1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 30 #include <ar.h> 31 #include <assert.h> 32 #include <capsicum_helpers.h> 33 #include <ctype.h> 34 #include <dwarf.h> 35 #include <err.h> 36 #include <fcntl.h> 37 #include <gelf.h> 38 #include <getopt.h> 39 #include <libdwarf.h> 40 #include <libelftc.h> 41 #include <libgen.h> 42 #include <stdarg.h> 43 #include <stdbool.h> 44 #include <stdint.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <string.h> 48 #include <time.h> 49 #include <unistd.h> 50 #include <zlib.h> 51 52 #include <libcasper.h> 53 #include <casper/cap_fileargs.h> 54 55 #include "_elftc.h" 56 57 ELFTC_VCSID("$Id: readelf.c 3769 2019-06-29 15:15:02Z emaste $"); 58 59 /* Backwards compatability for older FreeBSD releases. */ 60 #ifndef STB_GNU_UNIQUE 61 #define STB_GNU_UNIQUE 10 62 #endif 63 #ifndef STT_SPARC_REGISTER 64 #define STT_SPARC_REGISTER 13 65 #endif 66 67 68 /* 69 * readelf(1) options. 70 */ 71 #define RE_AA 0x00000001 72 #define RE_C 0x00000002 73 #define RE_DD 0x00000004 74 #define RE_D 0x00000008 75 #define RE_G 0x00000010 76 #define RE_H 0x00000020 77 #define RE_II 0x00000040 78 #define RE_I 0x00000080 79 #define RE_L 0x00000100 80 #define RE_NN 0x00000200 81 #define RE_N 0x00000400 82 #define RE_P 0x00000800 83 #define RE_R 0x00001000 84 #define RE_SS 0x00002000 85 #define RE_S 0x00004000 86 #define RE_T 0x00008000 87 #define RE_U 0x00010000 88 #define RE_VV 0x00020000 89 #define RE_WW 0x00040000 90 #define RE_W 0x00080000 91 #define RE_X 0x00100000 92 #define RE_Z 0x00200000 93 94 /* 95 * dwarf dump options. 96 */ 97 #define DW_A 0x00000001 98 #define DW_FF 0x00000002 99 #define DW_F 0x00000004 100 #define DW_I 0x00000008 101 #define DW_LL 0x00000010 102 #define DW_L 0x00000020 103 #define DW_M 0x00000040 104 #define DW_O 0x00000080 105 #define DW_P 0x00000100 106 #define DW_RR 0x00000200 107 #define DW_R 0x00000400 108 #define DW_S 0x00000800 109 110 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 111 DW_R | DW_RR | DW_S) 112 113 /* 114 * readelf(1) run control flags. 115 */ 116 #define DISPLAY_FILENAME 0x0001 117 118 /* 119 * Internal data structure for sections. 120 */ 121 struct section { 122 const char *name; /* section name */ 123 Elf_Scn *scn; /* section scn */ 124 uint64_t off; /* section offset */ 125 uint64_t sz; /* section size */ 126 uint64_t entsize; /* section entsize */ 127 uint64_t align; /* section alignment */ 128 uint64_t type; /* section type */ 129 uint64_t flags; /* section flags */ 130 uint64_t addr; /* section virtual addr */ 131 uint32_t link; /* section link ndx */ 132 uint32_t info; /* section info ndx */ 133 }; 134 135 struct dumpop { 136 union { 137 size_t si; /* section index */ 138 const char *sn; /* section name */ 139 } u; 140 enum { 141 DUMP_BY_INDEX = 0, 142 DUMP_BY_NAME 143 } type; /* dump type */ 144 #define HEX_DUMP 0x0001 145 #define STR_DUMP 0x0002 146 int op; /* dump operation */ 147 STAILQ_ENTRY(dumpop) dumpop_list; 148 }; 149 150 struct symver { 151 const char *name; 152 int type; 153 }; 154 155 /* 156 * Structure encapsulates the global data for readelf(1). 157 */ 158 struct readelf { 159 const char *filename; /* current processing file. */ 160 int options; /* command line options. */ 161 int flags; /* run control flags. */ 162 int dop; /* dwarf dump options. */ 163 Elf *elf; /* underlying ELF descriptor. */ 164 Elf *ar; /* archive ELF descriptor. */ 165 Dwarf_Debug dbg; /* DWARF handle. */ 166 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 167 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 168 Dwarf_Half cu_ver; /* DWARF CU version. */ 169 GElf_Ehdr ehdr; /* ELF header. */ 170 int ec; /* ELF class. */ 171 size_t shnum; /* #sections. */ 172 struct section *vd_s; /* Verdef section. */ 173 struct section *vn_s; /* Verneed section. */ 174 struct section *vs_s; /* Versym section. */ 175 uint16_t *vs; /* Versym array. */ 176 int vs_sz; /* Versym array size. */ 177 struct symver *ver; /* Version array. */ 178 int ver_sz; /* Size of version array. */ 179 struct section *sl; /* list of sections. */ 180 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 181 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 182 uint64_t (*dw_decode)(uint8_t **, int); 183 }; 184 185 enum options 186 { 187 OPTION_DEBUG_DUMP 188 }; 189 190 static struct option longopts[] = { 191 {"all", no_argument, NULL, 'a'}, 192 {"arch-specific", no_argument, NULL, 'A'}, 193 {"archive-index", no_argument, NULL, 'c'}, 194 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 195 {"decompress", no_argument, 0, 'z'}, 196 {"dynamic", no_argument, NULL, 'd'}, 197 {"file-header", no_argument, NULL, 'h'}, 198 {"full-section-name", no_argument, NULL, 'N'}, 199 {"headers", no_argument, NULL, 'e'}, 200 {"help", no_argument, 0, 'H'}, 201 {"hex-dump", required_argument, NULL, 'x'}, 202 {"histogram", no_argument, NULL, 'I'}, 203 {"notes", no_argument, NULL, 'n'}, 204 {"program-headers", no_argument, NULL, 'l'}, 205 {"relocs", no_argument, NULL, 'r'}, 206 {"sections", no_argument, NULL, 'S'}, 207 {"section-headers", no_argument, NULL, 'S'}, 208 {"section-groups", no_argument, NULL, 'g'}, 209 {"section-details", no_argument, NULL, 't'}, 210 {"segments", no_argument, NULL, 'l'}, 211 {"string-dump", required_argument, NULL, 'p'}, 212 {"symbols", no_argument, NULL, 's'}, 213 {"syms", no_argument, NULL, 's'}, 214 {"unwind", no_argument, NULL, 'u'}, 215 {"use-dynamic", no_argument, NULL, 'D'}, 216 {"version-info", no_argument, 0, 'V'}, 217 {"version", no_argument, 0, 'v'}, 218 {"wide", no_argument, 0, 'W'}, 219 {NULL, 0, NULL, 0} 220 }; 221 222 struct eflags_desc { 223 uint64_t flag; 224 const char *desc; 225 }; 226 227 struct flag_desc { 228 uint64_t flag; 229 const char *desc; 230 }; 231 232 struct mips_option { 233 uint64_t flag; 234 const char *desc; 235 }; 236 237 struct loc_at { 238 Dwarf_Attribute la_at; 239 Dwarf_Unsigned la_off; 240 Dwarf_Unsigned la_lowpc; 241 Dwarf_Half la_cu_psize; 242 Dwarf_Half la_cu_osize; 243 Dwarf_Half la_cu_ver; 244 }; 245 246 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 247 int t); 248 static const char *aeabi_adv_simd_arch(uint64_t simd); 249 static const char *aeabi_align_needed(uint64_t an); 250 static const char *aeabi_align_preserved(uint64_t ap); 251 static const char *aeabi_arm_isa(uint64_t ai); 252 static const char *aeabi_cpu_arch(uint64_t arch); 253 static const char *aeabi_cpu_arch_profile(uint64_t pf); 254 static const char *aeabi_div(uint64_t du); 255 static const char *aeabi_enum_size(uint64_t es); 256 static const char *aeabi_fp_16bit_format(uint64_t fp16); 257 static const char *aeabi_fp_arch(uint64_t fp); 258 static const char *aeabi_fp_denormal(uint64_t fd); 259 static const char *aeabi_fp_exceptions(uint64_t fe); 260 static const char *aeabi_fp_hpext(uint64_t fh); 261 static const char *aeabi_fp_number_model(uint64_t fn); 262 static const char *aeabi_fp_optm_goal(uint64_t fog); 263 static const char *aeabi_fp_rounding(uint64_t fr); 264 static const char *aeabi_hardfp(uint64_t hfp); 265 static const char *aeabi_mpext(uint64_t mp); 266 static const char *aeabi_optm_goal(uint64_t og); 267 static const char *aeabi_pcs_config(uint64_t pcs); 268 static const char *aeabi_pcs_got(uint64_t got); 269 static const char *aeabi_pcs_r9(uint64_t r9); 270 static const char *aeabi_pcs_ro(uint64_t ro); 271 static const char *aeabi_pcs_rw(uint64_t rw); 272 static const char *aeabi_pcs_wchar_t(uint64_t wt); 273 static const char *aeabi_t2ee(uint64_t t2ee); 274 static const char *aeabi_thumb_isa(uint64_t ti); 275 static const char *aeabi_fp_user_exceptions(uint64_t fu); 276 static const char *aeabi_unaligned_access(uint64_t ua); 277 static const char *aeabi_vfp_args(uint64_t va); 278 static const char *aeabi_virtual(uint64_t vt); 279 static const char *aeabi_wmmx_arch(uint64_t wmmx); 280 static const char *aeabi_wmmx_args(uint64_t wa); 281 static const char *elf_class(unsigned int class); 282 static const char *elf_endian(unsigned int endian); 283 static const char *elf_machine(unsigned int mach); 284 static const char *elf_osabi(unsigned int abi); 285 static const char *elf_type(unsigned int type); 286 static const char *elf_ver(unsigned int ver); 287 static const char *dt_type(unsigned int mach, unsigned int dtype); 288 static void dump_ar(struct readelf *re, int); 289 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 290 static void dump_attributes(struct readelf *re); 291 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 292 static void dump_dwarf(struct readelf *re); 293 static void dump_dwarf_abbrev(struct readelf *re); 294 static void dump_dwarf_aranges(struct readelf *re); 295 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 296 Dwarf_Unsigned len); 297 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 298 static void dump_dwarf_frame(struct readelf *re, int alt); 299 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 300 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 301 Dwarf_Addr pc, Dwarf_Debug dbg); 302 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 303 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 304 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 305 int alt); 306 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 307 static void dump_dwarf_macinfo(struct readelf *re); 308 static void dump_dwarf_line(struct readelf *re); 309 static void dump_dwarf_line_decoded(struct readelf *re); 310 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 311 static void dump_dwarf_loclist(struct readelf *re); 312 static void dump_dwarf_pubnames(struct readelf *re); 313 static void dump_dwarf_ranges(struct readelf *re); 314 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 315 Dwarf_Addr base); 316 static void dump_dwarf_str(struct readelf *re); 317 static void dump_eflags(struct readelf *re, uint64_t e_flags); 318 static void dump_elf(struct readelf *re); 319 static void dump_flags(struct flag_desc *fd, uint64_t flags); 320 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 321 static void dump_dynamic(struct readelf *re); 322 static void dump_liblist(struct readelf *re); 323 static void dump_mips_abiflags(struct readelf *re, struct section *s); 324 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 325 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 326 static void dump_mips_options(struct readelf *re, struct section *s); 327 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 328 uint64_t info); 329 static void dump_mips_reginfo(struct readelf *re, struct section *s); 330 static void dump_mips_specific_info(struct readelf *re); 331 static void dump_notes(struct readelf *re); 332 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 333 off_t off); 334 static void dump_notes_data(struct readelf *re, const char *name, 335 uint32_t type, const char *buf, size_t sz); 336 static void dump_svr4_hash(struct section *s); 337 static void dump_svr4_hash64(struct readelf *re, struct section *s); 338 static void dump_gnu_hash(struct readelf *re, struct section *s); 339 static void dump_gnu_property_type_0(struct readelf *re, const char *buf, 340 size_t sz); 341 static void dump_hash(struct readelf *re); 342 static void dump_phdr(struct readelf *re); 343 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 344 static void dump_section_groups(struct readelf *re); 345 static void dump_symtab(struct readelf *re, int i); 346 static void dump_symtabs(struct readelf *re); 347 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 348 static void dump_ver(struct readelf *re); 349 static void dump_verdef(struct readelf *re, int dump); 350 static void dump_verneed(struct readelf *re, int dump); 351 static void dump_versym(struct readelf *re); 352 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 353 static const char *dwarf_regname(struct readelf *re, unsigned int num); 354 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 355 const char *sn, int op, int t); 356 static int get_ent_count(struct section *s, int *ent_count); 357 static int get_mips_register_size(uint8_t flag); 358 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 359 Dwarf_Addr off); 360 static const char *get_string(struct readelf *re, int strtab, size_t off); 361 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 362 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 363 static void load_sections(struct readelf *re); 364 static int loc_at_comparator(const void *la1, const void *la2); 365 static const char *mips_abi_fp(uint64_t fp); 366 static const char *note_type(const char *note_name, unsigned int et, 367 unsigned int nt); 368 static const char *note_type_freebsd(unsigned int nt); 369 static const char *note_type_freebsd_core(unsigned int nt); 370 static const char *note_type_linux_core(unsigned int nt); 371 static const char *note_type_gnu(unsigned int nt); 372 static const char *note_type_netbsd(unsigned int nt); 373 static const char *note_type_openbsd(unsigned int nt); 374 static const char *note_type_unknown(unsigned int nt); 375 static const char *note_type_xen(unsigned int nt); 376 static const char *option_kind(uint8_t kind); 377 static const char *phdr_type(unsigned int mach, unsigned int ptype); 378 static const char *ppc_abi_fp(uint64_t fp); 379 static const char *ppc_abi_vector(uint64_t vec); 380 static void readelf_usage(int status); 381 static void readelf_version(void); 382 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 383 Dwarf_Unsigned lowpc, struct loc_at **la_list, 384 size_t *la_list_len, size_t *la_list_cap); 385 static void search_ver(struct readelf *re); 386 static const char *section_type(unsigned int mach, unsigned int stype); 387 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 388 Dwarf_Half osize, Dwarf_Half ver); 389 static const char *st_bind(unsigned int sbind); 390 static const char *st_shndx(unsigned int shndx); 391 static const char *st_type(unsigned int mach, unsigned int os, 392 unsigned int stype); 393 static const char *st_vis(unsigned int svis); 394 static const char *top_tag(unsigned int tag); 395 static void unload_sections(struct readelf *re); 396 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 397 int bytes_to_read); 398 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 399 int bytes_to_read); 400 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 401 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 402 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 403 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 404 405 static struct eflags_desc arm_eflags_desc[] = { 406 {EF_ARM_RELEXEC, "relocatable executable"}, 407 {EF_ARM_HASENTRY, "has entry point"}, 408 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 409 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 410 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 411 {EF_ARM_BE8, "BE8"}, 412 {EF_ARM_LE8, "LE8"}, 413 {EF_ARM_INTERWORK, "interworking enabled"}, 414 {EF_ARM_APCS_26, "uses APCS/26"}, 415 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 416 {EF_ARM_PIC, "position independent"}, 417 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 418 {EF_ARM_NEW_ABI, "uses new ABI"}, 419 {EF_ARM_OLD_ABI, "uses old ABI"}, 420 {EF_ARM_SOFT_FLOAT, "software FP"}, 421 {EF_ARM_VFP_FLOAT, "VFP"}, 422 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 423 {0, NULL} 424 }; 425 426 static struct eflags_desc mips_eflags_desc[] = { 427 {EF_MIPS_NOREORDER, "noreorder"}, 428 {EF_MIPS_PIC, "pic"}, 429 {EF_MIPS_CPIC, "cpic"}, 430 {EF_MIPS_UCODE, "ugen_reserved"}, 431 {EF_MIPS_ABI2, "abi2"}, 432 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 433 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 434 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 435 {0, NULL} 436 }; 437 438 static struct eflags_desc powerpc_eflags_desc[] = { 439 {EF_PPC_EMB, "emb"}, 440 {EF_PPC_RELOCATABLE, "relocatable"}, 441 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 442 {0, NULL} 443 }; 444 445 static struct eflags_desc riscv_eflags_desc[] = { 446 {EF_RISCV_RVC, "RVC"}, 447 {EF_RISCV_RVE, "RVE"}, 448 {EF_RISCV_TSO, "TSO"}, 449 {0, NULL} 450 }; 451 452 static struct eflags_desc sparc_eflags_desc[] = { 453 {EF_SPARC_32PLUS, "v8+"}, 454 {EF_SPARC_SUN_US1, "ultrasparcI"}, 455 {EF_SPARC_HAL_R1, "halr1"}, 456 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 457 {0, NULL} 458 }; 459 460 static const char * 461 elf_osabi(unsigned int abi) 462 { 463 static char s_abi[32]; 464 465 switch(abi) { 466 case ELFOSABI_NONE: return "NONE"; 467 case ELFOSABI_HPUX: return "HPUX"; 468 case ELFOSABI_NETBSD: return "NetBSD"; 469 case ELFOSABI_GNU: return "GNU"; 470 case ELFOSABI_HURD: return "HURD"; 471 case ELFOSABI_86OPEN: return "86OPEN"; 472 case ELFOSABI_SOLARIS: return "Solaris"; 473 case ELFOSABI_AIX: return "AIX"; 474 case ELFOSABI_IRIX: return "IRIX"; 475 case ELFOSABI_FREEBSD: return "FreeBSD"; 476 case ELFOSABI_TRU64: return "TRU64"; 477 case ELFOSABI_MODESTO: return "MODESTO"; 478 case ELFOSABI_OPENBSD: return "OpenBSD"; 479 case ELFOSABI_OPENVMS: return "OpenVMS"; 480 case ELFOSABI_NSK: return "NSK"; 481 case ELFOSABI_CLOUDABI: return "CloudABI"; 482 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 483 case ELFOSABI_ARM: return "ARM"; 484 case ELFOSABI_STANDALONE: return "StandAlone"; 485 default: 486 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 487 return (s_abi); 488 } 489 }; 490 491 static const char * 492 elf_machine(unsigned int mach) 493 { 494 static char s_mach[32]; 495 496 switch (mach) { 497 case EM_NONE: return "Unknown machine"; 498 case EM_M32: return "AT&T WE32100"; 499 case EM_SPARC: return "Sun SPARC"; 500 case EM_386: return "Intel i386"; 501 case EM_68K: return "Motorola 68000"; 502 case EM_IAMCU: return "Intel MCU"; 503 case EM_88K: return "Motorola 88000"; 504 case EM_860: return "Intel i860"; 505 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 506 case EM_S370: return "IBM System/370"; 507 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 508 case EM_PARISC: return "HP PA-RISC"; 509 case EM_VPP500: return "Fujitsu VPP500"; 510 case EM_SPARC32PLUS: return "SPARC v8plus"; 511 case EM_960: return "Intel 80960"; 512 case EM_PPC: return "PowerPC 32-bit"; 513 case EM_PPC64: return "PowerPC 64-bit"; 514 case EM_S390: return "IBM System/390"; 515 case EM_V800: return "NEC V800"; 516 case EM_FR20: return "Fujitsu FR20"; 517 case EM_RH32: return "TRW RH-32"; 518 case EM_RCE: return "Motorola RCE"; 519 case EM_ARM: return "ARM"; 520 case EM_SH: return "Hitachi SH"; 521 case EM_SPARCV9: return "SPARC v9 64-bit"; 522 case EM_TRICORE: return "Siemens TriCore embedded processor"; 523 case EM_ARC: return "Argonaut RISC Core"; 524 case EM_H8_300: return "Hitachi H8/300"; 525 case EM_H8_300H: return "Hitachi H8/300H"; 526 case EM_H8S: return "Hitachi H8S"; 527 case EM_H8_500: return "Hitachi H8/500"; 528 case EM_IA_64: return "Intel IA-64 Processor"; 529 case EM_MIPS_X: return "Stanford MIPS-X"; 530 case EM_COLDFIRE: return "Motorola ColdFire"; 531 case EM_68HC12: return "Motorola M68HC12"; 532 case EM_MMA: return "Fujitsu MMA"; 533 case EM_PCP: return "Siemens PCP"; 534 case EM_NCPU: return "Sony nCPU"; 535 case EM_NDR1: return "Denso NDR1 microprocessor"; 536 case EM_STARCORE: return "Motorola Star*Core processor"; 537 case EM_ME16: return "Toyota ME16 processor"; 538 case EM_ST100: return "STMicroelectronics ST100 processor"; 539 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 540 case EM_X86_64: return "Advanced Micro Devices x86-64"; 541 case EM_PDSP: return "Sony DSP Processor"; 542 case EM_FX66: return "Siemens FX66 microcontroller"; 543 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 544 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 545 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 546 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 547 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 548 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 549 case EM_SVX: return "Silicon Graphics SVx"; 550 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 551 case EM_VAX: return "Digital VAX"; 552 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 553 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 554 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 555 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 556 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 557 case EM_HUANY: return "Harvard University MI object files"; 558 case EM_PRISM: return "SiTera Prism"; 559 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 560 case EM_FR30: return "Fujitsu FR30"; 561 case EM_D10V: return "Mitsubishi D10V"; 562 case EM_D30V: return "Mitsubishi D30V"; 563 case EM_V850: return "NEC v850"; 564 case EM_M32R: return "Mitsubishi M32R"; 565 case EM_MN10300: return "Matsushita MN10300"; 566 case EM_MN10200: return "Matsushita MN10200"; 567 case EM_PJ: return "picoJava"; 568 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 569 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 570 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 571 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 572 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 573 case EM_NS32K: return "National Semiconductor 32000 series"; 574 case EM_TPC: return "Tenor Network TPC processor"; 575 case EM_SNP1K: return "Trebia SNP 1000 processor"; 576 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 577 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 578 case EM_MAX: return "MAX Processor"; 579 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 580 case EM_F2MC16: return "Fujitsu F2MC16"; 581 case EM_MSP430: return "TI embedded microcontroller msp430"; 582 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 583 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 584 case EM_SEP: return "Sharp embedded microprocessor"; 585 case EM_ARCA: return "Arca RISC Microprocessor"; 586 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 587 case EM_AARCH64: return "AArch64"; 588 case EM_RISCV: return "RISC-V"; 589 default: 590 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 591 return (s_mach); 592 } 593 594 } 595 596 static const char * 597 elf_class(unsigned int class) 598 { 599 static char s_class[32]; 600 601 switch (class) { 602 case ELFCLASSNONE: return "none"; 603 case ELFCLASS32: return "ELF32"; 604 case ELFCLASS64: return "ELF64"; 605 default: 606 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 607 return (s_class); 608 } 609 } 610 611 static const char * 612 elf_endian(unsigned int endian) 613 { 614 static char s_endian[32]; 615 616 switch (endian) { 617 case ELFDATANONE: return "none"; 618 case ELFDATA2LSB: return "2's complement, little endian"; 619 case ELFDATA2MSB: return "2's complement, big endian"; 620 default: 621 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 622 return (s_endian); 623 } 624 } 625 626 static const char * 627 elf_type(unsigned int type) 628 { 629 static char s_type[32]; 630 631 switch (type) { 632 case ET_NONE: return "NONE (None)"; 633 case ET_REL: return "REL (Relocatable file)"; 634 case ET_EXEC: return "EXEC (Executable file)"; 635 case ET_DYN: return "DYN (Shared object file)"; 636 case ET_CORE: return "CORE (Core file)"; 637 default: 638 if (type >= ET_LOPROC) 639 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 640 else if (type >= ET_LOOS && type <= ET_HIOS) 641 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 642 else 643 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 644 type); 645 return (s_type); 646 } 647 } 648 649 static const char * 650 elf_ver(unsigned int ver) 651 { 652 static char s_ver[32]; 653 654 switch (ver) { 655 case EV_CURRENT: return "(current)"; 656 case EV_NONE: return "(none)"; 657 default: 658 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 659 ver); 660 return (s_ver); 661 } 662 } 663 664 static const char * 665 phdr_type(unsigned int mach, unsigned int ptype) 666 { 667 static char s_ptype[32]; 668 669 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 670 switch (mach) { 671 case EM_ARM: 672 switch (ptype) { 673 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 674 case PT_ARM_EXIDX: return "ARM_EXIDX"; 675 } 676 break; 677 } 678 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 679 ptype - PT_LOPROC); 680 return (s_ptype); 681 } 682 683 switch (ptype) { 684 case PT_NULL: return "NULL"; 685 case PT_LOAD: return "LOAD"; 686 case PT_DYNAMIC: return "DYNAMIC"; 687 case PT_INTERP: return "INTERP"; 688 case PT_NOTE: return "NOTE"; 689 case PT_SHLIB: return "SHLIB"; 690 case PT_PHDR: return "PHDR"; 691 case PT_TLS: return "TLS"; 692 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 693 case PT_GNU_STACK: return "GNU_STACK"; 694 case PT_GNU_RELRO: return "GNU_RELRO"; 695 case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE"; 696 case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED"; 697 case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA"; 698 default: 699 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 700 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 701 ptype - PT_LOOS); 702 else 703 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 704 ptype); 705 return (s_ptype); 706 } 707 } 708 709 static const char * 710 section_type(unsigned int mach, unsigned int stype) 711 { 712 static char s_stype[32]; 713 714 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 715 switch (mach) { 716 case EM_ARM: 717 switch (stype) { 718 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 719 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 720 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 721 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 722 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 723 } 724 break; 725 case EM_X86_64: 726 switch (stype) { 727 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 728 default: 729 break; 730 } 731 break; 732 case EM_MIPS: 733 case EM_MIPS_RS3_LE: 734 switch (stype) { 735 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 736 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 737 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 738 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 739 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 740 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 741 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 742 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 743 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 744 case SHT_MIPS_RELD: return "MIPS_RELD"; 745 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 746 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 747 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 748 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 749 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 750 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 751 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 752 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 753 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 754 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 755 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 756 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 757 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 758 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 759 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 760 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 761 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 762 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 763 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 764 default: 765 break; 766 } 767 break; 768 default: 769 break; 770 } 771 772 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 773 stype - SHT_LOPROC); 774 return (s_stype); 775 } 776 777 switch (stype) { 778 case SHT_NULL: return "NULL"; 779 case SHT_PROGBITS: return "PROGBITS"; 780 case SHT_SYMTAB: return "SYMTAB"; 781 case SHT_STRTAB: return "STRTAB"; 782 case SHT_RELA: return "RELA"; 783 case SHT_HASH: return "HASH"; 784 case SHT_DYNAMIC: return "DYNAMIC"; 785 case SHT_NOTE: return "NOTE"; 786 case SHT_NOBITS: return "NOBITS"; 787 case SHT_REL: return "REL"; 788 case SHT_SHLIB: return "SHLIB"; 789 case SHT_DYNSYM: return "DYNSYM"; 790 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 791 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 792 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 793 case SHT_GROUP: return "GROUP"; 794 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 795 case SHT_SUNW_dof: return "SUNW_dof"; 796 case SHT_SUNW_cap: return "SUNW_cap"; 797 case SHT_GNU_HASH: return "GNU_HASH"; 798 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 799 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 800 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 801 case SHT_SUNW_move: return "SUNW_move"; 802 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 803 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 804 case SHT_SUNW_verdef: return "SUNW_verdef"; 805 case SHT_SUNW_verneed: return "SUNW_verneed"; 806 case SHT_SUNW_versym: return "SUNW_versym"; 807 default: 808 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 809 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 810 stype - SHT_LOOS); 811 else if (stype >= SHT_LOUSER) 812 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 813 stype - SHT_LOUSER); 814 else 815 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 816 stype); 817 return (s_stype); 818 } 819 } 820 821 static const char * 822 dt_type(unsigned int mach, unsigned int dtype) 823 { 824 static char s_dtype[32]; 825 826 switch (dtype) { 827 case DT_NULL: return "NULL"; 828 case DT_NEEDED: return "NEEDED"; 829 case DT_PLTRELSZ: return "PLTRELSZ"; 830 case DT_PLTGOT: return "PLTGOT"; 831 case DT_HASH: return "HASH"; 832 case DT_STRTAB: return "STRTAB"; 833 case DT_SYMTAB: return "SYMTAB"; 834 case DT_RELA: return "RELA"; 835 case DT_RELASZ: return "RELASZ"; 836 case DT_RELAENT: return "RELAENT"; 837 case DT_STRSZ: return "STRSZ"; 838 case DT_SYMENT: return "SYMENT"; 839 case DT_INIT: return "INIT"; 840 case DT_FINI: return "FINI"; 841 case DT_SONAME: return "SONAME"; 842 case DT_RPATH: return "RPATH"; 843 case DT_SYMBOLIC: return "SYMBOLIC"; 844 case DT_REL: return "REL"; 845 case DT_RELSZ: return "RELSZ"; 846 case DT_RELENT: return "RELENT"; 847 case DT_PLTREL: return "PLTREL"; 848 case DT_DEBUG: return "DEBUG"; 849 case DT_TEXTREL: return "TEXTREL"; 850 case DT_JMPREL: return "JMPREL"; 851 case DT_BIND_NOW: return "BIND_NOW"; 852 case DT_INIT_ARRAY: return "INIT_ARRAY"; 853 case DT_FINI_ARRAY: return "FINI_ARRAY"; 854 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 855 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 856 case DT_RUNPATH: return "RUNPATH"; 857 case DT_FLAGS: return "FLAGS"; 858 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 859 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 860 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 861 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 862 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 863 case DT_SUNW_FILTER: return "SUNW_FILTER"; 864 case DT_SUNW_CAP: return "SUNW_CAP"; 865 case DT_SUNW_ASLR: return "SUNW_ASLR"; 866 case DT_CHECKSUM: return "CHECKSUM"; 867 case DT_PLTPADSZ: return "PLTPADSZ"; 868 case DT_MOVEENT: return "MOVEENT"; 869 case DT_MOVESZ: return "MOVESZ"; 870 case DT_FEATURE: return "FEATURE"; 871 case DT_POSFLAG_1: return "POSFLAG_1"; 872 case DT_SYMINSZ: return "SYMINSZ"; 873 case DT_SYMINENT: return "SYMINENT"; 874 case DT_GNU_HASH: return "GNU_HASH"; 875 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 876 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 877 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 878 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 879 case DT_CONFIG: return "CONFIG"; 880 case DT_DEPAUDIT: return "DEPAUDIT"; 881 case DT_AUDIT: return "AUDIT"; 882 case DT_PLTPAD: return "PLTPAD"; 883 case DT_MOVETAB: return "MOVETAB"; 884 case DT_SYMINFO: return "SYMINFO"; 885 case DT_VERSYM: return "VERSYM"; 886 case DT_RELACOUNT: return "RELACOUNT"; 887 case DT_RELCOUNT: return "RELCOUNT"; 888 case DT_FLAGS_1: return "FLAGS_1"; 889 case DT_VERDEF: return "VERDEF"; 890 case DT_VERDEFNUM: return "VERDEFNUM"; 891 case DT_VERNEED: return "VERNEED"; 892 case DT_VERNEEDNUM: return "VERNEEDNUM"; 893 case DT_AUXILIARY: return "AUXILIARY"; 894 case DT_USED: return "USED"; 895 case DT_FILTER: return "FILTER"; 896 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 897 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 898 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 899 } 900 901 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 902 switch (mach) { 903 case EM_ARM: 904 switch (dtype) { 905 case DT_ARM_SYMTABSZ: 906 return "ARM_SYMTABSZ"; 907 default: 908 break; 909 } 910 break; 911 case EM_MIPS: 912 case EM_MIPS_RS3_LE: 913 switch (dtype) { 914 case DT_MIPS_RLD_VERSION: 915 return "MIPS_RLD_VERSION"; 916 case DT_MIPS_TIME_STAMP: 917 return "MIPS_TIME_STAMP"; 918 case DT_MIPS_ICHECKSUM: 919 return "MIPS_ICHECKSUM"; 920 case DT_MIPS_IVERSION: 921 return "MIPS_IVERSION"; 922 case DT_MIPS_FLAGS: 923 return "MIPS_FLAGS"; 924 case DT_MIPS_BASE_ADDRESS: 925 return "MIPS_BASE_ADDRESS"; 926 case DT_MIPS_CONFLICT: 927 return "MIPS_CONFLICT"; 928 case DT_MIPS_LIBLIST: 929 return "MIPS_LIBLIST"; 930 case DT_MIPS_LOCAL_GOTNO: 931 return "MIPS_LOCAL_GOTNO"; 932 case DT_MIPS_CONFLICTNO: 933 return "MIPS_CONFLICTNO"; 934 case DT_MIPS_LIBLISTNO: 935 return "MIPS_LIBLISTNO"; 936 case DT_MIPS_SYMTABNO: 937 return "MIPS_SYMTABNO"; 938 case DT_MIPS_UNREFEXTNO: 939 return "MIPS_UNREFEXTNO"; 940 case DT_MIPS_GOTSYM: 941 return "MIPS_GOTSYM"; 942 case DT_MIPS_HIPAGENO: 943 return "MIPS_HIPAGENO"; 944 case DT_MIPS_RLD_MAP: 945 return "MIPS_RLD_MAP"; 946 case DT_MIPS_DELTA_CLASS: 947 return "MIPS_DELTA_CLASS"; 948 case DT_MIPS_DELTA_CLASS_NO: 949 return "MIPS_DELTA_CLASS_NO"; 950 case DT_MIPS_DELTA_INSTANCE: 951 return "MIPS_DELTA_INSTANCE"; 952 case DT_MIPS_DELTA_INSTANCE_NO: 953 return "MIPS_DELTA_INSTANCE_NO"; 954 case DT_MIPS_DELTA_RELOC: 955 return "MIPS_DELTA_RELOC"; 956 case DT_MIPS_DELTA_RELOC_NO: 957 return "MIPS_DELTA_RELOC_NO"; 958 case DT_MIPS_DELTA_SYM: 959 return "MIPS_DELTA_SYM"; 960 case DT_MIPS_DELTA_SYM_NO: 961 return "MIPS_DELTA_SYM_NO"; 962 case DT_MIPS_DELTA_CLASSSYM: 963 return "MIPS_DELTA_CLASSSYM"; 964 case DT_MIPS_DELTA_CLASSSYM_NO: 965 return "MIPS_DELTA_CLASSSYM_NO"; 966 case DT_MIPS_CXX_FLAGS: 967 return "MIPS_CXX_FLAGS"; 968 case DT_MIPS_PIXIE_INIT: 969 return "MIPS_PIXIE_INIT"; 970 case DT_MIPS_SYMBOL_LIB: 971 return "MIPS_SYMBOL_LIB"; 972 case DT_MIPS_LOCALPAGE_GOTIDX: 973 return "MIPS_LOCALPAGE_GOTIDX"; 974 case DT_MIPS_LOCAL_GOTIDX: 975 return "MIPS_LOCAL_GOTIDX"; 976 case DT_MIPS_HIDDEN_GOTIDX: 977 return "MIPS_HIDDEN_GOTIDX"; 978 case DT_MIPS_PROTECTED_GOTIDX: 979 return "MIPS_PROTECTED_GOTIDX"; 980 case DT_MIPS_OPTIONS: 981 return "MIPS_OPTIONS"; 982 case DT_MIPS_INTERFACE: 983 return "MIPS_INTERFACE"; 984 case DT_MIPS_DYNSTR_ALIGN: 985 return "MIPS_DYNSTR_ALIGN"; 986 case DT_MIPS_INTERFACE_SIZE: 987 return "MIPS_INTERFACE_SIZE"; 988 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 989 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 990 case DT_MIPS_PERF_SUFFIX: 991 return "MIPS_PERF_SUFFIX"; 992 case DT_MIPS_COMPACT_SIZE: 993 return "MIPS_COMPACT_SIZE"; 994 case DT_MIPS_GP_VALUE: 995 return "MIPS_GP_VALUE"; 996 case DT_MIPS_AUX_DYNAMIC: 997 return "MIPS_AUX_DYNAMIC"; 998 case DT_MIPS_PLTGOT: 999 return "MIPS_PLTGOT"; 1000 case DT_MIPS_RLD_OBJ_UPDATE: 1001 return "MIPS_RLD_OBJ_UPDATE"; 1002 case DT_MIPS_RWPLT: 1003 return "MIPS_RWPLT"; 1004 default: 1005 break; 1006 } 1007 break; 1008 case EM_SPARC: 1009 case EM_SPARC32PLUS: 1010 case EM_SPARCV9: 1011 switch (dtype) { 1012 case DT_SPARC_REGISTER: 1013 return "DT_SPARC_REGISTER"; 1014 default: 1015 break; 1016 } 1017 break; 1018 default: 1019 break; 1020 } 1021 } 1022 1023 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 1024 return (s_dtype); 1025 } 1026 1027 static const char * 1028 st_bind(unsigned int sbind) 1029 { 1030 static char s_sbind[32]; 1031 1032 switch (sbind) { 1033 case STB_LOCAL: return "LOCAL"; 1034 case STB_GLOBAL: return "GLOBAL"; 1035 case STB_WEAK: return "WEAK"; 1036 case STB_GNU_UNIQUE: return "UNIQUE"; 1037 default: 1038 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 1039 return "OS"; 1040 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1041 return "PROC"; 1042 else 1043 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1044 sbind); 1045 return (s_sbind); 1046 } 1047 } 1048 1049 static const char * 1050 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1051 { 1052 static char s_stype[32]; 1053 1054 switch (stype) { 1055 case STT_NOTYPE: return "NOTYPE"; 1056 case STT_OBJECT: return "OBJECT"; 1057 case STT_FUNC: return "FUNC"; 1058 case STT_SECTION: return "SECTION"; 1059 case STT_FILE: return "FILE"; 1060 case STT_COMMON: return "COMMON"; 1061 case STT_TLS: return "TLS"; 1062 default: 1063 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1064 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1065 stype == STT_GNU_IFUNC) 1066 return "IFUNC"; 1067 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1068 stype - STT_LOOS); 1069 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1070 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1071 return "REGISTER"; 1072 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1073 stype - STT_LOPROC); 1074 } else 1075 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1076 stype); 1077 return (s_stype); 1078 } 1079 } 1080 1081 static const char * 1082 st_vis(unsigned int svis) 1083 { 1084 static char s_svis[32]; 1085 1086 switch(svis) { 1087 case STV_DEFAULT: return "DEFAULT"; 1088 case STV_INTERNAL: return "INTERNAL"; 1089 case STV_HIDDEN: return "HIDDEN"; 1090 case STV_PROTECTED: return "PROTECTED"; 1091 default: 1092 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1093 return (s_svis); 1094 } 1095 } 1096 1097 static const char * 1098 st_shndx(unsigned int shndx) 1099 { 1100 static char s_shndx[32]; 1101 1102 switch (shndx) { 1103 case SHN_UNDEF: return "UND"; 1104 case SHN_ABS: return "ABS"; 1105 case SHN_COMMON: return "COM"; 1106 default: 1107 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1108 return "PRC"; 1109 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1110 return "OS"; 1111 else 1112 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1113 return (s_shndx); 1114 } 1115 } 1116 1117 static struct { 1118 const char *ln; 1119 char sn; 1120 int value; 1121 } section_flag[] = { 1122 {"WRITE", 'W', SHF_WRITE}, 1123 {"ALLOC", 'A', SHF_ALLOC}, 1124 {"EXEC", 'X', SHF_EXECINSTR}, 1125 {"MERGE", 'M', SHF_MERGE}, 1126 {"STRINGS", 'S', SHF_STRINGS}, 1127 {"INFO LINK", 'I', SHF_INFO_LINK}, 1128 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1129 {"GROUP", 'G', SHF_GROUP}, 1130 {"TLS", 'T', SHF_TLS}, 1131 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1132 {NULL, 0, 0} 1133 }; 1134 1135 static const char * 1136 note_type(const char *name, unsigned int et, unsigned int nt) 1137 { 1138 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1139 et == ET_CORE) 1140 return note_type_linux_core(nt); 1141 else if (strcmp(name, "FreeBSD") == 0) 1142 if (et == ET_CORE) 1143 return note_type_freebsd_core(nt); 1144 else 1145 return note_type_freebsd(nt); 1146 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1147 return note_type_gnu(nt); 1148 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1149 return note_type_netbsd(nt); 1150 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1151 return note_type_openbsd(nt); 1152 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1153 return note_type_xen(nt); 1154 return note_type_unknown(nt); 1155 } 1156 1157 static const char * 1158 note_type_freebsd(unsigned int nt) 1159 { 1160 switch (nt) { 1161 case 1: return "NT_FREEBSD_ABI_TAG"; 1162 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1163 case 3: return "NT_FREEBSD_ARCH_TAG"; 1164 case 4: return "NT_FREEBSD_FEATURE_CTL"; 1165 default: return (note_type_unknown(nt)); 1166 } 1167 } 1168 1169 static const char * 1170 note_type_freebsd_core(unsigned int nt) 1171 { 1172 switch (nt) { 1173 case 1: return "NT_PRSTATUS"; 1174 case 2: return "NT_FPREGSET"; 1175 case 3: return "NT_PRPSINFO"; 1176 case 7: return "NT_THRMISC"; 1177 case 8: return "NT_PROCSTAT_PROC"; 1178 case 9: return "NT_PROCSTAT_FILES"; 1179 case 10: return "NT_PROCSTAT_VMMAP"; 1180 case 11: return "NT_PROCSTAT_GROUPS"; 1181 case 12: return "NT_PROCSTAT_UMASK"; 1182 case 13: return "NT_PROCSTAT_RLIMIT"; 1183 case 14: return "NT_PROCSTAT_OSREL"; 1184 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1185 case 16: return "NT_PROCSTAT_AUXV"; 1186 case 17: return "NT_PTLWPINFO"; 1187 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1188 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1189 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1190 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1191 default: return (note_type_unknown(nt)); 1192 } 1193 } 1194 1195 static const char * 1196 note_type_linux_core(unsigned int nt) 1197 { 1198 switch (nt) { 1199 case 1: return "NT_PRSTATUS (Process status)"; 1200 case 2: return "NT_FPREGSET (Floating point information)"; 1201 case 3: return "NT_PRPSINFO (Process information)"; 1202 case 4: return "NT_TASKSTRUCT (Task structure)"; 1203 case 6: return "NT_AUXV (Auxiliary vector)"; 1204 case 10: return "NT_PSTATUS (Linux process status)"; 1205 case 12: return "NT_FPREGS (Linux floating point regset)"; 1206 case 13: return "NT_PSINFO (Linux process information)"; 1207 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1208 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1209 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1210 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1211 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1212 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1213 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1214 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1215 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1216 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1217 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1218 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1219 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1220 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1221 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1222 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1223 default: return (note_type_unknown(nt)); 1224 } 1225 } 1226 1227 static const char * 1228 note_type_gnu(unsigned int nt) 1229 { 1230 switch (nt) { 1231 case 1: return "NT_GNU_ABI_TAG"; 1232 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1233 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1234 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1235 case 5: return "NT_GNU_PROPERTY_TYPE_0"; 1236 default: return (note_type_unknown(nt)); 1237 } 1238 } 1239 1240 static const char * 1241 note_type_netbsd(unsigned int nt) 1242 { 1243 switch (nt) { 1244 case 1: return "NT_NETBSD_IDENT"; 1245 default: return (note_type_unknown(nt)); 1246 } 1247 } 1248 1249 static const char * 1250 note_type_openbsd(unsigned int nt) 1251 { 1252 switch (nt) { 1253 case 1: return "NT_OPENBSD_IDENT"; 1254 default: return (note_type_unknown(nt)); 1255 } 1256 } 1257 1258 static const char * 1259 note_type_unknown(unsigned int nt) 1260 { 1261 static char s_nt[32]; 1262 1263 snprintf(s_nt, sizeof(s_nt), 1264 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1265 return (s_nt); 1266 } 1267 1268 static const char * 1269 note_type_xen(unsigned int nt) 1270 { 1271 switch (nt) { 1272 case 0: return "XEN_ELFNOTE_INFO"; 1273 case 1: return "XEN_ELFNOTE_ENTRY"; 1274 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1275 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1276 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1277 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1278 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1279 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1280 case 8: return "XEN_ELFNOTE_LOADER"; 1281 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1282 case 10: return "XEN_ELFNOTE_FEATURES"; 1283 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1284 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1285 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1286 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1287 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1288 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1289 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1290 case 18: return "XEN_ELFNOTE_PHYS32_ENTRY"; 1291 default: return (note_type_unknown(nt)); 1292 } 1293 } 1294 1295 static struct { 1296 const char *name; 1297 int value; 1298 } l_flag[] = { 1299 {"EXACT_MATCH", LL_EXACT_MATCH}, 1300 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1301 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1302 {"EXPORTS", LL_EXPORTS}, 1303 {"DELAY_LOAD", LL_DELAY_LOAD}, 1304 {"DELTA", LL_DELTA}, 1305 {NULL, 0} 1306 }; 1307 1308 static struct mips_option mips_exceptions_option[] = { 1309 {OEX_PAGE0, "PAGE0"}, 1310 {OEX_SMM, "SMM"}, 1311 {OEX_PRECISEFP, "PRECISEFP"}, 1312 {OEX_DISMISS, "DISMISS"}, 1313 {0, NULL} 1314 }; 1315 1316 static struct mips_option mips_pad_option[] = { 1317 {OPAD_PREFIX, "PREFIX"}, 1318 {OPAD_POSTFIX, "POSTFIX"}, 1319 {OPAD_SYMBOL, "SYMBOL"}, 1320 {0, NULL} 1321 }; 1322 1323 static struct mips_option mips_hwpatch_option[] = { 1324 {OHW_R4KEOP, "R4KEOP"}, 1325 {OHW_R8KPFETCH, "R8KPFETCH"}, 1326 {OHW_R5KEOP, "R5KEOP"}, 1327 {OHW_R5KCVTL, "R5KCVTL"}, 1328 {0, NULL} 1329 }; 1330 1331 static struct mips_option mips_hwa_option[] = { 1332 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1333 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1334 {0, NULL} 1335 }; 1336 1337 static struct mips_option mips_hwo_option[] = { 1338 {OHWO0_FIXADE, "FIXADE"}, 1339 {0, NULL} 1340 }; 1341 1342 static const char * 1343 option_kind(uint8_t kind) 1344 { 1345 static char s_kind[32]; 1346 1347 switch (kind) { 1348 case ODK_NULL: return "NULL"; 1349 case ODK_REGINFO: return "REGINFO"; 1350 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1351 case ODK_PAD: return "PAD"; 1352 case ODK_HWPATCH: return "HWPATCH"; 1353 case ODK_FILL: return "FILL"; 1354 case ODK_TAGS: return "TAGS"; 1355 case ODK_HWAND: return "HWAND"; 1356 case ODK_HWOR: return "HWOR"; 1357 case ODK_GP_GROUP: return "GP_GROUP"; 1358 case ODK_IDENT: return "IDENT"; 1359 default: 1360 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1361 return (s_kind); 1362 } 1363 } 1364 1365 static const char * 1366 top_tag(unsigned int tag) 1367 { 1368 static char s_top_tag[32]; 1369 1370 switch (tag) { 1371 case 1: return "File Attributes"; 1372 case 2: return "Section Attributes"; 1373 case 3: return "Symbol Attributes"; 1374 default: 1375 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1376 return (s_top_tag); 1377 } 1378 } 1379 1380 static const char * 1381 aeabi_cpu_arch(uint64_t arch) 1382 { 1383 static char s_cpu_arch[32]; 1384 1385 switch (arch) { 1386 case 0: return "Pre-V4"; 1387 case 1: return "ARM v4"; 1388 case 2: return "ARM v4T"; 1389 case 3: return "ARM v5T"; 1390 case 4: return "ARM v5TE"; 1391 case 5: return "ARM v5TEJ"; 1392 case 6: return "ARM v6"; 1393 case 7: return "ARM v6KZ"; 1394 case 8: return "ARM v6T2"; 1395 case 9: return "ARM v6K"; 1396 case 10: return "ARM v7"; 1397 case 11: return "ARM v6-M"; 1398 case 12: return "ARM v6S-M"; 1399 case 13: return "ARM v7E-M"; 1400 default: 1401 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1402 "Unknown (%ju)", (uintmax_t) arch); 1403 return (s_cpu_arch); 1404 } 1405 } 1406 1407 static const char * 1408 aeabi_cpu_arch_profile(uint64_t pf) 1409 { 1410 static char s_arch_profile[32]; 1411 1412 switch (pf) { 1413 case 0: 1414 return "Not applicable"; 1415 case 0x41: /* 'A' */ 1416 return "Application Profile"; 1417 case 0x52: /* 'R' */ 1418 return "Real-Time Profile"; 1419 case 0x4D: /* 'M' */ 1420 return "Microcontroller Profile"; 1421 case 0x53: /* 'S' */ 1422 return "Application or Real-Time Profile"; 1423 default: 1424 snprintf(s_arch_profile, sizeof(s_arch_profile), 1425 "Unknown (%ju)\n", (uintmax_t) pf); 1426 return (s_arch_profile); 1427 } 1428 } 1429 1430 static const char * 1431 aeabi_arm_isa(uint64_t ai) 1432 { 1433 static char s_ai[32]; 1434 1435 switch (ai) { 1436 case 0: return "No"; 1437 case 1: return "Yes"; 1438 default: 1439 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1440 (uintmax_t) ai); 1441 return (s_ai); 1442 } 1443 } 1444 1445 static const char * 1446 aeabi_thumb_isa(uint64_t ti) 1447 { 1448 static char s_ti[32]; 1449 1450 switch (ti) { 1451 case 0: return "No"; 1452 case 1: return "16-bit Thumb"; 1453 case 2: return "32-bit Thumb"; 1454 default: 1455 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1456 (uintmax_t) ti); 1457 return (s_ti); 1458 } 1459 } 1460 1461 static const char * 1462 aeabi_fp_arch(uint64_t fp) 1463 { 1464 static char s_fp_arch[32]; 1465 1466 switch (fp) { 1467 case 0: return "No"; 1468 case 1: return "VFPv1"; 1469 case 2: return "VFPv2"; 1470 case 3: return "VFPv3"; 1471 case 4: return "VFPv3-D16"; 1472 case 5: return "VFPv4"; 1473 case 6: return "VFPv4-D16"; 1474 default: 1475 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1476 (uintmax_t) fp); 1477 return (s_fp_arch); 1478 } 1479 } 1480 1481 static const char * 1482 aeabi_wmmx_arch(uint64_t wmmx) 1483 { 1484 static char s_wmmx[32]; 1485 1486 switch (wmmx) { 1487 case 0: return "No"; 1488 case 1: return "WMMXv1"; 1489 case 2: return "WMMXv2"; 1490 default: 1491 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1492 (uintmax_t) wmmx); 1493 return (s_wmmx); 1494 } 1495 } 1496 1497 static const char * 1498 aeabi_adv_simd_arch(uint64_t simd) 1499 { 1500 static char s_simd[32]; 1501 1502 switch (simd) { 1503 case 0: return "No"; 1504 case 1: return "NEONv1"; 1505 case 2: return "NEONv2"; 1506 default: 1507 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1508 (uintmax_t) simd); 1509 return (s_simd); 1510 } 1511 } 1512 1513 static const char * 1514 aeabi_pcs_config(uint64_t pcs) 1515 { 1516 static char s_pcs[32]; 1517 1518 switch (pcs) { 1519 case 0: return "None"; 1520 case 1: return "Bare platform"; 1521 case 2: return "Linux"; 1522 case 3: return "Linux DSO"; 1523 case 4: return "Palm OS 2004"; 1524 case 5: return "Palm OS (future)"; 1525 case 6: return "Symbian OS 2004"; 1526 case 7: return "Symbian OS (future)"; 1527 default: 1528 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1529 (uintmax_t) pcs); 1530 return (s_pcs); 1531 } 1532 } 1533 1534 static const char * 1535 aeabi_pcs_r9(uint64_t r9) 1536 { 1537 static char s_r9[32]; 1538 1539 switch (r9) { 1540 case 0: return "V6"; 1541 case 1: return "SB"; 1542 case 2: return "TLS pointer"; 1543 case 3: return "Unused"; 1544 default: 1545 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1546 return (s_r9); 1547 } 1548 } 1549 1550 static const char * 1551 aeabi_pcs_rw(uint64_t rw) 1552 { 1553 static char s_rw[32]; 1554 1555 switch (rw) { 1556 case 0: return "Absolute"; 1557 case 1: return "PC-relative"; 1558 case 2: return "SB-relative"; 1559 case 3: return "None"; 1560 default: 1561 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1562 return (s_rw); 1563 } 1564 } 1565 1566 static const char * 1567 aeabi_pcs_ro(uint64_t ro) 1568 { 1569 static char s_ro[32]; 1570 1571 switch (ro) { 1572 case 0: return "Absolute"; 1573 case 1: return "PC-relative"; 1574 case 2: return "None"; 1575 default: 1576 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1577 return (s_ro); 1578 } 1579 } 1580 1581 static const char * 1582 aeabi_pcs_got(uint64_t got) 1583 { 1584 static char s_got[32]; 1585 1586 switch (got) { 1587 case 0: return "None"; 1588 case 1: return "direct"; 1589 case 2: return "indirect via GOT"; 1590 default: 1591 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1592 (uintmax_t) got); 1593 return (s_got); 1594 } 1595 } 1596 1597 static const char * 1598 aeabi_pcs_wchar_t(uint64_t wt) 1599 { 1600 static char s_wt[32]; 1601 1602 switch (wt) { 1603 case 0: return "None"; 1604 case 2: return "wchar_t size 2"; 1605 case 4: return "wchar_t size 4"; 1606 default: 1607 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1608 return (s_wt); 1609 } 1610 } 1611 1612 static const char * 1613 aeabi_enum_size(uint64_t es) 1614 { 1615 static char s_es[32]; 1616 1617 switch (es) { 1618 case 0: return "None"; 1619 case 1: return "smallest"; 1620 case 2: return "32-bit"; 1621 case 3: return "visible 32-bit"; 1622 default: 1623 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1624 return (s_es); 1625 } 1626 } 1627 1628 static const char * 1629 aeabi_align_needed(uint64_t an) 1630 { 1631 static char s_align_n[64]; 1632 1633 switch (an) { 1634 case 0: return "No"; 1635 case 1: return "8-byte align"; 1636 case 2: return "4-byte align"; 1637 case 3: return "Reserved"; 1638 default: 1639 if (an >= 4 && an <= 12) 1640 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1641 " and up to 2^%ju-byte extended align", 1642 (uintmax_t) an); 1643 else 1644 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1645 (uintmax_t) an); 1646 return (s_align_n); 1647 } 1648 } 1649 1650 static const char * 1651 aeabi_align_preserved(uint64_t ap) 1652 { 1653 static char s_align_p[128]; 1654 1655 switch (ap) { 1656 case 0: return "No"; 1657 case 1: return "8-byte align"; 1658 case 2: return "8-byte align and SP % 8 == 0"; 1659 case 3: return "Reserved"; 1660 default: 1661 if (ap >= 4 && ap <= 12) 1662 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1663 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1664 " align", (uintmax_t) ap); 1665 else 1666 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1667 (uintmax_t) ap); 1668 return (s_align_p); 1669 } 1670 } 1671 1672 static const char * 1673 aeabi_fp_rounding(uint64_t fr) 1674 { 1675 static char s_fp_r[32]; 1676 1677 switch (fr) { 1678 case 0: return "Unused"; 1679 case 1: return "Needed"; 1680 default: 1681 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1682 (uintmax_t) fr); 1683 return (s_fp_r); 1684 } 1685 } 1686 1687 static const char * 1688 aeabi_fp_denormal(uint64_t fd) 1689 { 1690 static char s_fp_d[32]; 1691 1692 switch (fd) { 1693 case 0: return "Unused"; 1694 case 1: return "Needed"; 1695 case 2: return "Sign Only"; 1696 default: 1697 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1698 (uintmax_t) fd); 1699 return (s_fp_d); 1700 } 1701 } 1702 1703 static const char * 1704 aeabi_fp_exceptions(uint64_t fe) 1705 { 1706 static char s_fp_e[32]; 1707 1708 switch (fe) { 1709 case 0: return "Unused"; 1710 case 1: return "Needed"; 1711 default: 1712 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1713 (uintmax_t) fe); 1714 return (s_fp_e); 1715 } 1716 } 1717 1718 static const char * 1719 aeabi_fp_user_exceptions(uint64_t fu) 1720 { 1721 static char s_fp_u[32]; 1722 1723 switch (fu) { 1724 case 0: return "Unused"; 1725 case 1: return "Needed"; 1726 default: 1727 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1728 (uintmax_t) fu); 1729 return (s_fp_u); 1730 } 1731 } 1732 1733 static const char * 1734 aeabi_fp_number_model(uint64_t fn) 1735 { 1736 static char s_fp_n[32]; 1737 1738 switch (fn) { 1739 case 0: return "Unused"; 1740 case 1: return "IEEE 754 normal"; 1741 case 2: return "RTABI"; 1742 case 3: return "IEEE 754"; 1743 default: 1744 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1745 (uintmax_t) fn); 1746 return (s_fp_n); 1747 } 1748 } 1749 1750 static const char * 1751 aeabi_fp_16bit_format(uint64_t fp16) 1752 { 1753 static char s_fp_16[64]; 1754 1755 switch (fp16) { 1756 case 0: return "None"; 1757 case 1: return "IEEE 754"; 1758 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1759 default: 1760 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1761 (uintmax_t) fp16); 1762 return (s_fp_16); 1763 } 1764 } 1765 1766 static const char * 1767 aeabi_mpext(uint64_t mp) 1768 { 1769 static char s_mp[32]; 1770 1771 switch (mp) { 1772 case 0: return "Not allowed"; 1773 case 1: return "Allowed"; 1774 default: 1775 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1776 (uintmax_t) mp); 1777 return (s_mp); 1778 } 1779 } 1780 1781 static const char * 1782 aeabi_div(uint64_t du) 1783 { 1784 static char s_du[32]; 1785 1786 switch (du) { 1787 case 0: return "Yes (V7-R/V7-M)"; 1788 case 1: return "No"; 1789 case 2: return "Yes (V7-A)"; 1790 default: 1791 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1792 (uintmax_t) du); 1793 return (s_du); 1794 } 1795 } 1796 1797 static const char * 1798 aeabi_t2ee(uint64_t t2ee) 1799 { 1800 static char s_t2ee[32]; 1801 1802 switch (t2ee) { 1803 case 0: return "Not allowed"; 1804 case 1: return "Allowed"; 1805 default: 1806 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1807 (uintmax_t) t2ee); 1808 return (s_t2ee); 1809 } 1810 1811 } 1812 1813 static const char * 1814 aeabi_hardfp(uint64_t hfp) 1815 { 1816 static char s_hfp[32]; 1817 1818 switch (hfp) { 1819 case 0: return "Tag_FP_arch"; 1820 case 1: return "only SP"; 1821 case 2: return "only DP"; 1822 case 3: return "both SP and DP"; 1823 default: 1824 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1825 (uintmax_t) hfp); 1826 return (s_hfp); 1827 } 1828 } 1829 1830 static const char * 1831 aeabi_vfp_args(uint64_t va) 1832 { 1833 static char s_va[32]; 1834 1835 switch (va) { 1836 case 0: return "AAPCS (base variant)"; 1837 case 1: return "AAPCS (VFP variant)"; 1838 case 2: return "toolchain-specific"; 1839 default: 1840 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1841 return (s_va); 1842 } 1843 } 1844 1845 static const char * 1846 aeabi_wmmx_args(uint64_t wa) 1847 { 1848 static char s_wa[32]; 1849 1850 switch (wa) { 1851 case 0: return "AAPCS (base variant)"; 1852 case 1: return "Intel WMMX"; 1853 case 2: return "toolchain-specific"; 1854 default: 1855 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1856 return (s_wa); 1857 } 1858 } 1859 1860 static const char * 1861 aeabi_unaligned_access(uint64_t ua) 1862 { 1863 static char s_ua[32]; 1864 1865 switch (ua) { 1866 case 0: return "Not allowed"; 1867 case 1: return "Allowed"; 1868 default: 1869 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1870 return (s_ua); 1871 } 1872 } 1873 1874 static const char * 1875 aeabi_fp_hpext(uint64_t fh) 1876 { 1877 static char s_fh[32]; 1878 1879 switch (fh) { 1880 case 0: return "Not allowed"; 1881 case 1: return "Allowed"; 1882 default: 1883 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1884 return (s_fh); 1885 } 1886 } 1887 1888 static const char * 1889 aeabi_optm_goal(uint64_t og) 1890 { 1891 static char s_og[32]; 1892 1893 switch (og) { 1894 case 0: return "None"; 1895 case 1: return "Speed"; 1896 case 2: return "Speed aggressive"; 1897 case 3: return "Space"; 1898 case 4: return "Space aggressive"; 1899 case 5: return "Debugging"; 1900 case 6: return "Best Debugging"; 1901 default: 1902 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1903 return (s_og); 1904 } 1905 } 1906 1907 static const char * 1908 aeabi_fp_optm_goal(uint64_t fog) 1909 { 1910 static char s_fog[32]; 1911 1912 switch (fog) { 1913 case 0: return "None"; 1914 case 1: return "Speed"; 1915 case 2: return "Speed aggressive"; 1916 case 3: return "Space"; 1917 case 4: return "Space aggressive"; 1918 case 5: return "Accurary"; 1919 case 6: return "Best Accurary"; 1920 default: 1921 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1922 (uintmax_t) fog); 1923 return (s_fog); 1924 } 1925 } 1926 1927 static const char * 1928 aeabi_virtual(uint64_t vt) 1929 { 1930 static char s_virtual[64]; 1931 1932 switch (vt) { 1933 case 0: return "No"; 1934 case 1: return "TrustZone"; 1935 case 2: return "Virtualization extension"; 1936 case 3: return "TrustZone and virtualization extension"; 1937 default: 1938 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1939 (uintmax_t) vt); 1940 return (s_virtual); 1941 } 1942 } 1943 1944 static struct { 1945 uint64_t tag; 1946 const char *s_tag; 1947 const char *(*get_desc)(uint64_t val); 1948 } aeabi_tags[] = { 1949 {4, "Tag_CPU_raw_name", NULL}, 1950 {5, "Tag_CPU_name", NULL}, 1951 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1952 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1953 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1954 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1955 {10, "Tag_FP_arch", aeabi_fp_arch}, 1956 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1957 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1958 {13, "Tag_PCS_config", aeabi_pcs_config}, 1959 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1960 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1961 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1962 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1963 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1964 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1965 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1966 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1967 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1968 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1969 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1970 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1971 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1972 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1973 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1974 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1975 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1976 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1977 {32, "Tag_compatibility", NULL}, 1978 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1979 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1980 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1981 {42, "Tag_MPextension_use", aeabi_mpext}, 1982 {44, "Tag_DIV_use", aeabi_div}, 1983 {64, "Tag_nodefaults", NULL}, 1984 {65, "Tag_also_compatible_with", NULL}, 1985 {66, "Tag_T2EE_use", aeabi_t2ee}, 1986 {67, "Tag_conformance", NULL}, 1987 {68, "Tag_Virtualization_use", aeabi_virtual}, 1988 {70, "Tag_MPextension_use", aeabi_mpext}, 1989 }; 1990 1991 static const char * 1992 mips_abi_fp(uint64_t fp) 1993 { 1994 static char s_mips_abi_fp[64]; 1995 1996 switch (fp) { 1997 case 0: return "N/A"; 1998 case 1: return "Hard float (double precision)"; 1999 case 2: return "Hard float (single precision)"; 2000 case 3: return "Soft float"; 2001 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2002 default: 2003 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2004 (uintmax_t) fp); 2005 return (s_mips_abi_fp); 2006 } 2007 } 2008 2009 static const char * 2010 ppc_abi_fp(uint64_t fp) 2011 { 2012 static char s_ppc_abi_fp[64]; 2013 2014 switch (fp) { 2015 case 0: return "N/A"; 2016 case 1: return "Hard float (double precision)"; 2017 case 2: return "Soft float"; 2018 case 3: return "Hard float (single precision)"; 2019 default: 2020 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2021 (uintmax_t) fp); 2022 return (s_ppc_abi_fp); 2023 } 2024 } 2025 2026 static const char * 2027 ppc_abi_vector(uint64_t vec) 2028 { 2029 static char s_vec[64]; 2030 2031 switch (vec) { 2032 case 0: return "N/A"; 2033 case 1: return "Generic purpose registers"; 2034 case 2: return "AltiVec registers"; 2035 case 3: return "SPE registers"; 2036 default: 2037 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2038 return (s_vec); 2039 } 2040 } 2041 2042 static const char * 2043 dwarf_reg(unsigned int mach, unsigned int reg) 2044 { 2045 2046 switch (mach) { 2047 case EM_386: 2048 case EM_IAMCU: 2049 switch (reg) { 2050 case 0: return "eax"; 2051 case 1: return "ecx"; 2052 case 2: return "edx"; 2053 case 3: return "ebx"; 2054 case 4: return "esp"; 2055 case 5: return "ebp"; 2056 case 6: return "esi"; 2057 case 7: return "edi"; 2058 case 8: return "eip"; 2059 case 9: return "eflags"; 2060 case 11: return "st0"; 2061 case 12: return "st1"; 2062 case 13: return "st2"; 2063 case 14: return "st3"; 2064 case 15: return "st4"; 2065 case 16: return "st5"; 2066 case 17: return "st6"; 2067 case 18: return "st7"; 2068 case 21: return "xmm0"; 2069 case 22: return "xmm1"; 2070 case 23: return "xmm2"; 2071 case 24: return "xmm3"; 2072 case 25: return "xmm4"; 2073 case 26: return "xmm5"; 2074 case 27: return "xmm6"; 2075 case 28: return "xmm7"; 2076 case 29: return "mm0"; 2077 case 30: return "mm1"; 2078 case 31: return "mm2"; 2079 case 32: return "mm3"; 2080 case 33: return "mm4"; 2081 case 34: return "mm5"; 2082 case 35: return "mm6"; 2083 case 36: return "mm7"; 2084 case 37: return "fcw"; 2085 case 38: return "fsw"; 2086 case 39: return "mxcsr"; 2087 case 40: return "es"; 2088 case 41: return "cs"; 2089 case 42: return "ss"; 2090 case 43: return "ds"; 2091 case 44: return "fs"; 2092 case 45: return "gs"; 2093 case 48: return "tr"; 2094 case 49: return "ldtr"; 2095 default: return (NULL); 2096 } 2097 case EM_RISCV: 2098 switch (reg) { 2099 case 0: return "zero"; 2100 case 1: return "ra"; 2101 case 2: return "sp"; 2102 case 3: return "gp"; 2103 case 4: return "tp"; 2104 case 5: return "t0"; 2105 case 6: return "t1"; 2106 case 7: return "t2"; 2107 case 8: return "s0"; 2108 case 9: return "s1"; 2109 case 10: return "a0"; 2110 case 11: return "a1"; 2111 case 12: return "a2"; 2112 case 13: return "a3"; 2113 case 14: return "a4"; 2114 case 15: return "a5"; 2115 case 16: return "a6"; 2116 case 17: return "a7"; 2117 case 18: return "s2"; 2118 case 19: return "s3"; 2119 case 20: return "s4"; 2120 case 21: return "s5"; 2121 case 22: return "s6"; 2122 case 23: return "s7"; 2123 case 24: return "s8"; 2124 case 25: return "s9"; 2125 case 26: return "s10"; 2126 case 27: return "s11"; 2127 case 28: return "t3"; 2128 case 29: return "t4"; 2129 case 30: return "t5"; 2130 case 31: return "t6"; 2131 case 32: return "ft0"; 2132 case 33: return "ft1"; 2133 case 34: return "ft2"; 2134 case 35: return "ft3"; 2135 case 36: return "ft4"; 2136 case 37: return "ft5"; 2137 case 38: return "ft6"; 2138 case 39: return "ft7"; 2139 case 40: return "fs0"; 2140 case 41: return "fs1"; 2141 case 42: return "fa0"; 2142 case 43: return "fa1"; 2143 case 44: return "fa2"; 2144 case 45: return "fa3"; 2145 case 46: return "fa4"; 2146 case 47: return "fa5"; 2147 case 48: return "fa6"; 2148 case 49: return "fa7"; 2149 case 50: return "fs2"; 2150 case 51: return "fs3"; 2151 case 52: return "fs4"; 2152 case 53: return "fs5"; 2153 case 54: return "fs6"; 2154 case 55: return "fs7"; 2155 case 56: return "fs8"; 2156 case 57: return "fs9"; 2157 case 58: return "fs10"; 2158 case 59: return "fs11"; 2159 case 60: return "ft8"; 2160 case 61: return "ft9"; 2161 case 62: return "ft10"; 2162 case 63: return "ft11"; 2163 default: return (NULL); 2164 } 2165 case EM_X86_64: 2166 switch (reg) { 2167 case 0: return "rax"; 2168 case 1: return "rdx"; 2169 case 2: return "rcx"; 2170 case 3: return "rbx"; 2171 case 4: return "rsi"; 2172 case 5: return "rdi"; 2173 case 6: return "rbp"; 2174 case 7: return "rsp"; 2175 case 16: return "rip"; 2176 case 17: return "xmm0"; 2177 case 18: return "xmm1"; 2178 case 19: return "xmm2"; 2179 case 20: return "xmm3"; 2180 case 21: return "xmm4"; 2181 case 22: return "xmm5"; 2182 case 23: return "xmm6"; 2183 case 24: return "xmm7"; 2184 case 25: return "xmm8"; 2185 case 26: return "xmm9"; 2186 case 27: return "xmm10"; 2187 case 28: return "xmm11"; 2188 case 29: return "xmm12"; 2189 case 30: return "xmm13"; 2190 case 31: return "xmm14"; 2191 case 32: return "xmm15"; 2192 case 33: return "st0"; 2193 case 34: return "st1"; 2194 case 35: return "st2"; 2195 case 36: return "st3"; 2196 case 37: return "st4"; 2197 case 38: return "st5"; 2198 case 39: return "st6"; 2199 case 40: return "st7"; 2200 case 41: return "mm0"; 2201 case 42: return "mm1"; 2202 case 43: return "mm2"; 2203 case 44: return "mm3"; 2204 case 45: return "mm4"; 2205 case 46: return "mm5"; 2206 case 47: return "mm6"; 2207 case 48: return "mm7"; 2208 case 49: return "rflags"; 2209 case 50: return "es"; 2210 case 51: return "cs"; 2211 case 52: return "ss"; 2212 case 53: return "ds"; 2213 case 54: return "fs"; 2214 case 55: return "gs"; 2215 case 58: return "fs.base"; 2216 case 59: return "gs.base"; 2217 case 62: return "tr"; 2218 case 63: return "ldtr"; 2219 case 64: return "mxcsr"; 2220 case 65: return "fcw"; 2221 case 66: return "fsw"; 2222 default: return (NULL); 2223 } 2224 default: 2225 return (NULL); 2226 } 2227 } 2228 2229 static void 2230 dump_ehdr(struct readelf *re) 2231 { 2232 size_t phnum, shnum, shstrndx; 2233 int i; 2234 2235 printf("ELF Header:\n"); 2236 2237 /* e_ident[]. */ 2238 printf(" Magic: "); 2239 for (i = 0; i < EI_NIDENT; i++) 2240 printf("%.2x ", re->ehdr.e_ident[i]); 2241 putchar('\n'); 2242 2243 /* EI_CLASS. */ 2244 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2245 2246 /* EI_DATA. */ 2247 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2248 2249 /* EI_VERSION. */ 2250 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2251 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2252 2253 /* EI_OSABI. */ 2254 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2255 2256 /* EI_ABIVERSION. */ 2257 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2258 2259 /* e_type. */ 2260 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2261 2262 /* e_machine. */ 2263 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2264 2265 /* e_version. */ 2266 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2267 2268 /* e_entry. */ 2269 printf("%-37s%#jx\n", " Entry point address:", 2270 (uintmax_t)re->ehdr.e_entry); 2271 2272 /* e_phoff. */ 2273 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2274 (uintmax_t)re->ehdr.e_phoff); 2275 2276 /* e_shoff. */ 2277 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2278 (uintmax_t)re->ehdr.e_shoff); 2279 2280 /* e_flags. */ 2281 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2282 dump_eflags(re, re->ehdr.e_flags); 2283 putchar('\n'); 2284 2285 /* e_ehsize. */ 2286 printf("%-37s%u (bytes)\n", " Size of this header:", 2287 re->ehdr.e_ehsize); 2288 2289 /* e_phentsize. */ 2290 printf("%-37s%u (bytes)\n", " Size of program headers:", 2291 re->ehdr.e_phentsize); 2292 2293 /* e_phnum. */ 2294 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2295 if (re->ehdr.e_phnum == PN_XNUM) { 2296 /* Extended program header numbering is in use. */ 2297 if (elf_getphnum(re->elf, &phnum)) 2298 printf(" (%zu)", phnum); 2299 } 2300 putchar('\n'); 2301 2302 /* e_shentsize. */ 2303 printf("%-37s%u (bytes)\n", " Size of section headers:", 2304 re->ehdr.e_shentsize); 2305 2306 /* e_shnum. */ 2307 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2308 if (re->ehdr.e_shnum == SHN_UNDEF) { 2309 /* Extended section numbering is in use. */ 2310 if (elf_getshnum(re->elf, &shnum)) 2311 printf(" (%ju)", (uintmax_t)shnum); 2312 } 2313 putchar('\n'); 2314 2315 /* e_shstrndx. */ 2316 printf("%-37s%u", " Section header string table index:", 2317 re->ehdr.e_shstrndx); 2318 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2319 /* Extended section numbering is in use. */ 2320 if (elf_getshstrndx(re->elf, &shstrndx)) 2321 printf(" (%ju)", (uintmax_t)shstrndx); 2322 } 2323 putchar('\n'); 2324 } 2325 2326 static void 2327 dump_eflags(struct readelf *re, uint64_t e_flags) 2328 { 2329 struct eflags_desc *edesc; 2330 int arm_eabi; 2331 2332 edesc = NULL; 2333 switch (re->ehdr.e_machine) { 2334 case EM_ARM: 2335 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2336 if (arm_eabi == 0) 2337 printf(", GNU EABI"); 2338 else if (arm_eabi <= 5) 2339 printf(", Version%d EABI", arm_eabi); 2340 edesc = arm_eflags_desc; 2341 break; 2342 case EM_MIPS: 2343 case EM_MIPS_RS3_LE: 2344 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2345 case 0: printf(", mips1"); break; 2346 case 1: printf(", mips2"); break; 2347 case 2: printf(", mips3"); break; 2348 case 3: printf(", mips4"); break; 2349 case 4: printf(", mips5"); break; 2350 case 5: printf(", mips32"); break; 2351 case 6: printf(", mips64"); break; 2352 case 7: printf(", mips32r2"); break; 2353 case 8: printf(", mips64r2"); break; 2354 default: break; 2355 } 2356 switch ((e_flags & 0x00FF0000) >> 16) { 2357 case 0x81: printf(", 3900"); break; 2358 case 0x82: printf(", 4010"); break; 2359 case 0x83: printf(", 4100"); break; 2360 case 0x85: printf(", 4650"); break; 2361 case 0x87: printf(", 4120"); break; 2362 case 0x88: printf(", 4111"); break; 2363 case 0x8a: printf(", sb1"); break; 2364 case 0x8b: printf(", octeon"); break; 2365 case 0x8c: printf(", xlr"); break; 2366 case 0x91: printf(", 5400"); break; 2367 case 0x98: printf(", 5500"); break; 2368 case 0x99: printf(", 9000"); break; 2369 case 0xa0: printf(", loongson-2e"); break; 2370 case 0xa1: printf(", loongson-2f"); break; 2371 default: break; 2372 } 2373 switch ((e_flags & 0x0000F000) >> 12) { 2374 case 1: printf(", o32"); break; 2375 case 2: printf(", o64"); break; 2376 case 3: printf(", eabi32"); break; 2377 case 4: printf(", eabi64"); break; 2378 default: break; 2379 } 2380 edesc = mips_eflags_desc; 2381 break; 2382 case EM_PPC64: 2383 switch (e_flags) { 2384 case 0: printf(", Unspecified or Power ELF V1 ABI"); break; 2385 case 1: printf(", Power ELF V1 ABI"); break; 2386 case 2: printf(", OpenPOWER ELF V2 ABI"); break; 2387 default: break; 2388 } 2389 /* FALLTHROUGH */ 2390 case EM_PPC: 2391 edesc = powerpc_eflags_desc; 2392 break; 2393 case EM_RISCV: 2394 switch (e_flags & EF_RISCV_FLOAT_ABI_MASK) { 2395 case EF_RISCV_FLOAT_ABI_SOFT: 2396 printf(", soft-float ABI"); 2397 break; 2398 case EF_RISCV_FLOAT_ABI_SINGLE: 2399 printf(", single-float ABI"); 2400 break; 2401 case EF_RISCV_FLOAT_ABI_DOUBLE: 2402 printf(", double-float ABI"); 2403 break; 2404 case EF_RISCV_FLOAT_ABI_QUAD: 2405 printf(", quad-float ABI"); 2406 break; 2407 } 2408 edesc = riscv_eflags_desc; 2409 break; 2410 case EM_SPARC: 2411 case EM_SPARC32PLUS: 2412 case EM_SPARCV9: 2413 switch ((e_flags & EF_SPARCV9_MM)) { 2414 case EF_SPARCV9_TSO: printf(", tso"); break; 2415 case EF_SPARCV9_PSO: printf(", pso"); break; 2416 case EF_SPARCV9_MM: printf(", rmo"); break; 2417 default: break; 2418 } 2419 edesc = sparc_eflags_desc; 2420 break; 2421 default: 2422 break; 2423 } 2424 2425 if (edesc != NULL) { 2426 while (edesc->desc != NULL) { 2427 if (e_flags & edesc->flag) 2428 printf(", %s", edesc->desc); 2429 edesc++; 2430 } 2431 } 2432 } 2433 2434 static void 2435 dump_phdr(struct readelf *re) 2436 { 2437 const char *rawfile; 2438 GElf_Phdr phdr; 2439 size_t phnum, size; 2440 int i, j; 2441 2442 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2443 "MemSiz", "Flg", "Align" 2444 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2445 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2446 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2447 (uintmax_t)phdr.p_memsz, \ 2448 phdr.p_flags & PF_R ? 'R' : ' ', \ 2449 phdr.p_flags & PF_W ? 'W' : ' ', \ 2450 phdr.p_flags & PF_X ? 'E' : ' ', \ 2451 (uintmax_t)phdr.p_align 2452 2453 if (elf_getphnum(re->elf, &phnum) == 0) { 2454 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2455 return; 2456 } 2457 if (phnum == 0) { 2458 printf("\nThere are no program headers in this file.\n"); 2459 return; 2460 } 2461 2462 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2463 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2464 printf("There are %ju program headers, starting at offset %ju\n", 2465 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2466 2467 /* Dump program headers. */ 2468 printf("\nProgram Headers:\n"); 2469 if (re->ec == ELFCLASS32) 2470 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2471 else if (re->options & RE_WW) 2472 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2473 else 2474 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2475 "%-7s%s\n", PH_HDR); 2476 for (i = 0; (size_t) i < phnum; i++) { 2477 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2478 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2479 continue; 2480 } 2481 /* TODO: Add arch-specific segment type dump. */ 2482 if (re->ec == ELFCLASS32) 2483 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2484 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2485 else if (re->options & RE_WW) 2486 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2487 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2488 else 2489 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2490 " 0x%16.16jx 0x%16.16jx %c%c%c" 2491 " %#jx\n", PH_CT); 2492 if (phdr.p_type == PT_INTERP) { 2493 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2494 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2495 continue; 2496 } 2497 if (phdr.p_offset >= size) { 2498 warnx("invalid program header offset"); 2499 continue; 2500 } 2501 printf(" [Requesting program interpreter: %s]\n", 2502 rawfile + phdr.p_offset); 2503 } 2504 } 2505 2506 /* Dump section to segment mapping. */ 2507 if (re->shnum == 0) 2508 return; 2509 printf("\n Section to Segment mapping:\n"); 2510 printf(" Segment Sections...\n"); 2511 for (i = 0; (size_t)i < phnum; i++) { 2512 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2513 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2514 continue; 2515 } 2516 printf(" %2.2d ", i); 2517 /* skip NULL section. */ 2518 for (j = 1; (size_t)j < re->shnum; j++) { 2519 if (re->sl[j].off < phdr.p_offset) 2520 continue; 2521 if (re->sl[j].off + re->sl[j].sz > 2522 phdr.p_offset + phdr.p_filesz && 2523 re->sl[j].type != SHT_NOBITS) 2524 continue; 2525 if (re->sl[j].addr < phdr.p_vaddr || 2526 re->sl[j].addr + re->sl[j].sz > 2527 phdr.p_vaddr + phdr.p_memsz) 2528 continue; 2529 if (phdr.p_type == PT_TLS && 2530 (re->sl[j].flags & SHF_TLS) == 0) 2531 continue; 2532 printf("%s ", re->sl[j].name); 2533 } 2534 printf("\n"); 2535 } 2536 #undef PH_HDR 2537 #undef PH_CT 2538 } 2539 2540 static char * 2541 section_flags(struct readelf *re, struct section *s) 2542 { 2543 #define BUF_SZ 256 2544 static char buf[BUF_SZ]; 2545 int i, p, nb; 2546 2547 p = 0; 2548 nb = re->ec == ELFCLASS32 ? 8 : 16; 2549 if (re->options & RE_T) { 2550 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2551 (uintmax_t)s->flags); 2552 p += nb + 4; 2553 } 2554 for (i = 0; section_flag[i].ln != NULL; i++) { 2555 if ((s->flags & section_flag[i].value) == 0) 2556 continue; 2557 if (re->options & RE_T) { 2558 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2559 section_flag[i].ln); 2560 p += strlen(section_flag[i].ln) + 2; 2561 } else 2562 buf[p++] = section_flag[i].sn; 2563 } 2564 if (re->options & RE_T && p > nb + 4) 2565 p -= 2; 2566 buf[p] = '\0'; 2567 2568 return (buf); 2569 } 2570 2571 static void 2572 dump_shdr(struct readelf *re) 2573 { 2574 struct section *s; 2575 int i; 2576 2577 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2578 "Flg", "Lk", "Inf", "Al" 2579 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2580 "EntSize", "Flags", "Link", "Info", "Align" 2581 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2582 "Lk", "Inf", "Al", "Flags" 2583 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2584 "Size", "EntSize", "Info", "Align", "Flags" 2585 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2586 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2587 (uintmax_t)s->entsize, section_flags(re, s), \ 2588 s->link, s->info, (uintmax_t)s->align 2589 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2590 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2591 (uintmax_t)s->entsize, s->link, s->info, \ 2592 (uintmax_t)s->align, section_flags(re, s) 2593 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2594 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2595 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2596 (uintmax_t)s->align, section_flags(re, s) 2597 2598 if (re->shnum == 0) { 2599 printf("\nThere are no sections in this file.\n"); 2600 return; 2601 } 2602 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2603 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2604 printf("\nSection Headers:\n"); 2605 if (re->ec == ELFCLASS32) { 2606 if (re->options & RE_T) 2607 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2608 "%12s\n", ST_HDR); 2609 else 2610 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2611 S_HDR); 2612 } else if (re->options & RE_WW) { 2613 if (re->options & RE_T) 2614 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2615 "%12s\n", ST_HDR); 2616 else 2617 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2618 S_HDR); 2619 } else { 2620 if (re->options & RE_T) 2621 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2622 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2623 else 2624 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2625 "-6s%-6s%s\n", S_HDRL); 2626 } 2627 for (i = 0; (size_t)i < re->shnum; i++) { 2628 s = &re->sl[i]; 2629 if (re->ec == ELFCLASS32) { 2630 if (re->options & RE_T) 2631 printf(" [%2d] %s\n %-15.15s %8.8jx" 2632 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2633 " %s\n", ST_CT); 2634 else 2635 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2636 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2637 S_CT); 2638 } else if (re->options & RE_WW) { 2639 if (re->options & RE_T) 2640 printf(" [%2d] %s\n %-15.15s %16.16jx" 2641 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2642 " %s\n", ST_CT); 2643 else 2644 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2645 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2646 S_CT); 2647 } else { 2648 if (re->options & RE_T) 2649 printf(" [%2d] %s\n %-15.15s %16.16jx" 2650 " %16.16jx %u\n %16.16jx %16.16jx" 2651 " %-16u %ju\n %s\n", ST_CTL); 2652 else 2653 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2654 " %8.8jx\n %16.16jx %16.16jx " 2655 "%3s %2u %3u %ju\n", S_CT); 2656 } 2657 } 2658 if ((re->options & RE_T) == 0) 2659 printf("Key to Flags:\n W (write), A (alloc)," 2660 " X (execute), M (merge), S (strings)\n" 2661 " I (info), L (link order), G (group), x (unknown)\n" 2662 " O (extra OS processing required)" 2663 " o (OS specific), p (processor specific)\n"); 2664 2665 #undef S_HDR 2666 #undef S_HDRL 2667 #undef ST_HDR 2668 #undef ST_HDRL 2669 #undef S_CT 2670 #undef ST_CT 2671 #undef ST_CTL 2672 } 2673 2674 /* 2675 * Return number of entries in the given section. We'd prefer ent_count be a 2676 * size_t *, but libelf APIs already use int for section indices. 2677 */ 2678 static int 2679 get_ent_count(struct section *s, int *ent_count) 2680 { 2681 if (s->entsize == 0) { 2682 warnx("section %s has entry size 0", s->name); 2683 return (0); 2684 } else if (s->sz / s->entsize > INT_MAX) { 2685 warnx("section %s has invalid section count", s->name); 2686 return (0); 2687 } 2688 *ent_count = (int)(s->sz / s->entsize); 2689 return (1); 2690 } 2691 2692 static void 2693 dump_dynamic(struct readelf *re) 2694 { 2695 GElf_Dyn dyn; 2696 Elf_Data *d; 2697 struct section *s; 2698 int elferr, i, is_dynamic, j, jmax, nentries; 2699 2700 is_dynamic = 0; 2701 2702 for (i = 0; (size_t)i < re->shnum; i++) { 2703 s = &re->sl[i]; 2704 if (s->type != SHT_DYNAMIC) 2705 continue; 2706 (void) elf_errno(); 2707 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2708 elferr = elf_errno(); 2709 if (elferr != 0) 2710 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2711 continue; 2712 } 2713 if (d->d_size <= 0) 2714 continue; 2715 2716 is_dynamic = 1; 2717 2718 /* Determine the actual number of table entries. */ 2719 nentries = 0; 2720 if (!get_ent_count(s, &jmax)) 2721 continue; 2722 for (j = 0; j < jmax; j++) { 2723 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2724 warnx("gelf_getdyn failed: %s", 2725 elf_errmsg(-1)); 2726 continue; 2727 } 2728 nentries ++; 2729 if (dyn.d_tag == DT_NULL) 2730 break; 2731 } 2732 2733 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2734 printf(" contains %u entries:\n", nentries); 2735 2736 if (re->ec == ELFCLASS32) 2737 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2738 else 2739 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2740 2741 for (j = 0; j < nentries; j++) { 2742 if (gelf_getdyn(d, j, &dyn) != &dyn) 2743 continue; 2744 /* Dump dynamic entry type. */ 2745 if (re->ec == ELFCLASS32) 2746 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2747 else 2748 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2749 printf(" %-20s", dt_type(re->ehdr.e_machine, 2750 dyn.d_tag)); 2751 /* Dump dynamic entry value. */ 2752 dump_dyn_val(re, &dyn, s->link); 2753 } 2754 } 2755 2756 if (!is_dynamic) 2757 printf("\nThere is no dynamic section in this file.\n"); 2758 } 2759 2760 static char * 2761 timestamp(time_t ti) 2762 { 2763 static char ts[32]; 2764 struct tm *t; 2765 2766 t = gmtime(&ti); 2767 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2768 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2769 t->tm_min, t->tm_sec); 2770 2771 return (ts); 2772 } 2773 2774 static const char * 2775 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2776 { 2777 const char *name; 2778 2779 if (stab == SHN_UNDEF) 2780 name = "ERROR"; 2781 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2782 (void) elf_errno(); /* clear error */ 2783 name = "ERROR"; 2784 } 2785 2786 return (name); 2787 } 2788 2789 static void 2790 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn) 2791 { 2792 switch (re->ehdr.e_machine) { 2793 case EM_MIPS: 2794 case EM_MIPS_RS3_LE: 2795 switch (dyn->d_tag) { 2796 case DT_MIPS_RLD_VERSION: 2797 case DT_MIPS_LOCAL_GOTNO: 2798 case DT_MIPS_CONFLICTNO: 2799 case DT_MIPS_LIBLISTNO: 2800 case DT_MIPS_SYMTABNO: 2801 case DT_MIPS_UNREFEXTNO: 2802 case DT_MIPS_GOTSYM: 2803 case DT_MIPS_HIPAGENO: 2804 case DT_MIPS_DELTA_CLASS_NO: 2805 case DT_MIPS_DELTA_INSTANCE_NO: 2806 case DT_MIPS_DELTA_RELOC_NO: 2807 case DT_MIPS_DELTA_SYM_NO: 2808 case DT_MIPS_DELTA_CLASSSYM_NO: 2809 case DT_MIPS_LOCALPAGE_GOTIDX: 2810 case DT_MIPS_LOCAL_GOTIDX: 2811 case DT_MIPS_HIDDEN_GOTIDX: 2812 case DT_MIPS_PROTECTED_GOTIDX: 2813 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2814 break; 2815 case DT_MIPS_ICHECKSUM: 2816 case DT_MIPS_FLAGS: 2817 case DT_MIPS_BASE_ADDRESS: 2818 case DT_MIPS_CONFLICT: 2819 case DT_MIPS_LIBLIST: 2820 case DT_MIPS_RLD_MAP: 2821 case DT_MIPS_DELTA_CLASS: 2822 case DT_MIPS_DELTA_INSTANCE: 2823 case DT_MIPS_DELTA_RELOC: 2824 case DT_MIPS_DELTA_SYM: 2825 case DT_MIPS_DELTA_CLASSSYM: 2826 case DT_MIPS_CXX_FLAGS: 2827 case DT_MIPS_PIXIE_INIT: 2828 case DT_MIPS_SYMBOL_LIB: 2829 case DT_MIPS_OPTIONS: 2830 case DT_MIPS_INTERFACE: 2831 case DT_MIPS_DYNSTR_ALIGN: 2832 case DT_MIPS_INTERFACE_SIZE: 2833 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2834 case DT_MIPS_COMPACT_SIZE: 2835 case DT_MIPS_GP_VALUE: 2836 case DT_MIPS_AUX_DYNAMIC: 2837 case DT_MIPS_PLTGOT: 2838 case DT_MIPS_RLD_OBJ_UPDATE: 2839 case DT_MIPS_RWPLT: 2840 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2841 break; 2842 case DT_MIPS_IVERSION: 2843 case DT_MIPS_PERF_SUFFIX: 2844 case DT_MIPS_TIME_STAMP: 2845 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2846 break; 2847 default: 2848 printf("\n"); 2849 break; 2850 } 2851 break; 2852 default: 2853 printf("\n"); 2854 break; 2855 } 2856 } 2857 2858 static void 2859 dump_flags(struct flag_desc *desc, uint64_t val) 2860 { 2861 struct flag_desc *fd; 2862 2863 for (fd = desc; fd->flag != 0; fd++) { 2864 if (val & fd->flag) { 2865 val &= ~fd->flag; 2866 printf(" %s", fd->desc); 2867 } 2868 } 2869 if (val != 0) 2870 printf(" unknown (0x%jx)", (uintmax_t)val); 2871 printf("\n"); 2872 } 2873 2874 static struct flag_desc dt_flags[] = { 2875 { DF_ORIGIN, "ORIGIN" }, 2876 { DF_SYMBOLIC, "SYMBOLIC" }, 2877 { DF_TEXTREL, "TEXTREL" }, 2878 { DF_BIND_NOW, "BIND_NOW" }, 2879 { DF_STATIC_TLS, "STATIC_TLS" }, 2880 { 0, NULL } 2881 }; 2882 2883 static struct flag_desc dt_flags_1[] = { 2884 { DF_1_BIND_NOW, "NOW" }, 2885 { DF_1_GLOBAL, "GLOBAL" }, 2886 { 0x4, "GROUP" }, 2887 { DF_1_NODELETE, "NODELETE" }, 2888 { DF_1_LOADFLTR, "LOADFLTR" }, 2889 { 0x20, "INITFIRST" }, 2890 { DF_1_NOOPEN, "NOOPEN" }, 2891 { DF_1_ORIGIN, "ORIGIN" }, 2892 { 0x100, "DIRECT" }, 2893 { DF_1_INTERPOSE, "INTERPOSE" }, 2894 { DF_1_NODEFLIB, "NODEFLIB" }, 2895 { 0x1000, "NODUMP" }, 2896 { 0x2000, "CONFALT" }, 2897 { 0x4000, "ENDFILTEE" }, 2898 { 0x8000, "DISPRELDNE" }, 2899 { 0x10000, "DISPRELPND" }, 2900 { 0x20000, "NODIRECT" }, 2901 { 0x40000, "IGNMULDEF" }, 2902 { 0x80000, "NOKSYMS" }, 2903 { 0x100000, "NOHDR" }, 2904 { 0x200000, "EDITED" }, 2905 { 0x400000, "NORELOC" }, 2906 { 0x800000, "SYMINTPOSE" }, 2907 { 0x1000000, "GLOBAUDIT" }, 2908 { 0x02000000, "SINGLETON" }, 2909 { 0x04000000, "STUB" }, 2910 { DF_1_PIE, "PIE" }, 2911 { 0, NULL } 2912 }; 2913 2914 static void 2915 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2916 { 2917 const char *name; 2918 2919 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC && 2920 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) { 2921 dump_arch_dyn_val(re, dyn); 2922 return; 2923 } 2924 2925 /* These entry values are index into the string table. */ 2926 name = NULL; 2927 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER || 2928 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2929 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2930 name = dyn_str(re, stab, dyn->d_un.d_val); 2931 2932 switch(dyn->d_tag) { 2933 case DT_NULL: 2934 case DT_PLTGOT: 2935 case DT_HASH: 2936 case DT_STRTAB: 2937 case DT_SYMTAB: 2938 case DT_RELA: 2939 case DT_INIT: 2940 case DT_SYMBOLIC: 2941 case DT_REL: 2942 case DT_DEBUG: 2943 case DT_TEXTREL: 2944 case DT_JMPREL: 2945 case DT_FINI: 2946 case DT_VERDEF: 2947 case DT_VERNEED: 2948 case DT_VERSYM: 2949 case DT_GNU_HASH: 2950 case DT_GNU_LIBLIST: 2951 case DT_GNU_CONFLICT: 2952 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2953 break; 2954 case DT_PLTRELSZ: 2955 case DT_RELASZ: 2956 case DT_RELAENT: 2957 case DT_STRSZ: 2958 case DT_SYMENT: 2959 case DT_RELSZ: 2960 case DT_RELENT: 2961 case DT_PREINIT_ARRAYSZ: 2962 case DT_INIT_ARRAYSZ: 2963 case DT_FINI_ARRAYSZ: 2964 case DT_GNU_CONFLICTSZ: 2965 case DT_GNU_LIBLISTSZ: 2966 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2967 break; 2968 case DT_RELACOUNT: 2969 case DT_RELCOUNT: 2970 case DT_VERDEFNUM: 2971 case DT_VERNEEDNUM: 2972 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2973 break; 2974 case DT_AUXILIARY: 2975 printf(" Auxiliary library: [%s]\n", name); 2976 break; 2977 case DT_FILTER: 2978 printf(" Filter library: [%s]\n", name); 2979 break; 2980 case DT_NEEDED: 2981 printf(" Shared library: [%s]\n", name); 2982 break; 2983 case DT_SONAME: 2984 printf(" Library soname: [%s]\n", name); 2985 break; 2986 case DT_RPATH: 2987 printf(" Library rpath: [%s]\n", name); 2988 break; 2989 case DT_RUNPATH: 2990 printf(" Library runpath: [%s]\n", name); 2991 break; 2992 case DT_PLTREL: 2993 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2994 break; 2995 case DT_GNU_PRELINKED: 2996 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2997 break; 2998 case DT_FLAGS: 2999 dump_flags(dt_flags, dyn->d_un.d_val); 3000 break; 3001 case DT_FLAGS_1: 3002 dump_flags(dt_flags_1, dyn->d_un.d_val); 3003 break; 3004 default: 3005 printf("\n"); 3006 } 3007 } 3008 3009 static void 3010 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3011 { 3012 GElf_Rel r; 3013 const char *symname; 3014 uint64_t symval; 3015 int i, len; 3016 uint32_t type; 3017 uint8_t type2, type3; 3018 3019 if (s->link >= re->shnum) 3020 return; 3021 3022 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3023 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3024 elftc_reloc_type_str(re->ehdr.e_machine, \ 3025 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 3026 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3027 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 3028 (uintmax_t)symval, symname 3029 3030 printf("\nRelocation section (%s):\n", s->name); 3031 if (re->ec == ELFCLASS32) 3032 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3033 else { 3034 if (re->options & RE_WW) 3035 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3036 else 3037 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3038 } 3039 assert(d->d_size == s->sz); 3040 if (!get_ent_count(s, &len)) 3041 return; 3042 for (i = 0; i < len; i++) { 3043 if (gelf_getrel(d, i, &r) != &r) { 3044 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3045 continue; 3046 } 3047 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3048 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3049 if (re->ec == ELFCLASS32) { 3050 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3051 ELF64_R_TYPE(r.r_info)); 3052 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3053 } else { 3054 type = ELF64_R_TYPE(r.r_info); 3055 if (re->ehdr.e_machine == EM_MIPS) { 3056 type2 = (type >> 8) & 0xFF; 3057 type3 = (type >> 16) & 0xFF; 3058 type = type & 0xFF; 3059 } else { 3060 type2 = type3 = 0; 3061 } 3062 if (re->options & RE_WW) 3063 printf("%16.16jx %16.16jx %-24.24s" 3064 " %16.16jx %s\n", REL_CT64); 3065 else 3066 printf("%12.12jx %12.12jx %-19.19s" 3067 " %16.16jx %s\n", REL_CT64); 3068 if (re->ehdr.e_machine == EM_MIPS) { 3069 if (re->options & RE_WW) { 3070 printf("%32s: %s\n", "Type2", 3071 elftc_reloc_type_str(EM_MIPS, 3072 type2)); 3073 printf("%32s: %s\n", "Type3", 3074 elftc_reloc_type_str(EM_MIPS, 3075 type3)); 3076 } else { 3077 printf("%24s: %s\n", "Type2", 3078 elftc_reloc_type_str(EM_MIPS, 3079 type2)); 3080 printf("%24s: %s\n", "Type3", 3081 elftc_reloc_type_str(EM_MIPS, 3082 type3)); 3083 } 3084 } 3085 } 3086 } 3087 3088 #undef REL_HDR 3089 #undef REL_CT 3090 } 3091 3092 static void 3093 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3094 { 3095 GElf_Rela r; 3096 const char *symname; 3097 uint64_t symval; 3098 int i, len; 3099 uint32_t type; 3100 uint8_t type2, type3; 3101 3102 if (s->link >= re->shnum) 3103 return; 3104 3105 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3106 "st_name + r_addend" 3107 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3108 elftc_reloc_type_str(re->ehdr.e_machine, \ 3109 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 3110 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3111 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 3112 (uintmax_t)symval, symname 3113 3114 printf("\nRelocation section with addend (%s):\n", s->name); 3115 if (re->ec == ELFCLASS32) 3116 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3117 else { 3118 if (re->options & RE_WW) 3119 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3120 else 3121 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3122 } 3123 assert(d->d_size == s->sz); 3124 if (!get_ent_count(s, &len)) 3125 return; 3126 for (i = 0; i < len; i++) { 3127 if (gelf_getrela(d, i, &r) != &r) { 3128 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3129 continue; 3130 } 3131 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3132 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3133 if (re->ec == ELFCLASS32) { 3134 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3135 ELF64_R_TYPE(r.r_info)); 3136 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3137 printf(" + %x\n", (uint32_t) r.r_addend); 3138 } else { 3139 type = ELF64_R_TYPE(r.r_info); 3140 if (re->ehdr.e_machine == EM_MIPS) { 3141 type2 = (type >> 8) & 0xFF; 3142 type3 = (type >> 16) & 0xFF; 3143 type = type & 0xFF; 3144 } else { 3145 type2 = type3 = 0; 3146 } 3147 if (re->options & RE_WW) 3148 printf("%16.16jx %16.16jx %-24.24s" 3149 " %16.16jx %s", RELA_CT64); 3150 else 3151 printf("%12.12jx %12.12jx %-19.19s" 3152 " %16.16jx %s", RELA_CT64); 3153 printf(" + %jx\n", (uintmax_t) r.r_addend); 3154 if (re->ehdr.e_machine == EM_MIPS) { 3155 if (re->options & RE_WW) { 3156 printf("%32s: %s\n", "Type2", 3157 elftc_reloc_type_str(EM_MIPS, 3158 type2)); 3159 printf("%32s: %s\n", "Type3", 3160 elftc_reloc_type_str(EM_MIPS, 3161 type3)); 3162 } else { 3163 printf("%24s: %s\n", "Type2", 3164 elftc_reloc_type_str(EM_MIPS, 3165 type2)); 3166 printf("%24s: %s\n", "Type3", 3167 elftc_reloc_type_str(EM_MIPS, 3168 type3)); 3169 } 3170 } 3171 } 3172 } 3173 3174 #undef RELA_HDR 3175 #undef RELA_CT 3176 } 3177 3178 static void 3179 dump_reloc(struct readelf *re) 3180 { 3181 struct section *s; 3182 Elf_Data *d; 3183 int i, elferr; 3184 3185 for (i = 0; (size_t)i < re->shnum; i++) { 3186 s = &re->sl[i]; 3187 if (s->type == SHT_REL || s->type == SHT_RELA) { 3188 (void) elf_errno(); 3189 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3190 elferr = elf_errno(); 3191 if (elferr != 0) 3192 warnx("elf_getdata failed: %s", 3193 elf_errmsg(elferr)); 3194 continue; 3195 } 3196 if (s->type == SHT_REL) 3197 dump_rel(re, s, d); 3198 else 3199 dump_rela(re, s, d); 3200 } 3201 } 3202 } 3203 3204 static void 3205 dump_symtab(struct readelf *re, int i) 3206 { 3207 struct section *s; 3208 Elf_Data *d; 3209 GElf_Sym sym; 3210 const char *name; 3211 uint32_t stab; 3212 int elferr, j, len; 3213 uint16_t vs; 3214 3215 s = &re->sl[i]; 3216 if (s->link >= re->shnum) 3217 return; 3218 stab = s->link; 3219 (void) elf_errno(); 3220 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3221 elferr = elf_errno(); 3222 if (elferr != 0) 3223 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3224 return; 3225 } 3226 if (d->d_size <= 0) 3227 return; 3228 if (!get_ent_count(s, &len)) 3229 return; 3230 printf("Symbol table (%s)", s->name); 3231 printf(" contains %d entries:\n", len); 3232 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3233 "Bind", "Vis", "Ndx", "Name"); 3234 3235 for (j = 0; j < len; j++) { 3236 if (gelf_getsym(d, j, &sym) != &sym) { 3237 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3238 continue; 3239 } 3240 printf("%6d:", j); 3241 printf(" %16.16jx", (uintmax_t) sym.st_value); 3242 printf(" %5ju", (uintmax_t) sym.st_size); 3243 printf(" %-7s", st_type(re->ehdr.e_machine, 3244 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3245 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3246 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3247 printf(" %3s", st_shndx(sym.st_shndx)); 3248 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3249 printf(" %s", name); 3250 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3251 if (s->type == SHT_DYNSYM && re->ver != NULL && 3252 re->vs != NULL && re->vs[j] > 1) { 3253 vs = re->vs[j] & VERSYM_VERSION; 3254 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3255 warnx("invalid versym version index %u", vs); 3256 break; 3257 } 3258 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3259 printf("@%s (%d)", re->ver[vs].name, vs); 3260 else 3261 printf("@@%s (%d)", re->ver[vs].name, vs); 3262 } 3263 putchar('\n'); 3264 } 3265 3266 } 3267 3268 static void 3269 dump_symtabs(struct readelf *re) 3270 { 3271 GElf_Dyn dyn; 3272 Elf_Data *d; 3273 struct section *s; 3274 uint64_t dyn_off; 3275 int elferr, i, len; 3276 3277 /* 3278 * If -D is specified, only dump the symbol table specified by 3279 * the DT_SYMTAB entry in the .dynamic section. 3280 */ 3281 dyn_off = 0; 3282 if (re->options & RE_DD) { 3283 s = NULL; 3284 for (i = 0; (size_t)i < re->shnum; i++) 3285 if (re->sl[i].type == SHT_DYNAMIC) { 3286 s = &re->sl[i]; 3287 break; 3288 } 3289 if (s == NULL) 3290 return; 3291 (void) elf_errno(); 3292 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3293 elferr = elf_errno(); 3294 if (elferr != 0) 3295 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3296 return; 3297 } 3298 if (d->d_size <= 0) 3299 return; 3300 if (!get_ent_count(s, &len)) 3301 return; 3302 3303 for (i = 0; i < len; i++) { 3304 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3305 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3306 continue; 3307 } 3308 if (dyn.d_tag == DT_SYMTAB) { 3309 dyn_off = dyn.d_un.d_val; 3310 break; 3311 } 3312 } 3313 } 3314 3315 /* Find and dump symbol tables. */ 3316 for (i = 0; (size_t)i < re->shnum; i++) { 3317 s = &re->sl[i]; 3318 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3319 if (re->options & RE_DD) { 3320 if (dyn_off == s->addr) { 3321 dump_symtab(re, i); 3322 break; 3323 } 3324 } else 3325 dump_symtab(re, i); 3326 } 3327 } 3328 } 3329 3330 static void 3331 dump_svr4_hash(struct section *s) 3332 { 3333 Elf_Data *d; 3334 uint32_t *buf; 3335 uint32_t nbucket, nchain; 3336 uint32_t *bucket, *chain; 3337 uint32_t *bl, *c, maxl, total; 3338 int elferr, i, j; 3339 3340 /* Read and parse the content of .hash section. */ 3341 (void) elf_errno(); 3342 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3343 elferr = elf_errno(); 3344 if (elferr != 0) 3345 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3346 return; 3347 } 3348 if (d->d_size < 2 * sizeof(uint32_t)) { 3349 warnx(".hash section too small"); 3350 return; 3351 } 3352 buf = d->d_buf; 3353 nbucket = buf[0]; 3354 nchain = buf[1]; 3355 if (nbucket <= 0 || nchain <= 0) { 3356 warnx("Malformed .hash section"); 3357 return; 3358 } 3359 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3360 warnx("Malformed .hash section"); 3361 return; 3362 } 3363 bucket = &buf[2]; 3364 chain = &buf[2 + nbucket]; 3365 3366 maxl = 0; 3367 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3368 errx(EXIT_FAILURE, "calloc failed"); 3369 for (i = 0; (uint32_t)i < nbucket; i++) 3370 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3371 if (++bl[i] > maxl) 3372 maxl = bl[i]; 3373 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3374 errx(EXIT_FAILURE, "calloc failed"); 3375 for (i = 0; (uint32_t)i < nbucket; i++) 3376 c[bl[i]]++; 3377 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3378 nbucket); 3379 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3380 total = 0; 3381 for (i = 0; (uint32_t)i <= maxl; i++) { 3382 total += c[i] * i; 3383 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3384 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3385 } 3386 free(c); 3387 free(bl); 3388 } 3389 3390 static void 3391 dump_svr4_hash64(struct readelf *re, struct section *s) 3392 { 3393 Elf_Data *d, dst; 3394 uint64_t *buf; 3395 uint64_t nbucket, nchain; 3396 uint64_t *bucket, *chain; 3397 uint64_t *bl, *c, maxl, total; 3398 int elferr, i, j; 3399 3400 /* 3401 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3402 * .hash section contains only 32-bit entry, an explicit 3403 * gelf_xlatetom is needed here. 3404 */ 3405 (void) elf_errno(); 3406 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3407 elferr = elf_errno(); 3408 if (elferr != 0) 3409 warnx("elf_rawdata failed: %s", 3410 elf_errmsg(elferr)); 3411 return; 3412 } 3413 d->d_type = ELF_T_XWORD; 3414 memcpy(&dst, d, sizeof(Elf_Data)); 3415 if (gelf_xlatetom(re->elf, &dst, d, 3416 re->ehdr.e_ident[EI_DATA]) != &dst) { 3417 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3418 return; 3419 } 3420 if (dst.d_size < 2 * sizeof(uint64_t)) { 3421 warnx(".hash section too small"); 3422 return; 3423 } 3424 buf = dst.d_buf; 3425 nbucket = buf[0]; 3426 nchain = buf[1]; 3427 if (nbucket <= 0 || nchain <= 0) { 3428 warnx("Malformed .hash section"); 3429 return; 3430 } 3431 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3432 warnx("Malformed .hash section"); 3433 return; 3434 } 3435 bucket = &buf[2]; 3436 chain = &buf[2 + nbucket]; 3437 3438 maxl = 0; 3439 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3440 errx(EXIT_FAILURE, "calloc failed"); 3441 for (i = 0; (uint32_t)i < nbucket; i++) 3442 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3443 if (++bl[i] > maxl) 3444 maxl = bl[i]; 3445 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3446 errx(EXIT_FAILURE, "calloc failed"); 3447 for (i = 0; (uint64_t)i < nbucket; i++) 3448 c[bl[i]]++; 3449 printf("Histogram for bucket list length (total of %ju buckets):\n", 3450 (uintmax_t)nbucket); 3451 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3452 total = 0; 3453 for (i = 0; (uint64_t)i <= maxl; i++) { 3454 total += c[i] * i; 3455 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3456 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3457 } 3458 free(c); 3459 free(bl); 3460 } 3461 3462 static void 3463 dump_gnu_hash(struct readelf *re, struct section *s) 3464 { 3465 struct section *ds; 3466 Elf_Data *d; 3467 uint32_t *buf; 3468 uint32_t *bucket, *chain; 3469 uint32_t nbucket, nchain, symndx, maskwords; 3470 uint32_t *bl, *c, maxl, total; 3471 int elferr, dynsymcount, i, j; 3472 3473 (void) elf_errno(); 3474 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3475 elferr = elf_errno(); 3476 if (elferr != 0) 3477 warnx("elf_getdata failed: %s", 3478 elf_errmsg(elferr)); 3479 return; 3480 } 3481 if (d->d_size < 4 * sizeof(uint32_t)) { 3482 warnx(".gnu.hash section too small"); 3483 return; 3484 } 3485 buf = d->d_buf; 3486 nbucket = buf[0]; 3487 symndx = buf[1]; 3488 maskwords = buf[2]; 3489 buf += 4; 3490 if (s->link >= re->shnum) 3491 return; 3492 ds = &re->sl[s->link]; 3493 if (!get_ent_count(ds, &dynsymcount)) 3494 return; 3495 if (symndx >= (uint32_t)dynsymcount) { 3496 warnx("Malformed .gnu.hash section (symndx out of range)"); 3497 return; 3498 } 3499 nchain = dynsymcount - symndx; 3500 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3501 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3502 (nbucket + nchain) * sizeof(uint32_t)) { 3503 warnx("Malformed .gnu.hash section"); 3504 return; 3505 } 3506 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3507 chain = bucket + nbucket; 3508 3509 maxl = 0; 3510 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3511 errx(EXIT_FAILURE, "calloc failed"); 3512 for (i = 0; (uint32_t)i < nbucket; i++) 3513 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3514 j++) { 3515 if (++bl[i] > maxl) 3516 maxl = bl[i]; 3517 if (chain[j - symndx] & 1) 3518 break; 3519 } 3520 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3521 errx(EXIT_FAILURE, "calloc failed"); 3522 for (i = 0; (uint32_t)i < nbucket; i++) 3523 c[bl[i]]++; 3524 printf("Histogram for bucket list length (total of %u buckets):\n", 3525 nbucket); 3526 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3527 total = 0; 3528 for (i = 0; (uint32_t)i <= maxl; i++) { 3529 total += c[i] * i; 3530 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3531 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3532 } 3533 free(c); 3534 free(bl); 3535 } 3536 3537 static struct flag_desc gnu_property_x86_feature_1_and_bits[] = { 3538 { GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT" }, 3539 { GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK" }, 3540 { 0, NULL } 3541 }; 3542 3543 static void 3544 dump_gnu_property_type_0(struct readelf *re, const char *buf, size_t sz) 3545 { 3546 size_t i; 3547 uint32_t type, prop_sz; 3548 3549 printf(" Properties: "); 3550 while (sz > 0) { 3551 if (sz < 8) 3552 goto bad; 3553 3554 type = *(const uint32_t *)(const void *)buf; 3555 prop_sz = *(const uint32_t *)(const void *)(buf + 4); 3556 buf += 8; 3557 sz -= 8; 3558 3559 if (prop_sz > sz) 3560 goto bad; 3561 3562 if (type >= GNU_PROPERTY_LOPROC && 3563 type <= GNU_PROPERTY_HIPROC) { 3564 if (re->ehdr.e_machine != EM_X86_64) { 3565 printf("machine type %x unknown\n", 3566 re->ehdr.e_machine); 3567 goto unknown; 3568 } 3569 switch (type) { 3570 case GNU_PROPERTY_X86_FEATURE_1_AND: 3571 printf("x86 features:"); 3572 if (prop_sz != 4) 3573 goto bad; 3574 dump_flags(gnu_property_x86_feature_1_and_bits, 3575 *(const uint32_t *)(const void *)buf); 3576 break; 3577 } 3578 } 3579 3580 buf += roundup2(prop_sz, 8); 3581 sz -= roundup2(prop_sz, 8); 3582 } 3583 return; 3584 bad: 3585 printf("corrupt GNU property\n"); 3586 unknown: 3587 printf("remaining description data:"); 3588 for (i = 0; i < sz; i++) 3589 printf(" %02x", (unsigned char)buf[i]); 3590 printf("\n"); 3591 } 3592 3593 static void 3594 dump_hash(struct readelf *re) 3595 { 3596 struct section *s; 3597 int i; 3598 3599 for (i = 0; (size_t) i < re->shnum; i++) { 3600 s = &re->sl[i]; 3601 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3602 if (s->type == SHT_GNU_HASH) 3603 dump_gnu_hash(re, s); 3604 else if (re->ehdr.e_machine == EM_ALPHA && 3605 s->entsize == 8) 3606 dump_svr4_hash64(re, s); 3607 else 3608 dump_svr4_hash(s); 3609 } 3610 } 3611 } 3612 3613 static void 3614 dump_notes(struct readelf *re) 3615 { 3616 struct section *s; 3617 const char *rawfile; 3618 GElf_Phdr phdr; 3619 Elf_Data *d; 3620 size_t filesize, phnum; 3621 int i, elferr; 3622 3623 if (re->ehdr.e_type == ET_CORE) { 3624 /* 3625 * Search program headers in the core file for 3626 * PT_NOTE entry. 3627 */ 3628 if (elf_getphnum(re->elf, &phnum) == 0) { 3629 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3630 return; 3631 } 3632 if (phnum == 0) 3633 return; 3634 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3635 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3636 return; 3637 } 3638 for (i = 0; (size_t) i < phnum; i++) { 3639 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3640 warnx("gelf_getphdr failed: %s", 3641 elf_errmsg(-1)); 3642 continue; 3643 } 3644 if (phdr.p_type == PT_NOTE) { 3645 if (phdr.p_offset >= filesize || 3646 phdr.p_filesz > filesize - phdr.p_offset) { 3647 warnx("invalid PHDR offset"); 3648 continue; 3649 } 3650 dump_notes_content(re, rawfile + phdr.p_offset, 3651 phdr.p_filesz, phdr.p_offset); 3652 } 3653 } 3654 3655 } else { 3656 /* 3657 * For objects other than core files, Search for 3658 * SHT_NOTE sections. 3659 */ 3660 for (i = 0; (size_t) i < re->shnum; i++) { 3661 s = &re->sl[i]; 3662 if (s->type == SHT_NOTE) { 3663 (void) elf_errno(); 3664 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3665 elferr = elf_errno(); 3666 if (elferr != 0) 3667 warnx("elf_getdata failed: %s", 3668 elf_errmsg(elferr)); 3669 continue; 3670 } 3671 dump_notes_content(re, d->d_buf, d->d_size, 3672 s->off); 3673 } 3674 } 3675 } 3676 } 3677 3678 static struct flag_desc note_feature_ctl_flags[] = { 3679 { NT_FREEBSD_FCTL_ASLR_DISABLE, "ASLR_DISABLE" }, 3680 { NT_FREEBSD_FCTL_PROTMAX_DISABLE, "PROTMAX_DISABLE" }, 3681 { NT_FREEBSD_FCTL_STKGAP_DISABLE, "STKGAP_DISABLE" }, 3682 { NT_FREEBSD_FCTL_WXNEEDED, "WXNEEDED" }, 3683 { 0, NULL } 3684 }; 3685 3686 static bool 3687 dump_note_string(const char *description, const char *s, size_t len) 3688 { 3689 size_t i; 3690 3691 if (len == 0 || s[--len] != '\0') { 3692 return (false); 3693 } else { 3694 for (i = 0; i < len; i++) 3695 if (!isprint(s[i])) 3696 return (false); 3697 } 3698 3699 printf(" %s: %s\n", description, s); 3700 return (true); 3701 } 3702 3703 struct note_desc { 3704 uint32_t type; 3705 const char *description; 3706 bool (*fp)(const char *, const char *, size_t); 3707 }; 3708 3709 static struct note_desc xen_notes[] = { 3710 { 5, "Xen version", dump_note_string }, 3711 { 6, "Guest OS", dump_note_string }, 3712 { 7, "Guest version", dump_note_string }, 3713 { 8, "Loader", dump_note_string }, 3714 { 9, "PAE mode", dump_note_string }, 3715 { 10, "Features", dump_note_string }, 3716 { 11, "BSD symtab", dump_note_string }, 3717 { 0, NULL, NULL } 3718 }; 3719 3720 static void 3721 dump_notes_data(struct readelf *re, const char *name, uint32_t type, 3722 const char *buf, size_t sz) 3723 { 3724 struct note_desc *nd; 3725 size_t i; 3726 const uint32_t *ubuf; 3727 3728 /* Note data is at least 4-byte aligned. */ 3729 if (((uintptr_t)buf & 3) != 0) { 3730 warnx("bad note data alignment"); 3731 goto unknown; 3732 } 3733 ubuf = (const uint32_t *)(const void *)buf; 3734 3735 if (strcmp(name, "FreeBSD") == 0) { 3736 switch (type) { 3737 case NT_FREEBSD_ABI_TAG: 3738 if (sz != 4) 3739 goto unknown; 3740 printf(" ABI tag: %u\n", ubuf[0]); 3741 return; 3742 /* NT_FREEBSD_NOINIT_TAG carries no data, treat as unknown. */ 3743 case NT_FREEBSD_ARCH_TAG: 3744 printf(" Arch tag: %s\n", buf); 3745 return; 3746 case NT_FREEBSD_FEATURE_CTL: 3747 if (sz != 4) 3748 goto unknown; 3749 printf(" Features:"); 3750 dump_flags(note_feature_ctl_flags, ubuf[0]); 3751 return; 3752 } 3753 } else if (strcmp(name, "GNU") == 0) { 3754 switch (type) { 3755 case NT_GNU_PROPERTY_TYPE_0: 3756 dump_gnu_property_type_0(re, buf, sz); 3757 return; 3758 case NT_GNU_BUILD_ID: 3759 printf(" Build ID: "); 3760 for (i = 0; i < sz; i++) 3761 printf("%02x", (unsigned char)buf[i]); 3762 printf("\n"); 3763 return; 3764 } 3765 } else if (strcmp(name, "Xen") == 0) { 3766 for (nd = xen_notes; nd->description != NULL; nd++) { 3767 if (nd->type == type) { 3768 if (nd->fp(nd->description, buf, sz)) 3769 return; 3770 else 3771 break; 3772 } 3773 } 3774 } 3775 unknown: 3776 printf(" description data:"); 3777 for (i = 0; i < sz; i++) 3778 printf(" %02x", (unsigned char)buf[i]); 3779 printf("\n"); 3780 } 3781 3782 static void 3783 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3784 { 3785 Elf_Note *note; 3786 const char *end, *name; 3787 uint32_t namesz, descsz; 3788 3789 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3790 (uintmax_t) off, (uintmax_t) sz); 3791 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3792 end = buf + sz; 3793 while (buf < end) { 3794 if (buf + sizeof(*note) > end) { 3795 warnx("invalid note header"); 3796 return; 3797 } 3798 note = (Elf_Note *)(uintptr_t) buf; 3799 namesz = roundup2(note->n_namesz, 4); 3800 descsz = roundup2(note->n_descsz, 4); 3801 if (namesz < note->n_namesz || descsz < note->n_descsz || 3802 buf + namesz + descsz > end) { 3803 warnx("invalid note header"); 3804 return; 3805 } 3806 buf += sizeof(Elf_Note); 3807 name = buf; 3808 buf += namesz; 3809 /* 3810 * The name field is required to be nul-terminated, and 3811 * n_namesz includes the terminating nul in observed 3812 * implementations (contrary to the ELF-64 spec). A special 3813 * case is needed for cores generated by some older Linux 3814 * versions, which write a note named "CORE" without a nul 3815 * terminator and n_namesz = 4. 3816 */ 3817 if (note->n_namesz == 0) 3818 name = ""; 3819 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3820 name = "CORE"; 3821 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3822 name = "<invalid>"; 3823 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3824 printf(" %s\n", note_type(name, re->ehdr.e_type, 3825 note->n_type)); 3826 dump_notes_data(re, name, note->n_type, buf, note->n_descsz); 3827 buf += descsz; 3828 } 3829 } 3830 3831 /* 3832 * Symbol versioning sections are the same for 32bit and 64bit 3833 * ELF objects. 3834 */ 3835 #define Elf_Verdef Elf32_Verdef 3836 #define Elf_Verdaux Elf32_Verdaux 3837 #define Elf_Verneed Elf32_Verneed 3838 #define Elf_Vernaux Elf32_Vernaux 3839 3840 #define SAVE_VERSION_NAME(x, n, t) \ 3841 do { \ 3842 while (x >= re->ver_sz) { \ 3843 nv = realloc(re->ver, \ 3844 sizeof(*re->ver) * re->ver_sz * 2); \ 3845 if (nv == NULL) { \ 3846 warn("realloc failed"); \ 3847 free(re->ver); \ 3848 return; \ 3849 } \ 3850 re->ver = nv; \ 3851 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3852 re->ver[i].name = NULL; \ 3853 re->ver[i].type = 0; \ 3854 } \ 3855 re->ver_sz *= 2; \ 3856 } \ 3857 if (x > 1) { \ 3858 re->ver[x].name = n; \ 3859 re->ver[x].type = t; \ 3860 } \ 3861 } while (0) 3862 3863 3864 static void 3865 dump_verdef(struct readelf *re, int dump) 3866 { 3867 struct section *s; 3868 struct symver *nv; 3869 Elf_Data *d; 3870 Elf_Verdef *vd; 3871 Elf_Verdaux *vda; 3872 uint8_t *buf, *end, *buf2; 3873 const char *name; 3874 int elferr, i, j; 3875 3876 if ((s = re->vd_s) == NULL) 3877 return; 3878 if (s->link >= re->shnum) 3879 return; 3880 3881 if (re->ver == NULL) { 3882 re->ver_sz = 16; 3883 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3884 NULL) { 3885 warn("calloc failed"); 3886 return; 3887 } 3888 re->ver[0].name = "*local*"; 3889 re->ver[1].name = "*global*"; 3890 } 3891 3892 if (dump) 3893 printf("\nVersion definition section (%s):\n", s->name); 3894 (void) elf_errno(); 3895 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3896 elferr = elf_errno(); 3897 if (elferr != 0) 3898 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3899 return; 3900 } 3901 if (d->d_size == 0) 3902 return; 3903 3904 buf = d->d_buf; 3905 end = buf + d->d_size; 3906 while (buf + sizeof(Elf_Verdef) <= end) { 3907 vd = (Elf_Verdef *) (uintptr_t) buf; 3908 if (dump) { 3909 printf(" 0x%4.4lx", (unsigned long) 3910 (buf - (uint8_t *)d->d_buf)); 3911 printf(" vd_version: %u vd_flags: %d" 3912 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3913 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3914 } 3915 buf2 = buf + vd->vd_aux; 3916 j = 0; 3917 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3918 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3919 name = get_string(re, s->link, vda->vda_name); 3920 if (j == 0) { 3921 if (dump) 3922 printf(" vda_name: %s\n", name); 3923 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3924 } else if (dump) 3925 printf(" 0x%4.4lx parent: %s\n", 3926 (unsigned long) (buf2 - 3927 (uint8_t *)d->d_buf), name); 3928 if (vda->vda_next == 0) 3929 break; 3930 buf2 += vda->vda_next; 3931 j++; 3932 } 3933 if (vd->vd_next == 0) 3934 break; 3935 buf += vd->vd_next; 3936 } 3937 } 3938 3939 static void 3940 dump_verneed(struct readelf *re, int dump) 3941 { 3942 struct section *s; 3943 struct symver *nv; 3944 Elf_Data *d; 3945 Elf_Verneed *vn; 3946 Elf_Vernaux *vna; 3947 uint8_t *buf, *end, *buf2; 3948 const char *name; 3949 int elferr, i, j; 3950 3951 if ((s = re->vn_s) == NULL) 3952 return; 3953 if (s->link >= re->shnum) 3954 return; 3955 3956 if (re->ver == NULL) { 3957 re->ver_sz = 16; 3958 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3959 NULL) { 3960 warn("calloc failed"); 3961 return; 3962 } 3963 re->ver[0].name = "*local*"; 3964 re->ver[1].name = "*global*"; 3965 } 3966 3967 if (dump) 3968 printf("\nVersion needed section (%s):\n", s->name); 3969 (void) elf_errno(); 3970 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3971 elferr = elf_errno(); 3972 if (elferr != 0) 3973 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3974 return; 3975 } 3976 if (d->d_size == 0) 3977 return; 3978 3979 buf = d->d_buf; 3980 end = buf + d->d_size; 3981 while (buf + sizeof(Elf_Verneed) <= end) { 3982 vn = (Elf_Verneed *) (uintptr_t) buf; 3983 if (dump) { 3984 printf(" 0x%4.4lx", (unsigned long) 3985 (buf - (uint8_t *)d->d_buf)); 3986 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3987 vn->vn_version, 3988 get_string(re, s->link, vn->vn_file), 3989 vn->vn_cnt); 3990 } 3991 buf2 = buf + vn->vn_aux; 3992 j = 0; 3993 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3994 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3995 if (dump) 3996 printf(" 0x%4.4lx", (unsigned long) 3997 (buf2 - (uint8_t *)d->d_buf)); 3998 name = get_string(re, s->link, vna->vna_name); 3999 if (dump) 4000 printf(" vna_name: %s vna_flags: %u" 4001 " vna_other: %u\n", name, 4002 vna->vna_flags, vna->vna_other); 4003 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 4004 if (vna->vna_next == 0) 4005 break; 4006 buf2 += vna->vna_next; 4007 j++; 4008 } 4009 if (vn->vn_next == 0) 4010 break; 4011 buf += vn->vn_next; 4012 } 4013 } 4014 4015 static void 4016 dump_versym(struct readelf *re) 4017 { 4018 int i; 4019 uint16_t vs; 4020 4021 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 4022 return; 4023 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 4024 for (i = 0; i < re->vs_sz; i++) { 4025 if ((i & 3) == 0) { 4026 if (i > 0) 4027 putchar('\n'); 4028 printf(" %03x:", i); 4029 } 4030 vs = re->vs[i] & VERSYM_VERSION; 4031 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 4032 warnx("invalid versym version index %u", re->vs[i]); 4033 break; 4034 } 4035 if (re->vs[i] & VERSYM_HIDDEN) 4036 printf(" %3xh %-12s ", vs, 4037 re->ver[re->vs[i] & VERSYM_VERSION].name); 4038 else 4039 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 4040 } 4041 putchar('\n'); 4042 } 4043 4044 static void 4045 dump_ver(struct readelf *re) 4046 { 4047 4048 if (re->vs_s && re->ver && re->vs) 4049 dump_versym(re); 4050 if (re->vd_s) 4051 dump_verdef(re, 1); 4052 if (re->vn_s) 4053 dump_verneed(re, 1); 4054 } 4055 4056 static void 4057 search_ver(struct readelf *re) 4058 { 4059 struct section *s; 4060 Elf_Data *d; 4061 int elferr, i; 4062 4063 for (i = 0; (size_t) i < re->shnum; i++) { 4064 s = &re->sl[i]; 4065 if (s->type == SHT_SUNW_versym) 4066 re->vs_s = s; 4067 if (s->type == SHT_SUNW_verneed) 4068 re->vn_s = s; 4069 if (s->type == SHT_SUNW_verdef) 4070 re->vd_s = s; 4071 } 4072 if (re->vd_s) 4073 dump_verdef(re, 0); 4074 if (re->vn_s) 4075 dump_verneed(re, 0); 4076 if (re->vs_s && re->ver != NULL) { 4077 (void) elf_errno(); 4078 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 4079 elferr = elf_errno(); 4080 if (elferr != 0) 4081 warnx("elf_getdata failed: %s", 4082 elf_errmsg(elferr)); 4083 return; 4084 } 4085 if (d->d_size == 0) 4086 return; 4087 re->vs = d->d_buf; 4088 re->vs_sz = d->d_size / sizeof(Elf32_Half); 4089 } 4090 } 4091 4092 #undef Elf_Verdef 4093 #undef Elf_Verdaux 4094 #undef Elf_Verneed 4095 #undef Elf_Vernaux 4096 #undef SAVE_VERSION_NAME 4097 4098 /* 4099 * Elf32_Lib and Elf64_Lib are identical. 4100 */ 4101 #define Elf_Lib Elf32_Lib 4102 4103 static void 4104 dump_liblist(struct readelf *re) 4105 { 4106 struct section *s; 4107 struct tm *t; 4108 time_t ti; 4109 char tbuf[20]; 4110 Elf_Data *d; 4111 Elf_Lib *lib; 4112 int i, j, k, elferr, first, len; 4113 4114 for (i = 0; (size_t) i < re->shnum; i++) { 4115 s = &re->sl[i]; 4116 if (s->type != SHT_GNU_LIBLIST) 4117 continue; 4118 if (s->link >= re->shnum) 4119 continue; 4120 (void) elf_errno(); 4121 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4122 elferr = elf_errno(); 4123 if (elferr != 0) 4124 warnx("elf_getdata failed: %s", 4125 elf_errmsg(elferr)); 4126 continue; 4127 } 4128 if (d->d_size <= 0) 4129 continue; 4130 lib = d->d_buf; 4131 if (!get_ent_count(s, &len)) 4132 continue; 4133 printf("\nLibrary list section '%s' ", s->name); 4134 printf("contains %d entries:\n", len); 4135 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 4136 "Checksum", "Version", "Flags"); 4137 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 4138 printf("%3d: ", j); 4139 printf("%-20.20s ", 4140 get_string(re, s->link, lib->l_name)); 4141 ti = lib->l_time_stamp; 4142 t = gmtime(&ti); 4143 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 4144 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 4145 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 4146 printf("%-19.19s ", tbuf); 4147 printf("0x%08x ", lib->l_checksum); 4148 printf("%-7d %#x", lib->l_version, lib->l_flags); 4149 if (lib->l_flags != 0) { 4150 first = 1; 4151 putchar('('); 4152 for (k = 0; l_flag[k].name != NULL; k++) { 4153 if ((l_flag[k].value & lib->l_flags) == 4154 0) 4155 continue; 4156 if (!first) 4157 putchar(','); 4158 else 4159 first = 0; 4160 printf("%s", l_flag[k].name); 4161 } 4162 putchar(')'); 4163 } 4164 putchar('\n'); 4165 lib++; 4166 } 4167 } 4168 } 4169 4170 #undef Elf_Lib 4171 4172 static void 4173 dump_section_groups(struct readelf *re) 4174 { 4175 struct section *s; 4176 const char *symname; 4177 Elf_Data *d; 4178 uint32_t *w; 4179 int i, j, elferr; 4180 size_t n; 4181 4182 for (i = 0; (size_t) i < re->shnum; i++) { 4183 s = &re->sl[i]; 4184 if (s->type != SHT_GROUP) 4185 continue; 4186 if (s->link >= re->shnum) 4187 continue; 4188 (void) elf_errno(); 4189 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4190 elferr = elf_errno(); 4191 if (elferr != 0) 4192 warnx("elf_getdata failed: %s", 4193 elf_errmsg(elferr)); 4194 continue; 4195 } 4196 if (d->d_size <= 0) 4197 continue; 4198 4199 w = d->d_buf; 4200 4201 /* We only support COMDAT section. */ 4202 #ifndef GRP_COMDAT 4203 #define GRP_COMDAT 0x1 4204 #endif 4205 if ((*w++ & GRP_COMDAT) == 0) 4206 return; 4207 4208 if (s->entsize == 0) 4209 s->entsize = 4; 4210 4211 symname = get_symbol_name(re, s->link, s->info); 4212 n = s->sz / s->entsize; 4213 if (n-- < 1) 4214 return; 4215 4216 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 4217 " sections:\n", i, s->name, symname, (uintmax_t)n); 4218 printf(" %-10.10s %s\n", "[Index]", "Name"); 4219 for (j = 0; (size_t) j < n; j++, w++) { 4220 if (*w >= re->shnum) { 4221 warnx("invalid section index: %u", *w); 4222 continue; 4223 } 4224 printf(" [%5u] %s\n", *w, re->sl[*w].name); 4225 } 4226 } 4227 } 4228 4229 static uint8_t * 4230 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 4231 { 4232 uint64_t val; 4233 4234 /* 4235 * According to ARM EABI: For tags > 32, even numbered tags have 4236 * a ULEB128 param and odd numbered ones have NUL-terminated 4237 * string param. This rule probably also applies for tags <= 32 4238 * if the object arch is not ARM. 4239 */ 4240 4241 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4242 4243 if (tag & 1) { 4244 printf("%s\n", (char *) p); 4245 p += strlen((char *) p) + 1; 4246 } else { 4247 val = _decode_uleb128(&p, pe); 4248 printf("%ju\n", (uintmax_t) val); 4249 } 4250 4251 return (p); 4252 } 4253 4254 static uint8_t * 4255 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 4256 { 4257 uint64_t val; 4258 4259 val = _decode_uleb128(&p, pe); 4260 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 4261 p += strlen((char *) p) + 1; 4262 4263 return (p); 4264 } 4265 4266 static void 4267 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4268 { 4269 uint64_t tag, val; 4270 size_t i; 4271 int found, desc; 4272 4273 (void) re; 4274 4275 while (p < pe) { 4276 tag = _decode_uleb128(&p, pe); 4277 found = desc = 0; 4278 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4279 i++) { 4280 if (tag == aeabi_tags[i].tag) { 4281 found = 1; 4282 printf(" %s: ", aeabi_tags[i].s_tag); 4283 if (aeabi_tags[i].get_desc) { 4284 desc = 1; 4285 val = _decode_uleb128(&p, pe); 4286 printf("%s\n", 4287 aeabi_tags[i].get_desc(val)); 4288 } 4289 break; 4290 } 4291 if (tag < aeabi_tags[i].tag) 4292 break; 4293 } 4294 if (!found) { 4295 p = dump_unknown_tag(tag, p, pe); 4296 continue; 4297 } 4298 if (desc) 4299 continue; 4300 4301 switch (tag) { 4302 case 4: /* Tag_CPU_raw_name */ 4303 case 5: /* Tag_CPU_name */ 4304 case 67: /* Tag_conformance */ 4305 printf("%s\n", (char *) p); 4306 p += strlen((char *) p) + 1; 4307 break; 4308 case 32: /* Tag_compatibility */ 4309 p = dump_compatibility_tag(p, pe); 4310 break; 4311 case 64: /* Tag_nodefaults */ 4312 /* ignored, written as 0. */ 4313 (void) _decode_uleb128(&p, pe); 4314 printf("True\n"); 4315 break; 4316 case 65: /* Tag_also_compatible_with */ 4317 val = _decode_uleb128(&p, pe); 4318 /* Must be Tag_CPU_arch */ 4319 if (val != 6) { 4320 printf("unknown\n"); 4321 break; 4322 } 4323 val = _decode_uleb128(&p, pe); 4324 printf("%s\n", aeabi_cpu_arch(val)); 4325 /* Skip NUL terminator. */ 4326 p++; 4327 break; 4328 default: 4329 putchar('\n'); 4330 break; 4331 } 4332 } 4333 } 4334 4335 #ifndef Tag_GNU_MIPS_ABI_FP 4336 #define Tag_GNU_MIPS_ABI_FP 4 4337 #endif 4338 4339 static void 4340 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4341 { 4342 uint64_t tag, val; 4343 4344 (void) re; 4345 4346 while (p < pe) { 4347 tag = _decode_uleb128(&p, pe); 4348 switch (tag) { 4349 case Tag_GNU_MIPS_ABI_FP: 4350 val = _decode_uleb128(&p, pe); 4351 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4352 break; 4353 case 32: /* Tag_compatibility */ 4354 p = dump_compatibility_tag(p, pe); 4355 break; 4356 default: 4357 p = dump_unknown_tag(tag, p, pe); 4358 break; 4359 } 4360 } 4361 } 4362 4363 #ifndef Tag_GNU_Power_ABI_FP 4364 #define Tag_GNU_Power_ABI_FP 4 4365 #endif 4366 4367 #ifndef Tag_GNU_Power_ABI_Vector 4368 #define Tag_GNU_Power_ABI_Vector 8 4369 #endif 4370 4371 static void 4372 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4373 { 4374 uint64_t tag, val; 4375 4376 while (p < pe) { 4377 tag = _decode_uleb128(&p, pe); 4378 switch (tag) { 4379 case Tag_GNU_Power_ABI_FP: 4380 val = _decode_uleb128(&p, pe); 4381 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4382 break; 4383 case Tag_GNU_Power_ABI_Vector: 4384 val = _decode_uleb128(&p, pe); 4385 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4386 ppc_abi_vector(val)); 4387 break; 4388 case 32: /* Tag_compatibility */ 4389 p = dump_compatibility_tag(p, pe); 4390 break; 4391 default: 4392 p = dump_unknown_tag(tag, p, pe); 4393 break; 4394 } 4395 } 4396 } 4397 4398 static void 4399 dump_attributes(struct readelf *re) 4400 { 4401 struct section *s; 4402 Elf_Data *d; 4403 uint8_t *p, *pe, *sp; 4404 size_t len, seclen, nlen, sublen; 4405 uint64_t val; 4406 int tag, i, elferr; 4407 4408 for (i = 0; (size_t) i < re->shnum; i++) { 4409 s = &re->sl[i]; 4410 if (s->type != SHT_GNU_ATTRIBUTES && 4411 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4412 continue; 4413 (void) elf_errno(); 4414 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4415 elferr = elf_errno(); 4416 if (elferr != 0) 4417 warnx("elf_rawdata failed: %s", 4418 elf_errmsg(elferr)); 4419 continue; 4420 } 4421 if (d->d_size <= 0) 4422 continue; 4423 p = d->d_buf; 4424 pe = p + d->d_size; 4425 if (*p != 'A') { 4426 printf("Unknown Attribute Section Format: %c\n", 4427 (char) *p); 4428 continue; 4429 } 4430 len = d->d_size - 1; 4431 p++; 4432 while (len > 0) { 4433 if (len < 4) { 4434 warnx("truncated attribute section length"); 4435 return; 4436 } 4437 seclen = re->dw_decode(&p, 4); 4438 if (seclen > len) { 4439 warnx("invalid attribute section length"); 4440 return; 4441 } 4442 len -= seclen; 4443 nlen = strlen((char *) p) + 1; 4444 if (nlen + 4 > seclen) { 4445 warnx("invalid attribute section name"); 4446 return; 4447 } 4448 printf("Attribute Section: %s\n", (char *) p); 4449 p += nlen; 4450 seclen -= nlen + 4; 4451 while (seclen > 0) { 4452 sp = p; 4453 tag = *p++; 4454 sublen = re->dw_decode(&p, 4); 4455 if (sublen > seclen) { 4456 warnx("invalid attribute sub-section" 4457 " length"); 4458 return; 4459 } 4460 seclen -= sublen; 4461 printf("%s", top_tag(tag)); 4462 if (tag == 2 || tag == 3) { 4463 putchar(':'); 4464 for (;;) { 4465 val = _decode_uleb128(&p, pe); 4466 if (val == 0) 4467 break; 4468 printf(" %ju", (uintmax_t) val); 4469 } 4470 } 4471 putchar('\n'); 4472 if (re->ehdr.e_machine == EM_ARM && 4473 s->type == SHT_LOPROC + 3) 4474 dump_arm_attributes(re, p, sp + sublen); 4475 else if (re->ehdr.e_machine == EM_MIPS || 4476 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4477 dump_mips_attributes(re, p, 4478 sp + sublen); 4479 else if (re->ehdr.e_machine == EM_PPC) 4480 dump_ppc_attributes(p, sp + sublen); 4481 p = sp + sublen; 4482 } 4483 } 4484 } 4485 } 4486 4487 static void 4488 dump_mips_specific_info(struct readelf *re) 4489 { 4490 struct section *s; 4491 int i; 4492 4493 s = NULL; 4494 for (i = 0; (size_t) i < re->shnum; i++) { 4495 s = &re->sl[i]; 4496 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4497 (s->type == SHT_MIPS_OPTIONS))) { 4498 dump_mips_options(re, s); 4499 } 4500 } 4501 4502 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4503 (s->type == SHT_MIPS_ABIFLAGS))) 4504 dump_mips_abiflags(re, s); 4505 4506 /* 4507 * Dump .reginfo if present (although it will be ignored by an OS if a 4508 * .MIPS.options section is present, according to SGI mips64 spec). 4509 */ 4510 for (i = 0; (size_t) i < re->shnum; i++) { 4511 s = &re->sl[i]; 4512 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4513 (s->type == SHT_MIPS_REGINFO))) 4514 dump_mips_reginfo(re, s); 4515 } 4516 } 4517 4518 static void 4519 dump_mips_abiflags(struct readelf *re, struct section *s) 4520 { 4521 Elf_Data *d; 4522 uint8_t *p; 4523 int elferr; 4524 uint32_t isa_ext, ases, flags1, flags2; 4525 uint16_t version; 4526 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4527 4528 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4529 elferr = elf_errno(); 4530 if (elferr != 0) 4531 warnx("elf_rawdata failed: %s", 4532 elf_errmsg(elferr)); 4533 return; 4534 } 4535 if (d->d_size != 24) { 4536 warnx("invalid MIPS abiflags section size"); 4537 return; 4538 } 4539 4540 p = d->d_buf; 4541 version = re->dw_decode(&p, 2); 4542 printf("MIPS ABI Flags Version: %u", version); 4543 if (version != 0) { 4544 printf(" (unknown)\n\n"); 4545 return; 4546 } 4547 printf("\n\n"); 4548 4549 isa_level = re->dw_decode(&p, 1); 4550 isa_rev = re->dw_decode(&p, 1); 4551 gpr_size = re->dw_decode(&p, 1); 4552 cpr1_size = re->dw_decode(&p, 1); 4553 cpr2_size = re->dw_decode(&p, 1); 4554 fp_abi = re->dw_decode(&p, 1); 4555 isa_ext = re->dw_decode(&p, 4); 4556 ases = re->dw_decode(&p, 4); 4557 flags1 = re->dw_decode(&p, 4); 4558 flags2 = re->dw_decode(&p, 4); 4559 4560 printf("ISA: "); 4561 if (isa_rev <= 1) 4562 printf("MIPS%u\n", isa_level); 4563 else 4564 printf("MIPS%ur%u\n", isa_level, isa_rev); 4565 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4566 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4567 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4568 printf("FP ABI: "); 4569 switch (fp_abi) { 4570 case 3: 4571 printf("Soft float"); 4572 break; 4573 default: 4574 printf("%u", fp_abi); 4575 break; 4576 } 4577 printf("\nISA Extension: %u\n", isa_ext); 4578 printf("ASEs: %u\n", ases); 4579 printf("FLAGS 1: %08x\n", flags1); 4580 printf("FLAGS 2: %08x\n", flags2); 4581 } 4582 4583 static int 4584 get_mips_register_size(uint8_t flag) 4585 { 4586 switch (flag) { 4587 case 0: return 0; 4588 case 1: return 32; 4589 case 2: return 64; 4590 case 3: return 128; 4591 default: return -1; 4592 } 4593 } 4594 static void 4595 dump_mips_reginfo(struct readelf *re, struct section *s) 4596 { 4597 Elf_Data *d; 4598 int elferr, len; 4599 4600 (void) elf_errno(); 4601 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4602 elferr = elf_errno(); 4603 if (elferr != 0) 4604 warnx("elf_rawdata failed: %s", 4605 elf_errmsg(elferr)); 4606 return; 4607 } 4608 if (d->d_size <= 0) 4609 return; 4610 if (!get_ent_count(s, &len)) 4611 return; 4612 4613 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4614 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4615 } 4616 4617 static void 4618 dump_mips_options(struct readelf *re, struct section *s) 4619 { 4620 Elf_Data *d; 4621 uint32_t info; 4622 uint16_t sndx; 4623 uint8_t *p, *pe; 4624 uint8_t kind, size; 4625 int elferr; 4626 4627 (void) elf_errno(); 4628 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4629 elferr = elf_errno(); 4630 if (elferr != 0) 4631 warnx("elf_rawdata failed: %s", 4632 elf_errmsg(elferr)); 4633 return; 4634 } 4635 if (d->d_size == 0) 4636 return; 4637 4638 printf("\nSection %s contains:\n", s->name); 4639 p = d->d_buf; 4640 pe = p + d->d_size; 4641 while (p < pe) { 4642 if (pe - p < 8) { 4643 warnx("Truncated MIPS option header"); 4644 return; 4645 } 4646 kind = re->dw_decode(&p, 1); 4647 size = re->dw_decode(&p, 1); 4648 sndx = re->dw_decode(&p, 2); 4649 info = re->dw_decode(&p, 4); 4650 if (size < 8 || size - 8 > pe - p) { 4651 warnx("Malformed MIPS option header"); 4652 return; 4653 } 4654 size -= 8; 4655 switch (kind) { 4656 case ODK_REGINFO: 4657 dump_mips_odk_reginfo(re, p, size); 4658 break; 4659 case ODK_EXCEPTIONS: 4660 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4661 info & OEX_FPU_MIN); 4662 printf("%11.11s FPU_MAX: %#x\n", "", 4663 info & OEX_FPU_MAX); 4664 dump_mips_option_flags("", mips_exceptions_option, 4665 info); 4666 break; 4667 case ODK_PAD: 4668 printf(" %-10.10s section: %ju\n", "OPAD", 4669 (uintmax_t) sndx); 4670 dump_mips_option_flags("", mips_pad_option, info); 4671 break; 4672 case ODK_HWPATCH: 4673 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4674 info); 4675 break; 4676 case ODK_HWAND: 4677 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4678 break; 4679 case ODK_HWOR: 4680 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4681 break; 4682 case ODK_FILL: 4683 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4684 break; 4685 case ODK_TAGS: 4686 printf(" %-10.10s\n", "TAGS"); 4687 break; 4688 case ODK_GP_GROUP: 4689 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4690 info & 0xFFFF); 4691 if (info & 0x10000) 4692 printf(" %-10.10s GP group is " 4693 "self-contained\n", ""); 4694 break; 4695 case ODK_IDENT: 4696 printf(" %-10.10s default GP group number: %#x\n", 4697 "IDENT", info & 0xFFFF); 4698 if (info & 0x10000) 4699 printf(" %-10.10s default GP group is " 4700 "self-contained\n", ""); 4701 break; 4702 case ODK_PAGESIZE: 4703 printf(" %-10.10s\n", "PAGESIZE"); 4704 break; 4705 default: 4706 break; 4707 } 4708 p += size; 4709 } 4710 } 4711 4712 static void 4713 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4714 { 4715 int first; 4716 4717 first = 1; 4718 for (; opt->desc != NULL; opt++) { 4719 if (info & opt->flag) { 4720 printf(" %-10.10s %s\n", first ? name : "", 4721 opt->desc); 4722 first = 0; 4723 } 4724 } 4725 } 4726 4727 static void 4728 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4729 { 4730 uint32_t ri_gprmask; 4731 uint32_t ri_cprmask[4]; 4732 uint64_t ri_gp_value; 4733 uint8_t *pe; 4734 int i; 4735 4736 pe = p + sz; 4737 while (p < pe) { 4738 ri_gprmask = re->dw_decode(&p, 4); 4739 /* Skip ri_pad padding field for mips64. */ 4740 if (re->ec == ELFCLASS64) 4741 re->dw_decode(&p, 4); 4742 for (i = 0; i < 4; i++) 4743 ri_cprmask[i] = re->dw_decode(&p, 4); 4744 if (re->ec == ELFCLASS32) 4745 ri_gp_value = re->dw_decode(&p, 4); 4746 else 4747 ri_gp_value = re->dw_decode(&p, 8); 4748 printf(" %s ", option_kind(ODK_REGINFO)); 4749 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4750 for (i = 0; i < 4; i++) 4751 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4752 (uintmax_t) ri_cprmask[i]); 4753 printf("%12.12s", ""); 4754 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4755 } 4756 } 4757 4758 static void 4759 dump_arch_specific_info(struct readelf *re) 4760 { 4761 4762 dump_liblist(re); 4763 dump_attributes(re); 4764 4765 switch (re->ehdr.e_machine) { 4766 case EM_MIPS: 4767 case EM_MIPS_RS3_LE: 4768 dump_mips_specific_info(re); 4769 default: 4770 break; 4771 } 4772 } 4773 4774 static const char * 4775 dwarf_regname(struct readelf *re, unsigned int num) 4776 { 4777 static char rx[32]; 4778 const char *rn; 4779 4780 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4781 return (rn); 4782 4783 snprintf(rx, sizeof(rx), "r%u", num); 4784 4785 return (rx); 4786 } 4787 4788 static void 4789 dump_dwarf_line(struct readelf *re) 4790 { 4791 struct section *s; 4792 Dwarf_Die die; 4793 Dwarf_Error de; 4794 Dwarf_Half tag, version, pointer_size; 4795 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4796 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4797 Elf_Data *d; 4798 char *pn; 4799 uint64_t address, file, line, column, isa, opsize, udelta; 4800 int64_t sdelta; 4801 uint8_t *p, *pe; 4802 int8_t lbase; 4803 int i, is_stmt, dwarf_size, elferr, ret; 4804 4805 printf("\nDump of debug contents of section .debug_line:\n"); 4806 4807 s = NULL; 4808 for (i = 0; (size_t) i < re->shnum; i++) { 4809 s = &re->sl[i]; 4810 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4811 break; 4812 } 4813 if ((size_t) i >= re->shnum) 4814 return; 4815 4816 (void) elf_errno(); 4817 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4818 elferr = elf_errno(); 4819 if (elferr != 0) 4820 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4821 return; 4822 } 4823 if (d->d_size <= 0) 4824 return; 4825 4826 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4827 NULL, &de)) == DW_DLV_OK) { 4828 die = NULL; 4829 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4830 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4831 warnx("dwarf_tag failed: %s", 4832 dwarf_errmsg(de)); 4833 return; 4834 } 4835 /* XXX: What about DW_TAG_partial_unit? */ 4836 if (tag == DW_TAG_compile_unit) 4837 break; 4838 } 4839 if (die == NULL) { 4840 warnx("could not find DW_TAG_compile_unit die"); 4841 return; 4842 } 4843 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4844 &de) != DW_DLV_OK) 4845 continue; 4846 4847 length = re->dw_read(d, &offset, 4); 4848 if (length == 0xffffffff) { 4849 dwarf_size = 8; 4850 length = re->dw_read(d, &offset, 8); 4851 } else 4852 dwarf_size = 4; 4853 4854 if (length > d->d_size - offset) { 4855 warnx("invalid .dwarf_line section"); 4856 continue; 4857 } 4858 4859 endoff = offset + length; 4860 pe = (uint8_t *) d->d_buf + endoff; 4861 version = re->dw_read(d, &offset, 2); 4862 hdrlen = re->dw_read(d, &offset, dwarf_size); 4863 minlen = re->dw_read(d, &offset, 1); 4864 defstmt = re->dw_read(d, &offset, 1); 4865 lbase = re->dw_read(d, &offset, 1); 4866 lrange = re->dw_read(d, &offset, 1); 4867 opbase = re->dw_read(d, &offset, 1); 4868 4869 printf("\n"); 4870 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4871 printf(" DWARF version:\t\t%u\n", version); 4872 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4873 printf(" Minimum Instruction Length:\t%u\n", minlen); 4874 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4875 printf(" Line Base:\t\t\t%d\n", lbase); 4876 printf(" Line Range:\t\t\t%u\n", lrange); 4877 printf(" Opcode Base:\t\t\t%u\n", opbase); 4878 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4879 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4880 4881 printf("\n"); 4882 printf(" Opcodes:\n"); 4883 for (i = 1; i < opbase; i++) { 4884 oplen = re->dw_read(d, &offset, 1); 4885 printf(" Opcode %d has %u args\n", i, oplen); 4886 } 4887 4888 printf("\n"); 4889 printf(" The Directory Table:\n"); 4890 p = (uint8_t *) d->d_buf + offset; 4891 while (*p != '\0') { 4892 printf(" %s\n", (char *) p); 4893 p += strlen((char *) p) + 1; 4894 } 4895 4896 p++; 4897 printf("\n"); 4898 printf(" The File Name Table:\n"); 4899 printf(" Entry\tDir\tTime\tSize\tName\n"); 4900 i = 0; 4901 while (*p != '\0') { 4902 i++; 4903 pn = (char *) p; 4904 p += strlen(pn) + 1; 4905 dirndx = _decode_uleb128(&p, pe); 4906 mtime = _decode_uleb128(&p, pe); 4907 fsize = _decode_uleb128(&p, pe); 4908 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4909 (uintmax_t) dirndx, (uintmax_t) mtime, 4910 (uintmax_t) fsize, pn); 4911 } 4912 4913 #define RESET_REGISTERS \ 4914 do { \ 4915 address = 0; \ 4916 file = 1; \ 4917 line = 1; \ 4918 column = 0; \ 4919 is_stmt = defstmt; \ 4920 } while(0) 4921 4922 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4923 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4924 4925 p++; 4926 printf("\n"); 4927 printf(" Line Number Statements:\n"); 4928 4929 RESET_REGISTERS; 4930 4931 while (p < pe) { 4932 4933 if (*p == 0) { 4934 /* 4935 * Extended Opcodes. 4936 */ 4937 p++; 4938 opsize = _decode_uleb128(&p, pe); 4939 printf(" Extended opcode %u: ", *p); 4940 switch (*p) { 4941 case DW_LNE_end_sequence: 4942 p++; 4943 RESET_REGISTERS; 4944 printf("End of Sequence\n"); 4945 break; 4946 case DW_LNE_set_address: 4947 p++; 4948 address = re->dw_decode(&p, 4949 pointer_size); 4950 printf("set Address to %#jx\n", 4951 (uintmax_t) address); 4952 break; 4953 case DW_LNE_define_file: 4954 p++; 4955 pn = (char *) p; 4956 p += strlen(pn) + 1; 4957 dirndx = _decode_uleb128(&p, pe); 4958 mtime = _decode_uleb128(&p, pe); 4959 fsize = _decode_uleb128(&p, pe); 4960 printf("define new file: %s\n", pn); 4961 break; 4962 default: 4963 /* Unrecognized extened opcodes. */ 4964 p += opsize; 4965 printf("unknown opcode\n"); 4966 } 4967 } else if (*p > 0 && *p < opbase) { 4968 /* 4969 * Standard Opcodes. 4970 */ 4971 switch(*p++) { 4972 case DW_LNS_copy: 4973 printf(" Copy\n"); 4974 break; 4975 case DW_LNS_advance_pc: 4976 udelta = _decode_uleb128(&p, pe) * 4977 minlen; 4978 address += udelta; 4979 printf(" Advance PC by %ju to %#jx\n", 4980 (uintmax_t) udelta, 4981 (uintmax_t) address); 4982 break; 4983 case DW_LNS_advance_line: 4984 sdelta = _decode_sleb128(&p, pe); 4985 line += sdelta; 4986 printf(" Advance Line by %jd to %ju\n", 4987 (intmax_t) sdelta, 4988 (uintmax_t) line); 4989 break; 4990 case DW_LNS_set_file: 4991 file = _decode_uleb128(&p, pe); 4992 printf(" Set File to %ju\n", 4993 (uintmax_t) file); 4994 break; 4995 case DW_LNS_set_column: 4996 column = _decode_uleb128(&p, pe); 4997 printf(" Set Column to %ju\n", 4998 (uintmax_t) column); 4999 break; 5000 case DW_LNS_negate_stmt: 5001 is_stmt = !is_stmt; 5002 printf(" Set is_stmt to %d\n", is_stmt); 5003 break; 5004 case DW_LNS_set_basic_block: 5005 printf(" Set basic block flag\n"); 5006 break; 5007 case DW_LNS_const_add_pc: 5008 address += ADDRESS(255); 5009 printf(" Advance PC by constant %ju" 5010 " to %#jx\n", 5011 (uintmax_t) ADDRESS(255), 5012 (uintmax_t) address); 5013 break; 5014 case DW_LNS_fixed_advance_pc: 5015 udelta = re->dw_decode(&p, 2); 5016 address += udelta; 5017 printf(" Advance PC by fixed value " 5018 "%ju to %#jx\n", 5019 (uintmax_t) udelta, 5020 (uintmax_t) address); 5021 break; 5022 case DW_LNS_set_prologue_end: 5023 printf(" Set prologue end flag\n"); 5024 break; 5025 case DW_LNS_set_epilogue_begin: 5026 printf(" Set epilogue begin flag\n"); 5027 break; 5028 case DW_LNS_set_isa: 5029 isa = _decode_uleb128(&p, pe); 5030 printf(" Set isa to %ju\n", 5031 (uintmax_t) isa); 5032 break; 5033 default: 5034 /* Unrecognized extended opcodes. */ 5035 printf(" Unknown extended opcode %u\n", 5036 *(p - 1)); 5037 break; 5038 } 5039 5040 } else { 5041 /* 5042 * Special Opcodes. 5043 */ 5044 line += LINE(*p); 5045 address += ADDRESS(*p); 5046 printf(" Special opcode %u: advance Address " 5047 "by %ju to %#jx and Line by %jd to %ju\n", 5048 *p - opbase, (uintmax_t) ADDRESS(*p), 5049 (uintmax_t) address, (intmax_t) LINE(*p), 5050 (uintmax_t) line); 5051 p++; 5052 } 5053 5054 5055 } 5056 } 5057 if (ret == DW_DLV_ERROR) 5058 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5059 5060 #undef RESET_REGISTERS 5061 #undef LINE 5062 #undef ADDRESS 5063 } 5064 5065 static void 5066 dump_dwarf_line_decoded(struct readelf *re) 5067 { 5068 Dwarf_Die die; 5069 Dwarf_Line *linebuf, ln; 5070 Dwarf_Addr lineaddr; 5071 Dwarf_Signed linecount, srccount; 5072 Dwarf_Unsigned lineno, fn; 5073 Dwarf_Error de; 5074 const char *dir, *file; 5075 char **srcfiles; 5076 int i, ret; 5077 5078 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 5079 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5080 NULL, &de)) == DW_DLV_OK) { 5081 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 5082 continue; 5083 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 5084 DW_DLV_OK) 5085 file = NULL; 5086 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 5087 DW_DLV_OK) 5088 dir = NULL; 5089 printf("CU: "); 5090 if (dir && file && file[0] != '/') 5091 printf("%s/", dir); 5092 if (file) 5093 printf("%s", file); 5094 putchar('\n'); 5095 printf("%-37s %11s %s\n", "Filename", "Line Number", 5096 "Starting Address"); 5097 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 5098 continue; 5099 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 5100 continue; 5101 for (i = 0; i < linecount; i++) { 5102 ln = linebuf[i]; 5103 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 5104 continue; 5105 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 5106 continue; 5107 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 5108 continue; 5109 printf("%-37s %11ju %#18jx\n", 5110 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 5111 (uintmax_t) lineaddr); 5112 } 5113 putchar('\n'); 5114 } 5115 } 5116 5117 static void 5118 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 5119 { 5120 Dwarf_Attribute *attr_list; 5121 Dwarf_Die ret_die; 5122 Dwarf_Off dieoff, cuoff, culen, attroff; 5123 Dwarf_Unsigned ate, lang, v_udata, v_sig; 5124 Dwarf_Signed attr_count, v_sdata; 5125 Dwarf_Off v_off; 5126 Dwarf_Addr v_addr; 5127 Dwarf_Half tag, attr, form; 5128 Dwarf_Block *v_block; 5129 Dwarf_Bool v_bool, is_info; 5130 Dwarf_Sig8 v_sig8; 5131 Dwarf_Error de; 5132 Dwarf_Ptr v_expr; 5133 const char *tag_str, *attr_str, *ate_str, *lang_str; 5134 char unk_tag[32], unk_attr[32]; 5135 char *v_str; 5136 uint8_t *b, *p; 5137 int i, j, abc, ret; 5138 5139 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 5140 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 5141 goto cont_search; 5142 } 5143 5144 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 5145 5146 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 5147 warnx("dwarf_die_CU_offset_range failed: %s", 5148 dwarf_errmsg(de)); 5149 cuoff = 0; 5150 } 5151 5152 abc = dwarf_die_abbrev_code(die); 5153 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5154 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5155 goto cont_search; 5156 } 5157 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5158 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 5159 tag_str = unk_tag; 5160 } 5161 5162 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 5163 5164 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5165 DW_DLV_OK) { 5166 if (ret == DW_DLV_ERROR) 5167 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5168 goto cont_search; 5169 } 5170 5171 for (i = 0; i < attr_count; i++) { 5172 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5173 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5174 continue; 5175 } 5176 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5177 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5178 continue; 5179 } 5180 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 5181 snprintf(unk_attr, sizeof(unk_attr), 5182 "[Unknown AT: %#x]", attr); 5183 attr_str = unk_attr; 5184 } 5185 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 5186 DW_DLV_OK) { 5187 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 5188 attroff = 0; 5189 } 5190 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 5191 switch (form) { 5192 case DW_FORM_ref_addr: 5193 case DW_FORM_sec_offset: 5194 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 5195 DW_DLV_OK) { 5196 warnx("dwarf_global_formref failed: %s", 5197 dwarf_errmsg(de)); 5198 continue; 5199 } 5200 if (form == DW_FORM_ref_addr) 5201 printf("<0x%jx>", (uintmax_t) v_off); 5202 else 5203 printf("0x%jx", (uintmax_t) v_off); 5204 break; 5205 5206 case DW_FORM_ref1: 5207 case DW_FORM_ref2: 5208 case DW_FORM_ref4: 5209 case DW_FORM_ref8: 5210 case DW_FORM_ref_udata: 5211 if (dwarf_formref(attr_list[i], &v_off, &de) != 5212 DW_DLV_OK) { 5213 warnx("dwarf_formref failed: %s", 5214 dwarf_errmsg(de)); 5215 continue; 5216 } 5217 v_off += cuoff; 5218 printf("<0x%jx>", (uintmax_t) v_off); 5219 break; 5220 5221 case DW_FORM_addr: 5222 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 5223 DW_DLV_OK) { 5224 warnx("dwarf_formaddr failed: %s", 5225 dwarf_errmsg(de)); 5226 continue; 5227 } 5228 printf("%#jx", (uintmax_t) v_addr); 5229 break; 5230 5231 case DW_FORM_data1: 5232 case DW_FORM_data2: 5233 case DW_FORM_data4: 5234 case DW_FORM_data8: 5235 case DW_FORM_udata: 5236 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 5237 DW_DLV_OK) { 5238 warnx("dwarf_formudata failed: %s", 5239 dwarf_errmsg(de)); 5240 continue; 5241 } 5242 if (attr == DW_AT_high_pc) 5243 printf("0x%jx", (uintmax_t) v_udata); 5244 else 5245 printf("%ju", (uintmax_t) v_udata); 5246 break; 5247 5248 case DW_FORM_sdata: 5249 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 5250 DW_DLV_OK) { 5251 warnx("dwarf_formudata failed: %s", 5252 dwarf_errmsg(de)); 5253 continue; 5254 } 5255 printf("%jd", (intmax_t) v_sdata); 5256 break; 5257 5258 case DW_FORM_flag: 5259 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 5260 DW_DLV_OK) { 5261 warnx("dwarf_formflag failed: %s", 5262 dwarf_errmsg(de)); 5263 continue; 5264 } 5265 printf("%jd", (intmax_t) v_bool); 5266 break; 5267 5268 case DW_FORM_flag_present: 5269 putchar('1'); 5270 break; 5271 5272 case DW_FORM_string: 5273 case DW_FORM_strp: 5274 if (dwarf_formstring(attr_list[i], &v_str, &de) != 5275 DW_DLV_OK) { 5276 warnx("dwarf_formstring failed: %s", 5277 dwarf_errmsg(de)); 5278 continue; 5279 } 5280 if (form == DW_FORM_string) 5281 printf("%s", v_str); 5282 else 5283 printf("(indirect string) %s", v_str); 5284 break; 5285 5286 case DW_FORM_block: 5287 case DW_FORM_block1: 5288 case DW_FORM_block2: 5289 case DW_FORM_block4: 5290 if (dwarf_formblock(attr_list[i], &v_block, &de) != 5291 DW_DLV_OK) { 5292 warnx("dwarf_formblock failed: %s", 5293 dwarf_errmsg(de)); 5294 continue; 5295 } 5296 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 5297 b = v_block->bl_data; 5298 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 5299 printf(" %x", b[j]); 5300 printf("\t("); 5301 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 5302 putchar(')'); 5303 break; 5304 5305 case DW_FORM_exprloc: 5306 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5307 &de) != DW_DLV_OK) { 5308 warnx("dwarf_formexprloc failed: %s", 5309 dwarf_errmsg(de)); 5310 continue; 5311 } 5312 printf("%ju byte block:", (uintmax_t) v_udata); 5313 b = v_expr; 5314 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5315 printf(" %x", b[j]); 5316 printf("\t("); 5317 dump_dwarf_block(re, v_expr, v_udata); 5318 putchar(')'); 5319 break; 5320 5321 case DW_FORM_ref_sig8: 5322 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5323 DW_DLV_OK) { 5324 warnx("dwarf_formsig8 failed: %s", 5325 dwarf_errmsg(de)); 5326 continue; 5327 } 5328 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5329 v_sig = re->dw_decode(&p, 8); 5330 printf("signature: 0x%jx", (uintmax_t) v_sig); 5331 } 5332 switch (attr) { 5333 case DW_AT_encoding: 5334 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5335 DW_DLV_OK) 5336 break; 5337 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5338 ate_str = "DW_ATE_UNKNOWN"; 5339 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5340 break; 5341 5342 case DW_AT_language: 5343 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5344 DW_DLV_OK) 5345 break; 5346 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5347 break; 5348 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5349 break; 5350 5351 case DW_AT_location: 5352 case DW_AT_string_length: 5353 case DW_AT_return_addr: 5354 case DW_AT_data_member_location: 5355 case DW_AT_frame_base: 5356 case DW_AT_segment: 5357 case DW_AT_static_link: 5358 case DW_AT_use_location: 5359 case DW_AT_vtable_elem_location: 5360 switch (form) { 5361 case DW_FORM_data4: 5362 case DW_FORM_data8: 5363 case DW_FORM_sec_offset: 5364 printf("\t(location list)"); 5365 break; 5366 default: 5367 break; 5368 } 5369 5370 default: 5371 break; 5372 } 5373 putchar('\n'); 5374 } 5375 5376 5377 cont_search: 5378 /* Search children. */ 5379 ret = dwarf_child(die, &ret_die, &de); 5380 if (ret == DW_DLV_ERROR) 5381 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5382 else if (ret == DW_DLV_OK) 5383 dump_dwarf_die(re, ret_die, level + 1); 5384 5385 /* Search sibling. */ 5386 is_info = dwarf_get_die_infotypes_flag(die); 5387 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5388 if (ret == DW_DLV_ERROR) 5389 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5390 else if (ret == DW_DLV_OK) 5391 dump_dwarf_die(re, ret_die, level); 5392 5393 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5394 } 5395 5396 static void 5397 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5398 Dwarf_Half ver) 5399 { 5400 5401 re->cu_psize = psize; 5402 re->cu_osize = osize; 5403 re->cu_ver = ver; 5404 } 5405 5406 static void 5407 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5408 { 5409 struct section *s; 5410 Dwarf_Die die; 5411 Dwarf_Error de; 5412 Dwarf_Half tag, version, pointer_size, off_size; 5413 Dwarf_Off cu_offset, cu_length; 5414 Dwarf_Off aboff; 5415 Dwarf_Unsigned typeoff; 5416 Dwarf_Sig8 sig8; 5417 Dwarf_Unsigned sig; 5418 uint8_t *p; 5419 const char *sn; 5420 int i, ret; 5421 5422 sn = is_info ? ".debug_info" : ".debug_types"; 5423 5424 s = NULL; 5425 for (i = 0; (size_t) i < re->shnum; i++) { 5426 s = &re->sl[i]; 5427 if (s->name != NULL && !strcmp(s->name, sn)) 5428 break; 5429 } 5430 if ((size_t) i >= re->shnum) 5431 return; 5432 5433 do { 5434 printf("\nDump of debug contents of section %s:\n", sn); 5435 5436 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5437 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5438 &typeoff, NULL, &de)) == DW_DLV_OK) { 5439 set_cu_context(re, pointer_size, off_size, version); 5440 die = NULL; 5441 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5442 &de) == DW_DLV_OK) { 5443 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5444 warnx("dwarf_tag failed: %s", 5445 dwarf_errmsg(de)); 5446 continue; 5447 } 5448 /* XXX: What about DW_TAG_partial_unit? */ 5449 if ((is_info && tag == DW_TAG_compile_unit) || 5450 (!is_info && tag == DW_TAG_type_unit)) 5451 break; 5452 } 5453 if (die == NULL && is_info) { 5454 warnx("could not find DW_TAG_compile_unit " 5455 "die"); 5456 continue; 5457 } else if (die == NULL && !is_info) { 5458 warnx("could not find DW_TAG_type_unit die"); 5459 continue; 5460 } 5461 5462 if (dwarf_die_CU_offset_range(die, &cu_offset, 5463 &cu_length, &de) != DW_DLV_OK) { 5464 warnx("dwarf_die_CU_offset failed: %s", 5465 dwarf_errmsg(de)); 5466 continue; 5467 } 5468 5469 cu_length -= off_size == 4 ? 4 : 12; 5470 5471 sig = 0; 5472 if (!is_info) { 5473 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5474 sig = re->dw_decode(&p, 8); 5475 } 5476 5477 printf("\n Type Unit @ offset 0x%jx:\n", 5478 (uintmax_t) cu_offset); 5479 printf(" Length:\t\t%#jx (%d-bit)\n", 5480 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5481 printf(" Version:\t\t%u\n", version); 5482 printf(" Abbrev Offset:\t0x%jx\n", 5483 (uintmax_t) aboff); 5484 printf(" Pointer Size:\t%u\n", pointer_size); 5485 if (!is_info) { 5486 printf(" Signature:\t\t0x%016jx\n", 5487 (uintmax_t) sig); 5488 printf(" Type Offset:\t0x%jx\n", 5489 (uintmax_t) typeoff); 5490 } 5491 5492 dump_dwarf_die(re, die, 0); 5493 } 5494 if (ret == DW_DLV_ERROR) 5495 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5496 if (is_info) 5497 break; 5498 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5499 } 5500 5501 static void 5502 dump_dwarf_abbrev(struct readelf *re) 5503 { 5504 Dwarf_Abbrev ab; 5505 Dwarf_Off aboff, atoff; 5506 Dwarf_Unsigned length, attr_count; 5507 Dwarf_Signed flag, form; 5508 Dwarf_Half tag, attr; 5509 Dwarf_Error de; 5510 const char *tag_str, *attr_str, *form_str; 5511 char unk_tag[32], unk_attr[32], unk_form[32]; 5512 int i, j, ret; 5513 5514 printf("\nContents of section .debug_abbrev:\n\n"); 5515 5516 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5517 NULL, NULL, &de)) == DW_DLV_OK) { 5518 printf(" Number TAG\n"); 5519 i = 0; 5520 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5521 &attr_count, &de)) == DW_DLV_OK) { 5522 if (length == 1) { 5523 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5524 break; 5525 } 5526 aboff += length; 5527 printf("%4d", ++i); 5528 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5529 warnx("dwarf_get_abbrev_tag failed: %s", 5530 dwarf_errmsg(de)); 5531 goto next_abbrev; 5532 } 5533 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5534 snprintf(unk_tag, sizeof(unk_tag), 5535 "[Unknown Tag: %#x]", tag); 5536 tag_str = unk_tag; 5537 } 5538 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5539 DW_DLV_OK) { 5540 warnx("dwarf_get_abbrev_children_flag failed:" 5541 " %s", dwarf_errmsg(de)); 5542 goto next_abbrev; 5543 } 5544 printf(" %s %s\n", tag_str, 5545 flag ? "[has children]" : "[no children]"); 5546 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5547 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5548 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5549 warnx("dwarf_get_abbrev_entry failed:" 5550 " %s", dwarf_errmsg(de)); 5551 continue; 5552 } 5553 if (dwarf_get_AT_name(attr, &attr_str) != 5554 DW_DLV_OK) { 5555 snprintf(unk_attr, sizeof(unk_attr), 5556 "[Unknown AT: %#x]", attr); 5557 attr_str = unk_attr; 5558 } 5559 if (dwarf_get_FORM_name(form, &form_str) != 5560 DW_DLV_OK) { 5561 snprintf(unk_form, sizeof(unk_form), 5562 "[Unknown Form: %#x]", 5563 (Dwarf_Half) form); 5564 form_str = unk_form; 5565 } 5566 printf(" %-18s %s\n", attr_str, form_str); 5567 } 5568 next_abbrev: 5569 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5570 } 5571 if (ret != DW_DLV_OK) 5572 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5573 } 5574 if (ret == DW_DLV_ERROR) 5575 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5576 } 5577 5578 static void 5579 dump_dwarf_pubnames(struct readelf *re) 5580 { 5581 struct section *s; 5582 Dwarf_Off die_off; 5583 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5584 Dwarf_Signed cnt; 5585 Dwarf_Global *globs; 5586 Dwarf_Half nt_version; 5587 Dwarf_Error de; 5588 Elf_Data *d; 5589 char *glob_name; 5590 int i, dwarf_size, elferr; 5591 5592 printf("\nContents of the .debug_pubnames section:\n"); 5593 5594 s = NULL; 5595 for (i = 0; (size_t) i < re->shnum; i++) { 5596 s = &re->sl[i]; 5597 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5598 break; 5599 } 5600 if ((size_t) i >= re->shnum) 5601 return; 5602 5603 (void) elf_errno(); 5604 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5605 elferr = elf_errno(); 5606 if (elferr != 0) 5607 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5608 return; 5609 } 5610 if (d->d_size <= 0) 5611 return; 5612 5613 /* Read in .debug_pubnames section table header. */ 5614 offset = 0; 5615 length = re->dw_read(d, &offset, 4); 5616 if (length == 0xffffffff) { 5617 dwarf_size = 8; 5618 length = re->dw_read(d, &offset, 8); 5619 } else 5620 dwarf_size = 4; 5621 5622 if (length > d->d_size - offset) { 5623 warnx("invalid .dwarf_pubnames section"); 5624 return; 5625 } 5626 5627 nt_version = re->dw_read(d, &offset, 2); 5628 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5629 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5630 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5631 printf(" Version:\t\t\t\t%u\n", nt_version); 5632 printf(" Offset into .debug_info section:\t%ju\n", 5633 (uintmax_t) nt_cu_offset); 5634 printf(" Size of area in .debug_info section:\t%ju\n", 5635 (uintmax_t) nt_cu_length); 5636 5637 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5638 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5639 return; 5640 } 5641 5642 printf("\n Offset Name\n"); 5643 for (i = 0; i < cnt; i++) { 5644 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5645 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5646 continue; 5647 } 5648 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5649 DW_DLV_OK) { 5650 warnx("dwarf_global_die_offset failed: %s", 5651 dwarf_errmsg(de)); 5652 continue; 5653 } 5654 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5655 } 5656 } 5657 5658 static void 5659 dump_dwarf_aranges(struct readelf *re) 5660 { 5661 struct section *s; 5662 Dwarf_Arange *aranges; 5663 Dwarf_Addr start; 5664 Dwarf_Unsigned offset, length, as_cu_offset; 5665 Dwarf_Off die_off; 5666 Dwarf_Signed cnt; 5667 Dwarf_Half as_version, as_addrsz, as_segsz; 5668 Dwarf_Error de; 5669 Elf_Data *d; 5670 int i, dwarf_size, elferr; 5671 5672 printf("\nContents of section .debug_aranges:\n"); 5673 5674 s = NULL; 5675 for (i = 0; (size_t) i < re->shnum; i++) { 5676 s = &re->sl[i]; 5677 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5678 break; 5679 } 5680 if ((size_t) i >= re->shnum) 5681 return; 5682 5683 (void) elf_errno(); 5684 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5685 elferr = elf_errno(); 5686 if (elferr != 0) 5687 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5688 return; 5689 } 5690 if (d->d_size <= 0) 5691 return; 5692 5693 /* Read in the .debug_aranges section table header. */ 5694 offset = 0; 5695 length = re->dw_read(d, &offset, 4); 5696 if (length == 0xffffffff) { 5697 dwarf_size = 8; 5698 length = re->dw_read(d, &offset, 8); 5699 } else 5700 dwarf_size = 4; 5701 5702 if (length > d->d_size - offset) { 5703 warnx("invalid .dwarf_aranges section"); 5704 return; 5705 } 5706 5707 as_version = re->dw_read(d, &offset, 2); 5708 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5709 as_addrsz = re->dw_read(d, &offset, 1); 5710 as_segsz = re->dw_read(d, &offset, 1); 5711 5712 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5713 printf(" Version:\t\t\t%u\n", as_version); 5714 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5715 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5716 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5717 5718 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5719 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5720 return; 5721 } 5722 5723 printf("\n Address Length\n"); 5724 for (i = 0; i < cnt; i++) { 5725 if (dwarf_get_arange_info(aranges[i], &start, &length, 5726 &die_off, &de) != DW_DLV_OK) { 5727 warnx("dwarf_get_arange_info failed: %s", 5728 dwarf_errmsg(de)); 5729 continue; 5730 } 5731 printf(" %08jx %ju\n", (uintmax_t) start, 5732 (uintmax_t) length); 5733 } 5734 } 5735 5736 static void 5737 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5738 { 5739 Dwarf_Attribute *attr_list; 5740 Dwarf_Ranges *ranges; 5741 Dwarf_Die ret_die; 5742 Dwarf_Error de; 5743 Dwarf_Addr base0; 5744 Dwarf_Half attr; 5745 Dwarf_Signed attr_count, cnt; 5746 Dwarf_Unsigned off, bytecnt; 5747 int i, j, ret; 5748 5749 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5750 DW_DLV_OK) { 5751 if (ret == DW_DLV_ERROR) 5752 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5753 goto cont_search; 5754 } 5755 5756 for (i = 0; i < attr_count; i++) { 5757 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5758 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5759 continue; 5760 } 5761 if (attr != DW_AT_ranges) 5762 continue; 5763 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5764 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5765 continue; 5766 } 5767 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5768 &bytecnt, &de) != DW_DLV_OK) 5769 continue; 5770 base0 = base; 5771 for (j = 0; j < cnt; j++) { 5772 printf(" %08jx ", (uintmax_t) off); 5773 if (ranges[j].dwr_type == DW_RANGES_END) { 5774 printf("%s\n", "<End of list>"); 5775 continue; 5776 } else if (ranges[j].dwr_type == 5777 DW_RANGES_ADDRESS_SELECTION) { 5778 base0 = ranges[j].dwr_addr2; 5779 continue; 5780 } 5781 if (re->ec == ELFCLASS32) 5782 printf("%08jx %08jx\n", 5783 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5784 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5785 else 5786 printf("%016jx %016jx\n", 5787 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5788 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5789 } 5790 } 5791 5792 cont_search: 5793 /* Search children. */ 5794 ret = dwarf_child(die, &ret_die, &de); 5795 if (ret == DW_DLV_ERROR) 5796 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5797 else if (ret == DW_DLV_OK) 5798 dump_dwarf_ranges_foreach(re, ret_die, base); 5799 5800 /* Search sibling. */ 5801 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5802 if (ret == DW_DLV_ERROR) 5803 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5804 else if (ret == DW_DLV_OK) 5805 dump_dwarf_ranges_foreach(re, ret_die, base); 5806 } 5807 5808 static void 5809 dump_dwarf_ranges(struct readelf *re) 5810 { 5811 Dwarf_Ranges *ranges; 5812 Dwarf_Die die; 5813 Dwarf_Signed cnt; 5814 Dwarf_Unsigned bytecnt; 5815 Dwarf_Half tag; 5816 Dwarf_Error de; 5817 Dwarf_Unsigned lowpc; 5818 int ret; 5819 5820 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5821 DW_DLV_OK) 5822 return; 5823 5824 printf("Contents of the .debug_ranges section:\n\n"); 5825 if (re->ec == ELFCLASS32) 5826 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5827 else 5828 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5829 5830 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5831 NULL, &de)) == DW_DLV_OK) { 5832 die = NULL; 5833 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5834 continue; 5835 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5836 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5837 continue; 5838 } 5839 /* XXX: What about DW_TAG_partial_unit? */ 5840 lowpc = 0; 5841 if (tag == DW_TAG_compile_unit) { 5842 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5843 &de) != DW_DLV_OK) 5844 lowpc = 0; 5845 } 5846 5847 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5848 } 5849 putchar('\n'); 5850 } 5851 5852 static void 5853 dump_dwarf_macinfo(struct readelf *re) 5854 { 5855 Dwarf_Unsigned offset; 5856 Dwarf_Signed cnt; 5857 Dwarf_Macro_Details *md; 5858 Dwarf_Error de; 5859 const char *mi_str; 5860 char unk_mi[32]; 5861 int i; 5862 5863 #define _MAX_MACINFO_ENTRY 65535 5864 5865 printf("\nContents of section .debug_macinfo:\n\n"); 5866 5867 offset = 0; 5868 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5869 &cnt, &md, &de) == DW_DLV_OK) { 5870 for (i = 0; i < cnt; i++) { 5871 offset = md[i].dmd_offset + 1; 5872 if (md[i].dmd_type == 0) 5873 break; 5874 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5875 DW_DLV_OK) { 5876 snprintf(unk_mi, sizeof(unk_mi), 5877 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5878 mi_str = unk_mi; 5879 } 5880 printf(" %s", mi_str); 5881 switch (md[i].dmd_type) { 5882 case DW_MACINFO_define: 5883 case DW_MACINFO_undef: 5884 printf(" - lineno : %jd macro : %s\n", 5885 (intmax_t) md[i].dmd_lineno, 5886 md[i].dmd_macro); 5887 break; 5888 case DW_MACINFO_start_file: 5889 printf(" - lineno : %jd filenum : %jd\n", 5890 (intmax_t) md[i].dmd_lineno, 5891 (intmax_t) md[i].dmd_fileindex); 5892 break; 5893 default: 5894 putchar('\n'); 5895 break; 5896 } 5897 } 5898 } 5899 5900 #undef _MAX_MACINFO_ENTRY 5901 } 5902 5903 static void 5904 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5905 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5906 Dwarf_Debug dbg) 5907 { 5908 Dwarf_Frame_Op *oplist; 5909 Dwarf_Signed opcnt, delta; 5910 Dwarf_Small op; 5911 Dwarf_Error de; 5912 const char *op_str; 5913 char unk_op[32]; 5914 int i; 5915 5916 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5917 &opcnt, &de) != DW_DLV_OK) { 5918 warnx("dwarf_expand_frame_instructions failed: %s", 5919 dwarf_errmsg(de)); 5920 return; 5921 } 5922 5923 for (i = 0; i < opcnt; i++) { 5924 if (oplist[i].fp_base_op != 0) 5925 op = oplist[i].fp_base_op << 6; 5926 else 5927 op = oplist[i].fp_extended_op; 5928 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5929 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5930 op); 5931 op_str = unk_op; 5932 } 5933 printf(" %s", op_str); 5934 switch (op) { 5935 case DW_CFA_advance_loc: 5936 delta = oplist[i].fp_offset * caf; 5937 pc += delta; 5938 printf(": %ju to %08jx", (uintmax_t) delta, 5939 (uintmax_t) pc); 5940 break; 5941 case DW_CFA_offset: 5942 case DW_CFA_offset_extended: 5943 case DW_CFA_offset_extended_sf: 5944 delta = oplist[i].fp_offset * daf; 5945 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5946 dwarf_regname(re, oplist[i].fp_register), 5947 (intmax_t) delta); 5948 break; 5949 case DW_CFA_restore: 5950 printf(": r%u (%s)", oplist[i].fp_register, 5951 dwarf_regname(re, oplist[i].fp_register)); 5952 break; 5953 case DW_CFA_set_loc: 5954 pc = oplist[i].fp_offset; 5955 printf(": to %08jx", (uintmax_t) pc); 5956 break; 5957 case DW_CFA_advance_loc1: 5958 case DW_CFA_advance_loc2: 5959 case DW_CFA_advance_loc4: 5960 pc += oplist[i].fp_offset; 5961 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5962 (uintmax_t) pc); 5963 break; 5964 case DW_CFA_def_cfa: 5965 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5966 dwarf_regname(re, oplist[i].fp_register), 5967 (uintmax_t) oplist[i].fp_offset); 5968 break; 5969 case DW_CFA_def_cfa_sf: 5970 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5971 dwarf_regname(re, oplist[i].fp_register), 5972 (intmax_t) (oplist[i].fp_offset * daf)); 5973 break; 5974 case DW_CFA_def_cfa_register: 5975 printf(": r%u (%s)", oplist[i].fp_register, 5976 dwarf_regname(re, oplist[i].fp_register)); 5977 break; 5978 case DW_CFA_def_cfa_offset: 5979 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5980 break; 5981 case DW_CFA_def_cfa_offset_sf: 5982 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5983 break; 5984 default: 5985 break; 5986 } 5987 putchar('\n'); 5988 } 5989 5990 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5991 } 5992 5993 static char * 5994 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5995 { 5996 static char rs[16]; 5997 5998 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5999 snprintf(rs, sizeof(rs), "%c", 'u'); 6000 else if (reg == DW_FRAME_CFA_COL) 6001 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 6002 else 6003 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 6004 (intmax_t) off); 6005 6006 return (rs); 6007 } 6008 6009 static int 6010 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 6011 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 6012 { 6013 Dwarf_Regtable rt; 6014 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 6015 Dwarf_Error de; 6016 char *vec; 6017 int i; 6018 6019 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 6020 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 6021 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 6022 #define RT(x) rt.rules[(x)] 6023 6024 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 6025 if (vec == NULL) 6026 err(EXIT_FAILURE, "calloc failed"); 6027 6028 pre_pc = ~((Dwarf_Addr) 0); 6029 cur_pc = pc; 6030 end_pc = pc + func_len; 6031 for (; cur_pc < end_pc; cur_pc++) { 6032 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6033 &de) != DW_DLV_OK) { 6034 free(vec); 6035 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6036 dwarf_errmsg(de)); 6037 return (-1); 6038 } 6039 if (row_pc == pre_pc) 6040 continue; 6041 pre_pc = row_pc; 6042 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6043 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 6044 BIT_SET(vec, i); 6045 } 6046 } 6047 6048 printf(" LOC CFA "); 6049 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6050 if (BIT_ISSET(vec, i)) { 6051 if ((Dwarf_Half) i == cie_ra) 6052 printf("ra "); 6053 else 6054 printf("%-5s", 6055 dwarf_regname(re, (unsigned int) i)); 6056 } 6057 } 6058 putchar('\n'); 6059 6060 pre_pc = ~((Dwarf_Addr) 0); 6061 cur_pc = pc; 6062 end_pc = pc + func_len; 6063 for (; cur_pc < end_pc; cur_pc++) { 6064 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6065 &de) != DW_DLV_OK) { 6066 free(vec); 6067 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6068 dwarf_errmsg(de)); 6069 return (-1); 6070 } 6071 if (row_pc == pre_pc) 6072 continue; 6073 pre_pc = row_pc; 6074 printf("%08jx ", (uintmax_t) row_pc); 6075 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 6076 RT(0).dw_offset)); 6077 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6078 if (BIT_ISSET(vec, i)) { 6079 printf("%-5s", get_regoff_str(re, 6080 RT(i).dw_regnum, RT(i).dw_offset)); 6081 } 6082 } 6083 putchar('\n'); 6084 } 6085 6086 free(vec); 6087 6088 return (0); 6089 6090 #undef BIT_SET 6091 #undef BIT_CLR 6092 #undef BIT_ISSET 6093 #undef RT 6094 } 6095 6096 static void 6097 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 6098 { 6099 Dwarf_Cie *cie_list, cie, pre_cie; 6100 Dwarf_Fde *fde_list, fde; 6101 Dwarf_Off cie_offset, fde_offset; 6102 Dwarf_Unsigned cie_length, fde_instlen; 6103 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 6104 Dwarf_Signed cie_count, fde_count, cie_index; 6105 Dwarf_Addr low_pc; 6106 Dwarf_Half cie_ra; 6107 Dwarf_Small cie_version; 6108 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 6109 char *cie_aug, c; 6110 int i, eh_frame; 6111 Dwarf_Error de; 6112 6113 printf("\nThe section %s contains:\n\n", s->name); 6114 6115 if (!strcmp(s->name, ".debug_frame")) { 6116 eh_frame = 0; 6117 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 6118 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6119 warnx("dwarf_get_fde_list failed: %s", 6120 dwarf_errmsg(de)); 6121 return; 6122 } 6123 } else if (!strcmp(s->name, ".eh_frame")) { 6124 eh_frame = 1; 6125 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 6126 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6127 warnx("dwarf_get_fde_list_eh failed: %s", 6128 dwarf_errmsg(de)); 6129 return; 6130 } 6131 } else 6132 return; 6133 6134 pre_cie = NULL; 6135 for (i = 0; i < fde_count; i++) { 6136 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 6137 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6138 continue; 6139 } 6140 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 6141 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6142 continue; 6143 } 6144 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 6145 &fde_length, &cie_offset, &cie_index, &fde_offset, 6146 &de) != DW_DLV_OK) { 6147 warnx("dwarf_get_fde_range failed: %s", 6148 dwarf_errmsg(de)); 6149 continue; 6150 } 6151 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 6152 &de) != DW_DLV_OK) { 6153 warnx("dwarf_get_fde_instr_bytes failed: %s", 6154 dwarf_errmsg(de)); 6155 continue; 6156 } 6157 if (pre_cie == NULL || cie != pre_cie) { 6158 pre_cie = cie; 6159 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 6160 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 6161 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 6162 warnx("dwarf_get_cie_info failed: %s", 6163 dwarf_errmsg(de)); 6164 continue; 6165 } 6166 printf("%08jx %08jx %8.8jx CIE", 6167 (uintmax_t) cie_offset, 6168 (uintmax_t) cie_length, 6169 (uintmax_t) (eh_frame ? 0 : ~0U)); 6170 if (!alt) { 6171 putchar('\n'); 6172 printf(" Version:\t\t\t%u\n", cie_version); 6173 printf(" Augmentation:\t\t\t\""); 6174 while ((c = *cie_aug++) != '\0') 6175 putchar(c); 6176 printf("\"\n"); 6177 printf(" Code alignment factor:\t%ju\n", 6178 (uintmax_t) cie_caf); 6179 printf(" Data alignment factor:\t%jd\n", 6180 (intmax_t) cie_daf); 6181 printf(" Return address column:\t%ju\n", 6182 (uintmax_t) cie_ra); 6183 putchar('\n'); 6184 dump_dwarf_frame_inst(re, cie, cie_inst, 6185 cie_instlen, cie_caf, cie_daf, 0, 6186 re->dbg); 6187 putchar('\n'); 6188 } else { 6189 printf(" \""); 6190 while ((c = *cie_aug++) != '\0') 6191 putchar(c); 6192 putchar('"'); 6193 printf(" cf=%ju df=%jd ra=%ju\n", 6194 (uintmax_t) cie_caf, 6195 (uintmax_t) cie_daf, 6196 (uintmax_t) cie_ra); 6197 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 6198 cie_ra); 6199 putchar('\n'); 6200 } 6201 } 6202 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 6203 (uintmax_t) fde_offset, (uintmax_t) fde_length, 6204 (uintmax_t) cie_offset, 6205 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 6206 cie_offset), 6207 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 6208 if (!alt) 6209 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 6210 cie_caf, cie_daf, low_pc, re->dbg); 6211 else 6212 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 6213 cie_ra); 6214 putchar('\n'); 6215 } 6216 } 6217 6218 static void 6219 dump_dwarf_frame(struct readelf *re, int alt) 6220 { 6221 struct section *s; 6222 int i; 6223 6224 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 6225 6226 for (i = 0; (size_t) i < re->shnum; i++) { 6227 s = &re->sl[i]; 6228 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 6229 !strcmp(s->name, ".eh_frame"))) 6230 dump_dwarf_frame_section(re, s, alt); 6231 } 6232 } 6233 6234 static void 6235 dump_dwarf_str(struct readelf *re) 6236 { 6237 struct section *s; 6238 Elf_Data *d; 6239 unsigned char *p; 6240 int elferr, end, i, j; 6241 6242 printf("\nContents of section .debug_str:\n"); 6243 6244 s = NULL; 6245 for (i = 0; (size_t) i < re->shnum; i++) { 6246 s = &re->sl[i]; 6247 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 6248 break; 6249 } 6250 if ((size_t) i >= re->shnum) 6251 return; 6252 6253 (void) elf_errno(); 6254 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6255 elferr = elf_errno(); 6256 if (elferr != 0) 6257 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 6258 return; 6259 } 6260 if (d->d_size <= 0) 6261 return; 6262 6263 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 6264 printf(" 0x%08x", (unsigned int) i); 6265 if ((size_t) i + 16 > d->d_size) 6266 end = d->d_size; 6267 else 6268 end = i + 16; 6269 for (j = i; j < i + 16; j++) { 6270 if ((j - i) % 4 == 0) 6271 putchar(' '); 6272 if (j >= end) { 6273 printf(" "); 6274 continue; 6275 } 6276 printf("%02x", (uint8_t) p[j]); 6277 } 6278 putchar(' '); 6279 for (j = i; j < end; j++) { 6280 if (isprint(p[j])) 6281 putchar(p[j]); 6282 else if (p[j] == 0) 6283 putchar('.'); 6284 else 6285 putchar(' '); 6286 } 6287 putchar('\n'); 6288 } 6289 } 6290 6291 static int 6292 loc_at_comparator(const void *la1, const void *la2) 6293 { 6294 const struct loc_at *left, *right; 6295 6296 left = (const struct loc_at *)la1; 6297 right = (const struct loc_at *)la2; 6298 6299 if (left->la_off > right->la_off) 6300 return (1); 6301 else if (left->la_off < right->la_off) 6302 return (-1); 6303 else 6304 return (0); 6305 } 6306 6307 static void 6308 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc, 6309 struct loc_at **la_list, size_t *la_list_len, size_t *la_list_cap) 6310 { 6311 struct loc_at *la; 6312 Dwarf_Attribute *attr_list; 6313 Dwarf_Die ret_die; 6314 Dwarf_Unsigned off; 6315 Dwarf_Off ref; 6316 Dwarf_Signed attr_count; 6317 Dwarf_Half attr, form; 6318 Dwarf_Bool is_info; 6319 Dwarf_Error de; 6320 int i, ret; 6321 6322 is_info = dwarf_get_die_infotypes_flag(die); 6323 6324 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6325 DW_DLV_OK) { 6326 if (ret == DW_DLV_ERROR) 6327 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6328 goto cont_search; 6329 } 6330 for (i = 0; i < attr_count; i++) { 6331 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6332 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6333 continue; 6334 } 6335 if (attr != DW_AT_location && 6336 attr != DW_AT_string_length && 6337 attr != DW_AT_return_addr && 6338 attr != DW_AT_data_member_location && 6339 attr != DW_AT_frame_base && 6340 attr != DW_AT_segment && 6341 attr != DW_AT_static_link && 6342 attr != DW_AT_use_location && 6343 attr != DW_AT_vtable_elem_location) 6344 continue; 6345 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6346 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6347 continue; 6348 } 6349 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6350 if (dwarf_formudata(attr_list[i], &off, &de) != 6351 DW_DLV_OK) { 6352 warnx("dwarf_formudata failed: %s", 6353 dwarf_errmsg(de)); 6354 continue; 6355 } 6356 } else if (form == DW_FORM_sec_offset) { 6357 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6358 DW_DLV_OK) { 6359 warnx("dwarf_global_formref failed: %s", 6360 dwarf_errmsg(de)); 6361 continue; 6362 } 6363 off = ref; 6364 } else 6365 continue; 6366 6367 if (*la_list_cap == *la_list_len) { 6368 *la_list = realloc(*la_list, 6369 *la_list_cap * 2 * sizeof(**la_list)); 6370 if (*la_list == NULL) 6371 err(EXIT_FAILURE, "realloc failed"); 6372 *la_list_cap *= 2; 6373 } 6374 la = &((*la_list)[*la_list_len]); 6375 la->la_at = attr_list[i]; 6376 la->la_off = off; 6377 la->la_lowpc = lowpc; 6378 la->la_cu_psize = re->cu_psize; 6379 la->la_cu_osize = re->cu_osize; 6380 la->la_cu_ver = re->cu_ver; 6381 (*la_list_len)++; 6382 } 6383 6384 cont_search: 6385 /* Search children. */ 6386 ret = dwarf_child(die, &ret_die, &de); 6387 if (ret == DW_DLV_ERROR) 6388 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6389 else if (ret == DW_DLV_OK) 6390 search_loclist_at(re, ret_die, lowpc, la_list, 6391 la_list_len, la_list_cap); 6392 6393 /* Search sibling. */ 6394 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6395 if (ret == DW_DLV_ERROR) 6396 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6397 else if (ret == DW_DLV_OK) 6398 search_loclist_at(re, ret_die, lowpc, la_list, 6399 la_list_len, la_list_cap); 6400 } 6401 6402 static void 6403 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6404 { 6405 const char *op_str; 6406 char unk_op[32]; 6407 uint8_t *b, n; 6408 int i; 6409 6410 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6411 DW_DLV_OK) { 6412 snprintf(unk_op, sizeof(unk_op), 6413 "[Unknown OP: %#x]", lr->lr_atom); 6414 op_str = unk_op; 6415 } 6416 6417 printf("%s", op_str); 6418 6419 switch (lr->lr_atom) { 6420 case DW_OP_reg0: 6421 case DW_OP_reg1: 6422 case DW_OP_reg2: 6423 case DW_OP_reg3: 6424 case DW_OP_reg4: 6425 case DW_OP_reg5: 6426 case DW_OP_reg6: 6427 case DW_OP_reg7: 6428 case DW_OP_reg8: 6429 case DW_OP_reg9: 6430 case DW_OP_reg10: 6431 case DW_OP_reg11: 6432 case DW_OP_reg12: 6433 case DW_OP_reg13: 6434 case DW_OP_reg14: 6435 case DW_OP_reg15: 6436 case DW_OP_reg16: 6437 case DW_OP_reg17: 6438 case DW_OP_reg18: 6439 case DW_OP_reg19: 6440 case DW_OP_reg20: 6441 case DW_OP_reg21: 6442 case DW_OP_reg22: 6443 case DW_OP_reg23: 6444 case DW_OP_reg24: 6445 case DW_OP_reg25: 6446 case DW_OP_reg26: 6447 case DW_OP_reg27: 6448 case DW_OP_reg28: 6449 case DW_OP_reg29: 6450 case DW_OP_reg30: 6451 case DW_OP_reg31: 6452 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6453 break; 6454 6455 case DW_OP_deref: 6456 case DW_OP_lit0: 6457 case DW_OP_lit1: 6458 case DW_OP_lit2: 6459 case DW_OP_lit3: 6460 case DW_OP_lit4: 6461 case DW_OP_lit5: 6462 case DW_OP_lit6: 6463 case DW_OP_lit7: 6464 case DW_OP_lit8: 6465 case DW_OP_lit9: 6466 case DW_OP_lit10: 6467 case DW_OP_lit11: 6468 case DW_OP_lit12: 6469 case DW_OP_lit13: 6470 case DW_OP_lit14: 6471 case DW_OP_lit15: 6472 case DW_OP_lit16: 6473 case DW_OP_lit17: 6474 case DW_OP_lit18: 6475 case DW_OP_lit19: 6476 case DW_OP_lit20: 6477 case DW_OP_lit21: 6478 case DW_OP_lit22: 6479 case DW_OP_lit23: 6480 case DW_OP_lit24: 6481 case DW_OP_lit25: 6482 case DW_OP_lit26: 6483 case DW_OP_lit27: 6484 case DW_OP_lit28: 6485 case DW_OP_lit29: 6486 case DW_OP_lit30: 6487 case DW_OP_lit31: 6488 case DW_OP_dup: 6489 case DW_OP_drop: 6490 case DW_OP_over: 6491 case DW_OP_swap: 6492 case DW_OP_rot: 6493 case DW_OP_xderef: 6494 case DW_OP_abs: 6495 case DW_OP_and: 6496 case DW_OP_div: 6497 case DW_OP_minus: 6498 case DW_OP_mod: 6499 case DW_OP_mul: 6500 case DW_OP_neg: 6501 case DW_OP_not: 6502 case DW_OP_or: 6503 case DW_OP_plus: 6504 case DW_OP_shl: 6505 case DW_OP_shr: 6506 case DW_OP_shra: 6507 case DW_OP_xor: 6508 case DW_OP_eq: 6509 case DW_OP_ge: 6510 case DW_OP_gt: 6511 case DW_OP_le: 6512 case DW_OP_lt: 6513 case DW_OP_ne: 6514 case DW_OP_nop: 6515 case DW_OP_push_object_address: 6516 case DW_OP_form_tls_address: 6517 case DW_OP_call_frame_cfa: 6518 case DW_OP_stack_value: 6519 case DW_OP_GNU_push_tls_address: 6520 case DW_OP_GNU_uninit: 6521 break; 6522 6523 case DW_OP_const1u: 6524 case DW_OP_pick: 6525 case DW_OP_deref_size: 6526 case DW_OP_xderef_size: 6527 case DW_OP_const2u: 6528 case DW_OP_bra: 6529 case DW_OP_skip: 6530 case DW_OP_const4u: 6531 case DW_OP_const8u: 6532 case DW_OP_constu: 6533 case DW_OP_plus_uconst: 6534 case DW_OP_regx: 6535 case DW_OP_piece: 6536 printf(": %ju", (uintmax_t) 6537 lr->lr_number); 6538 break; 6539 6540 case DW_OP_const1s: 6541 case DW_OP_const2s: 6542 case DW_OP_const4s: 6543 case DW_OP_const8s: 6544 case DW_OP_consts: 6545 printf(": %jd", (intmax_t) 6546 lr->lr_number); 6547 break; 6548 6549 case DW_OP_breg0: 6550 case DW_OP_breg1: 6551 case DW_OP_breg2: 6552 case DW_OP_breg3: 6553 case DW_OP_breg4: 6554 case DW_OP_breg5: 6555 case DW_OP_breg6: 6556 case DW_OP_breg7: 6557 case DW_OP_breg8: 6558 case DW_OP_breg9: 6559 case DW_OP_breg10: 6560 case DW_OP_breg11: 6561 case DW_OP_breg12: 6562 case DW_OP_breg13: 6563 case DW_OP_breg14: 6564 case DW_OP_breg15: 6565 case DW_OP_breg16: 6566 case DW_OP_breg17: 6567 case DW_OP_breg18: 6568 case DW_OP_breg19: 6569 case DW_OP_breg20: 6570 case DW_OP_breg21: 6571 case DW_OP_breg22: 6572 case DW_OP_breg23: 6573 case DW_OP_breg24: 6574 case DW_OP_breg25: 6575 case DW_OP_breg26: 6576 case DW_OP_breg27: 6577 case DW_OP_breg28: 6578 case DW_OP_breg29: 6579 case DW_OP_breg30: 6580 case DW_OP_breg31: 6581 printf(" (%s): %jd", 6582 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6583 (intmax_t) lr->lr_number); 6584 break; 6585 6586 case DW_OP_fbreg: 6587 printf(": %jd", (intmax_t) 6588 lr->lr_number); 6589 break; 6590 6591 case DW_OP_bregx: 6592 printf(": %ju (%s) %jd", 6593 (uintmax_t) lr->lr_number, 6594 dwarf_regname(re, (unsigned int) lr->lr_number), 6595 (intmax_t) lr->lr_number2); 6596 break; 6597 6598 case DW_OP_addr: 6599 case DW_OP_GNU_encoded_addr: 6600 printf(": %#jx", (uintmax_t) 6601 lr->lr_number); 6602 break; 6603 6604 case DW_OP_GNU_implicit_pointer: 6605 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6606 (intmax_t) lr->lr_number2); 6607 break; 6608 6609 case DW_OP_implicit_value: 6610 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6611 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6612 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6613 printf(" %x", b[i]); 6614 break; 6615 6616 case DW_OP_GNU_entry_value: 6617 printf(": ("); 6618 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6619 lr->lr_number); 6620 putchar(')'); 6621 break; 6622 6623 case DW_OP_GNU_const_type: 6624 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6625 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6626 n = *b; 6627 for (i = 1; (uint8_t) i < n; i++) 6628 printf(" %x", b[i]); 6629 break; 6630 6631 case DW_OP_GNU_regval_type: 6632 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6633 dwarf_regname(re, (unsigned int) lr->lr_number), 6634 (uintmax_t) lr->lr_number2); 6635 break; 6636 6637 case DW_OP_GNU_convert: 6638 case DW_OP_GNU_deref_type: 6639 case DW_OP_GNU_parameter_ref: 6640 case DW_OP_GNU_reinterpret: 6641 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6642 break; 6643 6644 default: 6645 break; 6646 } 6647 } 6648 6649 static void 6650 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6651 { 6652 Dwarf_Locdesc *llbuf; 6653 Dwarf_Signed lcnt; 6654 Dwarf_Error de; 6655 int i; 6656 6657 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6658 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6659 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6660 return; 6661 } 6662 6663 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6664 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6665 if (i < llbuf->ld_cents - 1) 6666 printf("; "); 6667 } 6668 6669 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6670 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6671 } 6672 6673 static void 6674 dump_dwarf_loclist(struct readelf *re) 6675 { 6676 Dwarf_Die die; 6677 Dwarf_Locdesc **llbuf; 6678 Dwarf_Unsigned lowpc; 6679 Dwarf_Signed lcnt; 6680 Dwarf_Half tag, version, pointer_size, off_size; 6681 Dwarf_Error de; 6682 struct loc_at *la_list, *left, *right, *la; 6683 size_t la_list_len, la_list_cap; 6684 unsigned int duplicates, k; 6685 int i, j, ret, has_content; 6686 6687 la_list_len = 0; 6688 la_list_cap = 200; 6689 if ((la_list = calloc(la_list_cap, sizeof(struct loc_at))) == NULL) 6690 errx(EXIT_FAILURE, "calloc failed"); 6691 /* Search .debug_info section. */ 6692 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6693 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6694 set_cu_context(re, pointer_size, off_size, version); 6695 die = NULL; 6696 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6697 continue; 6698 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6699 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6700 continue; 6701 } 6702 /* XXX: What about DW_TAG_partial_unit? */ 6703 lowpc = 0; 6704 if (tag == DW_TAG_compile_unit) { 6705 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6706 &lowpc, &de) != DW_DLV_OK) 6707 lowpc = 0; 6708 } 6709 6710 /* Search attributes for reference to .debug_loc section. */ 6711 search_loclist_at(re, die, lowpc, &la_list, 6712 &la_list_len, &la_list_cap); 6713 } 6714 if (ret == DW_DLV_ERROR) 6715 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6716 6717 /* Search .debug_types section. */ 6718 do { 6719 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6720 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6721 NULL, NULL, &de)) == DW_DLV_OK) { 6722 set_cu_context(re, pointer_size, off_size, version); 6723 die = NULL; 6724 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6725 DW_DLV_OK) 6726 continue; 6727 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6728 warnx("dwarf_tag failed: %s", 6729 dwarf_errmsg(de)); 6730 continue; 6731 } 6732 6733 lowpc = 0; 6734 if (tag == DW_TAG_type_unit) { 6735 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6736 &lowpc, &de) != DW_DLV_OK) 6737 lowpc = 0; 6738 } 6739 6740 /* 6741 * Search attributes for reference to .debug_loc 6742 * section. 6743 */ 6744 search_loclist_at(re, die, lowpc, &la_list, 6745 &la_list_len, &la_list_cap); 6746 } 6747 if (ret == DW_DLV_ERROR) 6748 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6749 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6750 6751 if (la_list_len == 0) { 6752 free(la_list); 6753 return; 6754 } 6755 6756 /* Sort la_list using loc_at_comparator. */ 6757 qsort(la_list, la_list_len, sizeof(struct loc_at), loc_at_comparator); 6758 6759 /* Get rid of the duplicates in la_list. */ 6760 duplicates = 0; 6761 for (k = 1; k < la_list_len; ++k) { 6762 left = &la_list[k - 1 - duplicates]; 6763 right = &la_list[k]; 6764 6765 if (left->la_off == right->la_off) 6766 duplicates++; 6767 else 6768 la_list[k - duplicates] = *right; 6769 } 6770 la_list_len -= duplicates; 6771 6772 has_content = 0; 6773 for (k = 0; k < la_list_len; ++k) { 6774 la = &la_list[k]; 6775 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6776 DW_DLV_OK) { 6777 if (ret != DW_DLV_NO_ENTRY) 6778 warnx("dwarf_loclist_n failed: %s", 6779 dwarf_errmsg(de)); 6780 continue; 6781 } 6782 if (!has_content) { 6783 has_content = 1; 6784 printf("\nContents of section .debug_loc:\n"); 6785 printf(" Offset Begin End Expression\n"); 6786 } 6787 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6788 la->la_cu_ver); 6789 for (i = 0; i < lcnt; i++) { 6790 printf(" %8.8jx ", (uintmax_t) la->la_off); 6791 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6792 printf("<End of list>\n"); 6793 continue; 6794 } 6795 6796 /* TODO: handle base selection entry. */ 6797 6798 printf("%8.8jx %8.8jx ", 6799 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6800 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6801 6802 putchar('('); 6803 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6804 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6805 if (j < llbuf[i]->ld_cents - 1) 6806 printf("; "); 6807 } 6808 putchar(')'); 6809 6810 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6811 printf(" (start == end)"); 6812 putchar('\n'); 6813 } 6814 for (i = 0; i < lcnt; i++) { 6815 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6816 DW_DLA_LOC_BLOCK); 6817 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6818 } 6819 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6820 } 6821 6822 if (!has_content) 6823 printf("\nSection '.debug_loc' has no debugging data.\n"); 6824 6825 free(la_list); 6826 } 6827 6828 /* 6829 * Retrieve a string using string table section index and the string offset. 6830 */ 6831 static const char* 6832 get_string(struct readelf *re, int strtab, size_t off) 6833 { 6834 const char *name; 6835 6836 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6837 return (""); 6838 6839 return (name); 6840 } 6841 6842 /* 6843 * Retrieve the name of a symbol using the section index of the symbol 6844 * table and the index of the symbol within that table. 6845 */ 6846 static const char * 6847 get_symbol_name(struct readelf *re, int symtab, int i) 6848 { 6849 struct section *s; 6850 const char *name; 6851 GElf_Sym sym; 6852 Elf_Data *data; 6853 int elferr; 6854 6855 s = &re->sl[symtab]; 6856 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6857 return (""); 6858 (void) elf_errno(); 6859 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6860 elferr = elf_errno(); 6861 if (elferr != 0) 6862 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6863 return (""); 6864 } 6865 if (gelf_getsym(data, i, &sym) != &sym) 6866 return (""); 6867 /* Return section name for STT_SECTION symbol. */ 6868 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6869 if (sym.st_shndx < re->shnum && 6870 re->sl[sym.st_shndx].name != NULL) 6871 return (re->sl[sym.st_shndx].name); 6872 return (""); 6873 } 6874 if (s->link >= re->shnum || 6875 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6876 return (""); 6877 6878 return (name); 6879 } 6880 6881 static uint64_t 6882 get_symbol_value(struct readelf *re, int symtab, int i) 6883 { 6884 struct section *s; 6885 GElf_Sym sym; 6886 Elf_Data *data; 6887 int elferr; 6888 6889 s = &re->sl[symtab]; 6890 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6891 return (0); 6892 (void) elf_errno(); 6893 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6894 elferr = elf_errno(); 6895 if (elferr != 0) 6896 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6897 return (0); 6898 } 6899 if (gelf_getsym(data, i, &sym) != &sym) 6900 return (0); 6901 6902 return (sym.st_value); 6903 } 6904 6905 /* 6906 * Decompress a data section if needed (using ZLIB). 6907 * Returns true if sucessful, false otherwise. 6908 */ 6909 static bool decompress_section(struct section *s, 6910 unsigned char *compressed_data_buffer, size_t compressed_size, 6911 unsigned char **ret_buf, size_t *ret_sz) 6912 { 6913 GElf_Shdr sh; 6914 6915 if (gelf_getshdr(s->scn, &sh) == NULL) 6916 errx(EXIT_FAILURE, "gelf_getshdr() failed: %s", elf_errmsg(-1)); 6917 6918 if (sh.sh_flags & SHF_COMPRESSED) { 6919 int ret; 6920 GElf_Chdr chdr; 6921 Elf64_Xword inflated_size; 6922 unsigned char *uncompressed_data_buffer = NULL; 6923 Elf64_Xword uncompressed_size; 6924 z_stream strm; 6925 6926 if (gelf_getchdr(s->scn, &chdr) == NULL) 6927 errx(EXIT_FAILURE, "gelf_getchdr() failed: %s", elf_errmsg(-1)); 6928 if (chdr.ch_type != ELFCOMPRESS_ZLIB) { 6929 warnx("unknown compression type: %d", chdr.ch_type); 6930 return (false); 6931 } 6932 6933 inflated_size = 0; 6934 uncompressed_size = chdr.ch_size; 6935 uncompressed_data_buffer = malloc(uncompressed_size); 6936 compressed_data_buffer += sizeof(chdr); 6937 compressed_size -= sizeof(chdr); 6938 6939 strm.zalloc = Z_NULL; 6940 strm.zfree = Z_NULL; 6941 strm.opaque = Z_NULL; 6942 strm.avail_in = compressed_size; 6943 strm.avail_out = uncompressed_size; 6944 ret = inflateInit(&strm); 6945 6946 if (ret != Z_OK) 6947 goto fail; 6948 /* 6949 * The section can contain several compressed buffers, 6950 * so decompress in a loop until all data is inflated. 6951 */ 6952 while (inflated_size < compressed_size) { 6953 strm.next_in = compressed_data_buffer + inflated_size; 6954 strm.next_out = uncompressed_data_buffer + inflated_size; 6955 ret = inflate(&strm, Z_FINISH); 6956 if (ret != Z_STREAM_END) 6957 goto fail; 6958 inflated_size = uncompressed_size - strm.avail_out; 6959 ret = inflateReset(&strm); 6960 if (ret != Z_OK) 6961 goto fail; 6962 } 6963 if (strm.avail_out != 0) 6964 warnx("Warning: wrong info in compression header."); 6965 ret = inflateEnd(&strm); 6966 if (ret != Z_OK) 6967 goto fail; 6968 *ret_buf = uncompressed_data_buffer; 6969 *ret_sz = uncompressed_size; 6970 return (true); 6971 fail: 6972 inflateEnd(&strm); 6973 if (strm.msg) 6974 warnx("%s", strm.msg); 6975 else 6976 warnx("ZLIB error: %d", ret); 6977 free(uncompressed_data_buffer); 6978 return (false); 6979 } 6980 return (false); 6981 } 6982 6983 static void 6984 hex_dump(struct readelf *re) 6985 { 6986 struct section *s; 6987 Elf_Data *d; 6988 uint8_t *buf, *new_buf; 6989 size_t sz, nbytes; 6990 uint64_t addr; 6991 int elferr, i, j; 6992 6993 for (i = 1; (size_t) i < re->shnum; i++) { 6994 new_buf = NULL; 6995 s = &re->sl[i]; 6996 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6997 continue; 6998 (void) elf_errno(); 6999 if ((d = elf_getdata(s->scn, NULL)) == NULL && 7000 (d = elf_rawdata(s->scn, NULL)) == NULL) { 7001 elferr = elf_errno(); 7002 if (elferr != 0) 7003 warnx("elf_getdata failed: %s", 7004 elf_errmsg(elferr)); 7005 continue; 7006 } 7007 (void) elf_errno(); 7008 if (d->d_size <= 0 || d->d_buf == NULL) { 7009 printf("\nSection '%s' has no data to dump.\n", 7010 s->name); 7011 continue; 7012 } 7013 buf = d->d_buf; 7014 sz = d->d_size; 7015 addr = s->addr; 7016 if (re->options & RE_Z) { 7017 if (decompress_section(s, d->d_buf, d->d_size, 7018 &new_buf, &sz)) 7019 buf = new_buf; 7020 } 7021 printf("\nHex dump of section '%s':\n", s->name); 7022 while (sz > 0) { 7023 printf(" 0x%8.8jx ", (uintmax_t)addr); 7024 nbytes = sz > 16? 16 : sz; 7025 for (j = 0; j < 16; j++) { 7026 if ((size_t)j < nbytes) 7027 printf("%2.2x", buf[j]); 7028 else 7029 printf(" "); 7030 if ((j & 3) == 3) 7031 printf(" "); 7032 } 7033 for (j = 0; (size_t)j < nbytes; j++) { 7034 if (isprint(buf[j])) 7035 printf("%c", buf[j]); 7036 else 7037 printf("."); 7038 } 7039 printf("\n"); 7040 buf += nbytes; 7041 addr += nbytes; 7042 sz -= nbytes; 7043 } 7044 free(new_buf); 7045 } 7046 } 7047 7048 static void 7049 str_dump(struct readelf *re) 7050 { 7051 struct section *s; 7052 Elf_Data *d; 7053 unsigned char *start, *end, *buf_end, *new_buf; 7054 unsigned int len; 7055 size_t sz; 7056 int i, j, elferr, found; 7057 7058 for (i = 1; (size_t) i < re->shnum; i++) { 7059 new_buf = NULL; 7060 s = &re->sl[i]; 7061 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 7062 continue; 7063 (void) elf_errno(); 7064 if ((d = elf_getdata(s->scn, NULL)) == NULL && 7065 (d = elf_rawdata(s->scn, NULL)) == NULL) { 7066 elferr = elf_errno(); 7067 if (elferr != 0) 7068 warnx("elf_getdata failed: %s", 7069 elf_errmsg(elferr)); 7070 continue; 7071 } 7072 (void) elf_errno(); 7073 if (d->d_size <= 0 || d->d_buf == NULL) { 7074 printf("\nSection '%s' has no data to dump.\n", 7075 s->name); 7076 continue; 7077 } 7078 found = 0; 7079 start = d->d_buf; 7080 sz = d->d_size; 7081 if (re->options & RE_Z) { 7082 if (decompress_section(s, d->d_buf, d->d_size, 7083 &new_buf, &sz)) 7084 start = new_buf; 7085 } 7086 buf_end = start + sz; 7087 printf("\nString dump of section '%s':\n", s->name); 7088 for (;;) { 7089 while (start < buf_end && !isprint(*start)) 7090 start++; 7091 if (start >= buf_end) 7092 break; 7093 end = start + 1; 7094 while (end < buf_end && isprint(*end)) 7095 end++; 7096 printf(" [%6lx] ", 7097 (long) (start - (unsigned char *) d->d_buf)); 7098 len = end - start; 7099 for (j = 0; (unsigned int) j < len; j++) 7100 putchar(start[j]); 7101 putchar('\n'); 7102 found = 1; 7103 if (end >= buf_end) 7104 break; 7105 start = end + 1; 7106 } 7107 free(new_buf); 7108 if (!found) 7109 printf(" No strings found in this section."); 7110 putchar('\n'); 7111 } 7112 } 7113 7114 static void 7115 load_sections(struct readelf *re) 7116 { 7117 struct section *s; 7118 const char *name; 7119 Elf_Scn *scn; 7120 GElf_Shdr sh; 7121 size_t shstrndx, ndx; 7122 int elferr; 7123 7124 /* Allocate storage for internal section list. */ 7125 if (!elf_getshnum(re->elf, &re->shnum)) { 7126 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 7127 return; 7128 } 7129 if (re->sl != NULL) 7130 free(re->sl); 7131 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 7132 err(EXIT_FAILURE, "calloc failed"); 7133 7134 /* Get the index of .shstrtab section. */ 7135 if (!elf_getshstrndx(re->elf, &shstrndx)) { 7136 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 7137 return; 7138 } 7139 7140 if ((scn = elf_getscn(re->elf, 0)) == NULL) 7141 return; 7142 7143 (void) elf_errno(); 7144 do { 7145 if (gelf_getshdr(scn, &sh) == NULL) { 7146 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 7147 (void) elf_errno(); 7148 continue; 7149 } 7150 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 7151 (void) elf_errno(); 7152 name = "<no-name>"; 7153 } 7154 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 7155 if ((elferr = elf_errno()) != 0) { 7156 warnx("elf_ndxscn failed: %s", 7157 elf_errmsg(elferr)); 7158 continue; 7159 } 7160 } 7161 if (ndx >= re->shnum) { 7162 warnx("section index of '%s' out of range", name); 7163 continue; 7164 } 7165 if (sh.sh_link >= re->shnum) 7166 warnx("section link %llu of '%s' out of range", 7167 (unsigned long long)sh.sh_link, name); 7168 s = &re->sl[ndx]; 7169 s->name = name; 7170 s->scn = scn; 7171 s->off = sh.sh_offset; 7172 s->sz = sh.sh_size; 7173 s->entsize = sh.sh_entsize; 7174 s->align = sh.sh_addralign; 7175 s->type = sh.sh_type; 7176 s->flags = sh.sh_flags; 7177 s->addr = sh.sh_addr; 7178 s->link = sh.sh_link; 7179 s->info = sh.sh_info; 7180 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 7181 elferr = elf_errno(); 7182 if (elferr != 0) 7183 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 7184 } 7185 7186 static void 7187 unload_sections(struct readelf *re) 7188 { 7189 7190 if (re->sl != NULL) { 7191 free(re->sl); 7192 re->sl = NULL; 7193 } 7194 re->shnum = 0; 7195 re->vd_s = NULL; 7196 re->vn_s = NULL; 7197 re->vs_s = NULL; 7198 re->vs = NULL; 7199 re->vs_sz = 0; 7200 if (re->ver != NULL) { 7201 free(re->ver); 7202 re->ver = NULL; 7203 re->ver_sz = 0; 7204 } 7205 } 7206 7207 static void 7208 dump_elf(struct readelf *re) 7209 { 7210 7211 /* Fetch ELF header. No need to continue if it fails. */ 7212 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 7213 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 7214 return; 7215 } 7216 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 7217 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 7218 return; 7219 } 7220 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 7221 re->dw_read = _read_msb; 7222 re->dw_decode = _decode_msb; 7223 } else { 7224 re->dw_read = _read_lsb; 7225 re->dw_decode = _decode_lsb; 7226 } 7227 7228 if (re->options & ~RE_H) 7229 load_sections(re); 7230 if ((re->options & RE_VV) || (re->options & RE_S)) 7231 search_ver(re); 7232 if (re->options & RE_H) 7233 dump_ehdr(re); 7234 if (re->options & RE_L) 7235 dump_phdr(re); 7236 if (re->options & RE_SS) 7237 dump_shdr(re); 7238 if (re->options & RE_G) 7239 dump_section_groups(re); 7240 if (re->options & RE_D) 7241 dump_dynamic(re); 7242 if (re->options & RE_R) 7243 dump_reloc(re); 7244 if (re->options & RE_S) 7245 dump_symtabs(re); 7246 if (re->options & RE_N) 7247 dump_notes(re); 7248 if (re->options & RE_II) 7249 dump_hash(re); 7250 if (re->options & RE_X) 7251 hex_dump(re); 7252 if (re->options & RE_P) 7253 str_dump(re); 7254 if (re->options & RE_VV) 7255 dump_ver(re); 7256 if (re->options & RE_AA) 7257 dump_arch_specific_info(re); 7258 if (re->options & RE_W) 7259 dump_dwarf(re); 7260 if (re->options & ~RE_H) 7261 unload_sections(re); 7262 } 7263 7264 static void 7265 dump_dwarf(struct readelf *re) 7266 { 7267 Dwarf_Error de; 7268 int error; 7269 7270 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 7271 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 7272 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 7273 dwarf_errmsg(de)); 7274 return; 7275 } 7276 7277 if (re->dop & DW_A) 7278 dump_dwarf_abbrev(re); 7279 if (re->dop & DW_L) 7280 dump_dwarf_line(re); 7281 if (re->dop & DW_LL) 7282 dump_dwarf_line_decoded(re); 7283 if (re->dop & DW_I) { 7284 dump_dwarf_info(re, 0); 7285 dump_dwarf_info(re, 1); 7286 } 7287 if (re->dop & DW_P) 7288 dump_dwarf_pubnames(re); 7289 if (re->dop & DW_R) 7290 dump_dwarf_aranges(re); 7291 if (re->dop & DW_RR) 7292 dump_dwarf_ranges(re); 7293 if (re->dop & DW_M) 7294 dump_dwarf_macinfo(re); 7295 if (re->dop & DW_F) 7296 dump_dwarf_frame(re, 0); 7297 else if (re->dop & DW_FF) 7298 dump_dwarf_frame(re, 1); 7299 if (re->dop & DW_S) 7300 dump_dwarf_str(re); 7301 if (re->dop & DW_O) 7302 dump_dwarf_loclist(re); 7303 7304 dwarf_finish(re->dbg, &de); 7305 } 7306 7307 static void 7308 dump_ar(struct readelf *re, int fd) 7309 { 7310 Elf_Arsym *arsym; 7311 Elf_Arhdr *arhdr; 7312 Elf_Cmd cmd; 7313 Elf *e; 7314 size_t sz; 7315 off_t off; 7316 int i; 7317 7318 re->ar = re->elf; 7319 7320 if (re->options & RE_C) { 7321 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 7322 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 7323 goto process_members; 7324 } 7325 printf("Index of archive %s: (%ju entries)\n", re->filename, 7326 (uintmax_t) sz - 1); 7327 off = 0; 7328 for (i = 0; (size_t) i < sz; i++) { 7329 if (arsym[i].as_name == NULL) 7330 break; 7331 if (arsym[i].as_off != off) { 7332 off = arsym[i].as_off; 7333 if (elf_rand(re->ar, off) != off) { 7334 warnx("elf_rand() failed: %s", 7335 elf_errmsg(-1)); 7336 continue; 7337 } 7338 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 7339 NULL) { 7340 warnx("elf_begin() failed: %s", 7341 elf_errmsg(-1)); 7342 continue; 7343 } 7344 if ((arhdr = elf_getarhdr(e)) == NULL) { 7345 warnx("elf_getarhdr() failed: %s", 7346 elf_errmsg(-1)); 7347 elf_end(e); 7348 continue; 7349 } 7350 printf("Binary %s(%s) contains:\n", 7351 re->filename, arhdr->ar_name); 7352 elf_end(e); 7353 } 7354 printf("\t%s\n", arsym[i].as_name); 7355 } 7356 if (elf_rand(re->ar, SARMAG) != SARMAG) { 7357 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 7358 return; 7359 } 7360 } 7361 7362 process_members: 7363 7364 if ((re->options & ~RE_C) == 0) 7365 return; 7366 7367 cmd = ELF_C_READ; 7368 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 7369 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 7370 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 7371 goto next_member; 7372 } 7373 if (strcmp(arhdr->ar_name, "/") == 0 || 7374 strcmp(arhdr->ar_name, "//") == 0 || 7375 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 7376 goto next_member; 7377 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 7378 dump_elf(re); 7379 7380 next_member: 7381 cmd = elf_next(re->elf); 7382 elf_end(re->elf); 7383 } 7384 re->elf = re->ar; 7385 } 7386 7387 static void 7388 dump_object(struct readelf *re, int fd) 7389 { 7390 if ((re->flags & DISPLAY_FILENAME) != 0) 7391 printf("\nFile: %s\n", re->filename); 7392 7393 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 7394 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 7395 goto done; 7396 } 7397 7398 switch (elf_kind(re->elf)) { 7399 case ELF_K_NONE: 7400 warnx("Not an ELF file."); 7401 goto done; 7402 case ELF_K_ELF: 7403 dump_elf(re); 7404 break; 7405 case ELF_K_AR: 7406 dump_ar(re, fd); 7407 break; 7408 default: 7409 warnx("Internal: libelf returned unknown elf kind."); 7410 } 7411 7412 done: 7413 elf_end(re->elf); 7414 } 7415 7416 static void 7417 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7418 { 7419 struct dumpop *d; 7420 7421 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 7422 if ((d = calloc(1, sizeof(*d))) == NULL) 7423 err(EXIT_FAILURE, "calloc failed"); 7424 if (t == DUMP_BY_INDEX) 7425 d->u.si = si; 7426 else 7427 d->u.sn = sn; 7428 d->type = t; 7429 d->op = op; 7430 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 7431 } else 7432 d->op |= op; 7433 } 7434 7435 static struct dumpop * 7436 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7437 { 7438 struct dumpop *d; 7439 7440 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7441 if ((op == -1 || op & d->op) && 7442 (t == -1 || (unsigned) t == d->type)) { 7443 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7444 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7445 return (d); 7446 } 7447 } 7448 7449 return (NULL); 7450 } 7451 7452 static struct { 7453 const char *ln; 7454 char sn; 7455 int value; 7456 } dwarf_op[] = { 7457 {"rawline", 'l', DW_L}, 7458 {"decodedline", 'L', DW_LL}, 7459 {"info", 'i', DW_I}, 7460 {"abbrev", 'a', DW_A}, 7461 {"pubnames", 'p', DW_P}, 7462 {"aranges", 'r', DW_R}, 7463 {"ranges", 'r', DW_R}, 7464 {"Ranges", 'R', DW_RR}, 7465 {"macro", 'm', DW_M}, 7466 {"frames", 'f', DW_F}, 7467 {"frames-interp", 'F', DW_FF}, 7468 {"str", 's', DW_S}, 7469 {"loc", 'o', DW_O}, 7470 {NULL, 0, 0} 7471 }; 7472 7473 static void 7474 parse_dwarf_op_short(struct readelf *re, const char *op) 7475 { 7476 int i; 7477 7478 if (op == NULL) { 7479 re->dop |= DW_DEFAULT_OPTIONS; 7480 return; 7481 } 7482 7483 for (; *op != '\0'; op++) { 7484 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7485 if (dwarf_op[i].sn == *op) { 7486 re->dop |= dwarf_op[i].value; 7487 break; 7488 } 7489 } 7490 } 7491 } 7492 7493 static void 7494 parse_dwarf_op_long(struct readelf *re, const char *op) 7495 { 7496 char *p, *token, *bp; 7497 int i; 7498 7499 if (op == NULL) { 7500 re->dop |= DW_DEFAULT_OPTIONS; 7501 return; 7502 } 7503 7504 if ((p = strdup(op)) == NULL) 7505 err(EXIT_FAILURE, "strdup failed"); 7506 bp = p; 7507 7508 while ((token = strsep(&p, ",")) != NULL) { 7509 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7510 if (!strcmp(token, dwarf_op[i].ln)) { 7511 re->dop |= dwarf_op[i].value; 7512 break; 7513 } 7514 } 7515 } 7516 7517 free(bp); 7518 } 7519 7520 static uint64_t 7521 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7522 { 7523 uint64_t ret; 7524 uint8_t *src; 7525 7526 src = (uint8_t *) d->d_buf + *offsetp; 7527 7528 ret = 0; 7529 switch (bytes_to_read) { 7530 case 8: 7531 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7532 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7533 /* FALLTHROUGH */ 7534 case 4: 7535 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7536 /* FALLTHROUGH */ 7537 case 2: 7538 ret |= ((uint64_t) src[1]) << 8; 7539 /* FALLTHROUGH */ 7540 case 1: 7541 ret |= src[0]; 7542 break; 7543 default: 7544 return (0); 7545 } 7546 7547 *offsetp += bytes_to_read; 7548 7549 return (ret); 7550 } 7551 7552 static uint64_t 7553 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7554 { 7555 uint64_t ret; 7556 uint8_t *src; 7557 7558 src = (uint8_t *) d->d_buf + *offsetp; 7559 7560 switch (bytes_to_read) { 7561 case 1: 7562 ret = src[0]; 7563 break; 7564 case 2: 7565 ret = src[1] | ((uint64_t) src[0]) << 8; 7566 break; 7567 case 4: 7568 ret = src[3] | ((uint64_t) src[2]) << 8; 7569 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7570 break; 7571 case 8: 7572 ret = src[7] | ((uint64_t) src[6]) << 8; 7573 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7574 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7575 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7576 break; 7577 default: 7578 return (0); 7579 } 7580 7581 *offsetp += bytes_to_read; 7582 7583 return (ret); 7584 } 7585 7586 static uint64_t 7587 _decode_lsb(uint8_t **data, int bytes_to_read) 7588 { 7589 uint64_t ret; 7590 uint8_t *src; 7591 7592 src = *data; 7593 7594 ret = 0; 7595 switch (bytes_to_read) { 7596 case 8: 7597 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7598 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7599 /* FALLTHROUGH */ 7600 case 4: 7601 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7602 /* FALLTHROUGH */ 7603 case 2: 7604 ret |= ((uint64_t) src[1]) << 8; 7605 /* FALLTHROUGH */ 7606 case 1: 7607 ret |= src[0]; 7608 break; 7609 default: 7610 return (0); 7611 } 7612 7613 *data += bytes_to_read; 7614 7615 return (ret); 7616 } 7617 7618 static uint64_t 7619 _decode_msb(uint8_t **data, int bytes_to_read) 7620 { 7621 uint64_t ret; 7622 uint8_t *src; 7623 7624 src = *data; 7625 7626 ret = 0; 7627 switch (bytes_to_read) { 7628 case 1: 7629 ret = src[0]; 7630 break; 7631 case 2: 7632 ret = src[1] | ((uint64_t) src[0]) << 8; 7633 break; 7634 case 4: 7635 ret = src[3] | ((uint64_t) src[2]) << 8; 7636 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7637 break; 7638 case 8: 7639 ret = src[7] | ((uint64_t) src[6]) << 8; 7640 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7641 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7642 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7643 break; 7644 default: 7645 return (0); 7646 break; 7647 } 7648 7649 *data += bytes_to_read; 7650 7651 return (ret); 7652 } 7653 7654 static int64_t 7655 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7656 { 7657 int64_t ret = 0; 7658 uint8_t b = 0; 7659 int shift = 0; 7660 7661 uint8_t *src = *dp; 7662 7663 do { 7664 if (src >= dpe) 7665 break; 7666 b = *src++; 7667 ret |= ((b & 0x7f) << shift); 7668 shift += 7; 7669 } while ((b & 0x80) != 0); 7670 7671 if (shift < 32 && (b & 0x40) != 0) 7672 ret |= (-1 << shift); 7673 7674 *dp = src; 7675 7676 return (ret); 7677 } 7678 7679 static uint64_t 7680 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7681 { 7682 uint64_t ret = 0; 7683 uint8_t b; 7684 int shift = 0; 7685 7686 uint8_t *src = *dp; 7687 7688 do { 7689 if (src >= dpe) 7690 break; 7691 b = *src++; 7692 ret |= ((b & 0x7f) << shift); 7693 shift += 7; 7694 } while ((b & 0x80) != 0); 7695 7696 *dp = src; 7697 7698 return (ret); 7699 } 7700 7701 static void 7702 readelf_version(void) 7703 { 7704 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7705 elftc_version()); 7706 exit(EXIT_SUCCESS); 7707 } 7708 7709 #define USAGE_MESSAGE "\ 7710 Usage: %s [options] file...\n\ 7711 Display information about ELF objects and ar(1) archives.\n\n\ 7712 Options:\n\ 7713 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7714 -c | --archive-index Print the archive symbol table for archives.\n\ 7715 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7716 -e | --headers Print all headers in the object.\n\ 7717 -g | --section-groups Print the contents of the section groups.\n\ 7718 -h | --file-header Print the file header for the object.\n\ 7719 -l | --program-headers Print the PHDR table for the object.\n\ 7720 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7721 -p INDEX | --string-dump=INDEX\n\ 7722 Print the contents of section at index INDEX.\n\ 7723 -r | --relocs Print relocation information.\n\ 7724 -s | --syms | --symbols Print symbol tables.\n\ 7725 -t | --section-details Print additional information about sections.\n\ 7726 -v | --version Print a version identifier and exit.\n\ 7727 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7728 frames-interp,info,loc,macro,pubnames,\n\ 7729 ranges,Ranges,rawline,str}\n\ 7730 Display DWARF information.\n\ 7731 -x INDEX | --hex-dump=INDEX\n\ 7732 Display contents of a section as hexadecimal.\n\ 7733 -z | --decompress Decompress the contents of a section before displaying it.\n\ 7734 -A | --arch-specific (accepted, but ignored)\n\ 7735 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7736 entry in the \".dynamic\" section.\n\ 7737 -H | --help Print a help message.\n\ 7738 -I | --histogram Print information on bucket list lengths for \n\ 7739 hash sections.\n\ 7740 -N | --full-section-name (accepted, but ignored)\n\ 7741 -S | --sections | --section-headers\n\ 7742 Print information about section headers.\n\ 7743 -V | --version-info Print symbol versoning information.\n\ 7744 -W | --wide Print information without wrapping long lines.\n" 7745 7746 7747 static void 7748 readelf_usage(int status) 7749 { 7750 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7751 exit(status); 7752 } 7753 7754 int 7755 main(int argc, char **argv) 7756 { 7757 cap_rights_t rights; 7758 fileargs_t *fa; 7759 struct readelf *re, re_storage; 7760 unsigned long si; 7761 int fd, opt, i; 7762 char *ep; 7763 7764 re = &re_storage; 7765 memset(re, 0, sizeof(*re)); 7766 STAILQ_INIT(&re->v_dumpop); 7767 7768 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:z", 7769 longopts, NULL)) != -1) { 7770 switch(opt) { 7771 case '?': 7772 readelf_usage(EXIT_SUCCESS); 7773 break; 7774 case 'A': 7775 re->options |= RE_AA; 7776 break; 7777 case 'a': 7778 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7779 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7780 break; 7781 case 'c': 7782 re->options |= RE_C; 7783 break; 7784 case 'D': 7785 re->options |= RE_DD; 7786 break; 7787 case 'd': 7788 re->options |= RE_D; 7789 break; 7790 case 'e': 7791 re->options |= RE_H | RE_L | RE_SS; 7792 break; 7793 case 'g': 7794 re->options |= RE_G; 7795 break; 7796 case 'H': 7797 readelf_usage(EXIT_SUCCESS); 7798 break; 7799 case 'h': 7800 re->options |= RE_H; 7801 break; 7802 case 'I': 7803 re->options |= RE_II; 7804 break; 7805 case 'i': 7806 /* Not implemented yet. */ 7807 break; 7808 case 'l': 7809 re->options |= RE_L; 7810 break; 7811 case 'N': 7812 re->options |= RE_NN; 7813 break; 7814 case 'n': 7815 re->options |= RE_N; 7816 break; 7817 case 'p': 7818 re->options |= RE_P; 7819 si = strtoul(optarg, &ep, 10); 7820 if (*ep == '\0') 7821 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7822 DUMP_BY_INDEX); 7823 else 7824 add_dumpop(re, 0, optarg, STR_DUMP, 7825 DUMP_BY_NAME); 7826 break; 7827 case 'r': 7828 re->options |= RE_R; 7829 break; 7830 case 'S': 7831 re->options |= RE_SS; 7832 break; 7833 case 's': 7834 re->options |= RE_S; 7835 break; 7836 case 't': 7837 re->options |= RE_SS | RE_T; 7838 break; 7839 case 'u': 7840 re->options |= RE_U; 7841 break; 7842 case 'V': 7843 re->options |= RE_VV; 7844 break; 7845 case 'v': 7846 readelf_version(); 7847 break; 7848 case 'W': 7849 re->options |= RE_WW; 7850 break; 7851 case 'w': 7852 re->options |= RE_W; 7853 parse_dwarf_op_short(re, optarg); 7854 break; 7855 case 'x': 7856 re->options |= RE_X; 7857 si = strtoul(optarg, &ep, 10); 7858 if (*ep == '\0') 7859 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7860 DUMP_BY_INDEX); 7861 else 7862 add_dumpop(re, 0, optarg, HEX_DUMP, 7863 DUMP_BY_NAME); 7864 break; 7865 case 'z': 7866 re->options |= RE_Z; 7867 break; 7868 case OPTION_DEBUG_DUMP: 7869 re->options |= RE_W; 7870 parse_dwarf_op_long(re, optarg); 7871 } 7872 } 7873 7874 argv += optind; 7875 argc -= optind; 7876 7877 if (argc == 0 || re->options == 0) 7878 readelf_usage(EXIT_FAILURE); 7879 7880 if (argc > 1) 7881 re->flags |= DISPLAY_FILENAME; 7882 7883 if (elf_version(EV_CURRENT) == EV_NONE) 7884 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7885 elf_errmsg(-1)); 7886 7887 cap_rights_init(&rights, CAP_FCNTL, CAP_FSTAT, CAP_MMAP_R, CAP_SEEK); 7888 fa = fileargs_init(argc, argv, O_RDONLY, 0, &rights, FA_OPEN); 7889 if (fa == NULL) 7890 err(1, "Unable to initialize casper fileargs"); 7891 7892 caph_cache_catpages(); 7893 if (caph_limit_stdio() < 0) { 7894 fileargs_free(fa); 7895 err(1, "Unable to limit stdio rights"); 7896 } 7897 if (caph_enter_casper() < 0) { 7898 fileargs_free(fa); 7899 err(1, "Unable to enter capability mode"); 7900 } 7901 7902 for (i = 0; i < argc; i++) { 7903 re->filename = argv[i]; 7904 fd = fileargs_open(fa, re->filename); 7905 if (fd < 0) { 7906 warn("open %s failed", re->filename); 7907 } else { 7908 dump_object(re, fd); 7909 close(fd); 7910 } 7911 } 7912 7913 exit(EXIT_SUCCESS); 7914 } 7915