1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3580 2017-09-15 23:29:59Z emaste $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_abiflags(struct readelf *re, struct section *s); 300 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 301 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 302 static void dump_mips_options(struct readelf *re, struct section *s); 303 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 304 uint64_t info); 305 static void dump_mips_reginfo(struct readelf *re, struct section *s); 306 static void dump_mips_specific_info(struct readelf *re); 307 static void dump_notes(struct readelf *re); 308 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 309 off_t off); 310 static void dump_svr4_hash(struct section *s); 311 static void dump_svr4_hash64(struct readelf *re, struct section *s); 312 static void dump_gnu_hash(struct readelf *re, struct section *s); 313 static void dump_hash(struct readelf *re); 314 static void dump_phdr(struct readelf *re); 315 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 316 static void dump_section_groups(struct readelf *re); 317 static void dump_symtab(struct readelf *re, int i); 318 static void dump_symtabs(struct readelf *re); 319 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 320 static void dump_ver(struct readelf *re); 321 static void dump_verdef(struct readelf *re, int dump); 322 static void dump_verneed(struct readelf *re, int dump); 323 static void dump_versym(struct readelf *re); 324 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 325 static const char *dwarf_regname(struct readelf *re, unsigned int num); 326 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 327 const char *sn, int op, int t); 328 static int get_ent_count(struct section *s, int *ent_count); 329 static int get_mips_register_size(uint8_t flag); 330 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 331 Dwarf_Addr off); 332 static const char *get_string(struct readelf *re, int strtab, size_t off); 333 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 334 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 335 static void load_sections(struct readelf *re); 336 static const char *mips_abi_fp(uint64_t fp); 337 static const char *note_type(const char *note_name, unsigned int et, 338 unsigned int nt); 339 static const char *note_type_freebsd(unsigned int nt); 340 static const char *note_type_freebsd_core(unsigned int nt); 341 static const char *note_type_linux_core(unsigned int nt); 342 static const char *note_type_gnu(unsigned int nt); 343 static const char *note_type_netbsd(unsigned int nt); 344 static const char *note_type_openbsd(unsigned int nt); 345 static const char *note_type_unknown(unsigned int nt); 346 static const char *note_type_xen(unsigned int nt); 347 static const char *option_kind(uint8_t kind); 348 static const char *phdr_type(unsigned int mach, unsigned int ptype); 349 static const char *ppc_abi_fp(uint64_t fp); 350 static const char *ppc_abi_vector(uint64_t vec); 351 static void readelf_usage(int status); 352 static void readelf_version(void); 353 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 354 Dwarf_Unsigned lowpc); 355 static void search_ver(struct readelf *re); 356 static const char *section_type(unsigned int mach, unsigned int stype); 357 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 358 Dwarf_Half osize, Dwarf_Half ver); 359 static const char *st_bind(unsigned int sbind); 360 static const char *st_shndx(unsigned int shndx); 361 static const char *st_type(unsigned int mach, unsigned int os, 362 unsigned int stype); 363 static const char *st_vis(unsigned int svis); 364 static const char *top_tag(unsigned int tag); 365 static void unload_sections(struct readelf *re); 366 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 369 int bytes_to_read); 370 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 371 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 372 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 373 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 374 375 static struct eflags_desc arm_eflags_desc[] = { 376 {EF_ARM_RELEXEC, "relocatable executable"}, 377 {EF_ARM_HASENTRY, "has entry point"}, 378 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 379 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 380 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 381 {EF_ARM_BE8, "BE8"}, 382 {EF_ARM_LE8, "LE8"}, 383 {EF_ARM_INTERWORK, "interworking enabled"}, 384 {EF_ARM_APCS_26, "uses APCS/26"}, 385 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 386 {EF_ARM_PIC, "position independent"}, 387 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 388 {EF_ARM_NEW_ABI, "uses new ABI"}, 389 {EF_ARM_OLD_ABI, "uses old ABI"}, 390 {EF_ARM_SOFT_FLOAT, "software FP"}, 391 {EF_ARM_VFP_FLOAT, "VFP"}, 392 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 393 {0, NULL} 394 }; 395 396 static struct eflags_desc mips_eflags_desc[] = { 397 {EF_MIPS_NOREORDER, "noreorder"}, 398 {EF_MIPS_PIC, "pic"}, 399 {EF_MIPS_CPIC, "cpic"}, 400 {EF_MIPS_UCODE, "ugen_reserved"}, 401 {EF_MIPS_ABI2, "abi2"}, 402 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 403 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 404 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 405 {0, NULL} 406 }; 407 408 static struct eflags_desc powerpc_eflags_desc[] = { 409 {EF_PPC_EMB, "emb"}, 410 {EF_PPC_RELOCATABLE, "relocatable"}, 411 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 412 {0, NULL} 413 }; 414 415 static struct eflags_desc sparc_eflags_desc[] = { 416 {EF_SPARC_32PLUS, "v8+"}, 417 {EF_SPARC_SUN_US1, "ultrasparcI"}, 418 {EF_SPARC_HAL_R1, "halr1"}, 419 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 420 {0, NULL} 421 }; 422 423 static const char * 424 elf_osabi(unsigned int abi) 425 { 426 static char s_abi[32]; 427 428 switch(abi) { 429 case ELFOSABI_NONE: return "NONE"; 430 case ELFOSABI_HPUX: return "HPUX"; 431 case ELFOSABI_NETBSD: return "NetBSD"; 432 case ELFOSABI_GNU: return "GNU"; 433 case ELFOSABI_HURD: return "HURD"; 434 case ELFOSABI_86OPEN: return "86OPEN"; 435 case ELFOSABI_SOLARIS: return "Solaris"; 436 case ELFOSABI_AIX: return "AIX"; 437 case ELFOSABI_IRIX: return "IRIX"; 438 case ELFOSABI_FREEBSD: return "FreeBSD"; 439 case ELFOSABI_TRU64: return "TRU64"; 440 case ELFOSABI_MODESTO: return "MODESTO"; 441 case ELFOSABI_OPENBSD: return "OpenBSD"; 442 case ELFOSABI_OPENVMS: return "OpenVMS"; 443 case ELFOSABI_NSK: return "NSK"; 444 case ELFOSABI_CLOUDABI: return "CloudABI"; 445 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 446 case ELFOSABI_ARM: return "ARM"; 447 case ELFOSABI_STANDALONE: return "StandAlone"; 448 default: 449 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 450 return (s_abi); 451 } 452 }; 453 454 static const char * 455 elf_machine(unsigned int mach) 456 { 457 static char s_mach[32]; 458 459 switch (mach) { 460 case EM_NONE: return "Unknown machine"; 461 case EM_M32: return "AT&T WE32100"; 462 case EM_SPARC: return "Sun SPARC"; 463 case EM_386: return "Intel i386"; 464 case EM_68K: return "Motorola 68000"; 465 case EM_IAMCU: return "Intel MCU"; 466 case EM_88K: return "Motorola 88000"; 467 case EM_860: return "Intel i860"; 468 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 469 case EM_S370: return "IBM System/370"; 470 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 471 case EM_PARISC: return "HP PA-RISC"; 472 case EM_VPP500: return "Fujitsu VPP500"; 473 case EM_SPARC32PLUS: return "SPARC v8plus"; 474 case EM_960: return "Intel 80960"; 475 case EM_PPC: return "PowerPC 32-bit"; 476 case EM_PPC64: return "PowerPC 64-bit"; 477 case EM_S390: return "IBM System/390"; 478 case EM_V800: return "NEC V800"; 479 case EM_FR20: return "Fujitsu FR20"; 480 case EM_RH32: return "TRW RH-32"; 481 case EM_RCE: return "Motorola RCE"; 482 case EM_ARM: return "ARM"; 483 case EM_SH: return "Hitachi SH"; 484 case EM_SPARCV9: return "SPARC v9 64-bit"; 485 case EM_TRICORE: return "Siemens TriCore embedded processor"; 486 case EM_ARC: return "Argonaut RISC Core"; 487 case EM_H8_300: return "Hitachi H8/300"; 488 case EM_H8_300H: return "Hitachi H8/300H"; 489 case EM_H8S: return "Hitachi H8S"; 490 case EM_H8_500: return "Hitachi H8/500"; 491 case EM_IA_64: return "Intel IA-64 Processor"; 492 case EM_MIPS_X: return "Stanford MIPS-X"; 493 case EM_COLDFIRE: return "Motorola ColdFire"; 494 case EM_68HC12: return "Motorola M68HC12"; 495 case EM_MMA: return "Fujitsu MMA"; 496 case EM_PCP: return "Siemens PCP"; 497 case EM_NCPU: return "Sony nCPU"; 498 case EM_NDR1: return "Denso NDR1 microprocessor"; 499 case EM_STARCORE: return "Motorola Star*Core processor"; 500 case EM_ME16: return "Toyota ME16 processor"; 501 case EM_ST100: return "STMicroelectronics ST100 processor"; 502 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 503 case EM_X86_64: return "Advanced Micro Devices x86-64"; 504 case EM_PDSP: return "Sony DSP Processor"; 505 case EM_FX66: return "Siemens FX66 microcontroller"; 506 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 507 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 508 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 509 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 510 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 511 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 512 case EM_SVX: return "Silicon Graphics SVx"; 513 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 514 case EM_VAX: return "Digital VAX"; 515 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 516 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 517 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 518 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 519 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 520 case EM_HUANY: return "Harvard University MI object files"; 521 case EM_PRISM: return "SiTera Prism"; 522 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 523 case EM_FR30: return "Fujitsu FR30"; 524 case EM_D10V: return "Mitsubishi D10V"; 525 case EM_D30V: return "Mitsubishi D30V"; 526 case EM_V850: return "NEC v850"; 527 case EM_M32R: return "Mitsubishi M32R"; 528 case EM_MN10300: return "Matsushita MN10300"; 529 case EM_MN10200: return "Matsushita MN10200"; 530 case EM_PJ: return "picoJava"; 531 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 532 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 533 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 534 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 535 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 536 case EM_NS32K: return "National Semiconductor 32000 series"; 537 case EM_TPC: return "Tenor Network TPC processor"; 538 case EM_SNP1K: return "Trebia SNP 1000 processor"; 539 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 540 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 541 case EM_MAX: return "MAX Processor"; 542 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 543 case EM_F2MC16: return "Fujitsu F2MC16"; 544 case EM_MSP430: return "TI embedded microcontroller msp430"; 545 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 546 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 547 case EM_SEP: return "Sharp embedded microprocessor"; 548 case EM_ARCA: return "Arca RISC Microprocessor"; 549 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 550 case EM_AARCH64: return "AArch64"; 551 case EM_RISCV: return "RISC-V"; 552 default: 553 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 554 return (s_mach); 555 } 556 557 } 558 559 static const char * 560 elf_class(unsigned int class) 561 { 562 static char s_class[32]; 563 564 switch (class) { 565 case ELFCLASSNONE: return "none"; 566 case ELFCLASS32: return "ELF32"; 567 case ELFCLASS64: return "ELF64"; 568 default: 569 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 570 return (s_class); 571 } 572 } 573 574 static const char * 575 elf_endian(unsigned int endian) 576 { 577 static char s_endian[32]; 578 579 switch (endian) { 580 case ELFDATANONE: return "none"; 581 case ELFDATA2LSB: return "2's complement, little endian"; 582 case ELFDATA2MSB: return "2's complement, big endian"; 583 default: 584 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 585 return (s_endian); 586 } 587 } 588 589 static const char * 590 elf_type(unsigned int type) 591 { 592 static char s_type[32]; 593 594 switch (type) { 595 case ET_NONE: return "NONE (None)"; 596 case ET_REL: return "REL (Relocatable file)"; 597 case ET_EXEC: return "EXEC (Executable file)"; 598 case ET_DYN: return "DYN (Shared object file)"; 599 case ET_CORE: return "CORE (Core file)"; 600 default: 601 if (type >= ET_LOPROC) 602 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 603 else if (type >= ET_LOOS && type <= ET_HIOS) 604 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 605 else 606 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 607 type); 608 return (s_type); 609 } 610 } 611 612 static const char * 613 elf_ver(unsigned int ver) 614 { 615 static char s_ver[32]; 616 617 switch (ver) { 618 case EV_CURRENT: return "(current)"; 619 case EV_NONE: return "(none)"; 620 default: 621 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 622 ver); 623 return (s_ver); 624 } 625 } 626 627 static const char * 628 phdr_type(unsigned int mach, unsigned int ptype) 629 { 630 static char s_ptype[32]; 631 632 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 633 switch (mach) { 634 case EM_ARM: 635 switch (ptype) { 636 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 637 case PT_ARM_EXIDX: return "ARM_EXIDX"; 638 } 639 break; 640 } 641 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 642 ptype - PT_LOPROC); 643 return (s_ptype); 644 } 645 646 switch (ptype) { 647 case PT_NULL: return "NULL"; 648 case PT_LOAD: return "LOAD"; 649 case PT_DYNAMIC: return "DYNAMIC"; 650 case PT_INTERP: return "INTERP"; 651 case PT_NOTE: return "NOTE"; 652 case PT_SHLIB: return "SHLIB"; 653 case PT_PHDR: return "PHDR"; 654 case PT_TLS: return "TLS"; 655 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 656 case PT_GNU_STACK: return "GNU_STACK"; 657 case PT_GNU_RELRO: return "GNU_RELRO"; 658 default: 659 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 660 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 661 ptype - PT_LOOS); 662 else 663 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 664 ptype); 665 return (s_ptype); 666 } 667 } 668 669 static const char * 670 section_type(unsigned int mach, unsigned int stype) 671 { 672 static char s_stype[32]; 673 674 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 675 switch (mach) { 676 case EM_ARM: 677 switch (stype) { 678 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 679 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 680 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 681 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 682 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 683 } 684 break; 685 case EM_X86_64: 686 switch (stype) { 687 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 688 default: 689 break; 690 } 691 break; 692 case EM_MIPS: 693 case EM_MIPS_RS3_LE: 694 switch (stype) { 695 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 696 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 697 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 698 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 699 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 700 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 701 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 702 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 703 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 704 case SHT_MIPS_RELD: return "MIPS_RELD"; 705 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 706 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 707 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 708 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 709 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 710 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 711 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 712 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 713 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 714 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 715 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 716 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 717 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 718 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 719 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 720 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 721 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 722 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 723 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; 724 default: 725 break; 726 } 727 break; 728 default: 729 break; 730 } 731 732 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 733 stype - SHT_LOPROC); 734 return (s_stype); 735 } 736 737 switch (stype) { 738 case SHT_NULL: return "NULL"; 739 case SHT_PROGBITS: return "PROGBITS"; 740 case SHT_SYMTAB: return "SYMTAB"; 741 case SHT_STRTAB: return "STRTAB"; 742 case SHT_RELA: return "RELA"; 743 case SHT_HASH: return "HASH"; 744 case SHT_DYNAMIC: return "DYNAMIC"; 745 case SHT_NOTE: return "NOTE"; 746 case SHT_NOBITS: return "NOBITS"; 747 case SHT_REL: return "REL"; 748 case SHT_SHLIB: return "SHLIB"; 749 case SHT_DYNSYM: return "DYNSYM"; 750 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 751 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 752 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 753 case SHT_GROUP: return "GROUP"; 754 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 755 case SHT_SUNW_dof: return "SUNW_dof"; 756 case SHT_SUNW_cap: return "SUNW_cap"; 757 case SHT_GNU_HASH: return "GNU_HASH"; 758 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 759 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 760 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 761 case SHT_SUNW_move: return "SUNW_move"; 762 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 763 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 764 case SHT_SUNW_verdef: return "SUNW_verdef"; 765 case SHT_SUNW_verneed: return "SUNW_verneed"; 766 case SHT_SUNW_versym: return "SUNW_versym"; 767 default: 768 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 769 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 770 stype - SHT_LOOS); 771 else if (stype >= SHT_LOUSER) 772 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 773 stype - SHT_LOUSER); 774 else 775 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 776 stype); 777 return (s_stype); 778 } 779 } 780 781 static const char * 782 dt_type(unsigned int mach, unsigned int dtype) 783 { 784 static char s_dtype[32]; 785 786 switch (dtype) { 787 case DT_NULL: return "NULL"; 788 case DT_NEEDED: return "NEEDED"; 789 case DT_PLTRELSZ: return "PLTRELSZ"; 790 case DT_PLTGOT: return "PLTGOT"; 791 case DT_HASH: return "HASH"; 792 case DT_STRTAB: return "STRTAB"; 793 case DT_SYMTAB: return "SYMTAB"; 794 case DT_RELA: return "RELA"; 795 case DT_RELASZ: return "RELASZ"; 796 case DT_RELAENT: return "RELAENT"; 797 case DT_STRSZ: return "STRSZ"; 798 case DT_SYMENT: return "SYMENT"; 799 case DT_INIT: return "INIT"; 800 case DT_FINI: return "FINI"; 801 case DT_SONAME: return "SONAME"; 802 case DT_RPATH: return "RPATH"; 803 case DT_SYMBOLIC: return "SYMBOLIC"; 804 case DT_REL: return "REL"; 805 case DT_RELSZ: return "RELSZ"; 806 case DT_RELENT: return "RELENT"; 807 case DT_PLTREL: return "PLTREL"; 808 case DT_DEBUG: return "DEBUG"; 809 case DT_TEXTREL: return "TEXTREL"; 810 case DT_JMPREL: return "JMPREL"; 811 case DT_BIND_NOW: return "BIND_NOW"; 812 case DT_INIT_ARRAY: return "INIT_ARRAY"; 813 case DT_FINI_ARRAY: return "FINI_ARRAY"; 814 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 815 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 816 case DT_RUNPATH: return "RUNPATH"; 817 case DT_FLAGS: return "FLAGS"; 818 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 819 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 820 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 821 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 822 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 823 case DT_SUNW_FILTER: return "SUNW_FILTER"; 824 case DT_SUNW_CAP: return "SUNW_CAP"; 825 case DT_SUNW_ASLR: return "SUNW_ASLR"; 826 case DT_CHECKSUM: return "CHECKSUM"; 827 case DT_PLTPADSZ: return "PLTPADSZ"; 828 case DT_MOVEENT: return "MOVEENT"; 829 case DT_MOVESZ: return "MOVESZ"; 830 case DT_FEATURE: return "FEATURE"; 831 case DT_POSFLAG_1: return "POSFLAG_1"; 832 case DT_SYMINSZ: return "SYMINSZ"; 833 case DT_SYMINENT: return "SYMINENT"; 834 case DT_GNU_HASH: return "GNU_HASH"; 835 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 836 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 837 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 838 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 839 case DT_CONFIG: return "CONFIG"; 840 case DT_DEPAUDIT: return "DEPAUDIT"; 841 case DT_AUDIT: return "AUDIT"; 842 case DT_PLTPAD: return "PLTPAD"; 843 case DT_MOVETAB: return "MOVETAB"; 844 case DT_SYMINFO: return "SYMINFO"; 845 case DT_VERSYM: return "VERSYM"; 846 case DT_RELACOUNT: return "RELACOUNT"; 847 case DT_RELCOUNT: return "RELCOUNT"; 848 case DT_FLAGS_1: return "FLAGS_1"; 849 case DT_VERDEF: return "VERDEF"; 850 case DT_VERDEFNUM: return "VERDEFNUM"; 851 case DT_VERNEED: return "VERNEED"; 852 case DT_VERNEEDNUM: return "VERNEEDNUM"; 853 case DT_AUXILIARY: return "AUXILIARY"; 854 case DT_USED: return "USED"; 855 case DT_FILTER: return "FILTER"; 856 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 857 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 858 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 859 } 860 861 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 862 switch (mach) { 863 case EM_ARM: 864 switch (dtype) { 865 case DT_ARM_SYMTABSZ: 866 return "ARM_SYMTABSZ"; 867 default: 868 break; 869 } 870 break; 871 case EM_MIPS: 872 case EM_MIPS_RS3_LE: 873 switch (dtype) { 874 case DT_MIPS_RLD_VERSION: 875 return "MIPS_RLD_VERSION"; 876 case DT_MIPS_TIME_STAMP: 877 return "MIPS_TIME_STAMP"; 878 case DT_MIPS_ICHECKSUM: 879 return "MIPS_ICHECKSUM"; 880 case DT_MIPS_IVERSION: 881 return "MIPS_IVERSION"; 882 case DT_MIPS_FLAGS: 883 return "MIPS_FLAGS"; 884 case DT_MIPS_BASE_ADDRESS: 885 return "MIPS_BASE_ADDRESS"; 886 case DT_MIPS_CONFLICT: 887 return "MIPS_CONFLICT"; 888 case DT_MIPS_LIBLIST: 889 return "MIPS_LIBLIST"; 890 case DT_MIPS_LOCAL_GOTNO: 891 return "MIPS_LOCAL_GOTNO"; 892 case DT_MIPS_CONFLICTNO: 893 return "MIPS_CONFLICTNO"; 894 case DT_MIPS_LIBLISTNO: 895 return "MIPS_LIBLISTNO"; 896 case DT_MIPS_SYMTABNO: 897 return "MIPS_SYMTABNO"; 898 case DT_MIPS_UNREFEXTNO: 899 return "MIPS_UNREFEXTNO"; 900 case DT_MIPS_GOTSYM: 901 return "MIPS_GOTSYM"; 902 case DT_MIPS_HIPAGENO: 903 return "MIPS_HIPAGENO"; 904 case DT_MIPS_RLD_MAP: 905 return "MIPS_RLD_MAP"; 906 case DT_MIPS_DELTA_CLASS: 907 return "MIPS_DELTA_CLASS"; 908 case DT_MIPS_DELTA_CLASS_NO: 909 return "MIPS_DELTA_CLASS_NO"; 910 case DT_MIPS_DELTA_INSTANCE: 911 return "MIPS_DELTA_INSTANCE"; 912 case DT_MIPS_DELTA_INSTANCE_NO: 913 return "MIPS_DELTA_INSTANCE_NO"; 914 case DT_MIPS_DELTA_RELOC: 915 return "MIPS_DELTA_RELOC"; 916 case DT_MIPS_DELTA_RELOC_NO: 917 return "MIPS_DELTA_RELOC_NO"; 918 case DT_MIPS_DELTA_SYM: 919 return "MIPS_DELTA_SYM"; 920 case DT_MIPS_DELTA_SYM_NO: 921 return "MIPS_DELTA_SYM_NO"; 922 case DT_MIPS_DELTA_CLASSSYM: 923 return "MIPS_DELTA_CLASSSYM"; 924 case DT_MIPS_DELTA_CLASSSYM_NO: 925 return "MIPS_DELTA_CLASSSYM_NO"; 926 case DT_MIPS_CXX_FLAGS: 927 return "MIPS_CXX_FLAGS"; 928 case DT_MIPS_PIXIE_INIT: 929 return "MIPS_PIXIE_INIT"; 930 case DT_MIPS_SYMBOL_LIB: 931 return "MIPS_SYMBOL_LIB"; 932 case DT_MIPS_LOCALPAGE_GOTIDX: 933 return "MIPS_LOCALPAGE_GOTIDX"; 934 case DT_MIPS_LOCAL_GOTIDX: 935 return "MIPS_LOCAL_GOTIDX"; 936 case DT_MIPS_HIDDEN_GOTIDX: 937 return "MIPS_HIDDEN_GOTIDX"; 938 case DT_MIPS_PROTECTED_GOTIDX: 939 return "MIPS_PROTECTED_GOTIDX"; 940 case DT_MIPS_OPTIONS: 941 return "MIPS_OPTIONS"; 942 case DT_MIPS_INTERFACE: 943 return "MIPS_INTERFACE"; 944 case DT_MIPS_DYNSTR_ALIGN: 945 return "MIPS_DYNSTR_ALIGN"; 946 case DT_MIPS_INTERFACE_SIZE: 947 return "MIPS_INTERFACE_SIZE"; 948 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 949 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 950 case DT_MIPS_PERF_SUFFIX: 951 return "MIPS_PERF_SUFFIX"; 952 case DT_MIPS_COMPACT_SIZE: 953 return "MIPS_COMPACT_SIZE"; 954 case DT_MIPS_GP_VALUE: 955 return "MIPS_GP_VALUE"; 956 case DT_MIPS_AUX_DYNAMIC: 957 return "MIPS_AUX_DYNAMIC"; 958 case DT_MIPS_PLTGOT: 959 return "MIPS_PLTGOT"; 960 case DT_MIPS_RLD_OBJ_UPDATE: 961 return "MIPS_RLD_OBJ_UPDATE"; 962 case DT_MIPS_RWPLT: 963 return "MIPS_RWPLT"; 964 default: 965 break; 966 } 967 break; 968 case EM_SPARC: 969 case EM_SPARC32PLUS: 970 case EM_SPARCV9: 971 switch (dtype) { 972 case DT_SPARC_REGISTER: 973 return "DT_SPARC_REGISTER"; 974 default: 975 break; 976 } 977 break; 978 default: 979 break; 980 } 981 } 982 983 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 984 return (s_dtype); 985 } 986 987 static const char * 988 st_bind(unsigned int sbind) 989 { 990 static char s_sbind[32]; 991 992 switch (sbind) { 993 case STB_LOCAL: return "LOCAL"; 994 case STB_GLOBAL: return "GLOBAL"; 995 case STB_WEAK: return "WEAK"; 996 case STB_GNU_UNIQUE: return "UNIQUE"; 997 default: 998 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 999 return "OS"; 1000 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 1001 return "PROC"; 1002 else 1003 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1004 sbind); 1005 return (s_sbind); 1006 } 1007 } 1008 1009 static const char * 1010 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1011 { 1012 static char s_stype[32]; 1013 1014 switch (stype) { 1015 case STT_NOTYPE: return "NOTYPE"; 1016 case STT_OBJECT: return "OBJECT"; 1017 case STT_FUNC: return "FUNC"; 1018 case STT_SECTION: return "SECTION"; 1019 case STT_FILE: return "FILE"; 1020 case STT_COMMON: return "COMMON"; 1021 case STT_TLS: return "TLS"; 1022 default: 1023 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1024 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1025 stype == STT_GNU_IFUNC) 1026 return "IFUNC"; 1027 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1028 stype - STT_LOOS); 1029 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1030 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1031 return "REGISTER"; 1032 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1033 stype - STT_LOPROC); 1034 } else 1035 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1036 stype); 1037 return (s_stype); 1038 } 1039 } 1040 1041 static const char * 1042 st_vis(unsigned int svis) 1043 { 1044 static char s_svis[32]; 1045 1046 switch(svis) { 1047 case STV_DEFAULT: return "DEFAULT"; 1048 case STV_INTERNAL: return "INTERNAL"; 1049 case STV_HIDDEN: return "HIDDEN"; 1050 case STV_PROTECTED: return "PROTECTED"; 1051 default: 1052 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1053 return (s_svis); 1054 } 1055 } 1056 1057 static const char * 1058 st_shndx(unsigned int shndx) 1059 { 1060 static char s_shndx[32]; 1061 1062 switch (shndx) { 1063 case SHN_UNDEF: return "UND"; 1064 case SHN_ABS: return "ABS"; 1065 case SHN_COMMON: return "COM"; 1066 default: 1067 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1068 return "PRC"; 1069 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1070 return "OS"; 1071 else 1072 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1073 return (s_shndx); 1074 } 1075 } 1076 1077 static struct { 1078 const char *ln; 1079 char sn; 1080 int value; 1081 } section_flag[] = { 1082 {"WRITE", 'W', SHF_WRITE}, 1083 {"ALLOC", 'A', SHF_ALLOC}, 1084 {"EXEC", 'X', SHF_EXECINSTR}, 1085 {"MERGE", 'M', SHF_MERGE}, 1086 {"STRINGS", 'S', SHF_STRINGS}, 1087 {"INFO LINK", 'I', SHF_INFO_LINK}, 1088 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1089 {"GROUP", 'G', SHF_GROUP}, 1090 {"TLS", 'T', SHF_TLS}, 1091 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1092 {NULL, 0, 0} 1093 }; 1094 1095 static const char * 1096 note_type(const char *name, unsigned int et, unsigned int nt) 1097 { 1098 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1099 et == ET_CORE) 1100 return note_type_linux_core(nt); 1101 else if (strcmp(name, "FreeBSD") == 0) 1102 if (et == ET_CORE) 1103 return note_type_freebsd_core(nt); 1104 else 1105 return note_type_freebsd(nt); 1106 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1107 return note_type_gnu(nt); 1108 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1109 return note_type_netbsd(nt); 1110 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1111 return note_type_openbsd(nt); 1112 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1113 return note_type_xen(nt); 1114 return note_type_unknown(nt); 1115 } 1116 1117 static const char * 1118 note_type_freebsd(unsigned int nt) 1119 { 1120 switch (nt) { 1121 case 1: return "NT_FREEBSD_ABI_TAG"; 1122 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1123 case 3: return "NT_FREEBSD_ARCH_TAG"; 1124 default: return (note_type_unknown(nt)); 1125 } 1126 } 1127 1128 static const char * 1129 note_type_freebsd_core(unsigned int nt) 1130 { 1131 switch (nt) { 1132 case 1: return "NT_PRSTATUS"; 1133 case 2: return "NT_FPREGSET"; 1134 case 3: return "NT_PRPSINFO"; 1135 case 7: return "NT_THRMISC"; 1136 case 8: return "NT_PROCSTAT_PROC"; 1137 case 9: return "NT_PROCSTAT_FILES"; 1138 case 10: return "NT_PROCSTAT_VMMAP"; 1139 case 11: return "NT_PROCSTAT_GROUPS"; 1140 case 12: return "NT_PROCSTAT_UMASK"; 1141 case 13: return "NT_PROCSTAT_RLIMIT"; 1142 case 14: return "NT_PROCSTAT_OSREL"; 1143 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1144 case 16: return "NT_PROCSTAT_AUXV"; 1145 case 17: return "NT_PTLWPINFO"; 1146 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1147 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1148 default: return (note_type_unknown(nt)); 1149 } 1150 } 1151 1152 static const char * 1153 note_type_linux_core(unsigned int nt) 1154 { 1155 switch (nt) { 1156 case 1: return "NT_PRSTATUS (Process status)"; 1157 case 2: return "NT_FPREGSET (Floating point information)"; 1158 case 3: return "NT_PRPSINFO (Process information)"; 1159 case 4: return "NT_TASKSTRUCT (Task structure)"; 1160 case 6: return "NT_AUXV (Auxiliary vector)"; 1161 case 10: return "NT_PSTATUS (Linux process status)"; 1162 case 12: return "NT_FPREGS (Linux floating point regset)"; 1163 case 13: return "NT_PSINFO (Linux process information)"; 1164 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1165 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1166 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1167 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1168 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1169 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1170 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1171 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1172 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1173 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1174 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1175 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1176 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1177 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1178 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1179 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1180 default: return (note_type_unknown(nt)); 1181 } 1182 } 1183 1184 static const char * 1185 note_type_gnu(unsigned int nt) 1186 { 1187 switch (nt) { 1188 case 1: return "NT_GNU_ABI_TAG"; 1189 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1190 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1191 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1192 default: return (note_type_unknown(nt)); 1193 } 1194 } 1195 1196 static const char * 1197 note_type_netbsd(unsigned int nt) 1198 { 1199 switch (nt) { 1200 case 1: return "NT_NETBSD_IDENT"; 1201 default: return (note_type_unknown(nt)); 1202 } 1203 } 1204 1205 static const char * 1206 note_type_openbsd(unsigned int nt) 1207 { 1208 switch (nt) { 1209 case 1: return "NT_OPENBSD_IDENT"; 1210 default: return (note_type_unknown(nt)); 1211 } 1212 } 1213 1214 static const char * 1215 note_type_unknown(unsigned int nt) 1216 { 1217 static char s_nt[32]; 1218 1219 snprintf(s_nt, sizeof(s_nt), 1220 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1221 return (s_nt); 1222 } 1223 1224 static const char * 1225 note_type_xen(unsigned int nt) 1226 { 1227 switch (nt) { 1228 case 0: return "XEN_ELFNOTE_INFO"; 1229 case 1: return "XEN_ELFNOTE_ENTRY"; 1230 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1231 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1232 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1233 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1234 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1235 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1236 case 8: return "XEN_ELFNOTE_LOADER"; 1237 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1238 case 10: return "XEN_ELFNOTE_FEATURES"; 1239 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1240 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1241 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1242 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1243 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1244 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1245 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1246 default: return (note_type_unknown(nt)); 1247 } 1248 } 1249 1250 static struct { 1251 const char *name; 1252 int value; 1253 } l_flag[] = { 1254 {"EXACT_MATCH", LL_EXACT_MATCH}, 1255 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1256 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1257 {"EXPORTS", LL_EXPORTS}, 1258 {"DELAY_LOAD", LL_DELAY_LOAD}, 1259 {"DELTA", LL_DELTA}, 1260 {NULL, 0} 1261 }; 1262 1263 static struct mips_option mips_exceptions_option[] = { 1264 {OEX_PAGE0, "PAGE0"}, 1265 {OEX_SMM, "SMM"}, 1266 {OEX_PRECISEFP, "PRECISEFP"}, 1267 {OEX_DISMISS, "DISMISS"}, 1268 {0, NULL} 1269 }; 1270 1271 static struct mips_option mips_pad_option[] = { 1272 {OPAD_PREFIX, "PREFIX"}, 1273 {OPAD_POSTFIX, "POSTFIX"}, 1274 {OPAD_SYMBOL, "SYMBOL"}, 1275 {0, NULL} 1276 }; 1277 1278 static struct mips_option mips_hwpatch_option[] = { 1279 {OHW_R4KEOP, "R4KEOP"}, 1280 {OHW_R8KPFETCH, "R8KPFETCH"}, 1281 {OHW_R5KEOP, "R5KEOP"}, 1282 {OHW_R5KCVTL, "R5KCVTL"}, 1283 {0, NULL} 1284 }; 1285 1286 static struct mips_option mips_hwa_option[] = { 1287 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1288 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1289 {0, NULL} 1290 }; 1291 1292 static struct mips_option mips_hwo_option[] = { 1293 {OHWO0_FIXADE, "FIXADE"}, 1294 {0, NULL} 1295 }; 1296 1297 static const char * 1298 option_kind(uint8_t kind) 1299 { 1300 static char s_kind[32]; 1301 1302 switch (kind) { 1303 case ODK_NULL: return "NULL"; 1304 case ODK_REGINFO: return "REGINFO"; 1305 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1306 case ODK_PAD: return "PAD"; 1307 case ODK_HWPATCH: return "HWPATCH"; 1308 case ODK_FILL: return "FILL"; 1309 case ODK_TAGS: return "TAGS"; 1310 case ODK_HWAND: return "HWAND"; 1311 case ODK_HWOR: return "HWOR"; 1312 case ODK_GP_GROUP: return "GP_GROUP"; 1313 case ODK_IDENT: return "IDENT"; 1314 default: 1315 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1316 return (s_kind); 1317 } 1318 } 1319 1320 static const char * 1321 top_tag(unsigned int tag) 1322 { 1323 static char s_top_tag[32]; 1324 1325 switch (tag) { 1326 case 1: return "File Attributes"; 1327 case 2: return "Section Attributes"; 1328 case 3: return "Symbol Attributes"; 1329 default: 1330 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1331 return (s_top_tag); 1332 } 1333 } 1334 1335 static const char * 1336 aeabi_cpu_arch(uint64_t arch) 1337 { 1338 static char s_cpu_arch[32]; 1339 1340 switch (arch) { 1341 case 0: return "Pre-V4"; 1342 case 1: return "ARM v4"; 1343 case 2: return "ARM v4T"; 1344 case 3: return "ARM v5T"; 1345 case 4: return "ARM v5TE"; 1346 case 5: return "ARM v5TEJ"; 1347 case 6: return "ARM v6"; 1348 case 7: return "ARM v6KZ"; 1349 case 8: return "ARM v6T2"; 1350 case 9: return "ARM v6K"; 1351 case 10: return "ARM v7"; 1352 case 11: return "ARM v6-M"; 1353 case 12: return "ARM v6S-M"; 1354 case 13: return "ARM v7E-M"; 1355 default: 1356 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1357 "Unknown (%ju)", (uintmax_t) arch); 1358 return (s_cpu_arch); 1359 } 1360 } 1361 1362 static const char * 1363 aeabi_cpu_arch_profile(uint64_t pf) 1364 { 1365 static char s_arch_profile[32]; 1366 1367 switch (pf) { 1368 case 0: 1369 return "Not applicable"; 1370 case 0x41: /* 'A' */ 1371 return "Application Profile"; 1372 case 0x52: /* 'R' */ 1373 return "Real-Time Profile"; 1374 case 0x4D: /* 'M' */ 1375 return "Microcontroller Profile"; 1376 case 0x53: /* 'S' */ 1377 return "Application or Real-Time Profile"; 1378 default: 1379 snprintf(s_arch_profile, sizeof(s_arch_profile), 1380 "Unknown (%ju)\n", (uintmax_t) pf); 1381 return (s_arch_profile); 1382 } 1383 } 1384 1385 static const char * 1386 aeabi_arm_isa(uint64_t ai) 1387 { 1388 static char s_ai[32]; 1389 1390 switch (ai) { 1391 case 0: return "No"; 1392 case 1: return "Yes"; 1393 default: 1394 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1395 (uintmax_t) ai); 1396 return (s_ai); 1397 } 1398 } 1399 1400 static const char * 1401 aeabi_thumb_isa(uint64_t ti) 1402 { 1403 static char s_ti[32]; 1404 1405 switch (ti) { 1406 case 0: return "No"; 1407 case 1: return "16-bit Thumb"; 1408 case 2: return "32-bit Thumb"; 1409 default: 1410 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1411 (uintmax_t) ti); 1412 return (s_ti); 1413 } 1414 } 1415 1416 static const char * 1417 aeabi_fp_arch(uint64_t fp) 1418 { 1419 static char s_fp_arch[32]; 1420 1421 switch (fp) { 1422 case 0: return "No"; 1423 case 1: return "VFPv1"; 1424 case 2: return "VFPv2"; 1425 case 3: return "VFPv3"; 1426 case 4: return "VFPv3-D16"; 1427 case 5: return "VFPv4"; 1428 case 6: return "VFPv4-D16"; 1429 default: 1430 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1431 (uintmax_t) fp); 1432 return (s_fp_arch); 1433 } 1434 } 1435 1436 static const char * 1437 aeabi_wmmx_arch(uint64_t wmmx) 1438 { 1439 static char s_wmmx[32]; 1440 1441 switch (wmmx) { 1442 case 0: return "No"; 1443 case 1: return "WMMXv1"; 1444 case 2: return "WMMXv2"; 1445 default: 1446 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1447 (uintmax_t) wmmx); 1448 return (s_wmmx); 1449 } 1450 } 1451 1452 static const char * 1453 aeabi_adv_simd_arch(uint64_t simd) 1454 { 1455 static char s_simd[32]; 1456 1457 switch (simd) { 1458 case 0: return "No"; 1459 case 1: return "NEONv1"; 1460 case 2: return "NEONv2"; 1461 default: 1462 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1463 (uintmax_t) simd); 1464 return (s_simd); 1465 } 1466 } 1467 1468 static const char * 1469 aeabi_pcs_config(uint64_t pcs) 1470 { 1471 static char s_pcs[32]; 1472 1473 switch (pcs) { 1474 case 0: return "None"; 1475 case 1: return "Bare platform"; 1476 case 2: return "Linux"; 1477 case 3: return "Linux DSO"; 1478 case 4: return "Palm OS 2004"; 1479 case 5: return "Palm OS (future)"; 1480 case 6: return "Symbian OS 2004"; 1481 case 7: return "Symbian OS (future)"; 1482 default: 1483 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1484 (uintmax_t) pcs); 1485 return (s_pcs); 1486 } 1487 } 1488 1489 static const char * 1490 aeabi_pcs_r9(uint64_t r9) 1491 { 1492 static char s_r9[32]; 1493 1494 switch (r9) { 1495 case 0: return "V6"; 1496 case 1: return "SB"; 1497 case 2: return "TLS pointer"; 1498 case 3: return "Unused"; 1499 default: 1500 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1501 return (s_r9); 1502 } 1503 } 1504 1505 static const char * 1506 aeabi_pcs_rw(uint64_t rw) 1507 { 1508 static char s_rw[32]; 1509 1510 switch (rw) { 1511 case 0: return "Absolute"; 1512 case 1: return "PC-relative"; 1513 case 2: return "SB-relative"; 1514 case 3: return "None"; 1515 default: 1516 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1517 return (s_rw); 1518 } 1519 } 1520 1521 static const char * 1522 aeabi_pcs_ro(uint64_t ro) 1523 { 1524 static char s_ro[32]; 1525 1526 switch (ro) { 1527 case 0: return "Absolute"; 1528 case 1: return "PC-relative"; 1529 case 2: return "None"; 1530 default: 1531 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1532 return (s_ro); 1533 } 1534 } 1535 1536 static const char * 1537 aeabi_pcs_got(uint64_t got) 1538 { 1539 static char s_got[32]; 1540 1541 switch (got) { 1542 case 0: return "None"; 1543 case 1: return "direct"; 1544 case 2: return "indirect via GOT"; 1545 default: 1546 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1547 (uintmax_t) got); 1548 return (s_got); 1549 } 1550 } 1551 1552 static const char * 1553 aeabi_pcs_wchar_t(uint64_t wt) 1554 { 1555 static char s_wt[32]; 1556 1557 switch (wt) { 1558 case 0: return "None"; 1559 case 2: return "wchar_t size 2"; 1560 case 4: return "wchar_t size 4"; 1561 default: 1562 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1563 return (s_wt); 1564 } 1565 } 1566 1567 static const char * 1568 aeabi_enum_size(uint64_t es) 1569 { 1570 static char s_es[32]; 1571 1572 switch (es) { 1573 case 0: return "None"; 1574 case 1: return "smallest"; 1575 case 2: return "32-bit"; 1576 case 3: return "visible 32-bit"; 1577 default: 1578 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1579 return (s_es); 1580 } 1581 } 1582 1583 static const char * 1584 aeabi_align_needed(uint64_t an) 1585 { 1586 static char s_align_n[64]; 1587 1588 switch (an) { 1589 case 0: return "No"; 1590 case 1: return "8-byte align"; 1591 case 2: return "4-byte align"; 1592 case 3: return "Reserved"; 1593 default: 1594 if (an >= 4 && an <= 12) 1595 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1596 " and up to 2^%ju-byte extended align", 1597 (uintmax_t) an); 1598 else 1599 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1600 (uintmax_t) an); 1601 return (s_align_n); 1602 } 1603 } 1604 1605 static const char * 1606 aeabi_align_preserved(uint64_t ap) 1607 { 1608 static char s_align_p[128]; 1609 1610 switch (ap) { 1611 case 0: return "No"; 1612 case 1: return "8-byte align"; 1613 case 2: return "8-byte align and SP % 8 == 0"; 1614 case 3: return "Reserved"; 1615 default: 1616 if (ap >= 4 && ap <= 12) 1617 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1618 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1619 " align", (uintmax_t) ap); 1620 else 1621 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1622 (uintmax_t) ap); 1623 return (s_align_p); 1624 } 1625 } 1626 1627 static const char * 1628 aeabi_fp_rounding(uint64_t fr) 1629 { 1630 static char s_fp_r[32]; 1631 1632 switch (fr) { 1633 case 0: return "Unused"; 1634 case 1: return "Needed"; 1635 default: 1636 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1637 (uintmax_t) fr); 1638 return (s_fp_r); 1639 } 1640 } 1641 1642 static const char * 1643 aeabi_fp_denormal(uint64_t fd) 1644 { 1645 static char s_fp_d[32]; 1646 1647 switch (fd) { 1648 case 0: return "Unused"; 1649 case 1: return "Needed"; 1650 case 2: return "Sign Only"; 1651 default: 1652 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1653 (uintmax_t) fd); 1654 return (s_fp_d); 1655 } 1656 } 1657 1658 static const char * 1659 aeabi_fp_exceptions(uint64_t fe) 1660 { 1661 static char s_fp_e[32]; 1662 1663 switch (fe) { 1664 case 0: return "Unused"; 1665 case 1: return "Needed"; 1666 default: 1667 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1668 (uintmax_t) fe); 1669 return (s_fp_e); 1670 } 1671 } 1672 1673 static const char * 1674 aeabi_fp_user_exceptions(uint64_t fu) 1675 { 1676 static char s_fp_u[32]; 1677 1678 switch (fu) { 1679 case 0: return "Unused"; 1680 case 1: return "Needed"; 1681 default: 1682 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1683 (uintmax_t) fu); 1684 return (s_fp_u); 1685 } 1686 } 1687 1688 static const char * 1689 aeabi_fp_number_model(uint64_t fn) 1690 { 1691 static char s_fp_n[32]; 1692 1693 switch (fn) { 1694 case 0: return "Unused"; 1695 case 1: return "IEEE 754 normal"; 1696 case 2: return "RTABI"; 1697 case 3: return "IEEE 754"; 1698 default: 1699 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1700 (uintmax_t) fn); 1701 return (s_fp_n); 1702 } 1703 } 1704 1705 static const char * 1706 aeabi_fp_16bit_format(uint64_t fp16) 1707 { 1708 static char s_fp_16[64]; 1709 1710 switch (fp16) { 1711 case 0: return "None"; 1712 case 1: return "IEEE 754"; 1713 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1714 default: 1715 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1716 (uintmax_t) fp16); 1717 return (s_fp_16); 1718 } 1719 } 1720 1721 static const char * 1722 aeabi_mpext(uint64_t mp) 1723 { 1724 static char s_mp[32]; 1725 1726 switch (mp) { 1727 case 0: return "Not allowed"; 1728 case 1: return "Allowed"; 1729 default: 1730 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1731 (uintmax_t) mp); 1732 return (s_mp); 1733 } 1734 } 1735 1736 static const char * 1737 aeabi_div(uint64_t du) 1738 { 1739 static char s_du[32]; 1740 1741 switch (du) { 1742 case 0: return "Yes (V7-R/V7-M)"; 1743 case 1: return "No"; 1744 case 2: return "Yes (V7-A)"; 1745 default: 1746 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1747 (uintmax_t) du); 1748 return (s_du); 1749 } 1750 } 1751 1752 static const char * 1753 aeabi_t2ee(uint64_t t2ee) 1754 { 1755 static char s_t2ee[32]; 1756 1757 switch (t2ee) { 1758 case 0: return "Not allowed"; 1759 case 1: return "Allowed"; 1760 default: 1761 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1762 (uintmax_t) t2ee); 1763 return (s_t2ee); 1764 } 1765 1766 } 1767 1768 static const char * 1769 aeabi_hardfp(uint64_t hfp) 1770 { 1771 static char s_hfp[32]; 1772 1773 switch (hfp) { 1774 case 0: return "Tag_FP_arch"; 1775 case 1: return "only SP"; 1776 case 2: return "only DP"; 1777 case 3: return "both SP and DP"; 1778 default: 1779 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1780 (uintmax_t) hfp); 1781 return (s_hfp); 1782 } 1783 } 1784 1785 static const char * 1786 aeabi_vfp_args(uint64_t va) 1787 { 1788 static char s_va[32]; 1789 1790 switch (va) { 1791 case 0: return "AAPCS (base variant)"; 1792 case 1: return "AAPCS (VFP variant)"; 1793 case 2: return "toolchain-specific"; 1794 default: 1795 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1796 return (s_va); 1797 } 1798 } 1799 1800 static const char * 1801 aeabi_wmmx_args(uint64_t wa) 1802 { 1803 static char s_wa[32]; 1804 1805 switch (wa) { 1806 case 0: return "AAPCS (base variant)"; 1807 case 1: return "Intel WMMX"; 1808 case 2: return "toolchain-specific"; 1809 default: 1810 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1811 return (s_wa); 1812 } 1813 } 1814 1815 static const char * 1816 aeabi_unaligned_access(uint64_t ua) 1817 { 1818 static char s_ua[32]; 1819 1820 switch (ua) { 1821 case 0: return "Not allowed"; 1822 case 1: return "Allowed"; 1823 default: 1824 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1825 return (s_ua); 1826 } 1827 } 1828 1829 static const char * 1830 aeabi_fp_hpext(uint64_t fh) 1831 { 1832 static char s_fh[32]; 1833 1834 switch (fh) { 1835 case 0: return "Not allowed"; 1836 case 1: return "Allowed"; 1837 default: 1838 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1839 return (s_fh); 1840 } 1841 } 1842 1843 static const char * 1844 aeabi_optm_goal(uint64_t og) 1845 { 1846 static char s_og[32]; 1847 1848 switch (og) { 1849 case 0: return "None"; 1850 case 1: return "Speed"; 1851 case 2: return "Speed aggressive"; 1852 case 3: return "Space"; 1853 case 4: return "Space aggressive"; 1854 case 5: return "Debugging"; 1855 case 6: return "Best Debugging"; 1856 default: 1857 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1858 return (s_og); 1859 } 1860 } 1861 1862 static const char * 1863 aeabi_fp_optm_goal(uint64_t fog) 1864 { 1865 static char s_fog[32]; 1866 1867 switch (fog) { 1868 case 0: return "None"; 1869 case 1: return "Speed"; 1870 case 2: return "Speed aggressive"; 1871 case 3: return "Space"; 1872 case 4: return "Space aggressive"; 1873 case 5: return "Accurary"; 1874 case 6: return "Best Accurary"; 1875 default: 1876 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1877 (uintmax_t) fog); 1878 return (s_fog); 1879 } 1880 } 1881 1882 static const char * 1883 aeabi_virtual(uint64_t vt) 1884 { 1885 static char s_virtual[64]; 1886 1887 switch (vt) { 1888 case 0: return "No"; 1889 case 1: return "TrustZone"; 1890 case 2: return "Virtualization extension"; 1891 case 3: return "TrustZone and virtualization extension"; 1892 default: 1893 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1894 (uintmax_t) vt); 1895 return (s_virtual); 1896 } 1897 } 1898 1899 static struct { 1900 uint64_t tag; 1901 const char *s_tag; 1902 const char *(*get_desc)(uint64_t val); 1903 } aeabi_tags[] = { 1904 {4, "Tag_CPU_raw_name", NULL}, 1905 {5, "Tag_CPU_name", NULL}, 1906 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1907 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1908 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1909 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1910 {10, "Tag_FP_arch", aeabi_fp_arch}, 1911 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1912 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1913 {13, "Tag_PCS_config", aeabi_pcs_config}, 1914 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1915 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1916 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1917 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1918 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1919 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1920 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1921 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1922 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1923 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1924 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1925 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1926 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1927 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1928 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1929 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1930 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1931 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1932 {32, "Tag_compatibility", NULL}, 1933 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1934 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1935 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1936 {42, "Tag_MPextension_use", aeabi_mpext}, 1937 {44, "Tag_DIV_use", aeabi_div}, 1938 {64, "Tag_nodefaults", NULL}, 1939 {65, "Tag_also_compatible_with", NULL}, 1940 {66, "Tag_T2EE_use", aeabi_t2ee}, 1941 {67, "Tag_conformance", NULL}, 1942 {68, "Tag_Virtualization_use", aeabi_virtual}, 1943 {70, "Tag_MPextension_use", aeabi_mpext}, 1944 }; 1945 1946 static const char * 1947 mips_abi_fp(uint64_t fp) 1948 { 1949 static char s_mips_abi_fp[64]; 1950 1951 switch (fp) { 1952 case 0: return "N/A"; 1953 case 1: return "Hard float (double precision)"; 1954 case 2: return "Hard float (single precision)"; 1955 case 3: return "Soft float"; 1956 case 4: return "64-bit float (-mips32r2 -mfp64)"; 1957 default: 1958 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 1959 (uintmax_t) fp); 1960 return (s_mips_abi_fp); 1961 } 1962 } 1963 1964 static const char * 1965 ppc_abi_fp(uint64_t fp) 1966 { 1967 static char s_ppc_abi_fp[64]; 1968 1969 switch (fp) { 1970 case 0: return "N/A"; 1971 case 1: return "Hard float (double precision)"; 1972 case 2: return "Soft float"; 1973 case 3: return "Hard float (single precision)"; 1974 default: 1975 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 1976 (uintmax_t) fp); 1977 return (s_ppc_abi_fp); 1978 } 1979 } 1980 1981 static const char * 1982 ppc_abi_vector(uint64_t vec) 1983 { 1984 static char s_vec[64]; 1985 1986 switch (vec) { 1987 case 0: return "N/A"; 1988 case 1: return "Generic purpose registers"; 1989 case 2: return "AltiVec registers"; 1990 case 3: return "SPE registers"; 1991 default: 1992 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 1993 return (s_vec); 1994 } 1995 } 1996 1997 static const char * 1998 dwarf_reg(unsigned int mach, unsigned int reg) 1999 { 2000 2001 switch (mach) { 2002 case EM_386: 2003 case EM_IAMCU: 2004 switch (reg) { 2005 case 0: return "eax"; 2006 case 1: return "ecx"; 2007 case 2: return "edx"; 2008 case 3: return "ebx"; 2009 case 4: return "esp"; 2010 case 5: return "ebp"; 2011 case 6: return "esi"; 2012 case 7: return "edi"; 2013 case 8: return "eip"; 2014 case 9: return "eflags"; 2015 case 11: return "st0"; 2016 case 12: return "st1"; 2017 case 13: return "st2"; 2018 case 14: return "st3"; 2019 case 15: return "st4"; 2020 case 16: return "st5"; 2021 case 17: return "st6"; 2022 case 18: return "st7"; 2023 case 21: return "xmm0"; 2024 case 22: return "xmm1"; 2025 case 23: return "xmm2"; 2026 case 24: return "xmm3"; 2027 case 25: return "xmm4"; 2028 case 26: return "xmm5"; 2029 case 27: return "xmm6"; 2030 case 28: return "xmm7"; 2031 case 29: return "mm0"; 2032 case 30: return "mm1"; 2033 case 31: return "mm2"; 2034 case 32: return "mm3"; 2035 case 33: return "mm4"; 2036 case 34: return "mm5"; 2037 case 35: return "mm6"; 2038 case 36: return "mm7"; 2039 case 37: return "fcw"; 2040 case 38: return "fsw"; 2041 case 39: return "mxcsr"; 2042 case 40: return "es"; 2043 case 41: return "cs"; 2044 case 42: return "ss"; 2045 case 43: return "ds"; 2046 case 44: return "fs"; 2047 case 45: return "gs"; 2048 case 48: return "tr"; 2049 case 49: return "ldtr"; 2050 default: return (NULL); 2051 } 2052 case EM_X86_64: 2053 switch (reg) { 2054 case 0: return "rax"; 2055 case 1: return "rdx"; 2056 case 2: return "rcx"; 2057 case 3: return "rbx"; 2058 case 4: return "rsi"; 2059 case 5: return "rdi"; 2060 case 6: return "rbp"; 2061 case 7: return "rsp"; 2062 case 16: return "rip"; 2063 case 17: return "xmm0"; 2064 case 18: return "xmm1"; 2065 case 19: return "xmm2"; 2066 case 20: return "xmm3"; 2067 case 21: return "xmm4"; 2068 case 22: return "xmm5"; 2069 case 23: return "xmm6"; 2070 case 24: return "xmm7"; 2071 case 25: return "xmm8"; 2072 case 26: return "xmm9"; 2073 case 27: return "xmm10"; 2074 case 28: return "xmm11"; 2075 case 29: return "xmm12"; 2076 case 30: return "xmm13"; 2077 case 31: return "xmm14"; 2078 case 32: return "xmm15"; 2079 case 33: return "st0"; 2080 case 34: return "st1"; 2081 case 35: return "st2"; 2082 case 36: return "st3"; 2083 case 37: return "st4"; 2084 case 38: return "st5"; 2085 case 39: return "st6"; 2086 case 40: return "st7"; 2087 case 41: return "mm0"; 2088 case 42: return "mm1"; 2089 case 43: return "mm2"; 2090 case 44: return "mm3"; 2091 case 45: return "mm4"; 2092 case 46: return "mm5"; 2093 case 47: return "mm6"; 2094 case 48: return "mm7"; 2095 case 49: return "rflags"; 2096 case 50: return "es"; 2097 case 51: return "cs"; 2098 case 52: return "ss"; 2099 case 53: return "ds"; 2100 case 54: return "fs"; 2101 case 55: return "gs"; 2102 case 58: return "fs.base"; 2103 case 59: return "gs.base"; 2104 case 62: return "tr"; 2105 case 63: return "ldtr"; 2106 case 64: return "mxcsr"; 2107 case 65: return "fcw"; 2108 case 66: return "fsw"; 2109 default: return (NULL); 2110 } 2111 default: 2112 return (NULL); 2113 } 2114 } 2115 2116 static void 2117 dump_ehdr(struct readelf *re) 2118 { 2119 size_t phnum, shnum, shstrndx; 2120 int i; 2121 2122 printf("ELF Header:\n"); 2123 2124 /* e_ident[]. */ 2125 printf(" Magic: "); 2126 for (i = 0; i < EI_NIDENT; i++) 2127 printf("%.2x ", re->ehdr.e_ident[i]); 2128 putchar('\n'); 2129 2130 /* EI_CLASS. */ 2131 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2132 2133 /* EI_DATA. */ 2134 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2135 2136 /* EI_VERSION. */ 2137 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2138 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2139 2140 /* EI_OSABI. */ 2141 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2142 2143 /* EI_ABIVERSION. */ 2144 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2145 2146 /* e_type. */ 2147 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2148 2149 /* e_machine. */ 2150 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2151 2152 /* e_version. */ 2153 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2154 2155 /* e_entry. */ 2156 printf("%-37s%#jx\n", " Entry point address:", 2157 (uintmax_t)re->ehdr.e_entry); 2158 2159 /* e_phoff. */ 2160 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2161 (uintmax_t)re->ehdr.e_phoff); 2162 2163 /* e_shoff. */ 2164 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2165 (uintmax_t)re->ehdr.e_shoff); 2166 2167 /* e_flags. */ 2168 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2169 dump_eflags(re, re->ehdr.e_flags); 2170 putchar('\n'); 2171 2172 /* e_ehsize. */ 2173 printf("%-37s%u (bytes)\n", " Size of this header:", 2174 re->ehdr.e_ehsize); 2175 2176 /* e_phentsize. */ 2177 printf("%-37s%u (bytes)\n", " Size of program headers:", 2178 re->ehdr.e_phentsize); 2179 2180 /* e_phnum. */ 2181 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum); 2182 if (re->ehdr.e_phnum == PN_XNUM) { 2183 /* Extended program header numbering is in use. */ 2184 if (elf_getphnum(re->elf, &phnum)) 2185 printf(" (%zu)", phnum); 2186 } 2187 putchar('\n'); 2188 2189 /* e_shentsize. */ 2190 printf("%-37s%u (bytes)\n", " Size of section headers:", 2191 re->ehdr.e_shentsize); 2192 2193 /* e_shnum. */ 2194 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2195 if (re->ehdr.e_shnum == SHN_UNDEF) { 2196 /* Extended section numbering is in use. */ 2197 if (elf_getshnum(re->elf, &shnum)) 2198 printf(" (%ju)", (uintmax_t)shnum); 2199 } 2200 putchar('\n'); 2201 2202 /* e_shstrndx. */ 2203 printf("%-37s%u", " Section header string table index:", 2204 re->ehdr.e_shstrndx); 2205 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2206 /* Extended section numbering is in use. */ 2207 if (elf_getshstrndx(re->elf, &shstrndx)) 2208 printf(" (%ju)", (uintmax_t)shstrndx); 2209 } 2210 putchar('\n'); 2211 } 2212 2213 static void 2214 dump_eflags(struct readelf *re, uint64_t e_flags) 2215 { 2216 struct eflags_desc *edesc; 2217 int arm_eabi; 2218 2219 edesc = NULL; 2220 switch (re->ehdr.e_machine) { 2221 case EM_ARM: 2222 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2223 if (arm_eabi == 0) 2224 printf(", GNU EABI"); 2225 else if (arm_eabi <= 5) 2226 printf(", Version%d EABI", arm_eabi); 2227 edesc = arm_eflags_desc; 2228 break; 2229 case EM_MIPS: 2230 case EM_MIPS_RS3_LE: 2231 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2232 case 0: printf(", mips1"); break; 2233 case 1: printf(", mips2"); break; 2234 case 2: printf(", mips3"); break; 2235 case 3: printf(", mips4"); break; 2236 case 4: printf(", mips5"); break; 2237 case 5: printf(", mips32"); break; 2238 case 6: printf(", mips64"); break; 2239 case 7: printf(", mips32r2"); break; 2240 case 8: printf(", mips64r2"); break; 2241 default: break; 2242 } 2243 switch ((e_flags & 0x00FF0000) >> 16) { 2244 case 0x81: printf(", 3900"); break; 2245 case 0x82: printf(", 4010"); break; 2246 case 0x83: printf(", 4100"); break; 2247 case 0x85: printf(", 4650"); break; 2248 case 0x87: printf(", 4120"); break; 2249 case 0x88: printf(", 4111"); break; 2250 case 0x8a: printf(", sb1"); break; 2251 case 0x8b: printf(", octeon"); break; 2252 case 0x8c: printf(", xlr"); break; 2253 case 0x91: printf(", 5400"); break; 2254 case 0x98: printf(", 5500"); break; 2255 case 0x99: printf(", 9000"); break; 2256 case 0xa0: printf(", loongson-2e"); break; 2257 case 0xa1: printf(", loongson-2f"); break; 2258 default: break; 2259 } 2260 switch ((e_flags & 0x0000F000) >> 12) { 2261 case 1: printf(", o32"); break; 2262 case 2: printf(", o64"); break; 2263 case 3: printf(", eabi32"); break; 2264 case 4: printf(", eabi64"); break; 2265 default: break; 2266 } 2267 edesc = mips_eflags_desc; 2268 break; 2269 case EM_PPC: 2270 case EM_PPC64: 2271 edesc = powerpc_eflags_desc; 2272 break; 2273 case EM_SPARC: 2274 case EM_SPARC32PLUS: 2275 case EM_SPARCV9: 2276 switch ((e_flags & EF_SPARCV9_MM)) { 2277 case EF_SPARCV9_TSO: printf(", tso"); break; 2278 case EF_SPARCV9_PSO: printf(", pso"); break; 2279 case EF_SPARCV9_MM: printf(", rmo"); break; 2280 default: break; 2281 } 2282 edesc = sparc_eflags_desc; 2283 break; 2284 default: 2285 break; 2286 } 2287 2288 if (edesc != NULL) { 2289 while (edesc->desc != NULL) { 2290 if (e_flags & edesc->flag) 2291 printf(", %s", edesc->desc); 2292 edesc++; 2293 } 2294 } 2295 } 2296 2297 static void 2298 dump_phdr(struct readelf *re) 2299 { 2300 const char *rawfile; 2301 GElf_Phdr phdr; 2302 size_t phnum, size; 2303 int i, j; 2304 2305 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2306 "MemSiz", "Flg", "Align" 2307 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2308 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2309 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2310 (uintmax_t)phdr.p_memsz, \ 2311 phdr.p_flags & PF_R ? 'R' : ' ', \ 2312 phdr.p_flags & PF_W ? 'W' : ' ', \ 2313 phdr.p_flags & PF_X ? 'E' : ' ', \ 2314 (uintmax_t)phdr.p_align 2315 2316 if (elf_getphnum(re->elf, &phnum) == 0) { 2317 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2318 return; 2319 } 2320 if (phnum == 0) { 2321 printf("\nThere are no program headers in this file.\n"); 2322 return; 2323 } 2324 2325 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2326 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2327 printf("There are %ju program headers, starting at offset %ju\n", 2328 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2329 2330 /* Dump program headers. */ 2331 printf("\nProgram Headers:\n"); 2332 if (re->ec == ELFCLASS32) 2333 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2334 else if (re->options & RE_WW) 2335 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2336 else 2337 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2338 "%-7s%s\n", PH_HDR); 2339 for (i = 0; (size_t) i < phnum; i++) { 2340 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2341 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2342 continue; 2343 } 2344 /* TODO: Add arch-specific segment type dump. */ 2345 if (re->ec == ELFCLASS32) 2346 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2347 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2348 else if (re->options & RE_WW) 2349 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2350 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2351 else 2352 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2353 " 0x%16.16jx 0x%16.16jx %c%c%c" 2354 " %#jx\n", PH_CT); 2355 if (phdr.p_type == PT_INTERP) { 2356 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2357 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2358 continue; 2359 } 2360 if (phdr.p_offset >= size) { 2361 warnx("invalid program header offset"); 2362 continue; 2363 } 2364 printf(" [Requesting program interpreter: %s]\n", 2365 rawfile + phdr.p_offset); 2366 } 2367 } 2368 2369 /* Dump section to segment mapping. */ 2370 if (re->shnum == 0) 2371 return; 2372 printf("\n Section to Segment mapping:\n"); 2373 printf(" Segment Sections...\n"); 2374 for (i = 0; (size_t)i < phnum; i++) { 2375 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2376 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2377 continue; 2378 } 2379 printf(" %2.2d ", i); 2380 /* skip NULL section. */ 2381 for (j = 1; (size_t)j < re->shnum; j++) { 2382 if (re->sl[j].off < phdr.p_offset) 2383 continue; 2384 if (re->sl[j].off + re->sl[j].sz > 2385 phdr.p_offset + phdr.p_filesz && 2386 re->sl[j].type != SHT_NOBITS) 2387 continue; 2388 if (re->sl[j].addr < phdr.p_vaddr || 2389 re->sl[j].addr + re->sl[j].sz > 2390 phdr.p_vaddr + phdr.p_memsz) 2391 continue; 2392 if (phdr.p_type == PT_TLS && 2393 (re->sl[j].flags & SHF_TLS) == 0) 2394 continue; 2395 printf("%s ", re->sl[j].name); 2396 } 2397 printf("\n"); 2398 } 2399 #undef PH_HDR 2400 #undef PH_CT 2401 } 2402 2403 static char * 2404 section_flags(struct readelf *re, struct section *s) 2405 { 2406 #define BUF_SZ 256 2407 static char buf[BUF_SZ]; 2408 int i, p, nb; 2409 2410 p = 0; 2411 nb = re->ec == ELFCLASS32 ? 8 : 16; 2412 if (re->options & RE_T) { 2413 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2414 (uintmax_t)s->flags); 2415 p += nb + 4; 2416 } 2417 for (i = 0; section_flag[i].ln != NULL; i++) { 2418 if ((s->flags & section_flag[i].value) == 0) 2419 continue; 2420 if (re->options & RE_T) { 2421 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2422 section_flag[i].ln); 2423 p += strlen(section_flag[i].ln) + 2; 2424 } else 2425 buf[p++] = section_flag[i].sn; 2426 } 2427 if (re->options & RE_T && p > nb + 4) 2428 p -= 2; 2429 buf[p] = '\0'; 2430 2431 return (buf); 2432 } 2433 2434 static void 2435 dump_shdr(struct readelf *re) 2436 { 2437 struct section *s; 2438 int i; 2439 2440 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2441 "Flg", "Lk", "Inf", "Al" 2442 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2443 "EntSize", "Flags", "Link", "Info", "Align" 2444 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2445 "Lk", "Inf", "Al", "Flags" 2446 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2447 "Size", "EntSize", "Info", "Align", "Flags" 2448 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2449 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2450 (uintmax_t)s->entsize, section_flags(re, s), \ 2451 s->link, s->info, (uintmax_t)s->align 2452 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2453 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2454 (uintmax_t)s->entsize, s->link, s->info, \ 2455 (uintmax_t)s->align, section_flags(re, s) 2456 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2457 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2458 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2459 (uintmax_t)s->align, section_flags(re, s) 2460 2461 if (re->shnum == 0) { 2462 printf("\nThere are no sections in this file.\n"); 2463 return; 2464 } 2465 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2466 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2467 printf("\nSection Headers:\n"); 2468 if (re->ec == ELFCLASS32) { 2469 if (re->options & RE_T) 2470 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2471 "%12s\n", ST_HDR); 2472 else 2473 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2474 S_HDR); 2475 } else if (re->options & RE_WW) { 2476 if (re->options & RE_T) 2477 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2478 "%12s\n", ST_HDR); 2479 else 2480 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2481 S_HDR); 2482 } else { 2483 if (re->options & RE_T) 2484 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2485 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2486 else 2487 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2488 "-6s%-6s%s\n", S_HDRL); 2489 } 2490 for (i = 0; (size_t)i < re->shnum; i++) { 2491 s = &re->sl[i]; 2492 if (re->ec == ELFCLASS32) { 2493 if (re->options & RE_T) 2494 printf(" [%2d] %s\n %-15.15s %8.8jx" 2495 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2496 " %s\n", ST_CT); 2497 else 2498 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2499 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2500 S_CT); 2501 } else if (re->options & RE_WW) { 2502 if (re->options & RE_T) 2503 printf(" [%2d] %s\n %-15.15s %16.16jx" 2504 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2505 " %s\n", ST_CT); 2506 else 2507 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2508 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2509 S_CT); 2510 } else { 2511 if (re->options & RE_T) 2512 printf(" [%2d] %s\n %-15.15s %16.16jx" 2513 " %16.16jx %u\n %16.16jx %16.16jx" 2514 " %-16u %ju\n %s\n", ST_CTL); 2515 else 2516 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2517 " %8.8jx\n %16.16jx %16.16jx " 2518 "%3s %2u %3u %ju\n", S_CT); 2519 } 2520 } 2521 if ((re->options & RE_T) == 0) 2522 printf("Key to Flags:\n W (write), A (alloc)," 2523 " X (execute), M (merge), S (strings)\n" 2524 " I (info), L (link order), G (group), x (unknown)\n" 2525 " O (extra OS processing required)" 2526 " o (OS specific), p (processor specific)\n"); 2527 2528 #undef S_HDR 2529 #undef S_HDRL 2530 #undef ST_HDR 2531 #undef ST_HDRL 2532 #undef S_CT 2533 #undef ST_CT 2534 #undef ST_CTL 2535 } 2536 2537 /* 2538 * Return number of entries in the given section. We'd prefer ent_count be a 2539 * size_t *, but libelf APIs already use int for section indices. 2540 */ 2541 static int 2542 get_ent_count(struct section *s, int *ent_count) 2543 { 2544 if (s->entsize == 0) { 2545 warnx("section %s has entry size 0", s->name); 2546 return (0); 2547 } else if (s->sz / s->entsize > INT_MAX) { 2548 warnx("section %s has invalid section count", s->name); 2549 return (0); 2550 } 2551 *ent_count = (int)(s->sz / s->entsize); 2552 return (1); 2553 } 2554 2555 static void 2556 dump_dynamic(struct readelf *re) 2557 { 2558 GElf_Dyn dyn; 2559 Elf_Data *d; 2560 struct section *s; 2561 int elferr, i, is_dynamic, j, jmax, nentries; 2562 2563 is_dynamic = 0; 2564 2565 for (i = 0; (size_t)i < re->shnum; i++) { 2566 s = &re->sl[i]; 2567 if (s->type != SHT_DYNAMIC) 2568 continue; 2569 (void) elf_errno(); 2570 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2571 elferr = elf_errno(); 2572 if (elferr != 0) 2573 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2574 continue; 2575 } 2576 if (d->d_size <= 0) 2577 continue; 2578 2579 is_dynamic = 1; 2580 2581 /* Determine the actual number of table entries. */ 2582 nentries = 0; 2583 if (!get_ent_count(s, &jmax)) 2584 continue; 2585 for (j = 0; j < jmax; j++) { 2586 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2587 warnx("gelf_getdyn failed: %s", 2588 elf_errmsg(-1)); 2589 continue; 2590 } 2591 nentries ++; 2592 if (dyn.d_tag == DT_NULL) 2593 break; 2594 } 2595 2596 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2597 printf(" contains %u entries:\n", nentries); 2598 2599 if (re->ec == ELFCLASS32) 2600 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2601 else 2602 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2603 2604 for (j = 0; j < nentries; j++) { 2605 if (gelf_getdyn(d, j, &dyn) != &dyn) 2606 continue; 2607 /* Dump dynamic entry type. */ 2608 if (re->ec == ELFCLASS32) 2609 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2610 else 2611 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2612 printf(" %-20s", dt_type(re->ehdr.e_machine, 2613 dyn.d_tag)); 2614 /* Dump dynamic entry value. */ 2615 dump_dyn_val(re, &dyn, s->link); 2616 } 2617 } 2618 2619 if (!is_dynamic) 2620 printf("\nThere is no dynamic section in this file.\n"); 2621 } 2622 2623 static char * 2624 timestamp(time_t ti) 2625 { 2626 static char ts[32]; 2627 struct tm *t; 2628 2629 t = gmtime(&ti); 2630 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2631 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2632 t->tm_min, t->tm_sec); 2633 2634 return (ts); 2635 } 2636 2637 static const char * 2638 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2639 { 2640 const char *name; 2641 2642 if (stab == SHN_UNDEF) 2643 name = "ERROR"; 2644 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2645 (void) elf_errno(); /* clear error */ 2646 name = "ERROR"; 2647 } 2648 2649 return (name); 2650 } 2651 2652 static void 2653 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn) 2654 { 2655 switch (re->ehdr.e_machine) { 2656 case EM_MIPS: 2657 case EM_MIPS_RS3_LE: 2658 switch (dyn->d_tag) { 2659 case DT_MIPS_RLD_VERSION: 2660 case DT_MIPS_LOCAL_GOTNO: 2661 case DT_MIPS_CONFLICTNO: 2662 case DT_MIPS_LIBLISTNO: 2663 case DT_MIPS_SYMTABNO: 2664 case DT_MIPS_UNREFEXTNO: 2665 case DT_MIPS_GOTSYM: 2666 case DT_MIPS_HIPAGENO: 2667 case DT_MIPS_DELTA_CLASS_NO: 2668 case DT_MIPS_DELTA_INSTANCE_NO: 2669 case DT_MIPS_DELTA_RELOC_NO: 2670 case DT_MIPS_DELTA_SYM_NO: 2671 case DT_MIPS_DELTA_CLASSSYM_NO: 2672 case DT_MIPS_LOCALPAGE_GOTIDX: 2673 case DT_MIPS_LOCAL_GOTIDX: 2674 case DT_MIPS_HIDDEN_GOTIDX: 2675 case DT_MIPS_PROTECTED_GOTIDX: 2676 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2677 break; 2678 case DT_MIPS_ICHECKSUM: 2679 case DT_MIPS_FLAGS: 2680 case DT_MIPS_BASE_ADDRESS: 2681 case DT_MIPS_CONFLICT: 2682 case DT_MIPS_LIBLIST: 2683 case DT_MIPS_RLD_MAP: 2684 case DT_MIPS_DELTA_CLASS: 2685 case DT_MIPS_DELTA_INSTANCE: 2686 case DT_MIPS_DELTA_RELOC: 2687 case DT_MIPS_DELTA_SYM: 2688 case DT_MIPS_DELTA_CLASSSYM: 2689 case DT_MIPS_CXX_FLAGS: 2690 case DT_MIPS_PIXIE_INIT: 2691 case DT_MIPS_SYMBOL_LIB: 2692 case DT_MIPS_OPTIONS: 2693 case DT_MIPS_INTERFACE: 2694 case DT_MIPS_DYNSTR_ALIGN: 2695 case DT_MIPS_INTERFACE_SIZE: 2696 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2697 case DT_MIPS_COMPACT_SIZE: 2698 case DT_MIPS_GP_VALUE: 2699 case DT_MIPS_AUX_DYNAMIC: 2700 case DT_MIPS_PLTGOT: 2701 case DT_MIPS_RLD_OBJ_UPDATE: 2702 case DT_MIPS_RWPLT: 2703 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2704 break; 2705 case DT_MIPS_IVERSION: 2706 case DT_MIPS_PERF_SUFFIX: 2707 case DT_MIPS_TIME_STAMP: 2708 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2709 break; 2710 default: 2711 printf("\n"); 2712 break; 2713 } 2714 break; 2715 default: 2716 printf("\n"); 2717 break; 2718 } 2719 } 2720 2721 static void 2722 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2723 { 2724 const char *name; 2725 2726 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC && 2727 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) { 2728 dump_arch_dyn_val(re, dyn); 2729 return; 2730 } 2731 2732 /* These entry values are index into the string table. */ 2733 name = NULL; 2734 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER || 2735 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2736 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2737 name = dyn_str(re, stab, dyn->d_un.d_val); 2738 2739 switch(dyn->d_tag) { 2740 case DT_NULL: 2741 case DT_PLTGOT: 2742 case DT_HASH: 2743 case DT_STRTAB: 2744 case DT_SYMTAB: 2745 case DT_RELA: 2746 case DT_INIT: 2747 case DT_SYMBOLIC: 2748 case DT_REL: 2749 case DT_DEBUG: 2750 case DT_TEXTREL: 2751 case DT_JMPREL: 2752 case DT_FINI: 2753 case DT_VERDEF: 2754 case DT_VERNEED: 2755 case DT_VERSYM: 2756 case DT_GNU_HASH: 2757 case DT_GNU_LIBLIST: 2758 case DT_GNU_CONFLICT: 2759 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2760 break; 2761 case DT_PLTRELSZ: 2762 case DT_RELASZ: 2763 case DT_RELAENT: 2764 case DT_STRSZ: 2765 case DT_SYMENT: 2766 case DT_RELSZ: 2767 case DT_RELENT: 2768 case DT_PREINIT_ARRAYSZ: 2769 case DT_INIT_ARRAYSZ: 2770 case DT_FINI_ARRAYSZ: 2771 case DT_GNU_CONFLICTSZ: 2772 case DT_GNU_LIBLISTSZ: 2773 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2774 break; 2775 case DT_RELACOUNT: 2776 case DT_RELCOUNT: 2777 case DT_VERDEFNUM: 2778 case DT_VERNEEDNUM: 2779 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2780 break; 2781 case DT_AUXILIARY: 2782 printf(" Auxiliary library: [%s]\n", name); 2783 break; 2784 case DT_FILTER: 2785 printf(" Filter library: [%s]\n", name); 2786 break; 2787 case DT_NEEDED: 2788 printf(" Shared library: [%s]\n", name); 2789 break; 2790 case DT_SONAME: 2791 printf(" Library soname: [%s]\n", name); 2792 break; 2793 case DT_RPATH: 2794 printf(" Library rpath: [%s]\n", name); 2795 break; 2796 case DT_RUNPATH: 2797 printf(" Library runpath: [%s]\n", name); 2798 break; 2799 case DT_PLTREL: 2800 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2801 break; 2802 case DT_GNU_PRELINKED: 2803 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2804 break; 2805 default: 2806 printf("\n"); 2807 } 2808 } 2809 2810 static void 2811 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2812 { 2813 GElf_Rel r; 2814 const char *symname; 2815 uint64_t symval; 2816 int i, len; 2817 uint32_t type; 2818 uint8_t type2, type3; 2819 2820 if (s->link >= re->shnum) 2821 return; 2822 2823 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2824 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2825 elftc_reloc_type_str(re->ehdr.e_machine, \ 2826 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2827 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2828 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2829 (uintmax_t)symval, symname 2830 2831 printf("\nRelocation section (%s):\n", s->name); 2832 if (re->ec == ELFCLASS32) 2833 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2834 else { 2835 if (re->options & RE_WW) 2836 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2837 else 2838 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2839 } 2840 assert(d->d_size == s->sz); 2841 if (!get_ent_count(s, &len)) 2842 return; 2843 for (i = 0; i < len; i++) { 2844 if (gelf_getrel(d, i, &r) != &r) { 2845 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2846 continue; 2847 } 2848 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2849 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2850 if (re->ec == ELFCLASS32) { 2851 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2852 ELF64_R_TYPE(r.r_info)); 2853 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2854 } else { 2855 type = ELF64_R_TYPE(r.r_info); 2856 if (re->ehdr.e_machine == EM_MIPS) { 2857 type2 = (type >> 8) & 0xFF; 2858 type3 = (type >> 16) & 0xFF; 2859 type = type & 0xFF; 2860 } else { 2861 type2 = type3 = 0; 2862 } 2863 if (re->options & RE_WW) 2864 printf("%16.16jx %16.16jx %-24.24s" 2865 " %16.16jx %s\n", REL_CT64); 2866 else 2867 printf("%12.12jx %12.12jx %-19.19s" 2868 " %16.16jx %s\n", REL_CT64); 2869 if (re->ehdr.e_machine == EM_MIPS) { 2870 if (re->options & RE_WW) { 2871 printf("%32s: %s\n", "Type2", 2872 elftc_reloc_type_str(EM_MIPS, 2873 type2)); 2874 printf("%32s: %s\n", "Type3", 2875 elftc_reloc_type_str(EM_MIPS, 2876 type3)); 2877 } else { 2878 printf("%24s: %s\n", "Type2", 2879 elftc_reloc_type_str(EM_MIPS, 2880 type2)); 2881 printf("%24s: %s\n", "Type3", 2882 elftc_reloc_type_str(EM_MIPS, 2883 type3)); 2884 } 2885 } 2886 } 2887 } 2888 2889 #undef REL_HDR 2890 #undef REL_CT 2891 } 2892 2893 static void 2894 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2895 { 2896 GElf_Rela r; 2897 const char *symname; 2898 uint64_t symval; 2899 int i, len; 2900 uint32_t type; 2901 uint8_t type2, type3; 2902 2903 if (s->link >= re->shnum) 2904 return; 2905 2906 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2907 "st_name + r_addend" 2908 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2909 elftc_reloc_type_str(re->ehdr.e_machine, \ 2910 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2911 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2912 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2913 (uintmax_t)symval, symname 2914 2915 printf("\nRelocation section with addend (%s):\n", s->name); 2916 if (re->ec == ELFCLASS32) 2917 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2918 else { 2919 if (re->options & RE_WW) 2920 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2921 else 2922 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2923 } 2924 assert(d->d_size == s->sz); 2925 if (!get_ent_count(s, &len)) 2926 return; 2927 for (i = 0; i < len; i++) { 2928 if (gelf_getrela(d, i, &r) != &r) { 2929 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2930 continue; 2931 } 2932 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2933 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2934 if (re->ec == ELFCLASS32) { 2935 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2936 ELF64_R_TYPE(r.r_info)); 2937 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2938 printf(" + %x\n", (uint32_t) r.r_addend); 2939 } else { 2940 type = ELF64_R_TYPE(r.r_info); 2941 if (re->ehdr.e_machine == EM_MIPS) { 2942 type2 = (type >> 8) & 0xFF; 2943 type3 = (type >> 16) & 0xFF; 2944 type = type & 0xFF; 2945 } else { 2946 type2 = type3 = 0; 2947 } 2948 if (re->options & RE_WW) 2949 printf("%16.16jx %16.16jx %-24.24s" 2950 " %16.16jx %s", RELA_CT64); 2951 else 2952 printf("%12.12jx %12.12jx %-19.19s" 2953 " %16.16jx %s", RELA_CT64); 2954 printf(" + %jx\n", (uintmax_t) r.r_addend); 2955 if (re->ehdr.e_machine == EM_MIPS) { 2956 if (re->options & RE_WW) { 2957 printf("%32s: %s\n", "Type2", 2958 elftc_reloc_type_str(EM_MIPS, 2959 type2)); 2960 printf("%32s: %s\n", "Type3", 2961 elftc_reloc_type_str(EM_MIPS, 2962 type3)); 2963 } else { 2964 printf("%24s: %s\n", "Type2", 2965 elftc_reloc_type_str(EM_MIPS, 2966 type2)); 2967 printf("%24s: %s\n", "Type3", 2968 elftc_reloc_type_str(EM_MIPS, 2969 type3)); 2970 } 2971 } 2972 } 2973 } 2974 2975 #undef RELA_HDR 2976 #undef RELA_CT 2977 } 2978 2979 static void 2980 dump_reloc(struct readelf *re) 2981 { 2982 struct section *s; 2983 Elf_Data *d; 2984 int i, elferr; 2985 2986 for (i = 0; (size_t)i < re->shnum; i++) { 2987 s = &re->sl[i]; 2988 if (s->type == SHT_REL || s->type == SHT_RELA) { 2989 (void) elf_errno(); 2990 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2991 elferr = elf_errno(); 2992 if (elferr != 0) 2993 warnx("elf_getdata failed: %s", 2994 elf_errmsg(elferr)); 2995 continue; 2996 } 2997 if (s->type == SHT_REL) 2998 dump_rel(re, s, d); 2999 else 3000 dump_rela(re, s, d); 3001 } 3002 } 3003 } 3004 3005 static void 3006 dump_symtab(struct readelf *re, int i) 3007 { 3008 struct section *s; 3009 Elf_Data *d; 3010 GElf_Sym sym; 3011 const char *name; 3012 uint32_t stab; 3013 int elferr, j, len; 3014 uint16_t vs; 3015 3016 s = &re->sl[i]; 3017 if (s->link >= re->shnum) 3018 return; 3019 stab = s->link; 3020 (void) elf_errno(); 3021 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3022 elferr = elf_errno(); 3023 if (elferr != 0) 3024 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3025 return; 3026 } 3027 if (d->d_size <= 0) 3028 return; 3029 if (!get_ent_count(s, &len)) 3030 return; 3031 printf("Symbol table (%s)", s->name); 3032 printf(" contains %d entries:\n", len); 3033 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3034 "Bind", "Vis", "Ndx", "Name"); 3035 3036 for (j = 0; j < len; j++) { 3037 if (gelf_getsym(d, j, &sym) != &sym) { 3038 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3039 continue; 3040 } 3041 printf("%6d:", j); 3042 printf(" %16.16jx", (uintmax_t) sym.st_value); 3043 printf(" %5ju", (uintmax_t) sym.st_size); 3044 printf(" %-7s", st_type(re->ehdr.e_machine, 3045 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3046 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3047 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3048 printf(" %3s", st_shndx(sym.st_shndx)); 3049 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3050 printf(" %s", name); 3051 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3052 if (s->type == SHT_DYNSYM && re->ver != NULL && 3053 re->vs != NULL && re->vs[j] > 1) { 3054 vs = re->vs[j] & VERSYM_VERSION; 3055 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3056 warnx("invalid versym version index %u", vs); 3057 break; 3058 } 3059 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3060 printf("@%s (%d)", re->ver[vs].name, vs); 3061 else 3062 printf("@@%s (%d)", re->ver[vs].name, vs); 3063 } 3064 putchar('\n'); 3065 } 3066 3067 } 3068 3069 static void 3070 dump_symtabs(struct readelf *re) 3071 { 3072 GElf_Dyn dyn; 3073 Elf_Data *d; 3074 struct section *s; 3075 uint64_t dyn_off; 3076 int elferr, i, len; 3077 3078 /* 3079 * If -D is specified, only dump the symbol table specified by 3080 * the DT_SYMTAB entry in the .dynamic section. 3081 */ 3082 dyn_off = 0; 3083 if (re->options & RE_DD) { 3084 s = NULL; 3085 for (i = 0; (size_t)i < re->shnum; i++) 3086 if (re->sl[i].type == SHT_DYNAMIC) { 3087 s = &re->sl[i]; 3088 break; 3089 } 3090 if (s == NULL) 3091 return; 3092 (void) elf_errno(); 3093 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3094 elferr = elf_errno(); 3095 if (elferr != 0) 3096 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3097 return; 3098 } 3099 if (d->d_size <= 0) 3100 return; 3101 if (!get_ent_count(s, &len)) 3102 return; 3103 3104 for (i = 0; i < len; i++) { 3105 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3106 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3107 continue; 3108 } 3109 if (dyn.d_tag == DT_SYMTAB) { 3110 dyn_off = dyn.d_un.d_val; 3111 break; 3112 } 3113 } 3114 } 3115 3116 /* Find and dump symbol tables. */ 3117 for (i = 0; (size_t)i < re->shnum; i++) { 3118 s = &re->sl[i]; 3119 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3120 if (re->options & RE_DD) { 3121 if (dyn_off == s->addr) { 3122 dump_symtab(re, i); 3123 break; 3124 } 3125 } else 3126 dump_symtab(re, i); 3127 } 3128 } 3129 } 3130 3131 static void 3132 dump_svr4_hash(struct section *s) 3133 { 3134 Elf_Data *d; 3135 uint32_t *buf; 3136 uint32_t nbucket, nchain; 3137 uint32_t *bucket, *chain; 3138 uint32_t *bl, *c, maxl, total; 3139 int elferr, i, j; 3140 3141 /* Read and parse the content of .hash section. */ 3142 (void) elf_errno(); 3143 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3144 elferr = elf_errno(); 3145 if (elferr != 0) 3146 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3147 return; 3148 } 3149 if (d->d_size < 2 * sizeof(uint32_t)) { 3150 warnx(".hash section too small"); 3151 return; 3152 } 3153 buf = d->d_buf; 3154 nbucket = buf[0]; 3155 nchain = buf[1]; 3156 if (nbucket <= 0 || nchain <= 0) { 3157 warnx("Malformed .hash section"); 3158 return; 3159 } 3160 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3161 warnx("Malformed .hash section"); 3162 return; 3163 } 3164 bucket = &buf[2]; 3165 chain = &buf[2 + nbucket]; 3166 3167 maxl = 0; 3168 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3169 errx(EXIT_FAILURE, "calloc failed"); 3170 for (i = 0; (uint32_t)i < nbucket; i++) 3171 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3172 if (++bl[i] > maxl) 3173 maxl = bl[i]; 3174 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3175 errx(EXIT_FAILURE, "calloc failed"); 3176 for (i = 0; (uint32_t)i < nbucket; i++) 3177 c[bl[i]]++; 3178 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3179 nbucket); 3180 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3181 total = 0; 3182 for (i = 0; (uint32_t)i <= maxl; i++) { 3183 total += c[i] * i; 3184 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3185 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3186 } 3187 free(c); 3188 free(bl); 3189 } 3190 3191 static void 3192 dump_svr4_hash64(struct readelf *re, struct section *s) 3193 { 3194 Elf_Data *d, dst; 3195 uint64_t *buf; 3196 uint64_t nbucket, nchain; 3197 uint64_t *bucket, *chain; 3198 uint64_t *bl, *c, maxl, total; 3199 int elferr, i, j; 3200 3201 /* 3202 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3203 * .hash section contains only 32-bit entry, an explicit 3204 * gelf_xlatetom is needed here. 3205 */ 3206 (void) elf_errno(); 3207 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3208 elferr = elf_errno(); 3209 if (elferr != 0) 3210 warnx("elf_rawdata failed: %s", 3211 elf_errmsg(elferr)); 3212 return; 3213 } 3214 d->d_type = ELF_T_XWORD; 3215 memcpy(&dst, d, sizeof(Elf_Data)); 3216 if (gelf_xlatetom(re->elf, &dst, d, 3217 re->ehdr.e_ident[EI_DATA]) != &dst) { 3218 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3219 return; 3220 } 3221 if (dst.d_size < 2 * sizeof(uint64_t)) { 3222 warnx(".hash section too small"); 3223 return; 3224 } 3225 buf = dst.d_buf; 3226 nbucket = buf[0]; 3227 nchain = buf[1]; 3228 if (nbucket <= 0 || nchain <= 0) { 3229 warnx("Malformed .hash section"); 3230 return; 3231 } 3232 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3233 warnx("Malformed .hash section"); 3234 return; 3235 } 3236 bucket = &buf[2]; 3237 chain = &buf[2 + nbucket]; 3238 3239 maxl = 0; 3240 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3241 errx(EXIT_FAILURE, "calloc failed"); 3242 for (i = 0; (uint32_t)i < nbucket; i++) 3243 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3244 if (++bl[i] > maxl) 3245 maxl = bl[i]; 3246 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3247 errx(EXIT_FAILURE, "calloc failed"); 3248 for (i = 0; (uint64_t)i < nbucket; i++) 3249 c[bl[i]]++; 3250 printf("Histogram for bucket list length (total of %ju buckets):\n", 3251 (uintmax_t)nbucket); 3252 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3253 total = 0; 3254 for (i = 0; (uint64_t)i <= maxl; i++) { 3255 total += c[i] * i; 3256 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3257 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3258 } 3259 free(c); 3260 free(bl); 3261 } 3262 3263 static void 3264 dump_gnu_hash(struct readelf *re, struct section *s) 3265 { 3266 struct section *ds; 3267 Elf_Data *d; 3268 uint32_t *buf; 3269 uint32_t *bucket, *chain; 3270 uint32_t nbucket, nchain, symndx, maskwords; 3271 uint32_t *bl, *c, maxl, total; 3272 int elferr, dynsymcount, i, j; 3273 3274 (void) elf_errno(); 3275 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3276 elferr = elf_errno(); 3277 if (elferr != 0) 3278 warnx("elf_getdata failed: %s", 3279 elf_errmsg(elferr)); 3280 return; 3281 } 3282 if (d->d_size < 4 * sizeof(uint32_t)) { 3283 warnx(".gnu.hash section too small"); 3284 return; 3285 } 3286 buf = d->d_buf; 3287 nbucket = buf[0]; 3288 symndx = buf[1]; 3289 maskwords = buf[2]; 3290 buf += 4; 3291 if (s->link >= re->shnum) 3292 return; 3293 ds = &re->sl[s->link]; 3294 if (!get_ent_count(ds, &dynsymcount)) 3295 return; 3296 if (symndx >= (uint32_t)dynsymcount) { 3297 warnx("Malformed .gnu.hash section (symndx out of range)"); 3298 return; 3299 } 3300 nchain = dynsymcount - symndx; 3301 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3302 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3303 (nbucket + nchain) * sizeof(uint32_t)) { 3304 warnx("Malformed .gnu.hash section"); 3305 return; 3306 } 3307 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3308 chain = bucket + nbucket; 3309 3310 maxl = 0; 3311 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3312 errx(EXIT_FAILURE, "calloc failed"); 3313 for (i = 0; (uint32_t)i < nbucket; i++) 3314 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3315 j++) { 3316 if (++bl[i] > maxl) 3317 maxl = bl[i]; 3318 if (chain[j - symndx] & 1) 3319 break; 3320 } 3321 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3322 errx(EXIT_FAILURE, "calloc failed"); 3323 for (i = 0; (uint32_t)i < nbucket; i++) 3324 c[bl[i]]++; 3325 printf("Histogram for bucket list length (total of %u buckets):\n", 3326 nbucket); 3327 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3328 total = 0; 3329 for (i = 0; (uint32_t)i <= maxl; i++) { 3330 total += c[i] * i; 3331 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3332 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3333 } 3334 free(c); 3335 free(bl); 3336 } 3337 3338 static void 3339 dump_hash(struct readelf *re) 3340 { 3341 struct section *s; 3342 int i; 3343 3344 for (i = 0; (size_t) i < re->shnum; i++) { 3345 s = &re->sl[i]; 3346 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3347 if (s->type == SHT_GNU_HASH) 3348 dump_gnu_hash(re, s); 3349 else if (re->ehdr.e_machine == EM_ALPHA && 3350 s->entsize == 8) 3351 dump_svr4_hash64(re, s); 3352 else 3353 dump_svr4_hash(s); 3354 } 3355 } 3356 } 3357 3358 static void 3359 dump_notes(struct readelf *re) 3360 { 3361 struct section *s; 3362 const char *rawfile; 3363 GElf_Phdr phdr; 3364 Elf_Data *d; 3365 size_t filesize, phnum; 3366 int i, elferr; 3367 3368 if (re->ehdr.e_type == ET_CORE) { 3369 /* 3370 * Search program headers in the core file for 3371 * PT_NOTE entry. 3372 */ 3373 if (elf_getphnum(re->elf, &phnum) == 0) { 3374 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3375 return; 3376 } 3377 if (phnum == 0) 3378 return; 3379 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3380 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3381 return; 3382 } 3383 for (i = 0; (size_t) i < phnum; i++) { 3384 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3385 warnx("gelf_getphdr failed: %s", 3386 elf_errmsg(-1)); 3387 continue; 3388 } 3389 if (phdr.p_type == PT_NOTE) { 3390 if (phdr.p_offset >= filesize || 3391 phdr.p_filesz > filesize - phdr.p_offset) { 3392 warnx("invalid PHDR offset"); 3393 continue; 3394 } 3395 dump_notes_content(re, rawfile + phdr.p_offset, 3396 phdr.p_filesz, phdr.p_offset); 3397 } 3398 } 3399 3400 } else { 3401 /* 3402 * For objects other than core files, Search for 3403 * SHT_NOTE sections. 3404 */ 3405 for (i = 0; (size_t) i < re->shnum; i++) { 3406 s = &re->sl[i]; 3407 if (s->type == SHT_NOTE) { 3408 (void) elf_errno(); 3409 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3410 elferr = elf_errno(); 3411 if (elferr != 0) 3412 warnx("elf_getdata failed: %s", 3413 elf_errmsg(elferr)); 3414 continue; 3415 } 3416 dump_notes_content(re, d->d_buf, d->d_size, 3417 s->off); 3418 } 3419 } 3420 } 3421 } 3422 3423 static void 3424 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3425 { 3426 Elf_Note *note; 3427 const char *end, *name; 3428 3429 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3430 (uintmax_t) off, (uintmax_t) sz); 3431 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3432 end = buf + sz; 3433 while (buf < end) { 3434 if (buf + sizeof(*note) > end) { 3435 warnx("invalid note header"); 3436 return; 3437 } 3438 note = (Elf_Note *)(uintptr_t) buf; 3439 name = (char *)(uintptr_t)(note + 1); 3440 /* 3441 * The name field is required to be nul-terminated, and 3442 * n_namesz includes the terminating nul in observed 3443 * implementations (contrary to the ELF-64 spec). A special 3444 * case is needed for cores generated by some older Linux 3445 * versions, which write a note named "CORE" without a nul 3446 * terminator and n_namesz = 4. 3447 */ 3448 if (note->n_namesz == 0) 3449 name = ""; 3450 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3451 name = "CORE"; 3452 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3453 name = "<invalid>"; 3454 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3455 printf(" %s\n", note_type(name, re->ehdr.e_type, 3456 note->n_type)); 3457 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3458 roundup2(note->n_descsz, 4); 3459 } 3460 } 3461 3462 /* 3463 * Symbol versioning sections are the same for 32bit and 64bit 3464 * ELF objects. 3465 */ 3466 #define Elf_Verdef Elf32_Verdef 3467 #define Elf_Verdaux Elf32_Verdaux 3468 #define Elf_Verneed Elf32_Verneed 3469 #define Elf_Vernaux Elf32_Vernaux 3470 3471 #define SAVE_VERSION_NAME(x, n, t) \ 3472 do { \ 3473 while (x >= re->ver_sz) { \ 3474 nv = realloc(re->ver, \ 3475 sizeof(*re->ver) * re->ver_sz * 2); \ 3476 if (nv == NULL) { \ 3477 warn("realloc failed"); \ 3478 free(re->ver); \ 3479 return; \ 3480 } \ 3481 re->ver = nv; \ 3482 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3483 re->ver[i].name = NULL; \ 3484 re->ver[i].type = 0; \ 3485 } \ 3486 re->ver_sz *= 2; \ 3487 } \ 3488 if (x > 1) { \ 3489 re->ver[x].name = n; \ 3490 re->ver[x].type = t; \ 3491 } \ 3492 } while (0) 3493 3494 3495 static void 3496 dump_verdef(struct readelf *re, int dump) 3497 { 3498 struct section *s; 3499 struct symver *nv; 3500 Elf_Data *d; 3501 Elf_Verdef *vd; 3502 Elf_Verdaux *vda; 3503 uint8_t *buf, *end, *buf2; 3504 const char *name; 3505 int elferr, i, j; 3506 3507 if ((s = re->vd_s) == NULL) 3508 return; 3509 if (s->link >= re->shnum) 3510 return; 3511 3512 if (re->ver == NULL) { 3513 re->ver_sz = 16; 3514 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3515 NULL) { 3516 warn("calloc failed"); 3517 return; 3518 } 3519 re->ver[0].name = "*local*"; 3520 re->ver[1].name = "*global*"; 3521 } 3522 3523 if (dump) 3524 printf("\nVersion definition section (%s):\n", s->name); 3525 (void) elf_errno(); 3526 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3527 elferr = elf_errno(); 3528 if (elferr != 0) 3529 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3530 return; 3531 } 3532 if (d->d_size == 0) 3533 return; 3534 3535 buf = d->d_buf; 3536 end = buf + d->d_size; 3537 while (buf + sizeof(Elf_Verdef) <= end) { 3538 vd = (Elf_Verdef *) (uintptr_t) buf; 3539 if (dump) { 3540 printf(" 0x%4.4lx", (unsigned long) 3541 (buf - (uint8_t *)d->d_buf)); 3542 printf(" vd_version: %u vd_flags: %d" 3543 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3544 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3545 } 3546 buf2 = buf + vd->vd_aux; 3547 j = 0; 3548 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3549 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3550 name = get_string(re, s->link, vda->vda_name); 3551 if (j == 0) { 3552 if (dump) 3553 printf(" vda_name: %s\n", name); 3554 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3555 } else if (dump) 3556 printf(" 0x%4.4lx parent: %s\n", 3557 (unsigned long) (buf2 - 3558 (uint8_t *)d->d_buf), name); 3559 if (vda->vda_next == 0) 3560 break; 3561 buf2 += vda->vda_next; 3562 j++; 3563 } 3564 if (vd->vd_next == 0) 3565 break; 3566 buf += vd->vd_next; 3567 } 3568 } 3569 3570 static void 3571 dump_verneed(struct readelf *re, int dump) 3572 { 3573 struct section *s; 3574 struct symver *nv; 3575 Elf_Data *d; 3576 Elf_Verneed *vn; 3577 Elf_Vernaux *vna; 3578 uint8_t *buf, *end, *buf2; 3579 const char *name; 3580 int elferr, i, j; 3581 3582 if ((s = re->vn_s) == NULL) 3583 return; 3584 if (s->link >= re->shnum) 3585 return; 3586 3587 if (re->ver == NULL) { 3588 re->ver_sz = 16; 3589 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3590 NULL) { 3591 warn("calloc failed"); 3592 return; 3593 } 3594 re->ver[0].name = "*local*"; 3595 re->ver[1].name = "*global*"; 3596 } 3597 3598 if (dump) 3599 printf("\nVersion needed section (%s):\n", s->name); 3600 (void) elf_errno(); 3601 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3602 elferr = elf_errno(); 3603 if (elferr != 0) 3604 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3605 return; 3606 } 3607 if (d->d_size == 0) 3608 return; 3609 3610 buf = d->d_buf; 3611 end = buf + d->d_size; 3612 while (buf + sizeof(Elf_Verneed) <= end) { 3613 vn = (Elf_Verneed *) (uintptr_t) buf; 3614 if (dump) { 3615 printf(" 0x%4.4lx", (unsigned long) 3616 (buf - (uint8_t *)d->d_buf)); 3617 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3618 vn->vn_version, 3619 get_string(re, s->link, vn->vn_file), 3620 vn->vn_cnt); 3621 } 3622 buf2 = buf + vn->vn_aux; 3623 j = 0; 3624 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3625 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3626 if (dump) 3627 printf(" 0x%4.4lx", (unsigned long) 3628 (buf2 - (uint8_t *)d->d_buf)); 3629 name = get_string(re, s->link, vna->vna_name); 3630 if (dump) 3631 printf(" vna_name: %s vna_flags: %u" 3632 " vna_other: %u\n", name, 3633 vna->vna_flags, vna->vna_other); 3634 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3635 if (vna->vna_next == 0) 3636 break; 3637 buf2 += vna->vna_next; 3638 j++; 3639 } 3640 if (vn->vn_next == 0) 3641 break; 3642 buf += vn->vn_next; 3643 } 3644 } 3645 3646 static void 3647 dump_versym(struct readelf *re) 3648 { 3649 int i; 3650 uint16_t vs; 3651 3652 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3653 return; 3654 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3655 for (i = 0; i < re->vs_sz; i++) { 3656 if ((i & 3) == 0) { 3657 if (i > 0) 3658 putchar('\n'); 3659 printf(" %03x:", i); 3660 } 3661 vs = re->vs[i] & VERSYM_VERSION; 3662 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3663 warnx("invalid versym version index %u", re->vs[i]); 3664 break; 3665 } 3666 if (re->vs[i] & VERSYM_HIDDEN) 3667 printf(" %3xh %-12s ", vs, 3668 re->ver[re->vs[i] & VERSYM_VERSION].name); 3669 else 3670 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 3671 } 3672 putchar('\n'); 3673 } 3674 3675 static void 3676 dump_ver(struct readelf *re) 3677 { 3678 3679 if (re->vs_s && re->ver && re->vs) 3680 dump_versym(re); 3681 if (re->vd_s) 3682 dump_verdef(re, 1); 3683 if (re->vn_s) 3684 dump_verneed(re, 1); 3685 } 3686 3687 static void 3688 search_ver(struct readelf *re) 3689 { 3690 struct section *s; 3691 Elf_Data *d; 3692 int elferr, i; 3693 3694 for (i = 0; (size_t) i < re->shnum; i++) { 3695 s = &re->sl[i]; 3696 if (s->type == SHT_SUNW_versym) 3697 re->vs_s = s; 3698 if (s->type == SHT_SUNW_verneed) 3699 re->vn_s = s; 3700 if (s->type == SHT_SUNW_verdef) 3701 re->vd_s = s; 3702 } 3703 if (re->vd_s) 3704 dump_verdef(re, 0); 3705 if (re->vn_s) 3706 dump_verneed(re, 0); 3707 if (re->vs_s && re->ver != NULL) { 3708 (void) elf_errno(); 3709 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3710 elferr = elf_errno(); 3711 if (elferr != 0) 3712 warnx("elf_getdata failed: %s", 3713 elf_errmsg(elferr)); 3714 return; 3715 } 3716 if (d->d_size == 0) 3717 return; 3718 re->vs = d->d_buf; 3719 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3720 } 3721 } 3722 3723 #undef Elf_Verdef 3724 #undef Elf_Verdaux 3725 #undef Elf_Verneed 3726 #undef Elf_Vernaux 3727 #undef SAVE_VERSION_NAME 3728 3729 /* 3730 * Elf32_Lib and Elf64_Lib are identical. 3731 */ 3732 #define Elf_Lib Elf32_Lib 3733 3734 static void 3735 dump_liblist(struct readelf *re) 3736 { 3737 struct section *s; 3738 struct tm *t; 3739 time_t ti; 3740 char tbuf[20]; 3741 Elf_Data *d; 3742 Elf_Lib *lib; 3743 int i, j, k, elferr, first, len; 3744 3745 for (i = 0; (size_t) i < re->shnum; i++) { 3746 s = &re->sl[i]; 3747 if (s->type != SHT_GNU_LIBLIST) 3748 continue; 3749 if (s->link >= re->shnum) 3750 continue; 3751 (void) elf_errno(); 3752 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3753 elferr = elf_errno(); 3754 if (elferr != 0) 3755 warnx("elf_getdata failed: %s", 3756 elf_errmsg(elferr)); 3757 continue; 3758 } 3759 if (d->d_size <= 0) 3760 continue; 3761 lib = d->d_buf; 3762 if (!get_ent_count(s, &len)) 3763 continue; 3764 printf("\nLibrary list section '%s' ", s->name); 3765 printf("contains %d entries:\n", len); 3766 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3767 "Checksum", "Version", "Flags"); 3768 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3769 printf("%3d: ", j); 3770 printf("%-20.20s ", 3771 get_string(re, s->link, lib->l_name)); 3772 ti = lib->l_time_stamp; 3773 t = gmtime(&ti); 3774 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3775 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3776 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3777 printf("%-19.19s ", tbuf); 3778 printf("0x%08x ", lib->l_checksum); 3779 printf("%-7d %#x", lib->l_version, lib->l_flags); 3780 if (lib->l_flags != 0) { 3781 first = 1; 3782 putchar('('); 3783 for (k = 0; l_flag[k].name != NULL; k++) { 3784 if ((l_flag[k].value & lib->l_flags) == 3785 0) 3786 continue; 3787 if (!first) 3788 putchar(','); 3789 else 3790 first = 0; 3791 printf("%s", l_flag[k].name); 3792 } 3793 putchar(')'); 3794 } 3795 putchar('\n'); 3796 lib++; 3797 } 3798 } 3799 } 3800 3801 #undef Elf_Lib 3802 3803 static void 3804 dump_section_groups(struct readelf *re) 3805 { 3806 struct section *s; 3807 const char *symname; 3808 Elf_Data *d; 3809 uint32_t *w; 3810 int i, j, elferr; 3811 size_t n; 3812 3813 for (i = 0; (size_t) i < re->shnum; i++) { 3814 s = &re->sl[i]; 3815 if (s->type != SHT_GROUP) 3816 continue; 3817 if (s->link >= re->shnum) 3818 continue; 3819 (void) elf_errno(); 3820 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3821 elferr = elf_errno(); 3822 if (elferr != 0) 3823 warnx("elf_getdata failed: %s", 3824 elf_errmsg(elferr)); 3825 continue; 3826 } 3827 if (d->d_size <= 0) 3828 continue; 3829 3830 w = d->d_buf; 3831 3832 /* We only support COMDAT section. */ 3833 #ifndef GRP_COMDAT 3834 #define GRP_COMDAT 0x1 3835 #endif 3836 if ((*w++ & GRP_COMDAT) == 0) 3837 return; 3838 3839 if (s->entsize == 0) 3840 s->entsize = 4; 3841 3842 symname = get_symbol_name(re, s->link, s->info); 3843 n = s->sz / s->entsize; 3844 if (n-- < 1) 3845 return; 3846 3847 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 3848 " sections:\n", i, s->name, symname, (uintmax_t)n); 3849 printf(" %-10.10s %s\n", "[Index]", "Name"); 3850 for (j = 0; (size_t) j < n; j++, w++) { 3851 if (*w >= re->shnum) { 3852 warnx("invalid section index: %u", *w); 3853 continue; 3854 } 3855 printf(" [%5u] %s\n", *w, re->sl[*w].name); 3856 } 3857 } 3858 } 3859 3860 static uint8_t * 3861 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 3862 { 3863 uint64_t val; 3864 3865 /* 3866 * According to ARM EABI: For tags > 32, even numbered tags have 3867 * a ULEB128 param and odd numbered ones have NUL-terminated 3868 * string param. This rule probably also applies for tags <= 32 3869 * if the object arch is not ARM. 3870 */ 3871 3872 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3873 3874 if (tag & 1) { 3875 printf("%s\n", (char *) p); 3876 p += strlen((char *) p) + 1; 3877 } else { 3878 val = _decode_uleb128(&p, pe); 3879 printf("%ju\n", (uintmax_t) val); 3880 } 3881 3882 return (p); 3883 } 3884 3885 static uint8_t * 3886 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 3887 { 3888 uint64_t val; 3889 3890 val = _decode_uleb128(&p, pe); 3891 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 3892 p += strlen((char *) p) + 1; 3893 3894 return (p); 3895 } 3896 3897 static void 3898 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3899 { 3900 uint64_t tag, val; 3901 size_t i; 3902 int found, desc; 3903 3904 (void) re; 3905 3906 while (p < pe) { 3907 tag = _decode_uleb128(&p, pe); 3908 found = desc = 0; 3909 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3910 i++) { 3911 if (tag == aeabi_tags[i].tag) { 3912 found = 1; 3913 printf(" %s: ", aeabi_tags[i].s_tag); 3914 if (aeabi_tags[i].get_desc) { 3915 desc = 1; 3916 val = _decode_uleb128(&p, pe); 3917 printf("%s\n", 3918 aeabi_tags[i].get_desc(val)); 3919 } 3920 break; 3921 } 3922 if (tag < aeabi_tags[i].tag) 3923 break; 3924 } 3925 if (!found) { 3926 p = dump_unknown_tag(tag, p, pe); 3927 continue; 3928 } 3929 if (desc) 3930 continue; 3931 3932 switch (tag) { 3933 case 4: /* Tag_CPU_raw_name */ 3934 case 5: /* Tag_CPU_name */ 3935 case 67: /* Tag_conformance */ 3936 printf("%s\n", (char *) p); 3937 p += strlen((char *) p) + 1; 3938 break; 3939 case 32: /* Tag_compatibility */ 3940 p = dump_compatibility_tag(p, pe); 3941 break; 3942 case 64: /* Tag_nodefaults */ 3943 /* ignored, written as 0. */ 3944 (void) _decode_uleb128(&p, pe); 3945 printf("True\n"); 3946 break; 3947 case 65: /* Tag_also_compatible_with */ 3948 val = _decode_uleb128(&p, pe); 3949 /* Must be Tag_CPU_arch */ 3950 if (val != 6) { 3951 printf("unknown\n"); 3952 break; 3953 } 3954 val = _decode_uleb128(&p, pe); 3955 printf("%s\n", aeabi_cpu_arch(val)); 3956 /* Skip NUL terminator. */ 3957 p++; 3958 break; 3959 default: 3960 putchar('\n'); 3961 break; 3962 } 3963 } 3964 } 3965 3966 #ifndef Tag_GNU_MIPS_ABI_FP 3967 #define Tag_GNU_MIPS_ABI_FP 4 3968 #endif 3969 3970 static void 3971 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3972 { 3973 uint64_t tag, val; 3974 3975 (void) re; 3976 3977 while (p < pe) { 3978 tag = _decode_uleb128(&p, pe); 3979 switch (tag) { 3980 case Tag_GNU_MIPS_ABI_FP: 3981 val = _decode_uleb128(&p, pe); 3982 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3983 break; 3984 case 32: /* Tag_compatibility */ 3985 p = dump_compatibility_tag(p, pe); 3986 break; 3987 default: 3988 p = dump_unknown_tag(tag, p, pe); 3989 break; 3990 } 3991 } 3992 } 3993 3994 #ifndef Tag_GNU_Power_ABI_FP 3995 #define Tag_GNU_Power_ABI_FP 4 3996 #endif 3997 3998 #ifndef Tag_GNU_Power_ABI_Vector 3999 #define Tag_GNU_Power_ABI_Vector 8 4000 #endif 4001 4002 static void 4003 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4004 { 4005 uint64_t tag, val; 4006 4007 while (p < pe) { 4008 tag = _decode_uleb128(&p, pe); 4009 switch (tag) { 4010 case Tag_GNU_Power_ABI_FP: 4011 val = _decode_uleb128(&p, pe); 4012 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4013 break; 4014 case Tag_GNU_Power_ABI_Vector: 4015 val = _decode_uleb128(&p, pe); 4016 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4017 ppc_abi_vector(val)); 4018 break; 4019 case 32: /* Tag_compatibility */ 4020 p = dump_compatibility_tag(p, pe); 4021 break; 4022 default: 4023 p = dump_unknown_tag(tag, p, pe); 4024 break; 4025 } 4026 } 4027 } 4028 4029 static void 4030 dump_attributes(struct readelf *re) 4031 { 4032 struct section *s; 4033 Elf_Data *d; 4034 uint8_t *p, *pe, *sp; 4035 size_t len, seclen, nlen, sublen; 4036 uint64_t val; 4037 int tag, i, elferr; 4038 4039 for (i = 0; (size_t) i < re->shnum; i++) { 4040 s = &re->sl[i]; 4041 if (s->type != SHT_GNU_ATTRIBUTES && 4042 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4043 continue; 4044 (void) elf_errno(); 4045 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4046 elferr = elf_errno(); 4047 if (elferr != 0) 4048 warnx("elf_rawdata failed: %s", 4049 elf_errmsg(elferr)); 4050 continue; 4051 } 4052 if (d->d_size <= 0) 4053 continue; 4054 p = d->d_buf; 4055 pe = p + d->d_size; 4056 if (*p != 'A') { 4057 printf("Unknown Attribute Section Format: %c\n", 4058 (char) *p); 4059 continue; 4060 } 4061 len = d->d_size - 1; 4062 p++; 4063 while (len > 0) { 4064 if (len < 4) { 4065 warnx("truncated attribute section length"); 4066 return; 4067 } 4068 seclen = re->dw_decode(&p, 4); 4069 if (seclen > len) { 4070 warnx("invalid attribute section length"); 4071 return; 4072 } 4073 len -= seclen; 4074 nlen = strlen((char *) p) + 1; 4075 if (nlen + 4 > seclen) { 4076 warnx("invalid attribute section name"); 4077 return; 4078 } 4079 printf("Attribute Section: %s\n", (char *) p); 4080 p += nlen; 4081 seclen -= nlen + 4; 4082 while (seclen > 0) { 4083 sp = p; 4084 tag = *p++; 4085 sublen = re->dw_decode(&p, 4); 4086 if (sublen > seclen) { 4087 warnx("invalid attribute sub-section" 4088 " length"); 4089 return; 4090 } 4091 seclen -= sublen; 4092 printf("%s", top_tag(tag)); 4093 if (tag == 2 || tag == 3) { 4094 putchar(':'); 4095 for (;;) { 4096 val = _decode_uleb128(&p, pe); 4097 if (val == 0) 4098 break; 4099 printf(" %ju", (uintmax_t) val); 4100 } 4101 } 4102 putchar('\n'); 4103 if (re->ehdr.e_machine == EM_ARM && 4104 s->type == SHT_LOPROC + 3) 4105 dump_arm_attributes(re, p, sp + sublen); 4106 else if (re->ehdr.e_machine == EM_MIPS || 4107 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4108 dump_mips_attributes(re, p, 4109 sp + sublen); 4110 else if (re->ehdr.e_machine == EM_PPC) 4111 dump_ppc_attributes(p, sp + sublen); 4112 p = sp + sublen; 4113 } 4114 } 4115 } 4116 } 4117 4118 static void 4119 dump_mips_specific_info(struct readelf *re) 4120 { 4121 struct section *s; 4122 int i; 4123 4124 s = NULL; 4125 for (i = 0; (size_t) i < re->shnum; i++) { 4126 s = &re->sl[i]; 4127 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4128 (s->type == SHT_MIPS_OPTIONS))) { 4129 dump_mips_options(re, s); 4130 } 4131 } 4132 4133 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") || 4134 (s->type == SHT_MIPS_ABIFLAGS))) 4135 dump_mips_abiflags(re, s); 4136 4137 /* 4138 * Dump .reginfo if present (although it will be ignored by an OS if a 4139 * .MIPS.options section is present, according to SGI mips64 spec). 4140 */ 4141 for (i = 0; (size_t) i < re->shnum; i++) { 4142 s = &re->sl[i]; 4143 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4144 (s->type == SHT_MIPS_REGINFO))) 4145 dump_mips_reginfo(re, s); 4146 } 4147 } 4148 4149 static void 4150 dump_mips_abiflags(struct readelf *re, struct section *s) 4151 { 4152 Elf_Data *d; 4153 uint8_t *p; 4154 int elferr; 4155 uint32_t isa_ext, ases, flags1, flags2; 4156 uint16_t version; 4157 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi; 4158 4159 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4160 elferr = elf_errno(); 4161 if (elferr != 0) 4162 warnx("elf_rawdata failed: %s", 4163 elf_errmsg(elferr)); 4164 return; 4165 } 4166 if (d->d_size != 24) { 4167 warnx("invalid MIPS abiflags section size"); 4168 return; 4169 } 4170 4171 p = d->d_buf; 4172 version = re->dw_decode(&p, 2); 4173 printf("MIPS ABI Flags Version: %u", version); 4174 if (version != 0) { 4175 printf(" (unknown)\n\n"); 4176 return; 4177 } 4178 printf("\n\n"); 4179 4180 isa_level = re->dw_decode(&p, 1); 4181 isa_rev = re->dw_decode(&p, 1); 4182 gpr_size = re->dw_decode(&p, 1); 4183 cpr1_size = re->dw_decode(&p, 1); 4184 cpr2_size = re->dw_decode(&p, 1); 4185 fp_abi = re->dw_decode(&p, 1); 4186 isa_ext = re->dw_decode(&p, 4); 4187 ases = re->dw_decode(&p, 4); 4188 flags1 = re->dw_decode(&p, 4); 4189 flags2 = re->dw_decode(&p, 4); 4190 4191 printf("ISA: "); 4192 if (isa_rev <= 1) 4193 printf("MIPS%u\n", isa_level); 4194 else 4195 printf("MIPS%ur%u\n", isa_level, isa_rev); 4196 printf("GPR size: %d\n", get_mips_register_size(gpr_size)); 4197 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size)); 4198 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size)); 4199 printf("FP ABI: "); 4200 switch (fp_abi) { 4201 case 3: 4202 printf("Soft float"); 4203 break; 4204 default: 4205 printf("%u", fp_abi); 4206 break; 4207 } 4208 printf("\nISA Extension: %u\n", isa_ext); 4209 printf("ASEs: %u\n", ases); 4210 printf("FLAGS 1: %08x\n", flags1); 4211 printf("FLAGS 2: %08x\n", flags2); 4212 } 4213 4214 static int 4215 get_mips_register_size(uint8_t flag) 4216 { 4217 switch (flag) { 4218 case 0: return 0; 4219 case 1: return 32; 4220 case 2: return 64; 4221 case 3: return 128; 4222 default: return -1; 4223 } 4224 } 4225 static void 4226 dump_mips_reginfo(struct readelf *re, struct section *s) 4227 { 4228 Elf_Data *d; 4229 int elferr, len; 4230 4231 (void) elf_errno(); 4232 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4233 elferr = elf_errno(); 4234 if (elferr != 0) 4235 warnx("elf_rawdata failed: %s", 4236 elf_errmsg(elferr)); 4237 return; 4238 } 4239 if (d->d_size <= 0) 4240 return; 4241 if (!get_ent_count(s, &len)) 4242 return; 4243 4244 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4245 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4246 } 4247 4248 static void 4249 dump_mips_options(struct readelf *re, struct section *s) 4250 { 4251 Elf_Data *d; 4252 uint32_t info; 4253 uint16_t sndx; 4254 uint8_t *p, *pe; 4255 uint8_t kind, size; 4256 int elferr; 4257 4258 (void) elf_errno(); 4259 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4260 elferr = elf_errno(); 4261 if (elferr != 0) 4262 warnx("elf_rawdata failed: %s", 4263 elf_errmsg(elferr)); 4264 return; 4265 } 4266 if (d->d_size == 0) 4267 return; 4268 4269 printf("\nSection %s contains:\n", s->name); 4270 p = d->d_buf; 4271 pe = p + d->d_size; 4272 while (p < pe) { 4273 if (pe - p < 8) { 4274 warnx("Truncated MIPS option header"); 4275 return; 4276 } 4277 kind = re->dw_decode(&p, 1); 4278 size = re->dw_decode(&p, 1); 4279 sndx = re->dw_decode(&p, 2); 4280 info = re->dw_decode(&p, 4); 4281 if (size < 8 || size - 8 > pe - p) { 4282 warnx("Malformed MIPS option header"); 4283 return; 4284 } 4285 size -= 8; 4286 switch (kind) { 4287 case ODK_REGINFO: 4288 dump_mips_odk_reginfo(re, p, size); 4289 break; 4290 case ODK_EXCEPTIONS: 4291 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4292 info & OEX_FPU_MIN); 4293 printf("%11.11s FPU_MAX: %#x\n", "", 4294 info & OEX_FPU_MAX); 4295 dump_mips_option_flags("", mips_exceptions_option, 4296 info); 4297 break; 4298 case ODK_PAD: 4299 printf(" %-10.10s section: %ju\n", "OPAD", 4300 (uintmax_t) sndx); 4301 dump_mips_option_flags("", mips_pad_option, info); 4302 break; 4303 case ODK_HWPATCH: 4304 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4305 info); 4306 break; 4307 case ODK_HWAND: 4308 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4309 break; 4310 case ODK_HWOR: 4311 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4312 break; 4313 case ODK_FILL: 4314 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4315 break; 4316 case ODK_TAGS: 4317 printf(" %-10.10s\n", "TAGS"); 4318 break; 4319 case ODK_GP_GROUP: 4320 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4321 info & 0xFFFF); 4322 if (info & 0x10000) 4323 printf(" %-10.10s GP group is " 4324 "self-contained\n", ""); 4325 break; 4326 case ODK_IDENT: 4327 printf(" %-10.10s default GP group number: %#x\n", 4328 "IDENT", info & 0xFFFF); 4329 if (info & 0x10000) 4330 printf(" %-10.10s default GP group is " 4331 "self-contained\n", ""); 4332 break; 4333 case ODK_PAGESIZE: 4334 printf(" %-10.10s\n", "PAGESIZE"); 4335 break; 4336 default: 4337 break; 4338 } 4339 p += size; 4340 } 4341 } 4342 4343 static void 4344 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4345 { 4346 int first; 4347 4348 first = 1; 4349 for (; opt->desc != NULL; opt++) { 4350 if (info & opt->flag) { 4351 printf(" %-10.10s %s\n", first ? name : "", 4352 opt->desc); 4353 first = 0; 4354 } 4355 } 4356 } 4357 4358 static void 4359 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4360 { 4361 uint32_t ri_gprmask; 4362 uint32_t ri_cprmask[4]; 4363 uint64_t ri_gp_value; 4364 uint8_t *pe; 4365 int i; 4366 4367 pe = p + sz; 4368 while (p < pe) { 4369 ri_gprmask = re->dw_decode(&p, 4); 4370 /* Skip ri_pad padding field for mips64. */ 4371 if (re->ec == ELFCLASS64) 4372 re->dw_decode(&p, 4); 4373 for (i = 0; i < 4; i++) 4374 ri_cprmask[i] = re->dw_decode(&p, 4); 4375 if (re->ec == ELFCLASS32) 4376 ri_gp_value = re->dw_decode(&p, 4); 4377 else 4378 ri_gp_value = re->dw_decode(&p, 8); 4379 printf(" %s ", option_kind(ODK_REGINFO)); 4380 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4381 for (i = 0; i < 4; i++) 4382 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4383 (uintmax_t) ri_cprmask[i]); 4384 printf("%12.12s", ""); 4385 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4386 } 4387 } 4388 4389 static void 4390 dump_arch_specific_info(struct readelf *re) 4391 { 4392 4393 dump_liblist(re); 4394 dump_attributes(re); 4395 4396 switch (re->ehdr.e_machine) { 4397 case EM_MIPS: 4398 case EM_MIPS_RS3_LE: 4399 dump_mips_specific_info(re); 4400 default: 4401 break; 4402 } 4403 } 4404 4405 static const char * 4406 dwarf_regname(struct readelf *re, unsigned int num) 4407 { 4408 static char rx[32]; 4409 const char *rn; 4410 4411 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4412 return (rn); 4413 4414 snprintf(rx, sizeof(rx), "r%u", num); 4415 4416 return (rx); 4417 } 4418 4419 static void 4420 dump_dwarf_line(struct readelf *re) 4421 { 4422 struct section *s; 4423 Dwarf_Die die; 4424 Dwarf_Error de; 4425 Dwarf_Half tag, version, pointer_size; 4426 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4427 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4428 Elf_Data *d; 4429 char *pn; 4430 uint64_t address, file, line, column, isa, opsize, udelta; 4431 int64_t sdelta; 4432 uint8_t *p, *pe; 4433 int8_t lbase; 4434 int i, is_stmt, dwarf_size, elferr, ret; 4435 4436 printf("\nDump of debug contents of section .debug_line:\n"); 4437 4438 s = NULL; 4439 for (i = 0; (size_t) i < re->shnum; i++) { 4440 s = &re->sl[i]; 4441 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4442 break; 4443 } 4444 if ((size_t) i >= re->shnum) 4445 return; 4446 4447 (void) elf_errno(); 4448 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4449 elferr = elf_errno(); 4450 if (elferr != 0) 4451 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4452 return; 4453 } 4454 if (d->d_size <= 0) 4455 return; 4456 4457 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4458 NULL, &de)) == DW_DLV_OK) { 4459 die = NULL; 4460 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4461 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4462 warnx("dwarf_tag failed: %s", 4463 dwarf_errmsg(de)); 4464 return; 4465 } 4466 /* XXX: What about DW_TAG_partial_unit? */ 4467 if (tag == DW_TAG_compile_unit) 4468 break; 4469 } 4470 if (die == NULL) { 4471 warnx("could not find DW_TAG_compile_unit die"); 4472 return; 4473 } 4474 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4475 &de) != DW_DLV_OK) 4476 continue; 4477 4478 length = re->dw_read(d, &offset, 4); 4479 if (length == 0xffffffff) { 4480 dwarf_size = 8; 4481 length = re->dw_read(d, &offset, 8); 4482 } else 4483 dwarf_size = 4; 4484 4485 if (length > d->d_size - offset) { 4486 warnx("invalid .dwarf_line section"); 4487 continue; 4488 } 4489 4490 endoff = offset + length; 4491 pe = (uint8_t *) d->d_buf + endoff; 4492 version = re->dw_read(d, &offset, 2); 4493 hdrlen = re->dw_read(d, &offset, dwarf_size); 4494 minlen = re->dw_read(d, &offset, 1); 4495 defstmt = re->dw_read(d, &offset, 1); 4496 lbase = re->dw_read(d, &offset, 1); 4497 lrange = re->dw_read(d, &offset, 1); 4498 opbase = re->dw_read(d, &offset, 1); 4499 4500 printf("\n"); 4501 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4502 printf(" DWARF version:\t\t%u\n", version); 4503 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4504 printf(" Minimum Instruction Length:\t%u\n", minlen); 4505 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4506 printf(" Line Base:\t\t\t%d\n", lbase); 4507 printf(" Line Range:\t\t\t%u\n", lrange); 4508 printf(" Opcode Base:\t\t\t%u\n", opbase); 4509 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4510 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4511 4512 printf("\n"); 4513 printf(" Opcodes:\n"); 4514 for (i = 1; i < opbase; i++) { 4515 oplen = re->dw_read(d, &offset, 1); 4516 printf(" Opcode %d has %u args\n", i, oplen); 4517 } 4518 4519 printf("\n"); 4520 printf(" The Directory Table:\n"); 4521 p = (uint8_t *) d->d_buf + offset; 4522 while (*p != '\0') { 4523 printf(" %s\n", (char *) p); 4524 p += strlen((char *) p) + 1; 4525 } 4526 4527 p++; 4528 printf("\n"); 4529 printf(" The File Name Table:\n"); 4530 printf(" Entry\tDir\tTime\tSize\tName\n"); 4531 i = 0; 4532 while (*p != '\0') { 4533 i++; 4534 pn = (char *) p; 4535 p += strlen(pn) + 1; 4536 dirndx = _decode_uleb128(&p, pe); 4537 mtime = _decode_uleb128(&p, pe); 4538 fsize = _decode_uleb128(&p, pe); 4539 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4540 (uintmax_t) dirndx, (uintmax_t) mtime, 4541 (uintmax_t) fsize, pn); 4542 } 4543 4544 #define RESET_REGISTERS \ 4545 do { \ 4546 address = 0; \ 4547 file = 1; \ 4548 line = 1; \ 4549 column = 0; \ 4550 is_stmt = defstmt; \ 4551 } while(0) 4552 4553 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4554 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4555 4556 p++; 4557 printf("\n"); 4558 printf(" Line Number Statements:\n"); 4559 4560 RESET_REGISTERS; 4561 4562 while (p < pe) { 4563 4564 if (*p == 0) { 4565 /* 4566 * Extended Opcodes. 4567 */ 4568 p++; 4569 opsize = _decode_uleb128(&p, pe); 4570 printf(" Extended opcode %u: ", *p); 4571 switch (*p) { 4572 case DW_LNE_end_sequence: 4573 p++; 4574 RESET_REGISTERS; 4575 printf("End of Sequence\n"); 4576 break; 4577 case DW_LNE_set_address: 4578 p++; 4579 address = re->dw_decode(&p, 4580 pointer_size); 4581 printf("set Address to %#jx\n", 4582 (uintmax_t) address); 4583 break; 4584 case DW_LNE_define_file: 4585 p++; 4586 pn = (char *) p; 4587 p += strlen(pn) + 1; 4588 dirndx = _decode_uleb128(&p, pe); 4589 mtime = _decode_uleb128(&p, pe); 4590 fsize = _decode_uleb128(&p, pe); 4591 printf("define new file: %s\n", pn); 4592 break; 4593 default: 4594 /* Unrecognized extened opcodes. */ 4595 p += opsize; 4596 printf("unknown opcode\n"); 4597 } 4598 } else if (*p > 0 && *p < opbase) { 4599 /* 4600 * Standard Opcodes. 4601 */ 4602 switch(*p++) { 4603 case DW_LNS_copy: 4604 printf(" Copy\n"); 4605 break; 4606 case DW_LNS_advance_pc: 4607 udelta = _decode_uleb128(&p, pe) * 4608 minlen; 4609 address += udelta; 4610 printf(" Advance PC by %ju to %#jx\n", 4611 (uintmax_t) udelta, 4612 (uintmax_t) address); 4613 break; 4614 case DW_LNS_advance_line: 4615 sdelta = _decode_sleb128(&p, pe); 4616 line += sdelta; 4617 printf(" Advance Line by %jd to %ju\n", 4618 (intmax_t) sdelta, 4619 (uintmax_t) line); 4620 break; 4621 case DW_LNS_set_file: 4622 file = _decode_uleb128(&p, pe); 4623 printf(" Set File to %ju\n", 4624 (uintmax_t) file); 4625 break; 4626 case DW_LNS_set_column: 4627 column = _decode_uleb128(&p, pe); 4628 printf(" Set Column to %ju\n", 4629 (uintmax_t) column); 4630 break; 4631 case DW_LNS_negate_stmt: 4632 is_stmt = !is_stmt; 4633 printf(" Set is_stmt to %d\n", is_stmt); 4634 break; 4635 case DW_LNS_set_basic_block: 4636 printf(" Set basic block flag\n"); 4637 break; 4638 case DW_LNS_const_add_pc: 4639 address += ADDRESS(255); 4640 printf(" Advance PC by constant %ju" 4641 " to %#jx\n", 4642 (uintmax_t) ADDRESS(255), 4643 (uintmax_t) address); 4644 break; 4645 case DW_LNS_fixed_advance_pc: 4646 udelta = re->dw_decode(&p, 2); 4647 address += udelta; 4648 printf(" Advance PC by fixed value " 4649 "%ju to %#jx\n", 4650 (uintmax_t) udelta, 4651 (uintmax_t) address); 4652 break; 4653 case DW_LNS_set_prologue_end: 4654 printf(" Set prologue end flag\n"); 4655 break; 4656 case DW_LNS_set_epilogue_begin: 4657 printf(" Set epilogue begin flag\n"); 4658 break; 4659 case DW_LNS_set_isa: 4660 isa = _decode_uleb128(&p, pe); 4661 printf(" Set isa to %ju\n", 4662 (uintmax_t) isa); 4663 break; 4664 default: 4665 /* Unrecognized extended opcodes. */ 4666 printf(" Unknown extended opcode %u\n", 4667 *(p - 1)); 4668 break; 4669 } 4670 4671 } else { 4672 /* 4673 * Special Opcodes. 4674 */ 4675 line += LINE(*p); 4676 address += ADDRESS(*p); 4677 printf(" Special opcode %u: advance Address " 4678 "by %ju to %#jx and Line by %jd to %ju\n", 4679 *p - opbase, (uintmax_t) ADDRESS(*p), 4680 (uintmax_t) address, (intmax_t) LINE(*p), 4681 (uintmax_t) line); 4682 p++; 4683 } 4684 4685 4686 } 4687 } 4688 if (ret == DW_DLV_ERROR) 4689 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4690 4691 #undef RESET_REGISTERS 4692 #undef LINE 4693 #undef ADDRESS 4694 } 4695 4696 static void 4697 dump_dwarf_line_decoded(struct readelf *re) 4698 { 4699 Dwarf_Die die; 4700 Dwarf_Line *linebuf, ln; 4701 Dwarf_Addr lineaddr; 4702 Dwarf_Signed linecount, srccount; 4703 Dwarf_Unsigned lineno, fn; 4704 Dwarf_Error de; 4705 const char *dir, *file; 4706 char **srcfiles; 4707 int i, ret; 4708 4709 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4710 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4711 NULL, &de)) == DW_DLV_OK) { 4712 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4713 continue; 4714 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4715 DW_DLV_OK) 4716 file = NULL; 4717 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4718 DW_DLV_OK) 4719 dir = NULL; 4720 printf("CU: "); 4721 if (dir && file) 4722 printf("%s/", dir); 4723 if (file) 4724 printf("%s", file); 4725 putchar('\n'); 4726 printf("%-37s %11s %s\n", "Filename", "Line Number", 4727 "Starting Address"); 4728 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4729 continue; 4730 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4731 continue; 4732 for (i = 0; i < linecount; i++) { 4733 ln = linebuf[i]; 4734 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4735 continue; 4736 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4737 continue; 4738 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4739 continue; 4740 printf("%-37s %11ju %#18jx\n", 4741 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4742 (uintmax_t) lineaddr); 4743 } 4744 putchar('\n'); 4745 } 4746 } 4747 4748 static void 4749 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4750 { 4751 Dwarf_Attribute *attr_list; 4752 Dwarf_Die ret_die; 4753 Dwarf_Off dieoff, cuoff, culen, attroff; 4754 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4755 Dwarf_Signed attr_count, v_sdata; 4756 Dwarf_Off v_off; 4757 Dwarf_Addr v_addr; 4758 Dwarf_Half tag, attr, form; 4759 Dwarf_Block *v_block; 4760 Dwarf_Bool v_bool, is_info; 4761 Dwarf_Sig8 v_sig8; 4762 Dwarf_Error de; 4763 Dwarf_Ptr v_expr; 4764 const char *tag_str, *attr_str, *ate_str, *lang_str; 4765 char unk_tag[32], unk_attr[32]; 4766 char *v_str; 4767 uint8_t *b, *p; 4768 int i, j, abc, ret; 4769 4770 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4771 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4772 goto cont_search; 4773 } 4774 4775 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4776 4777 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4778 warnx("dwarf_die_CU_offset_range failed: %s", 4779 dwarf_errmsg(de)); 4780 cuoff = 0; 4781 } 4782 4783 abc = dwarf_die_abbrev_code(die); 4784 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4785 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4786 goto cont_search; 4787 } 4788 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4789 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4790 tag_str = unk_tag; 4791 } 4792 4793 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4794 4795 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4796 DW_DLV_OK) { 4797 if (ret == DW_DLV_ERROR) 4798 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4799 goto cont_search; 4800 } 4801 4802 for (i = 0; i < attr_count; i++) { 4803 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4804 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4805 continue; 4806 } 4807 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4808 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4809 continue; 4810 } 4811 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4812 snprintf(unk_attr, sizeof(unk_attr), 4813 "[Unknown AT: %#x]", attr); 4814 attr_str = unk_attr; 4815 } 4816 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4817 DW_DLV_OK) { 4818 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4819 attroff = 0; 4820 } 4821 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4822 switch (form) { 4823 case DW_FORM_ref_addr: 4824 case DW_FORM_sec_offset: 4825 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4826 DW_DLV_OK) { 4827 warnx("dwarf_global_formref failed: %s", 4828 dwarf_errmsg(de)); 4829 continue; 4830 } 4831 if (form == DW_FORM_ref_addr) 4832 printf("<0x%jx>", (uintmax_t) v_off); 4833 else 4834 printf("0x%jx", (uintmax_t) v_off); 4835 break; 4836 4837 case DW_FORM_ref1: 4838 case DW_FORM_ref2: 4839 case DW_FORM_ref4: 4840 case DW_FORM_ref8: 4841 case DW_FORM_ref_udata: 4842 if (dwarf_formref(attr_list[i], &v_off, &de) != 4843 DW_DLV_OK) { 4844 warnx("dwarf_formref failed: %s", 4845 dwarf_errmsg(de)); 4846 continue; 4847 } 4848 v_off += cuoff; 4849 printf("<0x%jx>", (uintmax_t) v_off); 4850 break; 4851 4852 case DW_FORM_addr: 4853 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4854 DW_DLV_OK) { 4855 warnx("dwarf_formaddr failed: %s", 4856 dwarf_errmsg(de)); 4857 continue; 4858 } 4859 printf("%#jx", (uintmax_t) v_addr); 4860 break; 4861 4862 case DW_FORM_data1: 4863 case DW_FORM_data2: 4864 case DW_FORM_data4: 4865 case DW_FORM_data8: 4866 case DW_FORM_udata: 4867 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4868 DW_DLV_OK) { 4869 warnx("dwarf_formudata failed: %s", 4870 dwarf_errmsg(de)); 4871 continue; 4872 } 4873 if (attr == DW_AT_high_pc) 4874 printf("0x%jx", (uintmax_t) v_udata); 4875 else 4876 printf("%ju", (uintmax_t) v_udata); 4877 break; 4878 4879 case DW_FORM_sdata: 4880 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4881 DW_DLV_OK) { 4882 warnx("dwarf_formudata failed: %s", 4883 dwarf_errmsg(de)); 4884 continue; 4885 } 4886 printf("%jd", (intmax_t) v_sdata); 4887 break; 4888 4889 case DW_FORM_flag: 4890 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4891 DW_DLV_OK) { 4892 warnx("dwarf_formflag failed: %s", 4893 dwarf_errmsg(de)); 4894 continue; 4895 } 4896 printf("%jd", (intmax_t) v_bool); 4897 break; 4898 4899 case DW_FORM_flag_present: 4900 putchar('1'); 4901 break; 4902 4903 case DW_FORM_string: 4904 case DW_FORM_strp: 4905 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4906 DW_DLV_OK) { 4907 warnx("dwarf_formstring failed: %s", 4908 dwarf_errmsg(de)); 4909 continue; 4910 } 4911 if (form == DW_FORM_string) 4912 printf("%s", v_str); 4913 else 4914 printf("(indirect string) %s", v_str); 4915 break; 4916 4917 case DW_FORM_block: 4918 case DW_FORM_block1: 4919 case DW_FORM_block2: 4920 case DW_FORM_block4: 4921 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4922 DW_DLV_OK) { 4923 warnx("dwarf_formblock failed: %s", 4924 dwarf_errmsg(de)); 4925 continue; 4926 } 4927 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4928 b = v_block->bl_data; 4929 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4930 printf(" %x", b[j]); 4931 printf("\t("); 4932 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4933 putchar(')'); 4934 break; 4935 4936 case DW_FORM_exprloc: 4937 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 4938 &de) != DW_DLV_OK) { 4939 warnx("dwarf_formexprloc failed: %s", 4940 dwarf_errmsg(de)); 4941 continue; 4942 } 4943 printf("%ju byte block:", (uintmax_t) v_udata); 4944 b = v_expr; 4945 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 4946 printf(" %x", b[j]); 4947 printf("\t("); 4948 dump_dwarf_block(re, v_expr, v_udata); 4949 putchar(')'); 4950 break; 4951 4952 case DW_FORM_ref_sig8: 4953 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 4954 DW_DLV_OK) { 4955 warnx("dwarf_formsig8 failed: %s", 4956 dwarf_errmsg(de)); 4957 continue; 4958 } 4959 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 4960 v_sig = re->dw_decode(&p, 8); 4961 printf("signature: 0x%jx", (uintmax_t) v_sig); 4962 } 4963 switch (attr) { 4964 case DW_AT_encoding: 4965 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4966 DW_DLV_OK) 4967 break; 4968 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4969 ate_str = "DW_ATE_UNKNOWN"; 4970 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4971 break; 4972 4973 case DW_AT_language: 4974 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 4975 DW_DLV_OK) 4976 break; 4977 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 4978 break; 4979 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 4980 break; 4981 4982 case DW_AT_location: 4983 case DW_AT_string_length: 4984 case DW_AT_return_addr: 4985 case DW_AT_data_member_location: 4986 case DW_AT_frame_base: 4987 case DW_AT_segment: 4988 case DW_AT_static_link: 4989 case DW_AT_use_location: 4990 case DW_AT_vtable_elem_location: 4991 switch (form) { 4992 case DW_FORM_data4: 4993 case DW_FORM_data8: 4994 case DW_FORM_sec_offset: 4995 printf("\t(location list)"); 4996 break; 4997 default: 4998 break; 4999 } 5000 5001 default: 5002 break; 5003 } 5004 putchar('\n'); 5005 } 5006 5007 5008 cont_search: 5009 /* Search children. */ 5010 ret = dwarf_child(die, &ret_die, &de); 5011 if (ret == DW_DLV_ERROR) 5012 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5013 else if (ret == DW_DLV_OK) 5014 dump_dwarf_die(re, ret_die, level + 1); 5015 5016 /* Search sibling. */ 5017 is_info = dwarf_get_die_infotypes_flag(die); 5018 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5019 if (ret == DW_DLV_ERROR) 5020 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5021 else if (ret == DW_DLV_OK) 5022 dump_dwarf_die(re, ret_die, level); 5023 5024 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5025 } 5026 5027 static void 5028 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5029 Dwarf_Half ver) 5030 { 5031 5032 re->cu_psize = psize; 5033 re->cu_osize = osize; 5034 re->cu_ver = ver; 5035 } 5036 5037 static void 5038 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5039 { 5040 struct section *s; 5041 Dwarf_Die die; 5042 Dwarf_Error de; 5043 Dwarf_Half tag, version, pointer_size, off_size; 5044 Dwarf_Off cu_offset, cu_length; 5045 Dwarf_Off aboff; 5046 Dwarf_Unsigned typeoff; 5047 Dwarf_Sig8 sig8; 5048 Dwarf_Unsigned sig; 5049 uint8_t *p; 5050 const char *sn; 5051 int i, ret; 5052 5053 sn = is_info ? ".debug_info" : ".debug_types"; 5054 5055 s = NULL; 5056 for (i = 0; (size_t) i < re->shnum; i++) { 5057 s = &re->sl[i]; 5058 if (s->name != NULL && !strcmp(s->name, sn)) 5059 break; 5060 } 5061 if ((size_t) i >= re->shnum) 5062 return; 5063 5064 do { 5065 printf("\nDump of debug contents of section %s:\n", sn); 5066 5067 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5068 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5069 &typeoff, NULL, &de)) == DW_DLV_OK) { 5070 set_cu_context(re, pointer_size, off_size, version); 5071 die = NULL; 5072 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5073 &de) == DW_DLV_OK) { 5074 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5075 warnx("dwarf_tag failed: %s", 5076 dwarf_errmsg(de)); 5077 continue; 5078 } 5079 /* XXX: What about DW_TAG_partial_unit? */ 5080 if ((is_info && tag == DW_TAG_compile_unit) || 5081 (!is_info && tag == DW_TAG_type_unit)) 5082 break; 5083 } 5084 if (die == NULL && is_info) { 5085 warnx("could not find DW_TAG_compile_unit " 5086 "die"); 5087 continue; 5088 } else if (die == NULL && !is_info) { 5089 warnx("could not find DW_TAG_type_unit die"); 5090 continue; 5091 } 5092 5093 if (dwarf_die_CU_offset_range(die, &cu_offset, 5094 &cu_length, &de) != DW_DLV_OK) { 5095 warnx("dwarf_die_CU_offset failed: %s", 5096 dwarf_errmsg(de)); 5097 continue; 5098 } 5099 5100 cu_length -= off_size == 4 ? 4 : 12; 5101 5102 sig = 0; 5103 if (!is_info) { 5104 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5105 sig = re->dw_decode(&p, 8); 5106 } 5107 5108 printf("\n Type Unit @ offset 0x%jx:\n", 5109 (uintmax_t) cu_offset); 5110 printf(" Length:\t\t%#jx (%d-bit)\n", 5111 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5112 printf(" Version:\t\t%u\n", version); 5113 printf(" Abbrev Offset:\t0x%jx\n", 5114 (uintmax_t) aboff); 5115 printf(" Pointer Size:\t%u\n", pointer_size); 5116 if (!is_info) { 5117 printf(" Signature:\t\t0x%016jx\n", 5118 (uintmax_t) sig); 5119 printf(" Type Offset:\t0x%jx\n", 5120 (uintmax_t) typeoff); 5121 } 5122 5123 dump_dwarf_die(re, die, 0); 5124 } 5125 if (ret == DW_DLV_ERROR) 5126 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5127 if (is_info) 5128 break; 5129 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5130 } 5131 5132 static void 5133 dump_dwarf_abbrev(struct readelf *re) 5134 { 5135 Dwarf_Abbrev ab; 5136 Dwarf_Off aboff, atoff; 5137 Dwarf_Unsigned length, attr_count; 5138 Dwarf_Signed flag, form; 5139 Dwarf_Half tag, attr; 5140 Dwarf_Error de; 5141 const char *tag_str, *attr_str, *form_str; 5142 char unk_tag[32], unk_attr[32], unk_form[32]; 5143 int i, j, ret; 5144 5145 printf("\nContents of section .debug_abbrev:\n\n"); 5146 5147 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5148 NULL, NULL, &de)) == DW_DLV_OK) { 5149 printf(" Number TAG\n"); 5150 i = 0; 5151 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5152 &attr_count, &de)) == DW_DLV_OK) { 5153 if (length == 1) { 5154 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5155 break; 5156 } 5157 aboff += length; 5158 printf("%4d", ++i); 5159 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5160 warnx("dwarf_get_abbrev_tag failed: %s", 5161 dwarf_errmsg(de)); 5162 goto next_abbrev; 5163 } 5164 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5165 snprintf(unk_tag, sizeof(unk_tag), 5166 "[Unknown Tag: %#x]", tag); 5167 tag_str = unk_tag; 5168 } 5169 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5170 DW_DLV_OK) { 5171 warnx("dwarf_get_abbrev_children_flag failed:" 5172 " %s", dwarf_errmsg(de)); 5173 goto next_abbrev; 5174 } 5175 printf(" %s %s\n", tag_str, 5176 flag ? "[has children]" : "[no children]"); 5177 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5178 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5179 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5180 warnx("dwarf_get_abbrev_entry failed:" 5181 " %s", dwarf_errmsg(de)); 5182 continue; 5183 } 5184 if (dwarf_get_AT_name(attr, &attr_str) != 5185 DW_DLV_OK) { 5186 snprintf(unk_attr, sizeof(unk_attr), 5187 "[Unknown AT: %#x]", attr); 5188 attr_str = unk_attr; 5189 } 5190 if (dwarf_get_FORM_name(form, &form_str) != 5191 DW_DLV_OK) { 5192 snprintf(unk_form, sizeof(unk_form), 5193 "[Unknown Form: %#x]", 5194 (Dwarf_Half) form); 5195 form_str = unk_form; 5196 } 5197 printf(" %-18s %s\n", attr_str, form_str); 5198 } 5199 next_abbrev: 5200 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5201 } 5202 if (ret != DW_DLV_OK) 5203 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5204 } 5205 if (ret == DW_DLV_ERROR) 5206 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5207 } 5208 5209 static void 5210 dump_dwarf_pubnames(struct readelf *re) 5211 { 5212 struct section *s; 5213 Dwarf_Off die_off; 5214 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5215 Dwarf_Signed cnt; 5216 Dwarf_Global *globs; 5217 Dwarf_Half nt_version; 5218 Dwarf_Error de; 5219 Elf_Data *d; 5220 char *glob_name; 5221 int i, dwarf_size, elferr; 5222 5223 printf("\nContents of the .debug_pubnames section:\n"); 5224 5225 s = NULL; 5226 for (i = 0; (size_t) i < re->shnum; i++) { 5227 s = &re->sl[i]; 5228 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5229 break; 5230 } 5231 if ((size_t) i >= re->shnum) 5232 return; 5233 5234 (void) elf_errno(); 5235 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5236 elferr = elf_errno(); 5237 if (elferr != 0) 5238 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5239 return; 5240 } 5241 if (d->d_size <= 0) 5242 return; 5243 5244 /* Read in .debug_pubnames section table header. */ 5245 offset = 0; 5246 length = re->dw_read(d, &offset, 4); 5247 if (length == 0xffffffff) { 5248 dwarf_size = 8; 5249 length = re->dw_read(d, &offset, 8); 5250 } else 5251 dwarf_size = 4; 5252 5253 if (length > d->d_size - offset) { 5254 warnx("invalid .dwarf_pubnames section"); 5255 return; 5256 } 5257 5258 nt_version = re->dw_read(d, &offset, 2); 5259 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5260 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5261 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5262 printf(" Version:\t\t\t\t%u\n", nt_version); 5263 printf(" Offset into .debug_info section:\t%ju\n", 5264 (uintmax_t) nt_cu_offset); 5265 printf(" Size of area in .debug_info section:\t%ju\n", 5266 (uintmax_t) nt_cu_length); 5267 5268 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5269 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5270 return; 5271 } 5272 5273 printf("\n Offset Name\n"); 5274 for (i = 0; i < cnt; i++) { 5275 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5276 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5277 continue; 5278 } 5279 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5280 DW_DLV_OK) { 5281 warnx("dwarf_global_die_offset failed: %s", 5282 dwarf_errmsg(de)); 5283 continue; 5284 } 5285 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5286 } 5287 } 5288 5289 static void 5290 dump_dwarf_aranges(struct readelf *re) 5291 { 5292 struct section *s; 5293 Dwarf_Arange *aranges; 5294 Dwarf_Addr start; 5295 Dwarf_Unsigned offset, length, as_cu_offset; 5296 Dwarf_Off die_off; 5297 Dwarf_Signed cnt; 5298 Dwarf_Half as_version, as_addrsz, as_segsz; 5299 Dwarf_Error de; 5300 Elf_Data *d; 5301 int i, dwarf_size, elferr; 5302 5303 printf("\nContents of section .debug_aranges:\n"); 5304 5305 s = NULL; 5306 for (i = 0; (size_t) i < re->shnum; i++) { 5307 s = &re->sl[i]; 5308 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5309 break; 5310 } 5311 if ((size_t) i >= re->shnum) 5312 return; 5313 5314 (void) elf_errno(); 5315 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5316 elferr = elf_errno(); 5317 if (elferr != 0) 5318 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5319 return; 5320 } 5321 if (d->d_size <= 0) 5322 return; 5323 5324 /* Read in the .debug_aranges section table header. */ 5325 offset = 0; 5326 length = re->dw_read(d, &offset, 4); 5327 if (length == 0xffffffff) { 5328 dwarf_size = 8; 5329 length = re->dw_read(d, &offset, 8); 5330 } else 5331 dwarf_size = 4; 5332 5333 if (length > d->d_size - offset) { 5334 warnx("invalid .dwarf_aranges section"); 5335 return; 5336 } 5337 5338 as_version = re->dw_read(d, &offset, 2); 5339 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5340 as_addrsz = re->dw_read(d, &offset, 1); 5341 as_segsz = re->dw_read(d, &offset, 1); 5342 5343 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5344 printf(" Version:\t\t\t%u\n", as_version); 5345 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5346 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5347 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5348 5349 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5350 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5351 return; 5352 } 5353 5354 printf("\n Address Length\n"); 5355 for (i = 0; i < cnt; i++) { 5356 if (dwarf_get_arange_info(aranges[i], &start, &length, 5357 &die_off, &de) != DW_DLV_OK) { 5358 warnx("dwarf_get_arange_info failed: %s", 5359 dwarf_errmsg(de)); 5360 continue; 5361 } 5362 printf(" %08jx %ju\n", (uintmax_t) start, 5363 (uintmax_t) length); 5364 } 5365 } 5366 5367 static void 5368 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5369 { 5370 Dwarf_Attribute *attr_list; 5371 Dwarf_Ranges *ranges; 5372 Dwarf_Die ret_die; 5373 Dwarf_Error de; 5374 Dwarf_Addr base0; 5375 Dwarf_Half attr; 5376 Dwarf_Signed attr_count, cnt; 5377 Dwarf_Unsigned off, bytecnt; 5378 int i, j, ret; 5379 5380 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5381 DW_DLV_OK) { 5382 if (ret == DW_DLV_ERROR) 5383 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5384 goto cont_search; 5385 } 5386 5387 for (i = 0; i < attr_count; i++) { 5388 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5389 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5390 continue; 5391 } 5392 if (attr != DW_AT_ranges) 5393 continue; 5394 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5395 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5396 continue; 5397 } 5398 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5399 &bytecnt, &de) != DW_DLV_OK) 5400 continue; 5401 base0 = base; 5402 for (j = 0; j < cnt; j++) { 5403 printf(" %08jx ", (uintmax_t) off); 5404 if (ranges[j].dwr_type == DW_RANGES_END) { 5405 printf("%s\n", "<End of list>"); 5406 continue; 5407 } else if (ranges[j].dwr_type == 5408 DW_RANGES_ADDRESS_SELECTION) { 5409 base0 = ranges[j].dwr_addr2; 5410 continue; 5411 } 5412 if (re->ec == ELFCLASS32) 5413 printf("%08jx %08jx\n", 5414 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5415 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5416 else 5417 printf("%016jx %016jx\n", 5418 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5419 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5420 } 5421 } 5422 5423 cont_search: 5424 /* Search children. */ 5425 ret = dwarf_child(die, &ret_die, &de); 5426 if (ret == DW_DLV_ERROR) 5427 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5428 else if (ret == DW_DLV_OK) 5429 dump_dwarf_ranges_foreach(re, ret_die, base); 5430 5431 /* Search sibling. */ 5432 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5433 if (ret == DW_DLV_ERROR) 5434 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5435 else if (ret == DW_DLV_OK) 5436 dump_dwarf_ranges_foreach(re, ret_die, base); 5437 } 5438 5439 static void 5440 dump_dwarf_ranges(struct readelf *re) 5441 { 5442 Dwarf_Ranges *ranges; 5443 Dwarf_Die die; 5444 Dwarf_Signed cnt; 5445 Dwarf_Unsigned bytecnt; 5446 Dwarf_Half tag; 5447 Dwarf_Error de; 5448 Dwarf_Unsigned lowpc; 5449 int ret; 5450 5451 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5452 DW_DLV_OK) 5453 return; 5454 5455 printf("Contents of the .debug_ranges section:\n\n"); 5456 if (re->ec == ELFCLASS32) 5457 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5458 else 5459 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5460 5461 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5462 NULL, &de)) == DW_DLV_OK) { 5463 die = NULL; 5464 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5465 continue; 5466 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5467 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5468 continue; 5469 } 5470 /* XXX: What about DW_TAG_partial_unit? */ 5471 lowpc = 0; 5472 if (tag == DW_TAG_compile_unit) { 5473 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5474 &de) != DW_DLV_OK) 5475 lowpc = 0; 5476 } 5477 5478 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5479 } 5480 putchar('\n'); 5481 } 5482 5483 static void 5484 dump_dwarf_macinfo(struct readelf *re) 5485 { 5486 Dwarf_Unsigned offset; 5487 Dwarf_Signed cnt; 5488 Dwarf_Macro_Details *md; 5489 Dwarf_Error de; 5490 const char *mi_str; 5491 char unk_mi[32]; 5492 int i; 5493 5494 #define _MAX_MACINFO_ENTRY 65535 5495 5496 printf("\nContents of section .debug_macinfo:\n\n"); 5497 5498 offset = 0; 5499 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5500 &cnt, &md, &de) == DW_DLV_OK) { 5501 for (i = 0; i < cnt; i++) { 5502 offset = md[i].dmd_offset + 1; 5503 if (md[i].dmd_type == 0) 5504 break; 5505 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5506 DW_DLV_OK) { 5507 snprintf(unk_mi, sizeof(unk_mi), 5508 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5509 mi_str = unk_mi; 5510 } 5511 printf(" %s", mi_str); 5512 switch (md[i].dmd_type) { 5513 case DW_MACINFO_define: 5514 case DW_MACINFO_undef: 5515 printf(" - lineno : %jd macro : %s\n", 5516 (intmax_t) md[i].dmd_lineno, 5517 md[i].dmd_macro); 5518 break; 5519 case DW_MACINFO_start_file: 5520 printf(" - lineno : %jd filenum : %jd\n", 5521 (intmax_t) md[i].dmd_lineno, 5522 (intmax_t) md[i].dmd_fileindex); 5523 break; 5524 default: 5525 putchar('\n'); 5526 break; 5527 } 5528 } 5529 } 5530 5531 #undef _MAX_MACINFO_ENTRY 5532 } 5533 5534 static void 5535 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5536 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5537 Dwarf_Debug dbg) 5538 { 5539 Dwarf_Frame_Op *oplist; 5540 Dwarf_Signed opcnt, delta; 5541 Dwarf_Small op; 5542 Dwarf_Error de; 5543 const char *op_str; 5544 char unk_op[32]; 5545 int i; 5546 5547 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5548 &opcnt, &de) != DW_DLV_OK) { 5549 warnx("dwarf_expand_frame_instructions failed: %s", 5550 dwarf_errmsg(de)); 5551 return; 5552 } 5553 5554 for (i = 0; i < opcnt; i++) { 5555 if (oplist[i].fp_base_op != 0) 5556 op = oplist[i].fp_base_op << 6; 5557 else 5558 op = oplist[i].fp_extended_op; 5559 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5560 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5561 op); 5562 op_str = unk_op; 5563 } 5564 printf(" %s", op_str); 5565 switch (op) { 5566 case DW_CFA_advance_loc: 5567 delta = oplist[i].fp_offset * caf; 5568 pc += delta; 5569 printf(": %ju to %08jx", (uintmax_t) delta, 5570 (uintmax_t) pc); 5571 break; 5572 case DW_CFA_offset: 5573 case DW_CFA_offset_extended: 5574 case DW_CFA_offset_extended_sf: 5575 delta = oplist[i].fp_offset * daf; 5576 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5577 dwarf_regname(re, oplist[i].fp_register), 5578 (intmax_t) delta); 5579 break; 5580 case DW_CFA_restore: 5581 printf(": r%u (%s)", oplist[i].fp_register, 5582 dwarf_regname(re, oplist[i].fp_register)); 5583 break; 5584 case DW_CFA_set_loc: 5585 pc = oplist[i].fp_offset; 5586 printf(": to %08jx", (uintmax_t) pc); 5587 break; 5588 case DW_CFA_advance_loc1: 5589 case DW_CFA_advance_loc2: 5590 case DW_CFA_advance_loc4: 5591 pc += oplist[i].fp_offset; 5592 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5593 (uintmax_t) pc); 5594 break; 5595 case DW_CFA_def_cfa: 5596 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5597 dwarf_regname(re, oplist[i].fp_register), 5598 (uintmax_t) oplist[i].fp_offset); 5599 break; 5600 case DW_CFA_def_cfa_sf: 5601 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5602 dwarf_regname(re, oplist[i].fp_register), 5603 (intmax_t) (oplist[i].fp_offset * daf)); 5604 break; 5605 case DW_CFA_def_cfa_register: 5606 printf(": r%u (%s)", oplist[i].fp_register, 5607 dwarf_regname(re, oplist[i].fp_register)); 5608 break; 5609 case DW_CFA_def_cfa_offset: 5610 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5611 break; 5612 case DW_CFA_def_cfa_offset_sf: 5613 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5614 break; 5615 default: 5616 break; 5617 } 5618 putchar('\n'); 5619 } 5620 5621 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5622 } 5623 5624 static char * 5625 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5626 { 5627 static char rs[16]; 5628 5629 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5630 snprintf(rs, sizeof(rs), "%c", 'u'); 5631 else if (reg == DW_FRAME_CFA_COL) 5632 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5633 else 5634 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5635 (intmax_t) off); 5636 5637 return (rs); 5638 } 5639 5640 static int 5641 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5642 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5643 { 5644 Dwarf_Regtable rt; 5645 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5646 Dwarf_Error de; 5647 char *vec; 5648 int i; 5649 5650 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5651 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5652 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5653 #define RT(x) rt.rules[(x)] 5654 5655 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5656 if (vec == NULL) 5657 err(EXIT_FAILURE, "calloc failed"); 5658 5659 pre_pc = ~((Dwarf_Addr) 0); 5660 cur_pc = pc; 5661 end_pc = pc + func_len; 5662 for (; cur_pc < end_pc; cur_pc++) { 5663 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5664 &de) != DW_DLV_OK) { 5665 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5666 dwarf_errmsg(de)); 5667 return (-1); 5668 } 5669 if (row_pc == pre_pc) 5670 continue; 5671 pre_pc = row_pc; 5672 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5673 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5674 BIT_SET(vec, i); 5675 } 5676 } 5677 5678 printf(" LOC CFA "); 5679 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5680 if (BIT_ISSET(vec, i)) { 5681 if ((Dwarf_Half) i == cie_ra) 5682 printf("ra "); 5683 else 5684 printf("%-5s", 5685 dwarf_regname(re, (unsigned int) i)); 5686 } 5687 } 5688 putchar('\n'); 5689 5690 pre_pc = ~((Dwarf_Addr) 0); 5691 cur_pc = pc; 5692 end_pc = pc + func_len; 5693 for (; cur_pc < end_pc; cur_pc++) { 5694 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5695 &de) != DW_DLV_OK) { 5696 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5697 dwarf_errmsg(de)); 5698 return (-1); 5699 } 5700 if (row_pc == pre_pc) 5701 continue; 5702 pre_pc = row_pc; 5703 printf("%08jx ", (uintmax_t) row_pc); 5704 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5705 RT(0).dw_offset)); 5706 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5707 if (BIT_ISSET(vec, i)) { 5708 printf("%-5s", get_regoff_str(re, 5709 RT(i).dw_regnum, RT(i).dw_offset)); 5710 } 5711 } 5712 putchar('\n'); 5713 } 5714 5715 free(vec); 5716 5717 return (0); 5718 5719 #undef BIT_SET 5720 #undef BIT_CLR 5721 #undef BIT_ISSET 5722 #undef RT 5723 } 5724 5725 static void 5726 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5727 { 5728 Dwarf_Cie *cie_list, cie, pre_cie; 5729 Dwarf_Fde *fde_list, fde; 5730 Dwarf_Off cie_offset, fde_offset; 5731 Dwarf_Unsigned cie_length, fde_instlen; 5732 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5733 Dwarf_Signed cie_count, fde_count, cie_index; 5734 Dwarf_Addr low_pc; 5735 Dwarf_Half cie_ra; 5736 Dwarf_Small cie_version; 5737 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5738 char *cie_aug, c; 5739 int i, eh_frame; 5740 Dwarf_Error de; 5741 5742 printf("\nThe section %s contains:\n\n", s->name); 5743 5744 if (!strcmp(s->name, ".debug_frame")) { 5745 eh_frame = 0; 5746 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5747 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5748 warnx("dwarf_get_fde_list failed: %s", 5749 dwarf_errmsg(de)); 5750 return; 5751 } 5752 } else if (!strcmp(s->name, ".eh_frame")) { 5753 eh_frame = 1; 5754 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5755 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5756 warnx("dwarf_get_fde_list_eh failed: %s", 5757 dwarf_errmsg(de)); 5758 return; 5759 } 5760 } else 5761 return; 5762 5763 pre_cie = NULL; 5764 for (i = 0; i < fde_count; i++) { 5765 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5766 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5767 continue; 5768 } 5769 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5770 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5771 continue; 5772 } 5773 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5774 &fde_length, &cie_offset, &cie_index, &fde_offset, 5775 &de) != DW_DLV_OK) { 5776 warnx("dwarf_get_fde_range failed: %s", 5777 dwarf_errmsg(de)); 5778 continue; 5779 } 5780 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5781 &de) != DW_DLV_OK) { 5782 warnx("dwarf_get_fde_instr_bytes failed: %s", 5783 dwarf_errmsg(de)); 5784 continue; 5785 } 5786 if (pre_cie == NULL || cie != pre_cie) { 5787 pre_cie = cie; 5788 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5789 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5790 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5791 warnx("dwarf_get_cie_info failed: %s", 5792 dwarf_errmsg(de)); 5793 continue; 5794 } 5795 printf("%08jx %08jx %8.8jx CIE", 5796 (uintmax_t) cie_offset, 5797 (uintmax_t) cie_length, 5798 (uintmax_t) (eh_frame ? 0 : ~0U)); 5799 if (!alt) { 5800 putchar('\n'); 5801 printf(" Version:\t\t\t%u\n", cie_version); 5802 printf(" Augmentation:\t\t\t\""); 5803 while ((c = *cie_aug++) != '\0') 5804 putchar(c); 5805 printf("\"\n"); 5806 printf(" Code alignment factor:\t%ju\n", 5807 (uintmax_t) cie_caf); 5808 printf(" Data alignment factor:\t%jd\n", 5809 (intmax_t) cie_daf); 5810 printf(" Return address column:\t%ju\n", 5811 (uintmax_t) cie_ra); 5812 putchar('\n'); 5813 dump_dwarf_frame_inst(re, cie, cie_inst, 5814 cie_instlen, cie_caf, cie_daf, 0, 5815 re->dbg); 5816 putchar('\n'); 5817 } else { 5818 printf(" \""); 5819 while ((c = *cie_aug++) != '\0') 5820 putchar(c); 5821 putchar('"'); 5822 printf(" cf=%ju df=%jd ra=%ju\n", 5823 (uintmax_t) cie_caf, 5824 (uintmax_t) cie_daf, 5825 (uintmax_t) cie_ra); 5826 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5827 cie_ra); 5828 putchar('\n'); 5829 } 5830 } 5831 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5832 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5833 (uintmax_t) cie_offset, 5834 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5835 cie_offset), 5836 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5837 if (!alt) 5838 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5839 cie_caf, cie_daf, low_pc, re->dbg); 5840 else 5841 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5842 cie_ra); 5843 putchar('\n'); 5844 } 5845 } 5846 5847 static void 5848 dump_dwarf_frame(struct readelf *re, int alt) 5849 { 5850 struct section *s; 5851 int i; 5852 5853 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5854 5855 for (i = 0; (size_t) i < re->shnum; i++) { 5856 s = &re->sl[i]; 5857 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5858 !strcmp(s->name, ".eh_frame"))) 5859 dump_dwarf_frame_section(re, s, alt); 5860 } 5861 } 5862 5863 static void 5864 dump_dwarf_str(struct readelf *re) 5865 { 5866 struct section *s; 5867 Elf_Data *d; 5868 unsigned char *p; 5869 int elferr, end, i, j; 5870 5871 printf("\nContents of section .debug_str:\n"); 5872 5873 s = NULL; 5874 for (i = 0; (size_t) i < re->shnum; i++) { 5875 s = &re->sl[i]; 5876 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5877 break; 5878 } 5879 if ((size_t) i >= re->shnum) 5880 return; 5881 5882 (void) elf_errno(); 5883 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5884 elferr = elf_errno(); 5885 if (elferr != 0) 5886 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5887 return; 5888 } 5889 if (d->d_size <= 0) 5890 return; 5891 5892 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5893 printf(" 0x%08x", (unsigned int) i); 5894 if ((size_t) i + 16 > d->d_size) 5895 end = d->d_size; 5896 else 5897 end = i + 16; 5898 for (j = i; j < i + 16; j++) { 5899 if ((j - i) % 4 == 0) 5900 putchar(' '); 5901 if (j >= end) { 5902 printf(" "); 5903 continue; 5904 } 5905 printf("%02x", (uint8_t) p[j]); 5906 } 5907 putchar(' '); 5908 for (j = i; j < end; j++) { 5909 if (isprint(p[j])) 5910 putchar(p[j]); 5911 else if (p[j] == 0) 5912 putchar('.'); 5913 else 5914 putchar(' '); 5915 } 5916 putchar('\n'); 5917 } 5918 } 5919 5920 struct loc_at { 5921 Dwarf_Attribute la_at; 5922 Dwarf_Unsigned la_off; 5923 Dwarf_Unsigned la_lowpc; 5924 Dwarf_Half la_cu_psize; 5925 Dwarf_Half la_cu_osize; 5926 Dwarf_Half la_cu_ver; 5927 TAILQ_ENTRY(loc_at) la_next; 5928 }; 5929 5930 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5931 5932 static void 5933 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5934 { 5935 Dwarf_Attribute *attr_list; 5936 Dwarf_Die ret_die; 5937 Dwarf_Unsigned off; 5938 Dwarf_Off ref; 5939 Dwarf_Signed attr_count; 5940 Dwarf_Half attr, form; 5941 Dwarf_Bool is_info; 5942 Dwarf_Error de; 5943 struct loc_at *la, *nla; 5944 int i, ret; 5945 5946 is_info = dwarf_get_die_infotypes_flag(die); 5947 5948 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5949 DW_DLV_OK) { 5950 if (ret == DW_DLV_ERROR) 5951 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5952 goto cont_search; 5953 } 5954 for (i = 0; i < attr_count; i++) { 5955 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5956 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5957 continue; 5958 } 5959 if (attr != DW_AT_location && 5960 attr != DW_AT_string_length && 5961 attr != DW_AT_return_addr && 5962 attr != DW_AT_data_member_location && 5963 attr != DW_AT_frame_base && 5964 attr != DW_AT_segment && 5965 attr != DW_AT_static_link && 5966 attr != DW_AT_use_location && 5967 attr != DW_AT_vtable_elem_location) 5968 continue; 5969 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5970 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5971 continue; 5972 } 5973 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 5974 if (dwarf_formudata(attr_list[i], &off, &de) != 5975 DW_DLV_OK) { 5976 warnx("dwarf_formudata failed: %s", 5977 dwarf_errmsg(de)); 5978 continue; 5979 } 5980 } else if (form == DW_FORM_sec_offset) { 5981 if (dwarf_global_formref(attr_list[i], &ref, &de) != 5982 DW_DLV_OK) { 5983 warnx("dwarf_global_formref failed: %s", 5984 dwarf_errmsg(de)); 5985 continue; 5986 } 5987 off = ref; 5988 } else 5989 continue; 5990 5991 TAILQ_FOREACH(la, &lalist, la_next) { 5992 if (off == la->la_off) 5993 break; 5994 if (off < la->la_off) { 5995 if ((nla = malloc(sizeof(*nla))) == NULL) 5996 err(EXIT_FAILURE, "malloc failed"); 5997 nla->la_at = attr_list[i]; 5998 nla->la_off = off; 5999 nla->la_lowpc = lowpc; 6000 nla->la_cu_psize = re->cu_psize; 6001 nla->la_cu_osize = re->cu_osize; 6002 nla->la_cu_ver = re->cu_ver; 6003 TAILQ_INSERT_BEFORE(la, nla, la_next); 6004 break; 6005 } 6006 } 6007 if (la == NULL) { 6008 if ((nla = malloc(sizeof(*nla))) == NULL) 6009 err(EXIT_FAILURE, "malloc failed"); 6010 nla->la_at = attr_list[i]; 6011 nla->la_off = off; 6012 nla->la_lowpc = lowpc; 6013 nla->la_cu_psize = re->cu_psize; 6014 nla->la_cu_osize = re->cu_osize; 6015 nla->la_cu_ver = re->cu_ver; 6016 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6017 } 6018 } 6019 6020 cont_search: 6021 /* Search children. */ 6022 ret = dwarf_child(die, &ret_die, &de); 6023 if (ret == DW_DLV_ERROR) 6024 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6025 else if (ret == DW_DLV_OK) 6026 search_loclist_at(re, ret_die, lowpc); 6027 6028 /* Search sibling. */ 6029 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6030 if (ret == DW_DLV_ERROR) 6031 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6032 else if (ret == DW_DLV_OK) 6033 search_loclist_at(re, ret_die, lowpc); 6034 } 6035 6036 static void 6037 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6038 { 6039 const char *op_str; 6040 char unk_op[32]; 6041 uint8_t *b, n; 6042 int i; 6043 6044 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6045 DW_DLV_OK) { 6046 snprintf(unk_op, sizeof(unk_op), 6047 "[Unknown OP: %#x]", lr->lr_atom); 6048 op_str = unk_op; 6049 } 6050 6051 printf("%s", op_str); 6052 6053 switch (lr->lr_atom) { 6054 case DW_OP_reg0: 6055 case DW_OP_reg1: 6056 case DW_OP_reg2: 6057 case DW_OP_reg3: 6058 case DW_OP_reg4: 6059 case DW_OP_reg5: 6060 case DW_OP_reg6: 6061 case DW_OP_reg7: 6062 case DW_OP_reg8: 6063 case DW_OP_reg9: 6064 case DW_OP_reg10: 6065 case DW_OP_reg11: 6066 case DW_OP_reg12: 6067 case DW_OP_reg13: 6068 case DW_OP_reg14: 6069 case DW_OP_reg15: 6070 case DW_OP_reg16: 6071 case DW_OP_reg17: 6072 case DW_OP_reg18: 6073 case DW_OP_reg19: 6074 case DW_OP_reg20: 6075 case DW_OP_reg21: 6076 case DW_OP_reg22: 6077 case DW_OP_reg23: 6078 case DW_OP_reg24: 6079 case DW_OP_reg25: 6080 case DW_OP_reg26: 6081 case DW_OP_reg27: 6082 case DW_OP_reg28: 6083 case DW_OP_reg29: 6084 case DW_OP_reg30: 6085 case DW_OP_reg31: 6086 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6087 break; 6088 6089 case DW_OP_deref: 6090 case DW_OP_lit0: 6091 case DW_OP_lit1: 6092 case DW_OP_lit2: 6093 case DW_OP_lit3: 6094 case DW_OP_lit4: 6095 case DW_OP_lit5: 6096 case DW_OP_lit6: 6097 case DW_OP_lit7: 6098 case DW_OP_lit8: 6099 case DW_OP_lit9: 6100 case DW_OP_lit10: 6101 case DW_OP_lit11: 6102 case DW_OP_lit12: 6103 case DW_OP_lit13: 6104 case DW_OP_lit14: 6105 case DW_OP_lit15: 6106 case DW_OP_lit16: 6107 case DW_OP_lit17: 6108 case DW_OP_lit18: 6109 case DW_OP_lit19: 6110 case DW_OP_lit20: 6111 case DW_OP_lit21: 6112 case DW_OP_lit22: 6113 case DW_OP_lit23: 6114 case DW_OP_lit24: 6115 case DW_OP_lit25: 6116 case DW_OP_lit26: 6117 case DW_OP_lit27: 6118 case DW_OP_lit28: 6119 case DW_OP_lit29: 6120 case DW_OP_lit30: 6121 case DW_OP_lit31: 6122 case DW_OP_dup: 6123 case DW_OP_drop: 6124 case DW_OP_over: 6125 case DW_OP_swap: 6126 case DW_OP_rot: 6127 case DW_OP_xderef: 6128 case DW_OP_abs: 6129 case DW_OP_and: 6130 case DW_OP_div: 6131 case DW_OP_minus: 6132 case DW_OP_mod: 6133 case DW_OP_mul: 6134 case DW_OP_neg: 6135 case DW_OP_not: 6136 case DW_OP_or: 6137 case DW_OP_plus: 6138 case DW_OP_shl: 6139 case DW_OP_shr: 6140 case DW_OP_shra: 6141 case DW_OP_xor: 6142 case DW_OP_eq: 6143 case DW_OP_ge: 6144 case DW_OP_gt: 6145 case DW_OP_le: 6146 case DW_OP_lt: 6147 case DW_OP_ne: 6148 case DW_OP_nop: 6149 case DW_OP_push_object_address: 6150 case DW_OP_form_tls_address: 6151 case DW_OP_call_frame_cfa: 6152 case DW_OP_stack_value: 6153 case DW_OP_GNU_push_tls_address: 6154 case DW_OP_GNU_uninit: 6155 break; 6156 6157 case DW_OP_const1u: 6158 case DW_OP_pick: 6159 case DW_OP_deref_size: 6160 case DW_OP_xderef_size: 6161 case DW_OP_const2u: 6162 case DW_OP_bra: 6163 case DW_OP_skip: 6164 case DW_OP_const4u: 6165 case DW_OP_const8u: 6166 case DW_OP_constu: 6167 case DW_OP_plus_uconst: 6168 case DW_OP_regx: 6169 case DW_OP_piece: 6170 printf(": %ju", (uintmax_t) 6171 lr->lr_number); 6172 break; 6173 6174 case DW_OP_const1s: 6175 case DW_OP_const2s: 6176 case DW_OP_const4s: 6177 case DW_OP_const8s: 6178 case DW_OP_consts: 6179 printf(": %jd", (intmax_t) 6180 lr->lr_number); 6181 break; 6182 6183 case DW_OP_breg0: 6184 case DW_OP_breg1: 6185 case DW_OP_breg2: 6186 case DW_OP_breg3: 6187 case DW_OP_breg4: 6188 case DW_OP_breg5: 6189 case DW_OP_breg6: 6190 case DW_OP_breg7: 6191 case DW_OP_breg8: 6192 case DW_OP_breg9: 6193 case DW_OP_breg10: 6194 case DW_OP_breg11: 6195 case DW_OP_breg12: 6196 case DW_OP_breg13: 6197 case DW_OP_breg14: 6198 case DW_OP_breg15: 6199 case DW_OP_breg16: 6200 case DW_OP_breg17: 6201 case DW_OP_breg18: 6202 case DW_OP_breg19: 6203 case DW_OP_breg20: 6204 case DW_OP_breg21: 6205 case DW_OP_breg22: 6206 case DW_OP_breg23: 6207 case DW_OP_breg24: 6208 case DW_OP_breg25: 6209 case DW_OP_breg26: 6210 case DW_OP_breg27: 6211 case DW_OP_breg28: 6212 case DW_OP_breg29: 6213 case DW_OP_breg30: 6214 case DW_OP_breg31: 6215 printf(" (%s): %jd", 6216 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6217 (intmax_t) lr->lr_number); 6218 break; 6219 6220 case DW_OP_fbreg: 6221 printf(": %jd", (intmax_t) 6222 lr->lr_number); 6223 break; 6224 6225 case DW_OP_bregx: 6226 printf(": %ju (%s) %jd", 6227 (uintmax_t) lr->lr_number, 6228 dwarf_regname(re, (unsigned int) lr->lr_number), 6229 (intmax_t) lr->lr_number2); 6230 break; 6231 6232 case DW_OP_addr: 6233 case DW_OP_GNU_encoded_addr: 6234 printf(": %#jx", (uintmax_t) 6235 lr->lr_number); 6236 break; 6237 6238 case DW_OP_GNU_implicit_pointer: 6239 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6240 (intmax_t) lr->lr_number2); 6241 break; 6242 6243 case DW_OP_implicit_value: 6244 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6245 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6246 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6247 printf(" %x", b[i]); 6248 break; 6249 6250 case DW_OP_GNU_entry_value: 6251 printf(": ("); 6252 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6253 lr->lr_number); 6254 putchar(')'); 6255 break; 6256 6257 case DW_OP_GNU_const_type: 6258 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6259 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6260 n = *b; 6261 for (i = 1; (uint8_t) i < n; i++) 6262 printf(" %x", b[i]); 6263 break; 6264 6265 case DW_OP_GNU_regval_type: 6266 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6267 dwarf_regname(re, (unsigned int) lr->lr_number), 6268 (uintmax_t) lr->lr_number2); 6269 break; 6270 6271 case DW_OP_GNU_convert: 6272 case DW_OP_GNU_deref_type: 6273 case DW_OP_GNU_parameter_ref: 6274 case DW_OP_GNU_reinterpret: 6275 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6276 break; 6277 6278 default: 6279 break; 6280 } 6281 } 6282 6283 static void 6284 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6285 { 6286 Dwarf_Locdesc *llbuf; 6287 Dwarf_Signed lcnt; 6288 Dwarf_Error de; 6289 int i; 6290 6291 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6292 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6293 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6294 return; 6295 } 6296 6297 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6298 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6299 if (i < llbuf->ld_cents - 1) 6300 printf("; "); 6301 } 6302 6303 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6304 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6305 } 6306 6307 static void 6308 dump_dwarf_loclist(struct readelf *re) 6309 { 6310 Dwarf_Die die; 6311 Dwarf_Locdesc **llbuf; 6312 Dwarf_Unsigned lowpc; 6313 Dwarf_Signed lcnt; 6314 Dwarf_Half tag, version, pointer_size, off_size; 6315 Dwarf_Error de; 6316 struct loc_at *la; 6317 int i, j, ret, has_content; 6318 6319 /* Search .debug_info section. */ 6320 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6321 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6322 set_cu_context(re, pointer_size, off_size, version); 6323 die = NULL; 6324 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6325 continue; 6326 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6327 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6328 continue; 6329 } 6330 /* XXX: What about DW_TAG_partial_unit? */ 6331 lowpc = 0; 6332 if (tag == DW_TAG_compile_unit) { 6333 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6334 &lowpc, &de) != DW_DLV_OK) 6335 lowpc = 0; 6336 } 6337 6338 /* Search attributes for reference to .debug_loc section. */ 6339 search_loclist_at(re, die, lowpc); 6340 } 6341 if (ret == DW_DLV_ERROR) 6342 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6343 6344 /* Search .debug_types section. */ 6345 do { 6346 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6347 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6348 NULL, NULL, &de)) == DW_DLV_OK) { 6349 set_cu_context(re, pointer_size, off_size, version); 6350 die = NULL; 6351 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6352 DW_DLV_OK) 6353 continue; 6354 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6355 warnx("dwarf_tag failed: %s", 6356 dwarf_errmsg(de)); 6357 continue; 6358 } 6359 6360 lowpc = 0; 6361 if (tag == DW_TAG_type_unit) { 6362 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6363 &lowpc, &de) != DW_DLV_OK) 6364 lowpc = 0; 6365 } 6366 6367 /* 6368 * Search attributes for reference to .debug_loc 6369 * section. 6370 */ 6371 search_loclist_at(re, die, lowpc); 6372 } 6373 if (ret == DW_DLV_ERROR) 6374 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6375 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6376 6377 if (TAILQ_EMPTY(&lalist)) 6378 return; 6379 6380 has_content = 0; 6381 TAILQ_FOREACH(la, &lalist, la_next) { 6382 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) != 6383 DW_DLV_OK) { 6384 if (ret != DW_DLV_NO_ENTRY) 6385 warnx("dwarf_loclist_n failed: %s", 6386 dwarf_errmsg(de)); 6387 continue; 6388 } 6389 if (!has_content) { 6390 has_content = 1; 6391 printf("\nContents of section .debug_loc:\n"); 6392 printf(" Offset Begin End Expression\n"); 6393 } 6394 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6395 la->la_cu_ver); 6396 for (i = 0; i < lcnt; i++) { 6397 printf(" %8.8jx ", (uintmax_t) la->la_off); 6398 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6399 printf("<End of list>\n"); 6400 continue; 6401 } 6402 6403 /* TODO: handle base selection entry. */ 6404 6405 printf("%8.8jx %8.8jx ", 6406 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6407 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6408 6409 putchar('('); 6410 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6411 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6412 if (j < llbuf[i]->ld_cents - 1) 6413 printf("; "); 6414 } 6415 putchar(')'); 6416 6417 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6418 printf(" (start == end)"); 6419 putchar('\n'); 6420 } 6421 for (i = 0; i < lcnt; i++) { 6422 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6423 DW_DLA_LOC_BLOCK); 6424 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6425 } 6426 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6427 } 6428 6429 if (!has_content) 6430 printf("\nSection '.debug_loc' has no debugging data.\n"); 6431 } 6432 6433 /* 6434 * Retrieve a string using string table section index and the string offset. 6435 */ 6436 static const char* 6437 get_string(struct readelf *re, int strtab, size_t off) 6438 { 6439 const char *name; 6440 6441 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6442 return (""); 6443 6444 return (name); 6445 } 6446 6447 /* 6448 * Retrieve the name of a symbol using the section index of the symbol 6449 * table and the index of the symbol within that table. 6450 */ 6451 static const char * 6452 get_symbol_name(struct readelf *re, int symtab, int i) 6453 { 6454 struct section *s; 6455 const char *name; 6456 GElf_Sym sym; 6457 Elf_Data *data; 6458 int elferr; 6459 6460 s = &re->sl[symtab]; 6461 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6462 return (""); 6463 (void) elf_errno(); 6464 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6465 elferr = elf_errno(); 6466 if (elferr != 0) 6467 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6468 return (""); 6469 } 6470 if (gelf_getsym(data, i, &sym) != &sym) 6471 return (""); 6472 /* Return section name for STT_SECTION symbol. */ 6473 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6474 if (sym.st_shndx < re->shnum && 6475 re->sl[sym.st_shndx].name != NULL) 6476 return (re->sl[sym.st_shndx].name); 6477 return (""); 6478 } 6479 if (s->link >= re->shnum || 6480 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6481 return (""); 6482 6483 return (name); 6484 } 6485 6486 static uint64_t 6487 get_symbol_value(struct readelf *re, int symtab, int i) 6488 { 6489 struct section *s; 6490 GElf_Sym sym; 6491 Elf_Data *data; 6492 int elferr; 6493 6494 s = &re->sl[symtab]; 6495 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6496 return (0); 6497 (void) elf_errno(); 6498 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6499 elferr = elf_errno(); 6500 if (elferr != 0) 6501 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6502 return (0); 6503 } 6504 if (gelf_getsym(data, i, &sym) != &sym) 6505 return (0); 6506 6507 return (sym.st_value); 6508 } 6509 6510 static void 6511 hex_dump(struct readelf *re) 6512 { 6513 struct section *s; 6514 Elf_Data *d; 6515 uint8_t *buf; 6516 size_t sz, nbytes; 6517 uint64_t addr; 6518 int elferr, i, j; 6519 6520 for (i = 1; (size_t) i < re->shnum; i++) { 6521 s = &re->sl[i]; 6522 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6523 continue; 6524 (void) elf_errno(); 6525 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6526 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6527 elferr = elf_errno(); 6528 if (elferr != 0) 6529 warnx("elf_getdata failed: %s", 6530 elf_errmsg(elferr)); 6531 continue; 6532 } 6533 (void) elf_errno(); 6534 if (d->d_size <= 0 || d->d_buf == NULL) { 6535 printf("\nSection '%s' has no data to dump.\n", 6536 s->name); 6537 continue; 6538 } 6539 buf = d->d_buf; 6540 sz = d->d_size; 6541 addr = s->addr; 6542 printf("\nHex dump of section '%s':\n", s->name); 6543 while (sz > 0) { 6544 printf(" 0x%8.8jx ", (uintmax_t)addr); 6545 nbytes = sz > 16? 16 : sz; 6546 for (j = 0; j < 16; j++) { 6547 if ((size_t)j < nbytes) 6548 printf("%2.2x", buf[j]); 6549 else 6550 printf(" "); 6551 if ((j & 3) == 3) 6552 printf(" "); 6553 } 6554 for (j = 0; (size_t)j < nbytes; j++) { 6555 if (isprint(buf[j])) 6556 printf("%c", buf[j]); 6557 else 6558 printf("."); 6559 } 6560 printf("\n"); 6561 buf += nbytes; 6562 addr += nbytes; 6563 sz -= nbytes; 6564 } 6565 } 6566 } 6567 6568 static void 6569 str_dump(struct readelf *re) 6570 { 6571 struct section *s; 6572 Elf_Data *d; 6573 unsigned char *start, *end, *buf_end; 6574 unsigned int len; 6575 int i, j, elferr, found; 6576 6577 for (i = 1; (size_t) i < re->shnum; i++) { 6578 s = &re->sl[i]; 6579 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6580 continue; 6581 (void) elf_errno(); 6582 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6583 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6584 elferr = elf_errno(); 6585 if (elferr != 0) 6586 warnx("elf_getdata failed: %s", 6587 elf_errmsg(elferr)); 6588 continue; 6589 } 6590 (void) elf_errno(); 6591 if (d->d_size <= 0 || d->d_buf == NULL) { 6592 printf("\nSection '%s' has no data to dump.\n", 6593 s->name); 6594 continue; 6595 } 6596 buf_end = (unsigned char *) d->d_buf + d->d_size; 6597 start = (unsigned char *) d->d_buf; 6598 found = 0; 6599 printf("\nString dump of section '%s':\n", s->name); 6600 for (;;) { 6601 while (start < buf_end && !isprint(*start)) 6602 start++; 6603 if (start >= buf_end) 6604 break; 6605 end = start + 1; 6606 while (end < buf_end && isprint(*end)) 6607 end++; 6608 printf(" [%6lx] ", 6609 (long) (start - (unsigned char *) d->d_buf)); 6610 len = end - start; 6611 for (j = 0; (unsigned int) j < len; j++) 6612 putchar(start[j]); 6613 putchar('\n'); 6614 found = 1; 6615 if (end >= buf_end) 6616 break; 6617 start = end + 1; 6618 } 6619 if (!found) 6620 printf(" No strings found in this section."); 6621 putchar('\n'); 6622 } 6623 } 6624 6625 static void 6626 load_sections(struct readelf *re) 6627 { 6628 struct section *s; 6629 const char *name; 6630 Elf_Scn *scn; 6631 GElf_Shdr sh; 6632 size_t shstrndx, ndx; 6633 int elferr; 6634 6635 /* Allocate storage for internal section list. */ 6636 if (!elf_getshnum(re->elf, &re->shnum)) { 6637 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6638 return; 6639 } 6640 if (re->sl != NULL) 6641 free(re->sl); 6642 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6643 err(EXIT_FAILURE, "calloc failed"); 6644 6645 /* Get the index of .shstrtab section. */ 6646 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6647 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6648 return; 6649 } 6650 6651 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6652 return; 6653 6654 (void) elf_errno(); 6655 do { 6656 if (gelf_getshdr(scn, &sh) == NULL) { 6657 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6658 (void) elf_errno(); 6659 continue; 6660 } 6661 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6662 (void) elf_errno(); 6663 name = "<no-name>"; 6664 } 6665 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6666 if ((elferr = elf_errno()) != 0) { 6667 warnx("elf_ndxscn failed: %s", 6668 elf_errmsg(elferr)); 6669 continue; 6670 } 6671 } 6672 if (ndx >= re->shnum) { 6673 warnx("section index of '%s' out of range", name); 6674 continue; 6675 } 6676 if (sh.sh_link >= re->shnum) 6677 warnx("section link %llu of '%s' out of range", 6678 (unsigned long long)sh.sh_link, name); 6679 s = &re->sl[ndx]; 6680 s->name = name; 6681 s->scn = scn; 6682 s->off = sh.sh_offset; 6683 s->sz = sh.sh_size; 6684 s->entsize = sh.sh_entsize; 6685 s->align = sh.sh_addralign; 6686 s->type = sh.sh_type; 6687 s->flags = sh.sh_flags; 6688 s->addr = sh.sh_addr; 6689 s->link = sh.sh_link; 6690 s->info = sh.sh_info; 6691 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6692 elferr = elf_errno(); 6693 if (elferr != 0) 6694 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6695 } 6696 6697 static void 6698 unload_sections(struct readelf *re) 6699 { 6700 6701 if (re->sl != NULL) { 6702 free(re->sl); 6703 re->sl = NULL; 6704 } 6705 re->shnum = 0; 6706 re->vd_s = NULL; 6707 re->vn_s = NULL; 6708 re->vs_s = NULL; 6709 re->vs = NULL; 6710 re->vs_sz = 0; 6711 if (re->ver != NULL) { 6712 free(re->ver); 6713 re->ver = NULL; 6714 re->ver_sz = 0; 6715 } 6716 } 6717 6718 static void 6719 dump_elf(struct readelf *re) 6720 { 6721 6722 /* Fetch ELF header. No need to continue if it fails. */ 6723 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6724 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6725 return; 6726 } 6727 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6728 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6729 return; 6730 } 6731 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6732 re->dw_read = _read_msb; 6733 re->dw_decode = _decode_msb; 6734 } else { 6735 re->dw_read = _read_lsb; 6736 re->dw_decode = _decode_lsb; 6737 } 6738 6739 if (re->options & ~RE_H) 6740 load_sections(re); 6741 if ((re->options & RE_VV) || (re->options & RE_S)) 6742 search_ver(re); 6743 if (re->options & RE_H) 6744 dump_ehdr(re); 6745 if (re->options & RE_L) 6746 dump_phdr(re); 6747 if (re->options & RE_SS) 6748 dump_shdr(re); 6749 if (re->options & RE_G) 6750 dump_section_groups(re); 6751 if (re->options & RE_D) 6752 dump_dynamic(re); 6753 if (re->options & RE_R) 6754 dump_reloc(re); 6755 if (re->options & RE_S) 6756 dump_symtabs(re); 6757 if (re->options & RE_N) 6758 dump_notes(re); 6759 if (re->options & RE_II) 6760 dump_hash(re); 6761 if (re->options & RE_X) 6762 hex_dump(re); 6763 if (re->options & RE_P) 6764 str_dump(re); 6765 if (re->options & RE_VV) 6766 dump_ver(re); 6767 if (re->options & RE_AA) 6768 dump_arch_specific_info(re); 6769 if (re->options & RE_W) 6770 dump_dwarf(re); 6771 if (re->options & ~RE_H) 6772 unload_sections(re); 6773 } 6774 6775 static void 6776 dump_dwarf(struct readelf *re) 6777 { 6778 struct loc_at *la, *_la; 6779 Dwarf_Error de; 6780 int error; 6781 6782 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6783 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6784 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6785 dwarf_errmsg(de)); 6786 return; 6787 } 6788 6789 if (re->dop & DW_A) 6790 dump_dwarf_abbrev(re); 6791 if (re->dop & DW_L) 6792 dump_dwarf_line(re); 6793 if (re->dop & DW_LL) 6794 dump_dwarf_line_decoded(re); 6795 if (re->dop & DW_I) { 6796 dump_dwarf_info(re, 0); 6797 dump_dwarf_info(re, 1); 6798 } 6799 if (re->dop & DW_P) 6800 dump_dwarf_pubnames(re); 6801 if (re->dop & DW_R) 6802 dump_dwarf_aranges(re); 6803 if (re->dop & DW_RR) 6804 dump_dwarf_ranges(re); 6805 if (re->dop & DW_M) 6806 dump_dwarf_macinfo(re); 6807 if (re->dop & DW_F) 6808 dump_dwarf_frame(re, 0); 6809 else if (re->dop & DW_FF) 6810 dump_dwarf_frame(re, 1); 6811 if (re->dop & DW_S) 6812 dump_dwarf_str(re); 6813 if (re->dop & DW_O) 6814 dump_dwarf_loclist(re); 6815 6816 TAILQ_FOREACH_SAFE(la, &lalist, la_next, _la) { 6817 TAILQ_REMOVE(&lalist, la, la_next); 6818 free(la); 6819 } 6820 6821 dwarf_finish(re->dbg, &de); 6822 } 6823 6824 static void 6825 dump_ar(struct readelf *re, int fd) 6826 { 6827 Elf_Arsym *arsym; 6828 Elf_Arhdr *arhdr; 6829 Elf_Cmd cmd; 6830 Elf *e; 6831 size_t sz; 6832 off_t off; 6833 int i; 6834 6835 re->ar = re->elf; 6836 6837 if (re->options & RE_C) { 6838 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6839 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6840 goto process_members; 6841 } 6842 printf("Index of archive %s: (%ju entries)\n", re->filename, 6843 (uintmax_t) sz - 1); 6844 off = 0; 6845 for (i = 0; (size_t) i < sz; i++) { 6846 if (arsym[i].as_name == NULL) 6847 break; 6848 if (arsym[i].as_off != off) { 6849 off = arsym[i].as_off; 6850 if (elf_rand(re->ar, off) != off) { 6851 warnx("elf_rand() failed: %s", 6852 elf_errmsg(-1)); 6853 continue; 6854 } 6855 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6856 NULL) { 6857 warnx("elf_begin() failed: %s", 6858 elf_errmsg(-1)); 6859 continue; 6860 } 6861 if ((arhdr = elf_getarhdr(e)) == NULL) { 6862 warnx("elf_getarhdr() failed: %s", 6863 elf_errmsg(-1)); 6864 elf_end(e); 6865 continue; 6866 } 6867 printf("Binary %s(%s) contains:\n", 6868 re->filename, arhdr->ar_name); 6869 } 6870 printf("\t%s\n", arsym[i].as_name); 6871 } 6872 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6873 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6874 return; 6875 } 6876 } 6877 6878 process_members: 6879 6880 if ((re->options & ~RE_C) == 0) 6881 return; 6882 6883 cmd = ELF_C_READ; 6884 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6885 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6886 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6887 goto next_member; 6888 } 6889 if (strcmp(arhdr->ar_name, "/") == 0 || 6890 strcmp(arhdr->ar_name, "//") == 0 || 6891 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6892 goto next_member; 6893 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6894 dump_elf(re); 6895 6896 next_member: 6897 cmd = elf_next(re->elf); 6898 elf_end(re->elf); 6899 } 6900 re->elf = re->ar; 6901 } 6902 6903 static void 6904 dump_object(struct readelf *re) 6905 { 6906 int fd; 6907 6908 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6909 warn("open %s failed", re->filename); 6910 return; 6911 } 6912 6913 if ((re->flags & DISPLAY_FILENAME) != 0) 6914 printf("\nFile: %s\n", re->filename); 6915 6916 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6917 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6918 return; 6919 } 6920 6921 switch (elf_kind(re->elf)) { 6922 case ELF_K_NONE: 6923 warnx("Not an ELF file."); 6924 return; 6925 case ELF_K_ELF: 6926 dump_elf(re); 6927 break; 6928 case ELF_K_AR: 6929 dump_ar(re, fd); 6930 break; 6931 default: 6932 warnx("Internal: libelf returned unknown elf kind."); 6933 return; 6934 } 6935 6936 elf_end(re->elf); 6937 } 6938 6939 static void 6940 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6941 { 6942 struct dumpop *d; 6943 6944 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6945 if ((d = calloc(1, sizeof(*d))) == NULL) 6946 err(EXIT_FAILURE, "calloc failed"); 6947 if (t == DUMP_BY_INDEX) 6948 d->u.si = si; 6949 else 6950 d->u.sn = sn; 6951 d->type = t; 6952 d->op = op; 6953 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6954 } else 6955 d->op |= op; 6956 } 6957 6958 static struct dumpop * 6959 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6960 { 6961 struct dumpop *d; 6962 6963 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6964 if ((op == -1 || op & d->op) && 6965 (t == -1 || (unsigned) t == d->type)) { 6966 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6967 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6968 return (d); 6969 } 6970 } 6971 6972 return (NULL); 6973 } 6974 6975 static struct { 6976 const char *ln; 6977 char sn; 6978 int value; 6979 } dwarf_op[] = { 6980 {"rawline", 'l', DW_L}, 6981 {"decodedline", 'L', DW_LL}, 6982 {"info", 'i', DW_I}, 6983 {"abbrev", 'a', DW_A}, 6984 {"pubnames", 'p', DW_P}, 6985 {"aranges", 'r', DW_R}, 6986 {"ranges", 'r', DW_R}, 6987 {"Ranges", 'R', DW_RR}, 6988 {"macro", 'm', DW_M}, 6989 {"frames", 'f', DW_F}, 6990 {"frames-interp", 'F', DW_FF}, 6991 {"str", 's', DW_S}, 6992 {"loc", 'o', DW_O}, 6993 {NULL, 0, 0} 6994 }; 6995 6996 static void 6997 parse_dwarf_op_short(struct readelf *re, const char *op) 6998 { 6999 int i; 7000 7001 if (op == NULL) { 7002 re->dop |= DW_DEFAULT_OPTIONS; 7003 return; 7004 } 7005 7006 for (; *op != '\0'; op++) { 7007 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7008 if (dwarf_op[i].sn == *op) { 7009 re->dop |= dwarf_op[i].value; 7010 break; 7011 } 7012 } 7013 } 7014 } 7015 7016 static void 7017 parse_dwarf_op_long(struct readelf *re, const char *op) 7018 { 7019 char *p, *token, *bp; 7020 int i; 7021 7022 if (op == NULL) { 7023 re->dop |= DW_DEFAULT_OPTIONS; 7024 return; 7025 } 7026 7027 if ((p = strdup(op)) == NULL) 7028 err(EXIT_FAILURE, "strdup failed"); 7029 bp = p; 7030 7031 while ((token = strsep(&p, ",")) != NULL) { 7032 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7033 if (!strcmp(token, dwarf_op[i].ln)) { 7034 re->dop |= dwarf_op[i].value; 7035 break; 7036 } 7037 } 7038 } 7039 7040 free(bp); 7041 } 7042 7043 static uint64_t 7044 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7045 { 7046 uint64_t ret; 7047 uint8_t *src; 7048 7049 src = (uint8_t *) d->d_buf + *offsetp; 7050 7051 ret = 0; 7052 switch (bytes_to_read) { 7053 case 8: 7054 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7055 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7056 /* FALLTHROUGH */ 7057 case 4: 7058 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7059 /* FALLTHROUGH */ 7060 case 2: 7061 ret |= ((uint64_t) src[1]) << 8; 7062 /* FALLTHROUGH */ 7063 case 1: 7064 ret |= src[0]; 7065 break; 7066 default: 7067 return (0); 7068 } 7069 7070 *offsetp += bytes_to_read; 7071 7072 return (ret); 7073 } 7074 7075 static uint64_t 7076 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7077 { 7078 uint64_t ret; 7079 uint8_t *src; 7080 7081 src = (uint8_t *) d->d_buf + *offsetp; 7082 7083 switch (bytes_to_read) { 7084 case 1: 7085 ret = src[0]; 7086 break; 7087 case 2: 7088 ret = src[1] | ((uint64_t) src[0]) << 8; 7089 break; 7090 case 4: 7091 ret = src[3] | ((uint64_t) src[2]) << 8; 7092 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7093 break; 7094 case 8: 7095 ret = src[7] | ((uint64_t) src[6]) << 8; 7096 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7097 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7098 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7099 break; 7100 default: 7101 return (0); 7102 } 7103 7104 *offsetp += bytes_to_read; 7105 7106 return (ret); 7107 } 7108 7109 static uint64_t 7110 _decode_lsb(uint8_t **data, int bytes_to_read) 7111 { 7112 uint64_t ret; 7113 uint8_t *src; 7114 7115 src = *data; 7116 7117 ret = 0; 7118 switch (bytes_to_read) { 7119 case 8: 7120 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7121 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7122 /* FALLTHROUGH */ 7123 case 4: 7124 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7125 /* FALLTHROUGH */ 7126 case 2: 7127 ret |= ((uint64_t) src[1]) << 8; 7128 /* FALLTHROUGH */ 7129 case 1: 7130 ret |= src[0]; 7131 break; 7132 default: 7133 return (0); 7134 } 7135 7136 *data += bytes_to_read; 7137 7138 return (ret); 7139 } 7140 7141 static uint64_t 7142 _decode_msb(uint8_t **data, int bytes_to_read) 7143 { 7144 uint64_t ret; 7145 uint8_t *src; 7146 7147 src = *data; 7148 7149 ret = 0; 7150 switch (bytes_to_read) { 7151 case 1: 7152 ret = src[0]; 7153 break; 7154 case 2: 7155 ret = src[1] | ((uint64_t) src[0]) << 8; 7156 break; 7157 case 4: 7158 ret = src[3] | ((uint64_t) src[2]) << 8; 7159 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7160 break; 7161 case 8: 7162 ret = src[7] | ((uint64_t) src[6]) << 8; 7163 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7164 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7165 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7166 break; 7167 default: 7168 return (0); 7169 break; 7170 } 7171 7172 *data += bytes_to_read; 7173 7174 return (ret); 7175 } 7176 7177 static int64_t 7178 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7179 { 7180 int64_t ret = 0; 7181 uint8_t b = 0; 7182 int shift = 0; 7183 7184 uint8_t *src = *dp; 7185 7186 do { 7187 if (src >= dpe) 7188 break; 7189 b = *src++; 7190 ret |= ((b & 0x7f) << shift); 7191 shift += 7; 7192 } while ((b & 0x80) != 0); 7193 7194 if (shift < 32 && (b & 0x40) != 0) 7195 ret |= (-1 << shift); 7196 7197 *dp = src; 7198 7199 return (ret); 7200 } 7201 7202 static uint64_t 7203 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7204 { 7205 uint64_t ret = 0; 7206 uint8_t b; 7207 int shift = 0; 7208 7209 uint8_t *src = *dp; 7210 7211 do { 7212 if (src >= dpe) 7213 break; 7214 b = *src++; 7215 ret |= ((b & 0x7f) << shift); 7216 shift += 7; 7217 } while ((b & 0x80) != 0); 7218 7219 *dp = src; 7220 7221 return (ret); 7222 } 7223 7224 static void 7225 readelf_version(void) 7226 { 7227 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7228 elftc_version()); 7229 exit(EXIT_SUCCESS); 7230 } 7231 7232 #define USAGE_MESSAGE "\ 7233 Usage: %s [options] file...\n\ 7234 Display information about ELF objects and ar(1) archives.\n\n\ 7235 Options:\n\ 7236 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7237 -c | --archive-index Print the archive symbol table for archives.\n\ 7238 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7239 -e | --headers Print all headers in the object.\n\ 7240 -g | --section-groups Print the contents of the section groups.\n\ 7241 -h | --file-header Print the file header for the object.\n\ 7242 -l | --program-headers Print the PHDR table for the object.\n\ 7243 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7244 -p INDEX | --string-dump=INDEX\n\ 7245 Print the contents of section at index INDEX.\n\ 7246 -r | --relocs Print relocation information.\n\ 7247 -s | --syms | --symbols Print symbol tables.\n\ 7248 -t | --section-details Print additional information about sections.\n\ 7249 -v | --version Print a version identifier and exit.\n\ 7250 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7251 frames-interp,info,loc,macro,pubnames,\n\ 7252 ranges,Ranges,rawline,str}\n\ 7253 Display DWARF information.\n\ 7254 -x INDEX | --hex-dump=INDEX\n\ 7255 Display contents of a section as hexadecimal.\n\ 7256 -A | --arch-specific (accepted, but ignored)\n\ 7257 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7258 entry in the \".dynamic\" section.\n\ 7259 -H | --help Print a help message.\n\ 7260 -I | --histogram Print information on bucket list lengths for \n\ 7261 hash sections.\n\ 7262 -N | --full-section-name (accepted, but ignored)\n\ 7263 -S | --sections | --section-headers\n\ 7264 Print information about section headers.\n\ 7265 -V | --version-info Print symbol versoning information.\n\ 7266 -W | --wide Print information without wrapping long lines.\n" 7267 7268 7269 static void 7270 readelf_usage(int status) 7271 { 7272 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7273 exit(status); 7274 } 7275 7276 int 7277 main(int argc, char **argv) 7278 { 7279 struct readelf *re, re_storage; 7280 unsigned long si; 7281 int opt, i; 7282 char *ep; 7283 7284 re = &re_storage; 7285 memset(re, 0, sizeof(*re)); 7286 STAILQ_INIT(&re->v_dumpop); 7287 7288 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7289 longopts, NULL)) != -1) { 7290 switch(opt) { 7291 case '?': 7292 readelf_usage(EXIT_SUCCESS); 7293 break; 7294 case 'A': 7295 re->options |= RE_AA; 7296 break; 7297 case 'a': 7298 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7299 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7300 break; 7301 case 'c': 7302 re->options |= RE_C; 7303 break; 7304 case 'D': 7305 re->options |= RE_DD; 7306 break; 7307 case 'd': 7308 re->options |= RE_D; 7309 break; 7310 case 'e': 7311 re->options |= RE_H | RE_L | RE_SS; 7312 break; 7313 case 'g': 7314 re->options |= RE_G; 7315 break; 7316 case 'H': 7317 readelf_usage(EXIT_SUCCESS); 7318 break; 7319 case 'h': 7320 re->options |= RE_H; 7321 break; 7322 case 'I': 7323 re->options |= RE_II; 7324 break; 7325 case 'i': 7326 /* Not implemented yet. */ 7327 break; 7328 case 'l': 7329 re->options |= RE_L; 7330 break; 7331 case 'N': 7332 re->options |= RE_NN; 7333 break; 7334 case 'n': 7335 re->options |= RE_N; 7336 break; 7337 case 'p': 7338 re->options |= RE_P; 7339 si = strtoul(optarg, &ep, 10); 7340 if (*ep == '\0') 7341 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7342 DUMP_BY_INDEX); 7343 else 7344 add_dumpop(re, 0, optarg, STR_DUMP, 7345 DUMP_BY_NAME); 7346 break; 7347 case 'r': 7348 re->options |= RE_R; 7349 break; 7350 case 'S': 7351 re->options |= RE_SS; 7352 break; 7353 case 's': 7354 re->options |= RE_S; 7355 break; 7356 case 't': 7357 re->options |= RE_T; 7358 break; 7359 case 'u': 7360 re->options |= RE_U; 7361 break; 7362 case 'V': 7363 re->options |= RE_VV; 7364 break; 7365 case 'v': 7366 readelf_version(); 7367 break; 7368 case 'W': 7369 re->options |= RE_WW; 7370 break; 7371 case 'w': 7372 re->options |= RE_W; 7373 parse_dwarf_op_short(re, optarg); 7374 break; 7375 case 'x': 7376 re->options |= RE_X; 7377 si = strtoul(optarg, &ep, 10); 7378 if (*ep == '\0') 7379 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7380 DUMP_BY_INDEX); 7381 else 7382 add_dumpop(re, 0, optarg, HEX_DUMP, 7383 DUMP_BY_NAME); 7384 break; 7385 case OPTION_DEBUG_DUMP: 7386 re->options |= RE_W; 7387 parse_dwarf_op_long(re, optarg); 7388 } 7389 } 7390 7391 argv += optind; 7392 argc -= optind; 7393 7394 if (argc == 0 || re->options == 0) 7395 readelf_usage(EXIT_FAILURE); 7396 7397 if (argc > 1) 7398 re->flags |= DISPLAY_FILENAME; 7399 7400 if (elf_version(EV_CURRENT) == EV_NONE) 7401 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7402 elf_errmsg(-1)); 7403 7404 for (i = 0; i < argc; i++) { 7405 re->filename = argv[i]; 7406 dump_object(re); 7407 } 7408 7409 exit(EXIT_SUCCESS); 7410 } 7411