1 /*- 2 * Copyright (c) 2009-2014 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 #include <sys/param.h> 29 #include <sys/queue.h> 30 #include <ar.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3110 2014-12-20 08:32:46Z kaiwang27 $"); 51 52 /* 53 * readelf(1) options. 54 */ 55 #define RE_AA 0x00000001 56 #define RE_C 0x00000002 57 #define RE_DD 0x00000004 58 #define RE_D 0x00000008 59 #define RE_G 0x00000010 60 #define RE_H 0x00000020 61 #define RE_II 0x00000040 62 #define RE_I 0x00000080 63 #define RE_L 0x00000100 64 #define RE_NN 0x00000200 65 #define RE_N 0x00000400 66 #define RE_P 0x00000800 67 #define RE_R 0x00001000 68 #define RE_SS 0x00002000 69 #define RE_S 0x00004000 70 #define RE_T 0x00008000 71 #define RE_U 0x00010000 72 #define RE_VV 0x00020000 73 #define RE_WW 0x00040000 74 #define RE_W 0x00080000 75 #define RE_X 0x00100000 76 77 /* 78 * dwarf dump options. 79 */ 80 #define DW_A 0x00000001 81 #define DW_FF 0x00000002 82 #define DW_F 0x00000004 83 #define DW_I 0x00000008 84 #define DW_LL 0x00000010 85 #define DW_L 0x00000020 86 #define DW_M 0x00000040 87 #define DW_O 0x00000080 88 #define DW_P 0x00000100 89 #define DW_RR 0x00000200 90 #define DW_R 0x00000400 91 #define DW_S 0x00000800 92 93 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 94 DW_R | DW_RR | DW_S) 95 96 /* 97 * readelf(1) run control flags. 98 */ 99 #define DISPLAY_FILENAME 0x0001 100 101 /* 102 * Internal data structure for sections. 103 */ 104 struct section { 105 const char *name; /* section name */ 106 Elf_Scn *scn; /* section scn */ 107 uint64_t off; /* section offset */ 108 uint64_t sz; /* section size */ 109 uint64_t entsize; /* section entsize */ 110 uint64_t align; /* section alignment */ 111 uint64_t type; /* section type */ 112 uint64_t flags; /* section flags */ 113 uint64_t addr; /* section virtual addr */ 114 uint32_t link; /* section link ndx */ 115 uint32_t info; /* section info ndx */ 116 }; 117 118 struct dumpop { 119 union { 120 size_t si; /* section index */ 121 const char *sn; /* section name */ 122 } u; 123 enum { 124 DUMP_BY_INDEX = 0, 125 DUMP_BY_NAME 126 } type; /* dump type */ 127 #define HEX_DUMP 0x0001 128 #define STR_DUMP 0x0002 129 int op; /* dump operation */ 130 STAILQ_ENTRY(dumpop) dumpop_list; 131 }; 132 133 struct symver { 134 const char *name; 135 int type; 136 }; 137 138 /* 139 * Structure encapsulates the global data for readelf(1). 140 */ 141 struct readelf { 142 const char *filename; /* current processing file. */ 143 int options; /* command line options. */ 144 int flags; /* run control flags. */ 145 int dop; /* dwarf dump options. */ 146 Elf *elf; /* underlying ELF descriptor. */ 147 Elf *ar; /* archive ELF descriptor. */ 148 Dwarf_Debug dbg; /* DWARF handle. */ 149 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 150 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 151 Dwarf_Half cu_ver; /* DWARF CU version. */ 152 GElf_Ehdr ehdr; /* ELF header. */ 153 int ec; /* ELF class. */ 154 size_t shnum; /* #sections. */ 155 struct section *vd_s; /* Verdef section. */ 156 struct section *vn_s; /* Verneed section. */ 157 struct section *vs_s; /* Versym section. */ 158 uint16_t *vs; /* Versym array. */ 159 int vs_sz; /* Versym array size. */ 160 struct symver *ver; /* Version array. */ 161 int ver_sz; /* Size of version array. */ 162 struct section *sl; /* list of sections. */ 163 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 164 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 165 uint64_t (*dw_decode)(uint8_t **, int); 166 }; 167 168 enum options 169 { 170 OPTION_DEBUG_DUMP 171 }; 172 173 static struct option longopts[] = { 174 {"all", no_argument, NULL, 'a'}, 175 {"arch-specific", no_argument, NULL, 'A'}, 176 {"archive-index", no_argument, NULL, 'c'}, 177 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 178 {"dynamic", no_argument, NULL, 'd'}, 179 {"file-header", no_argument, NULL, 'h'}, 180 {"full-section-name", no_argument, NULL, 'N'}, 181 {"headers", no_argument, NULL, 'e'}, 182 {"help", no_argument, 0, 'H'}, 183 {"hex-dump", required_argument, NULL, 'x'}, 184 {"histogram", no_argument, NULL, 'I'}, 185 {"notes", no_argument, NULL, 'n'}, 186 {"program-headers", no_argument, NULL, 'l'}, 187 {"relocs", no_argument, NULL, 'r'}, 188 {"sections", no_argument, NULL, 'S'}, 189 {"section-headers", no_argument, NULL, 'S'}, 190 {"section-groups", no_argument, NULL, 'g'}, 191 {"section-details", no_argument, NULL, 't'}, 192 {"segments", no_argument, NULL, 'l'}, 193 {"string-dump", required_argument, NULL, 'p'}, 194 {"symbols", no_argument, NULL, 's'}, 195 {"syms", no_argument, NULL, 's'}, 196 {"unwind", no_argument, NULL, 'u'}, 197 {"use-dynamic", no_argument, NULL, 'D'}, 198 {"version-info", no_argument, 0, 'V'}, 199 {"version", no_argument, 0, 'v'}, 200 {"wide", no_argument, 0, 'W'}, 201 {NULL, 0, NULL, 0} 202 }; 203 204 struct eflags_desc { 205 uint64_t flag; 206 const char *desc; 207 }; 208 209 struct mips_option { 210 uint64_t flag; 211 const char *desc; 212 }; 213 214 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 215 int t); 216 static const char *aeabi_adv_simd_arch(uint64_t simd); 217 static const char *aeabi_align_needed(uint64_t an); 218 static const char *aeabi_align_preserved(uint64_t ap); 219 static const char *aeabi_arm_isa(uint64_t ai); 220 static const char *aeabi_cpu_arch(uint64_t arch); 221 static const char *aeabi_cpu_arch_profile(uint64_t pf); 222 static const char *aeabi_div(uint64_t du); 223 static const char *aeabi_enum_size(uint64_t es); 224 static const char *aeabi_fp_16bit_format(uint64_t fp16); 225 static const char *aeabi_fp_arch(uint64_t fp); 226 static const char *aeabi_fp_denormal(uint64_t fd); 227 static const char *aeabi_fp_exceptions(uint64_t fe); 228 static const char *aeabi_fp_hpext(uint64_t fh); 229 static const char *aeabi_fp_number_model(uint64_t fn); 230 static const char *aeabi_fp_optm_goal(uint64_t fog); 231 static const char *aeabi_fp_rounding(uint64_t fr); 232 static const char *aeabi_hardfp(uint64_t hfp); 233 static const char *aeabi_mpext(uint64_t mp); 234 static const char *aeabi_optm_goal(uint64_t og); 235 static const char *aeabi_pcs_config(uint64_t pcs); 236 static const char *aeabi_pcs_got(uint64_t got); 237 static const char *aeabi_pcs_r9(uint64_t r9); 238 static const char *aeabi_pcs_ro(uint64_t ro); 239 static const char *aeabi_pcs_rw(uint64_t rw); 240 static const char *aeabi_pcs_wchar_t(uint64_t wt); 241 static const char *aeabi_t2ee(uint64_t t2ee); 242 static const char *aeabi_thumb_isa(uint64_t ti); 243 static const char *aeabi_fp_user_exceptions(uint64_t fu); 244 static const char *aeabi_unaligned_access(uint64_t ua); 245 static const char *aeabi_vfp_args(uint64_t va); 246 static const char *aeabi_virtual(uint64_t vt); 247 static const char *aeabi_wmmx_arch(uint64_t wmmx); 248 static const char *aeabi_wmmx_args(uint64_t wa); 249 static const char *elf_class(unsigned int class); 250 static const char *elf_endian(unsigned int endian); 251 static const char *elf_machine(unsigned int mach); 252 static const char *elf_osabi(unsigned int abi); 253 static const char *elf_type(unsigned int type); 254 static const char *elf_ver(unsigned int ver); 255 static const char *dt_type(unsigned int mach, unsigned int dtype); 256 static void dump_ar(struct readelf *re, int); 257 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 258 static void dump_attributes(struct readelf *re); 259 static uint8_t *dump_compatibility_tag(uint8_t *p); 260 static void dump_dwarf(struct readelf *re); 261 static void dump_dwarf_abbrev(struct readelf *re); 262 static void dump_dwarf_aranges(struct readelf *re); 263 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 264 Dwarf_Unsigned len); 265 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 266 static void dump_dwarf_frame(struct readelf *re, int alt); 267 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 268 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 269 Dwarf_Addr pc, Dwarf_Debug dbg); 270 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 271 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 272 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 273 int alt); 274 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 275 static void dump_dwarf_macinfo(struct readelf *re); 276 static void dump_dwarf_line(struct readelf *re); 277 static void dump_dwarf_line_decoded(struct readelf *re); 278 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 279 static void dump_dwarf_loclist(struct readelf *re); 280 static void dump_dwarf_pubnames(struct readelf *re); 281 static void dump_dwarf_ranges(struct readelf *re); 282 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 283 Dwarf_Addr base); 284 static void dump_dwarf_str(struct readelf *re); 285 static void dump_eflags(struct readelf *re, uint64_t e_flags); 286 static void dump_elf(struct readelf *re); 287 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 288 static void dump_dynamic(struct readelf *re); 289 static void dump_liblist(struct readelf *re); 290 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 291 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 292 static void dump_mips_options(struct readelf *re, struct section *s); 293 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 294 uint64_t info); 295 static void dump_mips_reginfo(struct readelf *re, struct section *s); 296 static void dump_mips_specific_info(struct readelf *re); 297 static void dump_notes(struct readelf *re); 298 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 299 off_t off); 300 static void dump_svr4_hash(struct section *s); 301 static void dump_svr4_hash64(struct readelf *re, struct section *s); 302 static void dump_gnu_hash(struct readelf *re, struct section *s); 303 static void dump_hash(struct readelf *re); 304 static void dump_phdr(struct readelf *re); 305 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 306 static void dump_symtab(struct readelf *re, int i); 307 static void dump_symtabs(struct readelf *re); 308 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p); 309 static void dump_ver(struct readelf *re); 310 static void dump_verdef(struct readelf *re, int dump); 311 static void dump_verneed(struct readelf *re, int dump); 312 static void dump_versym(struct readelf *re); 313 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 314 static const char *dwarf_regname(struct readelf *re, unsigned int num); 315 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 316 const char *sn, int op, int t); 317 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 318 Dwarf_Addr off); 319 static const char *get_string(struct readelf *re, int strtab, size_t off); 320 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 321 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 322 static void load_sections(struct readelf *re); 323 static const char *mips_abi_fp(uint64_t fp); 324 static const char *note_type(const char *note_name, unsigned int et, 325 unsigned int nt); 326 static const char *note_type_freebsd(unsigned int nt); 327 static const char *note_type_freebsd_core(unsigned int nt); 328 static const char *note_type_linux_core(unsigned int nt); 329 static const char *note_type_gnu(unsigned int nt); 330 static const char *note_type_netbsd(unsigned int nt); 331 static const char *note_type_openbsd(unsigned int nt); 332 static const char *note_type_unknown(unsigned int nt); 333 static const char *option_kind(uint8_t kind); 334 static const char *phdr_type(unsigned int ptype); 335 static const char *ppc_abi_fp(uint64_t fp); 336 static const char *ppc_abi_vector(uint64_t vec); 337 static const char *r_type(unsigned int mach, unsigned int type); 338 static void readelf_usage(void); 339 static void readelf_version(void); 340 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 341 Dwarf_Unsigned lowpc); 342 static void search_ver(struct readelf *re); 343 static const char *section_type(unsigned int mach, unsigned int stype); 344 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 345 Dwarf_Half osize, Dwarf_Half ver); 346 static const char *st_bind(unsigned int sbind); 347 static const char *st_shndx(unsigned int shndx); 348 static const char *st_type(unsigned int stype); 349 static const char *st_vis(unsigned int svis); 350 static const char *top_tag(unsigned int tag); 351 static void unload_sections(struct readelf *re); 352 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 353 int bytes_to_read); 354 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 355 int bytes_to_read); 356 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 357 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 358 static int64_t _decode_sleb128(uint8_t **dp); 359 static uint64_t _decode_uleb128(uint8_t **dp); 360 361 static struct eflags_desc arm_eflags_desc[] = { 362 {EF_ARM_RELEXEC, "relocatable executable"}, 363 {EF_ARM_HASENTRY, "has entry point"}, 364 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 365 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 366 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 367 {EF_ARM_BE8, "BE8"}, 368 {EF_ARM_LE8, "LE8"}, 369 {EF_ARM_INTERWORK, "interworking enabled"}, 370 {EF_ARM_APCS_26, "uses APCS/26"}, 371 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 372 {EF_ARM_PIC, "position independent"}, 373 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 374 {EF_ARM_NEW_ABI, "uses new ABI"}, 375 {EF_ARM_OLD_ABI, "uses old ABI"}, 376 {EF_ARM_SOFT_FLOAT, "software FP"}, 377 {EF_ARM_VFP_FLOAT, "VFP"}, 378 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 379 {0, NULL} 380 }; 381 382 static struct eflags_desc mips_eflags_desc[] = { 383 {EF_MIPS_NOREORDER, "noreorder"}, 384 {EF_MIPS_PIC, "pic"}, 385 {EF_MIPS_CPIC, "cpic"}, 386 {EF_MIPS_UCODE, "ugen_reserved"}, 387 {EF_MIPS_ABI2, "abi2"}, 388 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 389 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 390 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 391 {0, NULL} 392 }; 393 394 static struct eflags_desc powerpc_eflags_desc[] = { 395 {EF_PPC_EMB, "emb"}, 396 {EF_PPC_RELOCATABLE, "relocatable"}, 397 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 398 {0, NULL} 399 }; 400 401 static struct eflags_desc sparc_eflags_desc[] = { 402 {EF_SPARC_32PLUS, "v8+"}, 403 {EF_SPARC_SUN_US1, "ultrasparcI"}, 404 {EF_SPARC_HAL_R1, "halr1"}, 405 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 406 {0, NULL} 407 }; 408 409 static const char * 410 elf_osabi(unsigned int abi) 411 { 412 static char s_abi[32]; 413 414 switch(abi) { 415 case ELFOSABI_SYSV: return "SYSV"; 416 case ELFOSABI_HPUX: return "HPUS"; 417 case ELFOSABI_NETBSD: return "NetBSD"; 418 case ELFOSABI_GNU: return "GNU"; 419 case ELFOSABI_HURD: return "HURD"; 420 case ELFOSABI_86OPEN: return "86OPEN"; 421 case ELFOSABI_SOLARIS: return "Solaris"; 422 case ELFOSABI_AIX: return "AIX"; 423 case ELFOSABI_IRIX: return "IRIX"; 424 case ELFOSABI_FREEBSD: return "FreeBSD"; 425 case ELFOSABI_TRU64: return "TRU64"; 426 case ELFOSABI_MODESTO: return "MODESTO"; 427 case ELFOSABI_OPENBSD: return "OpenBSD"; 428 case ELFOSABI_OPENVMS: return "OpenVMS"; 429 case ELFOSABI_NSK: return "NSK"; 430 case ELFOSABI_ARM: return "ARM"; 431 case ELFOSABI_STANDALONE: return "StandAlone"; 432 default: 433 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 434 return (s_abi); 435 } 436 }; 437 438 static const char * 439 elf_machine(unsigned int mach) 440 { 441 static char s_mach[32]; 442 443 switch (mach) { 444 case EM_NONE: return "Unknown machine"; 445 case EM_M32: return "AT&T WE32100"; 446 case EM_SPARC: return "Sun SPARC"; 447 case EM_386: return "Intel i386"; 448 case EM_68K: return "Motorola 68000"; 449 case EM_88K: return "Motorola 88000"; 450 case EM_860: return "Intel i860"; 451 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 452 case EM_S370: return "IBM System/370"; 453 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 454 case EM_PARISC: return "HP PA-RISC"; 455 case EM_VPP500: return "Fujitsu VPP500"; 456 case EM_SPARC32PLUS: return "SPARC v8plus"; 457 case EM_960: return "Intel 80960"; 458 case EM_PPC: return "PowerPC 32-bit"; 459 case EM_PPC64: return "PowerPC 64-bit"; 460 case EM_S390: return "IBM System/390"; 461 case EM_V800: return "NEC V800"; 462 case EM_FR20: return "Fujitsu FR20"; 463 case EM_RH32: return "TRW RH-32"; 464 case EM_RCE: return "Motorola RCE"; 465 case EM_ARM: return "ARM"; 466 case EM_SH: return "Hitachi SH"; 467 case EM_SPARCV9: return "SPARC v9 64-bit"; 468 case EM_TRICORE: return "Siemens TriCore embedded processor"; 469 case EM_ARC: return "Argonaut RISC Core"; 470 case EM_H8_300: return "Hitachi H8/300"; 471 case EM_H8_300H: return "Hitachi H8/300H"; 472 case EM_H8S: return "Hitachi H8S"; 473 case EM_H8_500: return "Hitachi H8/500"; 474 case EM_IA_64: return "Intel IA-64 Processor"; 475 case EM_MIPS_X: return "Stanford MIPS-X"; 476 case EM_COLDFIRE: return "Motorola ColdFire"; 477 case EM_68HC12: return "Motorola M68HC12"; 478 case EM_MMA: return "Fujitsu MMA"; 479 case EM_PCP: return "Siemens PCP"; 480 case EM_NCPU: return "Sony nCPU"; 481 case EM_NDR1: return "Denso NDR1 microprocessor"; 482 case EM_STARCORE: return "Motorola Star*Core processor"; 483 case EM_ME16: return "Toyota ME16 processor"; 484 case EM_ST100: return "STMicroelectronics ST100 processor"; 485 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 486 case EM_X86_64: return "Advanced Micro Devices x86-64"; 487 case EM_PDSP: return "Sony DSP Processor"; 488 case EM_FX66: return "Siemens FX66 microcontroller"; 489 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 490 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 491 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 492 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 493 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 494 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 495 case EM_SVX: return "Silicon Graphics SVx"; 496 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 497 case EM_VAX: return "Digital VAX"; 498 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 499 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 500 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 501 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 502 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 503 case EM_HUANY: return "Harvard University MI object files"; 504 case EM_PRISM: return "SiTera Prism"; 505 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 506 case EM_FR30: return "Fujitsu FR30"; 507 case EM_D10V: return "Mitsubishi D10V"; 508 case EM_D30V: return "Mitsubishi D30V"; 509 case EM_V850: return "NEC v850"; 510 case EM_M32R: return "Mitsubishi M32R"; 511 case EM_MN10300: return "Matsushita MN10300"; 512 case EM_MN10200: return "Matsushita MN10200"; 513 case EM_PJ: return "picoJava"; 514 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 515 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 516 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 517 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 518 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 519 case EM_NS32K: return "National Semiconductor 32000 series"; 520 case EM_TPC: return "Tenor Network TPC processor"; 521 case EM_SNP1K: return "Trebia SNP 1000 processor"; 522 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 523 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 524 case EM_MAX: return "MAX Processor"; 525 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 526 case EM_F2MC16: return "Fujitsu F2MC16"; 527 case EM_MSP430: return "TI embedded microcontroller msp430"; 528 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 529 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 530 case EM_SEP: return "Sharp embedded microprocessor"; 531 case EM_ARCA: return "Arca RISC Microprocessor"; 532 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 533 case EM_AARCH64: return "AArch64"; 534 default: 535 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 536 return (s_mach); 537 } 538 539 } 540 541 static const char * 542 elf_class(unsigned int class) 543 { 544 static char s_class[32]; 545 546 switch (class) { 547 case ELFCLASSNONE: return "none"; 548 case ELFCLASS32: return "ELF32"; 549 case ELFCLASS64: return "ELF64"; 550 default: 551 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 552 return (s_class); 553 } 554 } 555 556 static const char * 557 elf_endian(unsigned int endian) 558 { 559 static char s_endian[32]; 560 561 switch (endian) { 562 case ELFDATANONE: return "none"; 563 case ELFDATA2LSB: return "2's complement, little endian"; 564 case ELFDATA2MSB: return "2's complement, big endian"; 565 default: 566 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 567 return (s_endian); 568 } 569 } 570 571 static const char * 572 elf_type(unsigned int type) 573 { 574 static char s_type[32]; 575 576 switch (type) { 577 case ET_NONE: return "NONE (None)"; 578 case ET_REL: return "REL (Relocatable file)"; 579 case ET_EXEC: return "EXEC (Executable file)"; 580 case ET_DYN: return "DYN (Shared object file)"; 581 case ET_CORE: return "CORE (Core file)"; 582 default: 583 if (type >= ET_LOPROC) 584 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 585 else if (type >= ET_LOOS && type <= ET_HIOS) 586 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 587 else 588 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 589 type); 590 return (s_type); 591 } 592 } 593 594 static const char * 595 elf_ver(unsigned int ver) 596 { 597 static char s_ver[32]; 598 599 switch (ver) { 600 case EV_CURRENT: return "(current)"; 601 case EV_NONE: return "(none)"; 602 default: 603 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 604 ver); 605 return (s_ver); 606 } 607 } 608 609 static const char * 610 phdr_type(unsigned int ptype) 611 { 612 static char s_ptype[32]; 613 614 switch (ptype) { 615 case PT_NULL: return "NULL"; 616 case PT_LOAD: return "LOAD"; 617 case PT_DYNAMIC: return "DYNAMIC"; 618 case PT_INTERP: return "INTERP"; 619 case PT_NOTE: return "NOTE"; 620 case PT_SHLIB: return "SHLIB"; 621 case PT_PHDR: return "PHDR"; 622 case PT_TLS: return "TLS"; 623 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 624 case PT_GNU_STACK: return "GNU_STACK"; 625 case PT_GNU_RELRO: return "GNU_RELRO"; 626 default: 627 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) 628 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 629 ptype - PT_LOPROC); 630 else if (ptype >= PT_LOOS && ptype <= PT_HIOS) 631 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 632 ptype - PT_LOOS); 633 else 634 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 635 ptype); 636 return (s_ptype); 637 } 638 } 639 640 static const char * 641 section_type(unsigned int mach, unsigned int stype) 642 { 643 static char s_stype[32]; 644 645 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 646 switch (mach) { 647 case EM_X86_64: 648 switch (stype) { 649 case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; 650 default: 651 break; 652 } 653 break; 654 case EM_MIPS: 655 case EM_MIPS_RS3_LE: 656 switch (stype) { 657 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 658 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 659 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 660 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 661 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 662 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 663 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 664 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 665 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 666 case SHT_MIPS_RELD: return "MIPS_RELD"; 667 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 668 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 669 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 670 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 671 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 672 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 673 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 674 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 675 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 676 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 677 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 678 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 679 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 680 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 681 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 682 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 683 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 684 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 685 default: 686 break; 687 } 688 break; 689 default: 690 break; 691 } 692 693 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 694 stype - SHT_LOPROC); 695 return (s_stype); 696 } 697 698 switch (stype) { 699 case SHT_NULL: return "NULL"; 700 case SHT_PROGBITS: return "PROGBITS"; 701 case SHT_SYMTAB: return "SYMTAB"; 702 case SHT_STRTAB: return "STRTAB"; 703 case SHT_RELA: return "RELA"; 704 case SHT_HASH: return "HASH"; 705 case SHT_DYNAMIC: return "DYNAMIC"; 706 case SHT_NOTE: return "NOTE"; 707 case SHT_NOBITS: return "NOBITS"; 708 case SHT_REL: return "REL"; 709 case SHT_SHLIB: return "SHLIB"; 710 case SHT_DYNSYM: return "DYNSYM"; 711 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 712 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 713 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 714 case SHT_GROUP: return "GROUP"; 715 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 716 case SHT_SUNW_dof: return "SUNW_dof"; 717 case SHT_SUNW_cap: return "SUNW_cap"; 718 case SHT_GNU_HASH: return "GNU_HASH"; 719 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 720 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 721 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 722 case SHT_SUNW_move: return "SUNW_move"; 723 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 724 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 725 case SHT_SUNW_verdef: return "SUNW_verdef"; 726 case SHT_SUNW_verneed: return "SUNW_verneed"; 727 case SHT_SUNW_versym: return "SUNW_versym"; 728 default: 729 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 730 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 731 stype - SHT_LOOS); 732 else if (stype >= SHT_LOUSER) 733 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 734 stype - SHT_LOUSER); 735 else 736 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 737 stype); 738 return (s_stype); 739 } 740 } 741 742 static const char * 743 dt_type(unsigned int mach, unsigned int dtype) 744 { 745 static char s_dtype[32]; 746 747 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 748 switch (mach) { 749 case EM_ARM: 750 switch (dtype) { 751 case DT_ARM_SYMTABSZ: 752 return "ARM_SYMTABSZ"; 753 default: 754 break; 755 } 756 break; 757 case EM_MIPS: 758 case EM_MIPS_RS3_LE: 759 switch (dtype) { 760 case DT_MIPS_RLD_VERSION: 761 return "MIPS_RLD_VERSION"; 762 case DT_MIPS_TIME_STAMP: 763 return "MIPS_TIME_STAMP"; 764 case DT_MIPS_ICHECKSUM: 765 return "MIPS_ICHECKSUM"; 766 case DT_MIPS_IVERSION: 767 return "MIPS_IVERSION"; 768 case DT_MIPS_FLAGS: 769 return "MIPS_FLAGS"; 770 case DT_MIPS_BASE_ADDRESS: 771 return "MIPS_BASE_ADDRESS"; 772 case DT_MIPS_CONFLICT: 773 return "MIPS_CONFLICT"; 774 case DT_MIPS_LIBLIST: 775 return "MIPS_LIBLIST"; 776 case DT_MIPS_LOCAL_GOTNO: 777 return "MIPS_LOCAL_GOTNO"; 778 case DT_MIPS_CONFLICTNO: 779 return "MIPS_CONFLICTNO"; 780 case DT_MIPS_LIBLISTNO: 781 return "MIPS_LIBLISTNO"; 782 case DT_MIPS_SYMTABNO: 783 return "MIPS_SYMTABNO"; 784 case DT_MIPS_UNREFEXTNO: 785 return "MIPS_UNREFEXTNO"; 786 case DT_MIPS_GOTSYM: 787 return "MIPS_GOTSYM"; 788 case DT_MIPS_HIPAGENO: 789 return "MIPS_HIPAGENO"; 790 case DT_MIPS_RLD_MAP: 791 return "MIPS_RLD_MAP"; 792 case DT_MIPS_DELTA_CLASS: 793 return "MIPS_DELTA_CLASS"; 794 case DT_MIPS_DELTA_CLASS_NO: 795 return "MIPS_DELTA_CLASS_NO"; 796 case DT_MIPS_DELTA_INSTANCE: 797 return "MIPS_DELTA_INSTANCE"; 798 case DT_MIPS_DELTA_INSTANCE_NO: 799 return "MIPS_DELTA_INSTANCE_NO"; 800 case DT_MIPS_DELTA_RELOC: 801 return "MIPS_DELTA_RELOC"; 802 case DT_MIPS_DELTA_RELOC_NO: 803 return "MIPS_DELTA_RELOC_NO"; 804 case DT_MIPS_DELTA_SYM: 805 return "MIPS_DELTA_SYM"; 806 case DT_MIPS_DELTA_SYM_NO: 807 return "MIPS_DELTA_SYM_NO"; 808 case DT_MIPS_DELTA_CLASSSYM: 809 return "MIPS_DELTA_CLASSSYM"; 810 case DT_MIPS_DELTA_CLASSSYM_NO: 811 return "MIPS_DELTA_CLASSSYM_NO"; 812 case DT_MIPS_CXX_FLAGS: 813 return "MIPS_CXX_FLAGS"; 814 case DT_MIPS_PIXIE_INIT: 815 return "MIPS_PIXIE_INIT"; 816 case DT_MIPS_SYMBOL_LIB: 817 return "MIPS_SYMBOL_LIB"; 818 case DT_MIPS_LOCALPAGE_GOTIDX: 819 return "MIPS_LOCALPAGE_GOTIDX"; 820 case DT_MIPS_LOCAL_GOTIDX: 821 return "MIPS_LOCAL_GOTIDX"; 822 case DT_MIPS_HIDDEN_GOTIDX: 823 return "MIPS_HIDDEN_GOTIDX"; 824 case DT_MIPS_PROTECTED_GOTIDX: 825 return "MIPS_PROTECTED_GOTIDX"; 826 case DT_MIPS_OPTIONS: 827 return "MIPS_OPTIONS"; 828 case DT_MIPS_INTERFACE: 829 return "MIPS_INTERFACE"; 830 case DT_MIPS_DYNSTR_ALIGN: 831 return "MIPS_DYNSTR_ALIGN"; 832 case DT_MIPS_INTERFACE_SIZE: 833 return "MIPS_INTERFACE_SIZE"; 834 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 835 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 836 case DT_MIPS_PERF_SUFFIX: 837 return "MIPS_PERF_SUFFIX"; 838 case DT_MIPS_COMPACT_SIZE: 839 return "MIPS_COMPACT_SIZE"; 840 case DT_MIPS_GP_VALUE: 841 return "MIPS_GP_VALUE"; 842 case DT_MIPS_AUX_DYNAMIC: 843 return "MIPS_AUX_DYNAMIC"; 844 case DT_MIPS_PLTGOT: 845 return "MIPS_PLTGOT"; 846 case DT_MIPS_RLD_OBJ_UPDATE: 847 return "MIPS_RLD_OBJ_UPDATE"; 848 case DT_MIPS_RWPLT: 849 return "MIPS_RWPLT"; 850 default: 851 break; 852 } 853 break; 854 case EM_SPARC: 855 case EM_SPARC32PLUS: 856 case EM_SPARCV9: 857 switch (dtype) { 858 case DT_SPARC_REGISTER: 859 return "DT_SPARC_REGISTER"; 860 default: 861 break; 862 } 863 break; 864 default: 865 break; 866 } 867 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 868 return (s_dtype); 869 } 870 871 switch (dtype) { 872 case DT_NULL: return "NULL"; 873 case DT_NEEDED: return "NEEDED"; 874 case DT_PLTRELSZ: return "PLTRELSZ"; 875 case DT_PLTGOT: return "PLTGOT"; 876 case DT_HASH: return "HASH"; 877 case DT_STRTAB: return "STRTAB"; 878 case DT_SYMTAB: return "SYMTAB"; 879 case DT_RELA: return "RELA"; 880 case DT_RELASZ: return "RELASZ"; 881 case DT_RELAENT: return "RELAENT"; 882 case DT_STRSZ: return "STRSZ"; 883 case DT_SYMENT: return "SYMENT"; 884 case DT_INIT: return "INIT"; 885 case DT_FINI: return "FINI"; 886 case DT_SONAME: return "SONAME"; 887 case DT_RPATH: return "RPATH"; 888 case DT_SYMBOLIC: return "SYMBOLIC"; 889 case DT_REL: return "REL"; 890 case DT_RELSZ: return "RELSZ"; 891 case DT_RELENT: return "RELENT"; 892 case DT_PLTREL: return "PLTREL"; 893 case DT_DEBUG: return "DEBUG"; 894 case DT_TEXTREL: return "TEXTREL"; 895 case DT_JMPREL: return "JMPREL"; 896 case DT_BIND_NOW: return "BIND_NOW"; 897 case DT_INIT_ARRAY: return "INIT_ARRAY"; 898 case DT_FINI_ARRAY: return "FINI_ARRAY"; 899 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 900 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 901 case DT_RUNPATH: return "RUNPATH"; 902 case DT_FLAGS: return "FLAGS"; 903 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 904 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 905 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 906 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 907 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 908 case DT_SUNW_FILTER: return "SUNW_FILTER"; 909 case DT_SUNW_CAP: return "SUNW_CAP"; 910 case DT_CHECKSUM: return "CHECKSUM"; 911 case DT_PLTPADSZ: return "PLTPADSZ"; 912 case DT_MOVEENT: return "MOVEENT"; 913 case DT_MOVESZ: return "MOVESZ"; 914 case DT_FEATURE: return "FEATURE"; 915 case DT_POSFLAG_1: return "POSFLAG_1"; 916 case DT_SYMINSZ: return "SYMINSZ"; 917 case DT_SYMINENT: return "SYMINENT"; 918 case DT_GNU_HASH: return "GNU_HASH"; 919 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 920 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 921 case DT_CONFIG: return "CONFIG"; 922 case DT_DEPAUDIT: return "DEPAUDIT"; 923 case DT_AUDIT: return "AUDIT"; 924 case DT_PLTPAD: return "PLTPAD"; 925 case DT_MOVETAB: return "MOVETAB"; 926 case DT_SYMINFO: return "SYMINFO"; 927 case DT_VERSYM: return "VERSYM"; 928 case DT_RELACOUNT: return "RELACOUNT"; 929 case DT_RELCOUNT: return "RELCOUNT"; 930 case DT_FLAGS_1: return "FLAGS_1"; 931 case DT_VERDEF: return "VERDEF"; 932 case DT_VERDEFNUM: return "VERDEFNUM"; 933 case DT_VERNEED: return "VERNEED"; 934 case DT_VERNEEDNUM: return "VERNEEDNUM"; 935 case DT_AUXILIARY: return "AUXILIARY"; 936 case DT_USED: return "USED"; 937 case DT_FILTER: return "FILTER"; 938 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 939 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 940 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 941 default: 942 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 943 return (s_dtype); 944 } 945 } 946 947 static const char * 948 st_bind(unsigned int sbind) 949 { 950 static char s_sbind[32]; 951 952 switch (sbind) { 953 case STB_LOCAL: return "LOCAL"; 954 case STB_GLOBAL: return "GLOBAL"; 955 case STB_WEAK: return "WEAK"; 956 default: 957 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 958 return "OS"; 959 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 960 return "PROC"; 961 else 962 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 963 sbind); 964 return (s_sbind); 965 } 966 } 967 968 static const char * 969 st_type(unsigned int stype) 970 { 971 static char s_stype[32]; 972 973 switch (stype) { 974 case STT_NOTYPE: return "NOTYPE"; 975 case STT_OBJECT: return "OBJECT"; 976 case STT_FUNC: return "FUNC"; 977 case STT_SECTION: return "SECTION"; 978 case STT_FILE: return "FILE"; 979 case STT_COMMON: return "COMMON"; 980 case STT_TLS: return "TLS"; 981 default: 982 if (stype >= STT_LOOS && stype <= STT_HIOS) 983 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 984 stype - STT_LOOS); 985 else if (stype >= STT_LOPROC && stype <= STT_HIPROC) 986 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 987 stype - STT_LOPROC); 988 else 989 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 990 stype); 991 return (s_stype); 992 } 993 } 994 995 static const char * 996 st_vis(unsigned int svis) 997 { 998 static char s_svis[32]; 999 1000 switch(svis) { 1001 case STV_DEFAULT: return "DEFAULT"; 1002 case STV_INTERNAL: return "INTERNAL"; 1003 case STV_HIDDEN: return "HIDDEN"; 1004 case STV_PROTECTED: return "PROTECTED"; 1005 default: 1006 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1007 return (s_svis); 1008 } 1009 } 1010 1011 static const char * 1012 st_shndx(unsigned int shndx) 1013 { 1014 static char s_shndx[32]; 1015 1016 switch (shndx) { 1017 case SHN_UNDEF: return "UND"; 1018 case SHN_ABS: return "ABS"; 1019 case SHN_COMMON: return "COM"; 1020 default: 1021 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1022 return "PRC"; 1023 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1024 return "OS"; 1025 else 1026 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1027 return (s_shndx); 1028 } 1029 } 1030 1031 static struct { 1032 const char *ln; 1033 char sn; 1034 int value; 1035 } section_flag[] = { 1036 {"WRITE", 'W', SHF_WRITE}, 1037 {"ALLOC", 'A', SHF_ALLOC}, 1038 {"EXEC", 'X', SHF_EXECINSTR}, 1039 {"MERGE", 'M', SHF_MERGE}, 1040 {"STRINGS", 'S', SHF_STRINGS}, 1041 {"INFO LINK", 'I', SHF_INFO_LINK}, 1042 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1043 {"GROUP", 'G', SHF_GROUP}, 1044 {"TLS", 'T', SHF_TLS}, 1045 {NULL, 0, 0} 1046 }; 1047 1048 static const char * 1049 r_type(unsigned int mach, unsigned int type) 1050 { 1051 switch(mach) { 1052 case EM_NONE: return ""; 1053 case EM_386: 1054 switch(type) { 1055 case 0: return "R_386_NONE"; 1056 case 1: return "R_386_32"; 1057 case 2: return "R_386_PC32"; 1058 case 3: return "R_386_GOT32"; 1059 case 4: return "R_386_PLT32"; 1060 case 5: return "R_386_COPY"; 1061 case 6: return "R_386_GLOB_DAT"; 1062 case 7: return "R_386_JMP_SLOT"; 1063 case 8: return "R_386_RELATIVE"; 1064 case 9: return "R_386_GOTOFF"; 1065 case 10: return "R_386_GOTPC"; 1066 case 14: return "R_386_TLS_TPOFF"; 1067 case 15: return "R_386_TLS_IE"; 1068 case 16: return "R_386_TLS_GOTIE"; 1069 case 17: return "R_386_TLS_LE"; 1070 case 18: return "R_386_TLS_GD"; 1071 case 19: return "R_386_TLS_LDM"; 1072 case 24: return "R_386_TLS_GD_32"; 1073 case 25: return "R_386_TLS_GD_PUSH"; 1074 case 26: return "R_386_TLS_GD_CALL"; 1075 case 27: return "R_386_TLS_GD_POP"; 1076 case 28: return "R_386_TLS_LDM_32"; 1077 case 29: return "R_386_TLS_LDM_PUSH"; 1078 case 30: return "R_386_TLS_LDM_CALL"; 1079 case 31: return "R_386_TLS_LDM_POP"; 1080 case 32: return "R_386_TLS_LDO_32"; 1081 case 33: return "R_386_TLS_IE_32"; 1082 case 34: return "R_386_TLS_LE_32"; 1083 case 35: return "R_386_TLS_DTPMOD32"; 1084 case 36: return "R_386_TLS_DTPOFF32"; 1085 case 37: return "R_386_TLS_TPOFF32"; 1086 default: return ""; 1087 } 1088 case EM_AARCH64: 1089 switch(type) { 1090 case 0: return "R_AARCH64_NONE"; 1091 case 257: return "R_AARCH64_ABS64"; 1092 case 258: return "R_AARCH64_ABS32"; 1093 case 259: return "R_AARCH64_ABS16"; 1094 case 260: return "R_AARCH64_PREL64"; 1095 case 261: return "R_AARCH64_PREL32"; 1096 case 262: return "R_AARCH64_PREL16"; 1097 case 263: return "R_AARCH64_MOVW_UABS_G0"; 1098 case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; 1099 case 265: return "R_AARCH64_MOVW_UABS_G1"; 1100 case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; 1101 case 267: return "R_AARCH64_MOVW_UABS_G2"; 1102 case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; 1103 case 269: return "R_AARCH64_MOVW_UABS_G3"; 1104 case 270: return "R_AARCH64_MOVW_SABS_G0"; 1105 case 271: return "R_AARCH64_MOVW_SABS_G1"; 1106 case 272: return "R_AARCH64_MOVW_SABS_G2"; 1107 case 273: return "R_AARCH64_LD_PREL_LO19"; 1108 case 274: return "R_AARCH64_ADR_PREL_LO21"; 1109 case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; 1110 case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; 1111 case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; 1112 case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; 1113 case 279: return "R_AARCH64_TSTBR14"; 1114 case 280: return "R_AARCH64_CONDBR19"; 1115 case 282: return "R_AARCH64_JUMP26"; 1116 case 283: return "R_AARCH64_CALL26"; 1117 case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; 1118 case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; 1119 case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; 1120 case 287: return "R_AARCH64_MOVW_PREL_G0"; 1121 case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; 1122 case 289: return "R_AARCH64_MOVW_PREL_G1"; 1123 case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; 1124 case 291: return "R_AARCH64_MOVW_PREL_G2"; 1125 case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; 1126 case 293: return "R_AARCH64_MOVW_PREL_G3"; 1127 case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; 1128 case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; 1129 case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; 1130 case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; 1131 case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; 1132 case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; 1133 case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; 1134 case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; 1135 case 307: return "R_AARCH64_GOTREL64"; 1136 case 308: return "R_AARCH64_GOTREL32"; 1137 case 309: return "R_AARCH64_GOT_LD_PREL19"; 1138 case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; 1139 case 311: return "R_AARCH64_ADR_GOT_PAGE"; 1140 case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; 1141 case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; 1142 case 1024: return "R_AARCH64_COPY"; 1143 case 1025: return "R_AARCH64_GLOB_DAT"; 1144 case 1026: return "R_AARCH64_JUMP_SLOT"; 1145 case 1027: return "R_AARCH64_RELATIVE"; 1146 case 1031: return "R_AARCH64_TLSDESC"; 1147 default: return ""; 1148 } 1149 case EM_ARM: 1150 switch(type) { 1151 case 0: return "R_ARM_NONE"; 1152 case 1: return "R_ARM_PC24"; 1153 case 2: return "R_ARM_ABS32"; 1154 case 3: return "R_ARM_REL32"; 1155 case 4: return "R_ARM_PC13"; 1156 case 5: return "R_ARM_ABS16"; 1157 case 6: return "R_ARM_ABS12"; 1158 case 7: return "R_ARM_THM_ABS5"; 1159 case 8: return "R_ARM_ABS8"; 1160 case 9: return "R_ARM_SBREL32"; 1161 case 10: return "R_ARM_THM_PC22"; 1162 case 11: return "R_ARM_THM_PC8"; 1163 case 12: return "R_ARM_AMP_VCALL9"; 1164 case 13: return "R_ARM_SWI24"; 1165 case 14: return "R_ARM_THM_SWI8"; 1166 case 15: return "R_ARM_XPC25"; 1167 case 16: return "R_ARM_THM_XPC22"; 1168 case 20: return "R_ARM_COPY"; 1169 case 21: return "R_ARM_GLOB_DAT"; 1170 case 22: return "R_ARM_JUMP_SLOT"; 1171 case 23: return "R_ARM_RELATIVE"; 1172 case 24: return "R_ARM_GOTOFF"; 1173 case 25: return "R_ARM_GOTPC"; 1174 case 26: return "R_ARM_GOT32"; 1175 case 27: return "R_ARM_PLT32"; 1176 case 100: return "R_ARM_GNU_VTENTRY"; 1177 case 101: return "R_ARM_GNU_VTINHERIT"; 1178 case 250: return "R_ARM_RSBREL32"; 1179 case 251: return "R_ARM_THM_RPC22"; 1180 case 252: return "R_ARM_RREL32"; 1181 case 253: return "R_ARM_RABS32"; 1182 case 254: return "R_ARM_RPC24"; 1183 case 255: return "R_ARM_RBASE"; 1184 default: return ""; 1185 } 1186 case EM_IA_64: 1187 switch(type) { 1188 case 0: return "R_IA_64_NONE"; 1189 case 33: return "R_IA_64_IMM14"; 1190 case 34: return "R_IA_64_IMM22"; 1191 case 35: return "R_IA_64_IMM64"; 1192 case 36: return "R_IA_64_DIR32MSB"; 1193 case 37: return "R_IA_64_DIR32LSB"; 1194 case 38: return "R_IA_64_DIR64MSB"; 1195 case 39: return "R_IA_64_DIR64LSB"; 1196 case 42: return "R_IA_64_GPREL22"; 1197 case 43: return "R_IA_64_GPREL64I"; 1198 case 44: return "R_IA_64_GPREL32MSB"; 1199 case 45: return "R_IA_64_GPREL32LSB"; 1200 case 46: return "R_IA_64_GPREL64MSB"; 1201 case 47: return "R_IA_64_GPREL64LSB"; 1202 case 50: return "R_IA_64_LTOFF22"; 1203 case 51: return "R_IA_64_LTOFF64I"; 1204 case 58: return "R_IA_64_PLTOFF22"; 1205 case 59: return "R_IA_64_PLTOFF64I"; 1206 case 62: return "R_IA_64_PLTOFF64MSB"; 1207 case 63: return "R_IA_64_PLTOFF64LSB"; 1208 case 67: return "R_IA_64_FPTR64I"; 1209 case 68: return "R_IA_64_FPTR32MSB"; 1210 case 69: return "R_IA_64_FPTR32LSB"; 1211 case 70: return "R_IA_64_FPTR64MSB"; 1212 case 71: return "R_IA_64_FPTR64LSB"; 1213 case 72: return "R_IA_64_PCREL60B"; 1214 case 73: return "R_IA_64_PCREL21B"; 1215 case 74: return "R_IA_64_PCREL21M"; 1216 case 75: return "R_IA_64_PCREL21F"; 1217 case 76: return "R_IA_64_PCREL32MSB"; 1218 case 77: return "R_IA_64_PCREL32LSB"; 1219 case 78: return "R_IA_64_PCREL64MSB"; 1220 case 79: return "R_IA_64_PCREL64LSB"; 1221 case 82: return "R_IA_64_LTOFF_FPTR22"; 1222 case 83: return "R_IA_64_LTOFF_FPTR64I"; 1223 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 1224 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 1225 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 1226 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 1227 case 92: return "R_IA_64_SEGREL32MSB"; 1228 case 93: return "R_IA_64_SEGREL32LSB"; 1229 case 94: return "R_IA_64_SEGREL64MSB"; 1230 case 95: return "R_IA_64_SEGREL64LSB"; 1231 case 100: return "R_IA_64_SECREL32MSB"; 1232 case 101: return "R_IA_64_SECREL32LSB"; 1233 case 102: return "R_IA_64_SECREL64MSB"; 1234 case 103: return "R_IA_64_SECREL64LSB"; 1235 case 108: return "R_IA_64_REL32MSB"; 1236 case 109: return "R_IA_64_REL32LSB"; 1237 case 110: return "R_IA_64_REL64MSB"; 1238 case 111: return "R_IA_64_REL64LSB"; 1239 case 116: return "R_IA_64_LTV32MSB"; 1240 case 117: return "R_IA_64_LTV32LSB"; 1241 case 118: return "R_IA_64_LTV64MSB"; 1242 case 119: return "R_IA_64_LTV64LSB"; 1243 case 121: return "R_IA_64_PCREL21BI"; 1244 case 122: return "R_IA_64_PCREL22"; 1245 case 123: return "R_IA_64_PCREL64I"; 1246 case 128: return "R_IA_64_IPLTMSB"; 1247 case 129: return "R_IA_64_IPLTLSB"; 1248 case 133: return "R_IA_64_SUB"; 1249 case 134: return "R_IA_64_LTOFF22X"; 1250 case 135: return "R_IA_64_LDXMOV"; 1251 case 145: return "R_IA_64_TPREL14"; 1252 case 146: return "R_IA_64_TPREL22"; 1253 case 147: return "R_IA_64_TPREL64I"; 1254 case 150: return "R_IA_64_TPREL64MSB"; 1255 case 151: return "R_IA_64_TPREL64LSB"; 1256 case 154: return "R_IA_64_LTOFF_TPREL22"; 1257 case 166: return "R_IA_64_DTPMOD64MSB"; 1258 case 167: return "R_IA_64_DTPMOD64LSB"; 1259 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 1260 case 177: return "R_IA_64_DTPREL14"; 1261 case 178: return "R_IA_64_DTPREL22"; 1262 case 179: return "R_IA_64_DTPREL64I"; 1263 case 180: return "R_IA_64_DTPREL32MSB"; 1264 case 181: return "R_IA_64_DTPREL32LSB"; 1265 case 182: return "R_IA_64_DTPREL64MSB"; 1266 case 183: return "R_IA_64_DTPREL64LSB"; 1267 case 186: return "R_IA_64_LTOFF_DTPREL22"; 1268 default: return ""; 1269 } 1270 case EM_MIPS: 1271 switch(type) { 1272 case 0: return "R_MIPS_NONE"; 1273 case 1: return "R_MIPS_16"; 1274 case 2: return "R_MIPS_32"; 1275 case 3: return "R_MIPS_REL32"; 1276 case 4: return "R_MIPS_26"; 1277 case 5: return "R_MIPS_HI16"; 1278 case 6: return "R_MIPS_LO16"; 1279 case 7: return "R_MIPS_GPREL16"; 1280 case 8: return "R_MIPS_LITERAL"; 1281 case 9: return "R_MIPS_GOT16"; 1282 case 10: return "R_MIPS_PC16"; 1283 case 11: return "R_MIPS_CALL16"; 1284 case 12: return "R_MIPS_GPREL32"; 1285 case 21: return "R_MIPS_GOTHI16"; 1286 case 22: return "R_MIPS_GOTLO16"; 1287 case 30: return "R_MIPS_CALLHI16"; 1288 case 31: return "R_MIPS_CALLLO16"; 1289 default: return ""; 1290 } 1291 case EM_PPC: 1292 switch(type) { 1293 case 0: return "R_PPC_NONE"; 1294 case 1: return "R_PPC_ADDR32"; 1295 case 2: return "R_PPC_ADDR24"; 1296 case 3: return "R_PPC_ADDR16"; 1297 case 4: return "R_PPC_ADDR16_LO"; 1298 case 5: return "R_PPC_ADDR16_HI"; 1299 case 6: return "R_PPC_ADDR16_HA"; 1300 case 7: return "R_PPC_ADDR14"; 1301 case 8: return "R_PPC_ADDR14_BRTAKEN"; 1302 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 1303 case 10: return "R_PPC_REL24"; 1304 case 11: return "R_PPC_REL14"; 1305 case 12: return "R_PPC_REL14_BRTAKEN"; 1306 case 13: return "R_PPC_REL14_BRNTAKEN"; 1307 case 14: return "R_PPC_GOT16"; 1308 case 15: return "R_PPC_GOT16_LO"; 1309 case 16: return "R_PPC_GOT16_HI"; 1310 case 17: return "R_PPC_GOT16_HA"; 1311 case 18: return "R_PPC_PLTREL24"; 1312 case 19: return "R_PPC_COPY"; 1313 case 20: return "R_PPC_GLOB_DAT"; 1314 case 21: return "R_PPC_JMP_SLOT"; 1315 case 22: return "R_PPC_RELATIVE"; 1316 case 23: return "R_PPC_LOCAL24PC"; 1317 case 24: return "R_PPC_UADDR32"; 1318 case 25: return "R_PPC_UADDR16"; 1319 case 26: return "R_PPC_REL32"; 1320 case 27: return "R_PPC_PLT32"; 1321 case 28: return "R_PPC_PLTREL32"; 1322 case 29: return "R_PPC_PLT16_LO"; 1323 case 30: return "R_PPC_PLT16_HI"; 1324 case 31: return "R_PPC_PLT16_HA"; 1325 case 32: return "R_PPC_SDAREL16"; 1326 case 33: return "R_PPC_SECTOFF"; 1327 case 34: return "R_PPC_SECTOFF_LO"; 1328 case 35: return "R_PPC_SECTOFF_HI"; 1329 case 36: return "R_PPC_SECTOFF_HA"; 1330 case 67: return "R_PPC_TLS"; 1331 case 68: return "R_PPC_DTPMOD32"; 1332 case 69: return "R_PPC_TPREL16"; 1333 case 70: return "R_PPC_TPREL16_LO"; 1334 case 71: return "R_PPC_TPREL16_HI"; 1335 case 72: return "R_PPC_TPREL16_HA"; 1336 case 73: return "R_PPC_TPREL32"; 1337 case 74: return "R_PPC_DTPREL16"; 1338 case 75: return "R_PPC_DTPREL16_LO"; 1339 case 76: return "R_PPC_DTPREL16_HI"; 1340 case 77: return "R_PPC_DTPREL16_HA"; 1341 case 78: return "R_PPC_DTPREL32"; 1342 case 79: return "R_PPC_GOT_TLSGD16"; 1343 case 80: return "R_PPC_GOT_TLSGD16_LO"; 1344 case 81: return "R_PPC_GOT_TLSGD16_HI"; 1345 case 82: return "R_PPC_GOT_TLSGD16_HA"; 1346 case 83: return "R_PPC_GOT_TLSLD16"; 1347 case 84: return "R_PPC_GOT_TLSLD16_LO"; 1348 case 85: return "R_PPC_GOT_TLSLD16_HI"; 1349 case 86: return "R_PPC_GOT_TLSLD16_HA"; 1350 case 87: return "R_PPC_GOT_TPREL16"; 1351 case 88: return "R_PPC_GOT_TPREL16_LO"; 1352 case 89: return "R_PPC_GOT_TPREL16_HI"; 1353 case 90: return "R_PPC_GOT_TPREL16_HA"; 1354 case 101: return "R_PPC_EMB_NADDR32"; 1355 case 102: return "R_PPC_EMB_NADDR16"; 1356 case 103: return "R_PPC_EMB_NADDR16_LO"; 1357 case 104: return "R_PPC_EMB_NADDR16_HI"; 1358 case 105: return "R_PPC_EMB_NADDR16_HA"; 1359 case 106: return "R_PPC_EMB_SDAI16"; 1360 case 107: return "R_PPC_EMB_SDA2I16"; 1361 case 108: return "R_PPC_EMB_SDA2REL"; 1362 case 109: return "R_PPC_EMB_SDA21"; 1363 case 110: return "R_PPC_EMB_MRKREF"; 1364 case 111: return "R_PPC_EMB_RELSEC16"; 1365 case 112: return "R_PPC_EMB_RELST_LO"; 1366 case 113: return "R_PPC_EMB_RELST_HI"; 1367 case 114: return "R_PPC_EMB_RELST_HA"; 1368 case 115: return "R_PPC_EMB_BIT_FLD"; 1369 case 116: return "R_PPC_EMB_RELSDA"; 1370 default: return ""; 1371 } 1372 case EM_SPARC: 1373 case EM_SPARCV9: 1374 switch(type) { 1375 case 0: return "R_SPARC_NONE"; 1376 case 1: return "R_SPARC_8"; 1377 case 2: return "R_SPARC_16"; 1378 case 3: return "R_SPARC_32"; 1379 case 4: return "R_SPARC_DISP8"; 1380 case 5: return "R_SPARC_DISP16"; 1381 case 6: return "R_SPARC_DISP32"; 1382 case 7: return "R_SPARC_WDISP30"; 1383 case 8: return "R_SPARC_WDISP22"; 1384 case 9: return "R_SPARC_HI22"; 1385 case 10: return "R_SPARC_22"; 1386 case 11: return "R_SPARC_13"; 1387 case 12: return "R_SPARC_LO10"; 1388 case 13: return "R_SPARC_GOT10"; 1389 case 14: return "R_SPARC_GOT13"; 1390 case 15: return "R_SPARC_GOT22"; 1391 case 16: return "R_SPARC_PC10"; 1392 case 17: return "R_SPARC_PC22"; 1393 case 18: return "R_SPARC_WPLT30"; 1394 case 19: return "R_SPARC_COPY"; 1395 case 20: return "R_SPARC_GLOB_DAT"; 1396 case 21: return "R_SPARC_JMP_SLOT"; 1397 case 22: return "R_SPARC_RELATIVE"; 1398 case 23: return "R_SPARC_UA32"; 1399 case 24: return "R_SPARC_PLT32"; 1400 case 25: return "R_SPARC_HIPLT22"; 1401 case 26: return "R_SPARC_LOPLT10"; 1402 case 27: return "R_SPARC_PCPLT32"; 1403 case 28: return "R_SPARC_PCPLT22"; 1404 case 29: return "R_SPARC_PCPLT10"; 1405 case 30: return "R_SPARC_10"; 1406 case 31: return "R_SPARC_11"; 1407 case 32: return "R_SPARC_64"; 1408 case 33: return "R_SPARC_OLO10"; 1409 case 34: return "R_SPARC_HH22"; 1410 case 35: return "R_SPARC_HM10"; 1411 case 36: return "R_SPARC_LM22"; 1412 case 37: return "R_SPARC_PC_HH22"; 1413 case 38: return "R_SPARC_PC_HM10"; 1414 case 39: return "R_SPARC_PC_LM22"; 1415 case 40: return "R_SPARC_WDISP16"; 1416 case 41: return "R_SPARC_WDISP19"; 1417 case 42: return "R_SPARC_GLOB_JMP"; 1418 case 43: return "R_SPARC_7"; 1419 case 44: return "R_SPARC_5"; 1420 case 45: return "R_SPARC_6"; 1421 case 46: return "R_SPARC_DISP64"; 1422 case 47: return "R_SPARC_PLT64"; 1423 case 48: return "R_SPARC_HIX22"; 1424 case 49: return "R_SPARC_LOX10"; 1425 case 50: return "R_SPARC_H44"; 1426 case 51: return "R_SPARC_M44"; 1427 case 52: return "R_SPARC_L44"; 1428 case 53: return "R_SPARC_REGISTER"; 1429 case 54: return "R_SPARC_UA64"; 1430 case 55: return "R_SPARC_UA16"; 1431 case 56: return "R_SPARC_TLS_GD_HI22"; 1432 case 57: return "R_SPARC_TLS_GD_LO10"; 1433 case 58: return "R_SPARC_TLS_GD_ADD"; 1434 case 59: return "R_SPARC_TLS_GD_CALL"; 1435 case 60: return "R_SPARC_TLS_LDM_HI22"; 1436 case 61: return "R_SPARC_TLS_LDM_LO10"; 1437 case 62: return "R_SPARC_TLS_LDM_ADD"; 1438 case 63: return "R_SPARC_TLS_LDM_CALL"; 1439 case 64: return "R_SPARC_TLS_LDO_HIX22"; 1440 case 65: return "R_SPARC_TLS_LDO_LOX10"; 1441 case 66: return "R_SPARC_TLS_LDO_ADD"; 1442 case 67: return "R_SPARC_TLS_IE_HI22"; 1443 case 68: return "R_SPARC_TLS_IE_LO10"; 1444 case 69: return "R_SPARC_TLS_IE_LD"; 1445 case 70: return "R_SPARC_TLS_IE_LDX"; 1446 case 71: return "R_SPARC_TLS_IE_ADD"; 1447 case 72: return "R_SPARC_TLS_LE_HIX22"; 1448 case 73: return "R_SPARC_TLS_LE_LOX10"; 1449 case 74: return "R_SPARC_TLS_DTPMOD32"; 1450 case 75: return "R_SPARC_TLS_DTPMOD64"; 1451 case 76: return "R_SPARC_TLS_DTPOFF32"; 1452 case 77: return "R_SPARC_TLS_DTPOFF64"; 1453 case 78: return "R_SPARC_TLS_TPOFF32"; 1454 case 79: return "R_SPARC_TLS_TPOFF64"; 1455 default: return ""; 1456 } 1457 case EM_X86_64: 1458 switch(type) { 1459 case 0: return "R_X86_64_NONE"; 1460 case 1: return "R_X86_64_64"; 1461 case 2: return "R_X86_64_PC32"; 1462 case 3: return "R_X86_64_GOT32"; 1463 case 4: return "R_X86_64_PLT32"; 1464 case 5: return "R_X86_64_COPY"; 1465 case 6: return "R_X86_64_GLOB_DAT"; 1466 case 7: return "R_X86_64_JMP_SLOT"; 1467 case 8: return "R_X86_64_RELATIVE"; 1468 case 9: return "R_X86_64_GOTPCREL"; 1469 case 10: return "R_X86_64_32"; 1470 case 11: return "R_X86_64_32S"; 1471 case 12: return "R_X86_64_16"; 1472 case 13: return "R_X86_64_PC16"; 1473 case 14: return "R_X86_64_8"; 1474 case 15: return "R_X86_64_PC8"; 1475 case 16: return "R_X86_64_DTPMOD64"; 1476 case 17: return "R_X86_64_DTPOFF64"; 1477 case 18: return "R_X86_64_TPOFF64"; 1478 case 19: return "R_X86_64_TLSGD"; 1479 case 20: return "R_X86_64_TLSLD"; 1480 case 21: return "R_X86_64_DTPOFF32"; 1481 case 22: return "R_X86_64_GOTTPOFF"; 1482 case 23: return "R_X86_64_TPOFF32"; 1483 case 24: return "R_X86_64_PC64"; 1484 case 25: return "R_X86_64_GOTOFF64"; 1485 case 26: return "R_X86_64_GOTPC32"; 1486 case 27: return "R_X86_64_GOT64"; 1487 case 28: return "R_X86_64_GOTPCREL64"; 1488 case 29: return "R_X86_64_GOTPC64"; 1489 case 30: return "R_X86_64_GOTPLT64"; 1490 case 31: return "R_X86_64_PLTOFF64"; 1491 case 32: return "R_X86_64_SIZE32"; 1492 case 33: return "R_X86_64_SIZE64"; 1493 case 34: return "R_X86_64_GOTPC32_TLSDESC"; 1494 case 35: return "R_X86_64_TLSDESC_CALL"; 1495 case 36: return "R_X86_64_TLSDESC"; 1496 case 37: return "R_X86_64_IRELATIVE"; 1497 default: return ""; 1498 } 1499 default: return ""; 1500 } 1501 } 1502 1503 static const char * 1504 note_type(const char *name, unsigned int et, unsigned int nt) 1505 { 1506 if (strcmp(name, "CORE") == 0 && et == ET_CORE) 1507 return note_type_linux_core(nt); 1508 else if (strcmp(name, "FreeBSD") == 0) 1509 if (et == ET_CORE) 1510 return note_type_freebsd_core(nt); 1511 else 1512 return note_type_freebsd(nt); 1513 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1514 return note_type_gnu(nt); 1515 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1516 return note_type_netbsd(nt); 1517 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1518 return note_type_openbsd(nt); 1519 return note_type_unknown(nt); 1520 } 1521 1522 static const char * 1523 note_type_freebsd(unsigned int nt) 1524 { 1525 switch (nt) { 1526 case 1: return "NT_FREEBSD_ABI_TAG"; 1527 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1528 case 3: return "NT_FREEBSD_ARCH_TAG"; 1529 default: return (note_type_unknown(nt)); 1530 } 1531 } 1532 1533 static const char * 1534 note_type_freebsd_core(unsigned int nt) 1535 { 1536 switch (nt) { 1537 case 1: return "NT_PRSTATUS"; 1538 case 2: return "NT_FPREGSET"; 1539 case 3: return "NT_PRPSINFO"; 1540 case 7: return "NT_THRMISC"; 1541 case 8: return "NT_PROCSTAT_PROC"; 1542 case 9: return "NT_PROCSTAT_FILES"; 1543 case 10: return "NT_PROCSTAT_VMMAP"; 1544 case 11: return "NT_PROCSTAT_GROUPS"; 1545 case 12: return "NT_PROCSTAT_UMASK"; 1546 case 13: return "NT_PROCSTAT_RLIMIT"; 1547 case 14: return "NT_PROCSTAT_OSREL"; 1548 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1549 case 16: return "NT_PROCSTAT_AUXV"; 1550 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1551 default: return (note_type_unknown(nt)); 1552 } 1553 } 1554 1555 static const char * 1556 note_type_linux_core(unsigned int nt) 1557 { 1558 switch (nt) { 1559 case 1: return "NT_PRSTATUS (Process status)"; 1560 case 2: return "NT_FPREGSET (Floating point information)"; 1561 case 3: return "NT_PRPSINFO (Process information)"; 1562 case 6: return "NT_AUXV (Auxiliary vector)"; 1563 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1564 case 10: return "NT_PSTATUS (Linux process status)"; 1565 case 12: return "NT_FPREGS (Linux floating point regset)"; 1566 case 13: return "NT_PSINFO (Linux process information)"; 1567 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1568 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1569 default: return (note_type_unknown(nt)); 1570 } 1571 } 1572 1573 static const char * 1574 note_type_gnu(unsigned int nt) 1575 { 1576 switch (nt) { 1577 case 1: return "NT_GNU_ABI_TAG"; 1578 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1579 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1580 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1581 default: return (note_type_unknown(nt)); 1582 } 1583 } 1584 1585 static const char * 1586 note_type_netbsd(unsigned int nt) 1587 { 1588 switch (nt) { 1589 case 1: return "NT_NETBSD_IDENT"; 1590 default: return (note_type_unknown(nt)); 1591 } 1592 } 1593 1594 static const char * 1595 note_type_openbsd(unsigned int nt) 1596 { 1597 switch (nt) { 1598 case 1: return "NT_OPENBSD_IDENT"; 1599 default: return (note_type_unknown(nt)); 1600 } 1601 } 1602 1603 static const char * 1604 note_type_unknown(unsigned int nt) 1605 { 1606 static char s_nt[32]; 1607 1608 snprintf(s_nt, sizeof(s_nt), "<unknown: %u>", nt); 1609 return (s_nt); 1610 } 1611 1612 static struct { 1613 const char *name; 1614 int value; 1615 } l_flag[] = { 1616 {"EXACT_MATCH", LL_EXACT_MATCH}, 1617 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1618 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1619 {"EXPORTS", LL_EXPORTS}, 1620 {"DELAY_LOAD", LL_DELAY_LOAD}, 1621 {"DELTA", LL_DELTA}, 1622 {NULL, 0} 1623 }; 1624 1625 static struct mips_option mips_exceptions_option[] = { 1626 {OEX_PAGE0, "PAGE0"}, 1627 {OEX_SMM, "SMM"}, 1628 {OEX_PRECISEFP, "PRECISEFP"}, 1629 {OEX_DISMISS, "DISMISS"}, 1630 {0, NULL} 1631 }; 1632 1633 static struct mips_option mips_pad_option[] = { 1634 {OPAD_PREFIX, "PREFIX"}, 1635 {OPAD_POSTFIX, "POSTFIX"}, 1636 {OPAD_SYMBOL, "SYMBOL"}, 1637 {0, NULL} 1638 }; 1639 1640 static struct mips_option mips_hwpatch_option[] = { 1641 {OHW_R4KEOP, "R4KEOP"}, 1642 {OHW_R8KPFETCH, "R8KPFETCH"}, 1643 {OHW_R5KEOP, "R5KEOP"}, 1644 {OHW_R5KCVTL, "R5KCVTL"}, 1645 {0, NULL} 1646 }; 1647 1648 static struct mips_option mips_hwa_option[] = { 1649 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1650 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1651 {0, NULL} 1652 }; 1653 1654 static struct mips_option mips_hwo_option[] = { 1655 {OHWO0_FIXADE, "FIXADE"}, 1656 {0, NULL} 1657 }; 1658 1659 static const char * 1660 option_kind(uint8_t kind) 1661 { 1662 static char s_kind[32]; 1663 1664 switch (kind) { 1665 case ODK_NULL: return "NULL"; 1666 case ODK_REGINFO: return "REGINFO"; 1667 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1668 case ODK_PAD: return "PAD"; 1669 case ODK_HWPATCH: return "HWPATCH"; 1670 case ODK_FILL: return "FILL"; 1671 case ODK_TAGS: return "TAGS"; 1672 case ODK_HWAND: return "HWAND"; 1673 case ODK_HWOR: return "HWOR"; 1674 case ODK_GP_GROUP: return "GP_GROUP"; 1675 case ODK_IDENT: return "IDENT"; 1676 default: 1677 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1678 return (s_kind); 1679 } 1680 } 1681 1682 static const char * 1683 top_tag(unsigned int tag) 1684 { 1685 static char s_top_tag[32]; 1686 1687 switch (tag) { 1688 case 1: return "File Attributes"; 1689 case 2: return "Section Attributes"; 1690 case 3: return "Symbol Attributes"; 1691 default: 1692 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1693 return (s_top_tag); 1694 } 1695 } 1696 1697 static const char * 1698 aeabi_cpu_arch(uint64_t arch) 1699 { 1700 static char s_cpu_arch[32]; 1701 1702 switch (arch) { 1703 case 0: return "Pre-V4"; 1704 case 1: return "ARM v4"; 1705 case 2: return "ARM v4T"; 1706 case 3: return "ARM v5T"; 1707 case 4: return "ARM v5TE"; 1708 case 5: return "ARM v5TEJ"; 1709 case 6: return "ARM v6"; 1710 case 7: return "ARM v6KZ"; 1711 case 8: return "ARM v6T2"; 1712 case 9: return "ARM v6K"; 1713 case 10: return "ARM v7"; 1714 case 11: return "ARM v6-M"; 1715 case 12: return "ARM v6S-M"; 1716 case 13: return "ARM v7E-M"; 1717 default: 1718 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1719 "Unknown (%ju)", (uintmax_t) arch); 1720 return (s_cpu_arch); 1721 } 1722 } 1723 1724 static const char * 1725 aeabi_cpu_arch_profile(uint64_t pf) 1726 { 1727 static char s_arch_profile[32]; 1728 1729 switch (pf) { 1730 case 0: 1731 return "Not applicable"; 1732 case 0x41: /* 'A' */ 1733 return "Application Profile"; 1734 case 0x52: /* 'R' */ 1735 return "Real-Time Profile"; 1736 case 0x4D: /* 'M' */ 1737 return "Microcontroller Profile"; 1738 case 0x53: /* 'S' */ 1739 return "Application or Real-Time Profile"; 1740 default: 1741 snprintf(s_arch_profile, sizeof(s_arch_profile), 1742 "Unknown (%ju)\n", (uintmax_t) pf); 1743 return (s_arch_profile); 1744 } 1745 } 1746 1747 static const char * 1748 aeabi_arm_isa(uint64_t ai) 1749 { 1750 static char s_ai[32]; 1751 1752 switch (ai) { 1753 case 0: return "No"; 1754 case 1: return "Yes"; 1755 default: 1756 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1757 (uintmax_t) ai); 1758 return (s_ai); 1759 } 1760 } 1761 1762 static const char * 1763 aeabi_thumb_isa(uint64_t ti) 1764 { 1765 static char s_ti[32]; 1766 1767 switch (ti) { 1768 case 0: return "No"; 1769 case 1: return "16-bit Thumb"; 1770 case 2: return "32-bit Thumb"; 1771 default: 1772 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1773 (uintmax_t) ti); 1774 return (s_ti); 1775 } 1776 } 1777 1778 static const char * 1779 aeabi_fp_arch(uint64_t fp) 1780 { 1781 static char s_fp_arch[32]; 1782 1783 switch (fp) { 1784 case 0: return "No"; 1785 case 1: return "VFPv1"; 1786 case 2: return "VFPv2"; 1787 case 3: return "VFPv3"; 1788 case 4: return "VFPv3-D16"; 1789 case 5: return "VFPv4"; 1790 case 6: return "VFPv4-D16"; 1791 default: 1792 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1793 (uintmax_t) fp); 1794 return (s_fp_arch); 1795 } 1796 } 1797 1798 static const char * 1799 aeabi_wmmx_arch(uint64_t wmmx) 1800 { 1801 static char s_wmmx[32]; 1802 1803 switch (wmmx) { 1804 case 0: return "No"; 1805 case 1: return "WMMXv1"; 1806 case 2: return "WMMXv2"; 1807 default: 1808 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1809 (uintmax_t) wmmx); 1810 return (s_wmmx); 1811 } 1812 } 1813 1814 static const char * 1815 aeabi_adv_simd_arch(uint64_t simd) 1816 { 1817 static char s_simd[32]; 1818 1819 switch (simd) { 1820 case 0: return "No"; 1821 case 1: return "NEONv1"; 1822 case 2: return "NEONv2"; 1823 default: 1824 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1825 (uintmax_t) simd); 1826 return (s_simd); 1827 } 1828 } 1829 1830 static const char * 1831 aeabi_pcs_config(uint64_t pcs) 1832 { 1833 static char s_pcs[32]; 1834 1835 switch (pcs) { 1836 case 0: return "None"; 1837 case 1: return "Bare platform"; 1838 case 2: return "Linux"; 1839 case 3: return "Linux DSO"; 1840 case 4: return "Palm OS 2004"; 1841 case 5: return "Palm OS (future)"; 1842 case 6: return "Symbian OS 2004"; 1843 case 7: return "Symbian OS (future)"; 1844 default: 1845 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1846 (uintmax_t) pcs); 1847 return (s_pcs); 1848 } 1849 } 1850 1851 static const char * 1852 aeabi_pcs_r9(uint64_t r9) 1853 { 1854 static char s_r9[32]; 1855 1856 switch (r9) { 1857 case 0: return "V6"; 1858 case 1: return "SB"; 1859 case 2: return "TLS pointer"; 1860 case 3: return "Unused"; 1861 default: 1862 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1863 return (s_r9); 1864 } 1865 } 1866 1867 static const char * 1868 aeabi_pcs_rw(uint64_t rw) 1869 { 1870 static char s_rw[32]; 1871 1872 switch (rw) { 1873 case 0: return "Absolute"; 1874 case 1: return "PC-relative"; 1875 case 2: return "SB-relative"; 1876 case 3: return "None"; 1877 default: 1878 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1879 return (s_rw); 1880 } 1881 } 1882 1883 static const char * 1884 aeabi_pcs_ro(uint64_t ro) 1885 { 1886 static char s_ro[32]; 1887 1888 switch (ro) { 1889 case 0: return "Absolute"; 1890 case 1: return "PC-relative"; 1891 case 2: return "None"; 1892 default: 1893 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1894 return (s_ro); 1895 } 1896 } 1897 1898 static const char * 1899 aeabi_pcs_got(uint64_t got) 1900 { 1901 static char s_got[32]; 1902 1903 switch (got) { 1904 case 0: return "None"; 1905 case 1: return "direct"; 1906 case 2: return "indirect via GOT"; 1907 default: 1908 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1909 (uintmax_t) got); 1910 return (s_got); 1911 } 1912 } 1913 1914 static const char * 1915 aeabi_pcs_wchar_t(uint64_t wt) 1916 { 1917 static char s_wt[32]; 1918 1919 switch (wt) { 1920 case 0: return "None"; 1921 case 2: return "wchar_t size 2"; 1922 case 4: return "wchar_t size 4"; 1923 default: 1924 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1925 return (s_wt); 1926 } 1927 } 1928 1929 static const char * 1930 aeabi_enum_size(uint64_t es) 1931 { 1932 static char s_es[32]; 1933 1934 switch (es) { 1935 case 0: return "None"; 1936 case 1: return "smallest"; 1937 case 2: return "32-bit"; 1938 case 3: return "visible 32-bit"; 1939 default: 1940 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1941 return (s_es); 1942 } 1943 } 1944 1945 static const char * 1946 aeabi_align_needed(uint64_t an) 1947 { 1948 static char s_align_n[64]; 1949 1950 switch (an) { 1951 case 0: return "No"; 1952 case 1: return "8-byte align"; 1953 case 2: return "4-byte align"; 1954 case 3: return "Reserved"; 1955 default: 1956 if (an >= 4 && an <= 12) 1957 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1958 " and up to 2^%ju-byte extended align", 1959 (uintmax_t) an); 1960 else 1961 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1962 (uintmax_t) an); 1963 return (s_align_n); 1964 } 1965 } 1966 1967 static const char * 1968 aeabi_align_preserved(uint64_t ap) 1969 { 1970 static char s_align_p[128]; 1971 1972 switch (ap) { 1973 case 0: return "No"; 1974 case 1: return "8-byte align"; 1975 case 2: return "8-byte align and SP % 8 == 0"; 1976 case 3: return "Reserved"; 1977 default: 1978 if (ap >= 4 && ap <= 12) 1979 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1980 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1981 " align", (uintmax_t) ap); 1982 else 1983 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1984 (uintmax_t) ap); 1985 return (s_align_p); 1986 } 1987 } 1988 1989 static const char * 1990 aeabi_fp_rounding(uint64_t fr) 1991 { 1992 static char s_fp_r[32]; 1993 1994 switch (fr) { 1995 case 0: return "Unused"; 1996 case 1: return "Needed"; 1997 default: 1998 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1999 (uintmax_t) fr); 2000 return (s_fp_r); 2001 } 2002 } 2003 2004 static const char * 2005 aeabi_fp_denormal(uint64_t fd) 2006 { 2007 static char s_fp_d[32]; 2008 2009 switch (fd) { 2010 case 0: return "Unused"; 2011 case 1: return "Needed"; 2012 case 2: return "Sign Only"; 2013 default: 2014 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 2015 (uintmax_t) fd); 2016 return (s_fp_d); 2017 } 2018 } 2019 2020 static const char * 2021 aeabi_fp_exceptions(uint64_t fe) 2022 { 2023 static char s_fp_e[32]; 2024 2025 switch (fe) { 2026 case 0: return "Unused"; 2027 case 1: return "Needed"; 2028 default: 2029 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 2030 (uintmax_t) fe); 2031 return (s_fp_e); 2032 } 2033 } 2034 2035 static const char * 2036 aeabi_fp_user_exceptions(uint64_t fu) 2037 { 2038 static char s_fp_u[32]; 2039 2040 switch (fu) { 2041 case 0: return "Unused"; 2042 case 1: return "Needed"; 2043 default: 2044 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 2045 (uintmax_t) fu); 2046 return (s_fp_u); 2047 } 2048 } 2049 2050 static const char * 2051 aeabi_fp_number_model(uint64_t fn) 2052 { 2053 static char s_fp_n[32]; 2054 2055 switch (fn) { 2056 case 0: return "Unused"; 2057 case 1: return "IEEE 754 normal"; 2058 case 2: return "RTABI"; 2059 case 3: return "IEEE 754"; 2060 default: 2061 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 2062 (uintmax_t) fn); 2063 return (s_fp_n); 2064 } 2065 } 2066 2067 static const char * 2068 aeabi_fp_16bit_format(uint64_t fp16) 2069 { 2070 static char s_fp_16[64]; 2071 2072 switch (fp16) { 2073 case 0: return "None"; 2074 case 1: return "IEEE 754"; 2075 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 2076 default: 2077 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 2078 (uintmax_t) fp16); 2079 return (s_fp_16); 2080 } 2081 } 2082 2083 static const char * 2084 aeabi_mpext(uint64_t mp) 2085 { 2086 static char s_mp[32]; 2087 2088 switch (mp) { 2089 case 0: return "Not allowed"; 2090 case 1: return "Allowed"; 2091 default: 2092 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 2093 (uintmax_t) mp); 2094 return (s_mp); 2095 } 2096 } 2097 2098 static const char * 2099 aeabi_div(uint64_t du) 2100 { 2101 static char s_du[32]; 2102 2103 switch (du) { 2104 case 0: return "Yes (V7-R/V7-M)"; 2105 case 1: return "No"; 2106 case 2: return "Yes (V7-A)"; 2107 default: 2108 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 2109 (uintmax_t) du); 2110 return (s_du); 2111 } 2112 } 2113 2114 static const char * 2115 aeabi_t2ee(uint64_t t2ee) 2116 { 2117 static char s_t2ee[32]; 2118 2119 switch (t2ee) { 2120 case 0: return "Not allowed"; 2121 case 1: return "Allowed"; 2122 default: 2123 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 2124 (uintmax_t) t2ee); 2125 return (s_t2ee); 2126 } 2127 2128 } 2129 2130 static const char * 2131 aeabi_hardfp(uint64_t hfp) 2132 { 2133 static char s_hfp[32]; 2134 2135 switch (hfp) { 2136 case 0: return "Tag_FP_arch"; 2137 case 1: return "only SP"; 2138 case 2: return "only DP"; 2139 case 3: return "both SP and DP"; 2140 default: 2141 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 2142 (uintmax_t) hfp); 2143 return (s_hfp); 2144 } 2145 } 2146 2147 static const char * 2148 aeabi_vfp_args(uint64_t va) 2149 { 2150 static char s_va[32]; 2151 2152 switch (va) { 2153 case 0: return "AAPCS (base variant)"; 2154 case 1: return "AAPCS (VFP variant)"; 2155 case 2: return "toolchain-specific"; 2156 default: 2157 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 2158 return (s_va); 2159 } 2160 } 2161 2162 static const char * 2163 aeabi_wmmx_args(uint64_t wa) 2164 { 2165 static char s_wa[32]; 2166 2167 switch (wa) { 2168 case 0: return "AAPCS (base variant)"; 2169 case 1: return "Intel WMMX"; 2170 case 2: return "toolchain-specific"; 2171 default: 2172 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 2173 return (s_wa); 2174 } 2175 } 2176 2177 static const char * 2178 aeabi_unaligned_access(uint64_t ua) 2179 { 2180 static char s_ua[32]; 2181 2182 switch (ua) { 2183 case 0: return "Not allowed"; 2184 case 1: return "Allowed"; 2185 default: 2186 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 2187 return (s_ua); 2188 } 2189 } 2190 2191 static const char * 2192 aeabi_fp_hpext(uint64_t fh) 2193 { 2194 static char s_fh[32]; 2195 2196 switch (fh) { 2197 case 0: return "Not allowed"; 2198 case 1: return "Allowed"; 2199 default: 2200 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 2201 return (s_fh); 2202 } 2203 } 2204 2205 static const char * 2206 aeabi_optm_goal(uint64_t og) 2207 { 2208 static char s_og[32]; 2209 2210 switch (og) { 2211 case 0: return "None"; 2212 case 1: return "Speed"; 2213 case 2: return "Speed aggressive"; 2214 case 3: return "Space"; 2215 case 4: return "Space aggressive"; 2216 case 5: return "Debugging"; 2217 case 6: return "Best Debugging"; 2218 default: 2219 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 2220 return (s_og); 2221 } 2222 } 2223 2224 static const char * 2225 aeabi_fp_optm_goal(uint64_t fog) 2226 { 2227 static char s_fog[32]; 2228 2229 switch (fog) { 2230 case 0: return "None"; 2231 case 1: return "Speed"; 2232 case 2: return "Speed aggressive"; 2233 case 3: return "Space"; 2234 case 4: return "Space aggressive"; 2235 case 5: return "Accurary"; 2236 case 6: return "Best Accurary"; 2237 default: 2238 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 2239 (uintmax_t) fog); 2240 return (s_fog); 2241 } 2242 } 2243 2244 static const char * 2245 aeabi_virtual(uint64_t vt) 2246 { 2247 static char s_virtual[64]; 2248 2249 switch (vt) { 2250 case 0: return "No"; 2251 case 1: return "TrustZone"; 2252 case 2: return "Virtualization extension"; 2253 case 3: return "TrustZone and virtualization extension"; 2254 default: 2255 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 2256 (uintmax_t) vt); 2257 return (s_virtual); 2258 } 2259 } 2260 2261 static struct { 2262 uint64_t tag; 2263 const char *s_tag; 2264 const char *(*get_desc)(uint64_t val); 2265 } aeabi_tags[] = { 2266 {4, "Tag_CPU_raw_name", NULL}, 2267 {5, "Tag_CPU_name", NULL}, 2268 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 2269 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 2270 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 2271 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 2272 {10, "Tag_FP_arch", aeabi_fp_arch}, 2273 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 2274 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 2275 {13, "Tag_PCS_config", aeabi_pcs_config}, 2276 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 2277 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 2278 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 2279 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 2280 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 2281 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 2282 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 2283 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 2284 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 2285 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 2286 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 2287 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 2288 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 2289 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 2290 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 2291 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 2292 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 2293 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 2294 {32, "Tag_compatibility", NULL}, 2295 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 2296 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 2297 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 2298 {42, "Tag_MPextension_use", aeabi_mpext}, 2299 {44, "Tag_DIV_use", aeabi_div}, 2300 {64, "Tag_nodefaults", NULL}, 2301 {65, "Tag_also_compatible_with", NULL}, 2302 {66, "Tag_T2EE_use", aeabi_t2ee}, 2303 {67, "Tag_conformance", NULL}, 2304 {68, "Tag_Virtualization_use", aeabi_virtual}, 2305 {70, "Tag_MPextension_use", aeabi_mpext}, 2306 }; 2307 2308 static const char * 2309 mips_abi_fp(uint64_t fp) 2310 { 2311 static char s_mips_abi_fp[64]; 2312 2313 switch (fp) { 2314 case 0: return "N/A"; 2315 case 1: return "Hard float (double precision)"; 2316 case 2: return "Hard float (single precision)"; 2317 case 3: return "Soft float"; 2318 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2319 default: 2320 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2321 (uintmax_t) fp); 2322 return (s_mips_abi_fp); 2323 } 2324 } 2325 2326 static const char * 2327 ppc_abi_fp(uint64_t fp) 2328 { 2329 static char s_ppc_abi_fp[64]; 2330 2331 switch (fp) { 2332 case 0: return "N/A"; 2333 case 1: return "Hard float (double precision)"; 2334 case 2: return "Soft float"; 2335 case 3: return "Hard float (single precision)"; 2336 default: 2337 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2338 (uintmax_t) fp); 2339 return (s_ppc_abi_fp); 2340 } 2341 } 2342 2343 static const char * 2344 ppc_abi_vector(uint64_t vec) 2345 { 2346 static char s_vec[64]; 2347 2348 switch (vec) { 2349 case 0: return "N/A"; 2350 case 1: return "Generic purpose registers"; 2351 case 2: return "AltiVec registers"; 2352 case 3: return "SPE registers"; 2353 default: 2354 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2355 return (s_vec); 2356 } 2357 } 2358 2359 static const char * 2360 dwarf_reg(unsigned int mach, unsigned int reg) 2361 { 2362 2363 switch (mach) { 2364 case EM_386: 2365 switch (reg) { 2366 case 0: return "eax"; 2367 case 1: return "ecx"; 2368 case 2: return "edx"; 2369 case 3: return "ebx"; 2370 case 4: return "esp"; 2371 case 5: return "ebp"; 2372 case 6: return "esi"; 2373 case 7: return "edi"; 2374 case 8: return "eip"; 2375 case 9: return "eflags"; 2376 case 11: return "st0"; 2377 case 12: return "st1"; 2378 case 13: return "st2"; 2379 case 14: return "st3"; 2380 case 15: return "st4"; 2381 case 16: return "st5"; 2382 case 17: return "st6"; 2383 case 18: return "st7"; 2384 case 21: return "xmm0"; 2385 case 22: return "xmm1"; 2386 case 23: return "xmm2"; 2387 case 24: return "xmm3"; 2388 case 25: return "xmm4"; 2389 case 26: return "xmm5"; 2390 case 27: return "xmm6"; 2391 case 28: return "xmm7"; 2392 case 29: return "mm0"; 2393 case 30: return "mm1"; 2394 case 31: return "mm2"; 2395 case 32: return "mm3"; 2396 case 33: return "mm4"; 2397 case 34: return "mm5"; 2398 case 35: return "mm6"; 2399 case 36: return "mm7"; 2400 case 37: return "fcw"; 2401 case 38: return "fsw"; 2402 case 39: return "mxcsr"; 2403 case 40: return "es"; 2404 case 41: return "cs"; 2405 case 42: return "ss"; 2406 case 43: return "ds"; 2407 case 44: return "fs"; 2408 case 45: return "gs"; 2409 case 48: return "tr"; 2410 case 49: return "ldtr"; 2411 default: return (NULL); 2412 } 2413 case EM_X86_64: 2414 switch (reg) { 2415 case 0: return "rax"; 2416 case 1: return "rdx"; 2417 case 2: return "rcx"; 2418 case 3: return "rbx"; 2419 case 4: return "rsi"; 2420 case 5: return "rdi"; 2421 case 6: return "rbp"; 2422 case 7: return "rsp"; 2423 case 16: return "rip"; 2424 case 17: return "xmm0"; 2425 case 18: return "xmm1"; 2426 case 19: return "xmm2"; 2427 case 20: return "xmm3"; 2428 case 21: return "xmm4"; 2429 case 22: return "xmm5"; 2430 case 23: return "xmm6"; 2431 case 24: return "xmm7"; 2432 case 25: return "xmm8"; 2433 case 26: return "xmm9"; 2434 case 27: return "xmm10"; 2435 case 28: return "xmm11"; 2436 case 29: return "xmm12"; 2437 case 30: return "xmm13"; 2438 case 31: return "xmm14"; 2439 case 32: return "xmm15"; 2440 case 33: return "st0"; 2441 case 34: return "st1"; 2442 case 35: return "st2"; 2443 case 36: return "st3"; 2444 case 37: return "st4"; 2445 case 38: return "st5"; 2446 case 39: return "st6"; 2447 case 40: return "st7"; 2448 case 41: return "mm0"; 2449 case 42: return "mm1"; 2450 case 43: return "mm2"; 2451 case 44: return "mm3"; 2452 case 45: return "mm4"; 2453 case 46: return "mm5"; 2454 case 47: return "mm6"; 2455 case 48: return "mm7"; 2456 case 49: return "rflags"; 2457 case 50: return "es"; 2458 case 51: return "cs"; 2459 case 52: return "ss"; 2460 case 53: return "ds"; 2461 case 54: return "fs"; 2462 case 55: return "gs"; 2463 case 58: return "fs.base"; 2464 case 59: return "gs.base"; 2465 case 62: return "tr"; 2466 case 63: return "ldtr"; 2467 case 64: return "mxcsr"; 2468 case 65: return "fcw"; 2469 case 66: return "fsw"; 2470 default: return (NULL); 2471 } 2472 default: 2473 return (NULL); 2474 } 2475 } 2476 2477 static void 2478 dump_ehdr(struct readelf *re) 2479 { 2480 size_t shnum, shstrndx; 2481 int i; 2482 2483 printf("ELF Header:\n"); 2484 2485 /* e_ident[]. */ 2486 printf(" Magic: "); 2487 for (i = 0; i < EI_NIDENT; i++) 2488 printf("%.2x ", re->ehdr.e_ident[i]); 2489 putchar('\n'); 2490 2491 /* EI_CLASS. */ 2492 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2493 2494 /* EI_DATA. */ 2495 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2496 2497 /* EI_VERSION. */ 2498 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2499 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2500 2501 /* EI_OSABI. */ 2502 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2503 2504 /* EI_ABIVERSION. */ 2505 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2506 2507 /* e_type. */ 2508 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2509 2510 /* e_machine. */ 2511 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2512 2513 /* e_version. */ 2514 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2515 2516 /* e_entry. */ 2517 printf("%-37s%#jx\n", " Entry point address:", 2518 (uintmax_t)re->ehdr.e_entry); 2519 2520 /* e_phoff. */ 2521 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2522 (uintmax_t)re->ehdr.e_phoff); 2523 2524 /* e_shoff. */ 2525 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2526 (uintmax_t)re->ehdr.e_shoff); 2527 2528 /* e_flags. */ 2529 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2530 dump_eflags(re, re->ehdr.e_flags); 2531 putchar('\n'); 2532 2533 /* e_ehsize. */ 2534 printf("%-37s%u (bytes)\n", " Size of this header:", 2535 re->ehdr.e_ehsize); 2536 2537 /* e_phentsize. */ 2538 printf("%-37s%u (bytes)\n", " Size of program headers:", 2539 re->ehdr.e_phentsize); 2540 2541 /* e_phnum. */ 2542 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2543 2544 /* e_shentsize. */ 2545 printf("%-37s%u (bytes)\n", " Size of section headers:", 2546 re->ehdr.e_shentsize); 2547 2548 /* e_shnum. */ 2549 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2550 if (re->ehdr.e_shnum == SHN_UNDEF) { 2551 /* Extended section numbering is in use. */ 2552 if (elf_getshnum(re->elf, &shnum)) 2553 printf(" (%ju)", (uintmax_t)shnum); 2554 } 2555 putchar('\n'); 2556 2557 /* e_shstrndx. */ 2558 printf("%-37s%u", " Section header string table index:", 2559 re->ehdr.e_shstrndx); 2560 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2561 /* Extended section numbering is in use. */ 2562 if (elf_getshstrndx(re->elf, &shstrndx)) 2563 printf(" (%ju)", (uintmax_t)shstrndx); 2564 } 2565 putchar('\n'); 2566 } 2567 2568 static void 2569 dump_eflags(struct readelf *re, uint64_t e_flags) 2570 { 2571 struct eflags_desc *edesc; 2572 int arm_eabi; 2573 2574 edesc = NULL; 2575 switch (re->ehdr.e_machine) { 2576 case EM_ARM: 2577 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2578 if (arm_eabi == 0) 2579 printf(", GNU EABI"); 2580 else if (arm_eabi <= 5) 2581 printf(", Version%d EABI", arm_eabi); 2582 edesc = arm_eflags_desc; 2583 break; 2584 case EM_MIPS: 2585 case EM_MIPS_RS3_LE: 2586 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2587 case 0: printf(", mips1"); break; 2588 case 1: printf(", mips2"); break; 2589 case 2: printf(", mips3"); break; 2590 case 3: printf(", mips4"); break; 2591 case 4: printf(", mips5"); break; 2592 case 5: printf(", mips32"); break; 2593 case 6: printf(", mips64"); break; 2594 case 7: printf(", mips32r2"); break; 2595 case 8: printf(", mips64r2"); break; 2596 default: break; 2597 } 2598 switch ((e_flags & 0x00FF0000) >> 16) { 2599 case 0x81: printf(", 3900"); break; 2600 case 0x82: printf(", 4010"); break; 2601 case 0x83: printf(", 4100"); break; 2602 case 0x85: printf(", 4650"); break; 2603 case 0x87: printf(", 4120"); break; 2604 case 0x88: printf(", 4111"); break; 2605 case 0x8a: printf(", sb1"); break; 2606 case 0x8b: printf(", octeon"); break; 2607 case 0x8c: printf(", xlr"); break; 2608 case 0x91: printf(", 5400"); break; 2609 case 0x98: printf(", 5500"); break; 2610 case 0x99: printf(", 9000"); break; 2611 case 0xa0: printf(", loongson-2e"); break; 2612 case 0xa1: printf(", loongson-2f"); break; 2613 default: break; 2614 } 2615 switch ((e_flags & 0x0000F000) >> 12) { 2616 case 1: printf(", o32"); break; 2617 case 2: printf(", o64"); break; 2618 case 3: printf(", eabi32"); break; 2619 case 4: printf(", eabi64"); break; 2620 default: break; 2621 } 2622 edesc = mips_eflags_desc; 2623 break; 2624 case EM_PPC: 2625 case EM_PPC64: 2626 edesc = powerpc_eflags_desc; 2627 break; 2628 case EM_SPARC: 2629 case EM_SPARC32PLUS: 2630 case EM_SPARCV9: 2631 switch ((e_flags & EF_SPARCV9_MM)) { 2632 case EF_SPARCV9_TSO: printf(", tso"); break; 2633 case EF_SPARCV9_PSO: printf(", pso"); break; 2634 case EF_SPARCV9_MM: printf(", rmo"); break; 2635 default: break; 2636 } 2637 edesc = sparc_eflags_desc; 2638 break; 2639 default: 2640 break; 2641 } 2642 2643 if (edesc != NULL) { 2644 while (edesc->desc != NULL) { 2645 if (e_flags & edesc->flag) 2646 printf(", %s", edesc->desc); 2647 edesc++; 2648 } 2649 } 2650 } 2651 2652 static void 2653 dump_phdr(struct readelf *re) 2654 { 2655 const char *rawfile; 2656 GElf_Phdr phdr; 2657 size_t phnum; 2658 int i, j; 2659 2660 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2661 "MemSiz", "Flg", "Align" 2662 #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ 2663 (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ 2664 (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ 2665 phdr.p_flags & PF_R ? 'R' : ' ', \ 2666 phdr.p_flags & PF_W ? 'W' : ' ', \ 2667 phdr.p_flags & PF_X ? 'E' : ' ', \ 2668 (uintmax_t)phdr.p_align 2669 2670 if (elf_getphnum(re->elf, &phnum) == 0) { 2671 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2672 return; 2673 } 2674 if (phnum == 0) { 2675 printf("\nThere are no program headers in this file.\n"); 2676 return; 2677 } 2678 2679 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2680 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2681 printf("There are %ju program headers, starting at offset %ju\n", 2682 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2683 2684 /* Dump program headers. */ 2685 printf("\nProgram Headers:\n"); 2686 if (re->ec == ELFCLASS32) 2687 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2688 else if (re->options & RE_WW) 2689 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2690 else 2691 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2692 "%-7s%s\n", PH_HDR); 2693 for (i = 0; (size_t) i < phnum; i++) { 2694 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2695 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2696 continue; 2697 } 2698 /* TODO: Add arch-specific segment type dump. */ 2699 if (re->ec == ELFCLASS32) 2700 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2701 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2702 else if (re->options & RE_WW) 2703 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2704 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2705 else 2706 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2707 " 0x%16.16jx 0x%16.16jx %c%c%c" 2708 " %#jx\n", PH_CT); 2709 if (phdr.p_type == PT_INTERP) { 2710 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 2711 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2712 continue; 2713 } 2714 printf(" [Requesting program interpreter: %s]\n", 2715 rawfile + phdr.p_offset); 2716 } 2717 } 2718 2719 /* Dump section to segment mapping. */ 2720 if (re->shnum == 0) 2721 return; 2722 printf("\n Section to Segment mapping:\n"); 2723 printf(" Segment Sections...\n"); 2724 for (i = 0; (size_t)i < phnum; i++) { 2725 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2726 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2727 continue; 2728 } 2729 printf(" %2.2d ", i); 2730 /* skip NULL section. */ 2731 for (j = 1; (size_t)j < re->shnum; j++) 2732 if (re->sl[j].off >= phdr.p_offset && 2733 re->sl[j].off + re->sl[j].sz <= 2734 phdr.p_offset + phdr.p_memsz) 2735 printf("%s ", re->sl[j].name); 2736 printf("\n"); 2737 } 2738 #undef PH_HDR 2739 #undef PH_CT 2740 } 2741 2742 static char * 2743 section_flags(struct readelf *re, struct section *s) 2744 { 2745 #define BUF_SZ 256 2746 static char buf[BUF_SZ]; 2747 int i, p, nb; 2748 2749 p = 0; 2750 nb = re->ec == ELFCLASS32 ? 8 : 16; 2751 if (re->options & RE_T) { 2752 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2753 (uintmax_t)s->flags); 2754 p += nb + 4; 2755 } 2756 for (i = 0; section_flag[i].ln != NULL; i++) { 2757 if ((s->flags & section_flag[i].value) == 0) 2758 continue; 2759 if (re->options & RE_T) { 2760 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2761 section_flag[i].ln); 2762 p += strlen(section_flag[i].ln) + 2; 2763 } else 2764 buf[p++] = section_flag[i].sn; 2765 } 2766 if (re->options & RE_T && p > nb + 4) 2767 p -= 2; 2768 buf[p] = '\0'; 2769 2770 return (buf); 2771 } 2772 2773 static void 2774 dump_shdr(struct readelf *re) 2775 { 2776 struct section *s; 2777 int i; 2778 2779 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2780 "Flg", "Lk", "Inf", "Al" 2781 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2782 "EntSize", "Flags", "Link", "Info", "Align" 2783 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2784 "Lk", "Inf", "Al", "Flags" 2785 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2786 "Size", "EntSize", "Info", "Align", "Flags" 2787 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2788 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2789 (uintmax_t)s->entsize, section_flags(re, s), \ 2790 s->link, s->info, (uintmax_t)s->align 2791 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2792 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2793 (uintmax_t)s->entsize, s->link, s->info, \ 2794 (uintmax_t)s->align, section_flags(re, s) 2795 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2796 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2797 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2798 (uintmax_t)s->align, section_flags(re, s) 2799 2800 if (re->shnum == 0) { 2801 printf("\nThere are no sections in this file.\n"); 2802 return; 2803 } 2804 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2805 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2806 printf("\nSection Headers:\n"); 2807 if (re->ec == ELFCLASS32) { 2808 if (re->options & RE_T) 2809 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2810 "%12s\n", ST_HDR); 2811 else 2812 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2813 S_HDR); 2814 } else if (re->options & RE_WW) { 2815 if (re->options & RE_T) 2816 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2817 "%12s\n", ST_HDR); 2818 else 2819 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2820 S_HDR); 2821 } else { 2822 if (re->options & RE_T) 2823 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2824 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2825 else 2826 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2827 "-6s%-6s%s\n", S_HDRL); 2828 } 2829 for (i = 0; (size_t)i < re->shnum; i++) { 2830 s = &re->sl[i]; 2831 if (re->ec == ELFCLASS32) { 2832 if (re->options & RE_T) 2833 printf(" [%2d] %s\n %-15.15s %8.8jx" 2834 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2835 " %s\n", ST_CT); 2836 else 2837 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2838 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2839 S_CT); 2840 } else if (re->options & RE_WW) { 2841 if (re->options & RE_T) 2842 printf(" [%2d] %s\n %-15.15s %16.16jx" 2843 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2844 " %s\n", ST_CT); 2845 else 2846 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2847 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2848 S_CT); 2849 } else { 2850 if (re->options & RE_T) 2851 printf(" [%2d] %s\n %-15.15s %16.16jx" 2852 " %16.16jx %u\n %16.16jx %16.16jx" 2853 " %-16u %ju\n %s\n", ST_CTL); 2854 else 2855 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2856 " %8.8jx\n %16.16jx %16.16jx " 2857 "%3s %2u %3u %ju\n", S_CT); 2858 } 2859 } 2860 if ((re->options & RE_T) == 0) 2861 printf("Key to Flags:\n W (write), A (alloc)," 2862 " X (execute), M (merge), S (strings)\n" 2863 " I (info), L (link order), G (group), x (unknown)\n" 2864 " O (extra OS processing required)" 2865 " o (OS specific), p (processor specific)\n"); 2866 2867 #undef S_HDR 2868 #undef S_HDRL 2869 #undef ST_HDR 2870 #undef ST_HDRL 2871 #undef S_CT 2872 #undef ST_CT 2873 #undef ST_CTL 2874 } 2875 2876 static void 2877 dump_dynamic(struct readelf *re) 2878 { 2879 GElf_Dyn dyn; 2880 Elf_Data *d; 2881 struct section *s; 2882 int elferr, i, is_dynamic, j, jmax, nentries; 2883 2884 is_dynamic = 0; 2885 2886 for (i = 0; (size_t)i < re->shnum; i++) { 2887 s = &re->sl[i]; 2888 if (s->type != SHT_DYNAMIC) 2889 continue; 2890 (void) elf_errno(); 2891 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2892 elferr = elf_errno(); 2893 if (elferr != 0) 2894 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2895 continue; 2896 } 2897 if (d->d_size <= 0) 2898 continue; 2899 2900 is_dynamic = 1; 2901 2902 /* Determine the actual number of table entries. */ 2903 nentries = 0; 2904 jmax = (int) (s->sz / s->entsize); 2905 2906 for (j = 0; j < jmax; j++) { 2907 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2908 warnx("gelf_getdyn failed: %s", 2909 elf_errmsg(-1)); 2910 continue; 2911 } 2912 nentries ++; 2913 if (dyn.d_tag == DT_NULL) 2914 break; 2915 } 2916 2917 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2918 printf(" contains %u entries:\n", nentries); 2919 2920 if (re->ec == ELFCLASS32) 2921 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2922 else 2923 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2924 2925 for (j = 0; j < nentries; j++) { 2926 if (gelf_getdyn(d, j, &dyn) != &dyn) 2927 continue; 2928 /* Dump dynamic entry type. */ 2929 if (re->ec == ELFCLASS32) 2930 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2931 else 2932 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2933 printf(" %-20s", dt_type(re->ehdr.e_machine, 2934 dyn.d_tag)); 2935 /* Dump dynamic entry value. */ 2936 dump_dyn_val(re, &dyn, s->link); 2937 } 2938 } 2939 2940 if (!is_dynamic) 2941 printf("\nThere is no dynamic section in this file.\n"); 2942 } 2943 2944 static char * 2945 timestamp(time_t ti) 2946 { 2947 static char ts[32]; 2948 struct tm *t; 2949 2950 t = gmtime(&ti); 2951 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2952 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2953 t->tm_min, t->tm_sec); 2954 2955 return (ts); 2956 } 2957 2958 static const char * 2959 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2960 { 2961 const char *name; 2962 2963 if (stab == SHN_UNDEF) 2964 name = "ERROR"; 2965 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2966 (void) elf_errno(); /* clear error */ 2967 name = "ERROR"; 2968 } 2969 2970 return (name); 2971 } 2972 2973 static void 2974 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2975 { 2976 const char *name; 2977 2978 switch (re->ehdr.e_machine) { 2979 case EM_MIPS: 2980 case EM_MIPS_RS3_LE: 2981 switch (dyn->d_tag) { 2982 case DT_MIPS_RLD_VERSION: 2983 case DT_MIPS_LOCAL_GOTNO: 2984 case DT_MIPS_CONFLICTNO: 2985 case DT_MIPS_LIBLISTNO: 2986 case DT_MIPS_SYMTABNO: 2987 case DT_MIPS_UNREFEXTNO: 2988 case DT_MIPS_GOTSYM: 2989 case DT_MIPS_HIPAGENO: 2990 case DT_MIPS_DELTA_CLASS_NO: 2991 case DT_MIPS_DELTA_INSTANCE_NO: 2992 case DT_MIPS_DELTA_RELOC_NO: 2993 case DT_MIPS_DELTA_SYM_NO: 2994 case DT_MIPS_DELTA_CLASSSYM_NO: 2995 case DT_MIPS_LOCALPAGE_GOTIDX: 2996 case DT_MIPS_LOCAL_GOTIDX: 2997 case DT_MIPS_HIDDEN_GOTIDX: 2998 case DT_MIPS_PROTECTED_GOTIDX: 2999 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3000 break; 3001 case DT_MIPS_ICHECKSUM: 3002 case DT_MIPS_FLAGS: 3003 case DT_MIPS_BASE_ADDRESS: 3004 case DT_MIPS_CONFLICT: 3005 case DT_MIPS_LIBLIST: 3006 case DT_MIPS_RLD_MAP: 3007 case DT_MIPS_DELTA_CLASS: 3008 case DT_MIPS_DELTA_INSTANCE: 3009 case DT_MIPS_DELTA_RELOC: 3010 case DT_MIPS_DELTA_SYM: 3011 case DT_MIPS_DELTA_CLASSSYM: 3012 case DT_MIPS_CXX_FLAGS: 3013 case DT_MIPS_PIXIE_INIT: 3014 case DT_MIPS_SYMBOL_LIB: 3015 case DT_MIPS_OPTIONS: 3016 case DT_MIPS_INTERFACE: 3017 case DT_MIPS_DYNSTR_ALIGN: 3018 case DT_MIPS_INTERFACE_SIZE: 3019 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 3020 case DT_MIPS_COMPACT_SIZE: 3021 case DT_MIPS_GP_VALUE: 3022 case DT_MIPS_AUX_DYNAMIC: 3023 case DT_MIPS_PLTGOT: 3024 case DT_MIPS_RLD_OBJ_UPDATE: 3025 case DT_MIPS_RWPLT: 3026 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3027 break; 3028 case DT_MIPS_IVERSION: 3029 case DT_MIPS_PERF_SUFFIX: 3030 case DT_AUXILIARY: 3031 case DT_FILTER: 3032 name = dyn_str(re, stab, dyn->d_un.d_val); 3033 printf(" %s\n", name); 3034 break; 3035 case DT_MIPS_TIME_STAMP: 3036 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3037 break; 3038 } 3039 break; 3040 default: 3041 printf("\n"); 3042 break; 3043 } 3044 } 3045 3046 static void 3047 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3048 { 3049 const char *name; 3050 3051 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 3052 dump_arch_dyn_val(re, dyn, stab); 3053 return; 3054 } 3055 3056 /* These entry values are index into the string table. */ 3057 name = NULL; 3058 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 3059 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 3060 name = dyn_str(re, stab, dyn->d_un.d_val); 3061 3062 switch(dyn->d_tag) { 3063 case DT_NULL: 3064 case DT_PLTGOT: 3065 case DT_HASH: 3066 case DT_STRTAB: 3067 case DT_SYMTAB: 3068 case DT_RELA: 3069 case DT_INIT: 3070 case DT_SYMBOLIC: 3071 case DT_REL: 3072 case DT_DEBUG: 3073 case DT_TEXTREL: 3074 case DT_JMPREL: 3075 case DT_FINI: 3076 case DT_VERDEF: 3077 case DT_VERNEED: 3078 case DT_VERSYM: 3079 case DT_GNU_HASH: 3080 case DT_GNU_LIBLIST: 3081 case DT_GNU_CONFLICT: 3082 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3083 break; 3084 case DT_PLTRELSZ: 3085 case DT_RELASZ: 3086 case DT_RELAENT: 3087 case DT_STRSZ: 3088 case DT_SYMENT: 3089 case DT_RELSZ: 3090 case DT_RELENT: 3091 case DT_INIT_ARRAYSZ: 3092 case DT_FINI_ARRAYSZ: 3093 case DT_GNU_CONFLICTSZ: 3094 case DT_GNU_LIBLISTSZ: 3095 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 3096 break; 3097 case DT_RELACOUNT: 3098 case DT_RELCOUNT: 3099 case DT_VERDEFNUM: 3100 case DT_VERNEEDNUM: 3101 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3102 break; 3103 case DT_NEEDED: 3104 printf(" Shared library: [%s]\n", name); 3105 break; 3106 case DT_SONAME: 3107 printf(" Library soname: [%s]\n", name); 3108 break; 3109 case DT_RPATH: 3110 printf(" Library rpath: [%s]\n", name); 3111 break; 3112 case DT_RUNPATH: 3113 printf(" Library runpath: [%s]\n", name); 3114 break; 3115 case DT_PLTREL: 3116 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 3117 break; 3118 case DT_GNU_PRELINKED: 3119 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3120 break; 3121 default: 3122 printf("\n"); 3123 } 3124 } 3125 3126 static void 3127 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3128 { 3129 GElf_Rel r; 3130 const char *symname; 3131 uint64_t symval; 3132 int i, len; 3133 3134 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3135 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3136 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3137 (uintmax_t)symval, symname 3138 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3139 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3140 (uintmax_t)symval, symname 3141 3142 printf("\nRelocation section (%s):\n", s->name); 3143 if (re->ec == ELFCLASS32) 3144 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3145 else { 3146 if (re->options & RE_WW) 3147 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3148 else 3149 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3150 } 3151 len = d->d_size / s->entsize; 3152 for (i = 0; i < len; i++) { 3153 if (gelf_getrel(d, i, &r) != &r) { 3154 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3155 continue; 3156 } 3157 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3158 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3159 if (re->ec == ELFCLASS32) { 3160 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3161 ELF64_R_TYPE(r.r_info)); 3162 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3163 } else { 3164 if (re->options & RE_WW) 3165 printf("%16.16jx %16.16jx %-24.24s" 3166 " %16.16jx %s\n", REL_CT64); 3167 else 3168 printf("%12.12jx %12.12jx %-19.19s" 3169 " %16.16jx %s\n", REL_CT64); 3170 } 3171 } 3172 3173 #undef REL_HDR 3174 #undef REL_CT 3175 } 3176 3177 static void 3178 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3179 { 3180 GElf_Rela r; 3181 const char *symname; 3182 uint64_t symval; 3183 int i, len; 3184 3185 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3186 "st_name + r_addend" 3187 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3188 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3189 (uintmax_t)symval, symname 3190 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3191 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3192 (uintmax_t)symval, symname 3193 3194 printf("\nRelocation section with addend (%s):\n", s->name); 3195 if (re->ec == ELFCLASS32) 3196 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3197 else { 3198 if (re->options & RE_WW) 3199 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3200 else 3201 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3202 } 3203 len = d->d_size / s->entsize; 3204 for (i = 0; i < len; i++) { 3205 if (gelf_getrela(d, i, &r) != &r) { 3206 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3207 continue; 3208 } 3209 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3210 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3211 if (re->ec == ELFCLASS32) { 3212 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3213 ELF64_R_TYPE(r.r_info)); 3214 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3215 printf(" + %x\n", (uint32_t) r.r_addend); 3216 } else { 3217 if (re->options & RE_WW) 3218 printf("%16.16jx %16.16jx %-24.24s" 3219 " %16.16jx %s", RELA_CT64); 3220 else 3221 printf("%12.12jx %12.12jx %-19.19s" 3222 " %16.16jx %s", RELA_CT64); 3223 printf(" + %jx\n", (uintmax_t) r.r_addend); 3224 } 3225 } 3226 3227 #undef RELA_HDR 3228 #undef RELA_CT 3229 } 3230 3231 static void 3232 dump_reloc(struct readelf *re) 3233 { 3234 struct section *s; 3235 Elf_Data *d; 3236 int i, elferr; 3237 3238 for (i = 0; (size_t)i < re->shnum; i++) { 3239 s = &re->sl[i]; 3240 if (s->type == SHT_REL || s->type == SHT_RELA) { 3241 (void) elf_errno(); 3242 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3243 elferr = elf_errno(); 3244 if (elferr != 0) 3245 warnx("elf_getdata failed: %s", 3246 elf_errmsg(elferr)); 3247 continue; 3248 } 3249 if (s->type == SHT_REL) 3250 dump_rel(re, s, d); 3251 else 3252 dump_rela(re, s, d); 3253 } 3254 } 3255 } 3256 3257 static void 3258 dump_symtab(struct readelf *re, int i) 3259 { 3260 struct section *s; 3261 Elf_Data *d; 3262 GElf_Sym sym; 3263 const char *name; 3264 int elferr, stab, j; 3265 3266 s = &re->sl[i]; 3267 stab = s->link; 3268 (void) elf_errno(); 3269 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3270 elferr = elf_errno(); 3271 if (elferr != 0) 3272 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3273 return; 3274 } 3275 if (d->d_size <= 0) 3276 return; 3277 printf("Symbol table (%s)", s->name); 3278 printf(" contains %ju entries:\n", s->sz / s->entsize); 3279 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3280 "Bind", "Vis", "Ndx", "Name"); 3281 3282 for (j = 0; (uint64_t)j < s->sz / s->entsize; j++) { 3283 if (gelf_getsym(d, j, &sym) != &sym) { 3284 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3285 continue; 3286 } 3287 printf("%6d:", j); 3288 printf(" %16.16jx", (uintmax_t)sym.st_value); 3289 printf(" %5ju", sym.st_size); 3290 printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info))); 3291 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3292 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3293 printf(" %3s", st_shndx(sym.st_shndx)); 3294 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3295 printf(" %s", name); 3296 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3297 if (s->type == SHT_DYNSYM && re->ver != NULL && 3298 re->vs != NULL && re->vs[j] > 1) { 3299 if (re->vs[j] & 0x8000 || 3300 re->ver[re->vs[j] & 0x7fff].type == 0) 3301 printf("@%s (%d)", 3302 re->ver[re->vs[j] & 0x7fff].name, 3303 re->vs[j] & 0x7fff); 3304 else 3305 printf("@@%s (%d)", re->ver[re->vs[j]].name, 3306 re->vs[j]); 3307 } 3308 putchar('\n'); 3309 } 3310 3311 } 3312 3313 static void 3314 dump_symtabs(struct readelf *re) 3315 { 3316 GElf_Dyn dyn; 3317 Elf_Data *d; 3318 struct section *s; 3319 uint64_t dyn_off; 3320 int elferr, i; 3321 3322 /* 3323 * If -D is specified, only dump the symbol table specified by 3324 * the DT_SYMTAB entry in the .dynamic section. 3325 */ 3326 dyn_off = 0; 3327 if (re->options & RE_DD) { 3328 s = NULL; 3329 for (i = 0; (size_t)i < re->shnum; i++) 3330 if (re->sl[i].type == SHT_DYNAMIC) { 3331 s = &re->sl[i]; 3332 break; 3333 } 3334 if (s == NULL) 3335 return; 3336 (void) elf_errno(); 3337 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3338 elferr = elf_errno(); 3339 if (elferr != 0) 3340 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3341 return; 3342 } 3343 if (d->d_size <= 0) 3344 return; 3345 3346 for (i = 0; (uint64_t)i < s->sz / s->entsize; i++) { 3347 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3348 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3349 continue; 3350 } 3351 if (dyn.d_tag == DT_SYMTAB) { 3352 dyn_off = dyn.d_un.d_val; 3353 break; 3354 } 3355 } 3356 } 3357 3358 /* Find and dump symbol tables. */ 3359 for (i = 0; (size_t)i < re->shnum; i++) { 3360 s = &re->sl[i]; 3361 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3362 if (re->options & RE_DD) { 3363 if (dyn_off == s->addr) { 3364 dump_symtab(re, i); 3365 break; 3366 } 3367 } else 3368 dump_symtab(re, i); 3369 } 3370 } 3371 } 3372 3373 static void 3374 dump_svr4_hash(struct section *s) 3375 { 3376 Elf_Data *d; 3377 uint32_t *buf; 3378 uint32_t nbucket, nchain; 3379 uint32_t *bucket, *chain; 3380 uint32_t *bl, *c, maxl, total; 3381 int elferr, i, j; 3382 3383 /* Read and parse the content of .hash section. */ 3384 (void) elf_errno(); 3385 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3386 elferr = elf_errno(); 3387 if (elferr != 0) 3388 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3389 return; 3390 } 3391 if (d->d_size < 2 * sizeof(uint32_t)) { 3392 warnx(".hash section too small"); 3393 return; 3394 } 3395 buf = d->d_buf; 3396 nbucket = buf[0]; 3397 nchain = buf[1]; 3398 if (nbucket <= 0 || nchain <= 0) { 3399 warnx("Malformed .hash section"); 3400 return; 3401 } 3402 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3403 warnx("Malformed .hash section"); 3404 return; 3405 } 3406 bucket = &buf[2]; 3407 chain = &buf[2 + nbucket]; 3408 3409 maxl = 0; 3410 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3411 errx(EXIT_FAILURE, "calloc failed"); 3412 for (i = 0; (uint32_t)i < nbucket; i++) 3413 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3414 if (++bl[i] > maxl) 3415 maxl = bl[i]; 3416 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3417 errx(EXIT_FAILURE, "calloc failed"); 3418 for (i = 0; (uint32_t)i < nbucket; i++) 3419 c[bl[i]]++; 3420 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3421 nbucket); 3422 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3423 total = 0; 3424 for (i = 0; (uint32_t)i <= maxl; i++) { 3425 total += c[i] * i; 3426 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3427 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3428 } 3429 free(c); 3430 free(bl); 3431 } 3432 3433 static void 3434 dump_svr4_hash64(struct readelf *re, struct section *s) 3435 { 3436 Elf_Data *d, dst; 3437 uint64_t *buf; 3438 uint64_t nbucket, nchain; 3439 uint64_t *bucket, *chain; 3440 uint64_t *bl, *c, maxl, total; 3441 int elferr, i, j; 3442 3443 /* 3444 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3445 * .hash section contains only 32-bit entry, an explicit 3446 * gelf_xlatetom is needed here. 3447 */ 3448 (void) elf_errno(); 3449 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3450 elferr = elf_errno(); 3451 if (elferr != 0) 3452 warnx("elf_rawdata failed: %s", 3453 elf_errmsg(elferr)); 3454 return; 3455 } 3456 d->d_type = ELF_T_XWORD; 3457 memcpy(&dst, d, sizeof(Elf_Data)); 3458 if (gelf_xlatetom(re->elf, &dst, d, 3459 re->ehdr.e_ident[EI_DATA]) != &dst) { 3460 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3461 return; 3462 } 3463 if (dst.d_size < 2 * sizeof(uint64_t)) { 3464 warnx(".hash section too small"); 3465 return; 3466 } 3467 buf = dst.d_buf; 3468 nbucket = buf[0]; 3469 nchain = buf[1]; 3470 if (nbucket <= 0 || nchain <= 0) { 3471 warnx("Malformed .hash section"); 3472 return; 3473 } 3474 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3475 warnx("Malformed .hash section"); 3476 return; 3477 } 3478 bucket = &buf[2]; 3479 chain = &buf[2 + nbucket]; 3480 3481 maxl = 0; 3482 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3483 errx(EXIT_FAILURE, "calloc failed"); 3484 for (i = 0; (uint32_t)i < nbucket; i++) 3485 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3486 if (++bl[i] > maxl) 3487 maxl = bl[i]; 3488 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3489 errx(EXIT_FAILURE, "calloc failed"); 3490 for (i = 0; (uint64_t)i < nbucket; i++) 3491 c[bl[i]]++; 3492 printf("Histogram for bucket list length (total of %ju buckets):\n", 3493 (uintmax_t)nbucket); 3494 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3495 total = 0; 3496 for (i = 0; (uint64_t)i <= maxl; i++) { 3497 total += c[i] * i; 3498 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3499 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3500 } 3501 free(c); 3502 free(bl); 3503 } 3504 3505 static void 3506 dump_gnu_hash(struct readelf *re, struct section *s) 3507 { 3508 struct section *ds; 3509 Elf_Data *d; 3510 uint32_t *buf; 3511 uint32_t *bucket, *chain; 3512 uint32_t nbucket, nchain, symndx, maskwords; 3513 uint32_t *bl, *c, maxl, total; 3514 int elferr, dynsymcount, i, j; 3515 3516 (void) elf_errno(); 3517 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3518 elferr = elf_errno(); 3519 if (elferr != 0) 3520 warnx("elf_getdata failed: %s", 3521 elf_errmsg(elferr)); 3522 return; 3523 } 3524 if (d->d_size < 4 * sizeof(uint32_t)) { 3525 warnx(".gnu.hash section too small"); 3526 return; 3527 } 3528 buf = d->d_buf; 3529 nbucket = buf[0]; 3530 symndx = buf[1]; 3531 maskwords = buf[2]; 3532 buf += 4; 3533 ds = &re->sl[s->link]; 3534 dynsymcount = ds->sz / ds->entsize; 3535 nchain = dynsymcount - symndx; 3536 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3537 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3538 (nbucket + nchain) * sizeof(uint32_t)) { 3539 warnx("Malformed .gnu.hash section"); 3540 return; 3541 } 3542 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3543 chain = bucket + nbucket; 3544 3545 maxl = 0; 3546 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3547 errx(EXIT_FAILURE, "calloc failed"); 3548 for (i = 0; (uint32_t)i < nbucket; i++) 3549 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3550 j++) { 3551 if (++bl[i] > maxl) 3552 maxl = bl[i]; 3553 if (chain[j - symndx] & 1) 3554 break; 3555 } 3556 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3557 errx(EXIT_FAILURE, "calloc failed"); 3558 for (i = 0; (uint32_t)i < nbucket; i++) 3559 c[bl[i]]++; 3560 printf("Histogram for bucket list length (total of %u buckets):\n", 3561 nbucket); 3562 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3563 total = 0; 3564 for (i = 0; (uint32_t)i <= maxl; i++) { 3565 total += c[i] * i; 3566 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3567 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3568 } 3569 free(c); 3570 free(bl); 3571 } 3572 3573 static void 3574 dump_hash(struct readelf *re) 3575 { 3576 struct section *s; 3577 int i; 3578 3579 for (i = 0; (size_t) i < re->shnum; i++) { 3580 s = &re->sl[i]; 3581 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3582 if (s->type == SHT_GNU_HASH) 3583 dump_gnu_hash(re, s); 3584 else if (re->ehdr.e_machine == EM_ALPHA && 3585 s->entsize == 8) 3586 dump_svr4_hash64(re, s); 3587 else 3588 dump_svr4_hash(s); 3589 } 3590 } 3591 } 3592 3593 static void 3594 dump_notes(struct readelf *re) 3595 { 3596 struct section *s; 3597 const char *rawfile; 3598 GElf_Phdr phdr; 3599 Elf_Data *d; 3600 size_t phnum; 3601 int i, elferr; 3602 3603 if (re->ehdr.e_type == ET_CORE) { 3604 /* 3605 * Search program headers in the core file for 3606 * PT_NOTE entry. 3607 */ 3608 if (elf_getphnum(re->elf, &phnum) == 0) { 3609 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3610 return; 3611 } 3612 if (phnum == 0) 3613 return; 3614 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 3615 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3616 return; 3617 } 3618 for (i = 0; (size_t) i < phnum; i++) { 3619 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3620 warnx("gelf_getphdr failed: %s", 3621 elf_errmsg(-1)); 3622 continue; 3623 } 3624 if (phdr.p_type == PT_NOTE) 3625 dump_notes_content(re, rawfile + phdr.p_offset, 3626 phdr.p_filesz, phdr.p_offset); 3627 } 3628 3629 } else { 3630 /* 3631 * For objects other than core files, Search for 3632 * SHT_NOTE sections. 3633 */ 3634 for (i = 0; (size_t) i < re->shnum; i++) { 3635 s = &re->sl[i]; 3636 if (s->type == SHT_NOTE) { 3637 (void) elf_errno(); 3638 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3639 elferr = elf_errno(); 3640 if (elferr != 0) 3641 warnx("elf_getdata failed: %s", 3642 elf_errmsg(elferr)); 3643 continue; 3644 } 3645 dump_notes_content(re, d->d_buf, d->d_size, 3646 s->off); 3647 } 3648 } 3649 } 3650 } 3651 3652 static void 3653 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3654 { 3655 Elf_Note *note; 3656 const char *end, *name; 3657 3658 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3659 (uintmax_t) off, (uintmax_t) sz); 3660 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3661 end = buf + sz; 3662 while (buf < end) { 3663 if (buf + sizeof(*note) > end) { 3664 warnx("invalid note header"); 3665 return; 3666 } 3667 note = (Elf_Note *)(uintptr_t) buf; 3668 name = (char *)(uintptr_t)(note + 1); 3669 /* 3670 * The name field is required to be nul-terminated, and 3671 * n_namesz includes the terminating nul in observed 3672 * implementations (contrary to the ELF-64 spec). A special 3673 * case is needed for cores generated by some older Linux 3674 * versions, which write a note named "CORE" without a nul 3675 * terminator and n_namesz = 4. 3676 */ 3677 if (note->n_namesz == 0) 3678 name = ""; 3679 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3680 name = "CORE"; 3681 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3682 name = "<invalid>"; 3683 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3684 printf(" %s\n", note_type(name, re->ehdr.e_type, 3685 note->n_type)); 3686 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3687 roundup2(note->n_descsz, 4); 3688 } 3689 } 3690 3691 /* 3692 * Symbol versioning sections are the same for 32bit and 64bit 3693 * ELF objects. 3694 */ 3695 #define Elf_Verdef Elf32_Verdef 3696 #define Elf_Verdaux Elf32_Verdaux 3697 #define Elf_Verneed Elf32_Verneed 3698 #define Elf_Vernaux Elf32_Vernaux 3699 3700 #define SAVE_VERSION_NAME(x, n, t) \ 3701 do { \ 3702 while (x >= re->ver_sz) { \ 3703 nv = realloc(re->ver, \ 3704 sizeof(*re->ver) * re->ver_sz * 2); \ 3705 if (nv == NULL) { \ 3706 warn("realloc failed"); \ 3707 free(re->ver); \ 3708 return; \ 3709 } \ 3710 re->ver = nv; \ 3711 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3712 re->ver[i].name = NULL; \ 3713 re->ver[i].type = 0; \ 3714 } \ 3715 re->ver_sz *= 2; \ 3716 } \ 3717 if (x > 1) { \ 3718 re->ver[x].name = n; \ 3719 re->ver[x].type = t; \ 3720 } \ 3721 } while (0) 3722 3723 3724 static void 3725 dump_verdef(struct readelf *re, int dump) 3726 { 3727 struct section *s; 3728 struct symver *nv; 3729 Elf_Data *d; 3730 Elf_Verdef *vd; 3731 Elf_Verdaux *vda; 3732 uint8_t *buf, *end, *buf2; 3733 const char *name; 3734 int elferr, i, j; 3735 3736 if ((s = re->vd_s) == NULL) 3737 return; 3738 3739 if (re->ver == NULL) { 3740 re->ver_sz = 16; 3741 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3742 NULL) { 3743 warn("calloc failed"); 3744 return; 3745 } 3746 re->ver[0].name = "*local*"; 3747 re->ver[1].name = "*global*"; 3748 } 3749 3750 if (dump) 3751 printf("\nVersion definition section (%s):\n", s->name); 3752 (void) elf_errno(); 3753 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3754 elferr = elf_errno(); 3755 if (elferr != 0) 3756 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3757 return; 3758 } 3759 if (d->d_size == 0) 3760 return; 3761 3762 buf = d->d_buf; 3763 end = buf + d->d_size; 3764 while (buf + sizeof(Elf_Verdef) <= end) { 3765 vd = (Elf_Verdef *) (uintptr_t) buf; 3766 if (dump) { 3767 printf(" 0x%4.4lx", (unsigned long) 3768 (buf - (uint8_t *)d->d_buf)); 3769 printf(" vd_version: %u vd_flags: %d" 3770 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3771 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3772 } 3773 buf2 = buf + vd->vd_aux; 3774 j = 0; 3775 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3776 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3777 name = get_string(re, s->link, vda->vda_name); 3778 if (j == 0) { 3779 if (dump) 3780 printf(" vda_name: %s\n", name); 3781 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3782 } else if (dump) 3783 printf(" 0x%4.4lx parent: %s\n", 3784 (unsigned long) (buf2 - 3785 (uint8_t *)d->d_buf), name); 3786 if (vda->vda_next == 0) 3787 break; 3788 buf2 += vda->vda_next; 3789 j++; 3790 } 3791 if (vd->vd_next == 0) 3792 break; 3793 buf += vd->vd_next; 3794 } 3795 } 3796 3797 static void 3798 dump_verneed(struct readelf *re, int dump) 3799 { 3800 struct section *s; 3801 struct symver *nv; 3802 Elf_Data *d; 3803 Elf_Verneed *vn; 3804 Elf_Vernaux *vna; 3805 uint8_t *buf, *end, *buf2; 3806 const char *name; 3807 int elferr, i, j; 3808 3809 if ((s = re->vn_s) == NULL) 3810 return; 3811 3812 if (re->ver == NULL) { 3813 re->ver_sz = 16; 3814 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3815 NULL) { 3816 warn("calloc failed"); 3817 return; 3818 } 3819 re->ver[0].name = "*local*"; 3820 re->ver[1].name = "*global*"; 3821 } 3822 3823 if (dump) 3824 printf("\nVersion needed section (%s):\n", s->name); 3825 (void) elf_errno(); 3826 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3827 elferr = elf_errno(); 3828 if (elferr != 0) 3829 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3830 return; 3831 } 3832 if (d->d_size == 0) 3833 return; 3834 3835 buf = d->d_buf; 3836 end = buf + d->d_size; 3837 while (buf + sizeof(Elf_Verneed) <= end) { 3838 vn = (Elf_Verneed *) (uintptr_t) buf; 3839 if (dump) { 3840 printf(" 0x%4.4lx", (unsigned long) 3841 (buf - (uint8_t *)d->d_buf)); 3842 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3843 vn->vn_version, 3844 get_string(re, s->link, vn->vn_file), 3845 vn->vn_cnt); 3846 } 3847 buf2 = buf + vn->vn_aux; 3848 j = 0; 3849 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3850 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3851 if (dump) 3852 printf(" 0x%4.4lx", (unsigned long) 3853 (buf2 - (uint8_t *)d->d_buf)); 3854 name = get_string(re, s->link, vna->vna_name); 3855 if (dump) 3856 printf(" vna_name: %s vna_flags: %u" 3857 " vna_other: %u\n", name, 3858 vna->vna_flags, vna->vna_other); 3859 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3860 if (vna->vna_next == 0) 3861 break; 3862 buf2 += vna->vna_next; 3863 j++; 3864 } 3865 if (vn->vn_next == 0) 3866 break; 3867 buf += vn->vn_next; 3868 } 3869 } 3870 3871 static void 3872 dump_versym(struct readelf *re) 3873 { 3874 int i; 3875 3876 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3877 return; 3878 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3879 for (i = 0; i < re->vs_sz; i++) { 3880 if ((i & 3) == 0) { 3881 if (i > 0) 3882 putchar('\n'); 3883 printf(" %03x:", i); 3884 } 3885 if (re->vs[i] & 0x8000) 3886 printf(" %3xh %-12s ", re->vs[i] & 0x7fff, 3887 re->ver[re->vs[i] & 0x7fff].name); 3888 else 3889 printf(" %3x %-12s ", re->vs[i], 3890 re->ver[re->vs[i]].name); 3891 } 3892 putchar('\n'); 3893 } 3894 3895 static void 3896 dump_ver(struct readelf *re) 3897 { 3898 3899 if (re->vs_s && re->ver && re->vs) 3900 dump_versym(re); 3901 if (re->vd_s) 3902 dump_verdef(re, 1); 3903 if (re->vn_s) 3904 dump_verneed(re, 1); 3905 } 3906 3907 static void 3908 search_ver(struct readelf *re) 3909 { 3910 struct section *s; 3911 Elf_Data *d; 3912 int elferr, i; 3913 3914 for (i = 0; (size_t) i < re->shnum; i++) { 3915 s = &re->sl[i]; 3916 if (s->type == SHT_SUNW_versym) 3917 re->vs_s = s; 3918 if (s->type == SHT_SUNW_verneed) 3919 re->vn_s = s; 3920 if (s->type == SHT_SUNW_verdef) 3921 re->vd_s = s; 3922 } 3923 if (re->vd_s) 3924 dump_verdef(re, 0); 3925 if (re->vn_s) 3926 dump_verneed(re, 0); 3927 if (re->vs_s && re->ver != NULL) { 3928 (void) elf_errno(); 3929 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3930 elferr = elf_errno(); 3931 if (elferr != 0) 3932 warnx("elf_getdata failed: %s", 3933 elf_errmsg(elferr)); 3934 return; 3935 } 3936 if (d->d_size == 0) 3937 return; 3938 re->vs = d->d_buf; 3939 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3940 } 3941 } 3942 3943 #undef Elf_Verdef 3944 #undef Elf_Verdaux 3945 #undef Elf_Verneed 3946 #undef Elf_Vernaux 3947 #undef SAVE_VERSION_NAME 3948 3949 /* 3950 * Elf32_Lib and Elf64_Lib are identical. 3951 */ 3952 #define Elf_Lib Elf32_Lib 3953 3954 static void 3955 dump_liblist(struct readelf *re) 3956 { 3957 struct section *s; 3958 struct tm *t; 3959 time_t ti; 3960 char tbuf[20]; 3961 Elf_Data *d; 3962 Elf_Lib *lib; 3963 int i, j, k, elferr, first; 3964 3965 for (i = 0; (size_t) i < re->shnum; i++) { 3966 s = &re->sl[i]; 3967 if (s->type != SHT_GNU_LIBLIST) 3968 continue; 3969 (void) elf_errno(); 3970 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3971 elferr = elf_errno(); 3972 if (elferr != 0) 3973 warnx("elf_getdata failed: %s", 3974 elf_errmsg(elferr)); 3975 continue; 3976 } 3977 if (d->d_size <= 0) 3978 continue; 3979 lib = d->d_buf; 3980 printf("\nLibrary list section '%s' ", s->name); 3981 printf("contains %ju entries:\n", s->sz / s->entsize); 3982 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3983 "Checksum", "Version", "Flags"); 3984 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3985 printf("%3d: ", j); 3986 printf("%-20.20s ", 3987 get_string(re, s->link, lib->l_name)); 3988 ti = lib->l_time_stamp; 3989 t = gmtime(&ti); 3990 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3991 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3992 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3993 printf("%-19.19s ", tbuf); 3994 printf("0x%08x ", lib->l_checksum); 3995 printf("%-7d %#x", lib->l_version, lib->l_flags); 3996 if (lib->l_flags != 0) { 3997 first = 1; 3998 putchar('('); 3999 for (k = 0; l_flag[k].name != NULL; k++) { 4000 if ((l_flag[k].value & lib->l_flags) == 4001 0) 4002 continue; 4003 if (!first) 4004 putchar(','); 4005 else 4006 first = 0; 4007 printf("%s", l_flag[k].name); 4008 } 4009 putchar(')'); 4010 } 4011 putchar('\n'); 4012 lib++; 4013 } 4014 } 4015 } 4016 4017 #undef Elf_Lib 4018 4019 static uint8_t * 4020 dump_unknown_tag(uint64_t tag, uint8_t *p) 4021 { 4022 uint64_t val; 4023 4024 /* 4025 * According to ARM EABI: For tags > 32, even numbered tags have 4026 * a ULEB128 param and odd numbered ones have NUL-terminated 4027 * string param. This rule probably also applies for tags <= 32 4028 * if the object arch is not ARM. 4029 */ 4030 4031 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4032 4033 if (tag & 1) { 4034 printf("%s\n", (char *) p); 4035 p += strlen((char *) p) + 1; 4036 } else { 4037 val = _decode_uleb128(&p); 4038 printf("%ju\n", (uintmax_t) val); 4039 } 4040 4041 return (p); 4042 } 4043 4044 static uint8_t * 4045 dump_compatibility_tag(uint8_t *p) 4046 { 4047 uint64_t val; 4048 4049 val = _decode_uleb128(&p); 4050 printf("flag = %ju, vendor = %s\n", val, p); 4051 p += strlen((char *) p) + 1; 4052 4053 return (p); 4054 } 4055 4056 static void 4057 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4058 { 4059 uint64_t tag, val; 4060 size_t i; 4061 int found, desc; 4062 4063 (void) re; 4064 4065 while (p < pe) { 4066 tag = _decode_uleb128(&p); 4067 found = desc = 0; 4068 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4069 i++) { 4070 if (tag == aeabi_tags[i].tag) { 4071 found = 1; 4072 printf(" %s: ", aeabi_tags[i].s_tag); 4073 if (aeabi_tags[i].get_desc) { 4074 desc = 1; 4075 val = _decode_uleb128(&p); 4076 printf("%s\n", 4077 aeabi_tags[i].get_desc(val)); 4078 } 4079 break; 4080 } 4081 if (tag < aeabi_tags[i].tag) 4082 break; 4083 } 4084 if (!found) { 4085 p = dump_unknown_tag(tag, p); 4086 continue; 4087 } 4088 if (desc) 4089 continue; 4090 4091 switch (tag) { 4092 case 4: /* Tag_CPU_raw_name */ 4093 case 5: /* Tag_CPU_name */ 4094 case 67: /* Tag_conformance */ 4095 printf("%s\n", (char *) p); 4096 p += strlen((char *) p) + 1; 4097 break; 4098 case 32: /* Tag_compatibility */ 4099 p = dump_compatibility_tag(p); 4100 break; 4101 case 64: /* Tag_nodefaults */ 4102 /* ignored, written as 0. */ 4103 (void) _decode_uleb128(&p); 4104 printf("True\n"); 4105 break; 4106 case 65: /* Tag_also_compatible_with */ 4107 val = _decode_uleb128(&p); 4108 /* Must be Tag_CPU_arch */ 4109 if (val != 6) { 4110 printf("unknown\n"); 4111 break; 4112 } 4113 val = _decode_uleb128(&p); 4114 printf("%s\n", aeabi_cpu_arch(val)); 4115 /* Skip NUL terminator. */ 4116 p++; 4117 break; 4118 default: 4119 putchar('\n'); 4120 break; 4121 } 4122 } 4123 } 4124 4125 #ifndef Tag_GNU_MIPS_ABI_FP 4126 #define Tag_GNU_MIPS_ABI_FP 4 4127 #endif 4128 4129 static void 4130 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4131 { 4132 uint64_t tag, val; 4133 4134 (void) re; 4135 4136 while (p < pe) { 4137 tag = _decode_uleb128(&p); 4138 switch (tag) { 4139 case Tag_GNU_MIPS_ABI_FP: 4140 val = _decode_uleb128(&p); 4141 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4142 break; 4143 case 32: /* Tag_compatibility */ 4144 p = dump_compatibility_tag(p); 4145 break; 4146 default: 4147 p = dump_unknown_tag(tag, p); 4148 break; 4149 } 4150 } 4151 } 4152 4153 #ifndef Tag_GNU_Power_ABI_FP 4154 #define Tag_GNU_Power_ABI_FP 4 4155 #endif 4156 4157 #ifndef Tag_GNU_Power_ABI_Vector 4158 #define Tag_GNU_Power_ABI_Vector 8 4159 #endif 4160 4161 static void 4162 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4163 { 4164 uint64_t tag, val; 4165 4166 while (p < pe) { 4167 tag = _decode_uleb128(&p); 4168 switch (tag) { 4169 case Tag_GNU_Power_ABI_FP: 4170 val = _decode_uleb128(&p); 4171 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4172 break; 4173 case Tag_GNU_Power_ABI_Vector: 4174 val = _decode_uleb128(&p); 4175 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4176 ppc_abi_vector(val)); 4177 break; 4178 case 32: /* Tag_compatibility */ 4179 p = dump_compatibility_tag(p); 4180 break; 4181 default: 4182 p = dump_unknown_tag(tag, p); 4183 break; 4184 } 4185 } 4186 } 4187 4188 static void 4189 dump_attributes(struct readelf *re) 4190 { 4191 struct section *s; 4192 Elf_Data *d; 4193 uint8_t *p, *sp; 4194 size_t len, seclen, nlen, sublen; 4195 uint64_t val; 4196 int tag, i, elferr; 4197 4198 for (i = 0; (size_t) i < re->shnum; i++) { 4199 s = &re->sl[i]; 4200 if (s->type != SHT_GNU_ATTRIBUTES && 4201 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4202 continue; 4203 (void) elf_errno(); 4204 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4205 elferr = elf_errno(); 4206 if (elferr != 0) 4207 warnx("elf_rawdata failed: %s", 4208 elf_errmsg(elferr)); 4209 continue; 4210 } 4211 if (d->d_size <= 0) 4212 continue; 4213 p = d->d_buf; 4214 if (*p != 'A') { 4215 printf("Unknown Attribute Section Format: %c\n", 4216 (char) *p); 4217 continue; 4218 } 4219 len = d->d_size - 1; 4220 p++; 4221 while (len > 0) { 4222 seclen = re->dw_decode(&p, 4); 4223 if (seclen > len) { 4224 warnx("invalid attribute section length"); 4225 break; 4226 } 4227 len -= seclen; 4228 printf("Attribute Section: %s\n", (char *) p); 4229 nlen = strlen((char *) p) + 1; 4230 p += nlen; 4231 seclen -= nlen + 4; 4232 while (seclen > 0) { 4233 sp = p; 4234 tag = *p++; 4235 sublen = re->dw_decode(&p, 4); 4236 if (sublen > seclen) { 4237 warnx("invalid attribute sub-section" 4238 " length"); 4239 break; 4240 } 4241 seclen -= sublen; 4242 printf("%s", top_tag(tag)); 4243 if (tag == 2 || tag == 3) { 4244 putchar(':'); 4245 for (;;) { 4246 val = _decode_uleb128(&p); 4247 if (val == 0) 4248 break; 4249 printf(" %ju", (uintmax_t) val); 4250 } 4251 } 4252 putchar('\n'); 4253 if (re->ehdr.e_machine == EM_ARM && 4254 s->type == SHT_LOPROC + 3) 4255 dump_arm_attributes(re, p, sp + sublen); 4256 else if (re->ehdr.e_machine == EM_MIPS || 4257 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4258 dump_mips_attributes(re, p, 4259 sp + sublen); 4260 else if (re->ehdr.e_machine == EM_PPC) 4261 dump_ppc_attributes(p, sp + sublen); 4262 p = sp + sublen; 4263 } 4264 } 4265 } 4266 } 4267 4268 static void 4269 dump_mips_specific_info(struct readelf *re) 4270 { 4271 struct section *s; 4272 int i, options_found; 4273 4274 options_found = 0; 4275 s = NULL; 4276 for (i = 0; (size_t) i < re->shnum; i++) { 4277 s = &re->sl[i]; 4278 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4279 (s->type == SHT_MIPS_OPTIONS))) { 4280 dump_mips_options(re, s); 4281 options_found = 1; 4282 } 4283 } 4284 4285 /* 4286 * According to SGI mips64 spec, .reginfo should be ignored if 4287 * .MIPS.options section is present. 4288 */ 4289 if (!options_found) { 4290 for (i = 0; (size_t) i < re->shnum; i++) { 4291 s = &re->sl[i]; 4292 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4293 (s->type == SHT_MIPS_REGINFO))) 4294 dump_mips_reginfo(re, s); 4295 } 4296 } 4297 } 4298 4299 static void 4300 dump_mips_reginfo(struct readelf *re, struct section *s) 4301 { 4302 Elf_Data *d; 4303 int elferr; 4304 4305 (void) elf_errno(); 4306 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4307 elferr = elf_errno(); 4308 if (elferr != 0) 4309 warnx("elf_rawdata failed: %s", 4310 elf_errmsg(elferr)); 4311 return; 4312 } 4313 if (d->d_size <= 0) 4314 return; 4315 4316 printf("\nSection '%s' contains %ju entries:\n", s->name, 4317 s->sz / s->entsize); 4318 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4319 } 4320 4321 static void 4322 dump_mips_options(struct readelf *re, struct section *s) 4323 { 4324 Elf_Data *d; 4325 uint32_t info; 4326 uint16_t sndx; 4327 uint8_t *p, *pe; 4328 uint8_t kind, size; 4329 int elferr; 4330 4331 (void) elf_errno(); 4332 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4333 elferr = elf_errno(); 4334 if (elferr != 0) 4335 warnx("elf_rawdata failed: %s", 4336 elf_errmsg(elferr)); 4337 return; 4338 } 4339 if (d->d_size == 0) 4340 return; 4341 4342 printf("\nSection %s contains:\n", s->name); 4343 p = d->d_buf; 4344 pe = p + d->d_size; 4345 while (p < pe) { 4346 kind = re->dw_decode(&p, 1); 4347 size = re->dw_decode(&p, 1); 4348 sndx = re->dw_decode(&p, 2); 4349 info = re->dw_decode(&p, 4); 4350 switch (kind) { 4351 case ODK_REGINFO: 4352 dump_mips_odk_reginfo(re, p, size - 8); 4353 break; 4354 case ODK_EXCEPTIONS: 4355 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4356 info & OEX_FPU_MIN); 4357 printf("%11.11s FPU_MAX: %#x\n", "", 4358 info & OEX_FPU_MAX); 4359 dump_mips_option_flags("", mips_exceptions_option, 4360 info); 4361 break; 4362 case ODK_PAD: 4363 printf(" %-10.10s section: %ju\n", "OPAD", 4364 (uintmax_t) sndx); 4365 dump_mips_option_flags("", mips_pad_option, info); 4366 break; 4367 case ODK_HWPATCH: 4368 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4369 info); 4370 break; 4371 case ODK_HWAND: 4372 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4373 break; 4374 case ODK_HWOR: 4375 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4376 break; 4377 case ODK_FILL: 4378 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4379 break; 4380 case ODK_TAGS: 4381 printf(" %-10.10s\n", "TAGS"); 4382 break; 4383 case ODK_GP_GROUP: 4384 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4385 info & 0xFFFF); 4386 if (info & 0x10000) 4387 printf(" %-10.10s GP group is " 4388 "self-contained\n", ""); 4389 break; 4390 case ODK_IDENT: 4391 printf(" %-10.10s default GP group number: %#x\n", 4392 "IDENT", info & 0xFFFF); 4393 if (info & 0x10000) 4394 printf(" %-10.10s default GP group is " 4395 "self-contained\n", ""); 4396 break; 4397 case ODK_PAGESIZE: 4398 printf(" %-10.10s\n", "PAGESIZE"); 4399 break; 4400 default: 4401 break; 4402 } 4403 p += size - 8; 4404 } 4405 } 4406 4407 static void 4408 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4409 { 4410 int first; 4411 4412 first = 1; 4413 for (; opt->desc != NULL; opt++) { 4414 if (info & opt->flag) { 4415 printf(" %-10.10s %s\n", first ? name : "", 4416 opt->desc); 4417 first = 0; 4418 } 4419 } 4420 } 4421 4422 static void 4423 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4424 { 4425 uint32_t ri_gprmask; 4426 uint32_t ri_cprmask[4]; 4427 uint64_t ri_gp_value; 4428 uint8_t *pe; 4429 int i; 4430 4431 pe = p + sz; 4432 while (p < pe) { 4433 ri_gprmask = re->dw_decode(&p, 4); 4434 /* Skip ri_pad padding field for mips64. */ 4435 if (re->ec == ELFCLASS64) 4436 re->dw_decode(&p, 4); 4437 for (i = 0; i < 4; i++) 4438 ri_cprmask[i] = re->dw_decode(&p, 4); 4439 if (re->ec == ELFCLASS32) 4440 ri_gp_value = re->dw_decode(&p, 4); 4441 else 4442 ri_gp_value = re->dw_decode(&p, 8); 4443 printf(" %s ", option_kind(ODK_REGINFO)); 4444 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4445 for (i = 0; i < 4; i++) 4446 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4447 (uintmax_t) ri_cprmask[i]); 4448 printf("%12.12s", ""); 4449 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4450 } 4451 } 4452 4453 static void 4454 dump_arch_specific_info(struct readelf *re) 4455 { 4456 4457 dump_liblist(re); 4458 dump_attributes(re); 4459 4460 switch (re->ehdr.e_machine) { 4461 case EM_MIPS: 4462 case EM_MIPS_RS3_LE: 4463 dump_mips_specific_info(re); 4464 default: 4465 break; 4466 } 4467 } 4468 4469 static const char * 4470 dwarf_regname(struct readelf *re, unsigned int num) 4471 { 4472 static char rx[32]; 4473 const char *rn; 4474 4475 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4476 return (rn); 4477 4478 snprintf(rx, sizeof(rx), "r%u", num); 4479 4480 return (rx); 4481 } 4482 4483 static void 4484 dump_dwarf_line(struct readelf *re) 4485 { 4486 struct section *s; 4487 Dwarf_Die die; 4488 Dwarf_Error de; 4489 Dwarf_Half tag, version, pointer_size; 4490 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4491 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4492 Elf_Data *d; 4493 char *pn; 4494 uint64_t address, file, line, column, isa, opsize, udelta; 4495 int64_t sdelta; 4496 uint8_t *p, *pe; 4497 int8_t lbase; 4498 int i, is_stmt, dwarf_size, elferr, ret; 4499 4500 printf("\nDump of debug contents of section .debug_line:\n"); 4501 4502 s = NULL; 4503 for (i = 0; (size_t) i < re->shnum; i++) { 4504 s = &re->sl[i]; 4505 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4506 break; 4507 } 4508 if ((size_t) i >= re->shnum) 4509 return; 4510 4511 (void) elf_errno(); 4512 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4513 elferr = elf_errno(); 4514 if (elferr != 0) 4515 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4516 return; 4517 } 4518 if (d->d_size <= 0) 4519 return; 4520 4521 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4522 NULL, &de)) == DW_DLV_OK) { 4523 die = NULL; 4524 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4525 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4526 warnx("dwarf_tag failed: %s", 4527 dwarf_errmsg(de)); 4528 return; 4529 } 4530 /* XXX: What about DW_TAG_partial_unit? */ 4531 if (tag == DW_TAG_compile_unit) 4532 break; 4533 } 4534 if (die == NULL) { 4535 warnx("could not find DW_TAG_compile_unit die"); 4536 return; 4537 } 4538 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4539 &de) != DW_DLV_OK) 4540 continue; 4541 4542 length = re->dw_read(d, &offset, 4); 4543 if (length == 0xffffffff) { 4544 dwarf_size = 8; 4545 length = re->dw_read(d, &offset, 8); 4546 } else 4547 dwarf_size = 4; 4548 4549 if (length > d->d_size - offset) { 4550 warnx("invalid .dwarf_line section"); 4551 continue; 4552 } 4553 4554 endoff = offset + length; 4555 version = re->dw_read(d, &offset, 2); 4556 hdrlen = re->dw_read(d, &offset, dwarf_size); 4557 minlen = re->dw_read(d, &offset, 1); 4558 defstmt = re->dw_read(d, &offset, 1); 4559 lbase = re->dw_read(d, &offset, 1); 4560 lrange = re->dw_read(d, &offset, 1); 4561 opbase = re->dw_read(d, &offset, 1); 4562 4563 printf("\n"); 4564 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4565 printf(" DWARF version:\t\t%u\n", version); 4566 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4567 printf(" Minimum Instruction Length:\t%u\n", minlen); 4568 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4569 printf(" Line Base:\t\t\t%d\n", lbase); 4570 printf(" Line Range:\t\t\t%u\n", lrange); 4571 printf(" Opcode Base:\t\t\t%u\n", opbase); 4572 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4573 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4574 4575 printf("\n"); 4576 printf(" Opcodes:\n"); 4577 for (i = 1; i < opbase; i++) { 4578 oplen = re->dw_read(d, &offset, 1); 4579 printf(" Opcode %d has %u args\n", i, oplen); 4580 } 4581 4582 printf("\n"); 4583 printf(" The Directory Table:\n"); 4584 p = (uint8_t *) d->d_buf + offset; 4585 while (*p != '\0') { 4586 printf(" %s\n", (char *) p); 4587 p += strlen((char *) p) + 1; 4588 } 4589 4590 p++; 4591 printf("\n"); 4592 printf(" The File Name Table:\n"); 4593 printf(" Entry\tDir\tTime\tSize\tName\n"); 4594 i = 0; 4595 while (*p != '\0') { 4596 i++; 4597 pn = (char *) p; 4598 p += strlen(pn) + 1; 4599 dirndx = _decode_uleb128(&p); 4600 mtime = _decode_uleb128(&p); 4601 fsize = _decode_uleb128(&p); 4602 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4603 (uintmax_t) dirndx, (uintmax_t) mtime, 4604 (uintmax_t) fsize, pn); 4605 } 4606 4607 #define RESET_REGISTERS \ 4608 do { \ 4609 address = 0; \ 4610 file = 1; \ 4611 line = 1; \ 4612 column = 0; \ 4613 is_stmt = defstmt; \ 4614 } while(0) 4615 4616 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4617 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4618 4619 p++; 4620 pe = (uint8_t *) d->d_buf + endoff; 4621 printf("\n"); 4622 printf(" Line Number Statements:\n"); 4623 4624 RESET_REGISTERS; 4625 4626 while (p < pe) { 4627 4628 if (*p == 0) { 4629 /* 4630 * Extended Opcodes. 4631 */ 4632 p++; 4633 opsize = _decode_uleb128(&p); 4634 printf(" Extended opcode %u: ", *p); 4635 switch (*p) { 4636 case DW_LNE_end_sequence: 4637 p++; 4638 RESET_REGISTERS; 4639 printf("End of Sequence\n"); 4640 break; 4641 case DW_LNE_set_address: 4642 p++; 4643 address = re->dw_decode(&p, 4644 pointer_size); 4645 printf("set Address to %#jx\n", 4646 (uintmax_t) address); 4647 break; 4648 case DW_LNE_define_file: 4649 p++; 4650 pn = (char *) p; 4651 p += strlen(pn) + 1; 4652 dirndx = _decode_uleb128(&p); 4653 mtime = _decode_uleb128(&p); 4654 fsize = _decode_uleb128(&p); 4655 printf("define new file: %s\n", pn); 4656 break; 4657 default: 4658 /* Unrecognized extened opcodes. */ 4659 p += opsize; 4660 printf("unknown opcode\n"); 4661 } 4662 } else if (*p > 0 && *p < opbase) { 4663 /* 4664 * Standard Opcodes. 4665 */ 4666 switch(*p++) { 4667 case DW_LNS_copy: 4668 printf(" Copy\n"); 4669 break; 4670 case DW_LNS_advance_pc: 4671 udelta = _decode_uleb128(&p) * 4672 minlen; 4673 address += udelta; 4674 printf(" Advance PC by %ju to %#jx\n", 4675 (uintmax_t) udelta, 4676 (uintmax_t) address); 4677 break; 4678 case DW_LNS_advance_line: 4679 sdelta = _decode_sleb128(&p); 4680 line += sdelta; 4681 printf(" Advance Line by %jd to %ju\n", 4682 (intmax_t) sdelta, 4683 (uintmax_t) line); 4684 break; 4685 case DW_LNS_set_file: 4686 file = _decode_uleb128(&p); 4687 printf(" Set File to %ju\n", 4688 (uintmax_t) file); 4689 break; 4690 case DW_LNS_set_column: 4691 column = _decode_uleb128(&p); 4692 printf(" Set Column to %ju\n", 4693 (uintmax_t) column); 4694 break; 4695 case DW_LNS_negate_stmt: 4696 is_stmt = !is_stmt; 4697 printf(" Set is_stmt to %d\n", is_stmt); 4698 break; 4699 case DW_LNS_set_basic_block: 4700 printf(" Set basic block flag\n"); 4701 break; 4702 case DW_LNS_const_add_pc: 4703 address += ADDRESS(255); 4704 printf(" Advance PC by constant %ju" 4705 " to %#jx\n", 4706 (uintmax_t) ADDRESS(255), 4707 (uintmax_t) address); 4708 break; 4709 case DW_LNS_fixed_advance_pc: 4710 udelta = re->dw_decode(&p, 2); 4711 address += udelta; 4712 printf(" Advance PC by fixed value " 4713 "%ju to %#jx\n", 4714 (uintmax_t) udelta, 4715 (uintmax_t) address); 4716 break; 4717 case DW_LNS_set_prologue_end: 4718 printf(" Set prologue end flag\n"); 4719 break; 4720 case DW_LNS_set_epilogue_begin: 4721 printf(" Set epilogue begin flag\n"); 4722 break; 4723 case DW_LNS_set_isa: 4724 isa = _decode_uleb128(&p); 4725 printf(" Set isa to %ju\n", isa); 4726 break; 4727 default: 4728 /* Unrecognized extended opcodes. */ 4729 printf(" Unknown extended opcode %u\n", 4730 *(p - 1)); 4731 break; 4732 } 4733 4734 } else { 4735 /* 4736 * Special Opcodes. 4737 */ 4738 line += LINE(*p); 4739 address += ADDRESS(*p); 4740 printf(" Special opcode %u: advance Address " 4741 "by %ju to %#jx and Line by %jd to %ju\n", 4742 *p - opbase, (uintmax_t) ADDRESS(*p), 4743 (uintmax_t) address, (intmax_t) LINE(*p), 4744 (uintmax_t) line); 4745 p++; 4746 } 4747 4748 4749 } 4750 } 4751 if (ret == DW_DLV_ERROR) 4752 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4753 4754 #undef RESET_REGISTERS 4755 #undef LINE 4756 #undef ADDRESS 4757 } 4758 4759 static void 4760 dump_dwarf_line_decoded(struct readelf *re) 4761 { 4762 Dwarf_Die die; 4763 Dwarf_Line *linebuf, ln; 4764 Dwarf_Addr lineaddr; 4765 Dwarf_Signed linecount, srccount; 4766 Dwarf_Unsigned lineno, fn; 4767 Dwarf_Error de; 4768 const char *dir, *file; 4769 char **srcfiles; 4770 int i, ret; 4771 4772 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4773 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4774 NULL, &de)) == DW_DLV_OK) { 4775 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4776 continue; 4777 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4778 DW_DLV_OK) 4779 file = NULL; 4780 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4781 DW_DLV_OK) 4782 dir = NULL; 4783 printf("CU: "); 4784 if (dir && file) 4785 printf("%s/", dir); 4786 if (file) 4787 printf("%s", file); 4788 putchar('\n'); 4789 printf("%-37s %11s %s\n", "Filename", "Line Number", 4790 "Starting Address"); 4791 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4792 continue; 4793 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4794 continue; 4795 for (i = 0; i < linecount; i++) { 4796 ln = linebuf[i]; 4797 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4798 continue; 4799 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4800 continue; 4801 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4802 continue; 4803 printf("%-37s %11ju %#18jx\n", 4804 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4805 (uintmax_t) lineaddr); 4806 } 4807 putchar('\n'); 4808 } 4809 } 4810 4811 static void 4812 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4813 { 4814 Dwarf_Attribute *attr_list; 4815 Dwarf_Die ret_die; 4816 Dwarf_Off dieoff, cuoff, culen, attroff; 4817 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4818 Dwarf_Signed attr_count, v_sdata; 4819 Dwarf_Off v_off; 4820 Dwarf_Addr v_addr; 4821 Dwarf_Half tag, attr, form; 4822 Dwarf_Block *v_block; 4823 Dwarf_Bool v_bool, is_info; 4824 Dwarf_Sig8 v_sig8; 4825 Dwarf_Error de; 4826 Dwarf_Ptr v_expr; 4827 const char *tag_str, *attr_str, *ate_str, *lang_str; 4828 char unk_tag[32], unk_attr[32]; 4829 char *v_str; 4830 uint8_t *b, *p; 4831 int i, j, abc, ret; 4832 4833 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4834 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4835 goto cont_search; 4836 } 4837 4838 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4839 4840 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4841 warnx("dwarf_die_CU_offset_range failed: %s", 4842 dwarf_errmsg(de)); 4843 cuoff = 0; 4844 } 4845 4846 abc = dwarf_die_abbrev_code(die); 4847 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4848 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4849 goto cont_search; 4850 } 4851 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4852 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4853 tag_str = unk_tag; 4854 } 4855 4856 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4857 4858 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4859 DW_DLV_OK) { 4860 if (ret == DW_DLV_ERROR) 4861 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4862 goto cont_search; 4863 } 4864 4865 for (i = 0; i < attr_count; i++) { 4866 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4867 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4868 continue; 4869 } 4870 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4871 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4872 continue; 4873 } 4874 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4875 snprintf(unk_attr, sizeof(unk_attr), 4876 "[Unknown AT: %#x]", attr); 4877 attr_str = unk_attr; 4878 } 4879 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4880 DW_DLV_OK) { 4881 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4882 attroff = 0; 4883 } 4884 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4885 switch (form) { 4886 case DW_FORM_ref_addr: 4887 case DW_FORM_sec_offset: 4888 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4889 DW_DLV_OK) { 4890 warnx("dwarf_global_formref failed: %s", 4891 dwarf_errmsg(de)); 4892 continue; 4893 } 4894 if (form == DW_FORM_ref_addr) 4895 printf("<0x%jx>", (uintmax_t) v_off); 4896 else 4897 printf("0x%jx", (uintmax_t) v_off); 4898 break; 4899 4900 case DW_FORM_ref1: 4901 case DW_FORM_ref2: 4902 case DW_FORM_ref4: 4903 case DW_FORM_ref8: 4904 case DW_FORM_ref_udata: 4905 if (dwarf_formref(attr_list[i], &v_off, &de) != 4906 DW_DLV_OK) { 4907 warnx("dwarf_formref failed: %s", 4908 dwarf_errmsg(de)); 4909 continue; 4910 } 4911 v_off += cuoff; 4912 printf("<0x%jx>", (uintmax_t) v_off); 4913 break; 4914 4915 case DW_FORM_addr: 4916 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4917 DW_DLV_OK) { 4918 warnx("dwarf_formaddr failed: %s", 4919 dwarf_errmsg(de)); 4920 continue; 4921 } 4922 printf("%#jx", (uintmax_t) v_addr); 4923 break; 4924 4925 case DW_FORM_data1: 4926 case DW_FORM_data2: 4927 case DW_FORM_data4: 4928 case DW_FORM_data8: 4929 case DW_FORM_udata: 4930 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4931 DW_DLV_OK) { 4932 warnx("dwarf_formudata failed: %s", 4933 dwarf_errmsg(de)); 4934 continue; 4935 } 4936 if (attr == DW_AT_high_pc) 4937 printf("0x%jx", (uintmax_t) v_udata); 4938 else 4939 printf("%ju", (uintmax_t) v_udata); 4940 break; 4941 4942 case DW_FORM_sdata: 4943 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4944 DW_DLV_OK) { 4945 warnx("dwarf_formudata failed: %s", 4946 dwarf_errmsg(de)); 4947 continue; 4948 } 4949 printf("%jd", (intmax_t) v_sdata); 4950 break; 4951 4952 case DW_FORM_flag: 4953 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4954 DW_DLV_OK) { 4955 warnx("dwarf_formflag failed: %s", 4956 dwarf_errmsg(de)); 4957 continue; 4958 } 4959 printf("%jd", (intmax_t) v_bool); 4960 break; 4961 4962 case DW_FORM_flag_present: 4963 putchar('1'); 4964 break; 4965 4966 case DW_FORM_string: 4967 case DW_FORM_strp: 4968 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4969 DW_DLV_OK) { 4970 warnx("dwarf_formstring failed: %s", 4971 dwarf_errmsg(de)); 4972 continue; 4973 } 4974 if (form == DW_FORM_string) 4975 printf("%s", v_str); 4976 else 4977 printf("(indirect string) %s", v_str); 4978 break; 4979 4980 case DW_FORM_block: 4981 case DW_FORM_block1: 4982 case DW_FORM_block2: 4983 case DW_FORM_block4: 4984 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4985 DW_DLV_OK) { 4986 warnx("dwarf_formblock failed: %s", 4987 dwarf_errmsg(de)); 4988 continue; 4989 } 4990 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4991 b = v_block->bl_data; 4992 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4993 printf(" %x", b[j]); 4994 printf("\t("); 4995 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4996 putchar(')'); 4997 break; 4998 4999 case DW_FORM_exprloc: 5000 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5001 &de) != DW_DLV_OK) { 5002 warnx("dwarf_formexprloc failed: %s", 5003 dwarf_errmsg(de)); 5004 continue; 5005 } 5006 printf("%ju byte block:", (uintmax_t) v_udata); 5007 b = v_expr; 5008 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5009 printf(" %x", b[j]); 5010 printf("\t("); 5011 dump_dwarf_block(re, v_expr, v_udata); 5012 putchar(')'); 5013 break; 5014 5015 case DW_FORM_ref_sig8: 5016 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5017 DW_DLV_OK) { 5018 warnx("dwarf_formsig8 failed: %s", 5019 dwarf_errmsg(de)); 5020 continue; 5021 } 5022 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5023 v_sig = re->dw_decode(&p, 8); 5024 printf("signature: 0x%jx", (uintmax_t) v_sig); 5025 } 5026 switch (attr) { 5027 case DW_AT_encoding: 5028 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5029 DW_DLV_OK) 5030 break; 5031 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5032 ate_str = "DW_ATE_UNKNOWN"; 5033 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5034 break; 5035 5036 case DW_AT_language: 5037 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5038 DW_DLV_OK) 5039 break; 5040 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5041 break; 5042 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5043 break; 5044 5045 case DW_AT_location: 5046 case DW_AT_string_length: 5047 case DW_AT_return_addr: 5048 case DW_AT_data_member_location: 5049 case DW_AT_frame_base: 5050 case DW_AT_segment: 5051 case DW_AT_static_link: 5052 case DW_AT_use_location: 5053 case DW_AT_vtable_elem_location: 5054 switch (form) { 5055 case DW_FORM_data4: 5056 case DW_FORM_data8: 5057 case DW_FORM_sec_offset: 5058 printf("\t(location list)"); 5059 break; 5060 default: 5061 break; 5062 } 5063 5064 default: 5065 break; 5066 } 5067 putchar('\n'); 5068 } 5069 5070 5071 cont_search: 5072 /* Search children. */ 5073 ret = dwarf_child(die, &ret_die, &de); 5074 if (ret == DW_DLV_ERROR) 5075 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5076 else if (ret == DW_DLV_OK) 5077 dump_dwarf_die(re, ret_die, level + 1); 5078 5079 /* Search sibling. */ 5080 is_info = dwarf_get_die_infotypes_flag(die); 5081 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5082 if (ret == DW_DLV_ERROR) 5083 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5084 else if (ret == DW_DLV_OK) 5085 dump_dwarf_die(re, ret_die, level); 5086 5087 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5088 } 5089 5090 static void 5091 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5092 Dwarf_Half ver) 5093 { 5094 5095 re->cu_psize = psize; 5096 re->cu_osize = osize; 5097 re->cu_ver = ver; 5098 } 5099 5100 static void 5101 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5102 { 5103 struct section *s; 5104 Dwarf_Die die; 5105 Dwarf_Error de; 5106 Dwarf_Half tag, version, pointer_size, off_size; 5107 Dwarf_Off cu_offset, cu_length; 5108 Dwarf_Off aboff; 5109 Dwarf_Unsigned typeoff; 5110 Dwarf_Sig8 sig8; 5111 Dwarf_Unsigned sig; 5112 uint8_t *p; 5113 const char *sn; 5114 int i, ret; 5115 5116 sn = is_info ? ".debug_info" : ".debug_types"; 5117 5118 s = NULL; 5119 for (i = 0; (size_t) i < re->shnum; i++) { 5120 s = &re->sl[i]; 5121 if (s->name != NULL && !strcmp(s->name, sn)) 5122 break; 5123 } 5124 if ((size_t) i >= re->shnum) 5125 return; 5126 5127 do { 5128 printf("\nDump of debug contents of section %s:\n", sn); 5129 5130 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5131 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5132 &typeoff, NULL, &de)) == DW_DLV_OK) { 5133 set_cu_context(re, pointer_size, off_size, version); 5134 die = NULL; 5135 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5136 &de) == DW_DLV_OK) { 5137 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5138 warnx("dwarf_tag failed: %s", 5139 dwarf_errmsg(de)); 5140 continue; 5141 } 5142 /* XXX: What about DW_TAG_partial_unit? */ 5143 if ((is_info && tag == DW_TAG_compile_unit) || 5144 (!is_info && tag == DW_TAG_type_unit)) 5145 break; 5146 } 5147 if (die == NULL && is_info) { 5148 warnx("could not find DW_TAG_compile_unit " 5149 "die"); 5150 continue; 5151 } else if (die == NULL && !is_info) { 5152 warnx("could not find DW_TAG_type_unit die"); 5153 continue; 5154 } 5155 5156 if (dwarf_die_CU_offset_range(die, &cu_offset, 5157 &cu_length, &de) != DW_DLV_OK) { 5158 warnx("dwarf_die_CU_offset failed: %s", 5159 dwarf_errmsg(de)); 5160 continue; 5161 } 5162 5163 cu_length -= off_size == 4 ? 4 : 12; 5164 5165 sig = 0; 5166 if (!is_info) { 5167 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5168 sig = re->dw_decode(&p, 8); 5169 } 5170 5171 printf("\n Type Unit @ offset 0x%jx:\n", 5172 (uintmax_t) cu_offset); 5173 printf(" Length:\t\t%#jx (%d-bit)\n", 5174 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5175 printf(" Version:\t\t%u\n", version); 5176 printf(" Abbrev Offset:\t0x%jx\n", 5177 (uintmax_t) aboff); 5178 printf(" Pointer Size:\t%u\n", pointer_size); 5179 if (!is_info) { 5180 printf(" Signature:\t\t0x%016jx\n", 5181 (uintmax_t) sig); 5182 printf(" Type Offset:\t0x%jx\n", 5183 (uintmax_t) typeoff); 5184 } 5185 5186 dump_dwarf_die(re, die, 0); 5187 } 5188 if (ret == DW_DLV_ERROR) 5189 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5190 if (is_info) 5191 break; 5192 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5193 } 5194 5195 static void 5196 dump_dwarf_abbrev(struct readelf *re) 5197 { 5198 Dwarf_Abbrev ab; 5199 Dwarf_Off aboff, atoff; 5200 Dwarf_Unsigned length, attr_count; 5201 Dwarf_Signed flag, form; 5202 Dwarf_Half tag, attr; 5203 Dwarf_Error de; 5204 const char *tag_str, *attr_str, *form_str; 5205 char unk_tag[32], unk_attr[32], unk_form[32]; 5206 int i, j, ret; 5207 5208 printf("\nContents of section .debug_abbrev:\n\n"); 5209 5210 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5211 NULL, NULL, &de)) == DW_DLV_OK) { 5212 printf(" Number TAG\n"); 5213 i = 0; 5214 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5215 &attr_count, &de)) == DW_DLV_OK) { 5216 if (length == 1) { 5217 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5218 break; 5219 } 5220 aboff += length; 5221 printf("%4d", ++i); 5222 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5223 warnx("dwarf_get_abbrev_tag failed: %s", 5224 dwarf_errmsg(de)); 5225 goto next_abbrev; 5226 } 5227 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5228 snprintf(unk_tag, sizeof(unk_tag), 5229 "[Unknown Tag: %#x]", tag); 5230 tag_str = unk_tag; 5231 } 5232 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5233 DW_DLV_OK) { 5234 warnx("dwarf_get_abbrev_children_flag failed:" 5235 " %s", dwarf_errmsg(de)); 5236 goto next_abbrev; 5237 } 5238 printf(" %s %s\n", tag_str, 5239 flag ? "[has children]" : "[no children]"); 5240 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5241 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5242 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5243 warnx("dwarf_get_abbrev_entry failed:" 5244 " %s", dwarf_errmsg(de)); 5245 continue; 5246 } 5247 if (dwarf_get_AT_name(attr, &attr_str) != 5248 DW_DLV_OK) { 5249 snprintf(unk_attr, sizeof(unk_attr), 5250 "[Unknown AT: %#x]", attr); 5251 attr_str = unk_attr; 5252 } 5253 if (dwarf_get_FORM_name(form, &form_str) != 5254 DW_DLV_OK) { 5255 snprintf(unk_form, sizeof(unk_form), 5256 "[Unknown Form: %#x]", 5257 (Dwarf_Half) form); 5258 form_str = unk_form; 5259 } 5260 printf(" %-18s %s\n", attr_str, form_str); 5261 } 5262 next_abbrev: 5263 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5264 } 5265 if (ret != DW_DLV_OK) 5266 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5267 } 5268 if (ret == DW_DLV_ERROR) 5269 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5270 } 5271 5272 static void 5273 dump_dwarf_pubnames(struct readelf *re) 5274 { 5275 struct section *s; 5276 Dwarf_Off die_off; 5277 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5278 Dwarf_Signed cnt; 5279 Dwarf_Global *globs; 5280 Dwarf_Half nt_version; 5281 Dwarf_Error de; 5282 Elf_Data *d; 5283 char *glob_name; 5284 int i, dwarf_size, elferr; 5285 5286 printf("\nContents of the .debug_pubnames section:\n"); 5287 5288 s = NULL; 5289 for (i = 0; (size_t) i < re->shnum; i++) { 5290 s = &re->sl[i]; 5291 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5292 break; 5293 } 5294 if ((size_t) i >= re->shnum) 5295 return; 5296 5297 (void) elf_errno(); 5298 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5299 elferr = elf_errno(); 5300 if (elferr != 0) 5301 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5302 return; 5303 } 5304 if (d->d_size <= 0) 5305 return; 5306 5307 /* Read in .debug_pubnames section table header. */ 5308 offset = 0; 5309 length = re->dw_read(d, &offset, 4); 5310 if (length == 0xffffffff) { 5311 dwarf_size = 8; 5312 length = re->dw_read(d, &offset, 8); 5313 } else 5314 dwarf_size = 4; 5315 5316 if (length > d->d_size - offset) { 5317 warnx("invalid .dwarf_pubnames section"); 5318 return; 5319 } 5320 5321 nt_version = re->dw_read(d, &offset, 2); 5322 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5323 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5324 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5325 printf(" Version:\t\t\t\t%u\n", nt_version); 5326 printf(" Offset into .debug_info section:\t%ju\n", 5327 (uintmax_t) nt_cu_offset); 5328 printf(" Size of area in .debug_info section:\t%ju\n", 5329 (uintmax_t) nt_cu_length); 5330 5331 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5332 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5333 return; 5334 } 5335 5336 printf("\n Offset Name\n"); 5337 for (i = 0; i < cnt; i++) { 5338 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5339 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5340 continue; 5341 } 5342 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5343 DW_DLV_OK) { 5344 warnx("dwarf_global_die_offset failed: %s", 5345 dwarf_errmsg(de)); 5346 continue; 5347 } 5348 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5349 } 5350 } 5351 5352 static void 5353 dump_dwarf_aranges(struct readelf *re) 5354 { 5355 struct section *s; 5356 Dwarf_Arange *aranges; 5357 Dwarf_Addr start; 5358 Dwarf_Unsigned offset, length, as_cu_offset; 5359 Dwarf_Off die_off; 5360 Dwarf_Signed cnt; 5361 Dwarf_Half as_version, as_addrsz, as_segsz; 5362 Dwarf_Error de; 5363 Elf_Data *d; 5364 int i, dwarf_size, elferr; 5365 5366 printf("\nContents of section .debug_aranges:\n"); 5367 5368 s = NULL; 5369 for (i = 0; (size_t) i < re->shnum; i++) { 5370 s = &re->sl[i]; 5371 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5372 break; 5373 } 5374 if ((size_t) i >= re->shnum) 5375 return; 5376 5377 (void) elf_errno(); 5378 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5379 elferr = elf_errno(); 5380 if (elferr != 0) 5381 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5382 return; 5383 } 5384 if (d->d_size <= 0) 5385 return; 5386 5387 /* Read in the .debug_aranges section table header. */ 5388 offset = 0; 5389 length = re->dw_read(d, &offset, 4); 5390 if (length == 0xffffffff) { 5391 dwarf_size = 8; 5392 length = re->dw_read(d, &offset, 8); 5393 } else 5394 dwarf_size = 4; 5395 5396 if (length > d->d_size - offset) { 5397 warnx("invalid .dwarf_aranges section"); 5398 return; 5399 } 5400 5401 as_version = re->dw_read(d, &offset, 2); 5402 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5403 as_addrsz = re->dw_read(d, &offset, 1); 5404 as_segsz = re->dw_read(d, &offset, 1); 5405 5406 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5407 printf(" Version:\t\t\t%u\n", as_version); 5408 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5409 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5410 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5411 5412 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5413 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5414 return; 5415 } 5416 5417 printf("\n Address Length\n"); 5418 for (i = 0; i < cnt; i++) { 5419 if (dwarf_get_arange_info(aranges[i], &start, &length, 5420 &die_off, &de) != DW_DLV_OK) { 5421 warnx("dwarf_get_arange_info failed: %s", 5422 dwarf_errmsg(de)); 5423 continue; 5424 } 5425 printf(" %08jx %ju\n", (uintmax_t) start, 5426 (uintmax_t) length); 5427 } 5428 } 5429 5430 static void 5431 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5432 { 5433 Dwarf_Attribute *attr_list; 5434 Dwarf_Ranges *ranges; 5435 Dwarf_Die ret_die; 5436 Dwarf_Error de; 5437 Dwarf_Addr base0; 5438 Dwarf_Half attr; 5439 Dwarf_Signed attr_count, cnt; 5440 Dwarf_Unsigned off, bytecnt; 5441 int i, j, ret; 5442 5443 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5444 DW_DLV_OK) { 5445 if (ret == DW_DLV_ERROR) 5446 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5447 goto cont_search; 5448 } 5449 5450 for (i = 0; i < attr_count; i++) { 5451 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5452 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5453 continue; 5454 } 5455 if (attr != DW_AT_ranges) 5456 continue; 5457 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5458 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5459 continue; 5460 } 5461 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5462 &bytecnt, &de) != DW_DLV_OK) 5463 continue; 5464 base0 = base; 5465 for (j = 0; j < cnt; j++) { 5466 printf(" %08jx ", (uintmax_t) off); 5467 if (ranges[j].dwr_type == DW_RANGES_END) { 5468 printf("%s\n", "<End of list>"); 5469 continue; 5470 } else if (ranges[j].dwr_type == 5471 DW_RANGES_ADDRESS_SELECTION) { 5472 base0 = ranges[j].dwr_addr2; 5473 continue; 5474 } 5475 if (re->ec == ELFCLASS32) 5476 printf("%08jx %08jx\n", 5477 ranges[j].dwr_addr1 + base0, 5478 ranges[j].dwr_addr2 + base0); 5479 else 5480 printf("%016jx %016jx\n", 5481 ranges[j].dwr_addr1 + base0, 5482 ranges[j].dwr_addr2 + base0); 5483 } 5484 } 5485 5486 cont_search: 5487 /* Search children. */ 5488 ret = dwarf_child(die, &ret_die, &de); 5489 if (ret == DW_DLV_ERROR) 5490 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5491 else if (ret == DW_DLV_OK) 5492 dump_dwarf_ranges_foreach(re, ret_die, base); 5493 5494 /* Search sibling. */ 5495 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5496 if (ret == DW_DLV_ERROR) 5497 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5498 else if (ret == DW_DLV_OK) 5499 dump_dwarf_ranges_foreach(re, ret_die, base); 5500 } 5501 5502 static void 5503 dump_dwarf_ranges(struct readelf *re) 5504 { 5505 Dwarf_Ranges *ranges; 5506 Dwarf_Die die; 5507 Dwarf_Signed cnt; 5508 Dwarf_Unsigned bytecnt; 5509 Dwarf_Half tag; 5510 Dwarf_Error de; 5511 Dwarf_Unsigned lowpc; 5512 int ret; 5513 5514 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5515 DW_DLV_OK) 5516 return; 5517 5518 printf("Contents of the .debug_ranges section:\n\n"); 5519 if (re->ec == ELFCLASS32) 5520 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5521 else 5522 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5523 5524 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5525 NULL, &de)) == DW_DLV_OK) { 5526 die = NULL; 5527 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5528 continue; 5529 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5530 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5531 continue; 5532 } 5533 /* XXX: What about DW_TAG_partial_unit? */ 5534 lowpc = 0; 5535 if (tag == DW_TAG_compile_unit) { 5536 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5537 &de) != DW_DLV_OK) 5538 lowpc = 0; 5539 } 5540 5541 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5542 } 5543 putchar('\n'); 5544 } 5545 5546 static void 5547 dump_dwarf_macinfo(struct readelf *re) 5548 { 5549 Dwarf_Unsigned offset; 5550 Dwarf_Signed cnt; 5551 Dwarf_Macro_Details *md; 5552 Dwarf_Error de; 5553 const char *mi_str; 5554 char unk_mi[32]; 5555 int i; 5556 5557 #define _MAX_MACINFO_ENTRY 65535 5558 5559 printf("\nContents of section .debug_macinfo:\n\n"); 5560 5561 offset = 0; 5562 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5563 &cnt, &md, &de) == DW_DLV_OK) { 5564 for (i = 0; i < cnt; i++) { 5565 offset = md[i].dmd_offset + 1; 5566 if (md[i].dmd_type == 0) 5567 break; 5568 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5569 DW_DLV_OK) { 5570 snprintf(unk_mi, sizeof(unk_mi), 5571 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5572 mi_str = unk_mi; 5573 } 5574 printf(" %s", mi_str); 5575 switch (md[i].dmd_type) { 5576 case DW_MACINFO_define: 5577 case DW_MACINFO_undef: 5578 printf(" - lineno : %jd macro : %s\n", 5579 (intmax_t) md[i].dmd_lineno, 5580 md[i].dmd_macro); 5581 break; 5582 case DW_MACINFO_start_file: 5583 printf(" - lineno : %jd filenum : %jd\n", 5584 (intmax_t) md[i].dmd_lineno, 5585 (intmax_t) md[i].dmd_fileindex); 5586 break; 5587 default: 5588 putchar('\n'); 5589 break; 5590 } 5591 } 5592 } 5593 5594 #undef _MAX_MACINFO_ENTRY 5595 } 5596 5597 static void 5598 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5599 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5600 Dwarf_Debug dbg) 5601 { 5602 Dwarf_Frame_Op *oplist; 5603 Dwarf_Signed opcnt, delta; 5604 Dwarf_Small op; 5605 Dwarf_Error de; 5606 const char *op_str; 5607 char unk_op[32]; 5608 int i; 5609 5610 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5611 &opcnt, &de) != DW_DLV_OK) { 5612 warnx("dwarf_expand_frame_instructions failed: %s", 5613 dwarf_errmsg(de)); 5614 return; 5615 } 5616 5617 for (i = 0; i < opcnt; i++) { 5618 if (oplist[i].fp_base_op != 0) 5619 op = oplist[i].fp_base_op << 6; 5620 else 5621 op = oplist[i].fp_extended_op; 5622 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5623 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5624 op); 5625 op_str = unk_op; 5626 } 5627 printf(" %s", op_str); 5628 switch (op) { 5629 case DW_CFA_advance_loc: 5630 delta = oplist[i].fp_offset * caf; 5631 pc += delta; 5632 printf(": %ju to %08jx", (uintmax_t) delta, 5633 (uintmax_t) pc); 5634 break; 5635 case DW_CFA_offset: 5636 case DW_CFA_offset_extended: 5637 case DW_CFA_offset_extended_sf: 5638 delta = oplist[i].fp_offset * daf; 5639 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5640 dwarf_regname(re, oplist[i].fp_register), 5641 (intmax_t) delta); 5642 break; 5643 case DW_CFA_restore: 5644 printf(": r%u (%s)", oplist[i].fp_register, 5645 dwarf_regname(re, oplist[i].fp_register)); 5646 break; 5647 case DW_CFA_set_loc: 5648 pc = oplist[i].fp_offset; 5649 printf(": to %08jx", (uintmax_t) pc); 5650 break; 5651 case DW_CFA_advance_loc1: 5652 case DW_CFA_advance_loc2: 5653 case DW_CFA_advance_loc4: 5654 pc += oplist[i].fp_offset; 5655 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5656 (uintmax_t) pc); 5657 break; 5658 case DW_CFA_def_cfa: 5659 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5660 dwarf_regname(re, oplist[i].fp_register), 5661 (uintmax_t) oplist[i].fp_offset); 5662 break; 5663 case DW_CFA_def_cfa_sf: 5664 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5665 dwarf_regname(re, oplist[i].fp_register), 5666 (intmax_t) (oplist[i].fp_offset * daf)); 5667 break; 5668 case DW_CFA_def_cfa_register: 5669 printf(": r%u (%s)", oplist[i].fp_register, 5670 dwarf_regname(re, oplist[i].fp_register)); 5671 break; 5672 case DW_CFA_def_cfa_offset: 5673 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5674 break; 5675 case DW_CFA_def_cfa_offset_sf: 5676 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5677 break; 5678 default: 5679 break; 5680 } 5681 putchar('\n'); 5682 } 5683 5684 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5685 } 5686 5687 static char * 5688 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5689 { 5690 static char rs[16]; 5691 5692 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5693 snprintf(rs, sizeof(rs), "%c", 'u'); 5694 else if (reg == DW_FRAME_CFA_COL) 5695 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5696 else 5697 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5698 (intmax_t) off); 5699 5700 return (rs); 5701 } 5702 5703 static int 5704 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5705 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5706 { 5707 Dwarf_Regtable rt; 5708 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5709 Dwarf_Error de; 5710 char *vec; 5711 int i; 5712 5713 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5714 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5715 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5716 #define RT(x) rt.rules[(x)] 5717 5718 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5719 if (vec == NULL) 5720 err(EXIT_FAILURE, "calloc failed"); 5721 5722 pre_pc = ~((Dwarf_Addr) 0); 5723 cur_pc = pc; 5724 end_pc = pc + func_len; 5725 for (; cur_pc < end_pc; cur_pc++) { 5726 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5727 &de) != DW_DLV_OK) { 5728 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5729 dwarf_errmsg(de)); 5730 return (-1); 5731 } 5732 if (row_pc == pre_pc) 5733 continue; 5734 pre_pc = row_pc; 5735 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5736 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5737 BIT_SET(vec, i); 5738 } 5739 } 5740 5741 printf(" LOC CFA "); 5742 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5743 if (BIT_ISSET(vec, i)) { 5744 if ((Dwarf_Half) i == cie_ra) 5745 printf("ra "); 5746 else 5747 printf("%-5s", 5748 dwarf_regname(re, (unsigned int) i)); 5749 } 5750 } 5751 putchar('\n'); 5752 5753 pre_pc = ~((Dwarf_Addr) 0); 5754 cur_pc = pc; 5755 end_pc = pc + func_len; 5756 for (; cur_pc < end_pc; cur_pc++) { 5757 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5758 &de) != DW_DLV_OK) { 5759 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5760 dwarf_errmsg(de)); 5761 return (-1); 5762 } 5763 if (row_pc == pre_pc) 5764 continue; 5765 pre_pc = row_pc; 5766 printf("%08jx ", (uintmax_t) row_pc); 5767 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5768 RT(0).dw_offset)); 5769 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5770 if (BIT_ISSET(vec, i)) { 5771 printf("%-5s", get_regoff_str(re, 5772 RT(i).dw_regnum, RT(i).dw_offset)); 5773 } 5774 } 5775 putchar('\n'); 5776 } 5777 5778 free(vec); 5779 5780 return (0); 5781 5782 #undef BIT_SET 5783 #undef BIT_CLR 5784 #undef BIT_ISSET 5785 #undef RT 5786 } 5787 5788 static void 5789 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5790 { 5791 Dwarf_Cie *cie_list, cie, pre_cie; 5792 Dwarf_Fde *fde_list, fde; 5793 Dwarf_Off cie_offset, fde_offset; 5794 Dwarf_Unsigned cie_length, fde_instlen; 5795 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5796 Dwarf_Signed cie_count, fde_count, cie_index; 5797 Dwarf_Addr low_pc; 5798 Dwarf_Half cie_ra; 5799 Dwarf_Small cie_version; 5800 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5801 char *cie_aug, c; 5802 int i, eh_frame; 5803 Dwarf_Error de; 5804 5805 printf("\nThe section %s contains:\n\n", s->name); 5806 5807 if (!strcmp(s->name, ".debug_frame")) { 5808 eh_frame = 0; 5809 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5810 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5811 warnx("dwarf_get_fde_list failed: %s", 5812 dwarf_errmsg(de)); 5813 return; 5814 } 5815 } else if (!strcmp(s->name, ".eh_frame")) { 5816 eh_frame = 1; 5817 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5818 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5819 warnx("dwarf_get_fde_list_eh failed: %s", 5820 dwarf_errmsg(de)); 5821 return; 5822 } 5823 } else 5824 return; 5825 5826 pre_cie = NULL; 5827 for (i = 0; i < fde_count; i++) { 5828 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5829 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5830 continue; 5831 } 5832 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5833 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5834 continue; 5835 } 5836 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5837 &fde_length, &cie_offset, &cie_index, &fde_offset, 5838 &de) != DW_DLV_OK) { 5839 warnx("dwarf_get_fde_range failed: %s", 5840 dwarf_errmsg(de)); 5841 continue; 5842 } 5843 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5844 &de) != DW_DLV_OK) { 5845 warnx("dwarf_get_fde_instr_bytes failed: %s", 5846 dwarf_errmsg(de)); 5847 continue; 5848 } 5849 if (pre_cie == NULL || cie != pre_cie) { 5850 pre_cie = cie; 5851 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5852 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5853 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5854 warnx("dwarf_get_cie_info failed: %s", 5855 dwarf_errmsg(de)); 5856 continue; 5857 } 5858 printf("%08jx %08jx %8.8jx CIE", 5859 (uintmax_t) cie_offset, 5860 (uintmax_t) cie_length, 5861 (uintmax_t) (eh_frame ? 0 : ~0U)); 5862 if (!alt) { 5863 putchar('\n'); 5864 printf(" Version:\t\t\t%u\n", cie_version); 5865 printf(" Augmentation:\t\t\t\""); 5866 while ((c = *cie_aug++) != '\0') 5867 putchar(c); 5868 printf("\"\n"); 5869 printf(" Code alignment factor:\t%ju\n", 5870 (uintmax_t) cie_caf); 5871 printf(" Data alignment factor:\t%jd\n", 5872 (intmax_t) cie_daf); 5873 printf(" Return address column:\t%ju\n", 5874 (uintmax_t) cie_ra); 5875 putchar('\n'); 5876 dump_dwarf_frame_inst(re, cie, cie_inst, 5877 cie_instlen, cie_caf, cie_daf, 0, 5878 re->dbg); 5879 putchar('\n'); 5880 } else { 5881 printf(" \""); 5882 while ((c = *cie_aug++) != '\0') 5883 putchar(c); 5884 putchar('"'); 5885 printf(" cf=%ju df=%jd ra=%ju\n", 5886 (uintmax_t) cie_caf, 5887 (uintmax_t) cie_daf, 5888 (uintmax_t) cie_ra); 5889 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5890 cie_ra); 5891 putchar('\n'); 5892 } 5893 } 5894 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5895 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5896 (uintmax_t) cie_offset, 5897 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5898 cie_offset), 5899 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5900 if (!alt) 5901 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5902 cie_caf, cie_daf, low_pc, re->dbg); 5903 else 5904 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5905 cie_ra); 5906 putchar('\n'); 5907 } 5908 } 5909 5910 static void 5911 dump_dwarf_frame(struct readelf *re, int alt) 5912 { 5913 struct section *s; 5914 int i; 5915 5916 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5917 5918 for (i = 0; (size_t) i < re->shnum; i++) { 5919 s = &re->sl[i]; 5920 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5921 !strcmp(s->name, ".eh_frame"))) 5922 dump_dwarf_frame_section(re, s, alt); 5923 } 5924 } 5925 5926 static void 5927 dump_dwarf_str(struct readelf *re) 5928 { 5929 struct section *s; 5930 Elf_Data *d; 5931 unsigned char *p; 5932 int elferr, end, i, j; 5933 5934 printf("\nContents of section .debug_str:\n"); 5935 5936 s = NULL; 5937 for (i = 0; (size_t) i < re->shnum; i++) { 5938 s = &re->sl[i]; 5939 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5940 break; 5941 } 5942 if ((size_t) i >= re->shnum) 5943 return; 5944 5945 (void) elf_errno(); 5946 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5947 elferr = elf_errno(); 5948 if (elferr != 0) 5949 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5950 return; 5951 } 5952 if (d->d_size <= 0) 5953 return; 5954 5955 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5956 printf(" 0x%08x", (unsigned int) i); 5957 if ((size_t) i + 16 > d->d_size) 5958 end = d->d_size; 5959 else 5960 end = i + 16; 5961 for (j = i; j < i + 16; j++) { 5962 if ((j - i) % 4 == 0) 5963 putchar(' '); 5964 if (j >= end) { 5965 printf(" "); 5966 continue; 5967 } 5968 printf("%02x", (uint8_t) p[j]); 5969 } 5970 putchar(' '); 5971 for (j = i; j < end; j++) { 5972 if (isprint(p[j])) 5973 putchar(p[j]); 5974 else if (p[j] == 0) 5975 putchar('.'); 5976 else 5977 putchar(' '); 5978 } 5979 putchar('\n'); 5980 } 5981 } 5982 5983 struct loc_at { 5984 Dwarf_Attribute la_at; 5985 Dwarf_Unsigned la_off; 5986 Dwarf_Unsigned la_lowpc; 5987 Dwarf_Half la_cu_psize; 5988 Dwarf_Half la_cu_osize; 5989 Dwarf_Half la_cu_ver; 5990 TAILQ_ENTRY(loc_at) la_next; 5991 }; 5992 5993 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5994 5995 static void 5996 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5997 { 5998 Dwarf_Attribute *attr_list; 5999 Dwarf_Die ret_die; 6000 Dwarf_Unsigned off; 6001 Dwarf_Off ref; 6002 Dwarf_Signed attr_count; 6003 Dwarf_Half attr, form; 6004 Dwarf_Bool is_info; 6005 Dwarf_Error de; 6006 struct loc_at *la, *nla; 6007 int i, ret; 6008 6009 is_info = dwarf_get_die_infotypes_flag(die); 6010 6011 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6012 DW_DLV_OK) { 6013 if (ret == DW_DLV_ERROR) 6014 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6015 goto cont_search; 6016 } 6017 for (i = 0; i < attr_count; i++) { 6018 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6019 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6020 continue; 6021 } 6022 if (attr != DW_AT_location && 6023 attr != DW_AT_string_length && 6024 attr != DW_AT_return_addr && 6025 attr != DW_AT_data_member_location && 6026 attr != DW_AT_frame_base && 6027 attr != DW_AT_segment && 6028 attr != DW_AT_static_link && 6029 attr != DW_AT_use_location && 6030 attr != DW_AT_vtable_elem_location) 6031 continue; 6032 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6033 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6034 continue; 6035 } 6036 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6037 if (dwarf_formudata(attr_list[i], &off, &de) != 6038 DW_DLV_OK) { 6039 warnx("dwarf_formudata failed: %s", 6040 dwarf_errmsg(de)); 6041 continue; 6042 } 6043 } else if (form == DW_FORM_sec_offset) { 6044 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6045 DW_DLV_OK) { 6046 warnx("dwarf_global_formref failed: %s", 6047 dwarf_errmsg(de)); 6048 continue; 6049 } 6050 off = ref; 6051 } else 6052 continue; 6053 6054 TAILQ_FOREACH(la, &lalist, la_next) { 6055 if (off == la->la_off) 6056 break; 6057 if (off < la->la_off) { 6058 if ((nla = malloc(sizeof(*nla))) == NULL) 6059 err(EXIT_FAILURE, "malloc failed"); 6060 nla->la_at = attr_list[i]; 6061 nla->la_off = off; 6062 nla->la_lowpc = lowpc; 6063 nla->la_cu_psize = re->cu_psize; 6064 nla->la_cu_osize = re->cu_osize; 6065 nla->la_cu_ver = re->cu_ver; 6066 TAILQ_INSERT_BEFORE(la, nla, la_next); 6067 break; 6068 } 6069 } 6070 if (la == NULL) { 6071 if ((nla = malloc(sizeof(*nla))) == NULL) 6072 err(EXIT_FAILURE, "malloc failed"); 6073 nla->la_at = attr_list[i]; 6074 nla->la_off = off; 6075 nla->la_lowpc = lowpc; 6076 nla->la_cu_psize = re->cu_psize; 6077 nla->la_cu_osize = re->cu_osize; 6078 nla->la_cu_ver = re->cu_ver; 6079 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6080 } 6081 } 6082 6083 cont_search: 6084 /* Search children. */ 6085 ret = dwarf_child(die, &ret_die, &de); 6086 if (ret == DW_DLV_ERROR) 6087 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6088 else if (ret == DW_DLV_OK) 6089 search_loclist_at(re, ret_die, lowpc); 6090 6091 /* Search sibling. */ 6092 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6093 if (ret == DW_DLV_ERROR) 6094 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6095 else if (ret == DW_DLV_OK) 6096 search_loclist_at(re, ret_die, lowpc); 6097 } 6098 6099 static void 6100 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6101 { 6102 const char *op_str; 6103 char unk_op[32]; 6104 uint8_t *b, n; 6105 int i; 6106 6107 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6108 DW_DLV_OK) { 6109 snprintf(unk_op, sizeof(unk_op), 6110 "[Unknown OP: %#x]", lr->lr_atom); 6111 op_str = unk_op; 6112 } 6113 6114 printf("%s", op_str); 6115 6116 switch (lr->lr_atom) { 6117 case DW_OP_reg0: 6118 case DW_OP_reg1: 6119 case DW_OP_reg2: 6120 case DW_OP_reg3: 6121 case DW_OP_reg4: 6122 case DW_OP_reg5: 6123 case DW_OP_reg6: 6124 case DW_OP_reg7: 6125 case DW_OP_reg8: 6126 case DW_OP_reg9: 6127 case DW_OP_reg10: 6128 case DW_OP_reg11: 6129 case DW_OP_reg12: 6130 case DW_OP_reg13: 6131 case DW_OP_reg14: 6132 case DW_OP_reg15: 6133 case DW_OP_reg16: 6134 case DW_OP_reg17: 6135 case DW_OP_reg18: 6136 case DW_OP_reg19: 6137 case DW_OP_reg20: 6138 case DW_OP_reg21: 6139 case DW_OP_reg22: 6140 case DW_OP_reg23: 6141 case DW_OP_reg24: 6142 case DW_OP_reg25: 6143 case DW_OP_reg26: 6144 case DW_OP_reg27: 6145 case DW_OP_reg28: 6146 case DW_OP_reg29: 6147 case DW_OP_reg30: 6148 case DW_OP_reg31: 6149 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6150 break; 6151 6152 case DW_OP_deref: 6153 case DW_OP_lit0: 6154 case DW_OP_lit1: 6155 case DW_OP_lit2: 6156 case DW_OP_lit3: 6157 case DW_OP_lit4: 6158 case DW_OP_lit5: 6159 case DW_OP_lit6: 6160 case DW_OP_lit7: 6161 case DW_OP_lit8: 6162 case DW_OP_lit9: 6163 case DW_OP_lit10: 6164 case DW_OP_lit11: 6165 case DW_OP_lit12: 6166 case DW_OP_lit13: 6167 case DW_OP_lit14: 6168 case DW_OP_lit15: 6169 case DW_OP_lit16: 6170 case DW_OP_lit17: 6171 case DW_OP_lit18: 6172 case DW_OP_lit19: 6173 case DW_OP_lit20: 6174 case DW_OP_lit21: 6175 case DW_OP_lit22: 6176 case DW_OP_lit23: 6177 case DW_OP_lit24: 6178 case DW_OP_lit25: 6179 case DW_OP_lit26: 6180 case DW_OP_lit27: 6181 case DW_OP_lit28: 6182 case DW_OP_lit29: 6183 case DW_OP_lit30: 6184 case DW_OP_lit31: 6185 case DW_OP_dup: 6186 case DW_OP_drop: 6187 case DW_OP_over: 6188 case DW_OP_swap: 6189 case DW_OP_rot: 6190 case DW_OP_xderef: 6191 case DW_OP_abs: 6192 case DW_OP_and: 6193 case DW_OP_div: 6194 case DW_OP_minus: 6195 case DW_OP_mod: 6196 case DW_OP_mul: 6197 case DW_OP_neg: 6198 case DW_OP_not: 6199 case DW_OP_or: 6200 case DW_OP_plus: 6201 case DW_OP_shl: 6202 case DW_OP_shr: 6203 case DW_OP_shra: 6204 case DW_OP_xor: 6205 case DW_OP_eq: 6206 case DW_OP_ge: 6207 case DW_OP_gt: 6208 case DW_OP_le: 6209 case DW_OP_lt: 6210 case DW_OP_ne: 6211 case DW_OP_nop: 6212 case DW_OP_push_object_address: 6213 case DW_OP_form_tls_address: 6214 case DW_OP_call_frame_cfa: 6215 case DW_OP_stack_value: 6216 case DW_OP_GNU_push_tls_address: 6217 case DW_OP_GNU_uninit: 6218 break; 6219 6220 case DW_OP_const1u: 6221 case DW_OP_pick: 6222 case DW_OP_deref_size: 6223 case DW_OP_xderef_size: 6224 case DW_OP_const2u: 6225 case DW_OP_bra: 6226 case DW_OP_skip: 6227 case DW_OP_const4u: 6228 case DW_OP_const8u: 6229 case DW_OP_constu: 6230 case DW_OP_plus_uconst: 6231 case DW_OP_regx: 6232 case DW_OP_piece: 6233 printf(": %ju", (uintmax_t) 6234 lr->lr_number); 6235 break; 6236 6237 case DW_OP_const1s: 6238 case DW_OP_const2s: 6239 case DW_OP_const4s: 6240 case DW_OP_const8s: 6241 case DW_OP_consts: 6242 printf(": %jd", (intmax_t) 6243 lr->lr_number); 6244 break; 6245 6246 case DW_OP_breg0: 6247 case DW_OP_breg1: 6248 case DW_OP_breg2: 6249 case DW_OP_breg3: 6250 case DW_OP_breg4: 6251 case DW_OP_breg5: 6252 case DW_OP_breg6: 6253 case DW_OP_breg7: 6254 case DW_OP_breg8: 6255 case DW_OP_breg9: 6256 case DW_OP_breg10: 6257 case DW_OP_breg11: 6258 case DW_OP_breg12: 6259 case DW_OP_breg13: 6260 case DW_OP_breg14: 6261 case DW_OP_breg15: 6262 case DW_OP_breg16: 6263 case DW_OP_breg17: 6264 case DW_OP_breg18: 6265 case DW_OP_breg19: 6266 case DW_OP_breg20: 6267 case DW_OP_breg21: 6268 case DW_OP_breg22: 6269 case DW_OP_breg23: 6270 case DW_OP_breg24: 6271 case DW_OP_breg25: 6272 case DW_OP_breg26: 6273 case DW_OP_breg27: 6274 case DW_OP_breg28: 6275 case DW_OP_breg29: 6276 case DW_OP_breg30: 6277 case DW_OP_breg31: 6278 printf(" (%s): %jd", 6279 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6280 (intmax_t) lr->lr_number); 6281 break; 6282 6283 case DW_OP_fbreg: 6284 printf(": %jd", (intmax_t) 6285 lr->lr_number); 6286 break; 6287 6288 case DW_OP_bregx: 6289 printf(": %ju (%s) %jd", 6290 (uintmax_t) lr->lr_number, 6291 dwarf_regname(re, (unsigned int) lr->lr_number), 6292 (intmax_t) lr->lr_number2); 6293 break; 6294 6295 case DW_OP_addr: 6296 case DW_OP_GNU_encoded_addr: 6297 printf(": %#jx", (uintmax_t) 6298 lr->lr_number); 6299 break; 6300 6301 case DW_OP_GNU_implicit_pointer: 6302 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6303 (intmax_t) lr->lr_number2); 6304 break; 6305 6306 case DW_OP_implicit_value: 6307 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6308 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6309 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6310 printf(" %x", b[i]); 6311 break; 6312 6313 case DW_OP_GNU_entry_value: 6314 printf(": ("); 6315 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6316 lr->lr_number); 6317 putchar(')'); 6318 break; 6319 6320 case DW_OP_GNU_const_type: 6321 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6322 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6323 n = *b; 6324 for (i = 1; (uint8_t) i < n; i++) 6325 printf(" %x", b[i]); 6326 break; 6327 6328 case DW_OP_GNU_regval_type: 6329 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6330 dwarf_regname(re, (unsigned int) lr->lr_number), 6331 (uintmax_t) lr->lr_number2); 6332 break; 6333 6334 case DW_OP_GNU_convert: 6335 case DW_OP_GNU_deref_type: 6336 case DW_OP_GNU_parameter_ref: 6337 case DW_OP_GNU_reinterpret: 6338 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6339 break; 6340 6341 default: 6342 break; 6343 } 6344 } 6345 6346 static void 6347 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6348 { 6349 Dwarf_Locdesc *llbuf; 6350 Dwarf_Signed lcnt; 6351 Dwarf_Error de; 6352 int i; 6353 6354 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6355 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6356 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6357 return; 6358 } 6359 6360 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6361 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6362 if (i < llbuf->ld_cents - 1) 6363 printf("; "); 6364 } 6365 6366 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6367 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6368 } 6369 6370 static void 6371 dump_dwarf_loclist(struct readelf *re) 6372 { 6373 Dwarf_Die die; 6374 Dwarf_Locdesc **llbuf; 6375 Dwarf_Unsigned lowpc; 6376 Dwarf_Signed lcnt; 6377 Dwarf_Half tag, version, pointer_size, off_size; 6378 Dwarf_Error de; 6379 struct loc_at *la; 6380 int i, j, ret; 6381 6382 printf("\nContents of section .debug_loc:\n"); 6383 6384 /* Search .debug_info section. */ 6385 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6386 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6387 set_cu_context(re, pointer_size, off_size, version); 6388 die = NULL; 6389 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6390 continue; 6391 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6392 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6393 continue; 6394 } 6395 /* XXX: What about DW_TAG_partial_unit? */ 6396 lowpc = 0; 6397 if (tag == DW_TAG_compile_unit) { 6398 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6399 &lowpc, &de) != DW_DLV_OK) 6400 lowpc = 0; 6401 } 6402 6403 /* Search attributes for reference to .debug_loc section. */ 6404 search_loclist_at(re, die, lowpc); 6405 } 6406 if (ret == DW_DLV_ERROR) 6407 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6408 6409 /* Search .debug_types section. */ 6410 do { 6411 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6412 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6413 NULL, NULL, &de)) == DW_DLV_OK) { 6414 set_cu_context(re, pointer_size, off_size, version); 6415 die = NULL; 6416 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6417 DW_DLV_OK) 6418 continue; 6419 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6420 warnx("dwarf_tag failed: %s", 6421 dwarf_errmsg(de)); 6422 continue; 6423 } 6424 6425 lowpc = 0; 6426 if (tag == DW_TAG_type_unit) { 6427 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6428 &lowpc, &de) != DW_DLV_OK) 6429 lowpc = 0; 6430 } 6431 6432 /* 6433 * Search attributes for reference to .debug_loc 6434 * section. 6435 */ 6436 search_loclist_at(re, die, lowpc); 6437 } 6438 if (ret == DW_DLV_ERROR) 6439 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6440 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6441 6442 if (TAILQ_EMPTY(&lalist)) 6443 return; 6444 6445 printf(" Offset Begin End Expression\n"); 6446 6447 TAILQ_FOREACH(la, &lalist, la_next) { 6448 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 6449 DW_DLV_OK) { 6450 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 6451 continue; 6452 } 6453 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6454 la->la_cu_ver); 6455 for (i = 0; i < lcnt; i++) { 6456 printf(" %8.8jx ", la->la_off); 6457 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6458 printf("<End of list>\n"); 6459 continue; 6460 } 6461 6462 /* TODO: handle base selection entry. */ 6463 6464 printf("%8.8jx %8.8jx ", 6465 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6466 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6467 6468 putchar('('); 6469 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6470 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6471 if (j < llbuf[i]->ld_cents - 1) 6472 printf("; "); 6473 } 6474 putchar(')'); 6475 6476 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6477 printf(" (start == end)"); 6478 putchar('\n'); 6479 } 6480 for (i = 0; i < lcnt; i++) { 6481 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6482 DW_DLA_LOC_BLOCK); 6483 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6484 } 6485 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6486 } 6487 } 6488 6489 /* 6490 * Retrieve a string using string table section index and the string offset. 6491 */ 6492 static const char* 6493 get_string(struct readelf *re, int strtab, size_t off) 6494 { 6495 const char *name; 6496 6497 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6498 return (""); 6499 6500 return (name); 6501 } 6502 6503 /* 6504 * Retrieve the name of a symbol using the section index of the symbol 6505 * table and the index of the symbol within that table. 6506 */ 6507 static const char * 6508 get_symbol_name(struct readelf *re, int symtab, int i) 6509 { 6510 struct section *s; 6511 const char *name; 6512 GElf_Sym sym; 6513 Elf_Data *data; 6514 int elferr; 6515 6516 s = &re->sl[symtab]; 6517 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6518 return (""); 6519 (void) elf_errno(); 6520 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6521 elferr = elf_errno(); 6522 if (elferr != 0) 6523 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6524 return (""); 6525 } 6526 if (gelf_getsym(data, i, &sym) != &sym) 6527 return (""); 6528 /* Return section name for STT_SECTION symbol. */ 6529 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 6530 re->sl[sym.st_shndx].name != NULL) 6531 return (re->sl[sym.st_shndx].name); 6532 if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6533 return (""); 6534 6535 return (name); 6536 } 6537 6538 static uint64_t 6539 get_symbol_value(struct readelf *re, int symtab, int i) 6540 { 6541 struct section *s; 6542 GElf_Sym sym; 6543 Elf_Data *data; 6544 int elferr; 6545 6546 s = &re->sl[symtab]; 6547 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6548 return (0); 6549 (void) elf_errno(); 6550 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6551 elferr = elf_errno(); 6552 if (elferr != 0) 6553 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6554 return (0); 6555 } 6556 if (gelf_getsym(data, i, &sym) != &sym) 6557 return (0); 6558 6559 return (sym.st_value); 6560 } 6561 6562 static void 6563 hex_dump(struct readelf *re) 6564 { 6565 struct section *s; 6566 Elf_Data *d; 6567 uint8_t *buf; 6568 size_t sz, nbytes; 6569 uint64_t addr; 6570 int elferr, i, j; 6571 6572 for (i = 1; (size_t) i < re->shnum; i++) { 6573 s = &re->sl[i]; 6574 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6575 continue; 6576 (void) elf_errno(); 6577 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6578 elferr = elf_errno(); 6579 if (elferr != 0) 6580 warnx("elf_getdata failed: %s", 6581 elf_errmsg(elferr)); 6582 continue; 6583 } 6584 if (d->d_size <= 0 || d->d_buf == NULL) { 6585 printf("\nSection '%s' has no data to dump.\n", 6586 s->name); 6587 continue; 6588 } 6589 buf = d->d_buf; 6590 sz = d->d_size; 6591 addr = s->addr; 6592 printf("\nHex dump of section '%s':\n", s->name); 6593 while (sz > 0) { 6594 printf(" 0x%8.8jx ", (uintmax_t)addr); 6595 nbytes = sz > 16? 16 : sz; 6596 for (j = 0; j < 16; j++) { 6597 if ((size_t)j < nbytes) 6598 printf("%2.2x", buf[j]); 6599 else 6600 printf(" "); 6601 if ((j & 3) == 3) 6602 printf(" "); 6603 } 6604 for (j = 0; (size_t)j < nbytes; j++) { 6605 if (isprint(buf[j])) 6606 printf("%c", buf[j]); 6607 else 6608 printf("."); 6609 } 6610 printf("\n"); 6611 buf += nbytes; 6612 addr += nbytes; 6613 sz -= nbytes; 6614 } 6615 } 6616 } 6617 6618 static void 6619 str_dump(struct readelf *re) 6620 { 6621 struct section *s; 6622 Elf_Data *d; 6623 unsigned char *start, *end, *buf_end; 6624 unsigned int len; 6625 int i, j, elferr, found; 6626 6627 for (i = 1; (size_t) i < re->shnum; i++) { 6628 s = &re->sl[i]; 6629 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6630 continue; 6631 (void) elf_errno(); 6632 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6633 elferr = elf_errno(); 6634 if (elferr != 0) 6635 warnx("elf_getdata failed: %s", 6636 elf_errmsg(elferr)); 6637 continue; 6638 } 6639 if (d->d_size <= 0 || d->d_buf == NULL) { 6640 printf("\nSection '%s' has no data to dump.\n", 6641 s->name); 6642 continue; 6643 } 6644 buf_end = (unsigned char *) d->d_buf + d->d_size; 6645 start = (unsigned char *) d->d_buf; 6646 found = 0; 6647 printf("\nString dump of section '%s':\n", s->name); 6648 for (;;) { 6649 while (start < buf_end && !isprint(*start)) 6650 start++; 6651 if (start >= buf_end) 6652 break; 6653 end = start + 1; 6654 while (end < buf_end && isprint(*end)) 6655 end++; 6656 printf(" [%6lx] ", 6657 (long) (start - (unsigned char *) d->d_buf)); 6658 len = end - start; 6659 for (j = 0; (unsigned int) j < len; j++) 6660 putchar(start[j]); 6661 putchar('\n'); 6662 found = 1; 6663 if (end >= buf_end) 6664 break; 6665 start = end + 1; 6666 } 6667 if (!found) 6668 printf(" No strings found in this section."); 6669 putchar('\n'); 6670 } 6671 } 6672 6673 static void 6674 load_sections(struct readelf *re) 6675 { 6676 struct section *s; 6677 const char *name; 6678 Elf_Scn *scn; 6679 GElf_Shdr sh; 6680 size_t shstrndx, ndx; 6681 int elferr; 6682 6683 /* Allocate storage for internal section list. */ 6684 if (!elf_getshnum(re->elf, &re->shnum)) { 6685 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6686 return; 6687 } 6688 if (re->sl != NULL) 6689 free(re->sl); 6690 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6691 err(EXIT_FAILURE, "calloc failed"); 6692 6693 /* Get the index of .shstrtab section. */ 6694 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6695 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6696 return; 6697 } 6698 6699 if ((scn = elf_getscn(re->elf, 0)) == NULL) { 6700 warnx("elf_getscn failed: %s", elf_errmsg(-1)); 6701 return; 6702 } 6703 6704 (void) elf_errno(); 6705 do { 6706 if (gelf_getshdr(scn, &sh) == NULL) { 6707 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6708 (void) elf_errno(); 6709 continue; 6710 } 6711 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6712 (void) elf_errno(); 6713 name = "ERROR"; 6714 } 6715 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6716 if ((elferr = elf_errno()) != 0) 6717 warnx("elf_ndxscn failed: %s", 6718 elf_errmsg(elferr)); 6719 continue; 6720 } 6721 if (ndx >= re->shnum) { 6722 warnx("section index of '%s' out of range", name); 6723 continue; 6724 } 6725 s = &re->sl[ndx]; 6726 s->name = name; 6727 s->scn = scn; 6728 s->off = sh.sh_offset; 6729 s->sz = sh.sh_size; 6730 s->entsize = sh.sh_entsize; 6731 s->align = sh.sh_addralign; 6732 s->type = sh.sh_type; 6733 s->flags = sh.sh_flags; 6734 s->addr = sh.sh_addr; 6735 s->link = sh.sh_link; 6736 s->info = sh.sh_info; 6737 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6738 elferr = elf_errno(); 6739 if (elferr != 0) 6740 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6741 } 6742 6743 static void 6744 unload_sections(struct readelf *re) 6745 { 6746 6747 if (re->sl != NULL) { 6748 free(re->sl); 6749 re->sl = NULL; 6750 } 6751 re->shnum = 0; 6752 re->vd_s = NULL; 6753 re->vn_s = NULL; 6754 re->vs_s = NULL; 6755 re->vs = NULL; 6756 re->vs_sz = 0; 6757 if (re->ver != NULL) { 6758 free(re->ver); 6759 re->ver = NULL; 6760 re->ver_sz = 0; 6761 } 6762 } 6763 6764 static void 6765 dump_elf(struct readelf *re) 6766 { 6767 6768 /* Fetch ELF header. No need to continue if it fails. */ 6769 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6770 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6771 return; 6772 } 6773 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6774 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6775 return; 6776 } 6777 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6778 re->dw_read = _read_msb; 6779 re->dw_decode = _decode_msb; 6780 } else { 6781 re->dw_read = _read_lsb; 6782 re->dw_decode = _decode_lsb; 6783 } 6784 6785 if (re->options & ~RE_H) 6786 load_sections(re); 6787 if ((re->options & RE_VV) || (re->options & RE_S)) 6788 search_ver(re); 6789 if (re->options & RE_H) 6790 dump_ehdr(re); 6791 if (re->options & RE_L) 6792 dump_phdr(re); 6793 if (re->options & RE_SS) 6794 dump_shdr(re); 6795 if (re->options & RE_D) 6796 dump_dynamic(re); 6797 if (re->options & RE_R) 6798 dump_reloc(re); 6799 if (re->options & RE_S) 6800 dump_symtabs(re); 6801 if (re->options & RE_N) 6802 dump_notes(re); 6803 if (re->options & RE_II) 6804 dump_hash(re); 6805 if (re->options & RE_X) 6806 hex_dump(re); 6807 if (re->options & RE_P) 6808 str_dump(re); 6809 if (re->options & RE_VV) 6810 dump_ver(re); 6811 if (re->options & RE_AA) 6812 dump_arch_specific_info(re); 6813 if (re->options & RE_W) 6814 dump_dwarf(re); 6815 if (re->options & ~RE_H) 6816 unload_sections(re); 6817 } 6818 6819 static void 6820 dump_dwarf(struct readelf *re) 6821 { 6822 int error; 6823 Dwarf_Error de; 6824 6825 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6826 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6827 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6828 dwarf_errmsg(de)); 6829 return; 6830 } 6831 6832 if (re->dop & DW_A) 6833 dump_dwarf_abbrev(re); 6834 if (re->dop & DW_L) 6835 dump_dwarf_line(re); 6836 if (re->dop & DW_LL) 6837 dump_dwarf_line_decoded(re); 6838 if (re->dop & DW_I) { 6839 dump_dwarf_info(re, 0); 6840 dump_dwarf_info(re, 1); 6841 } 6842 if (re->dop & DW_P) 6843 dump_dwarf_pubnames(re); 6844 if (re->dop & DW_R) 6845 dump_dwarf_aranges(re); 6846 if (re->dop & DW_RR) 6847 dump_dwarf_ranges(re); 6848 if (re->dop & DW_M) 6849 dump_dwarf_macinfo(re); 6850 if (re->dop & DW_F) 6851 dump_dwarf_frame(re, 0); 6852 else if (re->dop & DW_FF) 6853 dump_dwarf_frame(re, 1); 6854 if (re->dop & DW_S) 6855 dump_dwarf_str(re); 6856 if (re->dop & DW_O) 6857 dump_dwarf_loclist(re); 6858 6859 dwarf_finish(re->dbg, &de); 6860 } 6861 6862 static void 6863 dump_ar(struct readelf *re, int fd) 6864 { 6865 Elf_Arsym *arsym; 6866 Elf_Arhdr *arhdr; 6867 Elf_Cmd cmd; 6868 Elf *e; 6869 size_t sz; 6870 off_t off; 6871 int i; 6872 6873 re->ar = re->elf; 6874 6875 if (re->options & RE_C) { 6876 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6877 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6878 goto process_members; 6879 } 6880 printf("Index of archive %s: (%ju entries)\n", re->filename, 6881 (uintmax_t) sz - 1); 6882 off = 0; 6883 for (i = 0; (size_t) i < sz; i++) { 6884 if (arsym[i].as_name == NULL) 6885 break; 6886 if (arsym[i].as_off != off) { 6887 off = arsym[i].as_off; 6888 if (elf_rand(re->ar, off) != off) { 6889 warnx("elf_rand() failed: %s", 6890 elf_errmsg(-1)); 6891 continue; 6892 } 6893 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6894 NULL) { 6895 warnx("elf_begin() failed: %s", 6896 elf_errmsg(-1)); 6897 continue; 6898 } 6899 if ((arhdr = elf_getarhdr(e)) == NULL) { 6900 warnx("elf_getarhdr() failed: %s", 6901 elf_errmsg(-1)); 6902 elf_end(e); 6903 continue; 6904 } 6905 printf("Binary %s(%s) contains:\n", 6906 re->filename, arhdr->ar_name); 6907 } 6908 printf("\t%s\n", arsym[i].as_name); 6909 } 6910 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6911 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6912 return; 6913 } 6914 } 6915 6916 process_members: 6917 6918 if ((re->options & ~RE_C) == 0) 6919 return; 6920 6921 cmd = ELF_C_READ; 6922 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6923 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6924 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6925 goto next_member; 6926 } 6927 if (strcmp(arhdr->ar_name, "/") == 0 || 6928 strcmp(arhdr->ar_name, "//") == 0 || 6929 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6930 goto next_member; 6931 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6932 dump_elf(re); 6933 6934 next_member: 6935 cmd = elf_next(re->elf); 6936 elf_end(re->elf); 6937 } 6938 re->elf = re->ar; 6939 } 6940 6941 static void 6942 dump_object(struct readelf *re) 6943 { 6944 int fd; 6945 6946 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6947 warn("open %s failed", re->filename); 6948 return; 6949 } 6950 6951 if ((re->flags & DISPLAY_FILENAME) != 0) 6952 printf("\nFile: %s\n", re->filename); 6953 6954 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6955 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6956 return; 6957 } 6958 6959 switch (elf_kind(re->elf)) { 6960 case ELF_K_NONE: 6961 warnx("Not an ELF file."); 6962 return; 6963 case ELF_K_ELF: 6964 dump_elf(re); 6965 break; 6966 case ELF_K_AR: 6967 dump_ar(re, fd); 6968 break; 6969 default: 6970 warnx("Internal: libelf returned unknown elf kind."); 6971 return; 6972 } 6973 6974 elf_end(re->elf); 6975 } 6976 6977 static void 6978 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6979 { 6980 struct dumpop *d; 6981 6982 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6983 if ((d = calloc(1, sizeof(*d))) == NULL) 6984 err(EXIT_FAILURE, "calloc failed"); 6985 if (t == DUMP_BY_INDEX) 6986 d->u.si = si; 6987 else 6988 d->u.sn = sn; 6989 d->type = t; 6990 d->op = op; 6991 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6992 } else 6993 d->op |= op; 6994 } 6995 6996 static struct dumpop * 6997 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6998 { 6999 struct dumpop *d; 7000 7001 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7002 if ((op == -1 || op & d->op) && 7003 (t == -1 || (unsigned) t == d->type)) { 7004 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7005 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7006 return (d); 7007 } 7008 } 7009 7010 return (NULL); 7011 } 7012 7013 static struct { 7014 const char *ln; 7015 char sn; 7016 int value; 7017 } dwarf_op[] = { 7018 {"rawline", 'l', DW_L}, 7019 {"decodedline", 'L', DW_LL}, 7020 {"info", 'i', DW_I}, 7021 {"abbrev", 'a', DW_A}, 7022 {"pubnames", 'p', DW_P}, 7023 {"aranges", 'r', DW_R}, 7024 {"ranges", 'r', DW_R}, 7025 {"Ranges", 'R', DW_RR}, 7026 {"macro", 'm', DW_M}, 7027 {"frames", 'f', DW_F}, 7028 {"frames-interp", 'F', DW_FF}, 7029 {"str", 's', DW_S}, 7030 {"loc", 'o', DW_O}, 7031 {NULL, 0, 0} 7032 }; 7033 7034 static void 7035 parse_dwarf_op_short(struct readelf *re, const char *op) 7036 { 7037 int i; 7038 7039 if (op == NULL) { 7040 re->dop |= DW_DEFAULT_OPTIONS; 7041 return; 7042 } 7043 7044 for (; *op != '\0'; op++) { 7045 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7046 if (dwarf_op[i].sn == *op) { 7047 re->dop |= dwarf_op[i].value; 7048 break; 7049 } 7050 } 7051 } 7052 } 7053 7054 static void 7055 parse_dwarf_op_long(struct readelf *re, const char *op) 7056 { 7057 char *p, *token, *bp; 7058 int i; 7059 7060 if (op == NULL) { 7061 re->dop |= DW_DEFAULT_OPTIONS; 7062 return; 7063 } 7064 7065 if ((p = strdup(op)) == NULL) 7066 err(EXIT_FAILURE, "strdup failed"); 7067 bp = p; 7068 7069 while ((token = strsep(&p, ",")) != NULL) { 7070 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7071 if (!strcmp(token, dwarf_op[i].ln)) { 7072 re->dop |= dwarf_op[i].value; 7073 break; 7074 } 7075 } 7076 } 7077 7078 free(bp); 7079 } 7080 7081 static uint64_t 7082 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7083 { 7084 uint64_t ret; 7085 uint8_t *src; 7086 7087 src = (uint8_t *) d->d_buf + *offsetp; 7088 7089 ret = 0; 7090 switch (bytes_to_read) { 7091 case 8: 7092 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7093 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7094 case 4: 7095 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7096 case 2: 7097 ret |= ((uint64_t) src[1]) << 8; 7098 case 1: 7099 ret |= src[0]; 7100 break; 7101 default: 7102 return (0); 7103 } 7104 7105 *offsetp += bytes_to_read; 7106 7107 return (ret); 7108 } 7109 7110 static uint64_t 7111 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7112 { 7113 uint64_t ret; 7114 uint8_t *src; 7115 7116 src = (uint8_t *) d->d_buf + *offsetp; 7117 7118 switch (bytes_to_read) { 7119 case 1: 7120 ret = src[0]; 7121 break; 7122 case 2: 7123 ret = src[1] | ((uint64_t) src[0]) << 8; 7124 break; 7125 case 4: 7126 ret = src[3] | ((uint64_t) src[2]) << 8; 7127 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7128 break; 7129 case 8: 7130 ret = src[7] | ((uint64_t) src[6]) << 8; 7131 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7132 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7133 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7134 break; 7135 default: 7136 return (0); 7137 } 7138 7139 *offsetp += bytes_to_read; 7140 7141 return (ret); 7142 } 7143 7144 static uint64_t 7145 _decode_lsb(uint8_t **data, int bytes_to_read) 7146 { 7147 uint64_t ret; 7148 uint8_t *src; 7149 7150 src = *data; 7151 7152 ret = 0; 7153 switch (bytes_to_read) { 7154 case 8: 7155 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7156 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7157 case 4: 7158 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7159 case 2: 7160 ret |= ((uint64_t) src[1]) << 8; 7161 case 1: 7162 ret |= src[0]; 7163 break; 7164 default: 7165 return (0); 7166 } 7167 7168 *data += bytes_to_read; 7169 7170 return (ret); 7171 } 7172 7173 static uint64_t 7174 _decode_msb(uint8_t **data, int bytes_to_read) 7175 { 7176 uint64_t ret; 7177 uint8_t *src; 7178 7179 src = *data; 7180 7181 ret = 0; 7182 switch (bytes_to_read) { 7183 case 1: 7184 ret = src[0]; 7185 break; 7186 case 2: 7187 ret = src[1] | ((uint64_t) src[0]) << 8; 7188 break; 7189 case 4: 7190 ret = src[3] | ((uint64_t) src[2]) << 8; 7191 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7192 break; 7193 case 8: 7194 ret = src[7] | ((uint64_t) src[6]) << 8; 7195 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7196 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7197 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7198 break; 7199 default: 7200 return (0); 7201 break; 7202 } 7203 7204 *data += bytes_to_read; 7205 7206 return (ret); 7207 } 7208 7209 static int64_t 7210 _decode_sleb128(uint8_t **dp) 7211 { 7212 int64_t ret = 0; 7213 uint8_t b; 7214 int shift = 0; 7215 7216 uint8_t *src = *dp; 7217 7218 do { 7219 b = *src++; 7220 ret |= ((b & 0x7f) << shift); 7221 shift += 7; 7222 } while ((b & 0x80) != 0); 7223 7224 if (shift < 32 && (b & 0x40) != 0) 7225 ret |= (-1 << shift); 7226 7227 *dp = src; 7228 7229 return (ret); 7230 } 7231 7232 static uint64_t 7233 _decode_uleb128(uint8_t **dp) 7234 { 7235 uint64_t ret = 0; 7236 uint8_t b; 7237 int shift = 0; 7238 7239 uint8_t *src = *dp; 7240 7241 do { 7242 b = *src++; 7243 ret |= ((b & 0x7f) << shift); 7244 shift += 7; 7245 } while ((b & 0x80) != 0); 7246 7247 *dp = src; 7248 7249 return (ret); 7250 } 7251 7252 static void 7253 readelf_version(void) 7254 { 7255 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7256 elftc_version()); 7257 exit(EXIT_SUCCESS); 7258 } 7259 7260 #define USAGE_MESSAGE "\ 7261 Usage: %s [options] file...\n\ 7262 Display information about ELF objects and ar(1) archives.\n\n\ 7263 Options:\n\ 7264 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7265 -c | --archive-index Print the archive symbol table for archives.\n\ 7266 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7267 -e | --headers Print all headers in the object.\n\ 7268 -g | --section-groups (accepted, but ignored)\n\ 7269 -h | --file-header Print the file header for the object.\n\ 7270 -l | --program-headers Print the PHDR table for the object.\n\ 7271 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7272 -p INDEX | --string-dump=INDEX\n\ 7273 Print the contents of section at index INDEX.\n\ 7274 -r | --relocs Print relocation information.\n\ 7275 -s | --syms | --symbols Print symbol tables.\n\ 7276 -t | --section-details Print additional information about sections.\n\ 7277 -v | --version Print a version identifier and exit.\n\ 7278 -x INDEX | --hex-dump=INDEX\n\ 7279 Display contents of a section as hexadecimal.\n\ 7280 -A | --arch-specific (accepted, but ignored)\n\ 7281 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7282 entry in the \".dynamic\" section.\n\ 7283 -H | --help Print a help message.\n\ 7284 -I | --histogram Print information on bucket list lengths for \n\ 7285 hash sections.\n\ 7286 -N | --full-section-name (accepted, but ignored)\n\ 7287 -S | --sections | --section-headers\n\ 7288 Print information about section headers.\n\ 7289 -V | --version-info Print symbol versoning information.\n\ 7290 -W | --wide Print information without wrapping long lines.\n" 7291 7292 7293 static void 7294 readelf_usage(void) 7295 { 7296 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7297 exit(EXIT_FAILURE); 7298 } 7299 7300 int 7301 main(int argc, char **argv) 7302 { 7303 struct readelf *re, re_storage; 7304 unsigned long si; 7305 int opt, i; 7306 char *ep; 7307 7308 re = &re_storage; 7309 memset(re, 0, sizeof(*re)); 7310 STAILQ_INIT(&re->v_dumpop); 7311 7312 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7313 longopts, NULL)) != -1) { 7314 switch(opt) { 7315 case '?': 7316 readelf_usage(); 7317 break; 7318 case 'A': 7319 re->options |= RE_AA; 7320 break; 7321 case 'a': 7322 re->options |= RE_AA | RE_D | RE_H | RE_II | RE_L | 7323 RE_R | RE_SS | RE_S | RE_VV; 7324 break; 7325 case 'c': 7326 re->options |= RE_C; 7327 break; 7328 case 'D': 7329 re->options |= RE_DD; 7330 break; 7331 case 'd': 7332 re->options |= RE_D; 7333 break; 7334 case 'e': 7335 re->options |= RE_H | RE_L | RE_SS; 7336 break; 7337 case 'g': 7338 re->options |= RE_G; 7339 break; 7340 case 'H': 7341 readelf_usage(); 7342 break; 7343 case 'h': 7344 re->options |= RE_H; 7345 break; 7346 case 'I': 7347 re->options |= RE_II; 7348 break; 7349 case 'i': 7350 /* Not implemented yet. */ 7351 break; 7352 case 'l': 7353 re->options |= RE_L; 7354 break; 7355 case 'N': 7356 re->options |= RE_NN; 7357 break; 7358 case 'n': 7359 re->options |= RE_N; 7360 break; 7361 case 'p': 7362 re->options |= RE_P; 7363 si = strtoul(optarg, &ep, 10); 7364 if (*ep == '\0') 7365 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7366 DUMP_BY_INDEX); 7367 else 7368 add_dumpop(re, 0, optarg, STR_DUMP, 7369 DUMP_BY_NAME); 7370 break; 7371 case 'r': 7372 re->options |= RE_R; 7373 break; 7374 case 'S': 7375 re->options |= RE_SS; 7376 break; 7377 case 's': 7378 re->options |= RE_S; 7379 break; 7380 case 't': 7381 re->options |= RE_T; 7382 break; 7383 case 'u': 7384 re->options |= RE_U; 7385 break; 7386 case 'V': 7387 re->options |= RE_VV; 7388 break; 7389 case 'v': 7390 readelf_version(); 7391 break; 7392 case 'W': 7393 re->options |= RE_WW; 7394 break; 7395 case 'w': 7396 re->options |= RE_W; 7397 parse_dwarf_op_short(re, optarg); 7398 break; 7399 case 'x': 7400 re->options |= RE_X; 7401 si = strtoul(optarg, &ep, 10); 7402 if (*ep == '\0') 7403 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7404 DUMP_BY_INDEX); 7405 else 7406 add_dumpop(re, 0, optarg, HEX_DUMP, 7407 DUMP_BY_NAME); 7408 break; 7409 case OPTION_DEBUG_DUMP: 7410 re->options |= RE_W; 7411 parse_dwarf_op_long(re, optarg); 7412 } 7413 } 7414 7415 argv += optind; 7416 argc -= optind; 7417 7418 if (argc == 0 || re->options == 0) 7419 readelf_usage(); 7420 7421 if (argc > 1) 7422 re->flags |= DISPLAY_FILENAME; 7423 7424 if (elf_version(EV_CURRENT) == EV_NONE) 7425 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7426 elf_errmsg(-1)); 7427 7428 for (i = 0; i < argc; i++) 7429 if (argv[i] != NULL) { 7430 re->filename = argv[i]; 7431 dump_object(re); 7432 } 7433 7434 exit(EXIT_SUCCESS); 7435 } 7436