
7030 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7031 {
7032 	struct dumpop *d;
7033 
7034 	STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
7035 		if ((op == -1 || op & d->op) &&
7036 		    (t == -1 || (unsigned) t == d->type)) {
7037 			if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
7038 			    (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
7039 				return (d);
7040 		}
7041 	}
7042 
7043 	return (NULL);
7044 }
7045 
7046 static struct {
7047 	const char *ln;
7048 	char sn;
7049 	int value;
7050 } dwarf_op[] = {
7051 	{"rawline", 'l', DW_L},
7052 	{"decodedline", 'L', DW_LL},
7053 	{"info", 'i', DW_I},
7054 	{"abbrev", 'a', DW_A},
7055 	{"pubnames", 'p', DW_P},
7056 	{"aranges", 'r', DW_R},
7057 	{"ranges", 'r', DW_R},
7058 	{"Ranges", 'R', DW_RR},
7059 	{"macro", 'm', DW_M},
7060 	{"frames", 'f', DW_F},
7061 	{"frames-interp", 'F', DW_FF},
7062 	{"str", 's', DW_S},
7063 	{"loc", 'o', DW_O},
7064 	{NULL, 0, 0}
7065 };
7066 
7067 static void
7068 parse_dwarf_op_short(struct readelf *re, const char *op)
7069 {
7070 	int i;
7071 
7072 	if (op == NULL) {
7073 		re->dop |= DW_DEFAULT_OPTIONS;
7074 		return;
7075 	}
7076 
7077 	for (; *op != '\0'; op++) {
7078 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7079 			if (dwarf_op[i].sn == *op) {
7080 				re->dop |= dwarf_op[i].value;
7081 				break;
7082 			}
7083 		}
7084 	}
7085 }
7086 
7087 static void
7088 parse_dwarf_op_long(struct readelf *re, const char *op)
7089 {
7090 	char *p, *token, *bp;
7091 	int i;
7092 
7093 	if (op == NULL) {
7094 		re->dop |= DW_DEFAULT_OPTIONS;
7095 		return;
7096 	}
7097 
7098 	if ((p = strdup(op)) == NULL)
7099 		err(EXIT_FAILURE, "strdup failed");
7100 	bp = p;
7101 
7102 	while ((token = strsep(&p, ",")) != NULL) {
7103 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7104 			if (!strcmp(token, dwarf_op[i].ln)) {
7105 				re->dop |= dwarf_op[i].value;
7106 				break;
7107 			}
7108 		}
7109 	}
7110 
7111 	free(bp);
7112 }
7113 
7114 static uint64_t
7115 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7116 {
7117 	uint64_t ret;
7118 	uint8_t *src;
7119 
7120 	src = (uint8_t *) d->d_buf + *offsetp;
7121 
7122 	ret = 0;
7123 	switch (bytes_to_read) {
7124 	case 8:
7125 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7126 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7127 	case 4:
7128 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7129 	case 2:
7130 		ret |= ((uint64_t) src[1]) << 8;
7131 	case 1:
7132 		ret |= src[0];
7133 		break;
7134 	default:
7135 		return (0);
7136 	}
7137 
7138 	*offsetp += bytes_to_read;
7139 
7140 	return (ret);
7141 }
7142 
7143 static uint64_t
7144 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7145 {
7146 	uint64_t ret;
7147 	uint8_t *src;
7148 
7149 	src = (uint8_t *) d->d_buf + *offsetp;
7150 
7151 	switch (bytes_to_read) {
7152 	case 1:
7153 		ret = src[0];
7154 		break;
7155 	case 2:
7156 		ret = src[1] | ((uint64_t) src[0]) << 8;
7157 		break;
7158 	case 4:
7159 		ret = src[3] | ((uint64_t) src[2]) << 8;
7160 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7161 		break;
7162 	case 8:
7163 		ret = src[7] | ((uint64_t) src[6]) << 8;
7164 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7165 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7166 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7167 		break;
7168 	default:
7169 		return (0);
7170 	}
7171 
7172 	*offsetp += bytes_to_read;
7173 
7174 	return (ret);
7175 }
7176 
7177 static uint64_t
7178 _decode_lsb(uint8_t **data, int bytes_to_read)
7179 {
7180 	uint64_t ret;
7181 	uint8_t *src;
7182 
7183 	src = *data;
7184 
7185 	ret = 0;
7186 	switch (bytes_to_read) {
7187 	case 8:
7188 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7189 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7190 	case 4:
7191 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7192 	case 2:
7193 		ret |= ((uint64_t) src[1]) << 8;
7194 	case 1:
7195 		ret |= src[0];
7196 		break;
7197 	default:
7198 		return (0);
7199 	}
7200 
7201 	*data += bytes_to_read;
7202 
7203 	return (ret);
7204 }
7205 
7206 static uint64_t
7207 _decode_msb(uint8_t **data, int bytes_to_read)
7208 {
7209 	uint64_t ret;
7210 	uint8_t *src;
7211 
7212 	src = *data;
7213 
7214 	ret = 0;
7215 	switch (bytes_to_read) {
7216 	case 1:
7217 		ret = src[0];
7218 		break;
7219 	case 2:
7220 		ret = src[1] | ((uint64_t) src[0]) << 8;
7221 		break;
7222 	case 4:
7223 		ret = src[3] | ((uint64_t) src[2]) << 8;
7224 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7225 		break;
7226 	case 8:
7227 		ret = src[7] | ((uint64_t) src[6]) << 8;
7228 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7229 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7230 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7231 		break;
7232 	default:
7233 		return (0);
7234 		break;
7235 	}
7236 
7237 	*data += bytes_to_read;
7238 
7239 	return (ret);
7240 }
7241 
7242 static int64_t
7243 _decode_sleb128(uint8_t **dp)
7244 {
7245 	int64_t ret = 0;
7246 	uint8_t b;
7247 	int shift = 0;
7248 
7249 	uint8_t *src = *dp;
7250 
7251 	do {
7252 		b = *src++;
7253 		ret |= ((b & 0x7f) << shift);
7254 		shift += 7;
7255 	} while ((b & 0x80) != 0);
7256 
7257 	if (shift < 32 && (b & 0x40) != 0)
7258 		ret |= (-1 << shift);
7259 
7260 	*dp = src;
7261 
7262 	return (ret);
7263 }
7264 
7265 static uint64_t
7266 _decode_uleb128(uint8_t **dp)
7267 {
7268 	uint64_t ret = 0;
7269 	uint8_t b;
7270 	int shift = 0;
7271 
7272 	uint8_t *src = *dp;
7273 
7274 	do {
7275 		b = *src++;
7276 		ret |= ((b & 0x7f) << shift);
7277 		shift += 7;
7278 	} while ((b & 0x80) != 0);
7279 
7280 	*dp = src;
7281 
7282 	return (ret);
7283 }
7284 
7285 static void
7286 readelf_version(void)
7287 {
7288 	(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
7289 	    elftc_version());
7290 	exit(EXIT_SUCCESS);
7291 }
7292 
7293 #define	USAGE_MESSAGE	"\
7294 Usage: %s [options] file...\n\
7295   Display information about ELF objects and ar(1) archives.\n\n\
7296   Options:\n\
7297   -a | --all               Equivalent to specifying options '-dhIlrsASV'.\n\
7298   -c | --archive-index     Print the archive symbol table for archives.\n\
7299   -d | --dynamic           Print the contents of SHT_DYNAMIC sections.\n\
7300   -e | --headers           Print all headers in the object.\n\
7301   -g | --section-groups    (accepted, but ignored)\n\
7302   -h | --file-header       Print the file header for the object.\n\
7303   -l | --program-headers   Print the PHDR table for the object.\n\
7304   -n | --notes             Print the contents of SHT_NOTE sections.\n\
7305   -p INDEX | --string-dump=INDEX\n\
7306                            Print the contents of section at index INDEX.\n\
7307   -r | --relocs            Print relocation information.\n\
7308   -s | --syms | --symbols  Print symbol tables.\n\
7309   -t | --section-details   Print additional information about sections.\n\
7310   -v | --version           Print a version identifier and exit.\n\
7311   -x INDEX | --hex-dump=INDEX\n\
7312                            Display contents of a section as hexadecimal.\n\
7313   -A | --arch-specific     (accepted, but ignored)\n\
7314   -D | --use-dynamic       Print the symbol table specified by the DT_SYMTAB\n\
7315                            entry in the \".dynamic\" section.\n\
7316   -H | --help              Print a help message.\n\
7317   -I | --histogram         Print information on bucket list lengths for \n\
7318                            hash sections.\n\
7319   -N | --full-section-name (accepted, but ignored)\n\
7320   -S | --sections | --section-headers\n\
7321                            Print information about section headers.\n\
7322   -V | --version-info      Print symbol versoning information.\n\
7323   -W | --wide              Print information without wrapping long lines.\n"
7324 
7325 
7326 static void
7327 readelf_usage(void)
7328 {
7329 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
7330 	exit(EXIT_FAILURE);
7331 }
7332 
7333 int
7334 main(int argc, char **argv)
7335 {
7336 	struct readelf	*re, re_storage;
7337 	unsigned long	 si;
7338 	int		 opt, i;
7339 	char		*ep;
7340 
7341 	re = &re_storage;
7342 	memset(re, 0, sizeof(*re));
7343 	STAILQ_INIT(&re->v_dumpop);
7344 
7345 	while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:",
7346 	    longopts, NULL)) != -1) {
7347 		switch(opt) {
7348 		case '?':
7349 			readelf_usage();
7350 			break;
7351 		case 'A':
7352 			re->options |= RE_AA;
7353 			break;
7354 		case 'a':
7355 			re->options |= RE_AA | RE_D | RE_H | RE_II | RE_L |
7356 			    RE_R | RE_SS | RE_S | RE_VV;
7357 			break;
7358 		case 'c':
7359 			re->options |= RE_C;
7360 			break;
7361 		case 'D':
7362 			re->options |= RE_DD;
7363 			break;
7364 		case 'd':
7365 			re->options |= RE_D;
7366 			break;
7367 		case 'e':
7368 			re->options |= RE_H | RE_L | RE_SS;
7369 			break;
7370 		case 'g':
7371 			re->options |= RE_G;
7372 			break;
7373 		case 'H':
7374 			readelf_usage();
7375 			break;
7376 		case 'h':
7377 			re->options |= RE_H;
7378 			break;
7379 		case 'I':
7380 			re->options |= RE_II;
7381 			break;
7382 		case 'i':
7383 			/* Not implemented yet. */
7384 			break;
7385 		case 'l':
7386 			re->options |= RE_L;
7387 			break;
7388 		case 'N':
7389 			re->options |= RE_NN;
7390 			break;
7391 		case 'n':
7392 			re->options |= RE_N;
7393 			break;
7394 		case 'p':
7395 			re->options |= RE_P;
7396 			si = strtoul(optarg, &ep, 10);
7397 			if (*ep == '\0')
7398 				add_dumpop(re, (size_t) si, NULL, STR_DUMP,
7399 				    DUMP_BY_INDEX);
7400 			else
7401 				add_dumpop(re, 0, optarg, STR_DUMP,
7402 				    DUMP_BY_NAME);
7403 			break;
7404 		case 'r':
7405 			re->options |= RE_R;
7406 			break;
7407 		case 'S':
7408 			re->options |= RE_SS;
7409 			break;
7410 		case 's':
7411 			re->options |= RE_S;
7412 			break;
7413 		case 't':
7414 			re->options |= RE_T;
7415 			break;
7416 		case 'u':
7417 			re->options |= RE_U;
7418 			break;
7419 		case 'V':
7420 			re->options |= RE_VV;
7421 			break;
7422 		case 'v':
7423 			readelf_version();
7424 			break;
7425 		case 'W':
7426 			re->options |= RE_WW;
7427 			break;
7428 		case 'w':
7429 			re->options |= RE_W;
7430 			parse_dwarf_op_short(re, optarg);
7431 			break;
7432 		case 'x':
7433 			re->options |= RE_X;
7434 			si = strtoul(optarg, &ep, 10);
7435 			if (*ep == '\0')
7436 				add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
7437 				    DUMP_BY_INDEX);
7438 			else
7439 				add_dumpop(re, 0, optarg, HEX_DUMP,
7440 				    DUMP_BY_NAME);
7441 			break;
7442 		case OPTION_DEBUG_DUMP:
7443 			re->options |= RE_W;
7444 			parse_dwarf_op_long(re, optarg);
7445 		}
7446 	}
7447 
7448 	argv += optind;
7449 	argc -= optind;
7450 
7451 	if (argc == 0 || re->options == 0)
7452 		readelf_usage();
7453 
7454 	if (argc > 1)
7455 		re->flags |= DISPLAY_FILENAME;
7456 
7457 	if (elf_version(EV_CURRENT) == EV_NONE)
7458 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
7459 		    elf_errmsg(-1));
7460 
7461 	for (i = 0; i < argc; i++)
7462 		if (argv[i] != NULL) {
7463 			re->filename = argv[i];
7464 			dump_object(re);
7465 		}
7466 
7467 	exit(EXIT_SUCCESS);
7468 }
7469