1 /*- 2 * Copyright (c) 2009,2010 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 #include <sys/param.h> 29 #include <sys/queue.h> 30 #include <ar.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <time.h> 45 #include <unistd.h> 46 47 #include "_elftc.h" 48 49 ELFTC_VCSID("$Id: readelf.c 2946 2013-05-26 08:00:11Z kaiwang27 $"); 50 51 /* 52 * readelf(1) options. 53 */ 54 #define RE_AA 0x00000001 55 #define RE_C 0x00000002 56 #define RE_DD 0x00000004 57 #define RE_D 0x00000008 58 #define RE_G 0x00000010 59 #define RE_H 0x00000020 60 #define RE_II 0x00000040 61 #define RE_I 0x00000080 62 #define RE_L 0x00000100 63 #define RE_NN 0x00000200 64 #define RE_N 0x00000400 65 #define RE_P 0x00000800 66 #define RE_R 0x00001000 67 #define RE_SS 0x00002000 68 #define RE_S 0x00004000 69 #define RE_T 0x00008000 70 #define RE_U 0x00010000 71 #define RE_VV 0x00020000 72 #define RE_WW 0x00040000 73 #define RE_W 0x00080000 74 #define RE_X 0x00100000 75 76 /* 77 * dwarf dump options. 78 */ 79 #define DW_A 0x00000001 80 #define DW_FF 0x00000002 81 #define DW_F 0x00000004 82 #define DW_I 0x00000008 83 #define DW_LL 0x00000010 84 #define DW_L 0x00000020 85 #define DW_M 0x00000040 86 #define DW_O 0x00000080 87 #define DW_P 0x00000100 88 #define DW_RR 0x00000200 89 #define DW_R 0x00000400 90 #define DW_S 0x00000800 91 92 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 93 DW_R | DW_RR | DW_S) 94 95 /* 96 * readelf(1) run control flags. 97 */ 98 #define DISPLAY_FILENAME 0x0001 99 100 /* 101 * Internal data structure for sections. 102 */ 103 struct section { 104 const char *name; /* section name */ 105 Elf_Scn *scn; /* section scn */ 106 uint64_t off; /* section offset */ 107 uint64_t sz; /* section size */ 108 uint64_t entsize; /* section entsize */ 109 uint64_t align; /* section alignment */ 110 uint64_t type; /* section type */ 111 uint64_t flags; /* section flags */ 112 uint64_t addr; /* section virtual addr */ 113 uint32_t link; /* section link ndx */ 114 uint32_t info; /* section info ndx */ 115 }; 116 117 struct dumpop { 118 union { 119 size_t si; /* section index */ 120 const char *sn; /* section name */ 121 } u; 122 enum { 123 DUMP_BY_INDEX = 0, 124 DUMP_BY_NAME 125 } type; /* dump type */ 126 #define HEX_DUMP 0x0001 127 #define STR_DUMP 0x0002 128 int op; /* dump operation */ 129 STAILQ_ENTRY(dumpop) dumpop_list; 130 }; 131 132 struct symver { 133 const char *name; 134 int type; 135 }; 136 137 /* 138 * Structure encapsulates the global data for readelf(1). 139 */ 140 struct readelf { 141 const char *filename; /* current processing file. */ 142 int options; /* command line options. */ 143 int flags; /* run control flags. */ 144 int dop; /* dwarf dump options. */ 145 Elf *elf; /* underlying ELF descriptor. */ 146 Elf *ar; /* archive ELF descriptor. */ 147 Dwarf_Debug dbg; /* DWARF handle. */ 148 GElf_Ehdr ehdr; /* ELF header. */ 149 int ec; /* ELF class. */ 150 size_t shnum; /* #sections. */ 151 struct section *vd_s; /* Verdef section. */ 152 struct section *vn_s; /* Verneed section. */ 153 struct section *vs_s; /* Versym section. */ 154 uint16_t *vs; /* Versym array. */ 155 int vs_sz; /* Versym array size. */ 156 struct symver *ver; /* Version array. */ 157 int ver_sz; /* Size of version array. */ 158 struct section *sl; /* list of sections. */ 159 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 160 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 161 uint64_t (*dw_decode)(uint8_t **, int); 162 }; 163 164 enum options 165 { 166 OPTION_DEBUG_DUMP 167 }; 168 169 static struct option longopts[] = { 170 {"all", no_argument, NULL, 'a'}, 171 {"arch-specific", no_argument, NULL, 'A'}, 172 {"archive-index", no_argument, NULL, 'c'}, 173 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 174 {"dynamic", no_argument, NULL, 'd'}, 175 {"file-header", no_argument, NULL, 'h'}, 176 {"full-section-name", no_argument, NULL, 'N'}, 177 {"headers", no_argument, NULL, 'e'}, 178 {"help", no_argument, 0, 'H'}, 179 {"hex-dump", required_argument, NULL, 'x'}, 180 {"histogram", no_argument, NULL, 'I'}, 181 {"notes", no_argument, NULL, 'n'}, 182 {"program-headers", no_argument, NULL, 'l'}, 183 {"relocs", no_argument, NULL, 'r'}, 184 {"sections", no_argument, NULL, 'S'}, 185 {"section-headers", no_argument, NULL, 'S'}, 186 {"section-groups", no_argument, NULL, 'g'}, 187 {"section-details", no_argument, NULL, 't'}, 188 {"segments", no_argument, NULL, 'l'}, 189 {"string-dump", required_argument, NULL, 'p'}, 190 {"symbols", no_argument, NULL, 's'}, 191 {"syms", no_argument, NULL, 's'}, 192 {"unwind", no_argument, NULL, 'u'}, 193 {"use-dynamic", no_argument, NULL, 'D'}, 194 {"version-info", no_argument, 0, 'V'}, 195 {"version", no_argument, 0, 'v'}, 196 {"wide", no_argument, 0, 'W'}, 197 {NULL, 0, NULL, 0} 198 }; 199 200 struct eflags_desc { 201 uint64_t flag; 202 const char *desc; 203 }; 204 205 struct mips_option { 206 uint64_t flag; 207 const char *desc; 208 }; 209 210 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 211 int t); 212 static const char *aeabi_adv_simd_arch(uint64_t simd); 213 static const char *aeabi_align_needed(uint64_t an); 214 static const char *aeabi_align_preserved(uint64_t ap); 215 static const char *aeabi_arm_isa(uint64_t ai); 216 static const char *aeabi_cpu_arch(uint64_t arch); 217 static const char *aeabi_cpu_arch_profile(uint64_t pf); 218 static const char *aeabi_div(uint64_t du); 219 static const char *aeabi_enum_size(uint64_t es); 220 static const char *aeabi_fp_16bit_format(uint64_t fp16); 221 static const char *aeabi_fp_arch(uint64_t fp); 222 static const char *aeabi_fp_denormal(uint64_t fd); 223 static const char *aeabi_fp_exceptions(uint64_t fe); 224 static const char *aeabi_fp_hpext(uint64_t fh); 225 static const char *aeabi_fp_number_model(uint64_t fn); 226 static const char *aeabi_fp_optm_goal(uint64_t fog); 227 static const char *aeabi_fp_rounding(uint64_t fr); 228 static const char *aeabi_hardfp(uint64_t hfp); 229 static const char *aeabi_mpext(uint64_t mp); 230 static const char *aeabi_optm_goal(uint64_t og); 231 static const char *aeabi_pcs_config(uint64_t pcs); 232 static const char *aeabi_pcs_got(uint64_t got); 233 static const char *aeabi_pcs_r9(uint64_t r9); 234 static const char *aeabi_pcs_ro(uint64_t ro); 235 static const char *aeabi_pcs_rw(uint64_t rw); 236 static const char *aeabi_pcs_wchar_t(uint64_t wt); 237 static const char *aeabi_t2ee(uint64_t t2ee); 238 static const char *aeabi_thumb_isa(uint64_t ti); 239 static const char *aeabi_fp_user_exceptions(uint64_t fu); 240 static const char *aeabi_unaligned_access(uint64_t ua); 241 static const char *aeabi_vfp_args(uint64_t va); 242 static const char *aeabi_virtual(uint64_t vt); 243 static const char *aeabi_wmmx_arch(uint64_t wmmx); 244 static const char *aeabi_wmmx_args(uint64_t wa); 245 static const char *elf_class(unsigned int class); 246 static const char *elf_endian(unsigned int endian); 247 static const char *elf_machine(unsigned int mach); 248 static const char *elf_osabi(unsigned int abi); 249 static const char *elf_type(unsigned int type); 250 static const char *elf_ver(unsigned int ver); 251 static const char *dt_type(unsigned int mach, unsigned int dtype); 252 static void dump_ar(struct readelf *re, int); 253 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 254 static void dump_attributes(struct readelf *re); 255 static uint8_t *dump_compatibility_tag(uint8_t *p); 256 static void dump_dwarf(struct readelf *re); 257 static void dump_eflags(struct readelf *re, uint64_t e_flags); 258 static void dump_elf(struct readelf *re); 259 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 260 static void dump_dynamic(struct readelf *re); 261 static void dump_liblist(struct readelf *re); 262 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 263 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 264 static void dump_mips_options(struct readelf *re, struct section *s); 265 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 266 uint64_t info); 267 static void dump_mips_reginfo(struct readelf *re, struct section *s); 268 static void dump_mips_specific_info(struct readelf *re); 269 static void dump_notes(struct readelf *re); 270 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 271 off_t off); 272 static void dump_svr4_hash(struct section *s); 273 static void dump_svr4_hash64(struct readelf *re, struct section *s); 274 static void dump_gnu_hash(struct readelf *re, struct section *s); 275 static void dump_hash(struct readelf *re); 276 static void dump_phdr(struct readelf *re); 277 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 278 static void dump_symtab(struct readelf *re, int i); 279 static void dump_symtabs(struct readelf *re); 280 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p); 281 static void dump_ver(struct readelf *re); 282 static void dump_verdef(struct readelf *re, int dump); 283 static void dump_verneed(struct readelf *re, int dump); 284 static void dump_versym(struct readelf *re); 285 static struct dumpop *find_dumpop(struct readelf *re, size_t si, const char *sn, 286 int op, int t); 287 static const char *get_string(struct readelf *re, int strtab, size_t off); 288 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 289 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 290 static void load_sections(struct readelf *re); 291 static const char *mips_abi_fp(uint64_t fp); 292 static const char *note_type(unsigned int osabi, unsigned int et, 293 unsigned int nt); 294 static const char *option_kind(uint8_t kind); 295 static const char *phdr_type(unsigned int ptype); 296 static const char *ppc_abi_fp(uint64_t fp); 297 static const char *ppc_abi_vector(uint64_t vec); 298 static const char *r_type(unsigned int mach, unsigned int type); 299 static void readelf_usage(void); 300 static void readelf_version(void); 301 static void search_ver(struct readelf *re); 302 static const char *section_type(unsigned int mach, unsigned int stype); 303 static const char *st_bind(unsigned int sbind); 304 static const char *st_shndx(unsigned int shndx); 305 static const char *st_type(unsigned int stype); 306 static const char *st_vis(unsigned int svis); 307 static const char *top_tag(unsigned int tag); 308 static void unload_sections(struct readelf *re); 309 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 310 int bytes_to_read); 311 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 312 int bytes_to_read); 313 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 314 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 315 static int64_t _decode_sleb128(uint8_t **dp); 316 static uint64_t _decode_uleb128(uint8_t **dp); 317 318 static struct eflags_desc arm_eflags_desc[] = { 319 {EF_ARM_RELEXEC, "relocatable executable"}, 320 {EF_ARM_HASENTRY, "has entry point"}, 321 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 322 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 323 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 324 {EF_ARM_BE8, "BE8"}, 325 {EF_ARM_LE8, "LE8"}, 326 {EF_ARM_INTERWORK, "interworking enabled"}, 327 {EF_ARM_APCS_26, "uses APCS/26"}, 328 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 329 {EF_ARM_PIC, "position independent"}, 330 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 331 {EF_ARM_NEW_ABI, "uses new ABI"}, 332 {EF_ARM_OLD_ABI, "uses old ABI"}, 333 {EF_ARM_SOFT_FLOAT, "software FP"}, 334 {EF_ARM_VFP_FLOAT, "VFP"}, 335 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 336 {0, NULL} 337 }; 338 339 static struct eflags_desc mips_eflags_desc[] = { 340 {EF_MIPS_NOREORDER, "noreorder"}, 341 {EF_MIPS_PIC, "pic"}, 342 {EF_MIPS_CPIC, "cpic"}, 343 {EF_MIPS_UCODE, "ugen_reserved"}, 344 {EF_MIPS_ABI2, "abi2"}, 345 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 346 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 347 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 348 {0, NULL} 349 }; 350 351 static struct eflags_desc powerpc_eflags_desc[] = { 352 {EF_PPC_EMB, "emb"}, 353 {EF_PPC_RELOCATABLE, "relocatable"}, 354 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 355 {0, NULL} 356 }; 357 358 static struct eflags_desc sparc_eflags_desc[] = { 359 {EF_SPARC_32PLUS, "v8+"}, 360 {EF_SPARC_SUN_US1, "ultrasparcI"}, 361 {EF_SPARC_HAL_R1, "halr1"}, 362 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 363 {0, NULL} 364 }; 365 366 static const char * 367 elf_osabi(unsigned int abi) 368 { 369 static char s_abi[32]; 370 371 switch(abi) { 372 case ELFOSABI_SYSV: return "SYSV"; 373 case ELFOSABI_HPUX: return "HPUS"; 374 case ELFOSABI_NETBSD: return "NetBSD"; 375 case ELFOSABI_GNU: return "GNU"; 376 case ELFOSABI_HURD: return "HURD"; 377 case ELFOSABI_86OPEN: return "86OPEN"; 378 case ELFOSABI_SOLARIS: return "Solaris"; 379 case ELFOSABI_AIX: return "AIX"; 380 case ELFOSABI_IRIX: return "IRIX"; 381 case ELFOSABI_FREEBSD: return "FreeBSD"; 382 case ELFOSABI_TRU64: return "TRU64"; 383 case ELFOSABI_MODESTO: return "MODESTO"; 384 case ELFOSABI_OPENBSD: return "OpenBSD"; 385 case ELFOSABI_OPENVMS: return "OpenVMS"; 386 case ELFOSABI_NSK: return "NSK"; 387 case ELFOSABI_ARM: return "ARM"; 388 case ELFOSABI_STANDALONE: return "StandAlone"; 389 default: 390 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 391 return (s_abi); 392 } 393 }; 394 395 static const char * 396 elf_machine(unsigned int mach) 397 { 398 static char s_mach[32]; 399 400 switch (mach) { 401 case EM_NONE: return "Unknown machine"; 402 case EM_M32: return "AT&T WE32100"; 403 case EM_SPARC: return "Sun SPARC"; 404 case EM_386: return "Intel i386"; 405 case EM_68K: return "Motorola 68000"; 406 case EM_88K: return "Motorola 88000"; 407 case EM_860: return "Intel i860"; 408 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 409 case EM_S370: return "IBM System/370"; 410 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 411 case EM_PARISC: return "HP PA-RISC"; 412 case EM_VPP500: return "Fujitsu VPP500"; 413 case EM_SPARC32PLUS: return "SPARC v8plus"; 414 case EM_960: return "Intel 80960"; 415 case EM_PPC: return "PowerPC 32-bit"; 416 case EM_PPC64: return "PowerPC 64-bit"; 417 case EM_S390: return "IBM System/390"; 418 case EM_V800: return "NEC V800"; 419 case EM_FR20: return "Fujitsu FR20"; 420 case EM_RH32: return "TRW RH-32"; 421 case EM_RCE: return "Motorola RCE"; 422 case EM_ARM: return "ARM"; 423 case EM_SH: return "Hitachi SH"; 424 case EM_SPARCV9: return "SPARC v9 64-bit"; 425 case EM_TRICORE: return "Siemens TriCore embedded processor"; 426 case EM_ARC: return "Argonaut RISC Core"; 427 case EM_H8_300: return "Hitachi H8/300"; 428 case EM_H8_300H: return "Hitachi H8/300H"; 429 case EM_H8S: return "Hitachi H8S"; 430 case EM_H8_500: return "Hitachi H8/500"; 431 case EM_IA_64: return "Intel IA-64 Processor"; 432 case EM_MIPS_X: return "Stanford MIPS-X"; 433 case EM_COLDFIRE: return "Motorola ColdFire"; 434 case EM_68HC12: return "Motorola M68HC12"; 435 case EM_MMA: return "Fujitsu MMA"; 436 case EM_PCP: return "Siemens PCP"; 437 case EM_NCPU: return "Sony nCPU"; 438 case EM_NDR1: return "Denso NDR1 microprocessor"; 439 case EM_STARCORE: return "Motorola Star*Core processor"; 440 case EM_ME16: return "Toyota ME16 processor"; 441 case EM_ST100: return "STMicroelectronics ST100 processor"; 442 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 443 case EM_X86_64: return "Advanced Micro Devices x86-64"; 444 case EM_PDSP: return "Sony DSP Processor"; 445 case EM_FX66: return "Siemens FX66 microcontroller"; 446 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 447 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 448 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 449 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 450 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 451 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 452 case EM_SVX: return "Silicon Graphics SVx"; 453 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 454 case EM_VAX: return "Digital VAX"; 455 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 456 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 457 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 458 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 459 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 460 case EM_HUANY: return "Harvard University MI object files"; 461 case EM_PRISM: return "SiTera Prism"; 462 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 463 case EM_FR30: return "Fujitsu FR30"; 464 case EM_D10V: return "Mitsubishi D10V"; 465 case EM_D30V: return "Mitsubishi D30V"; 466 case EM_V850: return "NEC v850"; 467 case EM_M32R: return "Mitsubishi M32R"; 468 case EM_MN10300: return "Matsushita MN10300"; 469 case EM_MN10200: return "Matsushita MN10200"; 470 case EM_PJ: return "picoJava"; 471 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 472 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 473 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 474 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 475 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 476 case EM_NS32K: return "National Semiconductor 32000 series"; 477 case EM_TPC: return "Tenor Network TPC processor"; 478 case EM_SNP1K: return "Trebia SNP 1000 processor"; 479 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 480 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 481 case EM_MAX: return "MAX Processor"; 482 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 483 case EM_F2MC16: return "Fujitsu F2MC16"; 484 case EM_MSP430: return "TI embedded microcontroller msp430"; 485 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 486 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 487 case EM_SEP: return "Sharp embedded microprocessor"; 488 case EM_ARCA: return "Arca RISC Microprocessor"; 489 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 490 case EM_AARCH64: return "AArch64"; 491 default: 492 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 493 return (s_mach); 494 } 495 496 } 497 498 static const char * 499 elf_class(unsigned int class) 500 { 501 static char s_class[32]; 502 503 switch (class) { 504 case ELFCLASSNONE: return "none"; 505 case ELFCLASS32: return "ELF32"; 506 case ELFCLASS64: return "ELF64"; 507 default: 508 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 509 return (s_class); 510 } 511 } 512 513 static const char * 514 elf_endian(unsigned int endian) 515 { 516 static char s_endian[32]; 517 518 switch (endian) { 519 case ELFDATANONE: return "none"; 520 case ELFDATA2LSB: return "2's complement, little endian"; 521 case ELFDATA2MSB: return "2's complement, big endian"; 522 default: 523 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 524 return (s_endian); 525 } 526 } 527 528 static const char * 529 elf_type(unsigned int type) 530 { 531 static char s_type[32]; 532 533 switch (type) { 534 case ET_NONE: return "NONE (None)"; 535 case ET_REL: return "REL (Relocatable file)"; 536 case ET_EXEC: return "EXEC (Executable file)"; 537 case ET_DYN: return "DYN (Shared object file)"; 538 case ET_CORE: return "CORE (Core file)"; 539 default: 540 if (type >= ET_LOPROC) 541 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 542 else if (type >= ET_LOOS && type <= ET_HIOS) 543 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 544 else 545 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 546 type); 547 return (s_type); 548 } 549 } 550 551 static const char * 552 elf_ver(unsigned int ver) 553 { 554 static char s_ver[32]; 555 556 switch (ver) { 557 case EV_CURRENT: return "(current)"; 558 case EV_NONE: return "(none)"; 559 default: 560 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 561 ver); 562 return (s_ver); 563 } 564 } 565 566 static const char * 567 phdr_type(unsigned int ptype) 568 { 569 static char s_ptype[32]; 570 571 switch (ptype) { 572 case PT_NULL: return "NULL"; 573 case PT_LOAD: return "LOAD"; 574 case PT_DYNAMIC: return "DYNAMIC"; 575 case PT_INTERP: return "INTERP"; 576 case PT_NOTE: return "NOTE"; 577 case PT_SHLIB: return "SHLIB"; 578 case PT_PHDR: return "PHDR"; 579 case PT_TLS: return "TLS"; 580 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 581 case PT_GNU_STACK: return "GNU_STACK"; 582 case PT_GNU_RELRO: return "GNU_RELRO"; 583 default: 584 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) 585 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 586 ptype - PT_LOPROC); 587 else if (ptype >= PT_LOOS && ptype <= PT_HIOS) 588 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 589 ptype - PT_LOOS); 590 else 591 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 592 ptype); 593 return (s_ptype); 594 } 595 } 596 597 static const char * 598 section_type(unsigned int mach, unsigned int stype) 599 { 600 static char s_stype[32]; 601 602 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 603 switch (mach) { 604 case EM_X86_64: 605 switch (stype) { 606 case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; 607 default: 608 break; 609 } 610 break; 611 case EM_MIPS: 612 case EM_MIPS_RS3_LE: 613 switch (stype) { 614 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 615 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 616 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 617 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 618 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 619 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 620 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 621 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 622 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 623 case SHT_MIPS_RELD: return "MIPS_RELD"; 624 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 625 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 626 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 627 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 628 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 629 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 630 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 631 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 632 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 633 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 634 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 635 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 636 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 637 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 638 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 639 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 640 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 641 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 642 default: 643 break; 644 } 645 break; 646 default: 647 break; 648 } 649 650 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 651 stype - SHT_LOPROC); 652 return (s_stype); 653 } 654 655 switch (stype) { 656 case SHT_NULL: return "NULL"; 657 case SHT_PROGBITS: return "PROGBITS"; 658 case SHT_SYMTAB: return "SYMTAB"; 659 case SHT_STRTAB: return "STRTAB"; 660 case SHT_RELA: return "RELA"; 661 case SHT_HASH: return "HASH"; 662 case SHT_DYNAMIC: return "DYNAMIC"; 663 case SHT_NOTE: return "NOTE"; 664 case SHT_NOBITS: return "NOBITS"; 665 case SHT_REL: return "REL"; 666 case SHT_SHLIB: return "SHLIB"; 667 case SHT_DYNSYM: return "DYNSYM"; 668 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 669 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 670 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 671 case SHT_GROUP: return "GROUP"; 672 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 673 case SHT_SUNW_dof: return "SUNW_dof"; 674 case SHT_SUNW_cap: return "SUNW_cap"; 675 case SHT_GNU_HASH: return "GNU_HASH"; 676 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 677 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 678 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 679 case SHT_SUNW_move: return "SUNW_move"; 680 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 681 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 682 case SHT_SUNW_verdef: return "SUNW_verdef"; 683 case SHT_SUNW_verneed: return "SUNW_verneed"; 684 case SHT_SUNW_versym: return "SUNW_versym"; 685 default: 686 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 687 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 688 stype - SHT_LOOS); 689 else if (stype >= SHT_LOUSER) 690 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 691 stype - SHT_LOUSER); 692 else 693 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 694 stype); 695 return (s_stype); 696 } 697 } 698 699 static const char * 700 dt_type(unsigned int mach, unsigned int dtype) 701 { 702 static char s_dtype[32]; 703 704 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 705 switch (mach) { 706 case EM_ARM: 707 switch (dtype) { 708 case DT_ARM_SYMTABSZ: 709 return "ARM_SYMTABSZ"; 710 default: 711 break; 712 } 713 break; 714 case EM_MIPS: 715 case EM_MIPS_RS3_LE: 716 switch (dtype) { 717 case DT_MIPS_RLD_VERSION: 718 return "MIPS_RLD_VERSION"; 719 case DT_MIPS_TIME_STAMP: 720 return "MIPS_TIME_STAMP"; 721 case DT_MIPS_ICHECKSUM: 722 return "MIPS_ICHECKSUM"; 723 case DT_MIPS_IVERSION: 724 return "MIPS_IVERSION"; 725 case DT_MIPS_FLAGS: 726 return "MIPS_FLAGS"; 727 case DT_MIPS_BASE_ADDRESS: 728 return "MIPS_BASE_ADDRESS"; 729 case DT_MIPS_CONFLICT: 730 return "MIPS_CONFLICT"; 731 case DT_MIPS_LIBLIST: 732 return "MIPS_LIBLIST"; 733 case DT_MIPS_LOCAL_GOTNO: 734 return "MIPS_LOCAL_GOTNO"; 735 case DT_MIPS_CONFLICTNO: 736 return "MIPS_CONFLICTNO"; 737 case DT_MIPS_LIBLISTNO: 738 return "MIPS_LIBLISTNO"; 739 case DT_MIPS_SYMTABNO: 740 return "MIPS_SYMTABNO"; 741 case DT_MIPS_UNREFEXTNO: 742 return "MIPS_UNREFEXTNO"; 743 case DT_MIPS_GOTSYM: 744 return "MIPS_GOTSYM"; 745 case DT_MIPS_HIPAGENO: 746 return "MIPS_HIPAGENO"; 747 case DT_MIPS_RLD_MAP: 748 return "MIPS_RLD_MAP"; 749 case DT_MIPS_DELTA_CLASS: 750 return "MIPS_DELTA_CLASS"; 751 case DT_MIPS_DELTA_CLASS_NO: 752 return "MIPS_DELTA_CLASS_NO"; 753 case DT_MIPS_DELTA_INSTANCE: 754 return "MIPS_DELTA_INSTANCE"; 755 case DT_MIPS_DELTA_INSTANCE_NO: 756 return "MIPS_DELTA_INSTANCE_NO"; 757 case DT_MIPS_DELTA_RELOC: 758 return "MIPS_DELTA_RELOC"; 759 case DT_MIPS_DELTA_RELOC_NO: 760 return "MIPS_DELTA_RELOC_NO"; 761 case DT_MIPS_DELTA_SYM: 762 return "MIPS_DELTA_SYM"; 763 case DT_MIPS_DELTA_SYM_NO: 764 return "MIPS_DELTA_SYM_NO"; 765 case DT_MIPS_DELTA_CLASSSYM: 766 return "MIPS_DELTA_CLASSSYM"; 767 case DT_MIPS_DELTA_CLASSSYM_NO: 768 return "MIPS_DELTA_CLASSSYM_NO"; 769 case DT_MIPS_CXX_FLAGS: 770 return "MIPS_CXX_FLAGS"; 771 case DT_MIPS_PIXIE_INIT: 772 return "MIPS_PIXIE_INIT"; 773 case DT_MIPS_SYMBOL_LIB: 774 return "MIPS_SYMBOL_LIB"; 775 case DT_MIPS_LOCALPAGE_GOTIDX: 776 return "MIPS_LOCALPAGE_GOTIDX"; 777 case DT_MIPS_LOCAL_GOTIDX: 778 return "MIPS_LOCAL_GOTIDX"; 779 case DT_MIPS_HIDDEN_GOTIDX: 780 return "MIPS_HIDDEN_GOTIDX"; 781 case DT_MIPS_PROTECTED_GOTIDX: 782 return "MIPS_PROTECTED_GOTIDX"; 783 case DT_MIPS_OPTIONS: 784 return "MIPS_OPTIONS"; 785 case DT_MIPS_INTERFACE: 786 return "MIPS_INTERFACE"; 787 case DT_MIPS_DYNSTR_ALIGN: 788 return "MIPS_DYNSTR_ALIGN"; 789 case DT_MIPS_INTERFACE_SIZE: 790 return "MIPS_INTERFACE_SIZE"; 791 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 792 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 793 case DT_MIPS_PERF_SUFFIX: 794 return "MIPS_PERF_SUFFIX"; 795 case DT_MIPS_COMPACT_SIZE: 796 return "MIPS_COMPACT_SIZE"; 797 case DT_MIPS_GP_VALUE: 798 return "MIPS_GP_VALUE"; 799 case DT_MIPS_AUX_DYNAMIC: 800 return "MIPS_AUX_DYNAMIC"; 801 case DT_MIPS_PLTGOT: 802 return "MIPS_PLTGOT"; 803 case DT_MIPS_RLD_OBJ_UPDATE: 804 return "MIPS_RLD_OBJ_UPDATE"; 805 case DT_MIPS_RWPLT: 806 return "MIPS_RWPLT"; 807 default: 808 break; 809 } 810 break; 811 case EM_SPARC: 812 case EM_SPARC32PLUS: 813 case EM_SPARCV9: 814 switch (dtype) { 815 case DT_SPARC_REGISTER: 816 return "DT_SPARC_REGISTER"; 817 default: 818 break; 819 } 820 break; 821 default: 822 break; 823 } 824 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 825 return (s_dtype); 826 } 827 828 switch (dtype) { 829 case DT_NULL: return "NULL"; 830 case DT_NEEDED: return "NEEDED"; 831 case DT_PLTRELSZ: return "PLTRELSZ"; 832 case DT_PLTGOT: return "PLTGOT"; 833 case DT_HASH: return "HASH"; 834 case DT_STRTAB: return "STRTAB"; 835 case DT_SYMTAB: return "SYMTAB"; 836 case DT_RELA: return "RELA"; 837 case DT_RELASZ: return "RELASZ"; 838 case DT_RELAENT: return "RELAENT"; 839 case DT_STRSZ: return "STRSZ"; 840 case DT_SYMENT: return "SYMENT"; 841 case DT_INIT: return "INIT"; 842 case DT_FINI: return "FINI"; 843 case DT_SONAME: return "SONAME"; 844 case DT_RPATH: return "RPATH"; 845 case DT_SYMBOLIC: return "SYMBOLIC"; 846 case DT_REL: return "REL"; 847 case DT_RELSZ: return "RELSZ"; 848 case DT_RELENT: return "RELENT"; 849 case DT_PLTREL: return "PLTREL"; 850 case DT_DEBUG: return "DEBUG"; 851 case DT_TEXTREL: return "TEXTREL"; 852 case DT_JMPREL: return "JMPREL"; 853 case DT_BIND_NOW: return "BIND_NOW"; 854 case DT_INIT_ARRAY: return "INIT_ARRAY"; 855 case DT_FINI_ARRAY: return "FINI_ARRAY"; 856 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 857 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 858 case DT_RUNPATH: return "RUNPATH"; 859 case DT_FLAGS: return "FLAGS"; 860 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 861 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 862 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 863 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 864 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 865 case DT_SUNW_FILTER: return "SUNW_FILTER"; 866 case DT_SUNW_CAP: return "SUNW_CAP"; 867 case DT_CHECKSUM: return "CHECKSUM"; 868 case DT_PLTPADSZ: return "PLTPADSZ"; 869 case DT_MOVEENT: return "MOVEENT"; 870 case DT_MOVESZ: return "MOVESZ"; 871 case DT_FEATURE_1: return "FEATURE_1"; 872 case DT_POSFLAG_1: return "POSFLAG_1"; 873 case DT_SYMINSZ: return "SYMINSZ"; 874 case DT_SYMINENT: return "SYMINENT"; 875 case DT_GNU_HASH: return "GNU_HASH"; 876 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 877 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 878 case DT_CONFIG: return "CONFIG"; 879 case DT_DEPAUDIT: return "DEPAUDIT"; 880 case DT_AUDIT: return "AUDIT"; 881 case DT_PLTPAD: return "PLTPAD"; 882 case DT_MOVETAB: return "MOVETAB"; 883 case DT_SYMINFO: return "SYMINFO"; 884 case DT_VERSYM: return "VERSYM"; 885 case DT_RELACOUNT: return "RELACOUNT"; 886 case DT_RELCOUNT: return "RELCOUNT"; 887 case DT_FLAGS_1: return "FLAGS_1"; 888 case DT_VERDEF: return "VERDEF"; 889 case DT_VERDEFNUM: return "VERDEFNUM"; 890 case DT_VERNEED: return "VERNEED"; 891 case DT_VERNEEDNUM: return "VERNEEDNUM"; 892 case DT_AUXILIARY: return "AUXILIARY"; 893 case DT_USED: return "USED"; 894 case DT_FILTER: return "FILTER"; 895 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 896 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 897 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 898 default: 899 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 900 return (s_dtype); 901 } 902 } 903 904 static const char * 905 st_bind(unsigned int sbind) 906 { 907 static char s_sbind[32]; 908 909 switch (sbind) { 910 case STB_LOCAL: return "LOCAL"; 911 case STB_GLOBAL: return "GLOBAL"; 912 case STB_WEAK: return "WEAK"; 913 default: 914 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 915 return "OS"; 916 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 917 return "PROC"; 918 else 919 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 920 sbind); 921 return (s_sbind); 922 } 923 } 924 925 static const char * 926 st_type(unsigned int stype) 927 { 928 static char s_stype[32]; 929 930 switch (stype) { 931 case STT_NOTYPE: return "NOTYPE"; 932 case STT_OBJECT: return "OBJECT"; 933 case STT_FUNC: return "FUNC"; 934 case STT_SECTION: return "SECTION"; 935 case STT_FILE: return "FILE"; 936 case STT_COMMON: return "COMMON"; 937 case STT_TLS: return "TLS"; 938 default: 939 if (stype >= STT_LOOS && stype <= STT_HIOS) 940 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 941 stype - STT_LOOS); 942 else if (stype >= STT_LOPROC && stype <= STT_HIPROC) 943 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 944 stype - STT_LOPROC); 945 else 946 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 947 stype); 948 return (s_stype); 949 } 950 } 951 952 static const char * 953 st_vis(unsigned int svis) 954 { 955 static char s_svis[32]; 956 957 switch(svis) { 958 case STV_DEFAULT: return "DEFAULT"; 959 case STV_INTERNAL: return "INTERNAL"; 960 case STV_HIDDEN: return "HIDDEN"; 961 case STV_PROTECTED: return "PROTECTED"; 962 default: 963 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 964 return (s_svis); 965 } 966 } 967 968 static const char * 969 st_shndx(unsigned int shndx) 970 { 971 static char s_shndx[32]; 972 973 switch (shndx) { 974 case SHN_UNDEF: return "UND"; 975 case SHN_ABS: return "ABS"; 976 case SHN_COMMON: return "COM"; 977 default: 978 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 979 return "PRC"; 980 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 981 return "OS"; 982 else 983 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 984 return (s_shndx); 985 } 986 } 987 988 static struct { 989 const char *ln; 990 char sn; 991 int value; 992 } section_flag[] = { 993 {"WRITE", 'W', SHF_WRITE}, 994 {"ALLOC", 'A', SHF_ALLOC}, 995 {"EXEC", 'X', SHF_EXECINSTR}, 996 {"MERGE", 'M', SHF_MERGE}, 997 {"STRINGS", 'S', SHF_STRINGS}, 998 {"INFO LINK", 'I', SHF_INFO_LINK}, 999 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1000 {"GROUP", 'G', SHF_GROUP}, 1001 {"TLS", 'T', SHF_TLS}, 1002 {NULL, 0, 0} 1003 }; 1004 1005 static const char * 1006 r_type(unsigned int mach, unsigned int type) 1007 { 1008 switch(mach) { 1009 case EM_NONE: return ""; 1010 case EM_386: 1011 switch(type) { 1012 case 0: return "R_386_NONE"; 1013 case 1: return "R_386_32"; 1014 case 2: return "R_386_PC32"; 1015 case 3: return "R_386_GOT32"; 1016 case 4: return "R_386_PLT32"; 1017 case 5: return "R_386_COPY"; 1018 case 6: return "R_386_GLOB_DAT"; 1019 case 7: return "R_386_JMP_SLOT"; 1020 case 8: return "R_386_RELATIVE"; 1021 case 9: return "R_386_GOTOFF"; 1022 case 10: return "R_386_GOTPC"; 1023 case 14: return "R_386_TLS_TPOFF"; 1024 case 15: return "R_386_TLS_IE"; 1025 case 16: return "R_386_TLS_GOTIE"; 1026 case 17: return "R_386_TLS_LE"; 1027 case 18: return "R_386_TLS_GD"; 1028 case 19: return "R_386_TLS_LDM"; 1029 case 24: return "R_386_TLS_GD_32"; 1030 case 25: return "R_386_TLS_GD_PUSH"; 1031 case 26: return "R_386_TLS_GD_CALL"; 1032 case 27: return "R_386_TLS_GD_POP"; 1033 case 28: return "R_386_TLS_LDM_32"; 1034 case 29: return "R_386_TLS_LDM_PUSH"; 1035 case 30: return "R_386_TLS_LDM_CALL"; 1036 case 31: return "R_386_TLS_LDM_POP"; 1037 case 32: return "R_386_TLS_LDO_32"; 1038 case 33: return "R_386_TLS_IE_32"; 1039 case 34: return "R_386_TLS_LE_32"; 1040 case 35: return "R_386_TLS_DTPMOD32"; 1041 case 36: return "R_386_TLS_DTPOFF32"; 1042 case 37: return "R_386_TLS_TPOFF32"; 1043 default: return ""; 1044 } 1045 case EM_AARCH64: 1046 switch(type) { 1047 case 0: return "R_AARCH64_NONE"; 1048 case 257: return "R_AARCH64_ABS64"; 1049 case 258: return "R_AARCH64_ABS32"; 1050 case 259: return "R_AARCH64_ABS16"; 1051 case 260: return "R_AARCH64_PREL64"; 1052 case 261: return "R_AARCH64_PREL32"; 1053 case 262: return "R_AARCH64_PREL16"; 1054 case 263: return "R_AARCH64_MOVW_UABS_G0"; 1055 case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; 1056 case 265: return "R_AARCH64_MOVW_UABS_G1"; 1057 case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; 1058 case 267: return "R_AARCH64_MOVW_UABS_G2"; 1059 case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; 1060 case 269: return "R_AARCH64_MOVW_UABS_G3"; 1061 case 270: return "R_AARCH64_MOVW_SABS_G0"; 1062 case 271: return "R_AARCH64_MOVW_SABS_G1"; 1063 case 272: return "R_AARCH64_MOVW_SABS_G2"; 1064 case 273: return "R_AARCH64_LD_PREL_LO19"; 1065 case 274: return "R_AARCH64_ADR_PREL_LO21"; 1066 case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; 1067 case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; 1068 case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; 1069 case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; 1070 case 279: return "R_AARCH64_TSTBR14"; 1071 case 280: return "R_AARCH64_CONDBR19"; 1072 case 282: return "R_AARCH64_JUMP26"; 1073 case 283: return "R_AARCH64_CALL26"; 1074 case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; 1075 case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; 1076 case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; 1077 case 287: return "R_AARCH64_MOVW_PREL_G0"; 1078 case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; 1079 case 289: return "R_AARCH64_MOVW_PREL_G1"; 1080 case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; 1081 case 291: return "R_AARCH64_MOVW_PREL_G2"; 1082 case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; 1083 case 293: return "R_AARCH64_MOVW_PREL_G3"; 1084 case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; 1085 case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; 1086 case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; 1087 case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; 1088 case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; 1089 case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; 1090 case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; 1091 case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; 1092 case 307: return "R_AARCH64_GOTREL64"; 1093 case 308: return "R_AARCH64_GOTREL32"; 1094 case 309: return "R_AARCH64_GOT_LD_PREL19"; 1095 case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; 1096 case 311: return "R_AARCH64_ADR_GOT_PAGE"; 1097 case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; 1098 case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; 1099 case 1024: return "R_AARCH64_COPY"; 1100 case 1025: return "R_AARCH64_GLOB_DAT"; 1101 case 1026: return "R_AARCH64_JUMP_SLOT"; 1102 case 1027: return "R_AARCH64_RELATIVE"; 1103 case 1031: return "R_AARCH64_TLSDESC"; 1104 default: return ""; 1105 } 1106 case EM_ARM: 1107 switch(type) { 1108 case 0: return "R_ARM_NONE"; 1109 case 1: return "R_ARM_PC24"; 1110 case 2: return "R_ARM_ABS32"; 1111 case 3: return "R_ARM_REL32"; 1112 case 4: return "R_ARM_PC13"; 1113 case 5: return "R_ARM_ABS16"; 1114 case 6: return "R_ARM_ABS12"; 1115 case 7: return "R_ARM_THM_ABS5"; 1116 case 8: return "R_ARM_ABS8"; 1117 case 9: return "R_ARM_SBREL32"; 1118 case 10: return "R_ARM_THM_PC22"; 1119 case 11: return "R_ARM_THM_PC8"; 1120 case 12: return "R_ARM_AMP_VCALL9"; 1121 case 13: return "R_ARM_SWI24"; 1122 case 14: return "R_ARM_THM_SWI8"; 1123 case 15: return "R_ARM_XPC25"; 1124 case 16: return "R_ARM_THM_XPC22"; 1125 case 20: return "R_ARM_COPY"; 1126 case 21: return "R_ARM_GLOB_DAT"; 1127 case 22: return "R_ARM_JUMP_SLOT"; 1128 case 23: return "R_ARM_RELATIVE"; 1129 case 24: return "R_ARM_GOTOFF"; 1130 case 25: return "R_ARM_GOTPC"; 1131 case 26: return "R_ARM_GOT32"; 1132 case 27: return "R_ARM_PLT32"; 1133 case 100: return "R_ARM_GNU_VTENTRY"; 1134 case 101: return "R_ARM_GNU_VTINHERIT"; 1135 case 250: return "R_ARM_RSBREL32"; 1136 case 251: return "R_ARM_THM_RPC22"; 1137 case 252: return "R_ARM_RREL32"; 1138 case 253: return "R_ARM_RABS32"; 1139 case 254: return "R_ARM_RPC24"; 1140 case 255: return "R_ARM_RBASE"; 1141 default: return ""; 1142 } 1143 case EM_IA_64: 1144 switch(type) { 1145 case 0: return "R_IA_64_NONE"; 1146 case 33: return "R_IA_64_IMM14"; 1147 case 34: return "R_IA_64_IMM22"; 1148 case 35: return "R_IA_64_IMM64"; 1149 case 36: return "R_IA_64_DIR32MSB"; 1150 case 37: return "R_IA_64_DIR32LSB"; 1151 case 38: return "R_IA_64_DIR64MSB"; 1152 case 39: return "R_IA_64_DIR64LSB"; 1153 case 42: return "R_IA_64_GPREL22"; 1154 case 43: return "R_IA_64_GPREL64I"; 1155 case 44: return "R_IA_64_GPREL32MSB"; 1156 case 45: return "R_IA_64_GPREL32LSB"; 1157 case 46: return "R_IA_64_GPREL64MSB"; 1158 case 47: return "R_IA_64_GPREL64LSB"; 1159 case 50: return "R_IA_64_LTOFF22"; 1160 case 51: return "R_IA_64_LTOFF64I"; 1161 case 58: return "R_IA_64_PLTOFF22"; 1162 case 59: return "R_IA_64_PLTOFF64I"; 1163 case 62: return "R_IA_64_PLTOFF64MSB"; 1164 case 63: return "R_IA_64_PLTOFF64LSB"; 1165 case 67: return "R_IA_64_FPTR64I"; 1166 case 68: return "R_IA_64_FPTR32MSB"; 1167 case 69: return "R_IA_64_FPTR32LSB"; 1168 case 70: return "R_IA_64_FPTR64MSB"; 1169 case 71: return "R_IA_64_FPTR64LSB"; 1170 case 72: return "R_IA_64_PCREL60B"; 1171 case 73: return "R_IA_64_PCREL21B"; 1172 case 74: return "R_IA_64_PCREL21M"; 1173 case 75: return "R_IA_64_PCREL21F"; 1174 case 76: return "R_IA_64_PCREL32MSB"; 1175 case 77: return "R_IA_64_PCREL32LSB"; 1176 case 78: return "R_IA_64_PCREL64MSB"; 1177 case 79: return "R_IA_64_PCREL64LSB"; 1178 case 82: return "R_IA_64_LTOFF_FPTR22"; 1179 case 83: return "R_IA_64_LTOFF_FPTR64I"; 1180 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 1181 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 1182 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 1183 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 1184 case 92: return "R_IA_64_SEGREL32MSB"; 1185 case 93: return "R_IA_64_SEGREL32LSB"; 1186 case 94: return "R_IA_64_SEGREL64MSB"; 1187 case 95: return "R_IA_64_SEGREL64LSB"; 1188 case 100: return "R_IA_64_SECREL32MSB"; 1189 case 101: return "R_IA_64_SECREL32LSB"; 1190 case 102: return "R_IA_64_SECREL64MSB"; 1191 case 103: return "R_IA_64_SECREL64LSB"; 1192 case 108: return "R_IA_64_REL32MSB"; 1193 case 109: return "R_IA_64_REL32LSB"; 1194 case 110: return "R_IA_64_REL64MSB"; 1195 case 111: return "R_IA_64_REL64LSB"; 1196 case 116: return "R_IA_64_LTV32MSB"; 1197 case 117: return "R_IA_64_LTV32LSB"; 1198 case 118: return "R_IA_64_LTV64MSB"; 1199 case 119: return "R_IA_64_LTV64LSB"; 1200 case 121: return "R_IA_64_PCREL21BI"; 1201 case 122: return "R_IA_64_PCREL22"; 1202 case 123: return "R_IA_64_PCREL64I"; 1203 case 128: return "R_IA_64_IPLTMSB"; 1204 case 129: return "R_IA_64_IPLTLSB"; 1205 case 133: return "R_IA_64_SUB"; 1206 case 134: return "R_IA_64_LTOFF22X"; 1207 case 135: return "R_IA_64_LDXMOV"; 1208 case 145: return "R_IA_64_TPREL14"; 1209 case 146: return "R_IA_64_TPREL22"; 1210 case 147: return "R_IA_64_TPREL64I"; 1211 case 150: return "R_IA_64_TPREL64MSB"; 1212 case 151: return "R_IA_64_TPREL64LSB"; 1213 case 154: return "R_IA_64_LTOFF_TPREL22"; 1214 case 166: return "R_IA_64_DTPMOD64MSB"; 1215 case 167: return "R_IA_64_DTPMOD64LSB"; 1216 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 1217 case 177: return "R_IA_64_DTPREL14"; 1218 case 178: return "R_IA_64_DTPREL22"; 1219 case 179: return "R_IA_64_DTPREL64I"; 1220 case 180: return "R_IA_64_DTPREL32MSB"; 1221 case 181: return "R_IA_64_DTPREL32LSB"; 1222 case 182: return "R_IA_64_DTPREL64MSB"; 1223 case 183: return "R_IA_64_DTPREL64LSB"; 1224 case 186: return "R_IA_64_LTOFF_DTPREL22"; 1225 default: return ""; 1226 } 1227 case EM_MIPS: 1228 switch(type) { 1229 case 0: return "R_MIPS_NONE"; 1230 case 1: return "R_MIPS_16"; 1231 case 2: return "R_MIPS_32"; 1232 case 3: return "R_MIPS_REL32"; 1233 case 4: return "R_MIPS_26"; 1234 case 5: return "R_MIPS_HI16"; 1235 case 6: return "R_MIPS_LO16"; 1236 case 7: return "R_MIPS_GPREL16"; 1237 case 8: return "R_MIPS_LITERAL"; 1238 case 9: return "R_MIPS_GOT16"; 1239 case 10: return "R_MIPS_PC16"; 1240 case 11: return "R_MIPS_CALL16"; 1241 case 12: return "R_MIPS_GPREL32"; 1242 case 21: return "R_MIPS_GOTHI16"; 1243 case 22: return "R_MIPS_GOTLO16"; 1244 case 30: return "R_MIPS_CALLHI16"; 1245 case 31: return "R_MIPS_CALLLO16"; 1246 default: return ""; 1247 } 1248 case EM_PPC: 1249 switch(type) { 1250 case 0: return "R_PPC_NONE"; 1251 case 1: return "R_PPC_ADDR32"; 1252 case 2: return "R_PPC_ADDR24"; 1253 case 3: return "R_PPC_ADDR16"; 1254 case 4: return "R_PPC_ADDR16_LO"; 1255 case 5: return "R_PPC_ADDR16_HI"; 1256 case 6: return "R_PPC_ADDR16_HA"; 1257 case 7: return "R_PPC_ADDR14"; 1258 case 8: return "R_PPC_ADDR14_BRTAKEN"; 1259 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 1260 case 10: return "R_PPC_REL24"; 1261 case 11: return "R_PPC_REL14"; 1262 case 12: return "R_PPC_REL14_BRTAKEN"; 1263 case 13: return "R_PPC_REL14_BRNTAKEN"; 1264 case 14: return "R_PPC_GOT16"; 1265 case 15: return "R_PPC_GOT16_LO"; 1266 case 16: return "R_PPC_GOT16_HI"; 1267 case 17: return "R_PPC_GOT16_HA"; 1268 case 18: return "R_PPC_PLTREL24"; 1269 case 19: return "R_PPC_COPY"; 1270 case 20: return "R_PPC_GLOB_DAT"; 1271 case 21: return "R_PPC_JMP_SLOT"; 1272 case 22: return "R_PPC_RELATIVE"; 1273 case 23: return "R_PPC_LOCAL24PC"; 1274 case 24: return "R_PPC_UADDR32"; 1275 case 25: return "R_PPC_UADDR16"; 1276 case 26: return "R_PPC_REL32"; 1277 case 27: return "R_PPC_PLT32"; 1278 case 28: return "R_PPC_PLTREL32"; 1279 case 29: return "R_PPC_PLT16_LO"; 1280 case 30: return "R_PPC_PLT16_HI"; 1281 case 31: return "R_PPC_PLT16_HA"; 1282 case 32: return "R_PPC_SDAREL16"; 1283 case 33: return "R_PPC_SECTOFF"; 1284 case 34: return "R_PPC_SECTOFF_LO"; 1285 case 35: return "R_PPC_SECTOFF_HI"; 1286 case 36: return "R_PPC_SECTOFF_HA"; 1287 case 67: return "R_PPC_TLS"; 1288 case 68: return "R_PPC_DTPMOD32"; 1289 case 69: return "R_PPC_TPREL16"; 1290 case 70: return "R_PPC_TPREL16_LO"; 1291 case 71: return "R_PPC_TPREL16_HI"; 1292 case 72: return "R_PPC_TPREL16_HA"; 1293 case 73: return "R_PPC_TPREL32"; 1294 case 74: return "R_PPC_DTPREL16"; 1295 case 75: return "R_PPC_DTPREL16_LO"; 1296 case 76: return "R_PPC_DTPREL16_HI"; 1297 case 77: return "R_PPC_DTPREL16_HA"; 1298 case 78: return "R_PPC_DTPREL32"; 1299 case 79: return "R_PPC_GOT_TLSGD16"; 1300 case 80: return "R_PPC_GOT_TLSGD16_LO"; 1301 case 81: return "R_PPC_GOT_TLSGD16_HI"; 1302 case 82: return "R_PPC_GOT_TLSGD16_HA"; 1303 case 83: return "R_PPC_GOT_TLSLD16"; 1304 case 84: return "R_PPC_GOT_TLSLD16_LO"; 1305 case 85: return "R_PPC_GOT_TLSLD16_HI"; 1306 case 86: return "R_PPC_GOT_TLSLD16_HA"; 1307 case 87: return "R_PPC_GOT_TPREL16"; 1308 case 88: return "R_PPC_GOT_TPREL16_LO"; 1309 case 89: return "R_PPC_GOT_TPREL16_HI"; 1310 case 90: return "R_PPC_GOT_TPREL16_HA"; 1311 case 101: return "R_PPC_EMB_NADDR32"; 1312 case 102: return "R_PPC_EMB_NADDR16"; 1313 case 103: return "R_PPC_EMB_NADDR16_LO"; 1314 case 104: return "R_PPC_EMB_NADDR16_HI"; 1315 case 105: return "R_PPC_EMB_NADDR16_HA"; 1316 case 106: return "R_PPC_EMB_SDAI16"; 1317 case 107: return "R_PPC_EMB_SDA2I16"; 1318 case 108: return "R_PPC_EMB_SDA2REL"; 1319 case 109: return "R_PPC_EMB_SDA21"; 1320 case 110: return "R_PPC_EMB_MRKREF"; 1321 case 111: return "R_PPC_EMB_RELSEC16"; 1322 case 112: return "R_PPC_EMB_RELST_LO"; 1323 case 113: return "R_PPC_EMB_RELST_HI"; 1324 case 114: return "R_PPC_EMB_RELST_HA"; 1325 case 115: return "R_PPC_EMB_BIT_FLD"; 1326 case 116: return "R_PPC_EMB_RELSDA"; 1327 default: return ""; 1328 } 1329 case EM_SPARC: 1330 case EM_SPARCV9: 1331 switch(type) { 1332 case 0: return "R_SPARC_NONE"; 1333 case 1: return "R_SPARC_8"; 1334 case 2: return "R_SPARC_16"; 1335 case 3: return "R_SPARC_32"; 1336 case 4: return "R_SPARC_DISP8"; 1337 case 5: return "R_SPARC_DISP16"; 1338 case 6: return "R_SPARC_DISP32"; 1339 case 7: return "R_SPARC_WDISP30"; 1340 case 8: return "R_SPARC_WDISP22"; 1341 case 9: return "R_SPARC_HI22"; 1342 case 10: return "R_SPARC_22"; 1343 case 11: return "R_SPARC_13"; 1344 case 12: return "R_SPARC_LO10"; 1345 case 13: return "R_SPARC_GOT10"; 1346 case 14: return "R_SPARC_GOT13"; 1347 case 15: return "R_SPARC_GOT22"; 1348 case 16: return "R_SPARC_PC10"; 1349 case 17: return "R_SPARC_PC22"; 1350 case 18: return "R_SPARC_WPLT30"; 1351 case 19: return "R_SPARC_COPY"; 1352 case 20: return "R_SPARC_GLOB_DAT"; 1353 case 21: return "R_SPARC_JMP_SLOT"; 1354 case 22: return "R_SPARC_RELATIVE"; 1355 case 23: return "R_SPARC_UA32"; 1356 case 24: return "R_SPARC_PLT32"; 1357 case 25: return "R_SPARC_HIPLT22"; 1358 case 26: return "R_SPARC_LOPLT10"; 1359 case 27: return "R_SPARC_PCPLT32"; 1360 case 28: return "R_SPARC_PCPLT22"; 1361 case 29: return "R_SPARC_PCPLT10"; 1362 case 30: return "R_SPARC_10"; 1363 case 31: return "R_SPARC_11"; 1364 case 32: return "R_SPARC_64"; 1365 case 33: return "R_SPARC_OLO10"; 1366 case 34: return "R_SPARC_HH22"; 1367 case 35: return "R_SPARC_HM10"; 1368 case 36: return "R_SPARC_LM22"; 1369 case 37: return "R_SPARC_PC_HH22"; 1370 case 38: return "R_SPARC_PC_HM10"; 1371 case 39: return "R_SPARC_PC_LM22"; 1372 case 40: return "R_SPARC_WDISP16"; 1373 case 41: return "R_SPARC_WDISP19"; 1374 case 42: return "R_SPARC_GLOB_JMP"; 1375 case 43: return "R_SPARC_7"; 1376 case 44: return "R_SPARC_5"; 1377 case 45: return "R_SPARC_6"; 1378 case 46: return "R_SPARC_DISP64"; 1379 case 47: return "R_SPARC_PLT64"; 1380 case 48: return "R_SPARC_HIX22"; 1381 case 49: return "R_SPARC_LOX10"; 1382 case 50: return "R_SPARC_H44"; 1383 case 51: return "R_SPARC_M44"; 1384 case 52: return "R_SPARC_L44"; 1385 case 53: return "R_SPARC_REGISTER"; 1386 case 54: return "R_SPARC_UA64"; 1387 case 55: return "R_SPARC_UA16"; 1388 case 56: return "R_SPARC_TLS_GD_HI22"; 1389 case 57: return "R_SPARC_TLS_GD_LO10"; 1390 case 58: return "R_SPARC_TLS_GD_ADD"; 1391 case 59: return "R_SPARC_TLS_GD_CALL"; 1392 case 60: return "R_SPARC_TLS_LDM_HI22"; 1393 case 61: return "R_SPARC_TLS_LDM_LO10"; 1394 case 62: return "R_SPARC_TLS_LDM_ADD"; 1395 case 63: return "R_SPARC_TLS_LDM_CALL"; 1396 case 64: return "R_SPARC_TLS_LDO_HIX22"; 1397 case 65: return "R_SPARC_TLS_LDO_LOX10"; 1398 case 66: return "R_SPARC_TLS_LDO_ADD"; 1399 case 67: return "R_SPARC_TLS_IE_HI22"; 1400 case 68: return "R_SPARC_TLS_IE_LO10"; 1401 case 69: return "R_SPARC_TLS_IE_LD"; 1402 case 70: return "R_SPARC_TLS_IE_LDX"; 1403 case 71: return "R_SPARC_TLS_IE_ADD"; 1404 case 72: return "R_SPARC_TLS_LE_HIX22"; 1405 case 73: return "R_SPARC_TLS_LE_LOX10"; 1406 case 74: return "R_SPARC_TLS_DTPMOD32"; 1407 case 75: return "R_SPARC_TLS_DTPMOD64"; 1408 case 76: return "R_SPARC_TLS_DTPOFF32"; 1409 case 77: return "R_SPARC_TLS_DTPOFF64"; 1410 case 78: return "R_SPARC_TLS_TPOFF32"; 1411 case 79: return "R_SPARC_TLS_TPOFF64"; 1412 default: return ""; 1413 } 1414 case EM_X86_64: 1415 switch(type) { 1416 case 0: return "R_X86_64_NONE"; 1417 case 1: return "R_X86_64_64"; 1418 case 2: return "R_X86_64_PC32"; 1419 case 3: return "R_X86_64_GOT32"; 1420 case 4: return "R_X86_64_PLT32"; 1421 case 5: return "R_X86_64_COPY"; 1422 case 6: return "R_X86_64_GLOB_DAT"; 1423 case 7: return "R_X86_64_JMP_SLOT"; 1424 case 8: return "R_X86_64_RELATIVE"; 1425 case 9: return "R_X86_64_GOTPCREL"; 1426 case 10: return "R_X86_64_32"; 1427 case 11: return "R_X86_64_32S"; 1428 case 12: return "R_X86_64_16"; 1429 case 13: return "R_X86_64_PC16"; 1430 case 14: return "R_X86_64_8"; 1431 case 15: return "R_X86_64_PC8"; 1432 case 16: return "R_X86_64_DTPMOD64"; 1433 case 17: return "R_X86_64_DTPOFF64"; 1434 case 18: return "R_X86_64_TPOFF64"; 1435 case 19: return "R_X86_64_TLSGD"; 1436 case 20: return "R_X86_64_TLSLD"; 1437 case 21: return "R_X86_64_DTPOFF32"; 1438 case 22: return "R_X86_64_GOTTPOFF"; 1439 case 23: return "R_X86_64_TPOFF32"; 1440 default: return ""; 1441 } 1442 default: return ""; 1443 } 1444 } 1445 1446 static const char * 1447 note_type(unsigned int osabi, unsigned int et, unsigned int nt) 1448 { 1449 static char s_nt[32]; 1450 1451 if (et == ET_CORE) { 1452 switch (nt) { 1453 case NT_PRSTATUS: 1454 return "NT_PRSTATUS (Process status)"; 1455 case NT_FPREGSET: 1456 return "NT_FPREGSET (Floating point information)"; 1457 case NT_PRPSINFO: 1458 return "NT_PRPSINFO (Process information)"; 1459 case NT_AUXV: 1460 return "NT_AUXV (Auxiliary vector)"; 1461 case NT_PRXFPREG: 1462 return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1463 case NT_PSTATUS: 1464 return "NT_PSTATUS (Linux process status)"; 1465 case NT_FPREGS: 1466 return "NT_FPREGS (Linux floating point regset)"; 1467 case NT_PSINFO: 1468 return "NT_PSINFO (Linux process information)"; 1469 case NT_LWPSTATUS: 1470 return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1471 case NT_LWPSINFO: 1472 return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1473 default: 1474 snprintf(s_nt, sizeof(s_nt), "<unknown: %u>", nt); 1475 return (s_nt); 1476 } 1477 } else { 1478 switch (nt) { 1479 case NT_ABI_TAG: 1480 switch (osabi) { 1481 case ELFOSABI_FREEBSD: 1482 return "NT_FREEBSD_ABI_TAG"; 1483 case ELFOSABI_NETBSD: 1484 return "NT_NETBSD_IDENT"; 1485 case ELFOSABI_OPENBSD: 1486 return "NT_OPENBSD_IDENT"; 1487 default: 1488 return "NT_GNU_ABI_TAG"; 1489 } 1490 case NT_GNU_HWCAP: 1491 return "NT_GNU_HWCAP (Hardware capabilities)"; 1492 case NT_GNU_BUILD_ID: 1493 return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1494 case NT_GNU_GOLD_VERSION: 1495 return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1496 default: 1497 snprintf(s_nt, sizeof(s_nt), "<unknown: %u>", nt); 1498 return (s_nt); 1499 } 1500 } 1501 } 1502 1503 static struct { 1504 const char *name; 1505 int value; 1506 } l_flag[] = { 1507 {"EXACT_MATCH", LL_EXACT_MATCH}, 1508 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1509 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1510 {"EXPORTS", LL_EXPORTS}, 1511 {"DELAY_LOAD", LL_DELAY_LOAD}, 1512 {"DELTA", LL_DELTA}, 1513 {NULL, 0} 1514 }; 1515 1516 static struct mips_option mips_exceptions_option[] = { 1517 {OEX_PAGE0, "PAGE0"}, 1518 {OEX_SMM, "SMM"}, 1519 {OEX_PRECISEFP, "PRECISEFP"}, 1520 {OEX_DISMISS, "DISMISS"}, 1521 {0, NULL} 1522 }; 1523 1524 static struct mips_option mips_pad_option[] = { 1525 {OPAD_PREFIX, "PREFIX"}, 1526 {OPAD_POSTFIX, "POSTFIX"}, 1527 {OPAD_SYMBOL, "SYMBOL"}, 1528 {0, NULL} 1529 }; 1530 1531 static struct mips_option mips_hwpatch_option[] = { 1532 {OHW_R4KEOP, "R4KEOP"}, 1533 {OHW_R8KPFETCH, "R8KPFETCH"}, 1534 {OHW_R5KEOP, "R5KEOP"}, 1535 {OHW_R5KCVTL, "R5KCVTL"}, 1536 {0, NULL} 1537 }; 1538 1539 static struct mips_option mips_hwa_option[] = { 1540 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1541 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1542 {0, NULL} 1543 }; 1544 1545 static struct mips_option mips_hwo_option[] = { 1546 {OHWO0_FIXADE, "FIXADE"}, 1547 {0, NULL} 1548 }; 1549 1550 static const char * 1551 option_kind(uint8_t kind) 1552 { 1553 static char s_kind[32]; 1554 1555 switch (kind) { 1556 case ODK_NULL: return "NULL"; 1557 case ODK_REGINFO: return "REGINFO"; 1558 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1559 case ODK_PAD: return "PAD"; 1560 case ODK_HWPATCH: return "HWPATCH"; 1561 case ODK_FILL: return "FILL"; 1562 case ODK_TAGS: return "TAGS"; 1563 case ODK_HWAND: return "HWAND"; 1564 case ODK_HWOR: return "HWOR"; 1565 case ODK_GP_GROUP: return "GP_GROUP"; 1566 case ODK_IDENT: return "IDENT"; 1567 default: 1568 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1569 return (s_kind); 1570 } 1571 } 1572 1573 static const char * 1574 top_tag(unsigned int tag) 1575 { 1576 static char s_top_tag[32]; 1577 1578 switch (tag) { 1579 case 1: return "File Attributes"; 1580 case 2: return "Section Attributes"; 1581 case 3: return "Symbol Attributes"; 1582 default: 1583 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1584 return (s_top_tag); 1585 } 1586 } 1587 1588 static const char * 1589 aeabi_cpu_arch(uint64_t arch) 1590 { 1591 static char s_cpu_arch[32]; 1592 1593 switch (arch) { 1594 case 0: return "Pre-V4"; 1595 case 1: return "ARM v4"; 1596 case 2: return "ARM v4T"; 1597 case 3: return "ARM v5T"; 1598 case 4: return "ARM v5TE"; 1599 case 5: return "ARM v5TEJ"; 1600 case 6: return "ARM v6"; 1601 case 7: return "ARM v6KZ"; 1602 case 8: return "ARM v6T2"; 1603 case 9: return "ARM v6K"; 1604 case 10: return "ARM v7"; 1605 case 11: return "ARM v6-M"; 1606 case 12: return "ARM v6S-M"; 1607 case 13: return "ARM v7E-M"; 1608 default: 1609 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1610 "Unknown (%ju)", (uintmax_t) arch); 1611 return (s_cpu_arch); 1612 } 1613 } 1614 1615 static const char * 1616 aeabi_cpu_arch_profile(uint64_t pf) 1617 { 1618 static char s_arch_profile[32]; 1619 1620 switch (pf) { 1621 case 0: 1622 return "Not applicable"; 1623 case 0x41: /* 'A' */ 1624 return "Application Profile"; 1625 case 0x52: /* 'R' */ 1626 return "Real-Time Profile"; 1627 case 0x4D: /* 'M' */ 1628 return "Microcontroller Profile"; 1629 case 0x53: /* 'S' */ 1630 return "Application or Real-Time Profile"; 1631 default: 1632 snprintf(s_arch_profile, sizeof(s_arch_profile), 1633 "Unknown (%ju)\n", (uintmax_t) pf); 1634 return (s_arch_profile); 1635 } 1636 } 1637 1638 static const char * 1639 aeabi_arm_isa(uint64_t ai) 1640 { 1641 static char s_ai[32]; 1642 1643 switch (ai) { 1644 case 0: return "No"; 1645 case 1: return "Yes"; 1646 default: 1647 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1648 (uintmax_t) ai); 1649 return (s_ai); 1650 } 1651 } 1652 1653 static const char * 1654 aeabi_thumb_isa(uint64_t ti) 1655 { 1656 static char s_ti[32]; 1657 1658 switch (ti) { 1659 case 0: return "No"; 1660 case 1: return "16-bit Thumb"; 1661 case 2: return "32-bit Thumb"; 1662 default: 1663 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1664 (uintmax_t) ti); 1665 return (s_ti); 1666 } 1667 } 1668 1669 static const char * 1670 aeabi_fp_arch(uint64_t fp) 1671 { 1672 static char s_fp_arch[32]; 1673 1674 switch (fp) { 1675 case 0: return "No"; 1676 case 1: return "VFPv1"; 1677 case 2: return "VFPv2"; 1678 case 3: return "VFPv3"; 1679 case 4: return "VFPv3-D16"; 1680 case 5: return "VFPv4"; 1681 case 6: return "VFPv4-D16"; 1682 default: 1683 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1684 (uintmax_t) fp); 1685 return (s_fp_arch); 1686 } 1687 } 1688 1689 static const char * 1690 aeabi_wmmx_arch(uint64_t wmmx) 1691 { 1692 static char s_wmmx[32]; 1693 1694 switch (wmmx) { 1695 case 0: return "No"; 1696 case 1: return "WMMXv1"; 1697 case 2: return "WMMXv2"; 1698 default: 1699 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1700 (uintmax_t) wmmx); 1701 return (s_wmmx); 1702 } 1703 } 1704 1705 static const char * 1706 aeabi_adv_simd_arch(uint64_t simd) 1707 { 1708 static char s_simd[32]; 1709 1710 switch (simd) { 1711 case 0: return "No"; 1712 case 1: return "NEONv1"; 1713 case 2: return "NEONv2"; 1714 default: 1715 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1716 (uintmax_t) simd); 1717 return (s_simd); 1718 } 1719 } 1720 1721 static const char * 1722 aeabi_pcs_config(uint64_t pcs) 1723 { 1724 static char s_pcs[32]; 1725 1726 switch (pcs) { 1727 case 0: return "None"; 1728 case 1: return "Bare platform"; 1729 case 2: return "Linux"; 1730 case 3: return "Linux DSO"; 1731 case 4: return "Palm OS 2004"; 1732 case 5: return "Palm OS (future)"; 1733 case 6: return "Symbian OS 2004"; 1734 case 7: return "Symbian OS (future)"; 1735 default: 1736 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1737 (uintmax_t) pcs); 1738 return (s_pcs); 1739 } 1740 } 1741 1742 static const char * 1743 aeabi_pcs_r9(uint64_t r9) 1744 { 1745 static char s_r9[32]; 1746 1747 switch (r9) { 1748 case 0: return "V6"; 1749 case 1: return "SB"; 1750 case 2: return "TLS pointer"; 1751 case 3: return "Unused"; 1752 default: 1753 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1754 return (s_r9); 1755 } 1756 } 1757 1758 static const char * 1759 aeabi_pcs_rw(uint64_t rw) 1760 { 1761 static char s_rw[32]; 1762 1763 switch (rw) { 1764 case 0: return "Absolute"; 1765 case 1: return "PC-relative"; 1766 case 2: return "SB-relative"; 1767 case 3: return "None"; 1768 default: 1769 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1770 return (s_rw); 1771 } 1772 } 1773 1774 static const char * 1775 aeabi_pcs_ro(uint64_t ro) 1776 { 1777 static char s_ro[32]; 1778 1779 switch (ro) { 1780 case 0: return "Absolute"; 1781 case 1: return "PC-relative"; 1782 case 2: return "None"; 1783 default: 1784 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1785 return (s_ro); 1786 } 1787 } 1788 1789 static const char * 1790 aeabi_pcs_got(uint64_t got) 1791 { 1792 static char s_got[32]; 1793 1794 switch (got) { 1795 case 0: return "None"; 1796 case 1: return "direct"; 1797 case 2: return "indirect via GOT"; 1798 default: 1799 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1800 (uintmax_t) got); 1801 return (s_got); 1802 } 1803 } 1804 1805 static const char * 1806 aeabi_pcs_wchar_t(uint64_t wt) 1807 { 1808 static char s_wt[32]; 1809 1810 switch (wt) { 1811 case 0: return "None"; 1812 case 2: return "wchar_t size 2"; 1813 case 4: return "wchar_t size 4"; 1814 default: 1815 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1816 return (s_wt); 1817 } 1818 } 1819 1820 static const char * 1821 aeabi_enum_size(uint64_t es) 1822 { 1823 static char s_es[32]; 1824 1825 switch (es) { 1826 case 0: return "None"; 1827 case 1: return "smallest"; 1828 case 2: return "32-bit"; 1829 case 3: return "visible 32-bit"; 1830 default: 1831 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1832 return (s_es); 1833 } 1834 } 1835 1836 static const char * 1837 aeabi_align_needed(uint64_t an) 1838 { 1839 static char s_align_n[64]; 1840 1841 switch (an) { 1842 case 0: return "No"; 1843 case 1: return "8-byte align"; 1844 case 2: return "4-byte align"; 1845 case 3: return "Reserved"; 1846 default: 1847 if (an >= 4 && an <= 12) 1848 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1849 " and up to 2^%ju-byte extended align", 1850 (uintmax_t) an); 1851 else 1852 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1853 (uintmax_t) an); 1854 return (s_align_n); 1855 } 1856 } 1857 1858 static const char * 1859 aeabi_align_preserved(uint64_t ap) 1860 { 1861 static char s_align_p[128]; 1862 1863 switch (ap) { 1864 case 0: return "No"; 1865 case 1: return "8-byte align"; 1866 case 2: return "8-byte align and SP % 8 == 0"; 1867 case 3: return "Reserved"; 1868 default: 1869 if (ap >= 4 && ap <= 12) 1870 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1871 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1872 " align", (uintmax_t) ap); 1873 else 1874 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1875 (uintmax_t) ap); 1876 return (s_align_p); 1877 } 1878 } 1879 1880 static const char * 1881 aeabi_fp_rounding(uint64_t fr) 1882 { 1883 static char s_fp_r[32]; 1884 1885 switch (fr) { 1886 case 0: return "Unused"; 1887 case 1: return "Needed"; 1888 default: 1889 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1890 (uintmax_t) fr); 1891 return (s_fp_r); 1892 } 1893 } 1894 1895 static const char * 1896 aeabi_fp_denormal(uint64_t fd) 1897 { 1898 static char s_fp_d[32]; 1899 1900 switch (fd) { 1901 case 0: return "Unused"; 1902 case 1: return "Needed"; 1903 case 2: return "Sign Only"; 1904 default: 1905 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1906 (uintmax_t) fd); 1907 return (s_fp_d); 1908 } 1909 } 1910 1911 static const char * 1912 aeabi_fp_exceptions(uint64_t fe) 1913 { 1914 static char s_fp_e[32]; 1915 1916 switch (fe) { 1917 case 0: return "Unused"; 1918 case 1: return "Needed"; 1919 default: 1920 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1921 (uintmax_t) fe); 1922 return (s_fp_e); 1923 } 1924 } 1925 1926 static const char * 1927 aeabi_fp_user_exceptions(uint64_t fu) 1928 { 1929 static char s_fp_u[32]; 1930 1931 switch (fu) { 1932 case 0: return "Unused"; 1933 case 1: return "Needed"; 1934 default: 1935 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1936 (uintmax_t) fu); 1937 return (s_fp_u); 1938 } 1939 } 1940 1941 static const char * 1942 aeabi_fp_number_model(uint64_t fn) 1943 { 1944 static char s_fp_n[32]; 1945 1946 switch (fn) { 1947 case 0: return "Unused"; 1948 case 1: return "IEEE 754 normal"; 1949 case 2: return "RTABI"; 1950 case 3: return "IEEE 754"; 1951 default: 1952 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1953 (uintmax_t) fn); 1954 return (s_fp_n); 1955 } 1956 } 1957 1958 static const char * 1959 aeabi_fp_16bit_format(uint64_t fp16) 1960 { 1961 static char s_fp_16[64]; 1962 1963 switch (fp16) { 1964 case 0: return "None"; 1965 case 1: return "IEEE 754"; 1966 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1967 default: 1968 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1969 (uintmax_t) fp16); 1970 return (s_fp_16); 1971 } 1972 } 1973 1974 static const char * 1975 aeabi_mpext(uint64_t mp) 1976 { 1977 static char s_mp[32]; 1978 1979 switch (mp) { 1980 case 0: return "Not allowed"; 1981 case 1: return "Allowed"; 1982 default: 1983 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1984 (uintmax_t) mp); 1985 return (s_mp); 1986 } 1987 } 1988 1989 static const char * 1990 aeabi_div(uint64_t du) 1991 { 1992 static char s_du[32]; 1993 1994 switch (du) { 1995 case 0: return "Yes (V7-R/V7-M)"; 1996 case 1: return "No"; 1997 case 2: return "Yes (V7-A)"; 1998 default: 1999 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 2000 (uintmax_t) du); 2001 return (s_du); 2002 } 2003 } 2004 2005 static const char * 2006 aeabi_t2ee(uint64_t t2ee) 2007 { 2008 static char s_t2ee[32]; 2009 2010 switch (t2ee) { 2011 case 0: return "Not allowed"; 2012 case 1: return "Allowed"; 2013 default: 2014 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 2015 (uintmax_t) t2ee); 2016 return (s_t2ee); 2017 } 2018 2019 } 2020 2021 static const char * 2022 aeabi_hardfp(uint64_t hfp) 2023 { 2024 static char s_hfp[32]; 2025 2026 switch (hfp) { 2027 case 0: return "Tag_FP_arch"; 2028 case 1: return "only SP"; 2029 case 2: return "only DP"; 2030 case 3: return "both SP and DP"; 2031 default: 2032 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 2033 (uintmax_t) hfp); 2034 return (s_hfp); 2035 } 2036 } 2037 2038 static const char * 2039 aeabi_vfp_args(uint64_t va) 2040 { 2041 static char s_va[32]; 2042 2043 switch (va) { 2044 case 0: return "AAPCS (base variant)"; 2045 case 1: return "AAPCS (VFP variant)"; 2046 case 2: return "toolchain-specific"; 2047 default: 2048 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 2049 return (s_va); 2050 } 2051 } 2052 2053 static const char * 2054 aeabi_wmmx_args(uint64_t wa) 2055 { 2056 static char s_wa[32]; 2057 2058 switch (wa) { 2059 case 0: return "AAPCS (base variant)"; 2060 case 1: return "Intel WMMX"; 2061 case 2: return "toolchain-specific"; 2062 default: 2063 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 2064 return (s_wa); 2065 } 2066 } 2067 2068 static const char * 2069 aeabi_unaligned_access(uint64_t ua) 2070 { 2071 static char s_ua[32]; 2072 2073 switch (ua) { 2074 case 0: return "Not allowed"; 2075 case 1: return "Allowed"; 2076 default: 2077 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 2078 return (s_ua); 2079 } 2080 } 2081 2082 static const char * 2083 aeabi_fp_hpext(uint64_t fh) 2084 { 2085 static char s_fh[32]; 2086 2087 switch (fh) { 2088 case 0: return "Not allowed"; 2089 case 1: return "Allowed"; 2090 default: 2091 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 2092 return (s_fh); 2093 } 2094 } 2095 2096 static const char * 2097 aeabi_optm_goal(uint64_t og) 2098 { 2099 static char s_og[32]; 2100 2101 switch (og) { 2102 case 0: return "None"; 2103 case 1: return "Speed"; 2104 case 2: return "Speed aggressive"; 2105 case 3: return "Space"; 2106 case 4: return "Space aggressive"; 2107 case 5: return "Debugging"; 2108 case 6: return "Best Debugging"; 2109 default: 2110 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 2111 return (s_og); 2112 } 2113 } 2114 2115 static const char * 2116 aeabi_fp_optm_goal(uint64_t fog) 2117 { 2118 static char s_fog[32]; 2119 2120 switch (fog) { 2121 case 0: return "None"; 2122 case 1: return "Speed"; 2123 case 2: return "Speed aggressive"; 2124 case 3: return "Space"; 2125 case 4: return "Space aggressive"; 2126 case 5: return "Accurary"; 2127 case 6: return "Best Accurary"; 2128 default: 2129 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 2130 (uintmax_t) fog); 2131 return (s_fog); 2132 } 2133 } 2134 2135 static const char * 2136 aeabi_virtual(uint64_t vt) 2137 { 2138 static char s_virtual[64]; 2139 2140 switch (vt) { 2141 case 0: return "No"; 2142 case 1: return "TrustZone"; 2143 case 2: return "Virtualization extension"; 2144 case 3: return "TrustZone and virtualization extension"; 2145 default: 2146 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 2147 (uintmax_t) vt); 2148 return (s_virtual); 2149 } 2150 } 2151 2152 static struct { 2153 uint64_t tag; 2154 const char *s_tag; 2155 const char *(*get_desc)(uint64_t val); 2156 } aeabi_tags[] = { 2157 {4, "Tag_CPU_raw_name", NULL}, 2158 {5, "Tag_CPU_name", NULL}, 2159 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 2160 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 2161 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 2162 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 2163 {10, "Tag_FP_arch", aeabi_fp_arch}, 2164 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 2165 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 2166 {13, "Tag_PCS_config", aeabi_pcs_config}, 2167 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 2168 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 2169 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 2170 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 2171 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 2172 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 2173 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 2174 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 2175 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 2176 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 2177 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 2178 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 2179 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 2180 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 2181 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 2182 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 2183 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 2184 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 2185 {32, "Tag_compatibility", NULL}, 2186 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 2187 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 2188 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 2189 {42, "Tag_MPextension_use", aeabi_mpext}, 2190 {44, "Tag_DIV_use", aeabi_div}, 2191 {64, "Tag_nodefaults", NULL}, 2192 {65, "Tag_also_compatible_with", NULL}, 2193 {66, "Tag_T2EE_use", aeabi_t2ee}, 2194 {67, "Tag_conformance", NULL}, 2195 {68, "Tag_Virtualization_use", aeabi_virtual}, 2196 {70, "Tag_MPextension_use", aeabi_mpext}, 2197 }; 2198 2199 static const char * 2200 mips_abi_fp(uint64_t fp) 2201 { 2202 static char s_mips_abi_fp[64]; 2203 2204 switch (fp) { 2205 case 0: return "N/A"; 2206 case 1: return "Hard float (double precision)"; 2207 case 2: return "Hard float (single precision)"; 2208 case 3: return "Soft float"; 2209 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2210 default: 2211 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2212 (uintmax_t) fp); 2213 return (s_mips_abi_fp); 2214 } 2215 } 2216 2217 static const char * 2218 ppc_abi_fp(uint64_t fp) 2219 { 2220 static char s_ppc_abi_fp[64]; 2221 2222 switch (fp) { 2223 case 0: return "N/A"; 2224 case 1: return "Hard float (double precision)"; 2225 case 2: return "Soft float"; 2226 case 3: return "Hard float (single precision)"; 2227 default: 2228 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2229 (uintmax_t) fp); 2230 return (s_ppc_abi_fp); 2231 } 2232 } 2233 2234 static const char * 2235 ppc_abi_vector(uint64_t vec) 2236 { 2237 static char s_vec[64]; 2238 2239 switch (vec) { 2240 case 0: return "N/A"; 2241 case 1: return "Generic purpose registers"; 2242 case 2: return "AltiVec registers"; 2243 case 3: return "SPE registers"; 2244 default: 2245 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2246 return (s_vec); 2247 } 2248 } 2249 2250 static void 2251 dump_ehdr(struct readelf *re) 2252 { 2253 size_t shnum, shstrndx; 2254 int i; 2255 2256 printf("ELF Header:\n"); 2257 2258 /* e_ident[]. */ 2259 printf(" Magic: "); 2260 for (i = 0; i < EI_NIDENT; i++) 2261 printf("%.2x ", re->ehdr.e_ident[i]); 2262 putchar('\n'); 2263 2264 /* EI_CLASS. */ 2265 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2266 2267 /* EI_DATA. */ 2268 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2269 2270 /* EI_VERSION. */ 2271 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2272 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2273 2274 /* EI_OSABI. */ 2275 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2276 2277 /* EI_ABIVERSION. */ 2278 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2279 2280 /* e_type. */ 2281 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2282 2283 /* e_machine. */ 2284 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2285 2286 /* e_version. */ 2287 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2288 2289 /* e_entry. */ 2290 printf("%-37s%#jx\n", " Entry point address:", 2291 (uintmax_t)re->ehdr.e_entry); 2292 2293 /* e_phoff. */ 2294 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2295 (uintmax_t)re->ehdr.e_phoff); 2296 2297 /* e_shoff. */ 2298 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2299 (uintmax_t)re->ehdr.e_shoff); 2300 2301 /* e_flags. */ 2302 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2303 dump_eflags(re, re->ehdr.e_flags); 2304 putchar('\n'); 2305 2306 /* e_ehsize. */ 2307 printf("%-37s%u (bytes)\n", " Size of this header:", 2308 re->ehdr.e_ehsize); 2309 2310 /* e_phentsize. */ 2311 printf("%-37s%u (bytes)\n", " Size of program headers:", 2312 re->ehdr.e_phentsize); 2313 2314 /* e_phnum. */ 2315 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2316 2317 /* e_shentsize. */ 2318 printf("%-37s%u (bytes)\n", " Size of section headers:", 2319 re->ehdr.e_shentsize); 2320 2321 /* e_shnum. */ 2322 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2323 if (re->ehdr.e_shnum == SHN_UNDEF) { 2324 /* Extended section numbering is in use. */ 2325 if (elf_getshnum(re->elf, &shnum)) 2326 printf(" (%ju)", (uintmax_t)shnum); 2327 } 2328 putchar('\n'); 2329 2330 /* e_shstrndx. */ 2331 printf("%-37s%u", " Section header string table index:", 2332 re->ehdr.e_shstrndx); 2333 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2334 /* Extended section numbering is in use. */ 2335 if (elf_getshstrndx(re->elf, &shstrndx)) 2336 printf(" (%ju)", (uintmax_t)shstrndx); 2337 } 2338 putchar('\n'); 2339 } 2340 2341 static void 2342 dump_eflags(struct readelf *re, uint64_t e_flags) 2343 { 2344 struct eflags_desc *edesc; 2345 int arm_eabi; 2346 2347 edesc = NULL; 2348 switch (re->ehdr.e_machine) { 2349 case EM_ARM: 2350 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2351 if (arm_eabi == 0) 2352 printf(", GNU EABI"); 2353 else if (arm_eabi <= 5) 2354 printf(", Version%d EABI", arm_eabi); 2355 edesc = arm_eflags_desc; 2356 break; 2357 case EM_MIPS: 2358 case EM_MIPS_RS3_LE: 2359 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2360 case 0: printf(", mips1"); break; 2361 case 1: printf(", mips2"); break; 2362 case 2: printf(", mips3"); break; 2363 case 3: printf(", mips4"); break; 2364 case 4: printf(", mips5"); break; 2365 case 5: printf(", mips32"); break; 2366 case 6: printf(", mips64"); break; 2367 case 7: printf(", mips32r2"); break; 2368 case 8: printf(", mips64r2"); break; 2369 default: break; 2370 } 2371 switch ((e_flags & 0x00FF0000) >> 16) { 2372 case 0x81: printf(", 3900"); break; 2373 case 0x82: printf(", 4010"); break; 2374 case 0x83: printf(", 4100"); break; 2375 case 0x85: printf(", 4650"); break; 2376 case 0x87: printf(", 4120"); break; 2377 case 0x88: printf(", 4111"); break; 2378 case 0x8a: printf(", sb1"); break; 2379 case 0x8b: printf(", octeon"); break; 2380 case 0x8c: printf(", xlr"); break; 2381 case 0x91: printf(", 5400"); break; 2382 case 0x98: printf(", 5500"); break; 2383 case 0x99: printf(", 9000"); break; 2384 case 0xa0: printf(", loongson-2e"); break; 2385 case 0xa1: printf(", loongson-2f"); break; 2386 default: break; 2387 } 2388 switch ((e_flags & 0x0000F000) >> 12) { 2389 case 1: printf(", o32"); break; 2390 case 2: printf(", o64"); break; 2391 case 3: printf(", eabi32"); break; 2392 case 4: printf(", eabi64"); break; 2393 default: break; 2394 } 2395 edesc = mips_eflags_desc; 2396 break; 2397 case EM_PPC: 2398 case EM_PPC64: 2399 edesc = powerpc_eflags_desc; 2400 break; 2401 case EM_SPARC: 2402 case EM_SPARC32PLUS: 2403 case EM_SPARCV9: 2404 switch ((e_flags & EF_SPARCV9_MM)) { 2405 case EF_SPARCV9_TSO: printf(", tso"); break; 2406 case EF_SPARCV9_PSO: printf(", pso"); break; 2407 case EF_SPARCV9_MM: printf(", rmo"); break; 2408 default: break; 2409 } 2410 edesc = sparc_eflags_desc; 2411 break; 2412 default: 2413 break; 2414 } 2415 2416 if (edesc != NULL) { 2417 while (edesc->desc != NULL) { 2418 if (e_flags & edesc->flag) 2419 printf(", %s", edesc->desc); 2420 edesc++; 2421 } 2422 } 2423 } 2424 2425 static void 2426 dump_phdr(struct readelf *re) 2427 { 2428 const char *rawfile; 2429 GElf_Phdr phdr; 2430 size_t phnum; 2431 int i, j; 2432 2433 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2434 "MemSiz", "Flg", "Align" 2435 #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ 2436 (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ 2437 (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ 2438 phdr.p_flags & PF_R ? 'R' : ' ', \ 2439 phdr.p_flags & PF_W ? 'W' : ' ', \ 2440 phdr.p_flags & PF_X ? 'E' : ' ', \ 2441 (uintmax_t)phdr.p_align 2442 2443 if (elf_getphnum(re->elf, &phnum) == 0) { 2444 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2445 return; 2446 } 2447 if (phnum == 0) { 2448 printf("\nThere are no program headers in this file.\n"); 2449 return; 2450 } 2451 2452 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2453 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2454 printf("There are %ju program headers, starting at offset %ju\n", 2455 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2456 2457 /* Dump program headers. */ 2458 printf("\nProgram Headers:\n"); 2459 if (re->ec == ELFCLASS32) 2460 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2461 else if (re->options & RE_WW) 2462 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2463 else 2464 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2465 "%-7s%s\n", PH_HDR); 2466 for (i = 0; (size_t) i < phnum; i++) { 2467 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2468 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2469 continue; 2470 } 2471 /* TODO: Add arch-specific segment type dump. */ 2472 if (re->ec == ELFCLASS32) 2473 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2474 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2475 else if (re->options & RE_WW) 2476 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2477 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2478 else 2479 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2480 " 0x%16.16jx 0x%16.16jx %c%c%c" 2481 " %#jx\n", PH_CT); 2482 if (phdr.p_type == PT_INTERP) { 2483 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 2484 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2485 continue; 2486 } 2487 printf(" [Requesting program interpreter: %s]\n", 2488 rawfile + phdr.p_offset); 2489 } 2490 } 2491 2492 /* Dump section to segment mapping. */ 2493 if (re->shnum == 0) 2494 return; 2495 printf("\n Section to Segment mapping:\n"); 2496 printf(" Segment Sections...\n"); 2497 for (i = 0; (size_t)i < phnum; i++) { 2498 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2499 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2500 continue; 2501 } 2502 printf(" %2.2d ", i); 2503 /* skip NULL section. */ 2504 for (j = 1; (size_t)j < re->shnum; j++) 2505 if (re->sl[j].off >= phdr.p_offset && 2506 re->sl[j].off + re->sl[j].sz <= 2507 phdr.p_offset + phdr.p_memsz) 2508 printf("%s ", re->sl[j].name); 2509 printf("\n"); 2510 } 2511 #undef PH_HDR 2512 #undef PH_CT 2513 } 2514 2515 static char * 2516 section_flags(struct readelf *re, struct section *s) 2517 { 2518 #define BUF_SZ 256 2519 static char buf[BUF_SZ]; 2520 int i, p, nb; 2521 2522 p = 0; 2523 nb = re->ec == ELFCLASS32 ? 8 : 16; 2524 if (re->options & RE_T) { 2525 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2526 (uintmax_t)s->flags); 2527 p += nb + 4; 2528 } 2529 for (i = 0; section_flag[i].ln != NULL; i++) { 2530 if ((s->flags & section_flag[i].value) == 0) 2531 continue; 2532 if (re->options & RE_T) { 2533 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2534 section_flag[i].ln); 2535 p += strlen(section_flag[i].ln) + 2; 2536 } else 2537 buf[p++] = section_flag[i].sn; 2538 } 2539 if (re->options & RE_T && p > nb + 4) 2540 p -= 2; 2541 buf[p] = '\0'; 2542 2543 return (buf); 2544 } 2545 2546 static void 2547 dump_shdr(struct readelf *re) 2548 { 2549 struct section *s; 2550 int i; 2551 2552 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2553 "Flg", "Lk", "Inf", "Al" 2554 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2555 "EntSize", "Flags", "Link", "Info", "Align" 2556 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2557 "Lk", "Inf", "Al", "Flags" 2558 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2559 "Size", "EntSize", "Info", "Align", "Flags" 2560 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2561 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2562 (uintmax_t)s->entsize, section_flags(re, s), \ 2563 s->link, s->info, (uintmax_t)s->align 2564 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2565 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2566 (uintmax_t)s->entsize, s->link, s->info, \ 2567 (uintmax_t)s->align, section_flags(re, s) 2568 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2569 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2570 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2571 (uintmax_t)s->align, section_flags(re, s) 2572 2573 if (re->shnum == 0) { 2574 printf("\nThere are no sections in this file.\n"); 2575 return; 2576 } 2577 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2578 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2579 printf("\nSection Headers:\n"); 2580 if (re->ec == ELFCLASS32) { 2581 if (re->options & RE_T) 2582 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2583 "%12s\n", ST_HDR); 2584 else 2585 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2586 S_HDR); 2587 } else if (re->options & RE_WW) { 2588 if (re->options & RE_T) 2589 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2590 "%12s\n", ST_HDR); 2591 else 2592 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2593 S_HDR); 2594 } else { 2595 if (re->options & RE_T) 2596 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2597 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2598 else 2599 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2600 "-6s%-6s%s\n", S_HDRL); 2601 } 2602 for (i = 0; (size_t)i < re->shnum; i++) { 2603 s = &re->sl[i]; 2604 if (re->ec == ELFCLASS32) { 2605 if (re->options & RE_T) 2606 printf(" [%2d] %s\n %-15.15s %8.8jx" 2607 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2608 " %s\n", ST_CT); 2609 else 2610 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2611 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2612 S_CT); 2613 } else if (re->options & RE_WW) { 2614 if (re->options & RE_T) 2615 printf(" [%2d] %s\n %-15.15s %16.16jx" 2616 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2617 " %s\n", ST_CT); 2618 else 2619 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2620 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2621 S_CT); 2622 } else { 2623 if (re->options & RE_T) 2624 printf(" [%2d] %s\n %-15.15s %16.16jx" 2625 " %16.16jx %u\n %16.16jx %16.16jx" 2626 " %-16u %ju\n %s\n", ST_CTL); 2627 else 2628 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2629 " %8.8jx\n %16.16jx %16.16jx " 2630 "%3s %2u %3u %ju\n", S_CT); 2631 } 2632 } 2633 if ((re->options & RE_T) == 0) 2634 printf("Key to Flags:\n W (write), A (alloc)," 2635 " X (execute), M (merge), S (strings)\n" 2636 " I (info), L (link order), G (group), x (unknown)\n" 2637 " O (extra OS processing required)" 2638 " o (OS specific), p (processor specific)\n"); 2639 2640 #undef S_HDR 2641 #undef S_HDRL 2642 #undef ST_HDR 2643 #undef ST_HDRL 2644 #undef S_CT 2645 #undef ST_CT 2646 #undef ST_CTL 2647 } 2648 2649 static void 2650 dump_dynamic(struct readelf *re) 2651 { 2652 GElf_Dyn dyn; 2653 Elf_Data *d; 2654 struct section *s; 2655 int elferr, i, is_dynamic, j, jmax, nentries; 2656 2657 is_dynamic = 0; 2658 2659 for (i = 0; (size_t)i < re->shnum; i++) { 2660 s = &re->sl[i]; 2661 if (s->type != SHT_DYNAMIC) 2662 continue; 2663 (void) elf_errno(); 2664 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2665 elferr = elf_errno(); 2666 if (elferr != 0) 2667 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2668 continue; 2669 } 2670 if (d->d_size <= 0) 2671 continue; 2672 2673 is_dynamic = 1; 2674 2675 /* Determine the actual number of table entries. */ 2676 nentries = 0; 2677 jmax = (int) (s->sz / s->entsize); 2678 2679 for (j = 0; j < jmax; j++) { 2680 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2681 warnx("gelf_getdyn failed: %s", 2682 elf_errmsg(-1)); 2683 continue; 2684 } 2685 nentries ++; 2686 if (dyn.d_tag == DT_NULL) 2687 break; 2688 } 2689 2690 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2691 printf(" contains %u entries:\n", nentries); 2692 2693 if (re->ec == ELFCLASS32) 2694 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2695 else 2696 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2697 2698 for (j = 0; j < nentries; j++) { 2699 if (gelf_getdyn(d, j, &dyn) != &dyn) 2700 continue; 2701 /* Dump dynamic entry type. */ 2702 if (re->ec == ELFCLASS32) 2703 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2704 else 2705 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2706 printf(" %-20s", dt_type(re->ehdr.e_machine, 2707 dyn.d_tag)); 2708 /* Dump dynamic entry value. */ 2709 dump_dyn_val(re, &dyn, s->link); 2710 } 2711 } 2712 2713 if (!is_dynamic) 2714 printf("\nThere is no dynamic section in this file.\n"); 2715 } 2716 2717 static char * 2718 timestamp(time_t ti) 2719 { 2720 static char ts[32]; 2721 struct tm *t; 2722 2723 t = gmtime(&ti); 2724 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2725 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2726 t->tm_min, t->tm_sec); 2727 2728 return (ts); 2729 } 2730 2731 static const char * 2732 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2733 { 2734 const char *name; 2735 2736 if (stab == SHN_UNDEF) 2737 name = "ERROR"; 2738 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2739 (void) elf_errno(); /* clear error */ 2740 name = "ERROR"; 2741 } 2742 2743 return (name); 2744 } 2745 2746 static void 2747 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2748 { 2749 const char *name; 2750 2751 switch (re->ehdr.e_machine) { 2752 case EM_MIPS: 2753 case EM_MIPS_RS3_LE: 2754 switch (dyn->d_tag) { 2755 case DT_MIPS_RLD_VERSION: 2756 case DT_MIPS_LOCAL_GOTNO: 2757 case DT_MIPS_CONFLICTNO: 2758 case DT_MIPS_LIBLISTNO: 2759 case DT_MIPS_SYMTABNO: 2760 case DT_MIPS_UNREFEXTNO: 2761 case DT_MIPS_GOTSYM: 2762 case DT_MIPS_HIPAGENO: 2763 case DT_MIPS_DELTA_CLASS_NO: 2764 case DT_MIPS_DELTA_INSTANCE_NO: 2765 case DT_MIPS_DELTA_RELOC_NO: 2766 case DT_MIPS_DELTA_SYM_NO: 2767 case DT_MIPS_DELTA_CLASSSYM_NO: 2768 case DT_MIPS_LOCALPAGE_GOTIDX: 2769 case DT_MIPS_LOCAL_GOTIDX: 2770 case DT_MIPS_HIDDEN_GOTIDX: 2771 case DT_MIPS_PROTECTED_GOTIDX: 2772 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2773 break; 2774 case DT_MIPS_ICHECKSUM: 2775 case DT_MIPS_FLAGS: 2776 case DT_MIPS_BASE_ADDRESS: 2777 case DT_MIPS_CONFLICT: 2778 case DT_MIPS_LIBLIST: 2779 case DT_MIPS_RLD_MAP: 2780 case DT_MIPS_DELTA_CLASS: 2781 case DT_MIPS_DELTA_INSTANCE: 2782 case DT_MIPS_DELTA_RELOC: 2783 case DT_MIPS_DELTA_SYM: 2784 case DT_MIPS_DELTA_CLASSSYM: 2785 case DT_MIPS_CXX_FLAGS: 2786 case DT_MIPS_PIXIE_INIT: 2787 case DT_MIPS_SYMBOL_LIB: 2788 case DT_MIPS_OPTIONS: 2789 case DT_MIPS_INTERFACE: 2790 case DT_MIPS_DYNSTR_ALIGN: 2791 case DT_MIPS_INTERFACE_SIZE: 2792 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2793 case DT_MIPS_COMPACT_SIZE: 2794 case DT_MIPS_GP_VALUE: 2795 case DT_MIPS_AUX_DYNAMIC: 2796 case DT_MIPS_PLTGOT: 2797 case DT_MIPS_RLD_OBJ_UPDATE: 2798 case DT_MIPS_RWPLT: 2799 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2800 break; 2801 case DT_MIPS_IVERSION: 2802 case DT_MIPS_PERF_SUFFIX: 2803 case DT_AUXILIARY: 2804 case DT_FILTER: 2805 name = dyn_str(re, stab, dyn->d_un.d_val); 2806 printf(" %s\n", name); 2807 break; 2808 case DT_MIPS_TIME_STAMP: 2809 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2810 break; 2811 } 2812 break; 2813 default: 2814 printf("\n"); 2815 break; 2816 } 2817 } 2818 2819 static void 2820 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2821 { 2822 const char *name; 2823 2824 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 2825 dump_arch_dyn_val(re, dyn, stab); 2826 return; 2827 } 2828 2829 /* These entry values are index into the string table. */ 2830 name = NULL; 2831 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2832 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2833 name = dyn_str(re, stab, dyn->d_un.d_val); 2834 2835 switch(dyn->d_tag) { 2836 case DT_NULL: 2837 case DT_PLTGOT: 2838 case DT_HASH: 2839 case DT_STRTAB: 2840 case DT_SYMTAB: 2841 case DT_RELA: 2842 case DT_INIT: 2843 case DT_SYMBOLIC: 2844 case DT_REL: 2845 case DT_DEBUG: 2846 case DT_TEXTREL: 2847 case DT_JMPREL: 2848 case DT_FINI: 2849 case DT_VERDEF: 2850 case DT_VERNEED: 2851 case DT_VERSYM: 2852 case DT_GNU_HASH: 2853 case DT_GNU_LIBLIST: 2854 case DT_GNU_CONFLICT: 2855 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2856 break; 2857 case DT_PLTRELSZ: 2858 case DT_RELASZ: 2859 case DT_RELAENT: 2860 case DT_STRSZ: 2861 case DT_SYMENT: 2862 case DT_RELSZ: 2863 case DT_RELENT: 2864 case DT_INIT_ARRAYSZ: 2865 case DT_FINI_ARRAYSZ: 2866 case DT_GNU_CONFLICTSZ: 2867 case DT_GNU_LIBLISTSZ: 2868 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2869 break; 2870 case DT_RELACOUNT: 2871 case DT_RELCOUNT: 2872 case DT_VERDEFNUM: 2873 case DT_VERNEEDNUM: 2874 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2875 break; 2876 case DT_NEEDED: 2877 printf(" Shared library: [%s]\n", name); 2878 break; 2879 case DT_SONAME: 2880 printf(" Library soname: [%s]\n", name); 2881 break; 2882 case DT_RPATH: 2883 printf(" Library rpath: [%s]\n", name); 2884 break; 2885 case DT_RUNPATH: 2886 printf(" Library runpath: [%s]\n", name); 2887 break; 2888 case DT_PLTREL: 2889 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2890 break; 2891 case DT_GNU_PRELINKED: 2892 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2893 break; 2894 default: 2895 printf("\n"); 2896 } 2897 } 2898 2899 static void 2900 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2901 { 2902 GElf_Rel r; 2903 const char *symname; 2904 uint64_t symval; 2905 int i, len; 2906 2907 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2908 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2909 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 2910 (uintmax_t)symval, symname 2911 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2912 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 2913 (uintmax_t)symval, symname 2914 2915 printf("\nRelocation section (%s):\n", s->name); 2916 if (re->ec == ELFCLASS32) 2917 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2918 else { 2919 if (re->options & RE_WW) 2920 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2921 else 2922 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2923 } 2924 len = d->d_size / s->entsize; 2925 for (i = 0; i < len; i++) { 2926 if (gelf_getrel(d, i, &r) != &r) { 2927 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2928 continue; 2929 } 2930 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2931 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2932 if (re->ec == ELFCLASS32) { 2933 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2934 ELF64_R_TYPE(r.r_info)); 2935 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2936 } else { 2937 if (re->options & RE_WW) 2938 printf("%16.16jx %16.16jx %-24.24s" 2939 " %16.16jx %s\n", REL_CT64); 2940 else 2941 printf("%12.12jx %12.12jx %-19.19s" 2942 " %16.16jx %s\n", REL_CT64); 2943 } 2944 } 2945 2946 #undef REL_HDR 2947 #undef REL_CT 2948 } 2949 2950 static void 2951 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2952 { 2953 GElf_Rela r; 2954 const char *symname; 2955 uint64_t symval; 2956 int i, len; 2957 2958 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2959 "st_name + r_addend" 2960 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2961 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 2962 (uintmax_t)symval, symname 2963 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2964 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 2965 (uintmax_t)symval, symname 2966 2967 printf("\nRelocation section with addend (%s):\n", s->name); 2968 if (re->ec == ELFCLASS32) 2969 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2970 else { 2971 if (re->options & RE_WW) 2972 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2973 else 2974 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2975 } 2976 len = d->d_size / s->entsize; 2977 for (i = 0; i < len; i++) { 2978 if (gelf_getrela(d, i, &r) != &r) { 2979 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2980 continue; 2981 } 2982 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2983 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2984 if (re->ec == ELFCLASS32) { 2985 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2986 ELF64_R_TYPE(r.r_info)); 2987 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2988 printf(" + %x\n", (uint32_t) r.r_addend); 2989 } else { 2990 if (re->options & RE_WW) 2991 printf("%16.16jx %16.16jx %-24.24s" 2992 " %16.16jx %s", RELA_CT64); 2993 else 2994 printf("%12.12jx %12.12jx %-19.19s" 2995 " %16.16jx %s", RELA_CT64); 2996 printf(" + %jx\n", (uintmax_t) r.r_addend); 2997 } 2998 } 2999 3000 #undef RELA_HDR 3001 #undef RELA_CT 3002 } 3003 3004 static void 3005 dump_reloc(struct readelf *re) 3006 { 3007 struct section *s; 3008 Elf_Data *d; 3009 int i, elferr; 3010 3011 for (i = 0; (size_t)i < re->shnum; i++) { 3012 s = &re->sl[i]; 3013 if (s->type == SHT_REL || s->type == SHT_RELA) { 3014 (void) elf_errno(); 3015 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3016 elferr = elf_errno(); 3017 if (elferr != 0) 3018 warnx("elf_getdata failed: %s", 3019 elf_errmsg(elferr)); 3020 continue; 3021 } 3022 if (s->type == SHT_REL) 3023 dump_rel(re, s, d); 3024 else 3025 dump_rela(re, s, d); 3026 } 3027 } 3028 } 3029 3030 static void 3031 dump_symtab(struct readelf *re, int i) 3032 { 3033 struct section *s; 3034 Elf_Data *d; 3035 GElf_Sym sym; 3036 const char *name; 3037 int elferr, stab, j; 3038 3039 s = &re->sl[i]; 3040 stab = s->link; 3041 (void) elf_errno(); 3042 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3043 elferr = elf_errno(); 3044 if (elferr != 0) 3045 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3046 return; 3047 } 3048 if (d->d_size <= 0) 3049 return; 3050 printf("Symbol table (%s)", s->name); 3051 printf(" contains %ju entries:\n", s->sz / s->entsize); 3052 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3053 "Bind", "Vis", "Ndx", "Name"); 3054 3055 for (j = 0; (uint64_t)j < s->sz / s->entsize; j++) { 3056 if (gelf_getsym(d, j, &sym) != &sym) { 3057 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3058 continue; 3059 } 3060 printf("%6d:", j); 3061 printf(" %16.16jx", (uintmax_t)sym.st_value); 3062 printf(" %5ju", sym.st_size); 3063 printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info))); 3064 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3065 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3066 printf(" %3s", st_shndx(sym.st_shndx)); 3067 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3068 printf(" %s", name); 3069 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3070 if (s->type == SHT_DYNSYM && re->ver != NULL && 3071 re->vs != NULL && re->vs[j] > 1) { 3072 if (re->vs[j] & 0x8000 || 3073 re->ver[re->vs[j] & 0x7fff].type == 0) 3074 printf("@%s (%d)", 3075 re->ver[re->vs[j] & 0x7fff].name, 3076 re->vs[j] & 0x7fff); 3077 else 3078 printf("@@%s (%d)", re->ver[re->vs[j]].name, 3079 re->vs[j]); 3080 } 3081 putchar('\n'); 3082 } 3083 3084 } 3085 3086 static void 3087 dump_symtabs(struct readelf *re) 3088 { 3089 GElf_Dyn dyn; 3090 Elf_Data *d; 3091 struct section *s; 3092 uint64_t dyn_off; 3093 int elferr, i; 3094 3095 /* 3096 * If -D is specified, only dump the symbol table specified by 3097 * the DT_SYMTAB entry in the .dynamic section. 3098 */ 3099 dyn_off = 0; 3100 if (re->options & RE_DD) { 3101 s = NULL; 3102 for (i = 0; (size_t)i < re->shnum; i++) 3103 if (re->sl[i].type == SHT_DYNAMIC) { 3104 s = &re->sl[i]; 3105 break; 3106 } 3107 if (s == NULL) 3108 return; 3109 (void) elf_errno(); 3110 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3111 elferr = elf_errno(); 3112 if (elferr != 0) 3113 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3114 return; 3115 } 3116 if (d->d_size <= 0) 3117 return; 3118 3119 for (i = 0; (uint64_t)i < s->sz / s->entsize; i++) { 3120 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3121 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3122 continue; 3123 } 3124 if (dyn.d_tag == DT_SYMTAB) { 3125 dyn_off = dyn.d_un.d_val; 3126 break; 3127 } 3128 } 3129 } 3130 3131 /* Find and dump symbol tables. */ 3132 for (i = 0; (size_t)i < re->shnum; i++) { 3133 s = &re->sl[i]; 3134 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3135 if (re->options & RE_DD) { 3136 if (dyn_off == s->addr) { 3137 dump_symtab(re, i); 3138 break; 3139 } 3140 } else 3141 dump_symtab(re, i); 3142 } 3143 } 3144 } 3145 3146 static void 3147 dump_svr4_hash(struct section *s) 3148 { 3149 Elf_Data *d; 3150 uint32_t *buf; 3151 uint32_t nbucket, nchain; 3152 uint32_t *bucket, *chain; 3153 uint32_t *bl, *c, maxl, total; 3154 int elferr, i, j; 3155 3156 /* Read and parse the content of .hash section. */ 3157 (void) elf_errno(); 3158 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3159 elferr = elf_errno(); 3160 if (elferr != 0) 3161 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3162 return; 3163 } 3164 if (d->d_size < 2 * sizeof(uint32_t)) { 3165 warnx(".hash section too small"); 3166 return; 3167 } 3168 buf = d->d_buf; 3169 nbucket = buf[0]; 3170 nchain = buf[1]; 3171 if (nbucket <= 0 || nchain <= 0) { 3172 warnx("Malformed .hash section"); 3173 return; 3174 } 3175 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3176 warnx("Malformed .hash section"); 3177 return; 3178 } 3179 bucket = &buf[2]; 3180 chain = &buf[2 + nbucket]; 3181 3182 maxl = 0; 3183 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3184 errx(EXIT_FAILURE, "calloc failed"); 3185 for (i = 0; (uint32_t)i < nbucket; i++) 3186 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3187 if (++bl[i] > maxl) 3188 maxl = bl[i]; 3189 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3190 errx(EXIT_FAILURE, "calloc failed"); 3191 for (i = 0; (uint32_t)i < nbucket; i++) 3192 c[bl[i]]++; 3193 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3194 nbucket); 3195 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3196 total = 0; 3197 for (i = 0; (uint32_t)i <= maxl; i++) { 3198 total += c[i] * i; 3199 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3200 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3201 } 3202 free(c); 3203 free(bl); 3204 } 3205 3206 static void 3207 dump_svr4_hash64(struct readelf *re, struct section *s) 3208 { 3209 Elf_Data *d, dst; 3210 uint64_t *buf; 3211 uint64_t nbucket, nchain; 3212 uint64_t *bucket, *chain; 3213 uint64_t *bl, *c, maxl, total; 3214 int elferr, i, j; 3215 3216 /* 3217 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3218 * .hash section contains only 32-bit entry, an explicit 3219 * gelf_xlatetom is needed here. 3220 */ 3221 (void) elf_errno(); 3222 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3223 elferr = elf_errno(); 3224 if (elferr != 0) 3225 warnx("elf_rawdata failed: %s", 3226 elf_errmsg(elferr)); 3227 return; 3228 } 3229 d->d_type = ELF_T_XWORD; 3230 memcpy(&dst, d, sizeof(Elf_Data)); 3231 if (gelf_xlatetom(re->elf, &dst, d, 3232 re->ehdr.e_ident[EI_DATA]) != &dst) { 3233 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3234 return; 3235 } 3236 if (dst.d_size < 2 * sizeof(uint64_t)) { 3237 warnx(".hash section too small"); 3238 return; 3239 } 3240 buf = dst.d_buf; 3241 nbucket = buf[0]; 3242 nchain = buf[1]; 3243 if (nbucket <= 0 || nchain <= 0) { 3244 warnx("Malformed .hash section"); 3245 return; 3246 } 3247 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3248 warnx("Malformed .hash section"); 3249 return; 3250 } 3251 bucket = &buf[2]; 3252 chain = &buf[2 + nbucket]; 3253 3254 maxl = 0; 3255 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3256 errx(EXIT_FAILURE, "calloc failed"); 3257 for (i = 0; (uint32_t)i < nbucket; i++) 3258 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3259 if (++bl[i] > maxl) 3260 maxl = bl[i]; 3261 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3262 errx(EXIT_FAILURE, "calloc failed"); 3263 for (i = 0; (uint64_t)i < nbucket; i++) 3264 c[bl[i]]++; 3265 printf("Histogram for bucket list length (total of %ju buckets):\n", 3266 (uintmax_t)nbucket); 3267 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3268 total = 0; 3269 for (i = 0; (uint64_t)i <= maxl; i++) { 3270 total += c[i] * i; 3271 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3272 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3273 } 3274 free(c); 3275 free(bl); 3276 } 3277 3278 static void 3279 dump_gnu_hash(struct readelf *re, struct section *s) 3280 { 3281 struct section *ds; 3282 Elf_Data *d; 3283 uint32_t *buf; 3284 uint32_t *bucket, *chain; 3285 uint32_t nbucket, nchain, symndx, maskwords, shift2; 3286 uint32_t *bl, *c, maxl, total; 3287 int elferr, dynsymcount, i, j; 3288 3289 (void) elf_errno(); 3290 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3291 elferr = elf_errno(); 3292 if (elferr != 0) 3293 warnx("elf_getdata failed: %s", 3294 elf_errmsg(elferr)); 3295 return; 3296 } 3297 if (d->d_size < 4 * sizeof(uint32_t)) { 3298 warnx(".gnu.hash section too small"); 3299 return; 3300 } 3301 buf = d->d_buf; 3302 nbucket = buf[0]; 3303 symndx = buf[1]; 3304 maskwords = buf[2]; 3305 shift2 = buf[3]; 3306 buf += 4; 3307 ds = &re->sl[s->link]; 3308 dynsymcount = ds->sz / ds->entsize; 3309 nchain = dynsymcount - symndx; 3310 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3311 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3312 (nbucket + nchain) * sizeof(uint32_t)) { 3313 warnx("Malformed .gnu.hash section"); 3314 return; 3315 } 3316 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3317 chain = bucket + nbucket; 3318 3319 maxl = 0; 3320 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3321 errx(EXIT_FAILURE, "calloc failed"); 3322 for (i = 0; (uint32_t)i < nbucket; i++) 3323 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3324 j++) { 3325 if (++bl[i] > maxl) 3326 maxl = bl[i]; 3327 if (chain[j - symndx] & 1) 3328 break; 3329 } 3330 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3331 errx(EXIT_FAILURE, "calloc failed"); 3332 for (i = 0; (uint32_t)i < nbucket; i++) 3333 c[bl[i]]++; 3334 printf("Histogram for bucket list length (total of %u buckets):\n", 3335 nbucket); 3336 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3337 total = 0; 3338 for (i = 0; (uint32_t)i <= maxl; i++) { 3339 total += c[i] * i; 3340 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3341 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3342 } 3343 free(c); 3344 free(bl); 3345 } 3346 3347 static void 3348 dump_hash(struct readelf *re) 3349 { 3350 struct section *s; 3351 int i; 3352 3353 for (i = 0; (size_t) i < re->shnum; i++) { 3354 s = &re->sl[i]; 3355 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3356 if (s->type == SHT_GNU_HASH) 3357 dump_gnu_hash(re, s); 3358 else if (re->ehdr.e_machine == EM_ALPHA && 3359 s->entsize == 8) 3360 dump_svr4_hash64(re, s); 3361 else 3362 dump_svr4_hash(s); 3363 } 3364 } 3365 } 3366 3367 static void 3368 dump_notes(struct readelf *re) 3369 { 3370 struct section *s; 3371 const char *rawfile; 3372 GElf_Phdr phdr; 3373 Elf_Data *d; 3374 size_t phnum; 3375 int i, elferr; 3376 3377 if (re->ehdr.e_type == ET_CORE) { 3378 /* 3379 * Search program headers in the core file for 3380 * PT_NOTE entry. 3381 */ 3382 if (elf_getphnum(re->elf, &phnum) == 0) { 3383 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3384 return; 3385 } 3386 if (phnum == 0) 3387 return; 3388 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 3389 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3390 return; 3391 } 3392 for (i = 0; (size_t) i < phnum; i++) { 3393 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3394 warnx("gelf_getphdr failed: %s", 3395 elf_errmsg(-1)); 3396 continue; 3397 } 3398 if (phdr.p_type == PT_NOTE) 3399 dump_notes_content(re, rawfile + phdr.p_offset, 3400 phdr.p_filesz, phdr.p_offset); 3401 } 3402 3403 } else { 3404 /* 3405 * For objects other than core files, Search for 3406 * SHT_NOTE sections. 3407 */ 3408 for (i = 0; (size_t) i < re->shnum; i++) { 3409 s = &re->sl[i]; 3410 if (s->type == SHT_NOTE) { 3411 (void) elf_errno(); 3412 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3413 elferr = elf_errno(); 3414 if (elferr != 0) 3415 warnx("elf_getdata failed: %s", 3416 elf_errmsg(elferr)); 3417 continue; 3418 } 3419 dump_notes_content(re, d->d_buf, d->d_size, 3420 s->off); 3421 } 3422 } 3423 } 3424 } 3425 3426 static void 3427 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3428 { 3429 Elf_Note *note; 3430 const char *end; 3431 3432 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3433 (uintmax_t) off, (uintmax_t) sz); 3434 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3435 end = buf + sz; 3436 while (buf < end) { 3437 note = (Elf_Note *)(uintptr_t) buf; 3438 printf(" %-13s %#010jx", (char *)(uintptr_t) (note + 1), 3439 (uintmax_t) note->n_descsz); 3440 printf(" %s\n", note_type(re->ehdr.e_ident[EI_OSABI], 3441 re->ehdr.e_type, note->n_type)); 3442 buf += sizeof(Elf_Note); 3443 if (re->ec == ELFCLASS32) 3444 buf += roundup2(note->n_namesz, 4) + 3445 roundup2(note->n_descsz, 4); 3446 else 3447 buf += roundup2(note->n_namesz, 8) + 3448 roundup2(note->n_descsz, 8); 3449 } 3450 } 3451 3452 /* 3453 * Symbol versioning sections are the same for 32bit and 64bit 3454 * ELF objects. 3455 */ 3456 #define Elf_Verdef Elf32_Verdef 3457 #define Elf_Verdaux Elf32_Verdaux 3458 #define Elf_Verneed Elf32_Verneed 3459 #define Elf_Vernaux Elf32_Vernaux 3460 3461 #define SAVE_VERSION_NAME(x, n, t) \ 3462 do { \ 3463 while (x >= re->ver_sz) { \ 3464 nv = realloc(re->ver, \ 3465 sizeof(*re->ver) * re->ver_sz * 2); \ 3466 if (nv == NULL) { \ 3467 warn("realloc failed"); \ 3468 free(re->ver); \ 3469 return; \ 3470 } \ 3471 re->ver = nv; \ 3472 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3473 re->ver[i].name = NULL; \ 3474 re->ver[i].type = 0; \ 3475 } \ 3476 re->ver_sz *= 2; \ 3477 } \ 3478 if (x > 1) { \ 3479 re->ver[x].name = n; \ 3480 re->ver[x].type = t; \ 3481 } \ 3482 } while (0) 3483 3484 3485 static void 3486 dump_verdef(struct readelf *re, int dump) 3487 { 3488 struct section *s; 3489 struct symver *nv; 3490 Elf_Data *d; 3491 Elf_Verdef *vd; 3492 Elf_Verdaux *vda; 3493 uint8_t *buf, *end, *buf2; 3494 const char *name; 3495 int elferr, i, j; 3496 3497 if ((s = re->vd_s) == NULL) 3498 return; 3499 3500 if (re->ver == NULL) { 3501 re->ver_sz = 16; 3502 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3503 NULL) { 3504 warn("calloc failed"); 3505 return; 3506 } 3507 re->ver[0].name = "*local*"; 3508 re->ver[1].name = "*global*"; 3509 } 3510 3511 if (dump) 3512 printf("\nVersion definition section (%s):\n", s->name); 3513 (void) elf_errno(); 3514 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3515 elferr = elf_errno(); 3516 if (elferr != 0) 3517 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3518 return; 3519 } 3520 if (d->d_size == 0) 3521 return; 3522 3523 buf = d->d_buf; 3524 end = buf + d->d_size; 3525 while (buf + sizeof(Elf_Verdef) <= end) { 3526 vd = (Elf_Verdef *) (uintptr_t) buf; 3527 if (dump) { 3528 printf(" 0x%4.4lx", (unsigned long) 3529 (buf - (uint8_t *)d->d_buf)); 3530 printf(" vd_version: %u vd_flags: %d" 3531 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3532 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3533 } 3534 buf2 = buf + vd->vd_aux; 3535 j = 0; 3536 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3537 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3538 name = get_string(re, s->link, vda->vda_name); 3539 if (j == 0) { 3540 if (dump) 3541 printf(" vda_name: %s\n", name); 3542 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3543 } else if (dump) 3544 printf(" 0x%4.4lx parent: %s\n", 3545 (unsigned long) (buf2 - 3546 (uint8_t *)d->d_buf), name); 3547 if (vda->vda_next == 0) 3548 break; 3549 buf2 += vda->vda_next; 3550 j++; 3551 } 3552 if (vd->vd_next == 0) 3553 break; 3554 buf += vd->vd_next; 3555 } 3556 } 3557 3558 static void 3559 dump_verneed(struct readelf *re, int dump) 3560 { 3561 struct section *s; 3562 struct symver *nv; 3563 Elf_Data *d; 3564 Elf_Verneed *vn; 3565 Elf_Vernaux *vna; 3566 uint8_t *buf, *end, *buf2; 3567 const char *name; 3568 int elferr, i, j; 3569 3570 if ((s = re->vn_s) == NULL) 3571 return; 3572 3573 if (re->ver == NULL) { 3574 re->ver_sz = 16; 3575 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3576 NULL) { 3577 warn("calloc failed"); 3578 return; 3579 } 3580 re->ver[0].name = "*local*"; 3581 re->ver[1].name = "*global*"; 3582 } 3583 3584 if (dump) 3585 printf("\nVersion needed section (%s):\n", s->name); 3586 (void) elf_errno(); 3587 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3588 elferr = elf_errno(); 3589 if (elferr != 0) 3590 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3591 return; 3592 } 3593 if (d->d_size == 0) 3594 return; 3595 3596 buf = d->d_buf; 3597 end = buf + d->d_size; 3598 while (buf + sizeof(Elf_Verneed) <= end) { 3599 vn = (Elf_Verneed *) (uintptr_t) buf; 3600 if (dump) { 3601 printf(" 0x%4.4lx", (unsigned long) 3602 (buf - (uint8_t *)d->d_buf)); 3603 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3604 vn->vn_version, 3605 get_string(re, s->link, vn->vn_file), 3606 vn->vn_cnt); 3607 } 3608 buf2 = buf + vn->vn_aux; 3609 j = 0; 3610 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3611 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3612 if (dump) 3613 printf(" 0x%4.4lx", (unsigned long) 3614 (buf2 - (uint8_t *)d->d_buf)); 3615 name = get_string(re, s->link, vna->vna_name); 3616 if (dump) 3617 printf(" vna_name: %s vna_flags: %u" 3618 " vna_other: %u\n", name, 3619 vna->vna_flags, vna->vna_other); 3620 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3621 if (vna->vna_next == 0) 3622 break; 3623 buf2 += vna->vna_next; 3624 j++; 3625 } 3626 if (vn->vn_next == 0) 3627 break; 3628 buf += vn->vn_next; 3629 } 3630 } 3631 3632 static void 3633 dump_versym(struct readelf *re) 3634 { 3635 int i; 3636 3637 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3638 return; 3639 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3640 for (i = 0; i < re->vs_sz; i++) { 3641 if ((i & 3) == 0) { 3642 if (i > 0) 3643 putchar('\n'); 3644 printf(" %03x:", i); 3645 } 3646 if (re->vs[i] & 0x8000) 3647 printf(" %3xh %-12s ", re->vs[i] & 0x7fff, 3648 re->ver[re->vs[i] & 0x7fff].name); 3649 else 3650 printf(" %3x %-12s ", re->vs[i], 3651 re->ver[re->vs[i]].name); 3652 } 3653 putchar('\n'); 3654 } 3655 3656 static void 3657 dump_ver(struct readelf *re) 3658 { 3659 3660 if (re->vs_s && re->ver && re->vs) 3661 dump_versym(re); 3662 if (re->vd_s) 3663 dump_verdef(re, 1); 3664 if (re->vn_s) 3665 dump_verneed(re, 1); 3666 } 3667 3668 static void 3669 search_ver(struct readelf *re) 3670 { 3671 struct section *s; 3672 Elf_Data *d; 3673 int elferr, i; 3674 3675 for (i = 0; (size_t) i < re->shnum; i++) { 3676 s = &re->sl[i]; 3677 if (s->type == SHT_SUNW_versym) 3678 re->vs_s = s; 3679 if (s->type == SHT_SUNW_verneed) 3680 re->vn_s = s; 3681 if (s->type == SHT_SUNW_verdef) 3682 re->vd_s = s; 3683 } 3684 if (re->vd_s) 3685 dump_verdef(re, 0); 3686 if (re->vn_s) 3687 dump_verneed(re, 0); 3688 if (re->vs_s && re->ver != NULL) { 3689 (void) elf_errno(); 3690 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3691 elferr = elf_errno(); 3692 if (elferr != 0) 3693 warnx("elf_getdata failed: %s", 3694 elf_errmsg(elferr)); 3695 return; 3696 } 3697 if (d->d_size == 0) 3698 return; 3699 re->vs = d->d_buf; 3700 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3701 } 3702 } 3703 3704 #undef Elf_Verdef 3705 #undef Elf_Verdaux 3706 #undef Elf_Verneed 3707 #undef Elf_Vernaux 3708 #undef SAVE_VERSION_NAME 3709 3710 /* 3711 * Elf32_Lib and Elf64_Lib are identical. 3712 */ 3713 #define Elf_Lib Elf32_Lib 3714 3715 static void 3716 dump_liblist(struct readelf *re) 3717 { 3718 struct section *s; 3719 struct tm *t; 3720 time_t ti; 3721 char tbuf[20]; 3722 Elf_Data *d; 3723 Elf_Lib *lib; 3724 int i, j, k, elferr, first; 3725 3726 for (i = 0; (size_t) i < re->shnum; i++) { 3727 s = &re->sl[i]; 3728 if (s->type != SHT_GNU_LIBLIST) 3729 continue; 3730 (void) elf_errno(); 3731 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3732 elferr = elf_errno(); 3733 if (elferr != 0) 3734 warnx("elf_getdata failed: %s", 3735 elf_errmsg(elferr)); 3736 continue; 3737 } 3738 if (d->d_size <= 0) 3739 continue; 3740 lib = d->d_buf; 3741 printf("\nLibrary list section '%s' ", s->name); 3742 printf("contains %ju entries:\n", s->sz / s->entsize); 3743 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3744 "Checksum", "Version", "Flags"); 3745 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3746 printf("%3d: ", j); 3747 printf("%-20.20s ", 3748 get_string(re, s->link, lib->l_name)); 3749 ti = lib->l_time_stamp; 3750 t = gmtime(&ti); 3751 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3752 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3753 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3754 printf("%-19.19s ", tbuf); 3755 printf("0x%08x ", lib->l_checksum); 3756 printf("%-7d %#x", lib->l_version, lib->l_flags); 3757 if (lib->l_flags != 0) { 3758 first = 1; 3759 putchar('('); 3760 for (k = 0; l_flag[k].name != NULL; k++) { 3761 if ((l_flag[k].value & lib->l_flags) == 3762 0) 3763 continue; 3764 if (!first) 3765 putchar(','); 3766 else 3767 first = 0; 3768 printf("%s", l_flag[k].name); 3769 } 3770 putchar(')'); 3771 } 3772 putchar('\n'); 3773 lib++; 3774 } 3775 } 3776 } 3777 3778 #undef Elf_Lib 3779 3780 static uint8_t * 3781 dump_unknown_tag(uint64_t tag, uint8_t *p) 3782 { 3783 uint64_t val; 3784 3785 /* 3786 * According to ARM EABI: For tags > 32, even numbered tags have 3787 * a ULEB128 param and odd numbered ones have NUL-terminated 3788 * string param. This rule probably also applies for tags <= 32 3789 * if the object arch is not ARM. 3790 */ 3791 3792 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3793 3794 if (tag & 1) { 3795 printf("%s\n", (char *) p); 3796 p += strlen((char *) p) + 1; 3797 } else { 3798 val = _decode_uleb128(&p); 3799 printf("%ju\n", (uintmax_t) val); 3800 } 3801 3802 return (p); 3803 } 3804 3805 static uint8_t * 3806 dump_compatibility_tag(uint8_t *p) 3807 { 3808 uint64_t val; 3809 3810 val = _decode_uleb128(&p); 3811 printf("flag = %ju, vendor = %s\n", val, p); 3812 p += strlen((char *) p) + 1; 3813 3814 return (p); 3815 } 3816 3817 static void 3818 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3819 { 3820 uint64_t tag, val; 3821 size_t i; 3822 int found, desc; 3823 3824 (void) re; 3825 3826 while (p < pe) { 3827 tag = _decode_uleb128(&p); 3828 found = desc = 0; 3829 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3830 i++) { 3831 if (tag == aeabi_tags[i].tag) { 3832 found = 1; 3833 printf(" %s: ", aeabi_tags[i].s_tag); 3834 if (aeabi_tags[i].get_desc) { 3835 desc = 1; 3836 val = _decode_uleb128(&p); 3837 printf("%s\n", 3838 aeabi_tags[i].get_desc(val)); 3839 } 3840 break; 3841 } 3842 if (tag < aeabi_tags[i].tag) 3843 break; 3844 } 3845 if (!found) { 3846 p = dump_unknown_tag(tag, p); 3847 continue; 3848 } 3849 if (desc) 3850 continue; 3851 3852 switch (tag) { 3853 case 4: /* Tag_CPU_raw_name */ 3854 case 5: /* Tag_CPU_name */ 3855 case 67: /* Tag_conformance */ 3856 printf("%s\n", (char *) p); 3857 p += strlen((char *) p) + 1; 3858 break; 3859 case 32: /* Tag_compatibility */ 3860 p = dump_compatibility_tag(p); 3861 break; 3862 case 64: /* Tag_nodefaults */ 3863 /* ignored, written as 0. */ 3864 (void) _decode_uleb128(&p); 3865 printf("True\n"); 3866 break; 3867 case 65: /* Tag_also_compatible_with */ 3868 val = _decode_uleb128(&p); 3869 /* Must be Tag_CPU_arch */ 3870 if (val != 6) { 3871 printf("unknown\n"); 3872 break; 3873 } 3874 val = _decode_uleb128(&p); 3875 printf("%s\n", aeabi_cpu_arch(val)); 3876 /* Skip NUL terminator. */ 3877 p++; 3878 break; 3879 default: 3880 putchar('\n'); 3881 break; 3882 } 3883 } 3884 } 3885 3886 #ifndef Tag_GNU_MIPS_ABI_FP 3887 #define Tag_GNU_MIPS_ABI_FP 4 3888 #endif 3889 3890 static void 3891 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3892 { 3893 uint64_t tag, val; 3894 3895 (void) re; 3896 3897 while (p < pe) { 3898 tag = _decode_uleb128(&p); 3899 switch (tag) { 3900 case Tag_GNU_MIPS_ABI_FP: 3901 val = _decode_uleb128(&p); 3902 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3903 break; 3904 case 32: /* Tag_compatibility */ 3905 p = dump_compatibility_tag(p); 3906 break; 3907 default: 3908 p = dump_unknown_tag(tag, p); 3909 break; 3910 } 3911 } 3912 } 3913 3914 #ifndef Tag_GNU_Power_ABI_FP 3915 #define Tag_GNU_Power_ABI_FP 4 3916 #endif 3917 3918 #ifndef Tag_GNU_Power_ABI_Vector 3919 #define Tag_GNU_Power_ABI_Vector 8 3920 #endif 3921 3922 static void 3923 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 3924 { 3925 uint64_t tag, val; 3926 3927 while (p < pe) { 3928 tag = _decode_uleb128(&p); 3929 switch (tag) { 3930 case Tag_GNU_Power_ABI_FP: 3931 val = _decode_uleb128(&p); 3932 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 3933 break; 3934 case Tag_GNU_Power_ABI_Vector: 3935 val = _decode_uleb128(&p); 3936 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 3937 ppc_abi_vector(val)); 3938 break; 3939 case 32: /* Tag_compatibility */ 3940 p = dump_compatibility_tag(p); 3941 break; 3942 default: 3943 p = dump_unknown_tag(tag, p); 3944 break; 3945 } 3946 } 3947 } 3948 3949 static void 3950 dump_attributes(struct readelf *re) 3951 { 3952 struct section *s; 3953 Elf_Data *d; 3954 uint8_t *p, *sp; 3955 size_t len, seclen, nlen, sublen; 3956 uint64_t val; 3957 int tag, i, elferr; 3958 3959 for (i = 0; (size_t) i < re->shnum; i++) { 3960 s = &re->sl[i]; 3961 if (s->type != SHT_GNU_ATTRIBUTES && 3962 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 3963 continue; 3964 (void) elf_errno(); 3965 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3966 elferr = elf_errno(); 3967 if (elferr != 0) 3968 warnx("elf_rawdata failed: %s", 3969 elf_errmsg(elferr)); 3970 continue; 3971 } 3972 if (d->d_size <= 0) 3973 continue; 3974 p = d->d_buf; 3975 if (*p != 'A') { 3976 printf("Unknown Attribute Section Format: %c\n", 3977 (char) *p); 3978 continue; 3979 } 3980 len = d->d_size - 1; 3981 p++; 3982 while (len > 0) { 3983 seclen = re->dw_decode(&p, 4); 3984 if (seclen > len) { 3985 warnx("invalid attribute section length"); 3986 break; 3987 } 3988 len -= seclen; 3989 printf("Attribute Section: %s\n", (char *) p); 3990 nlen = strlen((char *) p) + 1; 3991 p += nlen; 3992 seclen -= nlen + 4; 3993 while (seclen > 0) { 3994 sp = p; 3995 tag = *p++; 3996 sublen = re->dw_decode(&p, 4); 3997 if (sublen > seclen) { 3998 warnx("invalid attribute sub-section" 3999 " length"); 4000 break; 4001 } 4002 seclen -= sublen; 4003 printf("%s", top_tag(tag)); 4004 if (tag == 2 || tag == 3) { 4005 putchar(':'); 4006 for (;;) { 4007 val = _decode_uleb128(&p); 4008 if (val == 0) 4009 break; 4010 printf(" %ju", (uintmax_t) val); 4011 } 4012 } 4013 putchar('\n'); 4014 if (re->ehdr.e_machine == EM_ARM && 4015 s->type == SHT_LOPROC + 3) 4016 dump_arm_attributes(re, p, sp + sublen); 4017 else if (re->ehdr.e_machine == EM_MIPS || 4018 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4019 dump_mips_attributes(re, p, 4020 sp + sublen); 4021 else if (re->ehdr.e_machine == EM_PPC) 4022 dump_ppc_attributes(p, sp + sublen); 4023 p = sp + sublen; 4024 } 4025 } 4026 } 4027 } 4028 4029 static void 4030 dump_mips_specific_info(struct readelf *re) 4031 { 4032 struct section *s; 4033 int i, options_found; 4034 4035 options_found = 0; 4036 s = NULL; 4037 for (i = 0; (size_t) i < re->shnum; i++) { 4038 s = &re->sl[i]; 4039 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4040 (s->type == SHT_MIPS_OPTIONS))) { 4041 dump_mips_options(re, s); 4042 options_found = 1; 4043 } 4044 } 4045 4046 /* 4047 * According to SGI mips64 spec, .reginfo should be ignored if 4048 * .MIPS.options section is present. 4049 */ 4050 if (!options_found) { 4051 for (i = 0; (size_t) i < re->shnum; i++) { 4052 s = &re->sl[i]; 4053 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4054 (s->type == SHT_MIPS_REGINFO))) 4055 dump_mips_reginfo(re, s); 4056 } 4057 } 4058 } 4059 4060 static void 4061 dump_mips_reginfo(struct readelf *re, struct section *s) 4062 { 4063 Elf_Data *d; 4064 int elferr; 4065 4066 (void) elf_errno(); 4067 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4068 elferr = elf_errno(); 4069 if (elferr != 0) 4070 warnx("elf_rawdata failed: %s", 4071 elf_errmsg(elferr)); 4072 return; 4073 } 4074 if (d->d_size <= 0) 4075 return; 4076 4077 printf("\nSection '%s' contains %ju entries:\n", s->name, 4078 s->sz / s->entsize); 4079 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4080 } 4081 4082 static void 4083 dump_mips_options(struct readelf *re, struct section *s) 4084 { 4085 Elf_Data *d; 4086 uint32_t info; 4087 uint16_t sndx; 4088 uint8_t *p, *pe; 4089 uint8_t kind, size; 4090 int elferr; 4091 4092 (void) elf_errno(); 4093 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4094 elferr = elf_errno(); 4095 if (elferr != 0) 4096 warnx("elf_rawdata failed: %s", 4097 elf_errmsg(elferr)); 4098 return; 4099 } 4100 if (d->d_size == 0) 4101 return; 4102 4103 printf("\nSection %s contains:\n", s->name); 4104 p = d->d_buf; 4105 pe = p + d->d_size; 4106 while (p < pe) { 4107 kind = re->dw_decode(&p, 1); 4108 size = re->dw_decode(&p, 1); 4109 sndx = re->dw_decode(&p, 2); 4110 info = re->dw_decode(&p, 4); 4111 switch (kind) { 4112 case ODK_REGINFO: 4113 dump_mips_odk_reginfo(re, p, size - 8); 4114 break; 4115 case ODK_EXCEPTIONS: 4116 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4117 info & OEX_FPU_MIN); 4118 printf("%11.11s FPU_MAX: %#x\n", "", 4119 info & OEX_FPU_MAX); 4120 dump_mips_option_flags("", mips_exceptions_option, 4121 info); 4122 break; 4123 case ODK_PAD: 4124 printf(" %-10.10s section: %ju\n", "OPAD", 4125 (uintmax_t) sndx); 4126 dump_mips_option_flags("", mips_pad_option, info); 4127 break; 4128 case ODK_HWPATCH: 4129 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4130 info); 4131 break; 4132 case ODK_HWAND: 4133 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4134 break; 4135 case ODK_HWOR: 4136 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4137 break; 4138 case ODK_FILL: 4139 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4140 break; 4141 case ODK_TAGS: 4142 printf(" %-10.10s\n", "TAGS"); 4143 break; 4144 case ODK_GP_GROUP: 4145 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4146 info & 0xFFFF); 4147 if (info & 0x10000) 4148 printf(" %-10.10s GP group is " 4149 "self-contained\n", ""); 4150 break; 4151 case ODK_IDENT: 4152 printf(" %-10.10s default GP group number: %#x\n", 4153 "IDENT", info & 0xFFFF); 4154 if (info & 0x10000) 4155 printf(" %-10.10s default GP group is " 4156 "self-contained\n", ""); 4157 break; 4158 case ODK_PAGESIZE: 4159 printf(" %-10.10s\n", "PAGESIZE"); 4160 break; 4161 default: 4162 break; 4163 } 4164 p += size - 8; 4165 } 4166 } 4167 4168 static void 4169 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4170 { 4171 int first; 4172 4173 first = 1; 4174 for (; opt->desc != NULL; opt++) { 4175 if (info & opt->flag) { 4176 printf(" %-10.10s %s\n", first ? name : "", 4177 opt->desc); 4178 first = 0; 4179 } 4180 } 4181 } 4182 4183 static void 4184 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4185 { 4186 uint32_t ri_gprmask; 4187 uint32_t ri_cprmask[4]; 4188 uint64_t ri_gp_value; 4189 uint8_t *pe; 4190 int i; 4191 4192 pe = p + sz; 4193 while (p < pe) { 4194 ri_gprmask = re->dw_decode(&p, 4); 4195 /* Skip ri_pad padding field for mips64. */ 4196 if (re->ec == ELFCLASS64) 4197 re->dw_decode(&p, 4); 4198 for (i = 0; i < 4; i++) 4199 ri_cprmask[i] = re->dw_decode(&p, 4); 4200 if (re->ec == ELFCLASS32) 4201 ri_gp_value = re->dw_decode(&p, 4); 4202 else 4203 ri_gp_value = re->dw_decode(&p, 8); 4204 printf(" %s ", option_kind(ODK_REGINFO)); 4205 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4206 for (i = 0; i < 4; i++) 4207 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4208 (uintmax_t) ri_cprmask[i]); 4209 printf("%12.12s", ""); 4210 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4211 } 4212 } 4213 4214 static void 4215 dump_arch_specific_info(struct readelf *re) 4216 { 4217 4218 dump_liblist(re); 4219 dump_attributes(re); 4220 4221 switch (re->ehdr.e_machine) { 4222 case EM_MIPS: 4223 case EM_MIPS_RS3_LE: 4224 dump_mips_specific_info(re); 4225 default: 4226 break; 4227 } 4228 } 4229 4230 static void 4231 dump_dwarf_line(struct readelf *re) 4232 { 4233 struct section *s; 4234 Dwarf_Die die; 4235 Dwarf_Error de; 4236 Dwarf_Half tag, version, pointer_size; 4237 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4238 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4239 Elf_Data *d; 4240 char *pn; 4241 uint64_t address, file, line, column, isa, opsize, udelta; 4242 int64_t sdelta; 4243 uint8_t *p, *pe; 4244 int8_t lbase; 4245 int is_stmt, basic_block, end_sequence; 4246 int prologue_end, epilogue_begin; 4247 int i, dwarf_size, elferr, ret; 4248 4249 printf("\nDump of debug contents of section .debug_line:\n"); 4250 4251 s = NULL; 4252 for (i = 0; (size_t) i < re->shnum; i++) { 4253 s = &re->sl[i]; 4254 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4255 break; 4256 } 4257 if ((size_t) i >= re->shnum) 4258 return; 4259 4260 (void) elf_errno(); 4261 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4262 elferr = elf_errno(); 4263 if (elferr != 0) 4264 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4265 return; 4266 } 4267 if (d->d_size <= 0) 4268 return; 4269 4270 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4271 NULL, &de)) == DW_DLV_OK) { 4272 die = NULL; 4273 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4274 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4275 warnx("dwarf_tag failed: %s", 4276 dwarf_errmsg(de)); 4277 return; 4278 } 4279 /* XXX: What about DW_TAG_partial_unit? */ 4280 if (tag == DW_TAG_compile_unit) 4281 break; 4282 } 4283 if (die == NULL) { 4284 warnx("could not find DW_TAG_compile_unit die"); 4285 return; 4286 } 4287 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4288 &de) != DW_DLV_OK) 4289 continue; 4290 4291 length = re->dw_read(d, &offset, 4); 4292 if (length == 0xffffffff) { 4293 dwarf_size = 8; 4294 length = re->dw_read(d, &offset, 8); 4295 } else 4296 dwarf_size = 4; 4297 4298 if (length > d->d_size - offset) { 4299 warnx("invalid .dwarf_line section"); 4300 continue; 4301 } 4302 4303 endoff = offset + length; 4304 version = re->dw_read(d, &offset, 2); 4305 hdrlen = re->dw_read(d, &offset, dwarf_size); 4306 minlen = re->dw_read(d, &offset, 1); 4307 defstmt = re->dw_read(d, &offset, 1); 4308 lbase = re->dw_read(d, &offset, 1); 4309 lrange = re->dw_read(d, &offset, 1); 4310 opbase = re->dw_read(d, &offset, 1); 4311 4312 printf("\n"); 4313 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4314 printf(" DWARF version:\t\t%u\n", version); 4315 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4316 printf(" Minimum Instruction Length:\t%u\n", minlen); 4317 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4318 printf(" Line Base:\t\t\t%d\n", lbase); 4319 printf(" Line Range:\t\t\t%u\n", lrange); 4320 printf(" Opcode Base:\t\t\t%u\n", opbase); 4321 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4322 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4323 4324 printf("\n"); 4325 printf(" Opcodes:\n"); 4326 for (i = 1; i < opbase; i++) { 4327 oplen = re->dw_read(d, &offset, 1); 4328 printf(" Opcode %d has %u args\n", i, oplen); 4329 } 4330 4331 printf("\n"); 4332 printf(" The Directory Table:\n"); 4333 p = (uint8_t *) d->d_buf + offset; 4334 while (*p != '\0') { 4335 printf(" %s\n", (char *) p); 4336 p += strlen((char *) p) + 1; 4337 } 4338 4339 p++; 4340 printf("\n"); 4341 printf(" The File Name Table:\n"); 4342 printf(" Entry\tDir\tTime\tSize\tName\n"); 4343 i = 0; 4344 while (*p != '\0') { 4345 i++; 4346 pn = (char *) p; 4347 p += strlen(pn) + 1; 4348 dirndx = _decode_uleb128(&p); 4349 mtime = _decode_uleb128(&p); 4350 fsize = _decode_uleb128(&p); 4351 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4352 (uintmax_t) dirndx, (uintmax_t) mtime, 4353 (uintmax_t) fsize, pn); 4354 } 4355 4356 #define RESET_REGISTERS \ 4357 do { \ 4358 address = 0; \ 4359 file = 1; \ 4360 line = 1; \ 4361 column = 0; \ 4362 is_stmt = defstmt; \ 4363 basic_block = 0; \ 4364 end_sequence = 0; \ 4365 prologue_end = 0; \ 4366 epilogue_begin = 0; \ 4367 } while(0) 4368 4369 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4370 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4371 4372 p++; 4373 pe = (uint8_t *) d->d_buf + endoff; 4374 printf("\n"); 4375 printf(" Line Number Statements:\n"); 4376 4377 RESET_REGISTERS; 4378 4379 while (p < pe) { 4380 4381 if (*p == 0) { 4382 /* 4383 * Extended Opcodes. 4384 */ 4385 p++; 4386 opsize = _decode_uleb128(&p); 4387 printf(" Extended opcode %u: ", *p); 4388 switch (*p) { 4389 case DW_LNE_end_sequence: 4390 p++; 4391 end_sequence = 1; 4392 RESET_REGISTERS; 4393 printf("End of Sequence\n"); 4394 break; 4395 case DW_LNE_set_address: 4396 p++; 4397 address = re->dw_decode(&p, 4398 pointer_size); 4399 printf("set Address to %#jx\n", 4400 (uintmax_t) address); 4401 break; 4402 case DW_LNE_define_file: 4403 p++; 4404 pn = (char *) p; 4405 p += strlen(pn) + 1; 4406 dirndx = _decode_uleb128(&p); 4407 mtime = _decode_uleb128(&p); 4408 fsize = _decode_uleb128(&p); 4409 printf("define new file: %s\n", pn); 4410 break; 4411 default: 4412 /* Unrecognized extened opcodes. */ 4413 p += opsize; 4414 printf("unknown opcode\n"); 4415 } 4416 } else if (*p > 0 && *p < opbase) { 4417 /* 4418 * Standard Opcodes. 4419 */ 4420 switch(*p++) { 4421 case DW_LNS_copy: 4422 basic_block = 0; 4423 prologue_end = 0; 4424 epilogue_begin = 0; 4425 printf(" Copy\n"); 4426 break; 4427 case DW_LNS_advance_pc: 4428 udelta = _decode_uleb128(&p) * 4429 minlen; 4430 address += udelta; 4431 printf(" Advance PC by %ju to %#jx\n", 4432 (uintmax_t) udelta, 4433 (uintmax_t) address); 4434 break; 4435 case DW_LNS_advance_line: 4436 sdelta = _decode_sleb128(&p); 4437 line += sdelta; 4438 printf(" Advance Line by %jd to %ju\n", 4439 (intmax_t) sdelta, 4440 (uintmax_t) line); 4441 break; 4442 case DW_LNS_set_file: 4443 file = _decode_uleb128(&p); 4444 printf(" Set File to %ju\n", 4445 (uintmax_t) file); 4446 break; 4447 case DW_LNS_set_column: 4448 column = _decode_uleb128(&p); 4449 printf(" Set Column to %ju\n", 4450 (uintmax_t) column); 4451 break; 4452 case DW_LNS_negate_stmt: 4453 is_stmt = !is_stmt; 4454 printf(" Set is_stmt to %d\n", is_stmt); 4455 break; 4456 case DW_LNS_set_basic_block: 4457 basic_block = 1; 4458 printf(" Set basic block flag\n"); 4459 break; 4460 case DW_LNS_const_add_pc: 4461 address += ADDRESS(255); 4462 printf(" Advance PC by constant %ju" 4463 " to %#jx\n", 4464 (uintmax_t) ADDRESS(255), 4465 (uintmax_t) address); 4466 break; 4467 case DW_LNS_fixed_advance_pc: 4468 udelta = re->dw_decode(&p, 2); 4469 address += udelta; 4470 printf(" Advance PC by fixed value " 4471 "%ju to %#jx\n", 4472 (uintmax_t) udelta, 4473 (uintmax_t) address); 4474 break; 4475 case DW_LNS_set_prologue_end: 4476 prologue_end = 1; 4477 printf(" Set prologue end flag\n"); 4478 break; 4479 case DW_LNS_set_epilogue_begin: 4480 epilogue_begin = 1; 4481 printf(" Set epilogue begin flag\n"); 4482 break; 4483 case DW_LNS_set_isa: 4484 isa = _decode_uleb128(&p); 4485 printf(" Set isa to %ju\n", isa); 4486 break; 4487 default: 4488 /* Unrecognized extended opcodes. */ 4489 printf(" Unknown extended opcode %u\n", 4490 *(p - 1)); 4491 break; 4492 } 4493 4494 } else { 4495 /* 4496 * Special Opcodes. 4497 */ 4498 line += LINE(*p); 4499 address += ADDRESS(*p); 4500 basic_block = 0; 4501 prologue_end = 0; 4502 epilogue_begin = 0; 4503 printf(" Special opcode %u: advance Address " 4504 "by %ju to %#jx and Line by %jd to %ju\n", 4505 *p - opbase, (uintmax_t) ADDRESS(*p), 4506 (uintmax_t) address, (intmax_t) LINE(*p), 4507 (uintmax_t) line); 4508 p++; 4509 } 4510 4511 4512 } 4513 } 4514 if (ret == DW_DLV_ERROR) 4515 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4516 4517 #undef RESET_REGISTERS 4518 #undef LINE 4519 #undef ADDRESS 4520 } 4521 4522 static void 4523 dump_dwarf_line_decoded(struct readelf *re) 4524 { 4525 Dwarf_Die die; 4526 Dwarf_Line *linebuf, ln; 4527 Dwarf_Addr lineaddr; 4528 Dwarf_Signed linecount, srccount; 4529 Dwarf_Unsigned lineno, fn; 4530 Dwarf_Error de; 4531 const char *dir, *file; 4532 char **srcfiles; 4533 int i, ret; 4534 4535 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4536 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4537 NULL, &de)) == DW_DLV_OK) { 4538 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4539 continue; 4540 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4541 DW_DLV_OK) 4542 file = NULL; 4543 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4544 DW_DLV_OK) 4545 dir = NULL; 4546 printf("CU: "); 4547 if (dir && file) 4548 printf("%s/", dir); 4549 if (file) 4550 printf("%s", file); 4551 putchar('\n'); 4552 printf("%-37s %11s %s\n", "Filename", "Line Number", 4553 "Starting Address"); 4554 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4555 continue; 4556 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4557 continue; 4558 for (i = 0; i < linecount; i++) { 4559 ln = linebuf[i]; 4560 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4561 continue; 4562 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4563 continue; 4564 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4565 continue; 4566 printf("%-37s %11ju %#18jx\n", 4567 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4568 (uintmax_t) lineaddr); 4569 } 4570 putchar('\n'); 4571 } 4572 } 4573 4574 static void 4575 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4576 { 4577 Dwarf_Attribute *attr_list; 4578 Dwarf_Die ret_die; 4579 Dwarf_Off dieoff, cuoff, culen; 4580 Dwarf_Unsigned ate, v_udata; 4581 Dwarf_Signed attr_count, v_sdata; 4582 Dwarf_Off v_off; 4583 Dwarf_Addr v_addr; 4584 Dwarf_Half tag, attr, form; 4585 Dwarf_Block *v_block; 4586 Dwarf_Bool v_bool; 4587 Dwarf_Error de; 4588 const char *tag_str, *attr_str, *ate_str; 4589 char *v_str; 4590 uint8_t *b; 4591 int i, j, abc, ret; 4592 4593 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4594 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4595 goto cont_search; 4596 } 4597 4598 printf("<%d><%jx>: ", level, (uintmax_t) dieoff); 4599 4600 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4601 warnx("dwarf_die_CU_offset_range failed: %s", 4602 dwarf_errmsg(de)); 4603 cuoff = 0; 4604 } 4605 4606 abc = dwarf_die_abbrev_code(die); 4607 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4608 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4609 goto cont_search; 4610 } 4611 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4612 warnx("dwarf_get_TAG_name failed"); 4613 goto cont_search; 4614 } 4615 4616 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4617 4618 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4619 DW_DLV_OK) { 4620 if (ret == DW_DLV_ERROR) 4621 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4622 goto cont_search; 4623 } 4624 4625 for (i = 0; i < attr_count; i++) { 4626 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4627 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4628 continue; 4629 } 4630 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4631 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4632 continue; 4633 } 4634 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4635 warnx("dwarf_get_AT_name failed"); 4636 continue; 4637 } 4638 printf(" %-18s: ", attr_str); 4639 switch (form) { 4640 case DW_FORM_ref_addr: 4641 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4642 DW_DLV_OK) { 4643 warnx("dwarf_global_formref failed: %s", 4644 dwarf_errmsg(de)); 4645 continue; 4646 } 4647 printf("<%jx>", (uintmax_t) v_off); 4648 break; 4649 4650 case DW_FORM_ref1: 4651 case DW_FORM_ref2: 4652 case DW_FORM_ref4: 4653 case DW_FORM_ref8: 4654 case DW_FORM_ref_udata: 4655 if (dwarf_formref(attr_list[i], &v_off, &de) != 4656 DW_DLV_OK) { 4657 warnx("dwarf_formref failed: %s", 4658 dwarf_errmsg(de)); 4659 continue; 4660 } 4661 v_off += cuoff; 4662 printf("<%jx>", (uintmax_t) v_off); 4663 break; 4664 4665 case DW_FORM_addr: 4666 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4667 DW_DLV_OK) { 4668 warnx("dwarf_formaddr failed: %s", 4669 dwarf_errmsg(de)); 4670 continue; 4671 } 4672 printf("%#jx", (uintmax_t) v_addr); 4673 break; 4674 4675 case DW_FORM_data1: 4676 case DW_FORM_data2: 4677 case DW_FORM_data4: 4678 case DW_FORM_data8: 4679 case DW_FORM_udata: 4680 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4681 DW_DLV_OK) { 4682 warnx("dwarf_formudata failed: %s", 4683 dwarf_errmsg(de)); 4684 continue; 4685 } 4686 printf("%ju", (uintmax_t) v_udata); 4687 break; 4688 4689 case DW_FORM_sdata: 4690 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4691 DW_DLV_OK) { 4692 warnx("dwarf_formudata failed: %s", 4693 dwarf_errmsg(de)); 4694 continue; 4695 } 4696 printf("%jd", (intmax_t) v_sdata); 4697 break; 4698 4699 case DW_FORM_flag: 4700 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4701 DW_DLV_OK) { 4702 warnx("dwarf_formflag failed: %s", 4703 dwarf_errmsg(de)); 4704 continue; 4705 } 4706 printf("%jd", (intmax_t) v_bool); 4707 break; 4708 4709 case DW_FORM_string: 4710 case DW_FORM_strp: 4711 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4712 DW_DLV_OK) { 4713 warnx("dwarf_formstring failed: %s", 4714 dwarf_errmsg(de)); 4715 continue; 4716 } 4717 if (form == DW_FORM_string) 4718 printf("%s", v_str); 4719 else 4720 printf("(indirect string) %s", v_str); 4721 break; 4722 4723 case DW_FORM_block: 4724 case DW_FORM_block1: 4725 case DW_FORM_block2: 4726 case DW_FORM_block4: 4727 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4728 DW_DLV_OK) { 4729 warnx("dwarf_formblock failed: %s", 4730 dwarf_errmsg(de)); 4731 continue; 4732 } 4733 printf("%ju byte block:", v_block->bl_len); 4734 b = v_block->bl_data; 4735 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4736 printf(" %x", b[j]); 4737 break; 4738 } 4739 switch (attr) { 4740 case DW_AT_encoding: 4741 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4742 DW_DLV_OK) 4743 break; 4744 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4745 break; 4746 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4747 break; 4748 default: 4749 break; 4750 } 4751 putchar('\n'); 4752 } 4753 4754 4755 cont_search: 4756 /* Search children. */ 4757 ret = dwarf_child(die, &ret_die, &de); 4758 if (ret == DW_DLV_ERROR) 4759 warnx("dwarf_child: %s", dwarf_errmsg(de)); 4760 else if (ret == DW_DLV_OK) 4761 dump_dwarf_die(re, ret_die, level + 1); 4762 4763 /* Search sibling. */ 4764 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 4765 if (ret == DW_DLV_ERROR) 4766 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 4767 else if (ret == DW_DLV_OK) 4768 dump_dwarf_die(re, ret_die, level); 4769 4770 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 4771 } 4772 4773 static void 4774 dump_dwarf_info(struct readelf *re) 4775 { 4776 struct section *s; 4777 Dwarf_Die die; 4778 Dwarf_Error de; 4779 Dwarf_Half tag, version, pointer_size; 4780 Dwarf_Off cu_offset, cu_length; 4781 Dwarf_Off aboff; 4782 Elf_Data *d; 4783 int i, elferr, ret; 4784 4785 printf("\nDump of debug contents of section .debug_info:\n"); 4786 4787 s = NULL; 4788 for (i = 0; (size_t) i < re->shnum; i++) { 4789 s = &re->sl[i]; 4790 if (s->name != NULL && !strcmp(s->name, ".debug_info")) 4791 break; 4792 } 4793 if ((size_t) i >= re->shnum) 4794 return; 4795 4796 (void) elf_errno(); 4797 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4798 elferr = elf_errno(); 4799 if (elferr != 0) 4800 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4801 return; 4802 } 4803 if (d->d_size <= 0) 4804 return; 4805 4806 while ((ret = dwarf_next_cu_header(re->dbg, NULL, &version, &aboff, 4807 &pointer_size, NULL, &de)) == DW_DLV_OK) { 4808 die = NULL; 4809 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4810 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4811 warnx("dwarf_tag failed: %s", 4812 dwarf_errmsg(de)); 4813 return; 4814 } 4815 /* XXX: What about DW_TAG_partial_unit? */ 4816 if (tag == DW_TAG_compile_unit) 4817 break; 4818 } 4819 if (die == NULL) { 4820 warnx("could not find DW_TAG_compile_unit die"); 4821 return; 4822 } 4823 4824 if (dwarf_die_CU_offset_range(die, &cu_offset, &cu_length, 4825 &de) != DW_DLV_OK) { 4826 warnx("dwarf_die_CU_offset failed: %s", 4827 dwarf_errmsg(de)); 4828 continue; 4829 } 4830 4831 printf(" Compilation Unit @ %jd:\n", (intmax_t) cu_offset); 4832 printf(" Length:\t\t%jd\n", (intmax_t) cu_length); 4833 printf(" Version:\t\t%u\n", version); 4834 printf(" Abbrev Offset:\t%ju\n", (uintmax_t) aboff); 4835 printf(" Pointer Size:\t%u\n", pointer_size); 4836 4837 dump_dwarf_die(re, die, 0); 4838 } 4839 if (ret == DW_DLV_ERROR) 4840 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4841 } 4842 4843 static void 4844 dump_dwarf_abbrev(struct readelf *re) 4845 { 4846 Dwarf_Abbrev ab; 4847 Dwarf_Off aboff, atoff; 4848 Dwarf_Unsigned length, attr_count; 4849 Dwarf_Signed flag, form; 4850 Dwarf_Half tag, attr; 4851 Dwarf_Error de; 4852 const char *tag_str, *attr_str, *form_str; 4853 int i, j, ret; 4854 4855 printf("\nContents of section .debug_abbrev:\n\n"); 4856 4857 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 4858 NULL, NULL, &de)) == DW_DLV_OK) { 4859 printf(" Number TAG\n"); 4860 i = 0; 4861 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 4862 &attr_count, &de)) == DW_DLV_OK) { 4863 if (length == 1) { 4864 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 4865 break; 4866 } 4867 aboff += length; 4868 printf("%4d", ++i); 4869 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 4870 warnx("dwarf_get_abbrev_tag failed: %s", 4871 dwarf_errmsg(de)); 4872 goto next_abbrev; 4873 } 4874 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4875 warnx("dwarf_get_TAG_name failed"); 4876 goto next_abbrev; 4877 } 4878 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 4879 DW_DLV_OK) { 4880 warnx("dwarf_get_abbrev_children_flag failed:" 4881 " %s", dwarf_errmsg(de)); 4882 goto next_abbrev; 4883 } 4884 printf(" %s %s\n", tag_str, 4885 flag ? "[has children]" : "[no children]"); 4886 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 4887 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 4888 &attr, &form, &atoff, &de) != DW_DLV_OK) { 4889 warnx("dwarf_get_abbrev_entry failed:" 4890 " %s", dwarf_errmsg(de)); 4891 continue; 4892 } 4893 if (dwarf_get_AT_name(attr, &attr_str) != 4894 DW_DLV_OK) { 4895 warnx("dwarf_get_AT_name failed"); 4896 continue; 4897 } 4898 if (dwarf_get_FORM_name(form, &form_str) != 4899 DW_DLV_OK) { 4900 warnx("dwarf_get_FORM_name failed"); 4901 continue; 4902 } 4903 printf(" %-18s %s\n", attr_str, form_str); 4904 } 4905 next_abbrev: 4906 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 4907 } 4908 if (ret != DW_DLV_OK) 4909 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 4910 } 4911 if (ret == DW_DLV_ERROR) 4912 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4913 } 4914 4915 static void 4916 dump_dwarf_pubnames(struct readelf *re) 4917 { 4918 struct section *s; 4919 Dwarf_Off die_off; 4920 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 4921 Dwarf_Signed cnt; 4922 Dwarf_Global *globs; 4923 Dwarf_Half nt_version; 4924 Dwarf_Error de; 4925 Elf_Data *d; 4926 char *glob_name; 4927 int i, dwarf_size, elferr; 4928 4929 printf("\nContents of the .debug_pubnames section:\n"); 4930 4931 s = NULL; 4932 for (i = 0; (size_t) i < re->shnum; i++) { 4933 s = &re->sl[i]; 4934 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 4935 break; 4936 } 4937 if ((size_t) i >= re->shnum) 4938 return; 4939 4940 (void) elf_errno(); 4941 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4942 elferr = elf_errno(); 4943 if (elferr != 0) 4944 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4945 return; 4946 } 4947 if (d->d_size <= 0) 4948 return; 4949 4950 /* Read in .debug_pubnames section table header. */ 4951 offset = 0; 4952 length = re->dw_read(d, &offset, 4); 4953 if (length == 0xffffffff) { 4954 dwarf_size = 8; 4955 length = re->dw_read(d, &offset, 8); 4956 } else 4957 dwarf_size = 4; 4958 4959 if (length > d->d_size - offset) { 4960 warnx("invalid .dwarf_pubnames section"); 4961 return; 4962 } 4963 4964 nt_version = re->dw_read(d, &offset, 2); 4965 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 4966 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 4967 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 4968 printf(" Version:\t\t\t\t%u\n", nt_version); 4969 printf(" Offset into .debug_info section:\t%ju\n", 4970 (uintmax_t) nt_cu_offset); 4971 printf(" Size of area in .debug_info section:\t%ju\n", 4972 (uintmax_t) nt_cu_length); 4973 4974 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 4975 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 4976 return; 4977 } 4978 4979 printf("\n Offset Name\n"); 4980 for (i = 0; i < cnt; i++) { 4981 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 4982 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 4983 continue; 4984 } 4985 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 4986 DW_DLV_OK) { 4987 warnx("dwarf_global_die_offset failed: %s", 4988 dwarf_errmsg(de)); 4989 continue; 4990 } 4991 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 4992 } 4993 } 4994 4995 static void 4996 dump_dwarf_aranges(struct readelf *re) 4997 { 4998 struct section *s; 4999 Dwarf_Arange *aranges; 5000 Dwarf_Addr start; 5001 Dwarf_Unsigned offset, length, as_cu_offset; 5002 Dwarf_Off die_off; 5003 Dwarf_Signed cnt; 5004 Dwarf_Half as_version, as_addrsz, as_segsz; 5005 Dwarf_Error de; 5006 Elf_Data *d; 5007 int i, dwarf_size, elferr; 5008 5009 printf("\nContents of section .debug_aranges:\n"); 5010 5011 s = NULL; 5012 for (i = 0; (size_t) i < re->shnum; i++) { 5013 s = &re->sl[i]; 5014 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5015 break; 5016 } 5017 if ((size_t) i >= re->shnum) 5018 return; 5019 5020 (void) elf_errno(); 5021 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5022 elferr = elf_errno(); 5023 if (elferr != 0) 5024 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5025 return; 5026 } 5027 if (d->d_size <= 0) 5028 return; 5029 5030 /* Read in the .debug_aranges section table header. */ 5031 offset = 0; 5032 length = re->dw_read(d, &offset, 4); 5033 if (length == 0xffffffff) { 5034 dwarf_size = 8; 5035 length = re->dw_read(d, &offset, 8); 5036 } else 5037 dwarf_size = 4; 5038 5039 if (length > d->d_size - offset) { 5040 warnx("invalid .dwarf_aranges section"); 5041 return; 5042 } 5043 5044 as_version = re->dw_read(d, &offset, 2); 5045 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5046 as_addrsz = re->dw_read(d, &offset, 1); 5047 as_segsz = re->dw_read(d, &offset, 1); 5048 5049 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5050 printf(" Version:\t\t\t%u\n", as_version); 5051 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5052 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5053 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5054 5055 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5056 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5057 return; 5058 } 5059 5060 printf("\n Address Length\n"); 5061 for (i = 0; i < cnt; i++) { 5062 if (dwarf_get_arange_info(aranges[i], &start, &length, 5063 &die_off, &de) != DW_DLV_OK) { 5064 warnx("dwarf_get_arange_info failed: %s", 5065 dwarf_errmsg(de)); 5066 continue; 5067 } 5068 printf(" %08jx %ju\n", (uintmax_t) start, 5069 (uintmax_t) length); 5070 } 5071 } 5072 5073 static void 5074 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5075 { 5076 Dwarf_Attribute *attr_list; 5077 Dwarf_Ranges *ranges; 5078 Dwarf_Die ret_die; 5079 Dwarf_Error de; 5080 Dwarf_Addr base0; 5081 Dwarf_Half attr; 5082 Dwarf_Signed attr_count, cnt; 5083 Dwarf_Unsigned off, bytecnt; 5084 int i, j, ret; 5085 5086 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5087 DW_DLV_OK) { 5088 if (ret == DW_DLV_ERROR) 5089 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5090 goto cont_search; 5091 } 5092 5093 for (i = 0; i < attr_count; i++) { 5094 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5095 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5096 continue; 5097 } 5098 if (attr != DW_AT_ranges) 5099 continue; 5100 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5101 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5102 continue; 5103 } 5104 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5105 &bytecnt, &de) != DW_DLV_OK) 5106 continue; 5107 base0 = base; 5108 for (j = 0; j < cnt; j++) { 5109 printf(" %08jx ", (uintmax_t) off); 5110 if (ranges[j].dwr_type == DW_RANGES_END) { 5111 printf("%s\n", "<End of list>"); 5112 continue; 5113 } else if (ranges[j].dwr_type == 5114 DW_RANGES_ADDRESS_SELECTION) { 5115 base0 = ranges[j].dwr_addr2; 5116 continue; 5117 } 5118 if (re->ec == ELFCLASS32) 5119 printf("%08jx %08jx\n", 5120 ranges[j].dwr_addr1 + base0, 5121 ranges[j].dwr_addr2 + base0); 5122 else 5123 printf("%016jx %016jx\n", 5124 ranges[j].dwr_addr1 + base0, 5125 ranges[j].dwr_addr2 + base0); 5126 } 5127 } 5128 5129 cont_search: 5130 /* Search children. */ 5131 ret = dwarf_child(die, &ret_die, &de); 5132 if (ret == DW_DLV_ERROR) 5133 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5134 else if (ret == DW_DLV_OK) 5135 dump_dwarf_ranges_foreach(re, ret_die, base); 5136 5137 /* Search sibling. */ 5138 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5139 if (ret == DW_DLV_ERROR) 5140 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5141 else if (ret == DW_DLV_OK) 5142 dump_dwarf_ranges_foreach(re, ret_die, base); 5143 } 5144 5145 static void 5146 dump_dwarf_ranges(struct readelf *re) 5147 { 5148 Dwarf_Ranges *ranges; 5149 Dwarf_Die die; 5150 Dwarf_Signed cnt; 5151 Dwarf_Unsigned bytecnt; 5152 Dwarf_Half tag; 5153 Dwarf_Error de; 5154 Dwarf_Unsigned lowpc; 5155 int ret; 5156 5157 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5158 DW_DLV_OK) 5159 return; 5160 5161 printf("Contents of the .debug_ranges section:\n\n"); 5162 if (re->ec == ELFCLASS32) 5163 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5164 else 5165 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5166 5167 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5168 NULL, &de)) == DW_DLV_OK) { 5169 die = NULL; 5170 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5171 continue; 5172 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5173 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5174 continue; 5175 } 5176 /* XXX: What about DW_TAG_partial_unit? */ 5177 lowpc = 0; 5178 if (tag == DW_TAG_compile_unit) { 5179 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5180 &de) != DW_DLV_OK) 5181 lowpc = 0; 5182 } 5183 5184 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5185 } 5186 putchar('\n'); 5187 } 5188 5189 static void 5190 dump_dwarf_macinfo(struct readelf *re) 5191 { 5192 Dwarf_Unsigned offset; 5193 Dwarf_Signed cnt; 5194 Dwarf_Macro_Details *md; 5195 Dwarf_Error de; 5196 const char *mi_str; 5197 int i; 5198 5199 #define _MAX_MACINFO_ENTRY 65535 5200 5201 printf("\nContents of section .debug_macinfo:\n\n"); 5202 5203 offset = 0; 5204 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5205 &cnt, &md, &de) == DW_DLV_OK) { 5206 for (i = 0; i < cnt; i++) { 5207 offset = md[i].dmd_offset + 1; 5208 if (md[i].dmd_type == 0) 5209 break; 5210 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5211 DW_DLV_OK) { 5212 warnx("dwarf_get_MACINFO_name failed: %s", 5213 dwarf_errmsg(de)); 5214 continue; 5215 } 5216 printf(" %s", mi_str); 5217 switch (md[i].dmd_type) { 5218 case DW_MACINFO_define: 5219 case DW_MACINFO_undef: 5220 printf(" - lineno : %jd macro : %s\n", 5221 (intmax_t) md[i].dmd_lineno, 5222 md[i].dmd_macro); 5223 break; 5224 case DW_MACINFO_start_file: 5225 printf(" - lineno : %jd filenum : %jd\n", 5226 (intmax_t) md[i].dmd_lineno, 5227 (intmax_t) md[i].dmd_fileindex); 5228 break; 5229 default: 5230 putchar('\n'); 5231 break; 5232 } 5233 } 5234 } 5235 5236 #undef _MAX_MACINFO_ENTRY 5237 } 5238 5239 static void 5240 dump_dwarf_frame_inst(Dwarf_Cie cie, uint8_t *insts, Dwarf_Unsigned len, 5241 Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, Dwarf_Debug dbg) 5242 { 5243 Dwarf_Frame_Op *oplist; 5244 Dwarf_Signed opcnt, delta; 5245 Dwarf_Small op; 5246 Dwarf_Error de; 5247 const char *op_str; 5248 int i; 5249 5250 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5251 &opcnt, &de) != DW_DLV_OK) { 5252 warnx("dwarf_expand_frame_instructions failed: %s", 5253 dwarf_errmsg(de)); 5254 return; 5255 } 5256 5257 for (i = 0; i < opcnt; i++) { 5258 if (oplist[i].fp_base_op != 0) 5259 op = oplist[i].fp_base_op << 6; 5260 else 5261 op = oplist[i].fp_extended_op; 5262 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5263 warnx("dwarf_get_CFA_name failed: %s", 5264 dwarf_errmsg(de)); 5265 continue; 5266 } 5267 printf(" %s", op_str); 5268 switch (op) { 5269 case DW_CFA_advance_loc: 5270 delta = oplist[i].fp_offset * caf; 5271 pc += delta; 5272 printf(": %ju to %08jx", (uintmax_t) delta, 5273 (uintmax_t) pc); 5274 break; 5275 case DW_CFA_offset: 5276 case DW_CFA_offset_extended: 5277 case DW_CFA_offset_extended_sf: 5278 delta = oplist[i].fp_offset * daf; 5279 printf(": r%u at cfa%+jd", oplist[i].fp_register, 5280 (intmax_t) delta); 5281 break; 5282 case DW_CFA_restore: 5283 printf(": r%u", oplist[i].fp_register); 5284 break; 5285 case DW_CFA_set_loc: 5286 pc = oplist[i].fp_offset; 5287 printf(": to %08jx", (uintmax_t) pc); 5288 break; 5289 case DW_CFA_advance_loc1: 5290 case DW_CFA_advance_loc2: 5291 case DW_CFA_advance_loc4: 5292 pc += oplist[i].fp_offset; 5293 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5294 (uintmax_t) pc); 5295 break; 5296 case DW_CFA_def_cfa: 5297 printf(": r%u ofs %ju", oplist[i].fp_register, 5298 (uintmax_t) oplist[i].fp_offset); 5299 break; 5300 case DW_CFA_def_cfa_sf: 5301 printf(": r%u ofs %jd", oplist[i].fp_register, 5302 (intmax_t) (oplist[i].fp_offset * daf)); 5303 break; 5304 case DW_CFA_def_cfa_register: 5305 printf(": r%u", oplist[i].fp_register); 5306 break; 5307 case DW_CFA_def_cfa_offset: 5308 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5309 break; 5310 case DW_CFA_def_cfa_offset_sf: 5311 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5312 break; 5313 default: 5314 break; 5315 } 5316 putchar('\n'); 5317 } 5318 5319 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5320 } 5321 5322 static char * 5323 get_regoff_str(Dwarf_Half reg, Dwarf_Addr off) 5324 { 5325 static char rs[16]; 5326 5327 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5328 snprintf(rs, sizeof(rs), "%c", 'u'); 5329 else if (reg == DW_FRAME_CFA_COL) 5330 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5331 else 5332 snprintf(rs, sizeof(rs), "r%u%+jd", reg, (intmax_t) off); 5333 5334 return (rs); 5335 } 5336 5337 static int 5338 dump_dwarf_frame_regtable(Dwarf_Fde fde, Dwarf_Addr pc, Dwarf_Unsigned func_len, 5339 Dwarf_Half cie_ra) 5340 { 5341 Dwarf_Regtable rt; 5342 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5343 Dwarf_Error de; 5344 char rn[16]; 5345 char *vec; 5346 int i; 5347 5348 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5349 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5350 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5351 #define RT(x) rt.rules[(x)] 5352 5353 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5354 if (vec == NULL) 5355 err(EXIT_FAILURE, "calloc failed"); 5356 5357 pre_pc = ~((Dwarf_Addr) 0); 5358 cur_pc = pc; 5359 end_pc = pc + func_len; 5360 for (; cur_pc < end_pc; cur_pc++) { 5361 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5362 &de) != DW_DLV_OK) { 5363 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5364 dwarf_errmsg(de)); 5365 return (-1); 5366 } 5367 if (row_pc == pre_pc) 5368 continue; 5369 pre_pc = row_pc; 5370 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5371 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5372 BIT_SET(vec, i); 5373 } 5374 } 5375 5376 printf(" LOC CFA "); 5377 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5378 if (BIT_ISSET(vec, i)) { 5379 if ((Dwarf_Half) i == cie_ra) 5380 printf("ra "); 5381 else { 5382 snprintf(rn, sizeof(rn), "r%d", i); 5383 printf("%-5s", rn); 5384 } 5385 } 5386 } 5387 putchar('\n'); 5388 5389 pre_pc = ~((Dwarf_Addr) 0); 5390 cur_pc = pc; 5391 end_pc = pc + func_len; 5392 for (; cur_pc < end_pc; cur_pc++) { 5393 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5394 &de) != DW_DLV_OK) { 5395 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5396 dwarf_errmsg(de)); 5397 return (-1); 5398 } 5399 if (row_pc == pre_pc) 5400 continue; 5401 pre_pc = row_pc; 5402 printf("%08jx ", (uintmax_t) row_pc); 5403 printf("%-8s ", get_regoff_str(RT(0).dw_regnum, 5404 RT(0).dw_offset)); 5405 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5406 if (BIT_ISSET(vec, i)) { 5407 printf("%-5s", get_regoff_str(RT(i).dw_regnum, 5408 RT(i).dw_offset)); 5409 } 5410 } 5411 putchar('\n'); 5412 } 5413 5414 free(vec); 5415 5416 return (0); 5417 5418 #undef BIT_SET 5419 #undef BIT_CLR 5420 #undef BIT_ISSET 5421 #undef RT 5422 } 5423 5424 static void 5425 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5426 { 5427 Dwarf_Cie *cie_list, cie, pre_cie; 5428 Dwarf_Fde *fde_list, fde; 5429 Dwarf_Off cie_offset, fde_offset; 5430 Dwarf_Unsigned cie_length, fde_instlen; 5431 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5432 Dwarf_Signed cie_count, fde_count, cie_index; 5433 Dwarf_Addr low_pc; 5434 Dwarf_Half cie_ra; 5435 Dwarf_Small cie_version; 5436 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5437 char *cie_aug, c; 5438 int i, eh_frame; 5439 Dwarf_Error de; 5440 5441 printf("\nThe section %s contains:\n\n", s->name); 5442 5443 if (!strcmp(s->name, ".debug_frame")) { 5444 eh_frame = 0; 5445 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5446 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5447 warnx("dwarf_get_fde_list failed: %s", 5448 dwarf_errmsg(de)); 5449 return; 5450 } 5451 } else if (!strcmp(s->name, ".eh_frame")) { 5452 eh_frame = 1; 5453 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5454 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5455 warnx("dwarf_get_fde_list_eh failed: %s", 5456 dwarf_errmsg(de)); 5457 return; 5458 } 5459 } else 5460 return; 5461 5462 pre_cie = NULL; 5463 for (i = 0; i < fde_count; i++) { 5464 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5465 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5466 continue; 5467 } 5468 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5469 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5470 continue; 5471 } 5472 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5473 &fde_length, &cie_offset, &cie_index, &fde_offset, 5474 &de) != DW_DLV_OK) { 5475 warnx("dwarf_get_fde_range failed: %s", 5476 dwarf_errmsg(de)); 5477 continue; 5478 } 5479 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5480 &de) != DW_DLV_OK) { 5481 warnx("dwarf_get_fde_instr_bytes failed: %s", 5482 dwarf_errmsg(de)); 5483 continue; 5484 } 5485 if (pre_cie == NULL || cie != pre_cie) { 5486 pre_cie = cie; 5487 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5488 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5489 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5490 warnx("dwarf_get_cie_info failed: %s", 5491 dwarf_errmsg(de)); 5492 continue; 5493 } 5494 printf("%08jx %08jx %8.8jx CIE", 5495 (uintmax_t) cie_offset, 5496 (uintmax_t) cie_length, 5497 (uintmax_t) (eh_frame ? 0 : ~0U)); 5498 if (!alt) { 5499 putchar('\n'); 5500 printf(" Version:\t\t\t%u\n", cie_version); 5501 printf(" Augmentation:\t\t\t\""); 5502 while ((c = *cie_aug++) != '\0') 5503 putchar(c); 5504 printf("\"\n"); 5505 printf(" Code alignment factor:\t%ju\n", 5506 (uintmax_t) cie_caf); 5507 printf(" Data alignment factor:\t%jd\n", 5508 (intmax_t) cie_daf); 5509 printf(" Return address column:\t%ju\n", 5510 (uintmax_t) cie_ra); 5511 putchar('\n'); 5512 dump_dwarf_frame_inst(cie, cie_inst, 5513 cie_instlen, cie_caf, cie_daf, 0, 5514 re->dbg); 5515 putchar('\n'); 5516 } else { 5517 printf(" \""); 5518 while ((c = *cie_aug++) != '\0') 5519 putchar(c); 5520 putchar('"'); 5521 printf(" cf=%ju df=%jd ra=%ju\n", 5522 (uintmax_t) cie_caf, 5523 (uintmax_t) cie_daf, 5524 (uintmax_t) cie_ra); 5525 dump_dwarf_frame_regtable(fde, low_pc, 1, 5526 cie_ra); 5527 putchar('\n'); 5528 } 5529 } 5530 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5531 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5532 (uintmax_t) cie_offset, 5533 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5534 cie_offset), 5535 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5536 if (!alt) 5537 dump_dwarf_frame_inst(cie, fde_inst, fde_instlen, 5538 cie_caf, cie_daf, low_pc, re->dbg); 5539 else 5540 dump_dwarf_frame_regtable(fde, low_pc, func_len, 5541 cie_ra); 5542 putchar('\n'); 5543 } 5544 } 5545 5546 static void 5547 dump_dwarf_frame(struct readelf *re, int alt) 5548 { 5549 struct section *s; 5550 int i; 5551 5552 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5553 5554 for (i = 0; (size_t) i < re->shnum; i++) { 5555 s = &re->sl[i]; 5556 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5557 !strcmp(s->name, ".eh_frame"))) 5558 dump_dwarf_frame_section(re, s, alt); 5559 } 5560 } 5561 5562 static void 5563 dump_dwarf_str(struct readelf *re) 5564 { 5565 struct section *s; 5566 Elf_Data *d; 5567 unsigned char *p; 5568 int elferr, end, i, j; 5569 5570 printf("\nContents of section .debug_str:\n"); 5571 5572 s = NULL; 5573 for (i = 0; (size_t) i < re->shnum; i++) { 5574 s = &re->sl[i]; 5575 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5576 break; 5577 } 5578 if ((size_t) i >= re->shnum) 5579 return; 5580 5581 (void) elf_errno(); 5582 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5583 elferr = elf_errno(); 5584 if (elferr != 0) 5585 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5586 return; 5587 } 5588 if (d->d_size <= 0) 5589 return; 5590 5591 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5592 printf(" 0x%08x", (unsigned int) i); 5593 if ((size_t) i + 16 > d->d_size) 5594 end = d->d_size; 5595 else 5596 end = i + 16; 5597 for (j = i; j < i + 16; j++) { 5598 if ((j - i) % 4 == 0) 5599 putchar(' '); 5600 if (j >= end) { 5601 printf(" "); 5602 continue; 5603 } 5604 printf("%02x", (uint8_t) p[j]); 5605 } 5606 putchar(' '); 5607 for (j = i; j < end; j++) { 5608 if (isprint(p[j])) 5609 putchar(p[j]); 5610 else if (p[j] == 0) 5611 putchar('.'); 5612 else 5613 putchar(' '); 5614 } 5615 putchar('\n'); 5616 } 5617 } 5618 5619 struct loc_at { 5620 Dwarf_Attribute la_at; 5621 Dwarf_Unsigned la_off; 5622 Dwarf_Unsigned la_lowpc; 5623 TAILQ_ENTRY(loc_at) la_next; 5624 }; 5625 5626 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5627 5628 static void 5629 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5630 { 5631 Dwarf_Attribute *attr_list; 5632 Dwarf_Die ret_die; 5633 Dwarf_Unsigned off; 5634 Dwarf_Signed attr_count; 5635 Dwarf_Half attr, form; 5636 Dwarf_Error de; 5637 struct loc_at *la, *nla; 5638 int i, ret; 5639 5640 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5641 DW_DLV_OK) { 5642 if (ret == DW_DLV_ERROR) 5643 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5644 goto cont_search; 5645 } 5646 for (i = 0; i < attr_count; i++) { 5647 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5648 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5649 continue; 5650 } 5651 if (attr != DW_AT_location && 5652 attr != DW_AT_string_length && 5653 attr != DW_AT_return_addr && 5654 attr != DW_AT_data_member_location && 5655 attr != DW_AT_frame_base && 5656 attr != DW_AT_segment && 5657 attr != DW_AT_static_link && 5658 attr != DW_AT_use_location && 5659 attr != DW_AT_vtable_elem_location) 5660 continue; 5661 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5662 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5663 continue; 5664 } 5665 if (form != DW_FORM_data4 && form != DW_FORM_data8) 5666 continue; 5667 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5668 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5669 continue; 5670 } 5671 TAILQ_FOREACH(la, &lalist, la_next) { 5672 if (off == la->la_off) 5673 break; 5674 if (off < la->la_off) { 5675 if ((nla = malloc(sizeof(*nla))) == NULL) 5676 err(EXIT_FAILURE, "malloc failed"); 5677 nla->la_at = attr_list[i]; 5678 nla->la_off = off; 5679 nla->la_lowpc = lowpc; 5680 TAILQ_INSERT_BEFORE(la, nla, la_next); 5681 break; 5682 } 5683 } 5684 if (la == NULL) { 5685 if ((nla = malloc(sizeof(*nla))) == NULL) 5686 err(EXIT_FAILURE, "malloc failed"); 5687 nla->la_at = attr_list[i]; 5688 nla->la_off = off; 5689 nla->la_lowpc = lowpc; 5690 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 5691 } 5692 } 5693 5694 cont_search: 5695 /* Search children. */ 5696 ret = dwarf_child(die, &ret_die, &de); 5697 if (ret == DW_DLV_ERROR) 5698 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5699 else if (ret == DW_DLV_OK) 5700 search_loclist_at(re, ret_die, lowpc); 5701 5702 /* Search sibling. */ 5703 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5704 if (ret == DW_DLV_ERROR) 5705 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5706 else if (ret == DW_DLV_OK) 5707 search_loclist_at(re, ret_die, lowpc); 5708 } 5709 5710 static void 5711 dump_dwarf_loclist(struct readelf *re) 5712 { 5713 Dwarf_Die die; 5714 Dwarf_Locdesc **llbuf; 5715 Dwarf_Unsigned lowpc; 5716 Dwarf_Signed lcnt; 5717 Dwarf_Half tag; 5718 Dwarf_Error de; 5719 Dwarf_Loc *lr; 5720 struct loc_at *la; 5721 const char *op_str; 5722 int i, j, ret; 5723 5724 printf("\nContents of section .debug_loc:\n"); 5725 5726 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5727 NULL, &de)) == DW_DLV_OK) { 5728 die = NULL; 5729 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5730 continue; 5731 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5732 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5733 continue; 5734 } 5735 /* XXX: What about DW_TAG_partial_unit? */ 5736 lowpc = 0; 5737 if (tag == DW_TAG_compile_unit) { 5738 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5739 &de) != DW_DLV_OK) 5740 lowpc = 0; 5741 } 5742 5743 /* Search attributes for reference to .debug_loc section. */ 5744 search_loclist_at(re, die, lowpc); 5745 } 5746 if (ret == DW_DLV_ERROR) 5747 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5748 5749 if (TAILQ_EMPTY(&lalist)) 5750 return; 5751 5752 printf(" Offset Begin End Expression\n"); 5753 5754 TAILQ_FOREACH(la, &lalist, la_next) { 5755 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 5756 DW_DLV_OK) { 5757 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 5758 continue; 5759 } 5760 for (i = 0; i < lcnt; i++) { 5761 printf(" %8.8jx ", la->la_off); 5762 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 5763 printf("<End of list>\n"); 5764 continue; 5765 } 5766 5767 /* TODO: handle base selection entry. */ 5768 5769 printf("%8.8jx %8.8jx ", 5770 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 5771 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 5772 5773 putchar('('); 5774 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 5775 lr = &llbuf[i]->ld_s[j]; 5776 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 5777 DW_DLV_OK) { 5778 warnx("dwarf_get_OP_name failed: %s", 5779 dwarf_errmsg(de)); 5780 continue; 5781 } 5782 5783 printf("%s", op_str); 5784 5785 switch (lr->lr_atom) { 5786 /* Operations with no operands. */ 5787 case DW_OP_deref: 5788 case DW_OP_reg0: 5789 case DW_OP_reg1: 5790 case DW_OP_reg2: 5791 case DW_OP_reg3: 5792 case DW_OP_reg4: 5793 case DW_OP_reg5: 5794 case DW_OP_reg6: 5795 case DW_OP_reg7: 5796 case DW_OP_reg8: 5797 case DW_OP_reg9: 5798 case DW_OP_reg10: 5799 case DW_OP_reg11: 5800 case DW_OP_reg12: 5801 case DW_OP_reg13: 5802 case DW_OP_reg14: 5803 case DW_OP_reg15: 5804 case DW_OP_reg16: 5805 case DW_OP_reg17: 5806 case DW_OP_reg18: 5807 case DW_OP_reg19: 5808 case DW_OP_reg20: 5809 case DW_OP_reg21: 5810 case DW_OP_reg22: 5811 case DW_OP_reg23: 5812 case DW_OP_reg24: 5813 case DW_OP_reg25: 5814 case DW_OP_reg26: 5815 case DW_OP_reg27: 5816 case DW_OP_reg28: 5817 case DW_OP_reg29: 5818 case DW_OP_reg30: 5819 case DW_OP_reg31: 5820 case DW_OP_lit0: 5821 case DW_OP_lit1: 5822 case DW_OP_lit2: 5823 case DW_OP_lit3: 5824 case DW_OP_lit4: 5825 case DW_OP_lit5: 5826 case DW_OP_lit6: 5827 case DW_OP_lit7: 5828 case DW_OP_lit8: 5829 case DW_OP_lit9: 5830 case DW_OP_lit10: 5831 case DW_OP_lit11: 5832 case DW_OP_lit12: 5833 case DW_OP_lit13: 5834 case DW_OP_lit14: 5835 case DW_OP_lit15: 5836 case DW_OP_lit16: 5837 case DW_OP_lit17: 5838 case DW_OP_lit18: 5839 case DW_OP_lit19: 5840 case DW_OP_lit20: 5841 case DW_OP_lit21: 5842 case DW_OP_lit22: 5843 case DW_OP_lit23: 5844 case DW_OP_lit24: 5845 case DW_OP_lit25: 5846 case DW_OP_lit26: 5847 case DW_OP_lit27: 5848 case DW_OP_lit28: 5849 case DW_OP_lit29: 5850 case DW_OP_lit30: 5851 case DW_OP_lit31: 5852 case DW_OP_dup: 5853 case DW_OP_drop: 5854 case DW_OP_over: 5855 case DW_OP_swap: 5856 case DW_OP_rot: 5857 case DW_OP_xderef: 5858 case DW_OP_abs: 5859 case DW_OP_and: 5860 case DW_OP_div: 5861 case DW_OP_minus: 5862 case DW_OP_mod: 5863 case DW_OP_mul: 5864 case DW_OP_neg: 5865 case DW_OP_not: 5866 case DW_OP_or: 5867 case DW_OP_plus: 5868 case DW_OP_shl: 5869 case DW_OP_shr: 5870 case DW_OP_shra: 5871 case DW_OP_xor: 5872 case DW_OP_eq: 5873 case DW_OP_ge: 5874 case DW_OP_gt: 5875 case DW_OP_le: 5876 case DW_OP_lt: 5877 case DW_OP_ne: 5878 case DW_OP_nop: 5879 break; 5880 5881 case DW_OP_const1u: 5882 case DW_OP_const1s: 5883 case DW_OP_pick: 5884 case DW_OP_deref_size: 5885 case DW_OP_xderef_size: 5886 case DW_OP_const2u: 5887 case DW_OP_const2s: 5888 case DW_OP_bra: 5889 case DW_OP_skip: 5890 case DW_OP_const4u: 5891 case DW_OP_const4s: 5892 case DW_OP_const8u: 5893 case DW_OP_const8s: 5894 case DW_OP_constu: 5895 case DW_OP_plus_uconst: 5896 case DW_OP_regx: 5897 case DW_OP_piece: 5898 printf(": %ju", (uintmax_t) 5899 lr->lr_number); 5900 break; 5901 5902 case DW_OP_consts: 5903 case DW_OP_breg0: 5904 case DW_OP_breg1: 5905 case DW_OP_breg2: 5906 case DW_OP_breg3: 5907 case DW_OP_breg4: 5908 case DW_OP_breg5: 5909 case DW_OP_breg6: 5910 case DW_OP_breg7: 5911 case DW_OP_breg8: 5912 case DW_OP_breg9: 5913 case DW_OP_breg10: 5914 case DW_OP_breg11: 5915 case DW_OP_breg12: 5916 case DW_OP_breg13: 5917 case DW_OP_breg14: 5918 case DW_OP_breg15: 5919 case DW_OP_breg16: 5920 case DW_OP_breg17: 5921 case DW_OP_breg18: 5922 case DW_OP_breg19: 5923 case DW_OP_breg20: 5924 case DW_OP_breg21: 5925 case DW_OP_breg22: 5926 case DW_OP_breg23: 5927 case DW_OP_breg24: 5928 case DW_OP_breg25: 5929 case DW_OP_breg26: 5930 case DW_OP_breg27: 5931 case DW_OP_breg28: 5932 case DW_OP_breg29: 5933 case DW_OP_breg30: 5934 case DW_OP_breg31: 5935 case DW_OP_fbreg: 5936 printf(": %jd", (intmax_t) 5937 lr->lr_number); 5938 break; 5939 5940 case DW_OP_bregx: 5941 printf(": %ju %jd", 5942 (uintmax_t) lr->lr_number, 5943 (intmax_t) lr->lr_number2); 5944 break; 5945 5946 case DW_OP_addr: 5947 printf(": %#jx", (uintmax_t) 5948 lr->lr_number); 5949 break; 5950 } 5951 if (j < llbuf[i]->ld_cents - 1) 5952 printf(", "); 5953 } 5954 putchar(')'); 5955 5956 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 5957 printf(" (start == end)"); 5958 putchar('\n'); 5959 } 5960 } 5961 } 5962 5963 /* 5964 * Retrieve a string using string table section index and the string offset. 5965 */ 5966 static const char* 5967 get_string(struct readelf *re, int strtab, size_t off) 5968 { 5969 const char *name; 5970 5971 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 5972 return (""); 5973 5974 return (name); 5975 } 5976 5977 /* 5978 * Retrieve the name of a symbol using the section index of the symbol 5979 * table and the index of the symbol within that table. 5980 */ 5981 static const char * 5982 get_symbol_name(struct readelf *re, int symtab, int i) 5983 { 5984 struct section *s; 5985 const char *name; 5986 GElf_Sym sym; 5987 Elf_Data *data; 5988 int elferr; 5989 5990 s = &re->sl[symtab]; 5991 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 5992 return (""); 5993 (void) elf_errno(); 5994 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 5995 elferr = elf_errno(); 5996 if (elferr != 0) 5997 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 5998 return (""); 5999 } 6000 if (gelf_getsym(data, i, &sym) != &sym) 6001 return (""); 6002 /* Return section name for STT_SECTION symbol. */ 6003 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 6004 re->sl[sym.st_shndx].name != NULL) 6005 return (re->sl[sym.st_shndx].name); 6006 if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6007 return (""); 6008 6009 return (name); 6010 } 6011 6012 static uint64_t 6013 get_symbol_value(struct readelf *re, int symtab, int i) 6014 { 6015 struct section *s; 6016 GElf_Sym sym; 6017 Elf_Data *data; 6018 int elferr; 6019 6020 s = &re->sl[symtab]; 6021 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6022 return (0); 6023 (void) elf_errno(); 6024 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6025 elferr = elf_errno(); 6026 if (elferr != 0) 6027 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6028 return (0); 6029 } 6030 if (gelf_getsym(data, i, &sym) != &sym) 6031 return (0); 6032 6033 return (sym.st_value); 6034 } 6035 6036 static void 6037 hex_dump(struct readelf *re) 6038 { 6039 struct section *s; 6040 Elf_Data *d; 6041 uint8_t *buf; 6042 size_t sz, nbytes; 6043 uint64_t addr; 6044 int elferr, i, j; 6045 6046 for (i = 1; (size_t) i < re->shnum; i++) { 6047 s = &re->sl[i]; 6048 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6049 continue; 6050 (void) elf_errno(); 6051 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6052 elferr = elf_errno(); 6053 if (elferr != 0) 6054 warnx("elf_getdata failed: %s", 6055 elf_errmsg(elferr)); 6056 continue; 6057 } 6058 if (d->d_size <= 0 || d->d_buf == NULL) { 6059 printf("\nSection '%s' has no data to dump.\n", 6060 s->name); 6061 continue; 6062 } 6063 buf = d->d_buf; 6064 sz = d->d_size; 6065 addr = s->addr; 6066 printf("\nHex dump of section '%s':\n", s->name); 6067 while (sz > 0) { 6068 printf(" 0x%8.8jx ", (uintmax_t)addr); 6069 nbytes = sz > 16? 16 : sz; 6070 for (j = 0; j < 16; j++) { 6071 if ((size_t)j < nbytes) 6072 printf("%2.2x", buf[j]); 6073 else 6074 printf(" "); 6075 if ((j & 3) == 3) 6076 printf(" "); 6077 } 6078 for (j = 0; (size_t)j < nbytes; j++) { 6079 if (isprint(buf[j])) 6080 printf("%c", buf[j]); 6081 else 6082 printf("."); 6083 } 6084 printf("\n"); 6085 buf += nbytes; 6086 addr += nbytes; 6087 sz -= nbytes; 6088 } 6089 } 6090 } 6091 6092 static void 6093 str_dump(struct readelf *re) 6094 { 6095 struct section *s; 6096 Elf_Data *d; 6097 unsigned char *start, *end, *buf_end; 6098 unsigned int len; 6099 int i, j, elferr, found; 6100 6101 for (i = 1; (size_t) i < re->shnum; i++) { 6102 s = &re->sl[i]; 6103 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6104 continue; 6105 (void) elf_errno(); 6106 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6107 elferr = elf_errno(); 6108 if (elferr != 0) 6109 warnx("elf_getdata failed: %s", 6110 elf_errmsg(elferr)); 6111 continue; 6112 } 6113 if (d->d_size <= 0 || d->d_buf == NULL) { 6114 printf("\nSection '%s' has no data to dump.\n", 6115 s->name); 6116 continue; 6117 } 6118 buf_end = (unsigned char *) d->d_buf + d->d_size; 6119 start = (unsigned char *) d->d_buf; 6120 found = 0; 6121 printf("\nString dump of section '%s':\n", s->name); 6122 for (;;) { 6123 while (start < buf_end && !isprint(*start)) 6124 start++; 6125 if (start >= buf_end) 6126 break; 6127 end = start + 1; 6128 while (end < buf_end && isprint(*end)) 6129 end++; 6130 printf(" [%6lx] ", 6131 (long) (start - (unsigned char *) d->d_buf)); 6132 len = end - start; 6133 for (j = 0; (unsigned int) j < len; j++) 6134 putchar(start[j]); 6135 putchar('\n'); 6136 found = 1; 6137 if (end >= buf_end) 6138 break; 6139 start = end + 1; 6140 } 6141 if (!found) 6142 printf(" No strings found in this section."); 6143 putchar('\n'); 6144 } 6145 } 6146 6147 static void 6148 load_sections(struct readelf *re) 6149 { 6150 struct section *s; 6151 const char *name; 6152 Elf_Scn *scn; 6153 GElf_Shdr sh; 6154 size_t shstrndx, ndx; 6155 int elferr; 6156 6157 /* Allocate storage for internal section list. */ 6158 if (!elf_getshnum(re->elf, &re->shnum)) { 6159 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6160 return; 6161 } 6162 if (re->sl != NULL) 6163 free(re->sl); 6164 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6165 err(EXIT_FAILURE, "calloc failed"); 6166 6167 /* Get the index of .shstrtab section. */ 6168 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6169 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6170 return; 6171 } 6172 6173 if ((scn = elf_getscn(re->elf, 0)) == NULL) { 6174 warnx("elf_getscn failed: %s", elf_errmsg(-1)); 6175 return; 6176 } 6177 6178 (void) elf_errno(); 6179 do { 6180 if (gelf_getshdr(scn, &sh) == NULL) { 6181 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6182 (void) elf_errno(); 6183 continue; 6184 } 6185 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6186 (void) elf_errno(); 6187 name = "ERROR"; 6188 } 6189 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6190 if ((elferr = elf_errno()) != 0) 6191 warnx("elf_ndxscn failed: %s", 6192 elf_errmsg(elferr)); 6193 continue; 6194 } 6195 if (ndx >= re->shnum) { 6196 warnx("section index of '%s' out of range", name); 6197 continue; 6198 } 6199 s = &re->sl[ndx]; 6200 s->name = name; 6201 s->scn = scn; 6202 s->off = sh.sh_offset; 6203 s->sz = sh.sh_size; 6204 s->entsize = sh.sh_entsize; 6205 s->align = sh.sh_addralign; 6206 s->type = sh.sh_type; 6207 s->flags = sh.sh_flags; 6208 s->addr = sh.sh_addr; 6209 s->link = sh.sh_link; 6210 s->info = sh.sh_info; 6211 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6212 elferr = elf_errno(); 6213 if (elferr != 0) 6214 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6215 } 6216 6217 static void 6218 unload_sections(struct readelf *re) 6219 { 6220 6221 if (re->sl != NULL) { 6222 free(re->sl); 6223 re->sl = NULL; 6224 } 6225 re->shnum = 0; 6226 re->vd_s = NULL; 6227 re->vn_s = NULL; 6228 re->vs_s = NULL; 6229 re->vs = NULL; 6230 re->vs_sz = 0; 6231 if (re->ver != NULL) { 6232 free(re->ver); 6233 re->ver = NULL; 6234 re->ver_sz = 0; 6235 } 6236 } 6237 6238 static void 6239 dump_elf(struct readelf *re) 6240 { 6241 6242 /* Fetch ELF header. No need to continue if it fails. */ 6243 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6244 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6245 return; 6246 } 6247 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6248 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6249 return; 6250 } 6251 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6252 re->dw_read = _read_msb; 6253 re->dw_decode = _decode_msb; 6254 } else { 6255 re->dw_read = _read_lsb; 6256 re->dw_decode = _decode_lsb; 6257 } 6258 6259 if (re->options & ~RE_H) 6260 load_sections(re); 6261 if ((re->options & RE_VV) || (re->options & RE_S)) 6262 search_ver(re); 6263 if (re->options & RE_H) 6264 dump_ehdr(re); 6265 if (re->options & RE_L) 6266 dump_phdr(re); 6267 if (re->options & RE_SS) 6268 dump_shdr(re); 6269 if (re->options & RE_D) 6270 dump_dynamic(re); 6271 if (re->options & RE_R) 6272 dump_reloc(re); 6273 if (re->options & RE_S) 6274 dump_symtabs(re); 6275 if (re->options & RE_N) 6276 dump_notes(re); 6277 if (re->options & RE_II) 6278 dump_hash(re); 6279 if (re->options & RE_X) 6280 hex_dump(re); 6281 if (re->options & RE_P) 6282 str_dump(re); 6283 if (re->options & RE_VV) 6284 dump_ver(re); 6285 if (re->options & RE_AA) 6286 dump_arch_specific_info(re); 6287 if (re->options & RE_W) 6288 dump_dwarf(re); 6289 if (re->options & ~RE_H) 6290 unload_sections(re); 6291 } 6292 6293 static void 6294 dump_dwarf(struct readelf *re) 6295 { 6296 int error; 6297 Dwarf_Error de; 6298 6299 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6300 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6301 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6302 dwarf_errmsg(de)); 6303 return; 6304 } 6305 6306 if (re->dop & DW_A) 6307 dump_dwarf_abbrev(re); 6308 if (re->dop & DW_L) 6309 dump_dwarf_line(re); 6310 if (re->dop & DW_LL) 6311 dump_dwarf_line_decoded(re); 6312 if (re->dop & DW_I) 6313 dump_dwarf_info(re); 6314 if (re->dop & DW_P) 6315 dump_dwarf_pubnames(re); 6316 if (re->dop & DW_R) 6317 dump_dwarf_aranges(re); 6318 if (re->dop & DW_RR) 6319 dump_dwarf_ranges(re); 6320 if (re->dop & DW_M) 6321 dump_dwarf_macinfo(re); 6322 if (re->dop & DW_F) 6323 dump_dwarf_frame(re, 0); 6324 else if (re->dop & DW_FF) 6325 dump_dwarf_frame(re, 1); 6326 if (re->dop & DW_S) 6327 dump_dwarf_str(re); 6328 if (re->dop & DW_O) 6329 dump_dwarf_loclist(re); 6330 6331 dwarf_finish(re->dbg, &de); 6332 } 6333 6334 static void 6335 dump_ar(struct readelf *re, int fd) 6336 { 6337 Elf_Arsym *arsym; 6338 Elf_Arhdr *arhdr; 6339 Elf_Cmd cmd; 6340 Elf *e; 6341 size_t sz; 6342 off_t off; 6343 int i; 6344 6345 re->ar = re->elf; 6346 6347 if (re->options & RE_C) { 6348 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6349 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6350 goto process_members; 6351 } 6352 printf("Index of archive %s: (%ju entries)\n", re->filename, 6353 (uintmax_t) sz - 1); 6354 off = 0; 6355 for (i = 0; (size_t) i < sz; i++) { 6356 if (arsym[i].as_name == NULL) 6357 break; 6358 if (arsym[i].as_off != off) { 6359 off = arsym[i].as_off; 6360 if (elf_rand(re->ar, off) != off) { 6361 warnx("elf_rand() failed: %s", 6362 elf_errmsg(-1)); 6363 continue; 6364 } 6365 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6366 NULL) { 6367 warnx("elf_begin() failed: %s", 6368 elf_errmsg(-1)); 6369 continue; 6370 } 6371 if ((arhdr = elf_getarhdr(e)) == NULL) { 6372 warnx("elf_getarhdr() failed: %s", 6373 elf_errmsg(-1)); 6374 elf_end(e); 6375 continue; 6376 } 6377 printf("Binary %s(%s) contains:\n", 6378 re->filename, arhdr->ar_name); 6379 } 6380 printf("\t%s\n", arsym[i].as_name); 6381 } 6382 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6383 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6384 return; 6385 } 6386 } 6387 6388 process_members: 6389 6390 if ((re->options & ~RE_C) == 0) 6391 return; 6392 6393 cmd = ELF_C_READ; 6394 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6395 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6396 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6397 goto next_member; 6398 } 6399 if (strcmp(arhdr->ar_name, "/") == 0 || 6400 strcmp(arhdr->ar_name, "//") == 0 || 6401 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6402 goto next_member; 6403 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6404 dump_elf(re); 6405 6406 next_member: 6407 cmd = elf_next(re->elf); 6408 elf_end(re->elf); 6409 } 6410 re->elf = re->ar; 6411 } 6412 6413 static void 6414 dump_object(struct readelf *re) 6415 { 6416 int fd; 6417 6418 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6419 warn("open %s failed", re->filename); 6420 return; 6421 } 6422 6423 if ((re->flags & DISPLAY_FILENAME) != 0) 6424 printf("\nFile: %s\n", re->filename); 6425 6426 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6427 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6428 return; 6429 } 6430 6431 switch (elf_kind(re->elf)) { 6432 case ELF_K_NONE: 6433 warnx("Not an ELF file."); 6434 return; 6435 case ELF_K_ELF: 6436 dump_elf(re); 6437 break; 6438 case ELF_K_AR: 6439 dump_ar(re, fd); 6440 break; 6441 default: 6442 warnx("Internal: libelf returned unknown elf kind."); 6443 return; 6444 } 6445 6446 elf_end(re->elf); 6447 } 6448 6449 static void 6450 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6451 { 6452 struct dumpop *d; 6453 6454 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6455 if ((d = calloc(1, sizeof(*d))) == NULL) 6456 err(EXIT_FAILURE, "calloc failed"); 6457 if (t == DUMP_BY_INDEX) 6458 d->u.si = si; 6459 else 6460 d->u.sn = sn; 6461 d->type = t; 6462 d->op = op; 6463 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6464 } else 6465 d->op |= op; 6466 } 6467 6468 static struct dumpop * 6469 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6470 { 6471 struct dumpop *d; 6472 6473 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6474 if ((op == -1 || op & d->op) && 6475 (t == -1 || (unsigned) t == d->type)) { 6476 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6477 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6478 return (d); 6479 } 6480 } 6481 6482 return (NULL); 6483 } 6484 6485 static struct { 6486 const char *ln; 6487 char sn; 6488 int value; 6489 } dwarf_op[] = { 6490 {"rawline", 'l', DW_L}, 6491 {"decodedline", 'L', DW_LL}, 6492 {"info", 'i', DW_I}, 6493 {"abbrev", 'a', DW_A}, 6494 {"pubnames", 'p', DW_P}, 6495 {"aranges", 'r', DW_R}, 6496 {"ranges", 'r', DW_R}, 6497 {"Ranges", 'R', DW_RR}, 6498 {"macro", 'm', DW_M}, 6499 {"frames", 'f', DW_F}, 6500 {"", 'F', DW_FF}, 6501 {"str", 's', DW_S}, 6502 {"loc", 'o', DW_O}, 6503 {NULL, 0, 0} 6504 }; 6505 6506 static void 6507 parse_dwarf_op_short(struct readelf *re, const char *op) 6508 { 6509 int i; 6510 6511 if (op == NULL) { 6512 re->dop |= DW_DEFAULT_OPTIONS; 6513 return; 6514 } 6515 6516 for (; *op != '\0'; op++) { 6517 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6518 if (dwarf_op[i].sn == *op) { 6519 re->dop |= dwarf_op[i].value; 6520 break; 6521 } 6522 } 6523 } 6524 } 6525 6526 static void 6527 parse_dwarf_op_long(struct readelf *re, const char *op) 6528 { 6529 char *p, *token, *bp; 6530 int i; 6531 6532 if (op == NULL) { 6533 re->dop |= DW_DEFAULT_OPTIONS; 6534 return; 6535 } 6536 6537 if ((p = strdup(op)) == NULL) 6538 err(EXIT_FAILURE, "strdup failed"); 6539 bp = p; 6540 6541 while ((token = strsep(&p, ",")) != NULL) { 6542 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6543 if (!strcmp(token, dwarf_op[i].ln)) { 6544 re->dop |= dwarf_op[i].value; 6545 break; 6546 } 6547 } 6548 } 6549 6550 free(bp); 6551 } 6552 6553 static uint64_t 6554 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 6555 { 6556 uint64_t ret; 6557 uint8_t *src; 6558 6559 src = (uint8_t *) d->d_buf + *offsetp; 6560 6561 ret = 0; 6562 switch (bytes_to_read) { 6563 case 8: 6564 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 6565 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 6566 case 4: 6567 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 6568 case 2: 6569 ret |= ((uint64_t) src[1]) << 8; 6570 case 1: 6571 ret |= src[0]; 6572 break; 6573 default: 6574 return (0); 6575 } 6576 6577 *offsetp += bytes_to_read; 6578 6579 return (ret); 6580 } 6581 6582 static uint64_t 6583 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 6584 { 6585 uint64_t ret; 6586 uint8_t *src; 6587 6588 src = (uint8_t *) d->d_buf + *offsetp; 6589 6590 switch (bytes_to_read) { 6591 case 1: 6592 ret = src[0]; 6593 break; 6594 case 2: 6595 ret = src[1] | ((uint64_t) src[0]) << 8; 6596 break; 6597 case 4: 6598 ret = src[3] | ((uint64_t) src[2]) << 8; 6599 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 6600 break; 6601 case 8: 6602 ret = src[7] | ((uint64_t) src[6]) << 8; 6603 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 6604 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 6605 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 6606 break; 6607 default: 6608 return (0); 6609 } 6610 6611 *offsetp += bytes_to_read; 6612 6613 return (ret); 6614 } 6615 6616 static uint64_t 6617 _decode_lsb(uint8_t **data, int bytes_to_read) 6618 { 6619 uint64_t ret; 6620 uint8_t *src; 6621 6622 src = *data; 6623 6624 ret = 0; 6625 switch (bytes_to_read) { 6626 case 8: 6627 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 6628 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 6629 case 4: 6630 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 6631 case 2: 6632 ret |= ((uint64_t) src[1]) << 8; 6633 case 1: 6634 ret |= src[0]; 6635 break; 6636 default: 6637 return (0); 6638 } 6639 6640 *data += bytes_to_read; 6641 6642 return (ret); 6643 } 6644 6645 static uint64_t 6646 _decode_msb(uint8_t **data, int bytes_to_read) 6647 { 6648 uint64_t ret; 6649 uint8_t *src; 6650 6651 src = *data; 6652 6653 ret = 0; 6654 switch (bytes_to_read) { 6655 case 1: 6656 ret = src[0]; 6657 break; 6658 case 2: 6659 ret = src[1] | ((uint64_t) src[0]) << 8; 6660 break; 6661 case 4: 6662 ret = src[3] | ((uint64_t) src[2]) << 8; 6663 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 6664 break; 6665 case 8: 6666 ret = src[7] | ((uint64_t) src[6]) << 8; 6667 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 6668 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 6669 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 6670 break; 6671 default: 6672 return (0); 6673 break; 6674 } 6675 6676 *data += bytes_to_read; 6677 6678 return (ret); 6679 } 6680 6681 static int64_t 6682 _decode_sleb128(uint8_t **dp) 6683 { 6684 int64_t ret = 0; 6685 uint8_t b; 6686 int shift = 0; 6687 6688 uint8_t *src = *dp; 6689 6690 do { 6691 b = *src++; 6692 ret |= ((b & 0x7f) << shift); 6693 shift += 7; 6694 } while ((b & 0x80) != 0); 6695 6696 if (shift < 32 && (b & 0x40) != 0) 6697 ret |= (-1 << shift); 6698 6699 *dp = src; 6700 6701 return (ret); 6702 } 6703 6704 static uint64_t 6705 _decode_uleb128(uint8_t **dp) 6706 { 6707 uint64_t ret = 0; 6708 uint8_t b; 6709 int shift = 0; 6710 6711 uint8_t *src = *dp; 6712 6713 do { 6714 b = *src++; 6715 ret |= ((b & 0x7f) << shift); 6716 shift += 7; 6717 } while ((b & 0x80) != 0); 6718 6719 *dp = src; 6720 6721 return (ret); 6722 } 6723 6724 static void 6725 readelf_version(void) 6726 { 6727 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 6728 elftc_version()); 6729 exit(EXIT_SUCCESS); 6730 } 6731 6732 #define USAGE_MESSAGE "\ 6733 Usage: %s [options] file...\n\ 6734 Display information about ELF objects and ar(1) archives.\n\n\ 6735 Options:\n\ 6736 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 6737 -c | --archive-index Print the archive symbol table for archives.\n\ 6738 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 6739 -e | --headers Print all headers in the object.\n\ 6740 -g | --section-groups (accepted, but ignored)\n\ 6741 -h | --file-header Print the file header for the object.\n\ 6742 -l | --program-headers Print the PHDR table for the object.\n\ 6743 -n | --notes Print the contents of SHT_NOTE sections.\n\ 6744 -p INDEX | --string-dump=INDEX\n\ 6745 Print the contents of section at index INDEX.\n\ 6746 -r | --relocs Print relocation information.\n\ 6747 -s | --syms | --symbols Print symbol tables.\n\ 6748 -t | --section-details Print additional information about sections.\n\ 6749 -v | --version Print a version identifier and exit.\n\ 6750 -x INDEX | --hex-dump=INDEX\n\ 6751 Display contents of a section as hexadecimal.\n\ 6752 -A | --arch-specific (accepted, but ignored)\n\ 6753 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 6754 entry in the \".dynamic\" section.\n\ 6755 -H | --help Print a help message.\n\ 6756 -I | --histogram Print information on bucket list lengths for \n\ 6757 hash sections.\n\ 6758 -N | --full-section-name (accepted, but ignored)\n\ 6759 -S | --sections | --section-headers\n\ 6760 Print information about section headers.\n\ 6761 -V | --version-info Print symbol versoning information.\n\ 6762 -W | --wide Print information without wrapping long lines.\n" 6763 6764 6765 static void 6766 readelf_usage(void) 6767 { 6768 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 6769 exit(EXIT_FAILURE); 6770 } 6771 6772 int 6773 main(int argc, char **argv) 6774 { 6775 struct readelf *re, re_storage; 6776 unsigned long si; 6777 int opt, i; 6778 char *ep; 6779 6780 re = &re_storage; 6781 memset(re, 0, sizeof(*re)); 6782 STAILQ_INIT(&re->v_dumpop); 6783 6784 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 6785 longopts, NULL)) != -1) { 6786 switch(opt) { 6787 case '?': 6788 readelf_usage(); 6789 break; 6790 case 'A': 6791 re->options |= RE_AA; 6792 break; 6793 case 'a': 6794 re->options |= RE_AA | RE_D | RE_H | RE_II | RE_L | 6795 RE_R | RE_SS | RE_S | RE_VV; 6796 break; 6797 case 'c': 6798 re->options |= RE_C; 6799 break; 6800 case 'D': 6801 re->options |= RE_DD; 6802 break; 6803 case 'd': 6804 re->options |= RE_D; 6805 break; 6806 case 'e': 6807 re->options |= RE_H | RE_L | RE_SS; 6808 break; 6809 case 'g': 6810 re->options |= RE_G; 6811 break; 6812 case 'H': 6813 readelf_usage(); 6814 break; 6815 case 'h': 6816 re->options |= RE_H; 6817 break; 6818 case 'I': 6819 re->options |= RE_II; 6820 break; 6821 case 'i': 6822 /* Not implemented yet. */ 6823 break; 6824 case 'l': 6825 re->options |= RE_L; 6826 break; 6827 case 'N': 6828 re->options |= RE_NN; 6829 break; 6830 case 'n': 6831 re->options |= RE_N; 6832 break; 6833 case 'p': 6834 re->options |= RE_P; 6835 si = strtoul(optarg, &ep, 10); 6836 if (*ep == '\0') 6837 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 6838 DUMP_BY_INDEX); 6839 else 6840 add_dumpop(re, 0, optarg, STR_DUMP, 6841 DUMP_BY_NAME); 6842 break; 6843 case 'r': 6844 re->options |= RE_R; 6845 break; 6846 case 'S': 6847 re->options |= RE_SS; 6848 break; 6849 case 's': 6850 re->options |= RE_S; 6851 break; 6852 case 't': 6853 re->options |= RE_T; 6854 break; 6855 case 'u': 6856 re->options |= RE_U; 6857 break; 6858 case 'V': 6859 re->options |= RE_VV; 6860 break; 6861 case 'v': 6862 readelf_version(); 6863 break; 6864 case 'W': 6865 re->options |= RE_WW; 6866 break; 6867 case 'w': 6868 re->options |= RE_W; 6869 parse_dwarf_op_short(re, optarg); 6870 break; 6871 case 'x': 6872 re->options |= RE_X; 6873 si = strtoul(optarg, &ep, 10); 6874 if (*ep == '\0') 6875 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 6876 DUMP_BY_INDEX); 6877 else 6878 add_dumpop(re, 0, optarg, HEX_DUMP, 6879 DUMP_BY_NAME); 6880 break; 6881 case OPTION_DEBUG_DUMP: 6882 re->options |= RE_W; 6883 parse_dwarf_op_long(re, optarg); 6884 } 6885 } 6886 6887 argv += optind; 6888 argc -= optind; 6889 6890 if (argc == 0 || re->options == 0) 6891 readelf_usage(); 6892 6893 if (argc > 1) 6894 re->flags |= DISPLAY_FILENAME; 6895 6896 if (elf_version(EV_CURRENT) == EV_NONE) 6897 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 6898 elf_errmsg(-1)); 6899 6900 for (i = 0; i < argc; i++) 6901 if (argv[i] != NULL) { 6902 re->filename = argv[i]; 6903 dump_object(re); 6904 } 6905 6906 exit(EXIT_SUCCESS); 6907 } 6908