1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3519 2017-04-09 23:15:58Z kaiwang27 $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_abiflags(struct readelf *re, struct section *s); 300 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 301 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 302 static void dump_mips_options(struct readelf *re, struct section *s); 303 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 304 uint64_t info); 305 static void dump_mips_reginfo(struct readelf *re, struct section *s); 306 static void dump_mips_specific_info(struct readelf *re); 307 static void dump_notes(struct readelf *re); 308 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 309 off_t off); 310 static void dump_svr4_hash(struct section *s); 311 static void dump_svr4_hash64(struct readelf *re, struct section *s); 312 static void dump_gnu_hash(struct readelf *re, struct section *s); 313 static void dump_hash(struct readelf *re); 314 static void dump_phdr(struct readelf *re); 315 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 316 static void dump_section_groups(struct readelf *re); 317 static void dump_symtab(struct readelf *re, int i); 318 static void dump_symtabs(struct readelf *re); 319 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 320 static void dump_ver(struct readelf *re); 321 static void dump_verdef(struct readelf *re, int dump); 322 static void dump_verneed(struct readelf *re, int dump); 323 static void dump_versym(struct readelf *re); 324 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 325 static const char *dwarf_regname(struct readelf *re, unsigned int num); 326 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 327 const char *sn, int op, int t); 328 static int get_ent_count(struct section *s, int *ent_count); 329 static int get_mips_register_size(uint8_t flag); 330 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 331 Dwarf_Addr off); 332 static const char *get_string(struct readelf *re, int strtab, size_t off); 333 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 334 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 335 static void load_sections(struct readelf *re); 336 static const char *mips_abi_fp(uint64_t fp); 337 static const char *note_type(const char *note_name, unsigned int et, 338 unsigned int nt); 339 static const char *note_type_freebsd(unsigned int nt); 340 static const char *note_type_freebsd_core(unsigned int nt); 341 static const char *note_type_linux_core(unsigned int nt); 342 static const char *note_type_gnu(unsigned int nt); 343 static const char *note_type_netbsd(unsigned int nt); 344 static const char *note_type_openbsd(unsigned int nt); 345 static const char *note_type_unknown(unsigned int nt); 346 static const char *note_type_xen(unsigned int nt); 347 static const char *option_kind(uint8_t kind); 348 static const char *phdr_type(unsigned int mach, unsigned int ptype); 349 static const char *ppc_abi_fp(uint64_t fp); 350 static const char *ppc_abi_vector(uint64_t vec); 351 static void readelf_usage(int status); 352 static void readelf_version(void); 353 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 354 Dwarf_Unsigned lowpc); 355 static void search_ver(struct readelf *re); 356 static const char *section_type(unsigned int mach, unsigned int stype); 357 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 358 Dwarf_Half osize, Dwarf_Half ver); 359 static const char *st_bind(unsigned int sbind); 360 static const char *st_shndx(unsigned int shndx); 361 static const char *st_type(unsigned int mach, unsigned int os, 362 unsigned int stype); 363 static const char *st_vis(unsigned int svis); 364 static const char *top_tag(unsigned int tag); 365 static void unload_sections(struct readelf *re); 366 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 369 int bytes_to_read); 370 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 371 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 372 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 373 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 374 375 static struct eflags_desc arm_eflags_desc[] = { 376 {EF_ARM_RELEXEC, "relocatable executable"}, 377 {EF_ARM_HASENTRY, "has entry point"}, 378 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 379 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 380 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 381 {EF_ARM_BE8, "BE8"}, 382 {EF_ARM_LE8, "LE8"}, 383 {EF_ARM_INTERWORK, "interworking enabled"}, 384 {EF_ARM_APCS_26, "uses APCS/26"}, 385 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 386 {EF_ARM_PIC, "position independent"}, 387 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 388 {EF_ARM_NEW_ABI, "uses new ABI"}, 389 {EF_ARM_OLD_ABI, "uses old ABI"}, 390 {EF_ARM_SOFT_FLOAT, "software FP"}, 391 {EF_ARM_VFP_FLOAT, "VFP"}, 392 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 393 {0, NULL} 394 }; 395 396 static struct eflags_desc mips_eflags_desc[] = { 397 {EF_MIPS_NOREORDER, "noreorder"}, 398 {EF_MIPS_PIC, "pic"}, 399 {EF_MIPS_CPIC, "cpic"}, 400 {EF_MIPS_UCODE, "ugen_reserved"}, 401 {EF_MIPS_ABI2, "abi2"}, 402 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 403 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 404 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 405 {0, NULL} 406 }; 407 408 static struct eflags_desc powerpc_eflags_desc[] = { 409 {EF_PPC_EMB, "emb"}, 410 {EF_PPC_RELOCATABLE, "relocatable"}, 411 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 412 {0, NULL} 413 }; 414 415 static struct eflags_desc sparc_eflags_desc[] = { 416 {EF_SPARC_32PLUS, "v8+"}, 417 {EF_SPARC_SUN_US1, "ultrasparcI"}, 418 {EF_SPARC_HAL_R1, "halr1"}, 419 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 420 {0, NULL} 421 }; 422 423 static const char * 424 elf_osabi(unsigned int abi) 425 { 426 static char s_abi[32]; 427 428 switch(abi) { 429 case ELFOSABI_NONE: return "NONE"; 430 case ELFOSABI_HPUX: return "HPUX"; 431 case ELFOSABI_NETBSD: return "NetBSD"; 432 case ELFOSABI_GNU: return "GNU"; 433 case ELFOSABI_HURD: return "HURD"; 434 case ELFOSABI_86OPEN: return "86OPEN"; 435 case ELFOSABI_SOLARIS: return "Solaris"; 436 case ELFOSABI_AIX: return "AIX"; 437 case ELFOSABI_IRIX: return "IRIX"; 438 case ELFOSABI_FREEBSD: return "FreeBSD"; 439 case ELFOSABI_TRU64: return "TRU64"; 440 case ELFOSABI_MODESTO: return "MODESTO"; 441 case ELFOSABI_OPENBSD: return "OpenBSD"; 442 case ELFOSABI_OPENVMS: return "OpenVMS"; 443 case ELFOSABI_NSK: return "NSK"; 444 case ELFOSABI_CLOUDABI: return "CloudABI"; 445 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 446 case ELFOSABI_ARM: return "ARM"; 447 case ELFOSABI_STANDALONE: return "StandAlone"; 448 default: 449 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 450 return (s_abi); 451 } 452 }; 453 454 static const char * 455 elf_machine(unsigned int mach) 456 { 457 static char s_mach[32]; 458 459 switch (mach) { 460 case EM_NONE: return "Unknown machine"; 461 case EM_M32: return "AT&T WE32100"; 462 case EM_SPARC: return "Sun SPARC"; 463 case EM_386: return "Intel i386"; 464 case EM_68K: return "Motorola 68000"; 465 case EM_IAMCU: return "Intel MCU"; 466 case EM_88K: return "Motorola 88000"; 467 case EM_860: return "Intel i860"; 468 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 469 case EM_S370: return "IBM System/370"; 470 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 471 case EM_PARISC: return "HP PA-RISC"; 472 case EM_VPP500: return "Fujitsu VPP500"; 473 case EM_SPARC32PLUS: return "SPARC v8plus"; 474 case EM_960: return "Intel 80960"; 475 case EM_PPC: return "PowerPC 32-bit"; 476 case EM_PPC64: return "PowerPC 64-bit"; 477 case EM_S390: return "IBM System/390"; 478 case EM_V800: return "NEC V800"; 479 case EM_FR20: return "Fujitsu FR20"; 480 case EM_RH32: return "TRW RH-32"; 481 case EM_RCE: return "Motorola RCE"; 482 case EM_ARM: return "ARM"; 483 case EM_SH: return "Hitachi SH"; 484 case EM_SPARCV9: return "SPARC v9 64-bit"; 485 case EM_TRICORE: return "Siemens TriCore embedded processor"; 486 case EM_ARC: return "Argonaut RISC Core"; 487 case EM_H8_300: return "Hitachi H8/300"; 488 case EM_H8_300H: return "Hitachi H8/300H"; 489 case EM_H8S: return "Hitachi H8S"; 490 case EM_H8_500: return "Hitachi H8/500"; 491 case EM_IA_64: return "Intel IA-64 Processor"; 492 case EM_MIPS_X: return "Stanford MIPS-X"; 493 case EM_COLDFIRE: return "Motorola ColdFire"; 494 case EM_68HC12: return "Motorola M68HC12"; 495 case EM_MMA: return "Fujitsu MMA"; 496 case EM_PCP: return "Siemens PCP"; 497 case EM_NCPU: return "Sony nCPU"; 498 case EM_NDR1: return "Denso NDR1 microprocessor"; 499 case EM_STARCORE: return "Motorola Star*Core processor"; 500 case EM_ME16: return "Toyota ME16 processor"; 501 case EM_ST100: return "STMicroelectronics ST100 processor"; 502 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 503 case EM_X86_64: return "Advanced Micro Devices x86-64"; 504 case EM_PDSP: return "Sony DSP Processor"; 505 case EM_FX66: return "Siemens FX66 microcontroller"; 506 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 507 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 508 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 509 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 510 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 511 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 512 case EM_SVX: return "Silicon Graphics SVx"; 513 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 514 case EM_VAX: return "Digital VAX"; 515 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 516 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 517 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 518 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 519 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 520 case EM_HUANY: return "Harvard University MI object files"; 521 case EM_PRISM: return "SiTera Prism"; 522 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 523 case EM_FR30: return "Fujitsu FR30"; 524 case EM_D10V: return "Mitsubishi D10V"; 525 case EM_D30V: return "Mitsubishi D30V"; 526 case EM_V850: return "NEC v850"; 527 case EM_M32R: return "Mitsubishi M32R"; 528 case EM_MN10300: return "Matsushita MN10300"; 529 case EM_MN10200: return "Matsushita MN10200"; 530 case EM_PJ: return "picoJava"; 531 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 532 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 533 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 534 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 535 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 536 case EM_NS32K: return "National Semiconductor 32000 series"; 537 case EM_TPC: return "Tenor Network TPC processor"; 538 case EM_SNP1K: return "Trebia SNP 1000 processor"; 539 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 540 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 541 case EM_MAX: return "MAX Processor"; 542 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 543 case EM_F2MC16: return "Fujitsu F2MC16"; 544 case EM_MSP430: return "TI embedded microcontroller msp430"; 545 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 546 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 547 case EM_SEP: return "Sharp embedded microprocessor"; 548 case EM_ARCA: return "Arca RISC Microprocessor"; 549 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 550 case EM_AARCH64: return "AArch64"; 551 case EM_RISCV: return "RISC-V"; 552 default: 553 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 554 return (s_mach); 555 } 556 557 } 558 559 static const char * 560 elf_class(unsigned int class) 561 { 562 static char s_class[32]; 563 564 switch (class) { 565 case ELFCLASSNONE: return "none"; 566 case ELFCLASS32: return "ELF32"; 567 case ELFCLASS64: return "ELF64"; 568 default: 569 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 570 return (s_class); 571 } 572 } 573 574 static const char * 575 elf_endian(unsigned int endian) 576 { 577 static char s_endian[32]; 578 579 switch (endian) { 580 case ELFDATANONE: return "none"; 581 case ELFDATA2LSB: return "2's complement, little endian"; 582 case ELFDATA2MSB: return "2's complement, big endian"; 583 default: 584 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 585 return (s_endian); 586 } 587 } 588 589 static const char * 590 elf_type(unsigned int type) 591 { 592 static char s_type[32]; 593 594 switch (type) { 595 case ET_NONE: return "NONE (None)"; 596 case ET_REL: return "REL (Relocatable file)"; 597 case ET_EXEC: return "EXEC (Executable file)"; 598 case ET_DYN: return "DYN (Shared object file)"; 599 case ET_CORE: return "CORE (Core file)"; 600 default: 601 if (type >= ET_LOPROC) 602 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 603 else if (type >= ET_LOOS && type <= ET_HIOS) 604 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 605 else 606 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 607 type); 608 return (s_type); 609 } 610 } 611 612 static const char * 613 elf_ver(unsigned int ver) 614 { 615 static char s_ver[32]; 616 617 switch (ver) { 618 case EV_CURRENT: return "(current)"; 619 case EV_NONE: return "(none)"; 620 default: 621 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 622 ver); 623 return (s_ver); 624 } 625 } 626 627 static const char * 628 phdr_type(unsigned int mach, unsigned int ptype) 629 { 630 static char s_ptype[32]; 631 632 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 633 switch (mach) { 634 case EM_ARM: 635 switch (ptype) { 636 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 637 case PT_ARM_EXIDX: return "ARM_EXIDX"; 638 } 639 break; 640 } 641 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 642 ptype - PT_LOPROC); 643 return (s_ptype); 644 } 645 646 switch (ptype) { 647 case PT_NULL: return "NULL"; 648 case PT_LOAD: return "LOAD"; 649 case PT_DYNAMIC: return "DYNAMIC"; 650 case PT_INTERP: return "INTERP"; 651 case PT_NOTE: return "NOTE"; 652 case PT_SHLIB: return "SHLIB"; 653 case PT_PHDR: return "PHDR"; 654 case PT_TLS: return "TLS"; 655 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 656 case PT_GNU_STACK: return "GNU_STACK"; 657 case PT_GNU_RELRO: return "GNU_RELRO"; 658 default: 659 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 660 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 661 ptype - PT_LOOS); 662 else 663 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 664 ptype); 665 return (s_ptype); 666 } 667 } 668 669 static const char * 670 section_type(unsigned int mach, unsigned int stype) 671 { 672 static char s_stype[32]; 673 674 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 675 switch (mach) { 676 case EM_ARM: 677 switch (stype) { 678 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 679 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 680 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 681 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 682 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 683 } 684 break; 685 case EM_X86_64: 686 switch (stype) { 687 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 688 default: 689 break; 690 } 691 break; 692 case EM_MIPS: 693 case EM_MIPS_RS3_LE: 694 switch (stype) { 695 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 696 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 697 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 698 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 699 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 700 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 701 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 702 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 703 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 704 case SHT_MIPS_RELD: return "MIPS_RELD"; 705 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 706 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 707 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 708 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 709 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 710 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 711 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 712 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 713 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 714 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 715 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 716 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 717 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 718 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 719 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 720 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 721 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 722 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 723 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 724 default: 725 break; 726 } 727 break; 728 default: 729 break; 730 } 731 732 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 733 stype - SHT_LOPROC); 734 return (s_stype); 735 } 736 737 switch (stype) { 738 case SHT_NULL: return "NULL"; 739 case SHT_PROGBITS: return "PROGBITS"; 740 case SHT_SYMTAB: return "SYMTAB"; 741 case SHT_STRTAB: return "STRTAB"; 742 case SHT_RELA: return "RELA"; 743 case SHT_HASH: return "HASH"; 744 case SHT_DYNAMIC: return "DYNAMIC"; 745 case SHT_NOTE: return "NOTE"; 746 case SHT_NOBITS: return "NOBITS"; 747 case SHT_REL: return "REL"; 748 case SHT_SHLIB: return "SHLIB"; 749 case SHT_DYNSYM: return "DYNSYM"; 750 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 751 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 752 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 753 case SHT_GROUP: return "GROUP"; 754 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 755 case SHT_SUNW_dof: return "SUNW_dof"; 756 case SHT_SUNW_cap: return "SUNW_cap"; 757 case SHT_GNU_HASH: return "GNU_HASH"; 758 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 759 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 760 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 761 case SHT_SUNW_move: return "SUNW_move"; 762 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 763 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 764 case SHT_SUNW_verdef: return "SUNW_verdef"; 765 case SHT_SUNW_verneed: return "SUNW_verneed"; 766 case SHT_SUNW_versym: return "SUNW_versym"; 767 default: 768 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 769 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 770 stype - SHT_LOOS); 771 else if (stype >= SHT_LOUSER) 772 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 773 stype - SHT_LOUSER); 774 else 775 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 776 stype); 777 return (s_stype); 778 } 779 } 780 781 static const char * 782 dt_type(unsigned int mach, unsigned int dtype) 783 { 784 static char s_dtype[32]; 785 786 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 787 switch (mach) { 788 case EM_ARM: 789 switch (dtype) { 790 case DT_ARM_SYMTABSZ: 791 return "ARM_SYMTABSZ"; 792 default: 793 break; 794 } 795 break; 796 case EM_MIPS: 797 case EM_MIPS_RS3_LE: 798 switch (dtype) { 799 case DT_MIPS_RLD_VERSION: 800 return "MIPS_RLD_VERSION"; 801 case DT_MIPS_TIME_STAMP: 802 return "MIPS_TIME_STAMP"; 803 case DT_MIPS_ICHECKSUM: 804 return "MIPS_ICHECKSUM"; 805 case DT_MIPS_IVERSION: 806 return "MIPS_IVERSION"; 807 case DT_MIPS_FLAGS: 808 return "MIPS_FLAGS"; 809 case DT_MIPS_BASE_ADDRESS: 810 return "MIPS_BASE_ADDRESS"; 811 case DT_MIPS_CONFLICT: 812 return "MIPS_CONFLICT"; 813 case DT_MIPS_LIBLIST: 814 return "MIPS_LIBLIST"; 815 case DT_MIPS_LOCAL_GOTNO: 816 return "MIPS_LOCAL_GOTNO"; 817 case DT_MIPS_CONFLICTNO: 818 return "MIPS_CONFLICTNO"; 819 case DT_MIPS_LIBLISTNO: 820 return "MIPS_LIBLISTNO"; 821 case DT_MIPS_SYMTABNO: 822 return "MIPS_SYMTABNO"; 823 case DT_MIPS_UNREFEXTNO: 824 return "MIPS_UNREFEXTNO"; 825 case DT_MIPS_GOTSYM: 826 return "MIPS_GOTSYM"; 827 case DT_MIPS_HIPAGENO: 828 return "MIPS_HIPAGENO"; 829 case DT_MIPS_RLD_MAP: 830 return "MIPS_RLD_MAP"; 831 case DT_MIPS_DELTA_CLASS: 832 return "MIPS_DELTA_CLASS"; 833 case DT_MIPS_DELTA_CLASS_NO: 834 return "MIPS_DELTA_CLASS_NO"; 835 case DT_MIPS_DELTA_INSTANCE: 836 return "MIPS_DELTA_INSTANCE"; 837 case DT_MIPS_DELTA_INSTANCE_NO: 838 return "MIPS_DELTA_INSTANCE_NO"; 839 case DT_MIPS_DELTA_RELOC: 840 return "MIPS_DELTA_RELOC"; 841 case DT_MIPS_DELTA_RELOC_NO: 842 return "MIPS_DELTA_RELOC_NO"; 843 case DT_MIPS_DELTA_SYM: 844 return "MIPS_DELTA_SYM"; 845 case DT_MIPS_DELTA_SYM_NO: 846 return "MIPS_DELTA_SYM_NO"; 847 case DT_MIPS_DELTA_CLASSSYM: 848 return "MIPS_DELTA_CLASSSYM"; 849 case DT_MIPS_DELTA_CLASSSYM_NO: 850 return "MIPS_DELTA_CLASSSYM_NO"; 851 case DT_MIPS_CXX_FLAGS: 852 return "MIPS_CXX_FLAGS"; 853 case DT_MIPS_PIXIE_INIT: 854 return "MIPS_PIXIE_INIT"; 855 case DT_MIPS_SYMBOL_LIB: 856 return "MIPS_SYMBOL_LIB"; 857 case DT_MIPS_LOCALPAGE_GOTIDX: 858 return "MIPS_LOCALPAGE_GOTIDX"; 859 case DT_MIPS_LOCAL_GOTIDX: 860 return "MIPS_LOCAL_GOTIDX"; 861 case DT_MIPS_HIDDEN_GOTIDX: 862 return "MIPS_HIDDEN_GOTIDX"; 863 case DT_MIPS_PROTECTED_GOTIDX: 864 return "MIPS_PROTECTED_GOTIDX"; 865 case DT_MIPS_OPTIONS: 866 return "MIPS_OPTIONS"; 867 case DT_MIPS_INTERFACE: 868 return "MIPS_INTERFACE"; 869 case DT_MIPS_DYNSTR_ALIGN: 870 return "MIPS_DYNSTR_ALIGN"; 871 case DT_MIPS_INTERFACE_SIZE: 872 return "MIPS_INTERFACE_SIZE"; 873 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 874 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 875 case DT_MIPS_PERF_SUFFIX: 876 return "MIPS_PERF_SUFFIX"; 877 case DT_MIPS_COMPACT_SIZE: 878 return "MIPS_COMPACT_SIZE"; 879 case DT_MIPS_GP_VALUE: 880 return "MIPS_GP_VALUE"; 881 case DT_MIPS_AUX_DYNAMIC: 882 return "MIPS_AUX_DYNAMIC"; 883 case DT_MIPS_PLTGOT: 884 return "MIPS_PLTGOT"; 885 case DT_MIPS_RLD_OBJ_UPDATE: 886 return "MIPS_RLD_OBJ_UPDATE"; 887 case DT_MIPS_RWPLT: 888 return "MIPS_RWPLT"; 889 default: 890 break; 891 } 892 break; 893 case EM_SPARC: 894 case EM_SPARC32PLUS: 895 case EM_SPARCV9: 896 switch (dtype) { 897 case DT_SPARC_REGISTER: 898 return "DT_SPARC_REGISTER"; 899 default: 900 break; 901 } 902 break; 903 default: 904 break; 905 } 906 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 907 return (s_dtype); 908 } 909 910 switch (dtype) { 911 case DT_NULL: return "NULL"; 912 case DT_NEEDED: return "NEEDED"; 913 case DT_PLTRELSZ: return "PLTRELSZ"; 914 case DT_PLTGOT: return "PLTGOT"; 915 case DT_HASH: return "HASH"; 916 case DT_STRTAB: return "STRTAB"; 917 case DT_SYMTAB: return "SYMTAB"; 918 case DT_RELA: return "RELA"; 919 case DT_RELASZ: return "RELASZ"; 920 case DT_RELAENT: return "RELAENT"; 921 case DT_STRSZ: return "STRSZ"; 922 case DT_SYMENT: return "SYMENT"; 923 case DT_INIT: return "INIT"; 924 case DT_FINI: return "FINI"; 925 case DT_SONAME: return "SONAME"; 926 case DT_RPATH: return "RPATH"; 927 case DT_SYMBOLIC: return "SYMBOLIC"; 928 case DT_REL: return "REL"; 929 case DT_RELSZ: return "RELSZ"; 930 case DT_RELENT: return "RELENT"; 931 case DT_PLTREL: return "PLTREL"; 932 case DT_DEBUG: return "DEBUG"; 933 case DT_TEXTREL: return "TEXTREL"; 934 case DT_JMPREL: return "JMPREL"; 935 case DT_BIND_NOW: return "BIND_NOW"; 936 case DT_INIT_ARRAY: return "INIT_ARRAY"; 937 case DT_FINI_ARRAY: return "FINI_ARRAY"; 938 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 939 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 940 case DT_RUNPATH: return "RUNPATH"; 941 case DT_FLAGS: return "FLAGS"; 942 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 943 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 944 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 945 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 946 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 947 case DT_SUNW_FILTER: return "SUNW_FILTER"; 948 case DT_SUNW_CAP: return "SUNW_CAP"; 949 case DT_CHECKSUM: return "CHECKSUM"; 950 case DT_PLTPADSZ: return "PLTPADSZ"; 951 case DT_MOVEENT: return "MOVEENT"; 952 case DT_MOVESZ: return "MOVESZ"; 953 case DT_FEATURE: return "FEATURE"; 954 case DT_POSFLAG_1: return "POSFLAG_1"; 955 case DT_SYMINSZ: return "SYMINSZ"; 956 case DT_SYMINENT: return "SYMINENT"; 957 case DT_GNU_HASH: return "GNU_HASH"; 958 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 959 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 960 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 961 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 962 case DT_CONFIG: return "CONFIG"; 963 case DT_DEPAUDIT: return "DEPAUDIT"; 964 case DT_AUDIT: return "AUDIT"; 965 case DT_PLTPAD: return "PLTPAD"; 966 case DT_MOVETAB: return "MOVETAB"; 967 case DT_SYMINFO: return "SYMINFO"; 968 case DT_VERSYM: return "VERSYM"; 969 case DT_RELACOUNT: return "RELACOUNT"; 970 case DT_RELCOUNT: return "RELCOUNT"; 971 case DT_FLAGS_1: return "FLAGS_1"; 972 case DT_VERDEF: return "VERDEF"; 973 case DT_VERDEFNUM: return "VERDEFNUM"; 974 case DT_VERNEED: return "VERNEED"; 975 case DT_VERNEEDNUM: return "VERNEEDNUM"; 976 case DT_AUXILIARY: return "AUXILIARY"; 977 case DT_USED: return "USED"; 978 case DT_FILTER: return "FILTER"; 979 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 980 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 981 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 982 default: 983 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 984 return (s_dtype); 985 } 986 } 987 988 static const char * 989 st_bind(unsigned int sbind) 990 { 991 static char s_sbind[32]; 992 993 switch (sbind) { 994 case STB_LOCAL: return "LOCAL"; 995 case STB_GLOBAL: return "GLOBAL"; 996 case STB_WEAK: return "WEAK"; 997 case STB_GNU_UNIQUE: return "UNIQUE"; 998 default: 999 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 1000 return "OS"; 1001 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1002 return "PROC"; 1003 else 1004 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1005 sbind); 1006 return (s_sbind); 1007 } 1008 } 1009 1010 static const char * 1011 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1012 { 1013 static char s_stype[32]; 1014 1015 switch (stype) { 1016 case STT_NOTYPE: return "NOTYPE"; 1017 case STT_OBJECT: return "OBJECT"; 1018 case STT_FUNC: return "FUNC"; 1019 case STT_SECTION: return "SECTION"; 1020 case STT_FILE: return "FILE"; 1021 case STT_COMMON: return "COMMON"; 1022 case STT_TLS: return "TLS"; 1023 default: 1024 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1025 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1026 stype == STT_GNU_IFUNC) 1027 return "IFUNC"; 1028 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1029 stype - STT_LOOS); 1030 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1031 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1032 return "REGISTER"; 1033 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1034 stype - STT_LOPROC); 1035 } else 1036 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1037 stype); 1038 return (s_stype); 1039 } 1040 } 1041 1042 static const char * 1043 st_vis(unsigned int svis) 1044 { 1045 static char s_svis[32]; 1046 1047 switch(svis) { 1048 case STV_DEFAULT: return "DEFAULT"; 1049 case STV_INTERNAL: return "INTERNAL"; 1050 case STV_HIDDEN: return "HIDDEN"; 1051 case STV_PROTECTED: return "PROTECTED"; 1052 default: 1053 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1054 return (s_svis); 1055 } 1056 } 1057 1058 static const char * 1059 st_shndx(unsigned int shndx) 1060 { 1061 static char s_shndx[32]; 1062 1063 switch (shndx) { 1064 case SHN_UNDEF: return "UND"; 1065 case SHN_ABS: return "ABS"; 1066 case SHN_COMMON: return "COM"; 1067 default: 1068 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1069 return "PRC"; 1070 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1071 return "OS"; 1072 else 1073 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1074 return (s_shndx); 1075 } 1076 } 1077 1078 static struct { 1079 const char *ln; 1080 char sn; 1081 int value; 1082 } section_flag[] = { 1083 {"WRITE", 'W', SHF_WRITE}, 1084 {"ALLOC", 'A', SHF_ALLOC}, 1085 {"EXEC", 'X', SHF_EXECINSTR}, 1086 {"MERGE", 'M', SHF_MERGE}, 1087 {"STRINGS", 'S', SHF_STRINGS}, 1088 {"INFO LINK", 'I', SHF_INFO_LINK}, 1089 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1090 {"GROUP", 'G', SHF_GROUP}, 1091 {"TLS", 'T', SHF_TLS}, 1092 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1093 {NULL, 0, 0} 1094 }; 1095 1096 static const char * 1097 note_type(const char *name, unsigned int et, unsigned int nt) 1098 { 1099 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1100 et == ET_CORE) 1101 return note_type_linux_core(nt); 1102 else if (strcmp(name, "FreeBSD") == 0) 1103 if (et == ET_CORE) 1104 return note_type_freebsd_core(nt); 1105 else 1106 return note_type_freebsd(nt); 1107 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1108 return note_type_gnu(nt); 1109 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1110 return note_type_netbsd(nt); 1111 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1112 return note_type_openbsd(nt); 1113 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1114 return note_type_xen(nt); 1115 return note_type_unknown(nt); 1116 } 1117 1118 static const char * 1119 note_type_freebsd(unsigned int nt) 1120 { 1121 switch (nt) { 1122 case 1: return "NT_FREEBSD_ABI_TAG"; 1123 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1124 case 3: return "NT_FREEBSD_ARCH_TAG"; 1125 default: return (note_type_unknown(nt)); 1126 } 1127 } 1128 1129 static const char * 1130 note_type_freebsd_core(unsigned int nt) 1131 { 1132 switch (nt) { 1133 case 1: return "NT_PRSTATUS"; 1134 case 2: return "NT_FPREGSET"; 1135 case 3: return "NT_PRPSINFO"; 1136 case 7: return "NT_THRMISC"; 1137 case 8: return "NT_PROCSTAT_PROC"; 1138 case 9: return "NT_PROCSTAT_FILES"; 1139 case 10: return "NT_PROCSTAT_VMMAP"; 1140 case 11: return "NT_PROCSTAT_GROUPS"; 1141 case 12: return "NT_PROCSTAT_UMASK"; 1142 case 13: return "NT_PROCSTAT_RLIMIT"; 1143 case 14: return "NT_PROCSTAT_OSREL"; 1144 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1145 case 16: return "NT_PROCSTAT_AUXV"; 1146 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1147 default: return (note_type_unknown(nt)); 1148 } 1149 } 1150 1151 static const char * 1152 note_type_linux_core(unsigned int nt) 1153 { 1154 switch (nt) { 1155 case 1: return "NT_PRSTATUS (Process status)"; 1156 case 2: return "NT_FPREGSET (Floating point information)"; 1157 case 3: return "NT_PRPSINFO (Process information)"; 1158 case 4: return "NT_TASKSTRUCT (Task structure)"; 1159 case 6: return "NT_AUXV (Auxiliary vector)"; 1160 case 10: return "NT_PSTATUS (Linux process status)"; 1161 case 12: return "NT_FPREGS (Linux floating point regset)"; 1162 case 13: return "NT_PSINFO (Linux process information)"; 1163 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1164 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1165 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1166 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1167 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1168 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1169 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1170 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1171 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1172 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1173 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1174 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1175 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1176 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1177 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1178 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1179 default: return (note_type_unknown(nt)); 1180 } 1181 } 1182 1183 static const char * 1184 note_type_gnu(unsigned int nt) 1185 { 1186 switch (nt) { 1187 case 1: return "NT_GNU_ABI_TAG"; 1188 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1189 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1190 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1191 default: return (note_type_unknown(nt)); 1192 } 1193 } 1194 1195 static const char * 1196 note_type_netbsd(unsigned int nt) 1197 { 1198 switch (nt) { 1199 case 1: return "NT_NETBSD_IDENT"; 1200 default: return (note_type_unknown(nt)); 1201 } 1202 } 1203 1204 static const char * 1205 note_type_openbsd(unsigned int nt) 1206 { 1207 switch (nt) { 1208 case 1: return "NT_OPENBSD_IDENT"; 1209 default: return (note_type_unknown(nt)); 1210 } 1211 } 1212 1213 static const char * 1214 note_type_unknown(unsigned int nt) 1215 { 1216 static char s_nt[32]; 1217 1218 snprintf(s_nt, sizeof(s_nt), 1219 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1220 return (s_nt); 1221 } 1222 1223 static const char * 1224 note_type_xen(unsigned int nt) 1225 { 1226 switch (nt) { 1227 case 0: return "XEN_ELFNOTE_INFO"; 1228 case 1: return "XEN_ELFNOTE_ENTRY"; 1229 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1230 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1231 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1232 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1233 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1234 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1235 case 8: return "XEN_ELFNOTE_LOADER"; 1236 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1237 case 10: return "XEN_ELFNOTE_FEATURES"; 1238 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1239 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1240 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1241 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1242 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1243 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1244 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1245 default: return (note_type_unknown(nt)); 1246 } 1247 } 1248 1249 static struct { 1250 const char *name; 1251 int value; 1252 } l_flag[] = { 1253 {"EXACT_MATCH", LL_EXACT_MATCH}, 1254 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1255 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1256 {"EXPORTS", LL_EXPORTS}, 1257 {"DELAY_LOAD", LL_DELAY_LOAD}, 1258 {"DELTA", LL_DELTA}, 1259 {NULL, 0} 1260 }; 1261 1262 static struct mips_option mips_exceptions_option[] = { 1263 {OEX_PAGE0, "PAGE0"}, 1264 {OEX_SMM, "SMM"}, 1265 {OEX_PRECISEFP, "PRECISEFP"}, 1266 {OEX_DISMISS, "DISMISS"}, 1267 {0, NULL} 1268 }; 1269 1270 static struct mips_option mips_pad_option[] = { 1271 {OPAD_PREFIX, "PREFIX"}, 1272 {OPAD_POSTFIX, "POSTFIX"}, 1273 {OPAD_SYMBOL, "SYMBOL"}, 1274 {0, NULL} 1275 }; 1276 1277 static struct mips_option mips_hwpatch_option[] = { 1278 {OHW_R4KEOP, "R4KEOP"}, 1279 {OHW_R8KPFETCH, "R8KPFETCH"}, 1280 {OHW_R5KEOP, "R5KEOP"}, 1281 {OHW_R5KCVTL, "R5KCVTL"}, 1282 {0, NULL} 1283 }; 1284 1285 static struct mips_option mips_hwa_option[] = { 1286 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1287 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1288 {0, NULL} 1289 }; 1290 1291 static struct mips_option mips_hwo_option[] = { 1292 {OHWO0_FIXADE, "FIXADE"}, 1293 {0, NULL} 1294 }; 1295 1296 static const char * 1297 option_kind(uint8_t kind) 1298 { 1299 static char s_kind[32]; 1300 1301 switch (kind) { 1302 case ODK_NULL: return "NULL"; 1303 case ODK_REGINFO: return "REGINFO"; 1304 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1305 case ODK_PAD: return "PAD"; 1306 case ODK_HWPATCH: return "HWPATCH"; 1307 case ODK_FILL: return "FILL"; 1308 case ODK_TAGS: return "TAGS"; 1309 case ODK_HWAND: return "HWAND"; 1310 case ODK_HWOR: return "HWOR"; 1311 case ODK_GP_GROUP: return "GP_GROUP"; 1312 case ODK_IDENT: return "IDENT"; 1313 default: 1314 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1315 return (s_kind); 1316 } 1317 } 1318 1319 static const char * 1320 top_tag(unsigned int tag) 1321 { 1322 static char s_top_tag[32]; 1323 1324 switch (tag) { 1325 case 1: return "File Attributes"; 1326 case 2: return "Section Attributes"; 1327 case 3: return "Symbol Attributes"; 1328 default: 1329 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1330 return (s_top_tag); 1331 } 1332 } 1333 1334 static const char * 1335 aeabi_cpu_arch(uint64_t arch) 1336 { 1337 static char s_cpu_arch[32]; 1338 1339 switch (arch) { 1340 case 0: return "Pre-V4"; 1341 case 1: return "ARM v4"; 1342 case 2: return "ARM v4T"; 1343 case 3: return "ARM v5T"; 1344 case 4: return "ARM v5TE"; 1345 case 5: return "ARM v5TEJ"; 1346 case 6: return "ARM v6"; 1347 case 7: return "ARM v6KZ"; 1348 case 8: return "ARM v6T2"; 1349 case 9: return "ARM v6K"; 1350 case 10: return "ARM v7"; 1351 case 11: return "ARM v6-M"; 1352 case 12: return "ARM v6S-M"; 1353 case 13: return "ARM v7E-M"; 1354 default: 1355 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1356 "Unknown (%ju)", (uintmax_t) arch); 1357 return (s_cpu_arch); 1358 } 1359 } 1360 1361 static const char * 1362 aeabi_cpu_arch_profile(uint64_t pf) 1363 { 1364 static char s_arch_profile[32]; 1365 1366 switch (pf) { 1367 case 0: 1368 return "Not applicable"; 1369 case 0x41: /* 'A' */ 1370 return "Application Profile"; 1371 case 0x52: /* 'R' */ 1372 return "Real-Time Profile"; 1373 case 0x4D: /* 'M' */ 1374 return "Microcontroller Profile"; 1375 case 0x53: /* 'S' */ 1376 return "Application or Real-Time Profile"; 1377 default: 1378 snprintf(s_arch_profile, sizeof(s_arch_profile), 1379 "Unknown (%ju)\n", (uintmax_t) pf); 1380 return (s_arch_profile); 1381 } 1382 } 1383 1384 static const char * 1385 aeabi_arm_isa(uint64_t ai) 1386 { 1387 static char s_ai[32]; 1388 1389 switch (ai) { 1390 case 0: return "No"; 1391 case 1: return "Yes"; 1392 default: 1393 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1394 (uintmax_t) ai); 1395 return (s_ai); 1396 } 1397 } 1398 1399 static const char * 1400 aeabi_thumb_isa(uint64_t ti) 1401 { 1402 static char s_ti[32]; 1403 1404 switch (ti) { 1405 case 0: return "No"; 1406 case 1: return "16-bit Thumb"; 1407 case 2: return "32-bit Thumb"; 1408 default: 1409 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1410 (uintmax_t) ti); 1411 return (s_ti); 1412 } 1413 } 1414 1415 static const char * 1416 aeabi_fp_arch(uint64_t fp) 1417 { 1418 static char s_fp_arch[32]; 1419 1420 switch (fp) { 1421 case 0: return "No"; 1422 case 1: return "VFPv1"; 1423 case 2: return "VFPv2"; 1424 case 3: return "VFPv3"; 1425 case 4: return "VFPv3-D16"; 1426 case 5: return "VFPv4"; 1427 case 6: return "VFPv4-D16"; 1428 default: 1429 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1430 (uintmax_t) fp); 1431 return (s_fp_arch); 1432 } 1433 } 1434 1435 static const char * 1436 aeabi_wmmx_arch(uint64_t wmmx) 1437 { 1438 static char s_wmmx[32]; 1439 1440 switch (wmmx) { 1441 case 0: return "No"; 1442 case 1: return "WMMXv1"; 1443 case 2: return "WMMXv2"; 1444 default: 1445 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1446 (uintmax_t) wmmx); 1447 return (s_wmmx); 1448 } 1449 } 1450 1451 static const char * 1452 aeabi_adv_simd_arch(uint64_t simd) 1453 { 1454 static char s_simd[32]; 1455 1456 switch (simd) { 1457 case 0: return "No"; 1458 case 1: return "NEONv1"; 1459 case 2: return "NEONv2"; 1460 default: 1461 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1462 (uintmax_t) simd); 1463 return (s_simd); 1464 } 1465 } 1466 1467 static const char * 1468 aeabi_pcs_config(uint64_t pcs) 1469 { 1470 static char s_pcs[32]; 1471 1472 switch (pcs) { 1473 case 0: return "None"; 1474 case 1: return "Bare platform"; 1475 case 2: return "Linux"; 1476 case 3: return "Linux DSO"; 1477 case 4: return "Palm OS 2004"; 1478 case 5: return "Palm OS (future)"; 1479 case 6: return "Symbian OS 2004"; 1480 case 7: return "Symbian OS (future)"; 1481 default: 1482 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1483 (uintmax_t) pcs); 1484 return (s_pcs); 1485 } 1486 } 1487 1488 static const char * 1489 aeabi_pcs_r9(uint64_t r9) 1490 { 1491 static char s_r9[32]; 1492 1493 switch (r9) { 1494 case 0: return "V6"; 1495 case 1: return "SB"; 1496 case 2: return "TLS pointer"; 1497 case 3: return "Unused"; 1498 default: 1499 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1500 return (s_r9); 1501 } 1502 } 1503 1504 static const char * 1505 aeabi_pcs_rw(uint64_t rw) 1506 { 1507 static char s_rw[32]; 1508 1509 switch (rw) { 1510 case 0: return "Absolute"; 1511 case 1: return "PC-relative"; 1512 case 2: return "SB-relative"; 1513 case 3: return "None"; 1514 default: 1515 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1516 return (s_rw); 1517 } 1518 } 1519 1520 static const char * 1521 aeabi_pcs_ro(uint64_t ro) 1522 { 1523 static char s_ro[32]; 1524 1525 switch (ro) { 1526 case 0: return "Absolute"; 1527 case 1: return "PC-relative"; 1528 case 2: return "None"; 1529 default: 1530 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1531 return (s_ro); 1532 } 1533 } 1534 1535 static const char * 1536 aeabi_pcs_got(uint64_t got) 1537 { 1538 static char s_got[32]; 1539 1540 switch (got) { 1541 case 0: return "None"; 1542 case 1: return "direct"; 1543 case 2: return "indirect via GOT"; 1544 default: 1545 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1546 (uintmax_t) got); 1547 return (s_got); 1548 } 1549 } 1550 1551 static const char * 1552 aeabi_pcs_wchar_t(uint64_t wt) 1553 { 1554 static char s_wt[32]; 1555 1556 switch (wt) { 1557 case 0: return "None"; 1558 case 2: return "wchar_t size 2"; 1559 case 4: return "wchar_t size 4"; 1560 default: 1561 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1562 return (s_wt); 1563 } 1564 } 1565 1566 static const char * 1567 aeabi_enum_size(uint64_t es) 1568 { 1569 static char s_es[32]; 1570 1571 switch (es) { 1572 case 0: return "None"; 1573 case 1: return "smallest"; 1574 case 2: return "32-bit"; 1575 case 3: return "visible 32-bit"; 1576 default: 1577 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1578 return (s_es); 1579 } 1580 } 1581 1582 static const char * 1583 aeabi_align_needed(uint64_t an) 1584 { 1585 static char s_align_n[64]; 1586 1587 switch (an) { 1588 case 0: return "No"; 1589 case 1: return "8-byte align"; 1590 case 2: return "4-byte align"; 1591 case 3: return "Reserved"; 1592 default: 1593 if (an >= 4 && an <= 12) 1594 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1595 " and up to 2^%ju-byte extended align", 1596 (uintmax_t) an); 1597 else 1598 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1599 (uintmax_t) an); 1600 return (s_align_n); 1601 } 1602 } 1603 1604 static const char * 1605 aeabi_align_preserved(uint64_t ap) 1606 { 1607 static char s_align_p[128]; 1608 1609 switch (ap) { 1610 case 0: return "No"; 1611 case 1: return "8-byte align"; 1612 case 2: return "8-byte align and SP % 8 == 0"; 1613 case 3: return "Reserved"; 1614 default: 1615 if (ap >= 4 && ap <= 12) 1616 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1617 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1618 " align", (uintmax_t) ap); 1619 else 1620 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1621 (uintmax_t) ap); 1622 return (s_align_p); 1623 } 1624 } 1625 1626 static const char * 1627 aeabi_fp_rounding(uint64_t fr) 1628 { 1629 static char s_fp_r[32]; 1630 1631 switch (fr) { 1632 case 0: return "Unused"; 1633 case 1: return "Needed"; 1634 default: 1635 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1636 (uintmax_t) fr); 1637 return (s_fp_r); 1638 } 1639 } 1640 1641 static const char * 1642 aeabi_fp_denormal(uint64_t fd) 1643 { 1644 static char s_fp_d[32]; 1645 1646 switch (fd) { 1647 case 0: return "Unused"; 1648 case 1: return "Needed"; 1649 case 2: return "Sign Only"; 1650 default: 1651 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1652 (uintmax_t) fd); 1653 return (s_fp_d); 1654 } 1655 } 1656 1657 static const char * 1658 aeabi_fp_exceptions(uint64_t fe) 1659 { 1660 static char s_fp_e[32]; 1661 1662 switch (fe) { 1663 case 0: return "Unused"; 1664 case 1: return "Needed"; 1665 default: 1666 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1667 (uintmax_t) fe); 1668 return (s_fp_e); 1669 } 1670 } 1671 1672 static const char * 1673 aeabi_fp_user_exceptions(uint64_t fu) 1674 { 1675 static char s_fp_u[32]; 1676 1677 switch (fu) { 1678 case 0: return "Unused"; 1679 case 1: return "Needed"; 1680 default: 1681 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1682 (uintmax_t) fu); 1683 return (s_fp_u); 1684 } 1685 } 1686 1687 static const char * 1688 aeabi_fp_number_model(uint64_t fn) 1689 { 1690 static char s_fp_n[32]; 1691 1692 switch (fn) { 1693 case 0: return "Unused"; 1694 case 1: return "IEEE 754 normal"; 1695 case 2: return "RTABI"; 1696 case 3: return "IEEE 754"; 1697 default: 1698 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1699 (uintmax_t) fn); 1700 return (s_fp_n); 1701 } 1702 } 1703 1704 static const char * 1705 aeabi_fp_16bit_format(uint64_t fp16) 1706 { 1707 static char s_fp_16[64]; 1708 1709 switch (fp16) { 1710 case 0: return "None"; 1711 case 1: return "IEEE 754"; 1712 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1713 default: 1714 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1715 (uintmax_t) fp16); 1716 return (s_fp_16); 1717 } 1718 } 1719 1720 static const char * 1721 aeabi_mpext(uint64_t mp) 1722 { 1723 static char s_mp[32]; 1724 1725 switch (mp) { 1726 case 0: return "Not allowed"; 1727 case 1: return "Allowed"; 1728 default: 1729 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1730 (uintmax_t) mp); 1731 return (s_mp); 1732 } 1733 } 1734 1735 static const char * 1736 aeabi_div(uint64_t du) 1737 { 1738 static char s_du[32]; 1739 1740 switch (du) { 1741 case 0: return "Yes (V7-R/V7-M)"; 1742 case 1: return "No"; 1743 case 2: return "Yes (V7-A)"; 1744 default: 1745 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1746 (uintmax_t) du); 1747 return (s_du); 1748 } 1749 } 1750 1751 static const char * 1752 aeabi_t2ee(uint64_t t2ee) 1753 { 1754 static char s_t2ee[32]; 1755 1756 switch (t2ee) { 1757 case 0: return "Not allowed"; 1758 case 1: return "Allowed"; 1759 default: 1760 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1761 (uintmax_t) t2ee); 1762 return (s_t2ee); 1763 } 1764 1765 } 1766 1767 static const char * 1768 aeabi_hardfp(uint64_t hfp) 1769 { 1770 static char s_hfp[32]; 1771 1772 switch (hfp) { 1773 case 0: return "Tag_FP_arch"; 1774 case 1: return "only SP"; 1775 case 2: return "only DP"; 1776 case 3: return "both SP and DP"; 1777 default: 1778 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1779 (uintmax_t) hfp); 1780 return (s_hfp); 1781 } 1782 } 1783 1784 static const char * 1785 aeabi_vfp_args(uint64_t va) 1786 { 1787 static char s_va[32]; 1788 1789 switch (va) { 1790 case 0: return "AAPCS (base variant)"; 1791 case 1: return "AAPCS (VFP variant)"; 1792 case 2: return "toolchain-specific"; 1793 default: 1794 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1795 return (s_va); 1796 } 1797 } 1798 1799 static const char * 1800 aeabi_wmmx_args(uint64_t wa) 1801 { 1802 static char s_wa[32]; 1803 1804 switch (wa) { 1805 case 0: return "AAPCS (base variant)"; 1806 case 1: return "Intel WMMX"; 1807 case 2: return "toolchain-specific"; 1808 default: 1809 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1810 return (s_wa); 1811 } 1812 } 1813 1814 static const char * 1815 aeabi_unaligned_access(uint64_t ua) 1816 { 1817 static char s_ua[32]; 1818 1819 switch (ua) { 1820 case 0: return "Not allowed"; 1821 case 1: return "Allowed"; 1822 default: 1823 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1824 return (s_ua); 1825 } 1826 } 1827 1828 static const char * 1829 aeabi_fp_hpext(uint64_t fh) 1830 { 1831 static char s_fh[32]; 1832 1833 switch (fh) { 1834 case 0: return "Not allowed"; 1835 case 1: return "Allowed"; 1836 default: 1837 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1838 return (s_fh); 1839 } 1840 } 1841 1842 static const char * 1843 aeabi_optm_goal(uint64_t og) 1844 { 1845 static char s_og[32]; 1846 1847 switch (og) { 1848 case 0: return "None"; 1849 case 1: return "Speed"; 1850 case 2: return "Speed aggressive"; 1851 case 3: return "Space"; 1852 case 4: return "Space aggressive"; 1853 case 5: return "Debugging"; 1854 case 6: return "Best Debugging"; 1855 default: 1856 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1857 return (s_og); 1858 } 1859 } 1860 1861 static const char * 1862 aeabi_fp_optm_goal(uint64_t fog) 1863 { 1864 static char s_fog[32]; 1865 1866 switch (fog) { 1867 case 0: return "None"; 1868 case 1: return "Speed"; 1869 case 2: return "Speed aggressive"; 1870 case 3: return "Space"; 1871 case 4: return "Space aggressive"; 1872 case 5: return "Accurary"; 1873 case 6: return "Best Accurary"; 1874 default: 1875 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1876 (uintmax_t) fog); 1877 return (s_fog); 1878 } 1879 } 1880 1881 static const char * 1882 aeabi_virtual(uint64_t vt) 1883 { 1884 static char s_virtual[64]; 1885 1886 switch (vt) { 1887 case 0: return "No"; 1888 case 1: return "TrustZone"; 1889 case 2: return "Virtualization extension"; 1890 case 3: return "TrustZone and virtualization extension"; 1891 default: 1892 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1893 (uintmax_t) vt); 1894 return (s_virtual); 1895 } 1896 } 1897 1898 static struct { 1899 uint64_t tag; 1900 const char *s_tag; 1901 const char *(*get_desc)(uint64_t val); 1902 } aeabi_tags[] = { 1903 {4, "Tag_CPU_raw_name", NULL}, 1904 {5, "Tag_CPU_name", NULL}, 1905 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1906 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1907 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1908 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1909 {10, "Tag_FP_arch", aeabi_fp_arch}, 1910 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1911 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1912 {13, "Tag_PCS_config", aeabi_pcs_config}, 1913 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1914 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1915 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1916 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1917 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1918 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1919 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1920 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1921 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1922 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1923 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1924 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1925 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1926 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1927 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1928 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1929 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1930 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1931 {32, "Tag_compatibility", NULL}, 1932 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1933 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1934 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1935 {42, "Tag_MPextension_use", aeabi_mpext}, 1936 {44, "Tag_DIV_use", aeabi_div}, 1937 {64, "Tag_nodefaults", NULL}, 1938 {65, "Tag_also_compatible_with", NULL}, 1939 {66, "Tag_T2EE_use", aeabi_t2ee}, 1940 {67, "Tag_conformance", NULL}, 1941 {68, "Tag_Virtualization_use", aeabi_virtual}, 1942 {70, "Tag_MPextension_use", aeabi_mpext}, 1943 }; 1944 1945 static const char * 1946 mips_abi_fp(uint64_t fp) 1947 { 1948 static char s_mips_abi_fp[64]; 1949 1950 switch (fp) { 1951 case 0: return "N/A"; 1952 case 1: return "Hard float (double precision)"; 1953 case 2: return "Hard float (single precision)"; 1954 case 3: return "Soft float"; 1955 case 4: return "64-bit float (-mips32r2 -mfp64)"; 1956 default: 1957 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 1958 (uintmax_t) fp); 1959 return (s_mips_abi_fp); 1960 } 1961 } 1962 1963 static const char * 1964 ppc_abi_fp(uint64_t fp) 1965 { 1966 static char s_ppc_abi_fp[64]; 1967 1968 switch (fp) { 1969 case 0: return "N/A"; 1970 case 1: return "Hard float (double precision)"; 1971 case 2: return "Soft float"; 1972 case 3: return "Hard float (single precision)"; 1973 default: 1974 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 1975 (uintmax_t) fp); 1976 return (s_ppc_abi_fp); 1977 } 1978 } 1979 1980 static const char * 1981 ppc_abi_vector(uint64_t vec) 1982 { 1983 static char s_vec[64]; 1984 1985 switch (vec) { 1986 case 0: return "N/A"; 1987 case 1: return "Generic purpose registers"; 1988 case 2: return "AltiVec registers"; 1989 case 3: return "SPE registers"; 1990 default: 1991 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 1992 return (s_vec); 1993 } 1994 } 1995 1996 static const char * 1997 dwarf_reg(unsigned int mach, unsigned int reg) 1998 { 1999 2000 switch (mach) { 2001 case EM_386: 2002 case EM_IAMCU: 2003 switch (reg) { 2004 case 0: return "eax"; 2005 case 1: return "ecx"; 2006 case 2: return "edx"; 2007 case 3: return "ebx"; 2008 case 4: return "esp"; 2009 case 5: return "ebp"; 2010 case 6: return "esi"; 2011 case 7: return "edi"; 2012 case 8: return "eip"; 2013 case 9: return "eflags"; 2014 case 11: return "st0"; 2015 case 12: return "st1"; 2016 case 13: return "st2"; 2017 case 14: return "st3"; 2018 case 15: return "st4"; 2019 case 16: return "st5"; 2020 case 17: return "st6"; 2021 case 18: return "st7"; 2022 case 21: return "xmm0"; 2023 case 22: return "xmm1"; 2024 case 23: return "xmm2"; 2025 case 24: return "xmm3"; 2026 case 25: return "xmm4"; 2027 case 26: return "xmm5"; 2028 case 27: return "xmm6"; 2029 case 28: return "xmm7"; 2030 case 29: return "mm0"; 2031 case 30: return "mm1"; 2032 case 31: return "mm2"; 2033 case 32: return "mm3"; 2034 case 33: return "mm4"; 2035 case 34: return "mm5"; 2036 case 35: return "mm6"; 2037 case 36: return "mm7"; 2038 case 37: return "fcw"; 2039 case 38: return "fsw"; 2040 case 39: return "mxcsr"; 2041 case 40: return "es"; 2042 case 41: return "cs"; 2043 case 42: return "ss"; 2044 case 43: return "ds"; 2045 case 44: return "fs"; 2046 case 45: return "gs"; 2047 case 48: return "tr"; 2048 case 49: return "ldtr"; 2049 default: return (NULL); 2050 } 2051 case EM_X86_64: 2052 switch (reg) { 2053 case 0: return "rax"; 2054 case 1: return "rdx"; 2055 case 2: return "rcx"; 2056 case 3: return "rbx"; 2057 case 4: return "rsi"; 2058 case 5: return "rdi"; 2059 case 6: return "rbp"; 2060 case 7: return "rsp"; 2061 case 16: return "rip"; 2062 case 17: return "xmm0"; 2063 case 18: return "xmm1"; 2064 case 19: return "xmm2"; 2065 case 20: return "xmm3"; 2066 case 21: return "xmm4"; 2067 case 22: return "xmm5"; 2068 case 23: return "xmm6"; 2069 case 24: return "xmm7"; 2070 case 25: return "xmm8"; 2071 case 26: return "xmm9"; 2072 case 27: return "xmm10"; 2073 case 28: return "xmm11"; 2074 case 29: return "xmm12"; 2075 case 30: return "xmm13"; 2076 case 31: return "xmm14"; 2077 case 32: return "xmm15"; 2078 case 33: return "st0"; 2079 case 34: return "st1"; 2080 case 35: return "st2"; 2081 case 36: return "st3"; 2082 case 37: return "st4"; 2083 case 38: return "st5"; 2084 case 39: return "st6"; 2085 case 40: return "st7"; 2086 case 41: return "mm0"; 2087 case 42: return "mm1"; 2088 case 43: return "mm2"; 2089 case 44: return "mm3"; 2090 case 45: return "mm4"; 2091 case 46: return "mm5"; 2092 case 47: return "mm6"; 2093 case 48: return "mm7"; 2094 case 49: return "rflags"; 2095 case 50: return "es"; 2096 case 51: return "cs"; 2097 case 52: return "ss"; 2098 case 53: return "ds"; 2099 case 54: return "fs"; 2100 case 55: return "gs"; 2101 case 58: return "fs.base"; 2102 case 59: return "gs.base"; 2103 case 62: return "tr"; 2104 case 63: return "ldtr"; 2105 case 64: return "mxcsr"; 2106 case 65: return "fcw"; 2107 case 66: return "fsw"; 2108 default: return (NULL); 2109 } 2110 default: 2111 return (NULL); 2112 } 2113 } 2114 2115 static void 2116 dump_ehdr(struct readelf *re) 2117 { 2118 size_t phnum, shnum, shstrndx; 2119 int i; 2120 2121 printf("ELF Header:\n"); 2122 2123 /* e_ident[]. */ 2124 printf(" Magic: "); 2125 for (i = 0; i < EI_NIDENT; i++) 2126 printf("%.2x ", re->ehdr.e_ident[i]); 2127 putchar('\n'); 2128 2129 /* EI_CLASS. */ 2130 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2131 2132 /* EI_DATA. */ 2133 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2134 2135 /* EI_VERSION. */ 2136 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2137 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2138 2139 /* EI_OSABI. */ 2140 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2141 2142 /* EI_ABIVERSION. */ 2143 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2144 2145 /* e_type. */ 2146 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2147 2148 /* e_machine. */ 2149 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2150 2151 /* e_version. */ 2152 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2153 2154 /* e_entry. */ 2155 printf("%-37s%#jx\n", " Entry point address:", 2156 (uintmax_t)re->ehdr.e_entry); 2157 2158 /* e_phoff. */ 2159 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2160 (uintmax_t)re->ehdr.e_phoff); 2161 2162 /* e_shoff. */ 2163 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2164 (uintmax_t)re->ehdr.e_shoff); 2165 2166 /* e_flags. */ 2167 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2168 dump_eflags(re, re->ehdr.e_flags); 2169 putchar('\n'); 2170 2171 /* e_ehsize. */ 2172 printf("%-37s%u (bytes)\n", " Size of this header:", 2173 re->ehdr.e_ehsize); 2174 2175 /* e_phentsize. */ 2176 printf("%-37s%u (bytes)\n", " Size of program headers:", 2177 re->ehdr.e_phentsize); 2178 2179 /* e_phnum. */ 2180 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2181 if (re->ehdr.e_phnum == PN_XNUM) { 2182 /* Extended program header numbering is in use. */ 2183 if (elf_getphnum(re->elf, &phnum)) 2184 printf(" (%zu)", phnum); 2185 } 2186 putchar('\n'); 2187 2188 /* e_shentsize. */ 2189 printf("%-37s%u (bytes)\n", " Size of section headers:", 2190 re->ehdr.e_shentsize); 2191 2192 /* e_shnum. */ 2193 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2194 if (re->ehdr.e_shnum == SHN_UNDEF) { 2195 /* Extended section numbering is in use. */ 2196 if (elf_getshnum(re->elf, &shnum)) 2197 printf(" (%ju)", (uintmax_t)shnum); 2198 } 2199 putchar('\n'); 2200 2201 /* e_shstrndx. */ 2202 printf("%-37s%u", " Section header string table index:", 2203 re->ehdr.e_shstrndx); 2204 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2205 /* Extended section numbering is in use. */ 2206 if (elf_getshstrndx(re->elf, &shstrndx)) 2207 printf(" (%ju)", (uintmax_t)shstrndx); 2208 } 2209 putchar('\n'); 2210 } 2211 2212 static void 2213 dump_eflags(struct readelf *re, uint64_t e_flags) 2214 { 2215 struct eflags_desc *edesc; 2216 int arm_eabi; 2217 2218 edesc = NULL; 2219 switch (re->ehdr.e_machine) { 2220 case EM_ARM: 2221 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2222 if (arm_eabi == 0) 2223 printf(", GNU EABI"); 2224 else if (arm_eabi <= 5) 2225 printf(", Version%d EABI", arm_eabi); 2226 edesc = arm_eflags_desc; 2227 break; 2228 case EM_MIPS: 2229 case EM_MIPS_RS3_LE: 2230 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2231 case 0: printf(", mips1"); break; 2232 case 1: printf(", mips2"); break; 2233 case 2: printf(", mips3"); break; 2234 case 3: printf(", mips4"); break; 2235 case 4: printf(", mips5"); break; 2236 case 5: printf(", mips32"); break; 2237 case 6: printf(", mips64"); break; 2238 case 7: printf(", mips32r2"); break; 2239 case 8: printf(", mips64r2"); break; 2240 default: break; 2241 } 2242 switch ((e_flags & 0x00FF0000) >> 16) { 2243 case 0x81: printf(", 3900"); break; 2244 case 0x82: printf(", 4010"); break; 2245 case 0x83: printf(", 4100"); break; 2246 case 0x85: printf(", 4650"); break; 2247 case 0x87: printf(", 4120"); break; 2248 case 0x88: printf(", 4111"); break; 2249 case 0x8a: printf(", sb1"); break; 2250 case 0x8b: printf(", octeon"); break; 2251 case 0x8c: printf(", xlr"); break; 2252 case 0x91: printf(", 5400"); break; 2253 case 0x98: printf(", 5500"); break; 2254 case 0x99: printf(", 9000"); break; 2255 case 0xa0: printf(", loongson-2e"); break; 2256 case 0xa1: printf(", loongson-2f"); break; 2257 default: break; 2258 } 2259 switch ((e_flags & 0x0000F000) >> 12) { 2260 case 1: printf(", o32"); break; 2261 case 2: printf(", o64"); break; 2262 case 3: printf(", eabi32"); break; 2263 case 4: printf(", eabi64"); break; 2264 default: break; 2265 } 2266 edesc = mips_eflags_desc; 2267 break; 2268 case EM_PPC: 2269 case EM_PPC64: 2270 edesc = powerpc_eflags_desc; 2271 break; 2272 case EM_SPARC: 2273 case EM_SPARC32PLUS: 2274 case EM_SPARCV9: 2275 switch ((e_flags & EF_SPARCV9_MM)) { 2276 case EF_SPARCV9_TSO: printf(", tso"); break; 2277 case EF_SPARCV9_PSO: printf(", pso"); break; 2278 case EF_SPARCV9_MM: printf(", rmo"); break; 2279 default: break; 2280 } 2281 edesc = sparc_eflags_desc; 2282 break; 2283 default: 2284 break; 2285 } 2286 2287 if (edesc != NULL) { 2288 while (edesc->desc != NULL) { 2289 if (e_flags & edesc->flag) 2290 printf(", %s", edesc->desc); 2291 edesc++; 2292 } 2293 } 2294 } 2295 2296 static void 2297 dump_phdr(struct readelf *re) 2298 { 2299 const char *rawfile; 2300 GElf_Phdr phdr; 2301 size_t phnum, size; 2302 int i, j; 2303 2304 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2305 "MemSiz", "Flg", "Align" 2306 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2307 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2308 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2309 (uintmax_t)phdr.p_memsz, \ 2310 phdr.p_flags & PF_R ? 'R' : ' ', \ 2311 phdr.p_flags & PF_W ? 'W' : ' ', \ 2312 phdr.p_flags & PF_X ? 'E' : ' ', \ 2313 (uintmax_t)phdr.p_align 2314 2315 if (elf_getphnum(re->elf, &phnum) == 0) { 2316 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2317 return; 2318 } 2319 if (phnum == 0) { 2320 printf("\nThere are no program headers in this file.\n"); 2321 return; 2322 } 2323 2324 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2325 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2326 printf("There are %ju program headers, starting at offset %ju\n", 2327 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2328 2329 /* Dump program headers. */ 2330 printf("\nProgram Headers:\n"); 2331 if (re->ec == ELFCLASS32) 2332 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2333 else if (re->options & RE_WW) 2334 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2335 else 2336 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2337 "%-7s%s\n", PH_HDR); 2338 for (i = 0; (size_t) i < phnum; i++) { 2339 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2340 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2341 continue; 2342 } 2343 /* TODO: Add arch-specific segment type dump. */ 2344 if (re->ec == ELFCLASS32) 2345 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2346 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2347 else if (re->options & RE_WW) 2348 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2349 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2350 else 2351 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2352 " 0x%16.16jx 0x%16.16jx %c%c%c" 2353 " %#jx\n", PH_CT); 2354 if (phdr.p_type == PT_INTERP) { 2355 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2356 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2357 continue; 2358 } 2359 if (phdr.p_offset >= size) { 2360 warnx("invalid program header offset"); 2361 continue; 2362 } 2363 printf(" [Requesting program interpreter: %s]\n", 2364 rawfile + phdr.p_offset); 2365 } 2366 } 2367 2368 /* Dump section to segment mapping. */ 2369 if (re->shnum == 0) 2370 return; 2371 printf("\n Section to Segment mapping:\n"); 2372 printf(" Segment Sections...\n"); 2373 for (i = 0; (size_t)i < phnum; i++) { 2374 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2375 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2376 continue; 2377 } 2378 printf(" %2.2d ", i); 2379 /* skip NULL section. */ 2380 for (j = 1; (size_t)j < re->shnum; j++) 2381 if (re->sl[j].addr >= phdr.p_vaddr && 2382 re->sl[j].addr + re->sl[j].sz <= 2383 phdr.p_vaddr + phdr.p_memsz) 2384 printf("%s ", re->sl[j].name); 2385 printf("\n"); 2386 } 2387 #undef PH_HDR 2388 #undef PH_CT 2389 } 2390 2391 static char * 2392 section_flags(struct readelf *re, struct section *s) 2393 { 2394 #define BUF_SZ 256 2395 static char buf[BUF_SZ]; 2396 int i, p, nb; 2397 2398 p = 0; 2399 nb = re->ec == ELFCLASS32 ? 8 : 16; 2400 if (re->options & RE_T) { 2401 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2402 (uintmax_t)s->flags); 2403 p += nb + 4; 2404 } 2405 for (i = 0; section_flag[i].ln != NULL; i++) { 2406 if ((s->flags & section_flag[i].value) == 0) 2407 continue; 2408 if (re->options & RE_T) { 2409 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2410 section_flag[i].ln); 2411 p += strlen(section_flag[i].ln) + 2; 2412 } else 2413 buf[p++] = section_flag[i].sn; 2414 } 2415 if (re->options & RE_T && p > nb + 4) 2416 p -= 2; 2417 buf[p] = '\0'; 2418 2419 return (buf); 2420 } 2421 2422 static void 2423 dump_shdr(struct readelf *re) 2424 { 2425 struct section *s; 2426 int i; 2427 2428 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2429 "Flg", "Lk", "Inf", "Al" 2430 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2431 "EntSize", "Flags", "Link", "Info", "Align" 2432 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2433 "Lk", "Inf", "Al", "Flags" 2434 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2435 "Size", "EntSize", "Info", "Align", "Flags" 2436 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2437 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2438 (uintmax_t)s->entsize, section_flags(re, s), \ 2439 s->link, s->info, (uintmax_t)s->align 2440 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2441 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2442 (uintmax_t)s->entsize, s->link, s->info, \ 2443 (uintmax_t)s->align, section_flags(re, s) 2444 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2445 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2446 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2447 (uintmax_t)s->align, section_flags(re, s) 2448 2449 if (re->shnum == 0) { 2450 printf("\nThere are no sections in this file.\n"); 2451 return; 2452 } 2453 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2454 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2455 printf("\nSection Headers:\n"); 2456 if (re->ec == ELFCLASS32) { 2457 if (re->options & RE_T) 2458 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2459 "%12s\n", ST_HDR); 2460 else 2461 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2462 S_HDR); 2463 } else if (re->options & RE_WW) { 2464 if (re->options & RE_T) 2465 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2466 "%12s\n", ST_HDR); 2467 else 2468 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2469 S_HDR); 2470 } else { 2471 if (re->options & RE_T) 2472 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2473 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2474 else 2475 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2476 "-6s%-6s%s\n", S_HDRL); 2477 } 2478 for (i = 0; (size_t)i < re->shnum; i++) { 2479 s = &re->sl[i]; 2480 if (re->ec == ELFCLASS32) { 2481 if (re->options & RE_T) 2482 printf(" [%2d] %s\n %-15.15s %8.8jx" 2483 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2484 " %s\n", ST_CT); 2485 else 2486 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2487 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2488 S_CT); 2489 } else if (re->options & RE_WW) { 2490 if (re->options & RE_T) 2491 printf(" [%2d] %s\n %-15.15s %16.16jx" 2492 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2493 " %s\n", ST_CT); 2494 else 2495 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2496 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2497 S_CT); 2498 } else { 2499 if (re->options & RE_T) 2500 printf(" [%2d] %s\n %-15.15s %16.16jx" 2501 " %16.16jx %u\n %16.16jx %16.16jx" 2502 " %-16u %ju\n %s\n", ST_CTL); 2503 else 2504 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2505 " %8.8jx\n %16.16jx %16.16jx " 2506 "%3s %2u %3u %ju\n", S_CT); 2507 } 2508 } 2509 if ((re->options & RE_T) == 0) 2510 printf("Key to Flags:\n W (write), A (alloc)," 2511 " X (execute), M (merge), S (strings)\n" 2512 " I (info), L (link order), G (group), x (unknown)\n" 2513 " O (extra OS processing required)" 2514 " o (OS specific), p (processor specific)\n"); 2515 2516 #undef S_HDR 2517 #undef S_HDRL 2518 #undef ST_HDR 2519 #undef ST_HDRL 2520 #undef S_CT 2521 #undef ST_CT 2522 #undef ST_CTL 2523 } 2524 2525 /* 2526 * Return number of entries in the given section. We'd prefer ent_count be a 2527 * size_t *, but libelf APIs already use int for section indices. 2528 */ 2529 static int 2530 get_ent_count(struct section *s, int *ent_count) 2531 { 2532 if (s->entsize == 0) { 2533 warnx("section %s has entry size 0", s->name); 2534 return (0); 2535 } else if (s->sz / s->entsize > INT_MAX) { 2536 warnx("section %s has invalid section count", s->name); 2537 return (0); 2538 } 2539 *ent_count = (int)(s->sz / s->entsize); 2540 return (1); 2541 } 2542 2543 static void 2544 dump_dynamic(struct readelf *re) 2545 { 2546 GElf_Dyn dyn; 2547 Elf_Data *d; 2548 struct section *s; 2549 int elferr, i, is_dynamic, j, jmax, nentries; 2550 2551 is_dynamic = 0; 2552 2553 for (i = 0; (size_t)i < re->shnum; i++) { 2554 s = &re->sl[i]; 2555 if (s->type != SHT_DYNAMIC) 2556 continue; 2557 (void) elf_errno(); 2558 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2559 elferr = elf_errno(); 2560 if (elferr != 0) 2561 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2562 continue; 2563 } 2564 if (d->d_size <= 0) 2565 continue; 2566 2567 is_dynamic = 1; 2568 2569 /* Determine the actual number of table entries. */ 2570 nentries = 0; 2571 if (!get_ent_count(s, &jmax)) 2572 continue; 2573 for (j = 0; j < jmax; j++) { 2574 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2575 warnx("gelf_getdyn failed: %s", 2576 elf_errmsg(-1)); 2577 continue; 2578 } 2579 nentries ++; 2580 if (dyn.d_tag == DT_NULL) 2581 break; 2582 } 2583 2584 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2585 printf(" contains %u entries:\n", nentries); 2586 2587 if (re->ec == ELFCLASS32) 2588 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2589 else 2590 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2591 2592 for (j = 0; j < nentries; j++) { 2593 if (gelf_getdyn(d, j, &dyn) != &dyn) 2594 continue; 2595 /* Dump dynamic entry type. */ 2596 if (re->ec == ELFCLASS32) 2597 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2598 else 2599 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2600 printf(" %-20s", dt_type(re->ehdr.e_machine, 2601 dyn.d_tag)); 2602 /* Dump dynamic entry value. */ 2603 dump_dyn_val(re, &dyn, s->link); 2604 } 2605 } 2606 2607 if (!is_dynamic) 2608 printf("\nThere is no dynamic section in this file.\n"); 2609 } 2610 2611 static char * 2612 timestamp(time_t ti) 2613 { 2614 static char ts[32]; 2615 struct tm *t; 2616 2617 t = gmtime(&ti); 2618 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2619 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2620 t->tm_min, t->tm_sec); 2621 2622 return (ts); 2623 } 2624 2625 static const char * 2626 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2627 { 2628 const char *name; 2629 2630 if (stab == SHN_UNDEF) 2631 name = "ERROR"; 2632 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2633 (void) elf_errno(); /* clear error */ 2634 name = "ERROR"; 2635 } 2636 2637 return (name); 2638 } 2639 2640 static void 2641 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2642 { 2643 const char *name; 2644 2645 switch (re->ehdr.e_machine) { 2646 case EM_MIPS: 2647 case EM_MIPS_RS3_LE: 2648 switch (dyn->d_tag) { 2649 case DT_MIPS_RLD_VERSION: 2650 case DT_MIPS_LOCAL_GOTNO: 2651 case DT_MIPS_CONFLICTNO: 2652 case DT_MIPS_LIBLISTNO: 2653 case DT_MIPS_SYMTABNO: 2654 case DT_MIPS_UNREFEXTNO: 2655 case DT_MIPS_GOTSYM: 2656 case DT_MIPS_HIPAGENO: 2657 case DT_MIPS_DELTA_CLASS_NO: 2658 case DT_MIPS_DELTA_INSTANCE_NO: 2659 case DT_MIPS_DELTA_RELOC_NO: 2660 case DT_MIPS_DELTA_SYM_NO: 2661 case DT_MIPS_DELTA_CLASSSYM_NO: 2662 case DT_MIPS_LOCALPAGE_GOTIDX: 2663 case DT_MIPS_LOCAL_GOTIDX: 2664 case DT_MIPS_HIDDEN_GOTIDX: 2665 case DT_MIPS_PROTECTED_GOTIDX: 2666 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2667 break; 2668 case DT_MIPS_ICHECKSUM: 2669 case DT_MIPS_FLAGS: 2670 case DT_MIPS_BASE_ADDRESS: 2671 case DT_MIPS_CONFLICT: 2672 case DT_MIPS_LIBLIST: 2673 case DT_MIPS_RLD_MAP: 2674 case DT_MIPS_DELTA_CLASS: 2675 case DT_MIPS_DELTA_INSTANCE: 2676 case DT_MIPS_DELTA_RELOC: 2677 case DT_MIPS_DELTA_SYM: 2678 case DT_MIPS_DELTA_CLASSSYM: 2679 case DT_MIPS_CXX_FLAGS: 2680 case DT_MIPS_PIXIE_INIT: 2681 case DT_MIPS_SYMBOL_LIB: 2682 case DT_MIPS_OPTIONS: 2683 case DT_MIPS_INTERFACE: 2684 case DT_MIPS_DYNSTR_ALIGN: 2685 case DT_MIPS_INTERFACE_SIZE: 2686 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2687 case DT_MIPS_COMPACT_SIZE: 2688 case DT_MIPS_GP_VALUE: 2689 case DT_MIPS_AUX_DYNAMIC: 2690 case DT_MIPS_PLTGOT: 2691 case DT_MIPS_RLD_OBJ_UPDATE: 2692 case DT_MIPS_RWPLT: 2693 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2694 break; 2695 case DT_MIPS_IVERSION: 2696 case DT_MIPS_PERF_SUFFIX: 2697 case DT_AUXILIARY: 2698 case DT_FILTER: 2699 name = dyn_str(re, stab, dyn->d_un.d_val); 2700 printf(" %s\n", name); 2701 break; 2702 case DT_MIPS_TIME_STAMP: 2703 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2704 break; 2705 } 2706 break; 2707 default: 2708 printf("\n"); 2709 break; 2710 } 2711 } 2712 2713 static void 2714 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2715 { 2716 const char *name; 2717 2718 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 2719 dump_arch_dyn_val(re, dyn, stab); 2720 return; 2721 } 2722 2723 /* These entry values are index into the string table. */ 2724 name = NULL; 2725 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2726 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2727 name = dyn_str(re, stab, dyn->d_un.d_val); 2728 2729 switch(dyn->d_tag) { 2730 case DT_NULL: 2731 case DT_PLTGOT: 2732 case DT_HASH: 2733 case DT_STRTAB: 2734 case DT_SYMTAB: 2735 case DT_RELA: 2736 case DT_INIT: 2737 case DT_SYMBOLIC: 2738 case DT_REL: 2739 case DT_DEBUG: 2740 case DT_TEXTREL: 2741 case DT_JMPREL: 2742 case DT_FINI: 2743 case DT_VERDEF: 2744 case DT_VERNEED: 2745 case DT_VERSYM: 2746 case DT_GNU_HASH: 2747 case DT_GNU_LIBLIST: 2748 case DT_GNU_CONFLICT: 2749 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2750 break; 2751 case DT_PLTRELSZ: 2752 case DT_RELASZ: 2753 case DT_RELAENT: 2754 case DT_STRSZ: 2755 case DT_SYMENT: 2756 case DT_RELSZ: 2757 case DT_RELENT: 2758 case DT_INIT_ARRAYSZ: 2759 case DT_FINI_ARRAYSZ: 2760 case DT_GNU_CONFLICTSZ: 2761 case DT_GNU_LIBLISTSZ: 2762 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2763 break; 2764 case DT_RELACOUNT: 2765 case DT_RELCOUNT: 2766 case DT_VERDEFNUM: 2767 case DT_VERNEEDNUM: 2768 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2769 break; 2770 case DT_NEEDED: 2771 printf(" Shared library: [%s]\n", name); 2772 break; 2773 case DT_SONAME: 2774 printf(" Library soname: [%s]\n", name); 2775 break; 2776 case DT_RPATH: 2777 printf(" Library rpath: [%s]\n", name); 2778 break; 2779 case DT_RUNPATH: 2780 printf(" Library runpath: [%s]\n", name); 2781 break; 2782 case DT_PLTREL: 2783 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2784 break; 2785 case DT_GNU_PRELINKED: 2786 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2787 break; 2788 default: 2789 printf("\n"); 2790 } 2791 } 2792 2793 static void 2794 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2795 { 2796 GElf_Rel r; 2797 const char *symname; 2798 uint64_t symval; 2799 int i, len; 2800 uint32_t type; 2801 uint8_t type2, type3; 2802 2803 if (s->link >= re->shnum) 2804 return; 2805 2806 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2807 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2808 elftc_reloc_type_str(re->ehdr.e_machine, \ 2809 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2810 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2811 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2812 (uintmax_t)symval, symname 2813 2814 printf("\nRelocation section (%s):\n", s->name); 2815 if (re->ec == ELFCLASS32) 2816 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2817 else { 2818 if (re->options & RE_WW) 2819 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2820 else 2821 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2822 } 2823 assert(d->d_size == s->sz); 2824 if (!get_ent_count(s, &len)) 2825 return; 2826 for (i = 0; i < len; i++) { 2827 if (gelf_getrel(d, i, &r) != &r) { 2828 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2829 continue; 2830 } 2831 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2832 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2833 if (re->ec == ELFCLASS32) { 2834 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2835 ELF64_R_TYPE(r.r_info)); 2836 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2837 } else { 2838 type = ELF64_R_TYPE(r.r_info); 2839 if (re->ehdr.e_machine == EM_MIPS) { 2840 type2 = (type >> 8) & 0xFF; 2841 type3 = (type >> 16) & 0xFF; 2842 type = type & 0xFF; 2843 } else { 2844 type2 = type3 = 0; 2845 } 2846 if (re->options & RE_WW) 2847 printf("%16.16jx %16.16jx %-24.24s" 2848 " %16.16jx %s\n", REL_CT64); 2849 else 2850 printf("%12.12jx %12.12jx %-19.19s" 2851 " %16.16jx %s\n", REL_CT64); 2852 if (re->ehdr.e_machine == EM_MIPS) { 2853 if (re->options & RE_WW) { 2854 printf("%32s: %s\n", "Type2", 2855 elftc_reloc_type_str(EM_MIPS, 2856 type2)); 2857 printf("%32s: %s\n", "Type3", 2858 elftc_reloc_type_str(EM_MIPS, 2859 type3)); 2860 } else { 2861 printf("%24s: %s\n", "Type2", 2862 elftc_reloc_type_str(EM_MIPS, 2863 type2)); 2864 printf("%24s: %s\n", "Type3", 2865 elftc_reloc_type_str(EM_MIPS, 2866 type3)); 2867 } 2868 } 2869 } 2870 } 2871 2872 #undef REL_HDR 2873 #undef REL_CT 2874 } 2875 2876 static void 2877 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2878 { 2879 GElf_Rela r; 2880 const char *symname; 2881 uint64_t symval; 2882 int i, len; 2883 uint32_t type; 2884 uint8_t type2, type3; 2885 2886 if (s->link >= re->shnum) 2887 return; 2888 2889 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2890 "st_name + r_addend" 2891 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2892 elftc_reloc_type_str(re->ehdr.e_machine, \ 2893 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2894 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2895 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2896 (uintmax_t)symval, symname 2897 2898 printf("\nRelocation section with addend (%s):\n", s->name); 2899 if (re->ec == ELFCLASS32) 2900 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2901 else { 2902 if (re->options & RE_WW) 2903 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2904 else 2905 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2906 } 2907 assert(d->d_size == s->sz); 2908 if (!get_ent_count(s, &len)) 2909 return; 2910 for (i = 0; i < len; i++) { 2911 if (gelf_getrela(d, i, &r) != &r) { 2912 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2913 continue; 2914 } 2915 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2916 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2917 if (re->ec == ELFCLASS32) { 2918 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2919 ELF64_R_TYPE(r.r_info)); 2920 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2921 printf(" + %x\n", (uint32_t) r.r_addend); 2922 } else { 2923 type = ELF64_R_TYPE(r.r_info); 2924 if (re->ehdr.e_machine == EM_MIPS) { 2925 type2 = (type >> 8) & 0xFF; 2926 type3 = (type >> 16) & 0xFF; 2927 type = type & 0xFF; 2928 } else { 2929 type2 = type3 = 0; 2930 } 2931 if (re->options & RE_WW) 2932 printf("%16.16jx %16.16jx %-24.24s" 2933 " %16.16jx %s", RELA_CT64); 2934 else 2935 printf("%12.12jx %12.12jx %-19.19s" 2936 " %16.16jx %s", RELA_CT64); 2937 printf(" + %jx\n", (uintmax_t) r.r_addend); 2938 if (re->ehdr.e_machine == EM_MIPS) { 2939 if (re->options & RE_WW) { 2940 printf("%32s: %s\n", "Type2", 2941 elftc_reloc_type_str(EM_MIPS, 2942 type2)); 2943 printf("%32s: %s\n", "Type3", 2944 elftc_reloc_type_str(EM_MIPS, 2945 type3)); 2946 } else { 2947 printf("%24s: %s\n", "Type2", 2948 elftc_reloc_type_str(EM_MIPS, 2949 type2)); 2950 printf("%24s: %s\n", "Type3", 2951 elftc_reloc_type_str(EM_MIPS, 2952 type3)); 2953 } 2954 } 2955 } 2956 } 2957 2958 #undef RELA_HDR 2959 #undef RELA_CT 2960 } 2961 2962 static void 2963 dump_reloc(struct readelf *re) 2964 { 2965 struct section *s; 2966 Elf_Data *d; 2967 int i, elferr; 2968 2969 for (i = 0; (size_t)i < re->shnum; i++) { 2970 s = &re->sl[i]; 2971 if (s->type == SHT_REL || s->type == SHT_RELA) { 2972 (void) elf_errno(); 2973 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2974 elferr = elf_errno(); 2975 if (elferr != 0) 2976 warnx("elf_getdata failed: %s", 2977 elf_errmsg(elferr)); 2978 continue; 2979 } 2980 if (s->type == SHT_REL) 2981 dump_rel(re, s, d); 2982 else 2983 dump_rela(re, s, d); 2984 } 2985 } 2986 } 2987 2988 static void 2989 dump_symtab(struct readelf *re, int i) 2990 { 2991 struct section *s; 2992 Elf_Data *d; 2993 GElf_Sym sym; 2994 const char *name; 2995 uint32_t stab; 2996 int elferr, j, len; 2997 uint16_t vs; 2998 2999 s = &re->sl[i]; 3000 if (s->link >= re->shnum) 3001 return; 3002 stab = s->link; 3003 (void) elf_errno(); 3004 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3005 elferr = elf_errno(); 3006 if (elferr != 0) 3007 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3008 return; 3009 } 3010 if (d->d_size <= 0) 3011 return; 3012 if (!get_ent_count(s, &len)) 3013 return; 3014 printf("Symbol table (%s)", s->name); 3015 printf(" contains %d entries:\n", len); 3016 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3017 "Bind", "Vis", "Ndx", "Name"); 3018 3019 for (j = 0; j < len; j++) { 3020 if (gelf_getsym(d, j, &sym) != &sym) { 3021 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3022 continue; 3023 } 3024 printf("%6d:", j); 3025 printf(" %16.16jx", (uintmax_t) sym.st_value); 3026 printf(" %5ju", (uintmax_t) sym.st_size); 3027 printf(" %-7s", st_type(re->ehdr.e_machine, 3028 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3029 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3030 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3031 printf(" %3s", st_shndx(sym.st_shndx)); 3032 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3033 printf(" %s", name); 3034 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3035 if (s->type == SHT_DYNSYM && re->ver != NULL && 3036 re->vs != NULL && re->vs[j] > 1) { 3037 vs = re->vs[j] & VERSYM_VERSION; 3038 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3039 warnx("invalid versym version index %u", vs); 3040 break; 3041 } 3042 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3043 printf("@%s (%d)", re->ver[vs].name, vs); 3044 else 3045 printf("@@%s (%d)", re->ver[vs].name, vs); 3046 } 3047 putchar('\n'); 3048 } 3049 3050 } 3051 3052 static void 3053 dump_symtabs(struct readelf *re) 3054 { 3055 GElf_Dyn dyn; 3056 Elf_Data *d; 3057 struct section *s; 3058 uint64_t dyn_off; 3059 int elferr, i, len; 3060 3061 /* 3062 * If -D is specified, only dump the symbol table specified by 3063 * the DT_SYMTAB entry in the .dynamic section. 3064 */ 3065 dyn_off = 0; 3066 if (re->options & RE_DD) { 3067 s = NULL; 3068 for (i = 0; (size_t)i < re->shnum; i++) 3069 if (re->sl[i].type == SHT_DYNAMIC) { 3070 s = &re->sl[i]; 3071 break; 3072 } 3073 if (s == NULL) 3074 return; 3075 (void) elf_errno(); 3076 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3077 elferr = elf_errno(); 3078 if (elferr != 0) 3079 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3080 return; 3081 } 3082 if (d->d_size <= 0) 3083 return; 3084 if (!get_ent_count(s, &len)) 3085 return; 3086 3087 for (i = 0; i < len; i++) { 3088 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3089 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3090 continue; 3091 } 3092 if (dyn.d_tag == DT_SYMTAB) { 3093 dyn_off = dyn.d_un.d_val; 3094 break; 3095 } 3096 } 3097 } 3098 3099 /* Find and dump symbol tables. */ 3100 for (i = 0; (size_t)i < re->shnum; i++) { 3101 s = &re->sl[i]; 3102 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3103 if (re->options & RE_DD) { 3104 if (dyn_off == s->addr) { 3105 dump_symtab(re, i); 3106 break; 3107 } 3108 } else 3109 dump_symtab(re, i); 3110 } 3111 } 3112 } 3113 3114 static void 3115 dump_svr4_hash(struct section *s) 3116 { 3117 Elf_Data *d; 3118 uint32_t *buf; 3119 uint32_t nbucket, nchain; 3120 uint32_t *bucket, *chain; 3121 uint32_t *bl, *c, maxl, total; 3122 int elferr, i, j; 3123 3124 /* Read and parse the content of .hash section. */ 3125 (void) elf_errno(); 3126 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3127 elferr = elf_errno(); 3128 if (elferr != 0) 3129 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3130 return; 3131 } 3132 if (d->d_size < 2 * sizeof(uint32_t)) { 3133 warnx(".hash section too small"); 3134 return; 3135 } 3136 buf = d->d_buf; 3137 nbucket = buf[0]; 3138 nchain = buf[1]; 3139 if (nbucket <= 0 || nchain <= 0) { 3140 warnx("Malformed .hash section"); 3141 return; 3142 } 3143 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3144 warnx("Malformed .hash section"); 3145 return; 3146 } 3147 bucket = &buf[2]; 3148 chain = &buf[2 + nbucket]; 3149 3150 maxl = 0; 3151 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3152 errx(EXIT_FAILURE, "calloc failed"); 3153 for (i = 0; (uint32_t)i < nbucket; i++) 3154 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3155 if (++bl[i] > maxl) 3156 maxl = bl[i]; 3157 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3158 errx(EXIT_FAILURE, "calloc failed"); 3159 for (i = 0; (uint32_t)i < nbucket; i++) 3160 c[bl[i]]++; 3161 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3162 nbucket); 3163 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3164 total = 0; 3165 for (i = 0; (uint32_t)i <= maxl; i++) { 3166 total += c[i] * i; 3167 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3168 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3169 } 3170 free(c); 3171 free(bl); 3172 } 3173 3174 static void 3175 dump_svr4_hash64(struct readelf *re, struct section *s) 3176 { 3177 Elf_Data *d, dst; 3178 uint64_t *buf; 3179 uint64_t nbucket, nchain; 3180 uint64_t *bucket, *chain; 3181 uint64_t *bl, *c, maxl, total; 3182 int elferr, i, j; 3183 3184 /* 3185 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3186 * .hash section contains only 32-bit entry, an explicit 3187 * gelf_xlatetom is needed here. 3188 */ 3189 (void) elf_errno(); 3190 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3191 elferr = elf_errno(); 3192 if (elferr != 0) 3193 warnx("elf_rawdata failed: %s", 3194 elf_errmsg(elferr)); 3195 return; 3196 } 3197 d->d_type = ELF_T_XWORD; 3198 memcpy(&dst, d, sizeof(Elf_Data)); 3199 if (gelf_xlatetom(re->elf, &dst, d, 3200 re->ehdr.e_ident[EI_DATA]) != &dst) { 3201 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3202 return; 3203 } 3204 if (dst.d_size < 2 * sizeof(uint64_t)) { 3205 warnx(".hash section too small"); 3206 return; 3207 } 3208 buf = dst.d_buf; 3209 nbucket = buf[0]; 3210 nchain = buf[1]; 3211 if (nbucket <= 0 || nchain <= 0) { 3212 warnx("Malformed .hash section"); 3213 return; 3214 } 3215 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3216 warnx("Malformed .hash section"); 3217 return; 3218 } 3219 bucket = &buf[2]; 3220 chain = &buf[2 + nbucket]; 3221 3222 maxl = 0; 3223 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3224 errx(EXIT_FAILURE, "calloc failed"); 3225 for (i = 0; (uint32_t)i < nbucket; i++) 3226 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3227 if (++bl[i] > maxl) 3228 maxl = bl[i]; 3229 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3230 errx(EXIT_FAILURE, "calloc failed"); 3231 for (i = 0; (uint64_t)i < nbucket; i++) 3232 c[bl[i]]++; 3233 printf("Histogram for bucket list length (total of %ju buckets):\n", 3234 (uintmax_t)nbucket); 3235 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3236 total = 0; 3237 for (i = 0; (uint64_t)i <= maxl; i++) { 3238 total += c[i] * i; 3239 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3240 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3241 } 3242 free(c); 3243 free(bl); 3244 } 3245 3246 static void 3247 dump_gnu_hash(struct readelf *re, struct section *s) 3248 { 3249 struct section *ds; 3250 Elf_Data *d; 3251 uint32_t *buf; 3252 uint32_t *bucket, *chain; 3253 uint32_t nbucket, nchain, symndx, maskwords; 3254 uint32_t *bl, *c, maxl, total; 3255 int elferr, dynsymcount, i, j; 3256 3257 (void) elf_errno(); 3258 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3259 elferr = elf_errno(); 3260 if (elferr != 0) 3261 warnx("elf_getdata failed: %s", 3262 elf_errmsg(elferr)); 3263 return; 3264 } 3265 if (d->d_size < 4 * sizeof(uint32_t)) { 3266 warnx(".gnu.hash section too small"); 3267 return; 3268 } 3269 buf = d->d_buf; 3270 nbucket = buf[0]; 3271 symndx = buf[1]; 3272 maskwords = buf[2]; 3273 buf += 4; 3274 if (s->link >= re->shnum) 3275 return; 3276 ds = &re->sl[s->link]; 3277 if (!get_ent_count(ds, &dynsymcount)) 3278 return; 3279 if (symndx >= (uint32_t)dynsymcount) { 3280 warnx("Malformed .gnu.hash section (symndx out of range)"); 3281 return; 3282 } 3283 nchain = dynsymcount - symndx; 3284 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3285 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3286 (nbucket + nchain) * sizeof(uint32_t)) { 3287 warnx("Malformed .gnu.hash section"); 3288 return; 3289 } 3290 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3291 chain = bucket + nbucket; 3292 3293 maxl = 0; 3294 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3295 errx(EXIT_FAILURE, "calloc failed"); 3296 for (i = 0; (uint32_t)i < nbucket; i++) 3297 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3298 j++) { 3299 if (++bl[i] > maxl) 3300 maxl = bl[i]; 3301 if (chain[j - symndx] & 1) 3302 break; 3303 } 3304 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3305 errx(EXIT_FAILURE, "calloc failed"); 3306 for (i = 0; (uint32_t)i < nbucket; i++) 3307 c[bl[i]]++; 3308 printf("Histogram for bucket list length (total of %u buckets):\n", 3309 nbucket); 3310 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3311 total = 0; 3312 for (i = 0; (uint32_t)i <= maxl; i++) { 3313 total += c[i] * i; 3314 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3315 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3316 } 3317 free(c); 3318 free(bl); 3319 } 3320 3321 static void 3322 dump_hash(struct readelf *re) 3323 { 3324 struct section *s; 3325 int i; 3326 3327 for (i = 0; (size_t) i < re->shnum; i++) { 3328 s = &re->sl[i]; 3329 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3330 if (s->type == SHT_GNU_HASH) 3331 dump_gnu_hash(re, s); 3332 else if (re->ehdr.e_machine == EM_ALPHA && 3333 s->entsize == 8) 3334 dump_svr4_hash64(re, s); 3335 else 3336 dump_svr4_hash(s); 3337 } 3338 } 3339 } 3340 3341 static void 3342 dump_notes(struct readelf *re) 3343 { 3344 struct section *s; 3345 const char *rawfile; 3346 GElf_Phdr phdr; 3347 Elf_Data *d; 3348 size_t filesize, phnum; 3349 int i, elferr; 3350 3351 if (re->ehdr.e_type == ET_CORE) { 3352 /* 3353 * Search program headers in the core file for 3354 * PT_NOTE entry. 3355 */ 3356 if (elf_getphnum(re->elf, &phnum) == 0) { 3357 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3358 return; 3359 } 3360 if (phnum == 0) 3361 return; 3362 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3363 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3364 return; 3365 } 3366 for (i = 0; (size_t) i < phnum; i++) { 3367 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3368 warnx("gelf_getphdr failed: %s", 3369 elf_errmsg(-1)); 3370 continue; 3371 } 3372 if (phdr.p_type == PT_NOTE) { 3373 if (phdr.p_offset >= filesize || 3374 phdr.p_filesz > filesize - phdr.p_offset) { 3375 warnx("invalid PHDR offset"); 3376 continue; 3377 } 3378 dump_notes_content(re, rawfile + phdr.p_offset, 3379 phdr.p_filesz, phdr.p_offset); 3380 } 3381 } 3382 3383 } else { 3384 /* 3385 * For objects other than core files, Search for 3386 * SHT_NOTE sections. 3387 */ 3388 for (i = 0; (size_t) i < re->shnum; i++) { 3389 s = &re->sl[i]; 3390 if (s->type == SHT_NOTE) { 3391 (void) elf_errno(); 3392 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3393 elferr = elf_errno(); 3394 if (elferr != 0) 3395 warnx("elf_getdata failed: %s", 3396 elf_errmsg(elferr)); 3397 continue; 3398 } 3399 dump_notes_content(re, d->d_buf, d->d_size, 3400 s->off); 3401 } 3402 } 3403 } 3404 } 3405 3406 static void 3407 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3408 { 3409 Elf_Note *note; 3410 const char *end, *name; 3411 3412 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3413 (uintmax_t) off, (uintmax_t) sz); 3414 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3415 end = buf + sz; 3416 while (buf < end) { 3417 if (buf + sizeof(*note) > end) { 3418 warnx("invalid note header"); 3419 return; 3420 } 3421 note = (Elf_Note *)(uintptr_t) buf; 3422 name = (char *)(uintptr_t)(note + 1); 3423 /* 3424 * The name field is required to be nul-terminated, and 3425 * n_namesz includes the terminating nul in observed 3426 * implementations (contrary to the ELF-64 spec). A special 3427 * case is needed for cores generated by some older Linux 3428 * versions, which write a note named "CORE" without a nul 3429 * terminator and n_namesz = 4. 3430 */ 3431 if (note->n_namesz == 0) 3432 name = ""; 3433 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3434 name = "CORE"; 3435 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3436 name = "<invalid>"; 3437 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3438 printf(" %s\n", note_type(name, re->ehdr.e_type, 3439 note->n_type)); 3440 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3441 roundup2(note->n_descsz, 4); 3442 } 3443 } 3444 3445 /* 3446 * Symbol versioning sections are the same for 32bit and 64bit 3447 * ELF objects. 3448 */ 3449 #define Elf_Verdef Elf32_Verdef 3450 #define Elf_Verdaux Elf32_Verdaux 3451 #define Elf_Verneed Elf32_Verneed 3452 #define Elf_Vernaux Elf32_Vernaux 3453 3454 #define SAVE_VERSION_NAME(x, n, t) \ 3455 do { \ 3456 while (x >= re->ver_sz) { \ 3457 nv = realloc(re->ver, \ 3458 sizeof(*re->ver) * re->ver_sz * 2); \ 3459 if (nv == NULL) { \ 3460 warn("realloc failed"); \ 3461 free(re->ver); \ 3462 return; \ 3463 } \ 3464 re->ver = nv; \ 3465 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3466 re->ver[i].name = NULL; \ 3467 re->ver[i].type = 0; \ 3468 } \ 3469 re->ver_sz *= 2; \ 3470 } \ 3471 if (x > 1) { \ 3472 re->ver[x].name = n; \ 3473 re->ver[x].type = t; \ 3474 } \ 3475 } while (0) 3476 3477 3478 static void 3479 dump_verdef(struct readelf *re, int dump) 3480 { 3481 struct section *s; 3482 struct symver *nv; 3483 Elf_Data *d; 3484 Elf_Verdef *vd; 3485 Elf_Verdaux *vda; 3486 uint8_t *buf, *end, *buf2; 3487 const char *name; 3488 int elferr, i, j; 3489 3490 if ((s = re->vd_s) == NULL) 3491 return; 3492 if (s->link >= re->shnum) 3493 return; 3494 3495 if (re->ver == NULL) { 3496 re->ver_sz = 16; 3497 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3498 NULL) { 3499 warn("calloc failed"); 3500 return; 3501 } 3502 re->ver[0].name = "*local*"; 3503 re->ver[1].name = "*global*"; 3504 } 3505 3506 if (dump) 3507 printf("\nVersion definition section (%s):\n", s->name); 3508 (void) elf_errno(); 3509 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3510 elferr = elf_errno(); 3511 if (elferr != 0) 3512 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3513 return; 3514 } 3515 if (d->d_size == 0) 3516 return; 3517 3518 buf = d->d_buf; 3519 end = buf + d->d_size; 3520 while (buf + sizeof(Elf_Verdef) <= end) { 3521 vd = (Elf_Verdef *) (uintptr_t) buf; 3522 if (dump) { 3523 printf(" 0x%4.4lx", (unsigned long) 3524 (buf - (uint8_t *)d->d_buf)); 3525 printf(" vd_version: %u vd_flags: %d" 3526 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3527 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3528 } 3529 buf2 = buf + vd->vd_aux; 3530 j = 0; 3531 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3532 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3533 name = get_string(re, s->link, vda->vda_name); 3534 if (j == 0) { 3535 if (dump) 3536 printf(" vda_name: %s\n", name); 3537 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3538 } else if (dump) 3539 printf(" 0x%4.4lx parent: %s\n", 3540 (unsigned long) (buf2 - 3541 (uint8_t *)d->d_buf), name); 3542 if (vda->vda_next == 0) 3543 break; 3544 buf2 += vda->vda_next; 3545 j++; 3546 } 3547 if (vd->vd_next == 0) 3548 break; 3549 buf += vd->vd_next; 3550 } 3551 } 3552 3553 static void 3554 dump_verneed(struct readelf *re, int dump) 3555 { 3556 struct section *s; 3557 struct symver *nv; 3558 Elf_Data *d; 3559 Elf_Verneed *vn; 3560 Elf_Vernaux *vna; 3561 uint8_t *buf, *end, *buf2; 3562 const char *name; 3563 int elferr, i, j; 3564 3565 if ((s = re->vn_s) == NULL) 3566 return; 3567 if (s->link >= re->shnum) 3568 return; 3569 3570 if (re->ver == NULL) { 3571 re->ver_sz = 16; 3572 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3573 NULL) { 3574 warn("calloc failed"); 3575 return; 3576 } 3577 re->ver[0].name = "*local*"; 3578 re->ver[1].name = "*global*"; 3579 } 3580 3581 if (dump) 3582 printf("\nVersion needed section (%s):\n", s->name); 3583 (void) elf_errno(); 3584 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3585 elferr = elf_errno(); 3586 if (elferr != 0) 3587 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3588 return; 3589 } 3590 if (d->d_size == 0) 3591 return; 3592 3593 buf = d->d_buf; 3594 end = buf + d->d_size; 3595 while (buf + sizeof(Elf_Verneed) <= end) { 3596 vn = (Elf_Verneed *) (uintptr_t) buf; 3597 if (dump) { 3598 printf(" 0x%4.4lx", (unsigned long) 3599 (buf - (uint8_t *)d->d_buf)); 3600 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3601 vn->vn_version, 3602 get_string(re, s->link, vn->vn_file), 3603 vn->vn_cnt); 3604 } 3605 buf2 = buf + vn->vn_aux; 3606 j = 0; 3607 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3608 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3609 if (dump) 3610 printf(" 0x%4.4lx", (unsigned long) 3611 (buf2 - (uint8_t *)d->d_buf)); 3612 name = get_string(re, s->link, vna->vna_name); 3613 if (dump) 3614 printf(" vna_name: %s vna_flags: %u" 3615 " vna_other: %u\n", name, 3616 vna->vna_flags, vna->vna_other); 3617 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3618 if (vna->vna_next == 0) 3619 break; 3620 buf2 += vna->vna_next; 3621 j++; 3622 } 3623 if (vn->vn_next == 0) 3624 break; 3625 buf += vn->vn_next; 3626 } 3627 } 3628 3629 static void 3630 dump_versym(struct readelf *re) 3631 { 3632 int i; 3633 uint16_t vs; 3634 3635 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3636 return; 3637 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3638 for (i = 0; i < re->vs_sz; i++) { 3639 if ((i & 3) == 0) { 3640 if (i > 0) 3641 putchar('\n'); 3642 printf(" %03x:", i); 3643 } 3644 vs = re->vs[i] & VERSYM_VERSION; 3645 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3646 warnx("invalid versym version index %u", re->vs[i]); 3647 break; 3648 } 3649 if (re->vs[i] & VERSYM_HIDDEN) 3650 printf(" %3xh %-12s ", vs, 3651 re->ver[re->vs[i] & VERSYM_VERSION].name); 3652 else 3653 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 3654 } 3655 putchar('\n'); 3656 } 3657 3658 static void 3659 dump_ver(struct readelf *re) 3660 { 3661 3662 if (re->vs_s && re->ver && re->vs) 3663 dump_versym(re); 3664 if (re->vd_s) 3665 dump_verdef(re, 1); 3666 if (re->vn_s) 3667 dump_verneed(re, 1); 3668 } 3669 3670 static void 3671 search_ver(struct readelf *re) 3672 { 3673 struct section *s; 3674 Elf_Data *d; 3675 int elferr, i; 3676 3677 for (i = 0; (size_t) i < re->shnum; i++) { 3678 s = &re->sl[i]; 3679 if (s->type == SHT_SUNW_versym) 3680 re->vs_s = s; 3681 if (s->type == SHT_SUNW_verneed) 3682 re->vn_s = s; 3683 if (s->type == SHT_SUNW_verdef) 3684 re->vd_s = s; 3685 } 3686 if (re->vd_s) 3687 dump_verdef(re, 0); 3688 if (re->vn_s) 3689 dump_verneed(re, 0); 3690 if (re->vs_s && re->ver != NULL) { 3691 (void) elf_errno(); 3692 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3693 elferr = elf_errno(); 3694 if (elferr != 0) 3695 warnx("elf_getdata failed: %s", 3696 elf_errmsg(elferr)); 3697 return; 3698 } 3699 if (d->d_size == 0) 3700 return; 3701 re->vs = d->d_buf; 3702 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3703 } 3704 } 3705 3706 #undef Elf_Verdef 3707 #undef Elf_Verdaux 3708 #undef Elf_Verneed 3709 #undef Elf_Vernaux 3710 #undef SAVE_VERSION_NAME 3711 3712 /* 3713 * Elf32_Lib and Elf64_Lib are identical. 3714 */ 3715 #define Elf_Lib Elf32_Lib 3716 3717 static void 3718 dump_liblist(struct readelf *re) 3719 { 3720 struct section *s; 3721 struct tm *t; 3722 time_t ti; 3723 char tbuf[20]; 3724 Elf_Data *d; 3725 Elf_Lib *lib; 3726 int i, j, k, elferr, first, len; 3727 3728 for (i = 0; (size_t) i < re->shnum; i++) { 3729 s = &re->sl[i]; 3730 if (s->type != SHT_GNU_LIBLIST) 3731 continue; 3732 if (s->link >= re->shnum) 3733 continue; 3734 (void) elf_errno(); 3735 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3736 elferr = elf_errno(); 3737 if (elferr != 0) 3738 warnx("elf_getdata failed: %s", 3739 elf_errmsg(elferr)); 3740 continue; 3741 } 3742 if (d->d_size <= 0) 3743 continue; 3744 lib = d->d_buf; 3745 if (!get_ent_count(s, &len)) 3746 continue; 3747 printf("\nLibrary list section '%s' ", s->name); 3748 printf("contains %d entries:\n", len); 3749 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3750 "Checksum", "Version", "Flags"); 3751 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3752 printf("%3d: ", j); 3753 printf("%-20.20s ", 3754 get_string(re, s->link, lib->l_name)); 3755 ti = lib->l_time_stamp; 3756 t = gmtime(&ti); 3757 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3758 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3759 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3760 printf("%-19.19s ", tbuf); 3761 printf("0x%08x ", lib->l_checksum); 3762 printf("%-7d %#x", lib->l_version, lib->l_flags); 3763 if (lib->l_flags != 0) { 3764 first = 1; 3765 putchar('('); 3766 for (k = 0; l_flag[k].name != NULL; k++) { 3767 if ((l_flag[k].value & lib->l_flags) == 3768 0) 3769 continue; 3770 if (!first) 3771 putchar(','); 3772 else 3773 first = 0; 3774 printf("%s", l_flag[k].name); 3775 } 3776 putchar(')'); 3777 } 3778 putchar('\n'); 3779 lib++; 3780 } 3781 } 3782 } 3783 3784 #undef Elf_Lib 3785 3786 static void 3787 dump_section_groups(struct readelf *re) 3788 { 3789 struct section *s; 3790 const char *symname; 3791 Elf_Data *d; 3792 uint32_t *w; 3793 int i, j, elferr; 3794 size_t n; 3795 3796 for (i = 0; (size_t) i < re->shnum; i++) { 3797 s = &re->sl[i]; 3798 if (s->type != SHT_GROUP) 3799 continue; 3800 if (s->link >= re->shnum) 3801 continue; 3802 (void) elf_errno(); 3803 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3804 elferr = elf_errno(); 3805 if (elferr != 0) 3806 warnx("elf_getdata failed: %s", 3807 elf_errmsg(elferr)); 3808 continue; 3809 } 3810 if (d->d_size <= 0) 3811 continue; 3812 3813 w = d->d_buf; 3814 3815 /* We only support COMDAT section. */ 3816 #ifndef GRP_COMDAT 3817 #define GRP_COMDAT 0x1 3818 #endif 3819 if ((*w++ & GRP_COMDAT) == 0) 3820 return; 3821 3822 if (s->entsize == 0) 3823 s->entsize = 4; 3824 3825 symname = get_symbol_name(re, s->link, s->info); 3826 n = s->sz / s->entsize; 3827 if (n-- < 1) 3828 return; 3829 3830 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 3831 " sections:\n", i, s->name, symname, (uintmax_t)n); 3832 printf(" %-10.10s %s\n", "[Index]", "Name"); 3833 for (j = 0; (size_t) j < n; j++, w++) { 3834 if (*w >= re->shnum) { 3835 warnx("invalid section index: %u", *w); 3836 continue; 3837 } 3838 printf(" [%5u] %s\n", *w, re->sl[*w].name); 3839 } 3840 } 3841 } 3842 3843 static uint8_t * 3844 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 3845 { 3846 uint64_t val; 3847 3848 /* 3849 * According to ARM EABI: For tags > 32, even numbered tags have 3850 * a ULEB128 param and odd numbered ones have NUL-terminated 3851 * string param. This rule probably also applies for tags <= 32 3852 * if the object arch is not ARM. 3853 */ 3854 3855 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3856 3857 if (tag & 1) { 3858 printf("%s\n", (char *) p); 3859 p += strlen((char *) p) + 1; 3860 } else { 3861 val = _decode_uleb128(&p, pe); 3862 printf("%ju\n", (uintmax_t) val); 3863 } 3864 3865 return (p); 3866 } 3867 3868 static uint8_t * 3869 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 3870 { 3871 uint64_t val; 3872 3873 val = _decode_uleb128(&p, pe); 3874 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 3875 p += strlen((char *) p) + 1; 3876 3877 return (p); 3878 } 3879 3880 static void 3881 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3882 { 3883 uint64_t tag, val; 3884 size_t i; 3885 int found, desc; 3886 3887 (void) re; 3888 3889 while (p < pe) { 3890 tag = _decode_uleb128(&p, pe); 3891 found = desc = 0; 3892 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3893 i++) { 3894 if (tag == aeabi_tags[i].tag) { 3895 found = 1; 3896 printf(" %s: ", aeabi_tags[i].s_tag); 3897 if (aeabi_tags[i].get_desc) { 3898 desc = 1; 3899 val = _decode_uleb128(&p, pe); 3900 printf("%s\n", 3901 aeabi_tags[i].get_desc(val)); 3902 } 3903 break; 3904 } 3905 if (tag < aeabi_tags[i].tag) 3906 break; 3907 } 3908 if (!found) { 3909 p = dump_unknown_tag(tag, p, pe); 3910 continue; 3911 } 3912 if (desc) 3913 continue; 3914 3915 switch (tag) { 3916 case 4: /* Tag_CPU_raw_name */ 3917 case 5: /* Tag_CPU_name */ 3918 case 67: /* Tag_conformance */ 3919 printf("%s\n", (char *) p); 3920 p += strlen((char *) p) + 1; 3921 break; 3922 case 32: /* Tag_compatibility */ 3923 p = dump_compatibility_tag(p, pe); 3924 break; 3925 case 64: /* Tag_nodefaults */ 3926 /* ignored, written as 0. */ 3927 (void) _decode_uleb128(&p, pe); 3928 printf("True\n"); 3929 break; 3930 case 65: /* Tag_also_compatible_with */ 3931 val = _decode_uleb128(&p, pe); 3932 /* Must be Tag_CPU_arch */ 3933 if (val != 6) { 3934 printf("unknown\n"); 3935 break; 3936 } 3937 val = _decode_uleb128(&p, pe); 3938 printf("%s\n", aeabi_cpu_arch(val)); 3939 /* Skip NUL terminator. */ 3940 p++; 3941 break; 3942 default: 3943 putchar('\n'); 3944 break; 3945 } 3946 } 3947 } 3948 3949 #ifndef Tag_GNU_MIPS_ABI_FP 3950 #define Tag_GNU_MIPS_ABI_FP 4 3951 #endif 3952 3953 static void 3954 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3955 { 3956 uint64_t tag, val; 3957 3958 (void) re; 3959 3960 while (p < pe) { 3961 tag = _decode_uleb128(&p, pe); 3962 switch (tag) { 3963 case Tag_GNU_MIPS_ABI_FP: 3964 val = _decode_uleb128(&p, pe); 3965 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3966 break; 3967 case 32: /* Tag_compatibility */ 3968 p = dump_compatibility_tag(p, pe); 3969 break; 3970 default: 3971 p = dump_unknown_tag(tag, p, pe); 3972 break; 3973 } 3974 } 3975 } 3976 3977 #ifndef Tag_GNU_Power_ABI_FP 3978 #define Tag_GNU_Power_ABI_FP 4 3979 #endif 3980 3981 #ifndef Tag_GNU_Power_ABI_Vector 3982 #define Tag_GNU_Power_ABI_Vector 8 3983 #endif 3984 3985 static void 3986 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 3987 { 3988 uint64_t tag, val; 3989 3990 while (p < pe) { 3991 tag = _decode_uleb128(&p, pe); 3992 switch (tag) { 3993 case Tag_GNU_Power_ABI_FP: 3994 val = _decode_uleb128(&p, pe); 3995 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 3996 break; 3997 case Tag_GNU_Power_ABI_Vector: 3998 val = _decode_uleb128(&p, pe); 3999 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4000 ppc_abi_vector(val)); 4001 break; 4002 case 32: /* Tag_compatibility */ 4003 p = dump_compatibility_tag(p, pe); 4004 break; 4005 default: 4006 p = dump_unknown_tag(tag, p, pe); 4007 break; 4008 } 4009 } 4010 } 4011 4012 static void 4013 dump_attributes(struct readelf *re) 4014 { 4015 struct section *s; 4016 Elf_Data *d; 4017 uint8_t *p, *pe, *sp; 4018 size_t len, seclen, nlen, sublen; 4019 uint64_t val; 4020 int tag, i, elferr; 4021 4022 for (i = 0; (size_t) i < re->shnum; i++) { 4023 s = &re->sl[i]; 4024 if (s->type != SHT_GNU_ATTRIBUTES && 4025 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4026 continue; 4027 (void) elf_errno(); 4028 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4029 elferr = elf_errno(); 4030 if (elferr != 0) 4031 warnx("elf_rawdata failed: %s", 4032 elf_errmsg(elferr)); 4033 continue; 4034 } 4035 if (d->d_size <= 0) 4036 continue; 4037 p = d->d_buf; 4038 pe = p + d->d_size; 4039 if (*p != 'A') { 4040 printf("Unknown Attribute Section Format: %c\n", 4041 (char) *p); 4042 continue; 4043 } 4044 len = d->d_size - 1; 4045 p++; 4046 while (len > 0) { 4047 if (len < 4) { 4048 warnx("truncated attribute section length"); 4049 return; 4050 } 4051 seclen = re->dw_decode(&p, 4); 4052 if (seclen > len) { 4053 warnx("invalid attribute section length"); 4054 return; 4055 } 4056 len -= seclen; 4057 nlen = strlen((char *) p) + 1; 4058 if (nlen + 4 > seclen) { 4059 warnx("invalid attribute section name"); 4060 return; 4061 } 4062 printf("Attribute Section: %s\n", (char *) p); 4063 p += nlen; 4064 seclen -= nlen + 4; 4065 while (seclen > 0) { 4066 sp = p; 4067 tag = *p++; 4068 sublen = re->dw_decode(&p, 4); 4069 if (sublen > seclen) { 4070 warnx("invalid attribute sub-section" 4071 " length"); 4072 return; 4073 } 4074 seclen -= sublen; 4075 printf("%s", top_tag(tag)); 4076 if (tag == 2 || tag == 3) { 4077 putchar(':'); 4078 for (;;) { 4079 val = _decode_uleb128(&p, pe); 4080 if (val == 0) 4081 break; 4082 printf(" %ju", (uintmax_t) val); 4083 } 4084 } 4085 putchar('\n'); 4086 if (re->ehdr.e_machine == EM_ARM && 4087 s->type == SHT_LOPROC + 3) 4088 dump_arm_attributes(re, p, sp + sublen); 4089 else if (re->ehdr.e_machine == EM_MIPS || 4090 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4091 dump_mips_attributes(re, p, 4092 sp + sublen); 4093 else if (re->ehdr.e_machine == EM_PPC) 4094 dump_ppc_attributes(p, sp + sublen); 4095 p = sp + sublen; 4096 } 4097 } 4098 } 4099 } 4100 4101 static void 4102 dump_mips_specific_info(struct readelf *re) 4103 { 4104 struct section *s; 4105 int i; 4106 4107 s = NULL; 4108 for (i = 0; (size_t) i < re->shnum; i++) { 4109 s = &re->sl[i]; 4110 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4111 (s->type == SHT_MIPS_OPTIONS))) { 4112 dump_mips_options(re, s); 4113 } 4114 } 4115 4116 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4117 (s->type == SHT_MIPS_ABIFLAGS))) 4118 dump_mips_abiflags(re, s); 4119 4120 /* 4121 * Dump .reginfo if present (although it will be ignored by an OS if a 4122 * .MIPS.options section is present, according to SGI mips64 spec). 4123 */ 4124 for (i = 0; (size_t) i < re->shnum; i++) { 4125 s = &re->sl[i]; 4126 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4127 (s->type == SHT_MIPS_REGINFO))) 4128 dump_mips_reginfo(re, s); 4129 } 4130 } 4131 4132 static void 4133 dump_mips_abiflags(struct readelf *re, struct section *s) 4134 { 4135 Elf_Data *d; 4136 uint8_t *p; 4137 int elferr; 4138 uint32_t isa_ext, ases, flags1, flags2; 4139 uint16_t version; 4140 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4141 4142 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4143 elferr = elf_errno(); 4144 if (elferr != 0) 4145 warnx("elf_rawdata failed: %s", 4146 elf_errmsg(elferr)); 4147 return; 4148 } 4149 if (d->d_size != 24) { 4150 warnx("invalid MIPS abiflags section size"); 4151 return; 4152 } 4153 4154 p = d->d_buf; 4155 version = re->dw_decode(&p, 2); 4156 printf("MIPS ABI Flags Version: %u", version); 4157 if (version != 0) { 4158 printf(" (unknown)\n\n"); 4159 return; 4160 } 4161 printf("\n\n"); 4162 4163 isa_level = re->dw_decode(&p, 1); 4164 isa_rev = re->dw_decode(&p, 1); 4165 gpr_size = re->dw_decode(&p, 1); 4166 cpr1_size = re->dw_decode(&p, 1); 4167 cpr2_size = re->dw_decode(&p, 1); 4168 fp_abi = re->dw_decode(&p, 1); 4169 isa_ext = re->dw_decode(&p, 4); 4170 ases = re->dw_decode(&p, 4); 4171 flags1 = re->dw_decode(&p, 4); 4172 flags2 = re->dw_decode(&p, 4); 4173 4174 printf("ISA: "); 4175 if (isa_rev <= 1) 4176 printf("MIPS%u\n", isa_level); 4177 else 4178 printf("MIPS%ur%u\n", isa_level, isa_rev); 4179 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4180 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4181 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4182 printf("FP ABI: "); 4183 switch (fp_abi) { 4184 case 3: 4185 printf("Soft float"); 4186 break; 4187 default: 4188 printf("%u", fp_abi); 4189 break; 4190 } 4191 printf("\nISA Extension: %u\n", isa_ext); 4192 printf("ASEs: %u\n", ases); 4193 printf("FLAGS 1: %08x\n", flags1); 4194 printf("FLAGS 2: %08x\n", flags2); 4195 } 4196 4197 static int 4198 get_mips_register_size(uint8_t flag) 4199 { 4200 switch (flag) { 4201 case 0: return 0; 4202 case 1: return 32; 4203 case 2: return 64; 4204 case 3: return 128; 4205 default: return -1; 4206 } 4207 } 4208 static void 4209 dump_mips_reginfo(struct readelf *re, struct section *s) 4210 { 4211 Elf_Data *d; 4212 int elferr, len; 4213 4214 (void) elf_errno(); 4215 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4216 elferr = elf_errno(); 4217 if (elferr != 0) 4218 warnx("elf_rawdata failed: %s", 4219 elf_errmsg(elferr)); 4220 return; 4221 } 4222 if (d->d_size <= 0) 4223 return; 4224 if (!get_ent_count(s, &len)) 4225 return; 4226 4227 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4228 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4229 } 4230 4231 static void 4232 dump_mips_options(struct readelf *re, struct section *s) 4233 { 4234 Elf_Data *d; 4235 uint32_t info; 4236 uint16_t sndx; 4237 uint8_t *p, *pe; 4238 uint8_t kind, size; 4239 int elferr; 4240 4241 (void) elf_errno(); 4242 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4243 elferr = elf_errno(); 4244 if (elferr != 0) 4245 warnx("elf_rawdata failed: %s", 4246 elf_errmsg(elferr)); 4247 return; 4248 } 4249 if (d->d_size == 0) 4250 return; 4251 4252 printf("\nSection %s contains:\n", s->name); 4253 p = d->d_buf; 4254 pe = p + d->d_size; 4255 while (p < pe) { 4256 if (pe - p < 8) { 4257 warnx("Truncated MIPS option header"); 4258 return; 4259 } 4260 kind = re->dw_decode(&p, 1); 4261 size = re->dw_decode(&p, 1); 4262 sndx = re->dw_decode(&p, 2); 4263 info = re->dw_decode(&p, 4); 4264 if (size < 8 || size - 8 > pe - p) { 4265 warnx("Malformed MIPS option header"); 4266 return; 4267 } 4268 size -= 8; 4269 switch (kind) { 4270 case ODK_REGINFO: 4271 dump_mips_odk_reginfo(re, p, size); 4272 break; 4273 case ODK_EXCEPTIONS: 4274 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4275 info & OEX_FPU_MIN); 4276 printf("%11.11s FPU_MAX: %#x\n", "", 4277 info & OEX_FPU_MAX); 4278 dump_mips_option_flags("", mips_exceptions_option, 4279 info); 4280 break; 4281 case ODK_PAD: 4282 printf(" %-10.10s section: %ju\n", "OPAD", 4283 (uintmax_t) sndx); 4284 dump_mips_option_flags("", mips_pad_option, info); 4285 break; 4286 case ODK_HWPATCH: 4287 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4288 info); 4289 break; 4290 case ODK_HWAND: 4291 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4292 break; 4293 case ODK_HWOR: 4294 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4295 break; 4296 case ODK_FILL: 4297 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4298 break; 4299 case ODK_TAGS: 4300 printf(" %-10.10s\n", "TAGS"); 4301 break; 4302 case ODK_GP_GROUP: 4303 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4304 info & 0xFFFF); 4305 if (info & 0x10000) 4306 printf(" %-10.10s GP group is " 4307 "self-contained\n", ""); 4308 break; 4309 case ODK_IDENT: 4310 printf(" %-10.10s default GP group number: %#x\n", 4311 "IDENT", info & 0xFFFF); 4312 if (info & 0x10000) 4313 printf(" %-10.10s default GP group is " 4314 "self-contained\n", ""); 4315 break; 4316 case ODK_PAGESIZE: 4317 printf(" %-10.10s\n", "PAGESIZE"); 4318 break; 4319 default: 4320 break; 4321 } 4322 p += size; 4323 } 4324 } 4325 4326 static void 4327 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4328 { 4329 int first; 4330 4331 first = 1; 4332 for (; opt->desc != NULL; opt++) { 4333 if (info & opt->flag) { 4334 printf(" %-10.10s %s\n", first ? name : "", 4335 opt->desc); 4336 first = 0; 4337 } 4338 } 4339 } 4340 4341 static void 4342 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4343 { 4344 uint32_t ri_gprmask; 4345 uint32_t ri_cprmask[4]; 4346 uint64_t ri_gp_value; 4347 uint8_t *pe; 4348 int i; 4349 4350 pe = p + sz; 4351 while (p < pe) { 4352 ri_gprmask = re->dw_decode(&p, 4); 4353 /* Skip ri_pad padding field for mips64. */ 4354 if (re->ec == ELFCLASS64) 4355 re->dw_decode(&p, 4); 4356 for (i = 0; i < 4; i++) 4357 ri_cprmask[i] = re->dw_decode(&p, 4); 4358 if (re->ec == ELFCLASS32) 4359 ri_gp_value = re->dw_decode(&p, 4); 4360 else 4361 ri_gp_value = re->dw_decode(&p, 8); 4362 printf(" %s ", option_kind(ODK_REGINFO)); 4363 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4364 for (i = 0; i < 4; i++) 4365 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4366 (uintmax_t) ri_cprmask[i]); 4367 printf("%12.12s", ""); 4368 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4369 } 4370 } 4371 4372 static void 4373 dump_arch_specific_info(struct readelf *re) 4374 { 4375 4376 dump_liblist(re); 4377 dump_attributes(re); 4378 4379 switch (re->ehdr.e_machine) { 4380 case EM_MIPS: 4381 case EM_MIPS_RS3_LE: 4382 dump_mips_specific_info(re); 4383 default: 4384 break; 4385 } 4386 } 4387 4388 static const char * 4389 dwarf_regname(struct readelf *re, unsigned int num) 4390 { 4391 static char rx[32]; 4392 const char *rn; 4393 4394 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4395 return (rn); 4396 4397 snprintf(rx, sizeof(rx), "r%u", num); 4398 4399 return (rx); 4400 } 4401 4402 static void 4403 dump_dwarf_line(struct readelf *re) 4404 { 4405 struct section *s; 4406 Dwarf_Die die; 4407 Dwarf_Error de; 4408 Dwarf_Half tag, version, pointer_size; 4409 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4410 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4411 Elf_Data *d; 4412 char *pn; 4413 uint64_t address, file, line, column, isa, opsize, udelta; 4414 int64_t sdelta; 4415 uint8_t *p, *pe; 4416 int8_t lbase; 4417 int i, is_stmt, dwarf_size, elferr, ret; 4418 4419 printf("\nDump of debug contents of section .debug_line:\n"); 4420 4421 s = NULL; 4422 for (i = 0; (size_t) i < re->shnum; i++) { 4423 s = &re->sl[i]; 4424 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4425 break; 4426 } 4427 if ((size_t) i >= re->shnum) 4428 return; 4429 4430 (void) elf_errno(); 4431 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4432 elferr = elf_errno(); 4433 if (elferr != 0) 4434 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4435 return; 4436 } 4437 if (d->d_size <= 0) 4438 return; 4439 4440 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4441 NULL, &de)) == DW_DLV_OK) { 4442 die = NULL; 4443 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4444 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4445 warnx("dwarf_tag failed: %s", 4446 dwarf_errmsg(de)); 4447 return; 4448 } 4449 /* XXX: What about DW_TAG_partial_unit? */ 4450 if (tag == DW_TAG_compile_unit) 4451 break; 4452 } 4453 if (die == NULL) { 4454 warnx("could not find DW_TAG_compile_unit die"); 4455 return; 4456 } 4457 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4458 &de) != DW_DLV_OK) 4459 continue; 4460 4461 length = re->dw_read(d, &offset, 4); 4462 if (length == 0xffffffff) { 4463 dwarf_size = 8; 4464 length = re->dw_read(d, &offset, 8); 4465 } else 4466 dwarf_size = 4; 4467 4468 if (length > d->d_size - offset) { 4469 warnx("invalid .dwarf_line section"); 4470 continue; 4471 } 4472 4473 endoff = offset + length; 4474 pe = (uint8_t *) d->d_buf + endoff; 4475 version = re->dw_read(d, &offset, 2); 4476 hdrlen = re->dw_read(d, &offset, dwarf_size); 4477 minlen = re->dw_read(d, &offset, 1); 4478 defstmt = re->dw_read(d, &offset, 1); 4479 lbase = re->dw_read(d, &offset, 1); 4480 lrange = re->dw_read(d, &offset, 1); 4481 opbase = re->dw_read(d, &offset, 1); 4482 4483 printf("\n"); 4484 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4485 printf(" DWARF version:\t\t%u\n", version); 4486 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4487 printf(" Minimum Instruction Length:\t%u\n", minlen); 4488 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4489 printf(" Line Base:\t\t\t%d\n", lbase); 4490 printf(" Line Range:\t\t\t%u\n", lrange); 4491 printf(" Opcode Base:\t\t\t%u\n", opbase); 4492 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4493 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4494 4495 printf("\n"); 4496 printf(" Opcodes:\n"); 4497 for (i = 1; i < opbase; i++) { 4498 oplen = re->dw_read(d, &offset, 1); 4499 printf(" Opcode %d has %u args\n", i, oplen); 4500 } 4501 4502 printf("\n"); 4503 printf(" The Directory Table:\n"); 4504 p = (uint8_t *) d->d_buf + offset; 4505 while (*p != '\0') { 4506 printf(" %s\n", (char *) p); 4507 p += strlen((char *) p) + 1; 4508 } 4509 4510 p++; 4511 printf("\n"); 4512 printf(" The File Name Table:\n"); 4513 printf(" Entry\tDir\tTime\tSize\tName\n"); 4514 i = 0; 4515 while (*p != '\0') { 4516 i++; 4517 pn = (char *) p; 4518 p += strlen(pn) + 1; 4519 dirndx = _decode_uleb128(&p, pe); 4520 mtime = _decode_uleb128(&p, pe); 4521 fsize = _decode_uleb128(&p, pe); 4522 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4523 (uintmax_t) dirndx, (uintmax_t) mtime, 4524 (uintmax_t) fsize, pn); 4525 } 4526 4527 #define RESET_REGISTERS \ 4528 do { \ 4529 address = 0; \ 4530 file = 1; \ 4531 line = 1; \ 4532 column = 0; \ 4533 is_stmt = defstmt; \ 4534 } while(0) 4535 4536 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4537 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4538 4539 p++; 4540 printf("\n"); 4541 printf(" Line Number Statements:\n"); 4542 4543 RESET_REGISTERS; 4544 4545 while (p < pe) { 4546 4547 if (*p == 0) { 4548 /* 4549 * Extended Opcodes. 4550 */ 4551 p++; 4552 opsize = _decode_uleb128(&p, pe); 4553 printf(" Extended opcode %u: ", *p); 4554 switch (*p) { 4555 case DW_LNE_end_sequence: 4556 p++; 4557 RESET_REGISTERS; 4558 printf("End of Sequence\n"); 4559 break; 4560 case DW_LNE_set_address: 4561 p++; 4562 address = re->dw_decode(&p, 4563 pointer_size); 4564 printf("set Address to %#jx\n", 4565 (uintmax_t) address); 4566 break; 4567 case DW_LNE_define_file: 4568 p++; 4569 pn = (char *) p; 4570 p += strlen(pn) + 1; 4571 dirndx = _decode_uleb128(&p, pe); 4572 mtime = _decode_uleb128(&p, pe); 4573 fsize = _decode_uleb128(&p, pe); 4574 printf("define new file: %s\n", pn); 4575 break; 4576 default: 4577 /* Unrecognized extened opcodes. */ 4578 p += opsize; 4579 printf("unknown opcode\n"); 4580 } 4581 } else if (*p > 0 && *p < opbase) { 4582 /* 4583 * Standard Opcodes. 4584 */ 4585 switch(*p++) { 4586 case DW_LNS_copy: 4587 printf(" Copy\n"); 4588 break; 4589 case DW_LNS_advance_pc: 4590 udelta = _decode_uleb128(&p, pe) * 4591 minlen; 4592 address += udelta; 4593 printf(" Advance PC by %ju to %#jx\n", 4594 (uintmax_t) udelta, 4595 (uintmax_t) address); 4596 break; 4597 case DW_LNS_advance_line: 4598 sdelta = _decode_sleb128(&p, pe); 4599 line += sdelta; 4600 printf(" Advance Line by %jd to %ju\n", 4601 (intmax_t) sdelta, 4602 (uintmax_t) line); 4603 break; 4604 case DW_LNS_set_file: 4605 file = _decode_uleb128(&p, pe); 4606 printf(" Set File to %ju\n", 4607 (uintmax_t) file); 4608 break; 4609 case DW_LNS_set_column: 4610 column = _decode_uleb128(&p, pe); 4611 printf(" Set Column to %ju\n", 4612 (uintmax_t) column); 4613 break; 4614 case DW_LNS_negate_stmt: 4615 is_stmt = !is_stmt; 4616 printf(" Set is_stmt to %d\n", is_stmt); 4617 break; 4618 case DW_LNS_set_basic_block: 4619 printf(" Set basic block flag\n"); 4620 break; 4621 case DW_LNS_const_add_pc: 4622 address += ADDRESS(255); 4623 printf(" Advance PC by constant %ju" 4624 " to %#jx\n", 4625 (uintmax_t) ADDRESS(255), 4626 (uintmax_t) address); 4627 break; 4628 case DW_LNS_fixed_advance_pc: 4629 udelta = re->dw_decode(&p, 2); 4630 address += udelta; 4631 printf(" Advance PC by fixed value " 4632 "%ju to %#jx\n", 4633 (uintmax_t) udelta, 4634 (uintmax_t) address); 4635 break; 4636 case DW_LNS_set_prologue_end: 4637 printf(" Set prologue end flag\n"); 4638 break; 4639 case DW_LNS_set_epilogue_begin: 4640 printf(" Set epilogue begin flag\n"); 4641 break; 4642 case DW_LNS_set_isa: 4643 isa = _decode_uleb128(&p, pe); 4644 printf(" Set isa to %ju\n", 4645 (uintmax_t) isa); 4646 break; 4647 default: 4648 /* Unrecognized extended opcodes. */ 4649 printf(" Unknown extended opcode %u\n", 4650 *(p - 1)); 4651 break; 4652 } 4653 4654 } else { 4655 /* 4656 * Special Opcodes. 4657 */ 4658 line += LINE(*p); 4659 address += ADDRESS(*p); 4660 printf(" Special opcode %u: advance Address " 4661 "by %ju to %#jx and Line by %jd to %ju\n", 4662 *p - opbase, (uintmax_t) ADDRESS(*p), 4663 (uintmax_t) address, (intmax_t) LINE(*p), 4664 (uintmax_t) line); 4665 p++; 4666 } 4667 4668 4669 } 4670 } 4671 if (ret == DW_DLV_ERROR) 4672 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4673 4674 #undef RESET_REGISTERS 4675 #undef LINE 4676 #undef ADDRESS 4677 } 4678 4679 static void 4680 dump_dwarf_line_decoded(struct readelf *re) 4681 { 4682 Dwarf_Die die; 4683 Dwarf_Line *linebuf, ln; 4684 Dwarf_Addr lineaddr; 4685 Dwarf_Signed linecount, srccount; 4686 Dwarf_Unsigned lineno, fn; 4687 Dwarf_Error de; 4688 const char *dir, *file; 4689 char **srcfiles; 4690 int i, ret; 4691 4692 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4693 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4694 NULL, &de)) == DW_DLV_OK) { 4695 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4696 continue; 4697 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4698 DW_DLV_OK) 4699 file = NULL; 4700 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4701 DW_DLV_OK) 4702 dir = NULL; 4703 printf("CU: "); 4704 if (dir && file) 4705 printf("%s/", dir); 4706 if (file) 4707 printf("%s", file); 4708 putchar('\n'); 4709 printf("%-37s %11s %s\n", "Filename", "Line Number", 4710 "Starting Address"); 4711 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4712 continue; 4713 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4714 continue; 4715 for (i = 0; i < linecount; i++) { 4716 ln = linebuf[i]; 4717 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4718 continue; 4719 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4720 continue; 4721 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4722 continue; 4723 printf("%-37s %11ju %#18jx\n", 4724 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4725 (uintmax_t) lineaddr); 4726 } 4727 putchar('\n'); 4728 } 4729 } 4730 4731 static void 4732 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4733 { 4734 Dwarf_Attribute *attr_list; 4735 Dwarf_Die ret_die; 4736 Dwarf_Off dieoff, cuoff, culen, attroff; 4737 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4738 Dwarf_Signed attr_count, v_sdata; 4739 Dwarf_Off v_off; 4740 Dwarf_Addr v_addr; 4741 Dwarf_Half tag, attr, form; 4742 Dwarf_Block *v_block; 4743 Dwarf_Bool v_bool, is_info; 4744 Dwarf_Sig8 v_sig8; 4745 Dwarf_Error de; 4746 Dwarf_Ptr v_expr; 4747 const char *tag_str, *attr_str, *ate_str, *lang_str; 4748 char unk_tag[32], unk_attr[32]; 4749 char *v_str; 4750 uint8_t *b, *p; 4751 int i, j, abc, ret; 4752 4753 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4754 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4755 goto cont_search; 4756 } 4757 4758 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4759 4760 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4761 warnx("dwarf_die_CU_offset_range failed: %s", 4762 dwarf_errmsg(de)); 4763 cuoff = 0; 4764 } 4765 4766 abc = dwarf_die_abbrev_code(die); 4767 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4768 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4769 goto cont_search; 4770 } 4771 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4772 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4773 tag_str = unk_tag; 4774 } 4775 4776 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4777 4778 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4779 DW_DLV_OK) { 4780 if (ret == DW_DLV_ERROR) 4781 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4782 goto cont_search; 4783 } 4784 4785 for (i = 0; i < attr_count; i++) { 4786 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4787 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4788 continue; 4789 } 4790 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4791 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4792 continue; 4793 } 4794 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4795 snprintf(unk_attr, sizeof(unk_attr), 4796 "[Unknown AT: %#x]", attr); 4797 attr_str = unk_attr; 4798 } 4799 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4800 DW_DLV_OK) { 4801 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4802 attroff = 0; 4803 } 4804 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4805 switch (form) { 4806 case DW_FORM_ref_addr: 4807 case DW_FORM_sec_offset: 4808 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4809 DW_DLV_OK) { 4810 warnx("dwarf_global_formref failed: %s", 4811 dwarf_errmsg(de)); 4812 continue; 4813 } 4814 if (form == DW_FORM_ref_addr) 4815 printf("<0x%jx>", (uintmax_t) v_off); 4816 else 4817 printf("0x%jx", (uintmax_t) v_off); 4818 break; 4819 4820 case DW_FORM_ref1: 4821 case DW_FORM_ref2: 4822 case DW_FORM_ref4: 4823 case DW_FORM_ref8: 4824 case DW_FORM_ref_udata: 4825 if (dwarf_formref(attr_list[i], &v_off, &de) != 4826 DW_DLV_OK) { 4827 warnx("dwarf_formref failed: %s", 4828 dwarf_errmsg(de)); 4829 continue; 4830 } 4831 v_off += cuoff; 4832 printf("<0x%jx>", (uintmax_t) v_off); 4833 break; 4834 4835 case DW_FORM_addr: 4836 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4837 DW_DLV_OK) { 4838 warnx("dwarf_formaddr failed: %s", 4839 dwarf_errmsg(de)); 4840 continue; 4841 } 4842 printf("%#jx", (uintmax_t) v_addr); 4843 break; 4844 4845 case DW_FORM_data1: 4846 case DW_FORM_data2: 4847 case DW_FORM_data4: 4848 case DW_FORM_data8: 4849 case DW_FORM_udata: 4850 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4851 DW_DLV_OK) { 4852 warnx("dwarf_formudata failed: %s", 4853 dwarf_errmsg(de)); 4854 continue; 4855 } 4856 if (attr == DW_AT_high_pc) 4857 printf("0x%jx", (uintmax_t) v_udata); 4858 else 4859 printf("%ju", (uintmax_t) v_udata); 4860 break; 4861 4862 case DW_FORM_sdata: 4863 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4864 DW_DLV_OK) { 4865 warnx("dwarf_formudata failed: %s", 4866 dwarf_errmsg(de)); 4867 continue; 4868 } 4869 printf("%jd", (intmax_t) v_sdata); 4870 break; 4871 4872 case DW_FORM_flag: 4873 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4874 DW_DLV_OK) { 4875 warnx("dwarf_formflag failed: %s", 4876 dwarf_errmsg(de)); 4877 continue; 4878 } 4879 printf("%jd", (intmax_t) v_bool); 4880 break; 4881 4882 case DW_FORM_flag_present: 4883 putchar('1'); 4884 break; 4885 4886 case DW_FORM_string: 4887 case DW_FORM_strp: 4888 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4889 DW_DLV_OK) { 4890 warnx("dwarf_formstring failed: %s", 4891 dwarf_errmsg(de)); 4892 continue; 4893 } 4894 if (form == DW_FORM_string) 4895 printf("%s", v_str); 4896 else 4897 printf("(indirect string) %s", v_str); 4898 break; 4899 4900 case DW_FORM_block: 4901 case DW_FORM_block1: 4902 case DW_FORM_block2: 4903 case DW_FORM_block4: 4904 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4905 DW_DLV_OK) { 4906 warnx("dwarf_formblock failed: %s", 4907 dwarf_errmsg(de)); 4908 continue; 4909 } 4910 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4911 b = v_block->bl_data; 4912 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4913 printf(" %x", b[j]); 4914 printf("\t("); 4915 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4916 putchar(')'); 4917 break; 4918 4919 case DW_FORM_exprloc: 4920 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 4921 &de) != DW_DLV_OK) { 4922 warnx("dwarf_formexprloc failed: %s", 4923 dwarf_errmsg(de)); 4924 continue; 4925 } 4926 printf("%ju byte block:", (uintmax_t) v_udata); 4927 b = v_expr; 4928 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 4929 printf(" %x", b[j]); 4930 printf("\t("); 4931 dump_dwarf_block(re, v_expr, v_udata); 4932 putchar(')'); 4933 break; 4934 4935 case DW_FORM_ref_sig8: 4936 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 4937 DW_DLV_OK) { 4938 warnx("dwarf_formsig8 failed: %s", 4939 dwarf_errmsg(de)); 4940 continue; 4941 } 4942 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 4943 v_sig = re->dw_decode(&p, 8); 4944 printf("signature: 0x%jx", (uintmax_t) v_sig); 4945 } 4946 switch (attr) { 4947 case DW_AT_encoding: 4948 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4949 DW_DLV_OK) 4950 break; 4951 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4952 ate_str = "DW_ATE_UNKNOWN"; 4953 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4954 break; 4955 4956 case DW_AT_language: 4957 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 4958 DW_DLV_OK) 4959 break; 4960 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 4961 break; 4962 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 4963 break; 4964 4965 case DW_AT_location: 4966 case DW_AT_string_length: 4967 case DW_AT_return_addr: 4968 case DW_AT_data_member_location: 4969 case DW_AT_frame_base: 4970 case DW_AT_segment: 4971 case DW_AT_static_link: 4972 case DW_AT_use_location: 4973 case DW_AT_vtable_elem_location: 4974 switch (form) { 4975 case DW_FORM_data4: 4976 case DW_FORM_data8: 4977 case DW_FORM_sec_offset: 4978 printf("\t(location list)"); 4979 break; 4980 default: 4981 break; 4982 } 4983 4984 default: 4985 break; 4986 } 4987 putchar('\n'); 4988 } 4989 4990 4991 cont_search: 4992 /* Search children. */ 4993 ret = dwarf_child(die, &ret_die, &de); 4994 if (ret == DW_DLV_ERROR) 4995 warnx("dwarf_child: %s", dwarf_errmsg(de)); 4996 else if (ret == DW_DLV_OK) 4997 dump_dwarf_die(re, ret_die, level + 1); 4998 4999 /* Search sibling. */ 5000 is_info = dwarf_get_die_infotypes_flag(die); 5001 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5002 if (ret == DW_DLV_ERROR) 5003 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5004 else if (ret == DW_DLV_OK) 5005 dump_dwarf_die(re, ret_die, level); 5006 5007 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5008 } 5009 5010 static void 5011 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5012 Dwarf_Half ver) 5013 { 5014 5015 re->cu_psize = psize; 5016 re->cu_osize = osize; 5017 re->cu_ver = ver; 5018 } 5019 5020 static void 5021 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5022 { 5023 struct section *s; 5024 Dwarf_Die die; 5025 Dwarf_Error de; 5026 Dwarf_Half tag, version, pointer_size, off_size; 5027 Dwarf_Off cu_offset, cu_length; 5028 Dwarf_Off aboff; 5029 Dwarf_Unsigned typeoff; 5030 Dwarf_Sig8 sig8; 5031 Dwarf_Unsigned sig; 5032 uint8_t *p; 5033 const char *sn; 5034 int i, ret; 5035 5036 sn = is_info ? ".debug_info" : ".debug_types"; 5037 5038 s = NULL; 5039 for (i = 0; (size_t) i < re->shnum; i++) { 5040 s = &re->sl[i]; 5041 if (s->name != NULL && !strcmp(s->name, sn)) 5042 break; 5043 } 5044 if ((size_t) i >= re->shnum) 5045 return; 5046 5047 do { 5048 printf("\nDump of debug contents of section %s:\n", sn); 5049 5050 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5051 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5052 &typeoff, NULL, &de)) == DW_DLV_OK) { 5053 set_cu_context(re, pointer_size, off_size, version); 5054 die = NULL; 5055 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5056 &de) == DW_DLV_OK) { 5057 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5058 warnx("dwarf_tag failed: %s", 5059 dwarf_errmsg(de)); 5060 continue; 5061 } 5062 /* XXX: What about DW_TAG_partial_unit? */ 5063 if ((is_info && tag == DW_TAG_compile_unit) || 5064 (!is_info && tag == DW_TAG_type_unit)) 5065 break; 5066 } 5067 if (die == NULL && is_info) { 5068 warnx("could not find DW_TAG_compile_unit " 5069 "die"); 5070 continue; 5071 } else if (die == NULL && !is_info) { 5072 warnx("could not find DW_TAG_type_unit die"); 5073 continue; 5074 } 5075 5076 if (dwarf_die_CU_offset_range(die, &cu_offset, 5077 &cu_length, &de) != DW_DLV_OK) { 5078 warnx("dwarf_die_CU_offset failed: %s", 5079 dwarf_errmsg(de)); 5080 continue; 5081 } 5082 5083 cu_length -= off_size == 4 ? 4 : 12; 5084 5085 sig = 0; 5086 if (!is_info) { 5087 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5088 sig = re->dw_decode(&p, 8); 5089 } 5090 5091 printf("\n Type Unit @ offset 0x%jx:\n", 5092 (uintmax_t) cu_offset); 5093 printf(" Length:\t\t%#jx (%d-bit)\n", 5094 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5095 printf(" Version:\t\t%u\n", version); 5096 printf(" Abbrev Offset:\t0x%jx\n", 5097 (uintmax_t) aboff); 5098 printf(" Pointer Size:\t%u\n", pointer_size); 5099 if (!is_info) { 5100 printf(" Signature:\t\t0x%016jx\n", 5101 (uintmax_t) sig); 5102 printf(" Type Offset:\t0x%jx\n", 5103 (uintmax_t) typeoff); 5104 } 5105 5106 dump_dwarf_die(re, die, 0); 5107 } 5108 if (ret == DW_DLV_ERROR) 5109 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5110 if (is_info) 5111 break; 5112 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5113 } 5114 5115 static void 5116 dump_dwarf_abbrev(struct readelf *re) 5117 { 5118 Dwarf_Abbrev ab; 5119 Dwarf_Off aboff, atoff; 5120 Dwarf_Unsigned length, attr_count; 5121 Dwarf_Signed flag, form; 5122 Dwarf_Half tag, attr; 5123 Dwarf_Error de; 5124 const char *tag_str, *attr_str, *form_str; 5125 char unk_tag[32], unk_attr[32], unk_form[32]; 5126 int i, j, ret; 5127 5128 printf("\nContents of section .debug_abbrev:\n\n"); 5129 5130 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5131 NULL, NULL, &de)) == DW_DLV_OK) { 5132 printf(" Number TAG\n"); 5133 i = 0; 5134 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5135 &attr_count, &de)) == DW_DLV_OK) { 5136 if (length == 1) { 5137 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5138 break; 5139 } 5140 aboff += length; 5141 printf("%4d", ++i); 5142 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5143 warnx("dwarf_get_abbrev_tag failed: %s", 5144 dwarf_errmsg(de)); 5145 goto next_abbrev; 5146 } 5147 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5148 snprintf(unk_tag, sizeof(unk_tag), 5149 "[Unknown Tag: %#x]", tag); 5150 tag_str = unk_tag; 5151 } 5152 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5153 DW_DLV_OK) { 5154 warnx("dwarf_get_abbrev_children_flag failed:" 5155 " %s", dwarf_errmsg(de)); 5156 goto next_abbrev; 5157 } 5158 printf(" %s %s\n", tag_str, 5159 flag ? "[has children]" : "[no children]"); 5160 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5161 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5162 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5163 warnx("dwarf_get_abbrev_entry failed:" 5164 " %s", dwarf_errmsg(de)); 5165 continue; 5166 } 5167 if (dwarf_get_AT_name(attr, &attr_str) != 5168 DW_DLV_OK) { 5169 snprintf(unk_attr, sizeof(unk_attr), 5170 "[Unknown AT: %#x]", attr); 5171 attr_str = unk_attr; 5172 } 5173 if (dwarf_get_FORM_name(form, &form_str) != 5174 DW_DLV_OK) { 5175 snprintf(unk_form, sizeof(unk_form), 5176 "[Unknown Form: %#x]", 5177 (Dwarf_Half) form); 5178 form_str = unk_form; 5179 } 5180 printf(" %-18s %s\n", attr_str, form_str); 5181 } 5182 next_abbrev: 5183 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5184 } 5185 if (ret != DW_DLV_OK) 5186 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5187 } 5188 if (ret == DW_DLV_ERROR) 5189 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5190 } 5191 5192 static void 5193 dump_dwarf_pubnames(struct readelf *re) 5194 { 5195 struct section *s; 5196 Dwarf_Off die_off; 5197 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5198 Dwarf_Signed cnt; 5199 Dwarf_Global *globs; 5200 Dwarf_Half nt_version; 5201 Dwarf_Error de; 5202 Elf_Data *d; 5203 char *glob_name; 5204 int i, dwarf_size, elferr; 5205 5206 printf("\nContents of the .debug_pubnames section:\n"); 5207 5208 s = NULL; 5209 for (i = 0; (size_t) i < re->shnum; i++) { 5210 s = &re->sl[i]; 5211 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5212 break; 5213 } 5214 if ((size_t) i >= re->shnum) 5215 return; 5216 5217 (void) elf_errno(); 5218 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5219 elferr = elf_errno(); 5220 if (elferr != 0) 5221 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5222 return; 5223 } 5224 if (d->d_size <= 0) 5225 return; 5226 5227 /* Read in .debug_pubnames section table header. */ 5228 offset = 0; 5229 length = re->dw_read(d, &offset, 4); 5230 if (length == 0xffffffff) { 5231 dwarf_size = 8; 5232 length = re->dw_read(d, &offset, 8); 5233 } else 5234 dwarf_size = 4; 5235 5236 if (length > d->d_size - offset) { 5237 warnx("invalid .dwarf_pubnames section"); 5238 return; 5239 } 5240 5241 nt_version = re->dw_read(d, &offset, 2); 5242 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5243 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5244 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5245 printf(" Version:\t\t\t\t%u\n", nt_version); 5246 printf(" Offset into .debug_info section:\t%ju\n", 5247 (uintmax_t) nt_cu_offset); 5248 printf(" Size of area in .debug_info section:\t%ju\n", 5249 (uintmax_t) nt_cu_length); 5250 5251 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5252 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5253 return; 5254 } 5255 5256 printf("\n Offset Name\n"); 5257 for (i = 0; i < cnt; i++) { 5258 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5259 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5260 continue; 5261 } 5262 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5263 DW_DLV_OK) { 5264 warnx("dwarf_global_die_offset failed: %s", 5265 dwarf_errmsg(de)); 5266 continue; 5267 } 5268 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5269 } 5270 } 5271 5272 static void 5273 dump_dwarf_aranges(struct readelf *re) 5274 { 5275 struct section *s; 5276 Dwarf_Arange *aranges; 5277 Dwarf_Addr start; 5278 Dwarf_Unsigned offset, length, as_cu_offset; 5279 Dwarf_Off die_off; 5280 Dwarf_Signed cnt; 5281 Dwarf_Half as_version, as_addrsz, as_segsz; 5282 Dwarf_Error de; 5283 Elf_Data *d; 5284 int i, dwarf_size, elferr; 5285 5286 printf("\nContents of section .debug_aranges:\n"); 5287 5288 s = NULL; 5289 for (i = 0; (size_t) i < re->shnum; i++) { 5290 s = &re->sl[i]; 5291 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5292 break; 5293 } 5294 if ((size_t) i >= re->shnum) 5295 return; 5296 5297 (void) elf_errno(); 5298 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5299 elferr = elf_errno(); 5300 if (elferr != 0) 5301 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5302 return; 5303 } 5304 if (d->d_size <= 0) 5305 return; 5306 5307 /* Read in the .debug_aranges section table header. */ 5308 offset = 0; 5309 length = re->dw_read(d, &offset, 4); 5310 if (length == 0xffffffff) { 5311 dwarf_size = 8; 5312 length = re->dw_read(d, &offset, 8); 5313 } else 5314 dwarf_size = 4; 5315 5316 if (length > d->d_size - offset) { 5317 warnx("invalid .dwarf_aranges section"); 5318 return; 5319 } 5320 5321 as_version = re->dw_read(d, &offset, 2); 5322 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5323 as_addrsz = re->dw_read(d, &offset, 1); 5324 as_segsz = re->dw_read(d, &offset, 1); 5325 5326 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5327 printf(" Version:\t\t\t%u\n", as_version); 5328 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5329 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5330 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5331 5332 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5333 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5334 return; 5335 } 5336 5337 printf("\n Address Length\n"); 5338 for (i = 0; i < cnt; i++) { 5339 if (dwarf_get_arange_info(aranges[i], &start, &length, 5340 &die_off, &de) != DW_DLV_OK) { 5341 warnx("dwarf_get_arange_info failed: %s", 5342 dwarf_errmsg(de)); 5343 continue; 5344 } 5345 printf(" %08jx %ju\n", (uintmax_t) start, 5346 (uintmax_t) length); 5347 } 5348 } 5349 5350 static void 5351 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5352 { 5353 Dwarf_Attribute *attr_list; 5354 Dwarf_Ranges *ranges; 5355 Dwarf_Die ret_die; 5356 Dwarf_Error de; 5357 Dwarf_Addr base0; 5358 Dwarf_Half attr; 5359 Dwarf_Signed attr_count, cnt; 5360 Dwarf_Unsigned off, bytecnt; 5361 int i, j, ret; 5362 5363 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5364 DW_DLV_OK) { 5365 if (ret == DW_DLV_ERROR) 5366 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5367 goto cont_search; 5368 } 5369 5370 for (i = 0; i < attr_count; i++) { 5371 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5372 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5373 continue; 5374 } 5375 if (attr != DW_AT_ranges) 5376 continue; 5377 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5378 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5379 continue; 5380 } 5381 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5382 &bytecnt, &de) != DW_DLV_OK) 5383 continue; 5384 base0 = base; 5385 for (j = 0; j < cnt; j++) { 5386 printf(" %08jx ", (uintmax_t) off); 5387 if (ranges[j].dwr_type == DW_RANGES_END) { 5388 printf("%s\n", "<End of list>"); 5389 continue; 5390 } else if (ranges[j].dwr_type == 5391 DW_RANGES_ADDRESS_SELECTION) { 5392 base0 = ranges[j].dwr_addr2; 5393 continue; 5394 } 5395 if (re->ec == ELFCLASS32) 5396 printf("%08jx %08jx\n", 5397 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5398 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5399 else 5400 printf("%016jx %016jx\n", 5401 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5402 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5403 } 5404 } 5405 5406 cont_search: 5407 /* Search children. */ 5408 ret = dwarf_child(die, &ret_die, &de); 5409 if (ret == DW_DLV_ERROR) 5410 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5411 else if (ret == DW_DLV_OK) 5412 dump_dwarf_ranges_foreach(re, ret_die, base); 5413 5414 /* Search sibling. */ 5415 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5416 if (ret == DW_DLV_ERROR) 5417 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5418 else if (ret == DW_DLV_OK) 5419 dump_dwarf_ranges_foreach(re, ret_die, base); 5420 } 5421 5422 static void 5423 dump_dwarf_ranges(struct readelf *re) 5424 { 5425 Dwarf_Ranges *ranges; 5426 Dwarf_Die die; 5427 Dwarf_Signed cnt; 5428 Dwarf_Unsigned bytecnt; 5429 Dwarf_Half tag; 5430 Dwarf_Error de; 5431 Dwarf_Unsigned lowpc; 5432 int ret; 5433 5434 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5435 DW_DLV_OK) 5436 return; 5437 5438 printf("Contents of the .debug_ranges section:\n\n"); 5439 if (re->ec == ELFCLASS32) 5440 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5441 else 5442 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5443 5444 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5445 NULL, &de)) == DW_DLV_OK) { 5446 die = NULL; 5447 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5448 continue; 5449 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5450 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5451 continue; 5452 } 5453 /* XXX: What about DW_TAG_partial_unit? */ 5454 lowpc = 0; 5455 if (tag == DW_TAG_compile_unit) { 5456 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5457 &de) != DW_DLV_OK) 5458 lowpc = 0; 5459 } 5460 5461 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5462 } 5463 putchar('\n'); 5464 } 5465 5466 static void 5467 dump_dwarf_macinfo(struct readelf *re) 5468 { 5469 Dwarf_Unsigned offset; 5470 Dwarf_Signed cnt; 5471 Dwarf_Macro_Details *md; 5472 Dwarf_Error de; 5473 const char *mi_str; 5474 char unk_mi[32]; 5475 int i; 5476 5477 #define _MAX_MACINFO_ENTRY 65535 5478 5479 printf("\nContents of section .debug_macinfo:\n\n"); 5480 5481 offset = 0; 5482 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5483 &cnt, &md, &de) == DW_DLV_OK) { 5484 for (i = 0; i < cnt; i++) { 5485 offset = md[i].dmd_offset + 1; 5486 if (md[i].dmd_type == 0) 5487 break; 5488 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5489 DW_DLV_OK) { 5490 snprintf(unk_mi, sizeof(unk_mi), 5491 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5492 mi_str = unk_mi; 5493 } 5494 printf(" %s", mi_str); 5495 switch (md[i].dmd_type) { 5496 case DW_MACINFO_define: 5497 case DW_MACINFO_undef: 5498 printf(" - lineno : %jd macro : %s\n", 5499 (intmax_t) md[i].dmd_lineno, 5500 md[i].dmd_macro); 5501 break; 5502 case DW_MACINFO_start_file: 5503 printf(" - lineno : %jd filenum : %jd\n", 5504 (intmax_t) md[i].dmd_lineno, 5505 (intmax_t) md[i].dmd_fileindex); 5506 break; 5507 default: 5508 putchar('\n'); 5509 break; 5510 } 5511 } 5512 } 5513 5514 #undef _MAX_MACINFO_ENTRY 5515 } 5516 5517 static void 5518 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5519 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5520 Dwarf_Debug dbg) 5521 { 5522 Dwarf_Frame_Op *oplist; 5523 Dwarf_Signed opcnt, delta; 5524 Dwarf_Small op; 5525 Dwarf_Error de; 5526 const char *op_str; 5527 char unk_op[32]; 5528 int i; 5529 5530 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5531 &opcnt, &de) != DW_DLV_OK) { 5532 warnx("dwarf_expand_frame_instructions failed: %s", 5533 dwarf_errmsg(de)); 5534 return; 5535 } 5536 5537 for (i = 0; i < opcnt; i++) { 5538 if (oplist[i].fp_base_op != 0) 5539 op = oplist[i].fp_base_op << 6; 5540 else 5541 op = oplist[i].fp_extended_op; 5542 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5543 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5544 op); 5545 op_str = unk_op; 5546 } 5547 printf(" %s", op_str); 5548 switch (op) { 5549 case DW_CFA_advance_loc: 5550 delta = oplist[i].fp_offset * caf; 5551 pc += delta; 5552 printf(": %ju to %08jx", (uintmax_t) delta, 5553 (uintmax_t) pc); 5554 break; 5555 case DW_CFA_offset: 5556 case DW_CFA_offset_extended: 5557 case DW_CFA_offset_extended_sf: 5558 delta = oplist[i].fp_offset * daf; 5559 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5560 dwarf_regname(re, oplist[i].fp_register), 5561 (intmax_t) delta); 5562 break; 5563 case DW_CFA_restore: 5564 printf(": r%u (%s)", oplist[i].fp_register, 5565 dwarf_regname(re, oplist[i].fp_register)); 5566 break; 5567 case DW_CFA_set_loc: 5568 pc = oplist[i].fp_offset; 5569 printf(": to %08jx", (uintmax_t) pc); 5570 break; 5571 case DW_CFA_advance_loc1: 5572 case DW_CFA_advance_loc2: 5573 case DW_CFA_advance_loc4: 5574 pc += oplist[i].fp_offset; 5575 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5576 (uintmax_t) pc); 5577 break; 5578 case DW_CFA_def_cfa: 5579 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5580 dwarf_regname(re, oplist[i].fp_register), 5581 (uintmax_t) oplist[i].fp_offset); 5582 break; 5583 case DW_CFA_def_cfa_sf: 5584 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5585 dwarf_regname(re, oplist[i].fp_register), 5586 (intmax_t) (oplist[i].fp_offset * daf)); 5587 break; 5588 case DW_CFA_def_cfa_register: 5589 printf(": r%u (%s)", oplist[i].fp_register, 5590 dwarf_regname(re, oplist[i].fp_register)); 5591 break; 5592 case DW_CFA_def_cfa_offset: 5593 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5594 break; 5595 case DW_CFA_def_cfa_offset_sf: 5596 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5597 break; 5598 default: 5599 break; 5600 } 5601 putchar('\n'); 5602 } 5603 5604 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5605 } 5606 5607 static char * 5608 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5609 { 5610 static char rs[16]; 5611 5612 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5613 snprintf(rs, sizeof(rs), "%c", 'u'); 5614 else if (reg == DW_FRAME_CFA_COL) 5615 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5616 else 5617 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5618 (intmax_t) off); 5619 5620 return (rs); 5621 } 5622 5623 static int 5624 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5625 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5626 { 5627 Dwarf_Regtable rt; 5628 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5629 Dwarf_Error de; 5630 char *vec; 5631 int i; 5632 5633 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5634 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5635 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5636 #define RT(x) rt.rules[(x)] 5637 5638 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5639 if (vec == NULL) 5640 err(EXIT_FAILURE, "calloc failed"); 5641 5642 pre_pc = ~((Dwarf_Addr) 0); 5643 cur_pc = pc; 5644 end_pc = pc + func_len; 5645 for (; cur_pc < end_pc; cur_pc++) { 5646 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5647 &de) != DW_DLV_OK) { 5648 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5649 dwarf_errmsg(de)); 5650 return (-1); 5651 } 5652 if (row_pc == pre_pc) 5653 continue; 5654 pre_pc = row_pc; 5655 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5656 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5657 BIT_SET(vec, i); 5658 } 5659 } 5660 5661 printf(" LOC CFA "); 5662 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5663 if (BIT_ISSET(vec, i)) { 5664 if ((Dwarf_Half) i == cie_ra) 5665 printf("ra "); 5666 else 5667 printf("%-5s", 5668 dwarf_regname(re, (unsigned int) i)); 5669 } 5670 } 5671 putchar('\n'); 5672 5673 pre_pc = ~((Dwarf_Addr) 0); 5674 cur_pc = pc; 5675 end_pc = pc + func_len; 5676 for (; cur_pc < end_pc; cur_pc++) { 5677 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5678 &de) != DW_DLV_OK) { 5679 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5680 dwarf_errmsg(de)); 5681 return (-1); 5682 } 5683 if (row_pc == pre_pc) 5684 continue; 5685 pre_pc = row_pc; 5686 printf("%08jx ", (uintmax_t) row_pc); 5687 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5688 RT(0).dw_offset)); 5689 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5690 if (BIT_ISSET(vec, i)) { 5691 printf("%-5s", get_regoff_str(re, 5692 RT(i).dw_regnum, RT(i).dw_offset)); 5693 } 5694 } 5695 putchar('\n'); 5696 } 5697 5698 free(vec); 5699 5700 return (0); 5701 5702 #undef BIT_SET 5703 #undef BIT_CLR 5704 #undef BIT_ISSET 5705 #undef RT 5706 } 5707 5708 static void 5709 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5710 { 5711 Dwarf_Cie *cie_list, cie, pre_cie; 5712 Dwarf_Fde *fde_list, fde; 5713 Dwarf_Off cie_offset, fde_offset; 5714 Dwarf_Unsigned cie_length, fde_instlen; 5715 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5716 Dwarf_Signed cie_count, fde_count, cie_index; 5717 Dwarf_Addr low_pc; 5718 Dwarf_Half cie_ra; 5719 Dwarf_Small cie_version; 5720 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5721 char *cie_aug, c; 5722 int i, eh_frame; 5723 Dwarf_Error de; 5724 5725 printf("\nThe section %s contains:\n\n", s->name); 5726 5727 if (!strcmp(s->name, ".debug_frame")) { 5728 eh_frame = 0; 5729 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5730 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5731 warnx("dwarf_get_fde_list failed: %s", 5732 dwarf_errmsg(de)); 5733 return; 5734 } 5735 } else if (!strcmp(s->name, ".eh_frame")) { 5736 eh_frame = 1; 5737 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5738 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5739 warnx("dwarf_get_fde_list_eh failed: %s", 5740 dwarf_errmsg(de)); 5741 return; 5742 } 5743 } else 5744 return; 5745 5746 pre_cie = NULL; 5747 for (i = 0; i < fde_count; i++) { 5748 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5749 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5750 continue; 5751 } 5752 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5753 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5754 continue; 5755 } 5756 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5757 &fde_length, &cie_offset, &cie_index, &fde_offset, 5758 &de) != DW_DLV_OK) { 5759 warnx("dwarf_get_fde_range failed: %s", 5760 dwarf_errmsg(de)); 5761 continue; 5762 } 5763 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5764 &de) != DW_DLV_OK) { 5765 warnx("dwarf_get_fde_instr_bytes failed: %s", 5766 dwarf_errmsg(de)); 5767 continue; 5768 } 5769 if (pre_cie == NULL || cie != pre_cie) { 5770 pre_cie = cie; 5771 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5772 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5773 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5774 warnx("dwarf_get_cie_info failed: %s", 5775 dwarf_errmsg(de)); 5776 continue; 5777 } 5778 printf("%08jx %08jx %8.8jx CIE", 5779 (uintmax_t) cie_offset, 5780 (uintmax_t) cie_length, 5781 (uintmax_t) (eh_frame ? 0 : ~0U)); 5782 if (!alt) { 5783 putchar('\n'); 5784 printf(" Version:\t\t\t%u\n", cie_version); 5785 printf(" Augmentation:\t\t\t\""); 5786 while ((c = *cie_aug++) != '\0') 5787 putchar(c); 5788 printf("\"\n"); 5789 printf(" Code alignment factor:\t%ju\n", 5790 (uintmax_t) cie_caf); 5791 printf(" Data alignment factor:\t%jd\n", 5792 (intmax_t) cie_daf); 5793 printf(" Return address column:\t%ju\n", 5794 (uintmax_t) cie_ra); 5795 putchar('\n'); 5796 dump_dwarf_frame_inst(re, cie, cie_inst, 5797 cie_instlen, cie_caf, cie_daf, 0, 5798 re->dbg); 5799 putchar('\n'); 5800 } else { 5801 printf(" \""); 5802 while ((c = *cie_aug++) != '\0') 5803 putchar(c); 5804 putchar('"'); 5805 printf(" cf=%ju df=%jd ra=%ju\n", 5806 (uintmax_t) cie_caf, 5807 (uintmax_t) cie_daf, 5808 (uintmax_t) cie_ra); 5809 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5810 cie_ra); 5811 putchar('\n'); 5812 } 5813 } 5814 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5815 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5816 (uintmax_t) cie_offset, 5817 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5818 cie_offset), 5819 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5820 if (!alt) 5821 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5822 cie_caf, cie_daf, low_pc, re->dbg); 5823 else 5824 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5825 cie_ra); 5826 putchar('\n'); 5827 } 5828 } 5829 5830 static void 5831 dump_dwarf_frame(struct readelf *re, int alt) 5832 { 5833 struct section *s; 5834 int i; 5835 5836 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5837 5838 for (i = 0; (size_t) i < re->shnum; i++) { 5839 s = &re->sl[i]; 5840 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5841 !strcmp(s->name, ".eh_frame"))) 5842 dump_dwarf_frame_section(re, s, alt); 5843 } 5844 } 5845 5846 static void 5847 dump_dwarf_str(struct readelf *re) 5848 { 5849 struct section *s; 5850 Elf_Data *d; 5851 unsigned char *p; 5852 int elferr, end, i, j; 5853 5854 printf("\nContents of section .debug_str:\n"); 5855 5856 s = NULL; 5857 for (i = 0; (size_t) i < re->shnum; i++) { 5858 s = &re->sl[i]; 5859 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5860 break; 5861 } 5862 if ((size_t) i >= re->shnum) 5863 return; 5864 5865 (void) elf_errno(); 5866 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5867 elferr = elf_errno(); 5868 if (elferr != 0) 5869 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5870 return; 5871 } 5872 if (d->d_size <= 0) 5873 return; 5874 5875 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5876 printf(" 0x%08x", (unsigned int) i); 5877 if ((size_t) i + 16 > d->d_size) 5878 end = d->d_size; 5879 else 5880 end = i + 16; 5881 for (j = i; j < i + 16; j++) { 5882 if ((j - i) % 4 == 0) 5883 putchar(' '); 5884 if (j >= end) { 5885 printf(" "); 5886 continue; 5887 } 5888 printf("%02x", (uint8_t) p[j]); 5889 } 5890 putchar(' '); 5891 for (j = i; j < end; j++) { 5892 if (isprint(p[j])) 5893 putchar(p[j]); 5894 else if (p[j] == 0) 5895 putchar('.'); 5896 else 5897 putchar(' '); 5898 } 5899 putchar('\n'); 5900 } 5901 } 5902 5903 struct loc_at { 5904 Dwarf_Attribute la_at; 5905 Dwarf_Unsigned la_off; 5906 Dwarf_Unsigned la_lowpc; 5907 Dwarf_Half la_cu_psize; 5908 Dwarf_Half la_cu_osize; 5909 Dwarf_Half la_cu_ver; 5910 TAILQ_ENTRY(loc_at) la_next; 5911 }; 5912 5913 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5914 5915 static void 5916 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5917 { 5918 Dwarf_Attribute *attr_list; 5919 Dwarf_Die ret_die; 5920 Dwarf_Unsigned off; 5921 Dwarf_Off ref; 5922 Dwarf_Signed attr_count; 5923 Dwarf_Half attr, form; 5924 Dwarf_Bool is_info; 5925 Dwarf_Error de; 5926 struct loc_at *la, *nla; 5927 int i, ret; 5928 5929 is_info = dwarf_get_die_infotypes_flag(die); 5930 5931 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5932 DW_DLV_OK) { 5933 if (ret == DW_DLV_ERROR) 5934 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5935 goto cont_search; 5936 } 5937 for (i = 0; i < attr_count; i++) { 5938 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5939 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5940 continue; 5941 } 5942 if (attr != DW_AT_location && 5943 attr != DW_AT_string_length && 5944 attr != DW_AT_return_addr && 5945 attr != DW_AT_data_member_location && 5946 attr != DW_AT_frame_base && 5947 attr != DW_AT_segment && 5948 attr != DW_AT_static_link && 5949 attr != DW_AT_use_location && 5950 attr != DW_AT_vtable_elem_location) 5951 continue; 5952 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5953 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5954 continue; 5955 } 5956 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 5957 if (dwarf_formudata(attr_list[i], &off, &de) != 5958 DW_DLV_OK) { 5959 warnx("dwarf_formudata failed: %s", 5960 dwarf_errmsg(de)); 5961 continue; 5962 } 5963 } else if (form == DW_FORM_sec_offset) { 5964 if (dwarf_global_formref(attr_list[i], &ref, &de) != 5965 DW_DLV_OK) { 5966 warnx("dwarf_global_formref failed: %s", 5967 dwarf_errmsg(de)); 5968 continue; 5969 } 5970 off = ref; 5971 } else 5972 continue; 5973 5974 TAILQ_FOREACH(la, &lalist, la_next) { 5975 if (off == la->la_off) 5976 break; 5977 if (off < la->la_off) { 5978 if ((nla = malloc(sizeof(*nla))) == NULL) 5979 err(EXIT_FAILURE, "malloc failed"); 5980 nla->la_at = attr_list[i]; 5981 nla->la_off = off; 5982 nla->la_lowpc = lowpc; 5983 nla->la_cu_psize = re->cu_psize; 5984 nla->la_cu_osize = re->cu_osize; 5985 nla->la_cu_ver = re->cu_ver; 5986 TAILQ_INSERT_BEFORE(la, nla, la_next); 5987 break; 5988 } 5989 } 5990 if (la == NULL) { 5991 if ((nla = malloc(sizeof(*nla))) == NULL) 5992 err(EXIT_FAILURE, "malloc failed"); 5993 nla->la_at = attr_list[i]; 5994 nla->la_off = off; 5995 nla->la_lowpc = lowpc; 5996 nla->la_cu_psize = re->cu_psize; 5997 nla->la_cu_osize = re->cu_osize; 5998 nla->la_cu_ver = re->cu_ver; 5999 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6000 } 6001 } 6002 6003 cont_search: 6004 /* Search children. */ 6005 ret = dwarf_child(die, &ret_die, &de); 6006 if (ret == DW_DLV_ERROR) 6007 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6008 else if (ret == DW_DLV_OK) 6009 search_loclist_at(re, ret_die, lowpc); 6010 6011 /* Search sibling. */ 6012 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6013 if (ret == DW_DLV_ERROR) 6014 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6015 else if (ret == DW_DLV_OK) 6016 search_loclist_at(re, ret_die, lowpc); 6017 } 6018 6019 static void 6020 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6021 { 6022 const char *op_str; 6023 char unk_op[32]; 6024 uint8_t *b, n; 6025 int i; 6026 6027 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6028 DW_DLV_OK) { 6029 snprintf(unk_op, sizeof(unk_op), 6030 "[Unknown OP: %#x]", lr->lr_atom); 6031 op_str = unk_op; 6032 } 6033 6034 printf("%s", op_str); 6035 6036 switch (lr->lr_atom) { 6037 case DW_OP_reg0: 6038 case DW_OP_reg1: 6039 case DW_OP_reg2: 6040 case DW_OP_reg3: 6041 case DW_OP_reg4: 6042 case DW_OP_reg5: 6043 case DW_OP_reg6: 6044 case DW_OP_reg7: 6045 case DW_OP_reg8: 6046 case DW_OP_reg9: 6047 case DW_OP_reg10: 6048 case DW_OP_reg11: 6049 case DW_OP_reg12: 6050 case DW_OP_reg13: 6051 case DW_OP_reg14: 6052 case DW_OP_reg15: 6053 case DW_OP_reg16: 6054 case DW_OP_reg17: 6055 case DW_OP_reg18: 6056 case DW_OP_reg19: 6057 case DW_OP_reg20: 6058 case DW_OP_reg21: 6059 case DW_OP_reg22: 6060 case DW_OP_reg23: 6061 case DW_OP_reg24: 6062 case DW_OP_reg25: 6063 case DW_OP_reg26: 6064 case DW_OP_reg27: 6065 case DW_OP_reg28: 6066 case DW_OP_reg29: 6067 case DW_OP_reg30: 6068 case DW_OP_reg31: 6069 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6070 break; 6071 6072 case DW_OP_deref: 6073 case DW_OP_lit0: 6074 case DW_OP_lit1: 6075 case DW_OP_lit2: 6076 case DW_OP_lit3: 6077 case DW_OP_lit4: 6078 case DW_OP_lit5: 6079 case DW_OP_lit6: 6080 case DW_OP_lit7: 6081 case DW_OP_lit8: 6082 case DW_OP_lit9: 6083 case DW_OP_lit10: 6084 case DW_OP_lit11: 6085 case DW_OP_lit12: 6086 case DW_OP_lit13: 6087 case DW_OP_lit14: 6088 case DW_OP_lit15: 6089 case DW_OP_lit16: 6090 case DW_OP_lit17: 6091 case DW_OP_lit18: 6092 case DW_OP_lit19: 6093 case DW_OP_lit20: 6094 case DW_OP_lit21: 6095 case DW_OP_lit22: 6096 case DW_OP_lit23: 6097 case DW_OP_lit24: 6098 case DW_OP_lit25: 6099 case DW_OP_lit26: 6100 case DW_OP_lit27: 6101 case DW_OP_lit28: 6102 case DW_OP_lit29: 6103 case DW_OP_lit30: 6104 case DW_OP_lit31: 6105 case DW_OP_dup: 6106 case DW_OP_drop: 6107 case DW_OP_over: 6108 case DW_OP_swap: 6109 case DW_OP_rot: 6110 case DW_OP_xderef: 6111 case DW_OP_abs: 6112 case DW_OP_and: 6113 case DW_OP_div: 6114 case DW_OP_minus: 6115 case DW_OP_mod: 6116 case DW_OP_mul: 6117 case DW_OP_neg: 6118 case DW_OP_not: 6119 case DW_OP_or: 6120 case DW_OP_plus: 6121 case DW_OP_shl: 6122 case DW_OP_shr: 6123 case DW_OP_shra: 6124 case DW_OP_xor: 6125 case DW_OP_eq: 6126 case DW_OP_ge: 6127 case DW_OP_gt: 6128 case DW_OP_le: 6129 case DW_OP_lt: 6130 case DW_OP_ne: 6131 case DW_OP_nop: 6132 case DW_OP_push_object_address: 6133 case DW_OP_form_tls_address: 6134 case DW_OP_call_frame_cfa: 6135 case DW_OP_stack_value: 6136 case DW_OP_GNU_push_tls_address: 6137 case DW_OP_GNU_uninit: 6138 break; 6139 6140 case DW_OP_const1u: 6141 case DW_OP_pick: 6142 case DW_OP_deref_size: 6143 case DW_OP_xderef_size: 6144 case DW_OP_const2u: 6145 case DW_OP_bra: 6146 case DW_OP_skip: 6147 case DW_OP_const4u: 6148 case DW_OP_const8u: 6149 case DW_OP_constu: 6150 case DW_OP_plus_uconst: 6151 case DW_OP_regx: 6152 case DW_OP_piece: 6153 printf(": %ju", (uintmax_t) 6154 lr->lr_number); 6155 break; 6156 6157 case DW_OP_const1s: 6158 case DW_OP_const2s: 6159 case DW_OP_const4s: 6160 case DW_OP_const8s: 6161 case DW_OP_consts: 6162 printf(": %jd", (intmax_t) 6163 lr->lr_number); 6164 break; 6165 6166 case DW_OP_breg0: 6167 case DW_OP_breg1: 6168 case DW_OP_breg2: 6169 case DW_OP_breg3: 6170 case DW_OP_breg4: 6171 case DW_OP_breg5: 6172 case DW_OP_breg6: 6173 case DW_OP_breg7: 6174 case DW_OP_breg8: 6175 case DW_OP_breg9: 6176 case DW_OP_breg10: 6177 case DW_OP_breg11: 6178 case DW_OP_breg12: 6179 case DW_OP_breg13: 6180 case DW_OP_breg14: 6181 case DW_OP_breg15: 6182 case DW_OP_breg16: 6183 case DW_OP_breg17: 6184 case DW_OP_breg18: 6185 case DW_OP_breg19: 6186 case DW_OP_breg20: 6187 case DW_OP_breg21: 6188 case DW_OP_breg22: 6189 case DW_OP_breg23: 6190 case DW_OP_breg24: 6191 case DW_OP_breg25: 6192 case DW_OP_breg26: 6193 case DW_OP_breg27: 6194 case DW_OP_breg28: 6195 case DW_OP_breg29: 6196 case DW_OP_breg30: 6197 case DW_OP_breg31: 6198 printf(" (%s): %jd", 6199 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6200 (intmax_t) lr->lr_number); 6201 break; 6202 6203 case DW_OP_fbreg: 6204 printf(": %jd", (intmax_t) 6205 lr->lr_number); 6206 break; 6207 6208 case DW_OP_bregx: 6209 printf(": %ju (%s) %jd", 6210 (uintmax_t) lr->lr_number, 6211 dwarf_regname(re, (unsigned int) lr->lr_number), 6212 (intmax_t) lr->lr_number2); 6213 break; 6214 6215 case DW_OP_addr: 6216 case DW_OP_GNU_encoded_addr: 6217 printf(": %#jx", (uintmax_t) 6218 lr->lr_number); 6219 break; 6220 6221 case DW_OP_GNU_implicit_pointer: 6222 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6223 (intmax_t) lr->lr_number2); 6224 break; 6225 6226 case DW_OP_implicit_value: 6227 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6228 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6229 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6230 printf(" %x", b[i]); 6231 break; 6232 6233 case DW_OP_GNU_entry_value: 6234 printf(": ("); 6235 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6236 lr->lr_number); 6237 putchar(')'); 6238 break; 6239 6240 case DW_OP_GNU_const_type: 6241 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6242 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6243 n = *b; 6244 for (i = 1; (uint8_t) i < n; i++) 6245 printf(" %x", b[i]); 6246 break; 6247 6248 case DW_OP_GNU_regval_type: 6249 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6250 dwarf_regname(re, (unsigned int) lr->lr_number), 6251 (uintmax_t) lr->lr_number2); 6252 break; 6253 6254 case DW_OP_GNU_convert: 6255 case DW_OP_GNU_deref_type: 6256 case DW_OP_GNU_parameter_ref: 6257 case DW_OP_GNU_reinterpret: 6258 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6259 break; 6260 6261 default: 6262 break; 6263 } 6264 } 6265 6266 static void 6267 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6268 { 6269 Dwarf_Locdesc *llbuf; 6270 Dwarf_Signed lcnt; 6271 Dwarf_Error de; 6272 int i; 6273 6274 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6275 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6276 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6277 return; 6278 } 6279 6280 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6281 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6282 if (i < llbuf->ld_cents - 1) 6283 printf("; "); 6284 } 6285 6286 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6287 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6288 } 6289 6290 static void 6291 dump_dwarf_loclist(struct readelf *re) 6292 { 6293 Dwarf_Die die; 6294 Dwarf_Locdesc **llbuf; 6295 Dwarf_Unsigned lowpc; 6296 Dwarf_Signed lcnt; 6297 Dwarf_Half tag, version, pointer_size, off_size; 6298 Dwarf_Error de; 6299 struct loc_at *la; 6300 int i, j, ret, has_content; 6301 6302 /* Search .debug_info section. */ 6303 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6304 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6305 set_cu_context(re, pointer_size, off_size, version); 6306 die = NULL; 6307 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6308 continue; 6309 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6310 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6311 continue; 6312 } 6313 /* XXX: What about DW_TAG_partial_unit? */ 6314 lowpc = 0; 6315 if (tag == DW_TAG_compile_unit) { 6316 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6317 &lowpc, &de) != DW_DLV_OK) 6318 lowpc = 0; 6319 } 6320 6321 /* Search attributes for reference to .debug_loc section. */ 6322 search_loclist_at(re, die, lowpc); 6323 } 6324 if (ret == DW_DLV_ERROR) 6325 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6326 6327 /* Search .debug_types section. */ 6328 do { 6329 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6330 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6331 NULL, NULL, &de)) == DW_DLV_OK) { 6332 set_cu_context(re, pointer_size, off_size, version); 6333 die = NULL; 6334 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6335 DW_DLV_OK) 6336 continue; 6337 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6338 warnx("dwarf_tag failed: %s", 6339 dwarf_errmsg(de)); 6340 continue; 6341 } 6342 6343 lowpc = 0; 6344 if (tag == DW_TAG_type_unit) { 6345 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6346 &lowpc, &de) != DW_DLV_OK) 6347 lowpc = 0; 6348 } 6349 6350 /* 6351 * Search attributes for reference to .debug_loc 6352 * section. 6353 */ 6354 search_loclist_at(re, die, lowpc); 6355 } 6356 if (ret == DW_DLV_ERROR) 6357 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6358 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6359 6360 if (TAILQ_EMPTY(&lalist)) 6361 return; 6362 6363 has_content = 0; 6364 TAILQ_FOREACH(la, &lalist, la_next) { 6365 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6366 DW_DLV_OK) { 6367 if (ret != DW_DLV_NO_ENTRY) 6368 warnx("dwarf_loclist_n failed: %s", 6369 dwarf_errmsg(de)); 6370 continue; 6371 } 6372 if (!has_content) { 6373 has_content = 1; 6374 printf("\nContents of section .debug_loc:\n"); 6375 printf(" Offset Begin End Expression\n"); 6376 } 6377 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6378 la->la_cu_ver); 6379 for (i = 0; i < lcnt; i++) { 6380 printf(" %8.8jx ", (uintmax_t) la->la_off); 6381 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6382 printf("<End of list>\n"); 6383 continue; 6384 } 6385 6386 /* TODO: handle base selection entry. */ 6387 6388 printf("%8.8jx %8.8jx ", 6389 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6390 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6391 6392 putchar('('); 6393 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6394 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6395 if (j < llbuf[i]->ld_cents - 1) 6396 printf("; "); 6397 } 6398 putchar(')'); 6399 6400 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6401 printf(" (start == end)"); 6402 putchar('\n'); 6403 } 6404 for (i = 0; i < lcnt; i++) { 6405 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6406 DW_DLA_LOC_BLOCK); 6407 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6408 } 6409 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6410 } 6411 6412 if (!has_content) 6413 printf("\nSection '.debug_loc' has no debugging data.\n"); 6414 } 6415 6416 /* 6417 * Retrieve a string using string table section index and the string offset. 6418 */ 6419 static const char* 6420 get_string(struct readelf *re, int strtab, size_t off) 6421 { 6422 const char *name; 6423 6424 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6425 return (""); 6426 6427 return (name); 6428 } 6429 6430 /* 6431 * Retrieve the name of a symbol using the section index of the symbol 6432 * table and the index of the symbol within that table. 6433 */ 6434 static const char * 6435 get_symbol_name(struct readelf *re, int symtab, int i) 6436 { 6437 struct section *s; 6438 const char *name; 6439 GElf_Sym sym; 6440 Elf_Data *data; 6441 int elferr; 6442 6443 s = &re->sl[symtab]; 6444 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6445 return (""); 6446 (void) elf_errno(); 6447 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6448 elferr = elf_errno(); 6449 if (elferr != 0) 6450 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6451 return (""); 6452 } 6453 if (gelf_getsym(data, i, &sym) != &sym) 6454 return (""); 6455 /* Return section name for STT_SECTION symbol. */ 6456 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6457 if (sym.st_shndx < re->shnum && 6458 re->sl[sym.st_shndx].name != NULL) 6459 return (re->sl[sym.st_shndx].name); 6460 return (""); 6461 } 6462 if (s->link >= re->shnum || 6463 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6464 return (""); 6465 6466 return (name); 6467 } 6468 6469 static uint64_t 6470 get_symbol_value(struct readelf *re, int symtab, int i) 6471 { 6472 struct section *s; 6473 GElf_Sym sym; 6474 Elf_Data *data; 6475 int elferr; 6476 6477 s = &re->sl[symtab]; 6478 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6479 return (0); 6480 (void) elf_errno(); 6481 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6482 elferr = elf_errno(); 6483 if (elferr != 0) 6484 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6485 return (0); 6486 } 6487 if (gelf_getsym(data, i, &sym) != &sym) 6488 return (0); 6489 6490 return (sym.st_value); 6491 } 6492 6493 static void 6494 hex_dump(struct readelf *re) 6495 { 6496 struct section *s; 6497 Elf_Data *d; 6498 uint8_t *buf; 6499 size_t sz, nbytes; 6500 uint64_t addr; 6501 int elferr, i, j; 6502 6503 for (i = 1; (size_t) i < re->shnum; i++) { 6504 s = &re->sl[i]; 6505 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6506 continue; 6507 (void) elf_errno(); 6508 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6509 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6510 elferr = elf_errno(); 6511 if (elferr != 0) 6512 warnx("elf_getdata failed: %s", 6513 elf_errmsg(elferr)); 6514 continue; 6515 } 6516 (void) elf_errno(); 6517 if (d->d_size <= 0 || d->d_buf == NULL) { 6518 printf("\nSection '%s' has no data to dump.\n", 6519 s->name); 6520 continue; 6521 } 6522 buf = d->d_buf; 6523 sz = d->d_size; 6524 addr = s->addr; 6525 printf("\nHex dump of section '%s':\n", s->name); 6526 while (sz > 0) { 6527 printf(" 0x%8.8jx ", (uintmax_t)addr); 6528 nbytes = sz > 16? 16 : sz; 6529 for (j = 0; j < 16; j++) { 6530 if ((size_t)j < nbytes) 6531 printf("%2.2x", buf[j]); 6532 else 6533 printf(" "); 6534 if ((j & 3) == 3) 6535 printf(" "); 6536 } 6537 for (j = 0; (size_t)j < nbytes; j++) { 6538 if (isprint(buf[j])) 6539 printf("%c", buf[j]); 6540 else 6541 printf("."); 6542 } 6543 printf("\n"); 6544 buf += nbytes; 6545 addr += nbytes; 6546 sz -= nbytes; 6547 } 6548 } 6549 } 6550 6551 static void 6552 str_dump(struct readelf *re) 6553 { 6554 struct section *s; 6555 Elf_Data *d; 6556 unsigned char *start, *end, *buf_end; 6557 unsigned int len; 6558 int i, j, elferr, found; 6559 6560 for (i = 1; (size_t) i < re->shnum; i++) { 6561 s = &re->sl[i]; 6562 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6563 continue; 6564 (void) elf_errno(); 6565 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6566 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6567 elferr = elf_errno(); 6568 if (elferr != 0) 6569 warnx("elf_getdata failed: %s", 6570 elf_errmsg(elferr)); 6571 continue; 6572 } 6573 (void) elf_errno(); 6574 if (d->d_size <= 0 || d->d_buf == NULL) { 6575 printf("\nSection '%s' has no data to dump.\n", 6576 s->name); 6577 continue; 6578 } 6579 buf_end = (unsigned char *) d->d_buf + d->d_size; 6580 start = (unsigned char *) d->d_buf; 6581 found = 0; 6582 printf("\nString dump of section '%s':\n", s->name); 6583 for (;;) { 6584 while (start < buf_end && !isprint(*start)) 6585 start++; 6586 if (start >= buf_end) 6587 break; 6588 end = start + 1; 6589 while (end < buf_end && isprint(*end)) 6590 end++; 6591 printf(" [%6lx] ", 6592 (long) (start - (unsigned char *) d->d_buf)); 6593 len = end - start; 6594 for (j = 0; (unsigned int) j < len; j++) 6595 putchar(start[j]); 6596 putchar('\n'); 6597 found = 1; 6598 if (end >= buf_end) 6599 break; 6600 start = end + 1; 6601 } 6602 if (!found) 6603 printf(" No strings found in this section."); 6604 putchar('\n'); 6605 } 6606 } 6607 6608 static void 6609 load_sections(struct readelf *re) 6610 { 6611 struct section *s; 6612 const char *name; 6613 Elf_Scn *scn; 6614 GElf_Shdr sh; 6615 size_t shstrndx, ndx; 6616 int elferr; 6617 6618 /* Allocate storage for internal section list. */ 6619 if (!elf_getshnum(re->elf, &re->shnum)) { 6620 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6621 return; 6622 } 6623 if (re->sl != NULL) 6624 free(re->sl); 6625 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6626 err(EXIT_FAILURE, "calloc failed"); 6627 6628 /* Get the index of .shstrtab section. */ 6629 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6630 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6631 return; 6632 } 6633 6634 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6635 return; 6636 6637 (void) elf_errno(); 6638 do { 6639 if (gelf_getshdr(scn, &sh) == NULL) { 6640 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6641 (void) elf_errno(); 6642 continue; 6643 } 6644 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6645 (void) elf_errno(); 6646 name = "<no-name>"; 6647 } 6648 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6649 if ((elferr = elf_errno()) != 0) { 6650 warnx("elf_ndxscn failed: %s", 6651 elf_errmsg(elferr)); 6652 continue; 6653 } 6654 } 6655 if (ndx >= re->shnum) { 6656 warnx("section index of '%s' out of range", name); 6657 continue; 6658 } 6659 if (sh.sh_link >= re->shnum) 6660 warnx("section link %llu of '%s' out of range", 6661 (unsigned long long)sh.sh_link, name); 6662 s = &re->sl[ndx]; 6663 s->name = name; 6664 s->scn = scn; 6665 s->off = sh.sh_offset; 6666 s->sz = sh.sh_size; 6667 s->entsize = sh.sh_entsize; 6668 s->align = sh.sh_addralign; 6669 s->type = sh.sh_type; 6670 s->flags = sh.sh_flags; 6671 s->addr = sh.sh_addr; 6672 s->link = sh.sh_link; 6673 s->info = sh.sh_info; 6674 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6675 elferr = elf_errno(); 6676 if (elferr != 0) 6677 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6678 } 6679 6680 static void 6681 unload_sections(struct readelf *re) 6682 { 6683 6684 if (re->sl != NULL) { 6685 free(re->sl); 6686 re->sl = NULL; 6687 } 6688 re->shnum = 0; 6689 re->vd_s = NULL; 6690 re->vn_s = NULL; 6691 re->vs_s = NULL; 6692 re->vs = NULL; 6693 re->vs_sz = 0; 6694 if (re->ver != NULL) { 6695 free(re->ver); 6696 re->ver = NULL; 6697 re->ver_sz = 0; 6698 } 6699 } 6700 6701 static void 6702 dump_elf(struct readelf *re) 6703 { 6704 6705 /* Fetch ELF header. No need to continue if it fails. */ 6706 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6707 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6708 return; 6709 } 6710 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6711 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6712 return; 6713 } 6714 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6715 re->dw_read = _read_msb; 6716 re->dw_decode = _decode_msb; 6717 } else { 6718 re->dw_read = _read_lsb; 6719 re->dw_decode = _decode_lsb; 6720 } 6721 6722 if (re->options & ~RE_H) 6723 load_sections(re); 6724 if ((re->options & RE_VV) || (re->options & RE_S)) 6725 search_ver(re); 6726 if (re->options & RE_H) 6727 dump_ehdr(re); 6728 if (re->options & RE_L) 6729 dump_phdr(re); 6730 if (re->options & RE_SS) 6731 dump_shdr(re); 6732 if (re->options & RE_G) 6733 dump_section_groups(re); 6734 if (re->options & RE_D) 6735 dump_dynamic(re); 6736 if (re->options & RE_R) 6737 dump_reloc(re); 6738 if (re->options & RE_S) 6739 dump_symtabs(re); 6740 if (re->options & RE_N) 6741 dump_notes(re); 6742 if (re->options & RE_II) 6743 dump_hash(re); 6744 if (re->options & RE_X) 6745 hex_dump(re); 6746 if (re->options & RE_P) 6747 str_dump(re); 6748 if (re->options & RE_VV) 6749 dump_ver(re); 6750 if (re->options & RE_AA) 6751 dump_arch_specific_info(re); 6752 if (re->options & RE_W) 6753 dump_dwarf(re); 6754 if (re->options & ~RE_H) 6755 unload_sections(re); 6756 } 6757 6758 static void 6759 dump_dwarf(struct readelf *re) 6760 { 6761 struct loc_at *la, *_la; 6762 Dwarf_Error de; 6763 int error; 6764 6765 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6766 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6767 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6768 dwarf_errmsg(de)); 6769 return; 6770 } 6771 6772 if (re->dop & DW_A) 6773 dump_dwarf_abbrev(re); 6774 if (re->dop & DW_L) 6775 dump_dwarf_line(re); 6776 if (re->dop & DW_LL) 6777 dump_dwarf_line_decoded(re); 6778 if (re->dop & DW_I) { 6779 dump_dwarf_info(re, 0); 6780 dump_dwarf_info(re, 1); 6781 } 6782 if (re->dop & DW_P) 6783 dump_dwarf_pubnames(re); 6784 if (re->dop & DW_R) 6785 dump_dwarf_aranges(re); 6786 if (re->dop & DW_RR) 6787 dump_dwarf_ranges(re); 6788 if (re->dop & DW_M) 6789 dump_dwarf_macinfo(re); 6790 if (re->dop & DW_F) 6791 dump_dwarf_frame(re, 0); 6792 else if (re->dop & DW_FF) 6793 dump_dwarf_frame(re, 1); 6794 if (re->dop & DW_S) 6795 dump_dwarf_str(re); 6796 if (re->dop & DW_O) 6797 dump_dwarf_loclist(re); 6798 6799 TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) { 6800 TAILQ_REMOVE(&lalist, la, la_next); 6801 free(la); 6802 } 6803 6804 dwarf_finish(re->dbg, &de); 6805 } 6806 6807 static void 6808 dump_ar(struct readelf *re, int fd) 6809 { 6810 Elf_Arsym *arsym; 6811 Elf_Arhdr *arhdr; 6812 Elf_Cmd cmd; 6813 Elf *e; 6814 size_t sz; 6815 off_t off; 6816 int i; 6817 6818 re->ar = re->elf; 6819 6820 if (re->options & RE_C) { 6821 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6822 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6823 goto process_members; 6824 } 6825 printf("Index of archive %s: (%ju entries)\n", re->filename, 6826 (uintmax_t) sz - 1); 6827 off = 0; 6828 for (i = 0; (size_t) i < sz; i++) { 6829 if (arsym[i].as_name == NULL) 6830 break; 6831 if (arsym[i].as_off != off) { 6832 off = arsym[i].as_off; 6833 if (elf_rand(re->ar, off) != off) { 6834 warnx("elf_rand() failed: %s", 6835 elf_errmsg(-1)); 6836 continue; 6837 } 6838 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6839 NULL) { 6840 warnx("elf_begin() failed: %s", 6841 elf_errmsg(-1)); 6842 continue; 6843 } 6844 if ((arhdr = elf_getarhdr(e)) == NULL) { 6845 warnx("elf_getarhdr() failed: %s", 6846 elf_errmsg(-1)); 6847 elf_end(e); 6848 continue; 6849 } 6850 printf("Binary %s(%s) contains:\n", 6851 re->filename, arhdr->ar_name); 6852 } 6853 printf("\t%s\n", arsym[i].as_name); 6854 } 6855 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6856 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6857 return; 6858 } 6859 } 6860 6861 process_members: 6862 6863 if ((re->options & ~RE_C) == 0) 6864 return; 6865 6866 cmd = ELF_C_READ; 6867 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6868 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6869 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6870 goto next_member; 6871 } 6872 if (strcmp(arhdr->ar_name, "/") == 0 || 6873 strcmp(arhdr->ar_name, "//") == 0 || 6874 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6875 goto next_member; 6876 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6877 dump_elf(re); 6878 6879 next_member: 6880 cmd = elf_next(re->elf); 6881 elf_end(re->elf); 6882 } 6883 re->elf = re->ar; 6884 } 6885 6886 static void 6887 dump_object(struct readelf *re) 6888 { 6889 int fd; 6890 6891 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6892 warn("open %s failed", re->filename); 6893 return; 6894 } 6895 6896 if ((re->flags & DISPLAY_FILENAME) != 0) 6897 printf("\nFile: %s\n", re->filename); 6898 6899 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6900 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6901 return; 6902 } 6903 6904 switch (elf_kind(re->elf)) { 6905 case ELF_K_NONE: 6906 warnx("Not an ELF file."); 6907 return; 6908 case ELF_K_ELF: 6909 dump_elf(re); 6910 break; 6911 case ELF_K_AR: 6912 dump_ar(re, fd); 6913 break; 6914 default: 6915 warnx("Internal: libelf returned unknown elf kind."); 6916 return; 6917 } 6918 6919 elf_end(re->elf); 6920 } 6921 6922 static void 6923 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6924 { 6925 struct dumpop *d; 6926 6927 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6928 if ((d = calloc(1, sizeof(*d))) == NULL) 6929 err(EXIT_FAILURE, "calloc failed"); 6930 if (t == DUMP_BY_INDEX) 6931 d->u.si = si; 6932 else 6933 d->u.sn = sn; 6934 d->type = t; 6935 d->op = op; 6936 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6937 } else 6938 d->op |= op; 6939 } 6940 6941 static struct dumpop * 6942 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6943 { 6944 struct dumpop *d; 6945 6946 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6947 if ((op == -1 || op & d->op) && 6948 (t == -1 || (unsigned) t == d->type)) { 6949 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6950 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6951 return (d); 6952 } 6953 } 6954 6955 return (NULL); 6956 } 6957 6958 static struct { 6959 const char *ln; 6960 char sn; 6961 int value; 6962 } dwarf_op[] = { 6963 {"rawline", 'l', DW_L}, 6964 {"decodedline", 'L', DW_LL}, 6965 {"info", 'i', DW_I}, 6966 {"abbrev", 'a', DW_A}, 6967 {"pubnames", 'p', DW_P}, 6968 {"aranges", 'r', DW_R}, 6969 {"ranges", 'r', DW_R}, 6970 {"Ranges", 'R', DW_RR}, 6971 {"macro", 'm', DW_M}, 6972 {"frames", 'f', DW_F}, 6973 {"frames-interp", 'F', DW_FF}, 6974 {"str", 's', DW_S}, 6975 {"loc", 'o', DW_O}, 6976 {NULL, 0, 0} 6977 }; 6978 6979 static void 6980 parse_dwarf_op_short(struct readelf *re, const char *op) 6981 { 6982 int i; 6983 6984 if (op == NULL) { 6985 re->dop |= DW_DEFAULT_OPTIONS; 6986 return; 6987 } 6988 6989 for (; *op != '\0'; op++) { 6990 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6991 if (dwarf_op[i].sn == *op) { 6992 re->dop |= dwarf_op[i].value; 6993 break; 6994 } 6995 } 6996 } 6997 } 6998 6999 static void 7000 parse_dwarf_op_long(struct readelf *re, const char *op) 7001 { 7002 char *p, *token, *bp; 7003 int i; 7004 7005 if (op == NULL) { 7006 re->dop |= DW_DEFAULT_OPTIONS; 7007 return; 7008 } 7009 7010 if ((p = strdup(op)) == NULL) 7011 err(EXIT_FAILURE, "strdup failed"); 7012 bp = p; 7013 7014 while ((token = strsep(&p, ",")) != NULL) { 7015 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7016 if (!strcmp(token, dwarf_op[i].ln)) { 7017 re->dop |= dwarf_op[i].value; 7018 break; 7019 } 7020 } 7021 } 7022 7023 free(bp); 7024 } 7025 7026 static uint64_t 7027 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7028 { 7029 uint64_t ret; 7030 uint8_t *src; 7031 7032 src = (uint8_t *) d->d_buf + *offsetp; 7033 7034 ret = 0; 7035 switch (bytes_to_read) { 7036 case 8: 7037 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7038 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7039 /* FALLTHROUGH */ 7040 case 4: 7041 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7042 /* FALLTHROUGH */ 7043 case 2: 7044 ret |= ((uint64_t) src[1]) << 8; 7045 /* FALLTHROUGH */ 7046 case 1: 7047 ret |= src[0]; 7048 break; 7049 default: 7050 return (0); 7051 } 7052 7053 *offsetp += bytes_to_read; 7054 7055 return (ret); 7056 } 7057 7058 static uint64_t 7059 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7060 { 7061 uint64_t ret; 7062 uint8_t *src; 7063 7064 src = (uint8_t *) d->d_buf + *offsetp; 7065 7066 switch (bytes_to_read) { 7067 case 1: 7068 ret = src[0]; 7069 break; 7070 case 2: 7071 ret = src[1] | ((uint64_t) src[0]) << 8; 7072 break; 7073 case 4: 7074 ret = src[3] | ((uint64_t) src[2]) << 8; 7075 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7076 break; 7077 case 8: 7078 ret = src[7] | ((uint64_t) src[6]) << 8; 7079 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7080 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7081 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7082 break; 7083 default: 7084 return (0); 7085 } 7086 7087 *offsetp += bytes_to_read; 7088 7089 return (ret); 7090 } 7091 7092 static uint64_t 7093 _decode_lsb(uint8_t **data, int bytes_to_read) 7094 { 7095 uint64_t ret; 7096 uint8_t *src; 7097 7098 src = *data; 7099 7100 ret = 0; 7101 switch (bytes_to_read) { 7102 case 8: 7103 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7104 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7105 /* FALLTHROUGH */ 7106 case 4: 7107 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7108 /* FALLTHROUGH */ 7109 case 2: 7110 ret |= ((uint64_t) src[1]) << 8; 7111 /* FALLTHROUGH */ 7112 case 1: 7113 ret |= src[0]; 7114 break; 7115 default: 7116 return (0); 7117 } 7118 7119 *data += bytes_to_read; 7120 7121 return (ret); 7122 } 7123 7124 static uint64_t 7125 _decode_msb(uint8_t **data, int bytes_to_read) 7126 { 7127 uint64_t ret; 7128 uint8_t *src; 7129 7130 src = *data; 7131 7132 ret = 0; 7133 switch (bytes_to_read) { 7134 case 1: 7135 ret = src[0]; 7136 break; 7137 case 2: 7138 ret = src[1] | ((uint64_t) src[0]) << 8; 7139 break; 7140 case 4: 7141 ret = src[3] | ((uint64_t) src[2]) << 8; 7142 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7143 break; 7144 case 8: 7145 ret = src[7] | ((uint64_t) src[6]) << 8; 7146 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7147 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7148 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7149 break; 7150 default: 7151 return (0); 7152 break; 7153 } 7154 7155 *data += bytes_to_read; 7156 7157 return (ret); 7158 } 7159 7160 static int64_t 7161 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7162 { 7163 int64_t ret = 0; 7164 uint8_t b = 0; 7165 int shift = 0; 7166 7167 uint8_t *src = *dp; 7168 7169 do { 7170 if (src >= dpe) 7171 break; 7172 b = *src++; 7173 ret |= ((b & 0x7f) << shift); 7174 shift += 7; 7175 } while ((b & 0x80) != 0); 7176 7177 if (shift < 32 && (b & 0x40) != 0) 7178 ret |= (-1 << shift); 7179 7180 *dp = src; 7181 7182 return (ret); 7183 } 7184 7185 static uint64_t 7186 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7187 { 7188 uint64_t ret = 0; 7189 uint8_t b; 7190 int shift = 0; 7191 7192 uint8_t *src = *dp; 7193 7194 do { 7195 if (src >= dpe) 7196 break; 7197 b = *src++; 7198 ret |= ((b & 0x7f) << shift); 7199 shift += 7; 7200 } while ((b & 0x80) != 0); 7201 7202 *dp = src; 7203 7204 return (ret); 7205 } 7206 7207 static void 7208 readelf_version(void) 7209 { 7210 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7211 elftc_version()); 7212 exit(EXIT_SUCCESS); 7213 } 7214 7215 #define USAGE_MESSAGE "\ 7216 Usage: %s [options] file...\n\ 7217 Display information about ELF objects and ar(1) archives.\n\n\ 7218 Options:\n\ 7219 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7220 -c | --archive-index Print the archive symbol table for archives.\n\ 7221 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7222 -e | --headers Print all headers in the object.\n\ 7223 -g | --section-groups Print the contents of the section groups.\n\ 7224 -h | --file-header Print the file header for the object.\n\ 7225 -l | --program-headers Print the PHDR table for the object.\n\ 7226 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7227 -p INDEX | --string-dump=INDEX\n\ 7228 Print the contents of section at index INDEX.\n\ 7229 -r | --relocs Print relocation information.\n\ 7230 -s | --syms | --symbols Print symbol tables.\n\ 7231 -t | --section-details Print additional information about sections.\n\ 7232 -v | --version Print a version identifier and exit.\n\ 7233 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7234 frames-interp,info,loc,macro,pubnames,\n\ 7235 ranges,Ranges,rawline,str}\n\ 7236 Display DWARF information.\n\ 7237 -x INDEX | --hex-dump=INDEX\n\ 7238 Display contents of a section as hexadecimal.\n\ 7239 -A | --arch-specific (accepted, but ignored)\n\ 7240 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7241 entry in the \".dynamic\" section.\n\ 7242 -H | --help Print a help message.\n\ 7243 -I | --histogram Print information on bucket list lengths for \n\ 7244 hash sections.\n\ 7245 -N | --full-section-name (accepted, but ignored)\n\ 7246 -S | --sections | --section-headers\n\ 7247 Print information about section headers.\n\ 7248 -V | --version-info Print symbol versoning information.\n\ 7249 -W | --wide Print information without wrapping long lines.\n" 7250 7251 7252 static void 7253 readelf_usage(int status) 7254 { 7255 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7256 exit(status); 7257 } 7258 7259 int 7260 main(int argc, char **argv) 7261 { 7262 struct readelf *re, re_storage; 7263 unsigned long si; 7264 int opt, i; 7265 char *ep; 7266 7267 re = &re_storage; 7268 memset(re, 0, sizeof(*re)); 7269 STAILQ_INIT(&re->v_dumpop); 7270 7271 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7272 longopts, NULL)) != -1) { 7273 switch(opt) { 7274 case '?': 7275 readelf_usage(EXIT_SUCCESS); 7276 break; 7277 case 'A': 7278 re->options |= RE_AA; 7279 break; 7280 case 'a': 7281 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7282 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7283 break; 7284 case 'c': 7285 re->options |= RE_C; 7286 break; 7287 case 'D': 7288 re->options |= RE_DD; 7289 break; 7290 case 'd': 7291 re->options |= RE_D; 7292 break; 7293 case 'e': 7294 re->options |= RE_H | RE_L | RE_SS; 7295 break; 7296 case 'g': 7297 re->options |= RE_G; 7298 break; 7299 case 'H': 7300 readelf_usage(EXIT_SUCCESS); 7301 break; 7302 case 'h': 7303 re->options |= RE_H; 7304 break; 7305 case 'I': 7306 re->options |= RE_II; 7307 break; 7308 case 'i': 7309 /* Not implemented yet. */ 7310 break; 7311 case 'l': 7312 re->options |= RE_L; 7313 break; 7314 case 'N': 7315 re->options |= RE_NN; 7316 break; 7317 case 'n': 7318 re->options |= RE_N; 7319 break; 7320 case 'p': 7321 re->options |= RE_P; 7322 si = strtoul(optarg, &ep, 10); 7323 if (*ep == '\0') 7324 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7325 DUMP_BY_INDEX); 7326 else 7327 add_dumpop(re, 0, optarg, STR_DUMP, 7328 DUMP_BY_NAME); 7329 break; 7330 case 'r': 7331 re->options |= RE_R; 7332 break; 7333 case 'S': 7334 re->options |= RE_SS; 7335 break; 7336 case 's': 7337 re->options |= RE_S; 7338 break; 7339 case 't': 7340 re->options |= RE_T; 7341 break; 7342 case 'u': 7343 re->options |= RE_U; 7344 break; 7345 case 'V': 7346 re->options |= RE_VV; 7347 break; 7348 case 'v': 7349 readelf_version(); 7350 break; 7351 case 'W': 7352 re->options |= RE_WW; 7353 break; 7354 case 'w': 7355 re->options |= RE_W; 7356 parse_dwarf_op_short(re, optarg); 7357 break; 7358 case 'x': 7359 re->options |= RE_X; 7360 si = strtoul(optarg, &ep, 10); 7361 if (*ep == '\0') 7362 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7363 DUMP_BY_INDEX); 7364 else 7365 add_dumpop(re, 0, optarg, HEX_DUMP, 7366 DUMP_BY_NAME); 7367 break; 7368 case OPTION_DEBUG_DUMP: 7369 re->options |= RE_W; 7370 parse_dwarf_op_long(re, optarg); 7371 } 7372 } 7373 7374 argv += optind; 7375 argc -= optind; 7376 7377 if (argc == 0 || re->options == 0) 7378 readelf_usage(EXIT_FAILURE); 7379 7380 if (argc > 1) 7381 re->flags |= DISPLAY_FILENAME; 7382 7383 if (elf_version(EV_CURRENT) == EV_NONE) 7384 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7385 elf_errmsg(-1)); 7386 7387 for (i = 0; i < argc; i++) { 7388 re->filename = argv[i]; 7389 dump_object(re); 7390 } 7391 7392 exit(EXIT_SUCCESS); 7393 } 7394