1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3484 2016-08-03 13:36:49Z emaste $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 300 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 301 static void dump_mips_options(struct readelf *re, struct section *s); 302 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 303 uint64_t info); 304 static void dump_mips_reginfo(struct readelf *re, struct section *s); 305 static void dump_mips_specific_info(struct readelf *re); 306 static void dump_notes(struct readelf *re); 307 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 308 off_t off); 309 static void dump_svr4_hash(struct section *s); 310 static void dump_svr4_hash64(struct readelf *re, struct section *s); 311 static void dump_gnu_hash(struct readelf *re, struct section *s); 312 static void dump_hash(struct readelf *re); 313 static void dump_phdr(struct readelf *re); 314 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 315 static void dump_section_groups(struct readelf *re); 316 static void dump_symtab(struct readelf *re, int i); 317 static void dump_symtabs(struct readelf *re); 318 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 319 static void dump_ver(struct readelf *re); 320 static void dump_verdef(struct readelf *re, int dump); 321 static void dump_verneed(struct readelf *re, int dump); 322 static void dump_versym(struct readelf *re); 323 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 324 static const char *dwarf_regname(struct readelf *re, unsigned int num); 325 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 326 const char *sn, int op, int t); 327 static int get_ent_count(struct section *s, int *ent_count); 328 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 329 Dwarf_Addr off); 330 static const char *get_string(struct readelf *re, int strtab, size_t off); 331 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 332 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 333 static void load_sections(struct readelf *re); 334 static const char *mips_abi_fp(uint64_t fp); 335 static const char *note_type(const char *note_name, unsigned int et, 336 unsigned int nt); 337 static const char *note_type_freebsd(unsigned int nt); 338 static const char *note_type_freebsd_core(unsigned int nt); 339 static const char *note_type_linux_core(unsigned int nt); 340 static const char *note_type_gnu(unsigned int nt); 341 static const char *note_type_netbsd(unsigned int nt); 342 static const char *note_type_openbsd(unsigned int nt); 343 static const char *note_type_unknown(unsigned int nt); 344 static const char *note_type_xen(unsigned int nt); 345 static const char *option_kind(uint8_t kind); 346 static const char *phdr_type(unsigned int mach, unsigned int ptype); 347 static const char *ppc_abi_fp(uint64_t fp); 348 static const char *ppc_abi_vector(uint64_t vec); 349 static void readelf_usage(int status); 350 static void readelf_version(void); 351 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 352 Dwarf_Unsigned lowpc); 353 static void search_ver(struct readelf *re); 354 static const char *section_type(unsigned int mach, unsigned int stype); 355 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 356 Dwarf_Half osize, Dwarf_Half ver); 357 static const char *st_bind(unsigned int sbind); 358 static const char *st_shndx(unsigned int shndx); 359 static const char *st_type(unsigned int mach, unsigned int os, 360 unsigned int stype); 361 static const char *st_vis(unsigned int svis); 362 static const char *top_tag(unsigned int tag); 363 static void unload_sections(struct readelf *re); 364 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 365 int bytes_to_read); 366 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 369 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 370 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 371 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 372 373 static struct eflags_desc arm_eflags_desc[] = { 374 {EF_ARM_RELEXEC, "relocatable executable"}, 375 {EF_ARM_HASENTRY, "has entry point"}, 376 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 377 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 378 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 379 {EF_ARM_BE8, "BE8"}, 380 {EF_ARM_LE8, "LE8"}, 381 {EF_ARM_INTERWORK, "interworking enabled"}, 382 {EF_ARM_APCS_26, "uses APCS/26"}, 383 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 384 {EF_ARM_PIC, "position independent"}, 385 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 386 {EF_ARM_NEW_ABI, "uses new ABI"}, 387 {EF_ARM_OLD_ABI, "uses old ABI"}, 388 {EF_ARM_SOFT_FLOAT, "software FP"}, 389 {EF_ARM_VFP_FLOAT, "VFP"}, 390 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 391 {0, NULL} 392 }; 393 394 static struct eflags_desc mips_eflags_desc[] = { 395 {EF_MIPS_NOREORDER, "noreorder"}, 396 {EF_MIPS_PIC, "pic"}, 397 {EF_MIPS_CPIC, "cpic"}, 398 {EF_MIPS_UCODE, "ugen_reserved"}, 399 {EF_MIPS_ABI2, "abi2"}, 400 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 401 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 402 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 403 {0, NULL} 404 }; 405 406 static struct eflags_desc powerpc_eflags_desc[] = { 407 {EF_PPC_EMB, "emb"}, 408 {EF_PPC_RELOCATABLE, "relocatable"}, 409 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 410 {0, NULL} 411 }; 412 413 static struct eflags_desc sparc_eflags_desc[] = { 414 {EF_SPARC_32PLUS, "v8+"}, 415 {EF_SPARC_SUN_US1, "ultrasparcI"}, 416 {EF_SPARC_HAL_R1, "halr1"}, 417 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 418 {0, NULL} 419 }; 420 421 static const char * 422 elf_osabi(unsigned int abi) 423 { 424 static char s_abi[32]; 425 426 switch(abi) { 427 case ELFOSABI_NONE: return "NONE"; 428 case ELFOSABI_HPUX: return "HPUX"; 429 case ELFOSABI_NETBSD: return "NetBSD"; 430 case ELFOSABI_GNU: return "GNU"; 431 case ELFOSABI_HURD: return "HURD"; 432 case ELFOSABI_86OPEN: return "86OPEN"; 433 case ELFOSABI_SOLARIS: return "Solaris"; 434 case ELFOSABI_AIX: return "AIX"; 435 case ELFOSABI_IRIX: return "IRIX"; 436 case ELFOSABI_FREEBSD: return "FreeBSD"; 437 case ELFOSABI_TRU64: return "TRU64"; 438 case ELFOSABI_MODESTO: return "MODESTO"; 439 case ELFOSABI_OPENBSD: return "OpenBSD"; 440 case ELFOSABI_OPENVMS: return "OpenVMS"; 441 case ELFOSABI_NSK: return "NSK"; 442 case ELFOSABI_CLOUDABI: return "CloudABI"; 443 case ELFOSABI_ARM_AEABI: return "ARM EABI"; 444 case ELFOSABI_ARM: return "ARM"; 445 case ELFOSABI_STANDALONE: return "StandAlone"; 446 default: 447 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 448 return (s_abi); 449 } 450 }; 451 452 static const char * 453 elf_machine(unsigned int mach) 454 { 455 static char s_mach[32]; 456 457 switch (mach) { 458 case EM_NONE: return "Unknown machine"; 459 case EM_M32: return "AT&T WE32100"; 460 case EM_SPARC: return "Sun SPARC"; 461 case EM_386: return "Intel i386"; 462 case EM_68K: return "Motorola 68000"; 463 case EM_IAMCU: return "Intel MCU"; 464 case EM_88K: return "Motorola 88000"; 465 case EM_860: return "Intel i860"; 466 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 467 case EM_S370: return "IBM System/370"; 468 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 469 case EM_PARISC: return "HP PA-RISC"; 470 case EM_VPP500: return "Fujitsu VPP500"; 471 case EM_SPARC32PLUS: return "SPARC v8plus"; 472 case EM_960: return "Intel 80960"; 473 case EM_PPC: return "PowerPC 32-bit"; 474 case EM_PPC64: return "PowerPC 64-bit"; 475 case EM_S390: return "IBM System/390"; 476 case EM_V800: return "NEC V800"; 477 case EM_FR20: return "Fujitsu FR20"; 478 case EM_RH32: return "TRW RH-32"; 479 case EM_RCE: return "Motorola RCE"; 480 case EM_ARM: return "ARM"; 481 case EM_SH: return "Hitachi SH"; 482 case EM_SPARCV9: return "SPARC v9 64-bit"; 483 case EM_TRICORE: return "Siemens TriCore embedded processor"; 484 case EM_ARC: return "Argonaut RISC Core"; 485 case EM_H8_300: return "Hitachi H8/300"; 486 case EM_H8_300H: return "Hitachi H8/300H"; 487 case EM_H8S: return "Hitachi H8S"; 488 case EM_H8_500: return "Hitachi H8/500"; 489 case EM_IA_64: return "Intel IA-64 Processor"; 490 case EM_MIPS_X: return "Stanford MIPS-X"; 491 case EM_COLDFIRE: return "Motorola ColdFire"; 492 case EM_68HC12: return "Motorola M68HC12"; 493 case EM_MMA: return "Fujitsu MMA"; 494 case EM_PCP: return "Siemens PCP"; 495 case EM_NCPU: return "Sony nCPU"; 496 case EM_NDR1: return "Denso NDR1 microprocessor"; 497 case EM_STARCORE: return "Motorola Star*Core processor"; 498 case EM_ME16: return "Toyota ME16 processor"; 499 case EM_ST100: return "STMicroelectronics ST100 processor"; 500 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 501 case EM_X86_64: return "Advanced Micro Devices x86-64"; 502 case EM_PDSP: return "Sony DSP Processor"; 503 case EM_FX66: return "Siemens FX66 microcontroller"; 504 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 505 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 506 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 507 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 508 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 509 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 510 case EM_SVX: return "Silicon Graphics SVx"; 511 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 512 case EM_VAX: return "Digital VAX"; 513 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 514 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 515 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 516 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 517 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 518 case EM_HUANY: return "Harvard University MI object files"; 519 case EM_PRISM: return "SiTera Prism"; 520 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 521 case EM_FR30: return "Fujitsu FR30"; 522 case EM_D10V: return "Mitsubishi D10V"; 523 case EM_D30V: return "Mitsubishi D30V"; 524 case EM_V850: return "NEC v850"; 525 case EM_M32R: return "Mitsubishi M32R"; 526 case EM_MN10300: return "Matsushita MN10300"; 527 case EM_MN10200: return "Matsushita MN10200"; 528 case EM_PJ: return "picoJava"; 529 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 530 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 531 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 532 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 533 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 534 case EM_NS32K: return "National Semiconductor 32000 series"; 535 case EM_TPC: return "Tenor Network TPC processor"; 536 case EM_SNP1K: return "Trebia SNP 1000 processor"; 537 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 538 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 539 case EM_MAX: return "MAX Processor"; 540 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 541 case EM_F2MC16: return "Fujitsu F2MC16"; 542 case EM_MSP430: return "TI embedded microcontroller msp430"; 543 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 544 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 545 case EM_SEP: return "Sharp embedded microprocessor"; 546 case EM_ARCA: return "Arca RISC Microprocessor"; 547 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 548 case EM_AARCH64: return "AArch64"; 549 case EM_RISCV: return "RISC-V"; 550 default: 551 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 552 return (s_mach); 553 } 554 555 } 556 557 static const char * 558 elf_class(unsigned int class) 559 { 560 static char s_class[32]; 561 562 switch (class) { 563 case ELFCLASSNONE: return "none"; 564 case ELFCLASS32: return "ELF32"; 565 case ELFCLASS64: return "ELF64"; 566 default: 567 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 568 return (s_class); 569 } 570 } 571 572 static const char * 573 elf_endian(unsigned int endian) 574 { 575 static char s_endian[32]; 576 577 switch (endian) { 578 case ELFDATANONE: return "none"; 579 case ELFDATA2LSB: return "2's complement, little endian"; 580 case ELFDATA2MSB: return "2's complement, big endian"; 581 default: 582 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 583 return (s_endian); 584 } 585 } 586 587 static const char * 588 elf_type(unsigned int type) 589 { 590 static char s_type[32]; 591 592 switch (type) { 593 case ET_NONE: return "NONE (None)"; 594 case ET_REL: return "REL (Relocatable file)"; 595 case ET_EXEC: return "EXEC (Executable file)"; 596 case ET_DYN: return "DYN (Shared object file)"; 597 case ET_CORE: return "CORE (Core file)"; 598 default: 599 if (type >= ET_LOPROC) 600 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 601 else if (type >= ET_LOOS && type <= ET_HIOS) 602 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 603 else 604 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 605 type); 606 return (s_type); 607 } 608 } 609 610 static const char * 611 elf_ver(unsigned int ver) 612 { 613 static char s_ver[32]; 614 615 switch (ver) { 616 case EV_CURRENT: return "(current)"; 617 case EV_NONE: return "(none)"; 618 default: 619 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 620 ver); 621 return (s_ver); 622 } 623 } 624 625 static const char * 626 phdr_type(unsigned int mach, unsigned int ptype) 627 { 628 static char s_ptype[32]; 629 630 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { 631 switch (mach) { 632 case EM_ARM: 633 switch (ptype) { 634 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; 635 case PT_ARM_EXIDX: return "ARM_EXIDX"; 636 } 637 break; 638 } 639 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 640 ptype - PT_LOPROC); 641 return (s_ptype); 642 } 643 644 switch (ptype) { 645 case PT_NULL: return "NULL"; 646 case PT_LOAD: return "LOAD"; 647 case PT_DYNAMIC: return "DYNAMIC"; 648 case PT_INTERP: return "INTERP"; 649 case PT_NOTE: return "NOTE"; 650 case PT_SHLIB: return "SHLIB"; 651 case PT_PHDR: return "PHDR"; 652 case PT_TLS: return "TLS"; 653 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 654 case PT_GNU_STACK: return "GNU_STACK"; 655 case PT_GNU_RELRO: return "GNU_RELRO"; 656 default: 657 if (ptype >= PT_LOOS && ptype <= PT_HIOS) 658 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 659 ptype - PT_LOOS); 660 else 661 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 662 ptype); 663 return (s_ptype); 664 } 665 } 666 667 static const char * 668 section_type(unsigned int mach, unsigned int stype) 669 { 670 static char s_stype[32]; 671 672 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 673 switch (mach) { 674 case EM_ARM: 675 switch (stype) { 676 case SHT_ARM_EXIDX: return "ARM_EXIDX"; 677 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; 678 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; 679 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; 680 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; 681 } 682 break; 683 case EM_X86_64: 684 switch (stype) { 685 case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; 686 default: 687 break; 688 } 689 break; 690 case EM_MIPS: 691 case EM_MIPS_RS3_LE: 692 switch (stype) { 693 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 694 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 695 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 696 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 697 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 698 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 699 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 700 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 701 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 702 case SHT_MIPS_RELD: return "MIPS_RELD"; 703 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 704 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 705 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 706 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 707 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 708 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 709 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 710 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 711 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 712 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 713 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 714 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 715 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 716 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 717 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 718 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 719 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 720 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 721 default: 722 break; 723 } 724 break; 725 default: 726 break; 727 } 728 729 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 730 stype - SHT_LOPROC); 731 return (s_stype); 732 } 733 734 switch (stype) { 735 case SHT_NULL: return "NULL"; 736 case SHT_PROGBITS: return "PROGBITS"; 737 case SHT_SYMTAB: return "SYMTAB"; 738 case SHT_STRTAB: return "STRTAB"; 739 case SHT_RELA: return "RELA"; 740 case SHT_HASH: return "HASH"; 741 case SHT_DYNAMIC: return "DYNAMIC"; 742 case SHT_NOTE: return "NOTE"; 743 case SHT_NOBITS: return "NOBITS"; 744 case SHT_REL: return "REL"; 745 case SHT_SHLIB: return "SHLIB"; 746 case SHT_DYNSYM: return "DYNSYM"; 747 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 748 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 749 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 750 case SHT_GROUP: return "GROUP"; 751 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 752 case SHT_SUNW_dof: return "SUNW_dof"; 753 case SHT_SUNW_cap: return "SUNW_cap"; 754 case SHT_GNU_HASH: return "GNU_HASH"; 755 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 756 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 757 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 758 case SHT_SUNW_move: return "SUNW_move"; 759 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 760 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 761 case SHT_SUNW_verdef: return "SUNW_verdef"; 762 case SHT_SUNW_verneed: return "SUNW_verneed"; 763 case SHT_SUNW_versym: return "SUNW_versym"; 764 default: 765 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 766 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 767 stype - SHT_LOOS); 768 else if (stype >= SHT_LOUSER) 769 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 770 stype - SHT_LOUSER); 771 else 772 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 773 stype); 774 return (s_stype); 775 } 776 } 777 778 static const char * 779 dt_type(unsigned int mach, unsigned int dtype) 780 { 781 static char s_dtype[32]; 782 783 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 784 switch (mach) { 785 case EM_ARM: 786 switch (dtype) { 787 case DT_ARM_SYMTABSZ: 788 return "ARM_SYMTABSZ"; 789 default: 790 break; 791 } 792 break; 793 case EM_MIPS: 794 case EM_MIPS_RS3_LE: 795 switch (dtype) { 796 case DT_MIPS_RLD_VERSION: 797 return "MIPS_RLD_VERSION"; 798 case DT_MIPS_TIME_STAMP: 799 return "MIPS_TIME_STAMP"; 800 case DT_MIPS_ICHECKSUM: 801 return "MIPS_ICHECKSUM"; 802 case DT_MIPS_IVERSION: 803 return "MIPS_IVERSION"; 804 case DT_MIPS_FLAGS: 805 return "MIPS_FLAGS"; 806 case DT_MIPS_BASE_ADDRESS: 807 return "MIPS_BASE_ADDRESS"; 808 case DT_MIPS_CONFLICT: 809 return "MIPS_CONFLICT"; 810 case DT_MIPS_LIBLIST: 811 return "MIPS_LIBLIST"; 812 case DT_MIPS_LOCAL_GOTNO: 813 return "MIPS_LOCAL_GOTNO"; 814 case DT_MIPS_CONFLICTNO: 815 return "MIPS_CONFLICTNO"; 816 case DT_MIPS_LIBLISTNO: 817 return "MIPS_LIBLISTNO"; 818 case DT_MIPS_SYMTABNO: 819 return "MIPS_SYMTABNO"; 820 case DT_MIPS_UNREFEXTNO: 821 return "MIPS_UNREFEXTNO"; 822 case DT_MIPS_GOTSYM: 823 return "MIPS_GOTSYM"; 824 case DT_MIPS_HIPAGENO: 825 return "MIPS_HIPAGENO"; 826 case DT_MIPS_RLD_MAP: 827 return "MIPS_RLD_MAP"; 828 case DT_MIPS_DELTA_CLASS: 829 return "MIPS_DELTA_CLASS"; 830 case DT_MIPS_DELTA_CLASS_NO: 831 return "MIPS_DELTA_CLASS_NO"; 832 case DT_MIPS_DELTA_INSTANCE: 833 return "MIPS_DELTA_INSTANCE"; 834 case DT_MIPS_DELTA_INSTANCE_NO: 835 return "MIPS_DELTA_INSTANCE_NO"; 836 case DT_MIPS_DELTA_RELOC: 837 return "MIPS_DELTA_RELOC"; 838 case DT_MIPS_DELTA_RELOC_NO: 839 return "MIPS_DELTA_RELOC_NO"; 840 case DT_MIPS_DELTA_SYM: 841 return "MIPS_DELTA_SYM"; 842 case DT_MIPS_DELTA_SYM_NO: 843 return "MIPS_DELTA_SYM_NO"; 844 case DT_MIPS_DELTA_CLASSSYM: 845 return "MIPS_DELTA_CLASSSYM"; 846 case DT_MIPS_DELTA_CLASSSYM_NO: 847 return "MIPS_DELTA_CLASSSYM_NO"; 848 case DT_MIPS_CXX_FLAGS: 849 return "MIPS_CXX_FLAGS"; 850 case DT_MIPS_PIXIE_INIT: 851 return "MIPS_PIXIE_INIT"; 852 case DT_MIPS_SYMBOL_LIB: 853 return "MIPS_SYMBOL_LIB"; 854 case DT_MIPS_LOCALPAGE_GOTIDX: 855 return "MIPS_LOCALPAGE_GOTIDX"; 856 case DT_MIPS_LOCAL_GOTIDX: 857 return "MIPS_LOCAL_GOTIDX"; 858 case DT_MIPS_HIDDEN_GOTIDX: 859 return "MIPS_HIDDEN_GOTIDX"; 860 case DT_MIPS_PROTECTED_GOTIDX: 861 return "MIPS_PROTECTED_GOTIDX"; 862 case DT_MIPS_OPTIONS: 863 return "MIPS_OPTIONS"; 864 case DT_MIPS_INTERFACE: 865 return "MIPS_INTERFACE"; 866 case DT_MIPS_DYNSTR_ALIGN: 867 return "MIPS_DYNSTR_ALIGN"; 868 case DT_MIPS_INTERFACE_SIZE: 869 return "MIPS_INTERFACE_SIZE"; 870 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 871 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 872 case DT_MIPS_PERF_SUFFIX: 873 return "MIPS_PERF_SUFFIX"; 874 case DT_MIPS_COMPACT_SIZE: 875 return "MIPS_COMPACT_SIZE"; 876 case DT_MIPS_GP_VALUE: 877 return "MIPS_GP_VALUE"; 878 case DT_MIPS_AUX_DYNAMIC: 879 return "MIPS_AUX_DYNAMIC"; 880 case DT_MIPS_PLTGOT: 881 return "MIPS_PLTGOT"; 882 case DT_MIPS_RLD_OBJ_UPDATE: 883 return "MIPS_RLD_OBJ_UPDATE"; 884 case DT_MIPS_RWPLT: 885 return "MIPS_RWPLT"; 886 default: 887 break; 888 } 889 break; 890 case EM_SPARC: 891 case EM_SPARC32PLUS: 892 case EM_SPARCV9: 893 switch (dtype) { 894 case DT_SPARC_REGISTER: 895 return "DT_SPARC_REGISTER"; 896 default: 897 break; 898 } 899 break; 900 default: 901 break; 902 } 903 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 904 return (s_dtype); 905 } 906 907 switch (dtype) { 908 case DT_NULL: return "NULL"; 909 case DT_NEEDED: return "NEEDED"; 910 case DT_PLTRELSZ: return "PLTRELSZ"; 911 case DT_PLTGOT: return "PLTGOT"; 912 case DT_HASH: return "HASH"; 913 case DT_STRTAB: return "STRTAB"; 914 case DT_SYMTAB: return "SYMTAB"; 915 case DT_RELA: return "RELA"; 916 case DT_RELASZ: return "RELASZ"; 917 case DT_RELAENT: return "RELAENT"; 918 case DT_STRSZ: return "STRSZ"; 919 case DT_SYMENT: return "SYMENT"; 920 case DT_INIT: return "INIT"; 921 case DT_FINI: return "FINI"; 922 case DT_SONAME: return "SONAME"; 923 case DT_RPATH: return "RPATH"; 924 case DT_SYMBOLIC: return "SYMBOLIC"; 925 case DT_REL: return "REL"; 926 case DT_RELSZ: return "RELSZ"; 927 case DT_RELENT: return "RELENT"; 928 case DT_PLTREL: return "PLTREL"; 929 case DT_DEBUG: return "DEBUG"; 930 case DT_TEXTREL: return "TEXTREL"; 931 case DT_JMPREL: return "JMPREL"; 932 case DT_BIND_NOW: return "BIND_NOW"; 933 case DT_INIT_ARRAY: return "INIT_ARRAY"; 934 case DT_FINI_ARRAY: return "FINI_ARRAY"; 935 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 936 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 937 case DT_RUNPATH: return "RUNPATH"; 938 case DT_FLAGS: return "FLAGS"; 939 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 940 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 941 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 942 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 943 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 944 case DT_SUNW_FILTER: return "SUNW_FILTER"; 945 case DT_SUNW_CAP: return "SUNW_CAP"; 946 case DT_CHECKSUM: return "CHECKSUM"; 947 case DT_PLTPADSZ: return "PLTPADSZ"; 948 case DT_MOVEENT: return "MOVEENT"; 949 case DT_MOVESZ: return "MOVESZ"; 950 case DT_FEATURE: return "FEATURE"; 951 case DT_POSFLAG_1: return "POSFLAG_1"; 952 case DT_SYMINSZ: return "SYMINSZ"; 953 case DT_SYMINENT: return "SYMINENT"; 954 case DT_GNU_HASH: return "GNU_HASH"; 955 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; 956 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; 957 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 958 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 959 case DT_CONFIG: return "CONFIG"; 960 case DT_DEPAUDIT: return "DEPAUDIT"; 961 case DT_AUDIT: return "AUDIT"; 962 case DT_PLTPAD: return "PLTPAD"; 963 case DT_MOVETAB: return "MOVETAB"; 964 case DT_SYMINFO: return "SYMINFO"; 965 case DT_VERSYM: return "VERSYM"; 966 case DT_RELACOUNT: return "RELACOUNT"; 967 case DT_RELCOUNT: return "RELCOUNT"; 968 case DT_FLAGS_1: return "FLAGS_1"; 969 case DT_VERDEF: return "VERDEF"; 970 case DT_VERDEFNUM: return "VERDEFNUM"; 971 case DT_VERNEED: return "VERNEED"; 972 case DT_VERNEEDNUM: return "VERNEEDNUM"; 973 case DT_AUXILIARY: return "AUXILIARY"; 974 case DT_USED: return "USED"; 975 case DT_FILTER: return "FILTER"; 976 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 977 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 978 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 979 default: 980 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 981 return (s_dtype); 982 } 983 } 984 985 static const char * 986 st_bind(unsigned int sbind) 987 { 988 static char s_sbind[32]; 989 990 switch (sbind) { 991 case STB_LOCAL: return "LOCAL"; 992 case STB_GLOBAL: return "GLOBAL"; 993 case STB_WEAK: return "WEAK"; 994 case STB_GNU_UNIQUE: return "UNIQUE"; 995 default: 996 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 997 return "OS"; 998 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 999 return "PROC"; 1000 else 1001 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 1002 sbind); 1003 return (s_sbind); 1004 } 1005 } 1006 1007 static const char * 1008 st_type(unsigned int mach, unsigned int os, unsigned int stype) 1009 { 1010 static char s_stype[32]; 1011 1012 switch (stype) { 1013 case STT_NOTYPE: return "NOTYPE"; 1014 case STT_OBJECT: return "OBJECT"; 1015 case STT_FUNC: return "FUNC"; 1016 case STT_SECTION: return "SECTION"; 1017 case STT_FILE: return "FILE"; 1018 case STT_COMMON: return "COMMON"; 1019 case STT_TLS: return "TLS"; 1020 default: 1021 if (stype >= STT_LOOS && stype <= STT_HIOS) { 1022 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && 1023 stype == STT_GNU_IFUNC) 1024 return "IFUNC"; 1025 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 1026 stype - STT_LOOS); 1027 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1028 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1029 return "REGISTER"; 1030 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1031 stype - STT_LOPROC); 1032 } else 1033 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1034 stype); 1035 return (s_stype); 1036 } 1037 } 1038 1039 static const char * 1040 st_vis(unsigned int svis) 1041 { 1042 static char s_svis[32]; 1043 1044 switch(svis) { 1045 case STV_DEFAULT: return "DEFAULT"; 1046 case STV_INTERNAL: return "INTERNAL"; 1047 case STV_HIDDEN: return "HIDDEN"; 1048 case STV_PROTECTED: return "PROTECTED"; 1049 default: 1050 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1051 return (s_svis); 1052 } 1053 } 1054 1055 static const char * 1056 st_shndx(unsigned int shndx) 1057 { 1058 static char s_shndx[32]; 1059 1060 switch (shndx) { 1061 case SHN_UNDEF: return "UND"; 1062 case SHN_ABS: return "ABS"; 1063 case SHN_COMMON: return "COM"; 1064 default: 1065 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1066 return "PRC"; 1067 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1068 return "OS"; 1069 else 1070 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1071 return (s_shndx); 1072 } 1073 } 1074 1075 static struct { 1076 const char *ln; 1077 char sn; 1078 int value; 1079 } section_flag[] = { 1080 {"WRITE", 'W', SHF_WRITE}, 1081 {"ALLOC", 'A', SHF_ALLOC}, 1082 {"EXEC", 'X', SHF_EXECINSTR}, 1083 {"MERGE", 'M', SHF_MERGE}, 1084 {"STRINGS", 'S', SHF_STRINGS}, 1085 {"INFO LINK", 'I', SHF_INFO_LINK}, 1086 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1087 {"GROUP", 'G', SHF_GROUP}, 1088 {"TLS", 'T', SHF_TLS}, 1089 {"COMPRESSED", 'C', SHF_COMPRESSED}, 1090 {NULL, 0, 0} 1091 }; 1092 1093 static const char * 1094 note_type(const char *name, unsigned int et, unsigned int nt) 1095 { 1096 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1097 et == ET_CORE) 1098 return note_type_linux_core(nt); 1099 else if (strcmp(name, "FreeBSD") == 0) 1100 if (et == ET_CORE) 1101 return note_type_freebsd_core(nt); 1102 else 1103 return note_type_freebsd(nt); 1104 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1105 return note_type_gnu(nt); 1106 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1107 return note_type_netbsd(nt); 1108 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1109 return note_type_openbsd(nt); 1110 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1111 return note_type_xen(nt); 1112 return note_type_unknown(nt); 1113 } 1114 1115 static const char * 1116 note_type_freebsd(unsigned int nt) 1117 { 1118 switch (nt) { 1119 case 1: return "NT_FREEBSD_ABI_TAG"; 1120 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1121 case 3: return "NT_FREEBSD_ARCH_TAG"; 1122 default: return (note_type_unknown(nt)); 1123 } 1124 } 1125 1126 static const char * 1127 note_type_freebsd_core(unsigned int nt) 1128 { 1129 switch (nt) { 1130 case 1: return "NT_PRSTATUS"; 1131 case 2: return "NT_FPREGSET"; 1132 case 3: return "NT_PRPSINFO"; 1133 case 7: return "NT_THRMISC"; 1134 case 8: return "NT_PROCSTAT_PROC"; 1135 case 9: return "NT_PROCSTAT_FILES"; 1136 case 10: return "NT_PROCSTAT_VMMAP"; 1137 case 11: return "NT_PROCSTAT_GROUPS"; 1138 case 12: return "NT_PROCSTAT_UMASK"; 1139 case 13: return "NT_PROCSTAT_RLIMIT"; 1140 case 14: return "NT_PROCSTAT_OSREL"; 1141 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1142 case 16: return "NT_PROCSTAT_AUXV"; 1143 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1144 default: return (note_type_unknown(nt)); 1145 } 1146 } 1147 1148 static const char * 1149 note_type_linux_core(unsigned int nt) 1150 { 1151 switch (nt) { 1152 case 1: return "NT_PRSTATUS (Process status)"; 1153 case 2: return "NT_FPREGSET (Floating point information)"; 1154 case 3: return "NT_PRPSINFO (Process information)"; 1155 case 4: return "NT_TASKSTRUCT (Task structure)"; 1156 case 6: return "NT_AUXV (Auxiliary vector)"; 1157 case 10: return "NT_PSTATUS (Linux process status)"; 1158 case 12: return "NT_FPREGS (Linux floating point regset)"; 1159 case 13: return "NT_PSINFO (Linux process information)"; 1160 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1161 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1162 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1163 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1164 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1165 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1166 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1167 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1168 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1169 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1170 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1171 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1172 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1173 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1174 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1175 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1176 default: return (note_type_unknown(nt)); 1177 } 1178 } 1179 1180 static const char * 1181 note_type_gnu(unsigned int nt) 1182 { 1183 switch (nt) { 1184 case 1: return "NT_GNU_ABI_TAG"; 1185 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1186 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1187 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1188 default: return (note_type_unknown(nt)); 1189 } 1190 } 1191 1192 static const char * 1193 note_type_netbsd(unsigned int nt) 1194 { 1195 switch (nt) { 1196 case 1: return "NT_NETBSD_IDENT"; 1197 default: return (note_type_unknown(nt)); 1198 } 1199 } 1200 1201 static const char * 1202 note_type_openbsd(unsigned int nt) 1203 { 1204 switch (nt) { 1205 case 1: return "NT_OPENBSD_IDENT"; 1206 default: return (note_type_unknown(nt)); 1207 } 1208 } 1209 1210 static const char * 1211 note_type_unknown(unsigned int nt) 1212 { 1213 static char s_nt[32]; 1214 1215 snprintf(s_nt, sizeof(s_nt), 1216 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1217 return (s_nt); 1218 } 1219 1220 static const char * 1221 note_type_xen(unsigned int nt) 1222 { 1223 switch (nt) { 1224 case 0: return "XEN_ELFNOTE_INFO"; 1225 case 1: return "XEN_ELFNOTE_ENTRY"; 1226 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1227 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1228 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1229 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1230 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1231 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1232 case 8: return "XEN_ELFNOTE_LOADER"; 1233 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1234 case 10: return "XEN_ELFNOTE_FEATURES"; 1235 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1236 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1237 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1238 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1239 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1240 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1241 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1242 default: return (note_type_unknown(nt)); 1243 } 1244 } 1245 1246 static struct { 1247 const char *name; 1248 int value; 1249 } l_flag[] = { 1250 {"EXACT_MATCH", LL_EXACT_MATCH}, 1251 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1252 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1253 {"EXPORTS", LL_EXPORTS}, 1254 {"DELAY_LOAD", LL_DELAY_LOAD}, 1255 {"DELTA", LL_DELTA}, 1256 {NULL, 0} 1257 }; 1258 1259 static struct mips_option mips_exceptions_option[] = { 1260 {OEX_PAGE0, "PAGE0"}, 1261 {OEX_SMM, "SMM"}, 1262 {OEX_PRECISEFP, "PRECISEFP"}, 1263 {OEX_DISMISS, "DISMISS"}, 1264 {0, NULL} 1265 }; 1266 1267 static struct mips_option mips_pad_option[] = { 1268 {OPAD_PREFIX, "PREFIX"}, 1269 {OPAD_POSTFIX, "POSTFIX"}, 1270 {OPAD_SYMBOL, "SYMBOL"}, 1271 {0, NULL} 1272 }; 1273 1274 static struct mips_option mips_hwpatch_option[] = { 1275 {OHW_R4KEOP, "R4KEOP"}, 1276 {OHW_R8KPFETCH, "R8KPFETCH"}, 1277 {OHW_R5KEOP, "R5KEOP"}, 1278 {OHW_R5KCVTL, "R5KCVTL"}, 1279 {0, NULL} 1280 }; 1281 1282 static struct mips_option mips_hwa_option[] = { 1283 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1284 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1285 {0, NULL} 1286 }; 1287 1288 static struct mips_option mips_hwo_option[] = { 1289 {OHWO0_FIXADE, "FIXADE"}, 1290 {0, NULL} 1291 }; 1292 1293 static const char * 1294 option_kind(uint8_t kind) 1295 { 1296 static char s_kind[32]; 1297 1298 switch (kind) { 1299 case ODK_NULL: return "NULL"; 1300 case ODK_REGINFO: return "REGINFO"; 1301 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1302 case ODK_PAD: return "PAD"; 1303 case ODK_HWPATCH: return "HWPATCH"; 1304 case ODK_FILL: return "FILL"; 1305 case ODK_TAGS: return "TAGS"; 1306 case ODK_HWAND: return "HWAND"; 1307 case ODK_HWOR: return "HWOR"; 1308 case ODK_GP_GROUP: return "GP_GROUP"; 1309 case ODK_IDENT: return "IDENT"; 1310 default: 1311 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1312 return (s_kind); 1313 } 1314 } 1315 1316 static const char * 1317 top_tag(unsigned int tag) 1318 { 1319 static char s_top_tag[32]; 1320 1321 switch (tag) { 1322 case 1: return "File Attributes"; 1323 case 2: return "Section Attributes"; 1324 case 3: return "Symbol Attributes"; 1325 default: 1326 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1327 return (s_top_tag); 1328 } 1329 } 1330 1331 static const char * 1332 aeabi_cpu_arch(uint64_t arch) 1333 { 1334 static char s_cpu_arch[32]; 1335 1336 switch (arch) { 1337 case 0: return "Pre-V4"; 1338 case 1: return "ARM v4"; 1339 case 2: return "ARM v4T"; 1340 case 3: return "ARM v5T"; 1341 case 4: return "ARM v5TE"; 1342 case 5: return "ARM v5TEJ"; 1343 case 6: return "ARM v6"; 1344 case 7: return "ARM v6KZ"; 1345 case 8: return "ARM v6T2"; 1346 case 9: return "ARM v6K"; 1347 case 10: return "ARM v7"; 1348 case 11: return "ARM v6-M"; 1349 case 12: return "ARM v6S-M"; 1350 case 13: return "ARM v7E-M"; 1351 default: 1352 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1353 "Unknown (%ju)", (uintmax_t) arch); 1354 return (s_cpu_arch); 1355 } 1356 } 1357 1358 static const char * 1359 aeabi_cpu_arch_profile(uint64_t pf) 1360 { 1361 static char s_arch_profile[32]; 1362 1363 switch (pf) { 1364 case 0: 1365 return "Not applicable"; 1366 case 0x41: /* 'A' */ 1367 return "Application Profile"; 1368 case 0x52: /* 'R' */ 1369 return "Real-Time Profile"; 1370 case 0x4D: /* 'M' */ 1371 return "Microcontroller Profile"; 1372 case 0x53: /* 'S' */ 1373 return "Application or Real-Time Profile"; 1374 default: 1375 snprintf(s_arch_profile, sizeof(s_arch_profile), 1376 "Unknown (%ju)\n", (uintmax_t) pf); 1377 return (s_arch_profile); 1378 } 1379 } 1380 1381 static const char * 1382 aeabi_arm_isa(uint64_t ai) 1383 { 1384 static char s_ai[32]; 1385 1386 switch (ai) { 1387 case 0: return "No"; 1388 case 1: return "Yes"; 1389 default: 1390 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1391 (uintmax_t) ai); 1392 return (s_ai); 1393 } 1394 } 1395 1396 static const char * 1397 aeabi_thumb_isa(uint64_t ti) 1398 { 1399 static char s_ti[32]; 1400 1401 switch (ti) { 1402 case 0: return "No"; 1403 case 1: return "16-bit Thumb"; 1404 case 2: return "32-bit Thumb"; 1405 default: 1406 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1407 (uintmax_t) ti); 1408 return (s_ti); 1409 } 1410 } 1411 1412 static const char * 1413 aeabi_fp_arch(uint64_t fp) 1414 { 1415 static char s_fp_arch[32]; 1416 1417 switch (fp) { 1418 case 0: return "No"; 1419 case 1: return "VFPv1"; 1420 case 2: return "VFPv2"; 1421 case 3: return "VFPv3"; 1422 case 4: return "VFPv3-D16"; 1423 case 5: return "VFPv4"; 1424 case 6: return "VFPv4-D16"; 1425 default: 1426 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1427 (uintmax_t) fp); 1428 return (s_fp_arch); 1429 } 1430 } 1431 1432 static const char * 1433 aeabi_wmmx_arch(uint64_t wmmx) 1434 { 1435 static char s_wmmx[32]; 1436 1437 switch (wmmx) { 1438 case 0: return "No"; 1439 case 1: return "WMMXv1"; 1440 case 2: return "WMMXv2"; 1441 default: 1442 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1443 (uintmax_t) wmmx); 1444 return (s_wmmx); 1445 } 1446 } 1447 1448 static const char * 1449 aeabi_adv_simd_arch(uint64_t simd) 1450 { 1451 static char s_simd[32]; 1452 1453 switch (simd) { 1454 case 0: return "No"; 1455 case 1: return "NEONv1"; 1456 case 2: return "NEONv2"; 1457 default: 1458 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1459 (uintmax_t) simd); 1460 return (s_simd); 1461 } 1462 } 1463 1464 static const char * 1465 aeabi_pcs_config(uint64_t pcs) 1466 { 1467 static char s_pcs[32]; 1468 1469 switch (pcs) { 1470 case 0: return "None"; 1471 case 1: return "Bare platform"; 1472 case 2: return "Linux"; 1473 case 3: return "Linux DSO"; 1474 case 4: return "Palm OS 2004"; 1475 case 5: return "Palm OS (future)"; 1476 case 6: return "Symbian OS 2004"; 1477 case 7: return "Symbian OS (future)"; 1478 default: 1479 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1480 (uintmax_t) pcs); 1481 return (s_pcs); 1482 } 1483 } 1484 1485 static const char * 1486 aeabi_pcs_r9(uint64_t r9) 1487 { 1488 static char s_r9[32]; 1489 1490 switch (r9) { 1491 case 0: return "V6"; 1492 case 1: return "SB"; 1493 case 2: return "TLS pointer"; 1494 case 3: return "Unused"; 1495 default: 1496 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1497 return (s_r9); 1498 } 1499 } 1500 1501 static const char * 1502 aeabi_pcs_rw(uint64_t rw) 1503 { 1504 static char s_rw[32]; 1505 1506 switch (rw) { 1507 case 0: return "Absolute"; 1508 case 1: return "PC-relative"; 1509 case 2: return "SB-relative"; 1510 case 3: return "None"; 1511 default: 1512 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 1513 return (s_rw); 1514 } 1515 } 1516 1517 static const char * 1518 aeabi_pcs_ro(uint64_t ro) 1519 { 1520 static char s_ro[32]; 1521 1522 switch (ro) { 1523 case 0: return "Absolute"; 1524 case 1: return "PC-relative"; 1525 case 2: return "None"; 1526 default: 1527 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 1528 return (s_ro); 1529 } 1530 } 1531 1532 static const char * 1533 aeabi_pcs_got(uint64_t got) 1534 { 1535 static char s_got[32]; 1536 1537 switch (got) { 1538 case 0: return "None"; 1539 case 1: return "direct"; 1540 case 2: return "indirect via GOT"; 1541 default: 1542 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 1543 (uintmax_t) got); 1544 return (s_got); 1545 } 1546 } 1547 1548 static const char * 1549 aeabi_pcs_wchar_t(uint64_t wt) 1550 { 1551 static char s_wt[32]; 1552 1553 switch (wt) { 1554 case 0: return "None"; 1555 case 2: return "wchar_t size 2"; 1556 case 4: return "wchar_t size 4"; 1557 default: 1558 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 1559 return (s_wt); 1560 } 1561 } 1562 1563 static const char * 1564 aeabi_enum_size(uint64_t es) 1565 { 1566 static char s_es[32]; 1567 1568 switch (es) { 1569 case 0: return "None"; 1570 case 1: return "smallest"; 1571 case 2: return "32-bit"; 1572 case 3: return "visible 32-bit"; 1573 default: 1574 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 1575 return (s_es); 1576 } 1577 } 1578 1579 static const char * 1580 aeabi_align_needed(uint64_t an) 1581 { 1582 static char s_align_n[64]; 1583 1584 switch (an) { 1585 case 0: return "No"; 1586 case 1: return "8-byte align"; 1587 case 2: return "4-byte align"; 1588 case 3: return "Reserved"; 1589 default: 1590 if (an >= 4 && an <= 12) 1591 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 1592 " and up to 2^%ju-byte extended align", 1593 (uintmax_t) an); 1594 else 1595 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 1596 (uintmax_t) an); 1597 return (s_align_n); 1598 } 1599 } 1600 1601 static const char * 1602 aeabi_align_preserved(uint64_t ap) 1603 { 1604 static char s_align_p[128]; 1605 1606 switch (ap) { 1607 case 0: return "No"; 1608 case 1: return "8-byte align"; 1609 case 2: return "8-byte align and SP % 8 == 0"; 1610 case 3: return "Reserved"; 1611 default: 1612 if (ap >= 4 && ap <= 12) 1613 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 1614 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 1615 " align", (uintmax_t) ap); 1616 else 1617 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 1618 (uintmax_t) ap); 1619 return (s_align_p); 1620 } 1621 } 1622 1623 static const char * 1624 aeabi_fp_rounding(uint64_t fr) 1625 { 1626 static char s_fp_r[32]; 1627 1628 switch (fr) { 1629 case 0: return "Unused"; 1630 case 1: return "Needed"; 1631 default: 1632 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 1633 (uintmax_t) fr); 1634 return (s_fp_r); 1635 } 1636 } 1637 1638 static const char * 1639 aeabi_fp_denormal(uint64_t fd) 1640 { 1641 static char s_fp_d[32]; 1642 1643 switch (fd) { 1644 case 0: return "Unused"; 1645 case 1: return "Needed"; 1646 case 2: return "Sign Only"; 1647 default: 1648 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 1649 (uintmax_t) fd); 1650 return (s_fp_d); 1651 } 1652 } 1653 1654 static const char * 1655 aeabi_fp_exceptions(uint64_t fe) 1656 { 1657 static char s_fp_e[32]; 1658 1659 switch (fe) { 1660 case 0: return "Unused"; 1661 case 1: return "Needed"; 1662 default: 1663 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 1664 (uintmax_t) fe); 1665 return (s_fp_e); 1666 } 1667 } 1668 1669 static const char * 1670 aeabi_fp_user_exceptions(uint64_t fu) 1671 { 1672 static char s_fp_u[32]; 1673 1674 switch (fu) { 1675 case 0: return "Unused"; 1676 case 1: return "Needed"; 1677 default: 1678 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 1679 (uintmax_t) fu); 1680 return (s_fp_u); 1681 } 1682 } 1683 1684 static const char * 1685 aeabi_fp_number_model(uint64_t fn) 1686 { 1687 static char s_fp_n[32]; 1688 1689 switch (fn) { 1690 case 0: return "Unused"; 1691 case 1: return "IEEE 754 normal"; 1692 case 2: return "RTABI"; 1693 case 3: return "IEEE 754"; 1694 default: 1695 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 1696 (uintmax_t) fn); 1697 return (s_fp_n); 1698 } 1699 } 1700 1701 static const char * 1702 aeabi_fp_16bit_format(uint64_t fp16) 1703 { 1704 static char s_fp_16[64]; 1705 1706 switch (fp16) { 1707 case 0: return "None"; 1708 case 1: return "IEEE 754"; 1709 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 1710 default: 1711 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 1712 (uintmax_t) fp16); 1713 return (s_fp_16); 1714 } 1715 } 1716 1717 static const char * 1718 aeabi_mpext(uint64_t mp) 1719 { 1720 static char s_mp[32]; 1721 1722 switch (mp) { 1723 case 0: return "Not allowed"; 1724 case 1: return "Allowed"; 1725 default: 1726 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 1727 (uintmax_t) mp); 1728 return (s_mp); 1729 } 1730 } 1731 1732 static const char * 1733 aeabi_div(uint64_t du) 1734 { 1735 static char s_du[32]; 1736 1737 switch (du) { 1738 case 0: return "Yes (V7-R/V7-M)"; 1739 case 1: return "No"; 1740 case 2: return "Yes (V7-A)"; 1741 default: 1742 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 1743 (uintmax_t) du); 1744 return (s_du); 1745 } 1746 } 1747 1748 static const char * 1749 aeabi_t2ee(uint64_t t2ee) 1750 { 1751 static char s_t2ee[32]; 1752 1753 switch (t2ee) { 1754 case 0: return "Not allowed"; 1755 case 1: return "Allowed"; 1756 default: 1757 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 1758 (uintmax_t) t2ee); 1759 return (s_t2ee); 1760 } 1761 1762 } 1763 1764 static const char * 1765 aeabi_hardfp(uint64_t hfp) 1766 { 1767 static char s_hfp[32]; 1768 1769 switch (hfp) { 1770 case 0: return "Tag_FP_arch"; 1771 case 1: return "only SP"; 1772 case 2: return "only DP"; 1773 case 3: return "both SP and DP"; 1774 default: 1775 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 1776 (uintmax_t) hfp); 1777 return (s_hfp); 1778 } 1779 } 1780 1781 static const char * 1782 aeabi_vfp_args(uint64_t va) 1783 { 1784 static char s_va[32]; 1785 1786 switch (va) { 1787 case 0: return "AAPCS (base variant)"; 1788 case 1: return "AAPCS (VFP variant)"; 1789 case 2: return "toolchain-specific"; 1790 default: 1791 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 1792 return (s_va); 1793 } 1794 } 1795 1796 static const char * 1797 aeabi_wmmx_args(uint64_t wa) 1798 { 1799 static char s_wa[32]; 1800 1801 switch (wa) { 1802 case 0: return "AAPCS (base variant)"; 1803 case 1: return "Intel WMMX"; 1804 case 2: return "toolchain-specific"; 1805 default: 1806 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 1807 return (s_wa); 1808 } 1809 } 1810 1811 static const char * 1812 aeabi_unaligned_access(uint64_t ua) 1813 { 1814 static char s_ua[32]; 1815 1816 switch (ua) { 1817 case 0: return "Not allowed"; 1818 case 1: return "Allowed"; 1819 default: 1820 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 1821 return (s_ua); 1822 } 1823 } 1824 1825 static const char * 1826 aeabi_fp_hpext(uint64_t fh) 1827 { 1828 static char s_fh[32]; 1829 1830 switch (fh) { 1831 case 0: return "Not allowed"; 1832 case 1: return "Allowed"; 1833 default: 1834 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 1835 return (s_fh); 1836 } 1837 } 1838 1839 static const char * 1840 aeabi_optm_goal(uint64_t og) 1841 { 1842 static char s_og[32]; 1843 1844 switch (og) { 1845 case 0: return "None"; 1846 case 1: return "Speed"; 1847 case 2: return "Speed aggressive"; 1848 case 3: return "Space"; 1849 case 4: return "Space aggressive"; 1850 case 5: return "Debugging"; 1851 case 6: return "Best Debugging"; 1852 default: 1853 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 1854 return (s_og); 1855 } 1856 } 1857 1858 static const char * 1859 aeabi_fp_optm_goal(uint64_t fog) 1860 { 1861 static char s_fog[32]; 1862 1863 switch (fog) { 1864 case 0: return "None"; 1865 case 1: return "Speed"; 1866 case 2: return "Speed aggressive"; 1867 case 3: return "Space"; 1868 case 4: return "Space aggressive"; 1869 case 5: return "Accurary"; 1870 case 6: return "Best Accurary"; 1871 default: 1872 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 1873 (uintmax_t) fog); 1874 return (s_fog); 1875 } 1876 } 1877 1878 static const char * 1879 aeabi_virtual(uint64_t vt) 1880 { 1881 static char s_virtual[64]; 1882 1883 switch (vt) { 1884 case 0: return "No"; 1885 case 1: return "TrustZone"; 1886 case 2: return "Virtualization extension"; 1887 case 3: return "TrustZone and virtualization extension"; 1888 default: 1889 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 1890 (uintmax_t) vt); 1891 return (s_virtual); 1892 } 1893 } 1894 1895 static struct { 1896 uint64_t tag; 1897 const char *s_tag; 1898 const char *(*get_desc)(uint64_t val); 1899 } aeabi_tags[] = { 1900 {4, "Tag_CPU_raw_name", NULL}, 1901 {5, "Tag_CPU_name", NULL}, 1902 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 1903 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 1904 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 1905 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 1906 {10, "Tag_FP_arch", aeabi_fp_arch}, 1907 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 1908 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 1909 {13, "Tag_PCS_config", aeabi_pcs_config}, 1910 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 1911 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 1912 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 1913 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 1914 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 1915 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 1916 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 1917 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 1918 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 1919 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 1920 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 1921 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 1922 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 1923 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 1924 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 1925 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 1926 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 1927 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 1928 {32, "Tag_compatibility", NULL}, 1929 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 1930 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 1931 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 1932 {42, "Tag_MPextension_use", aeabi_mpext}, 1933 {44, "Tag_DIV_use", aeabi_div}, 1934 {64, "Tag_nodefaults", NULL}, 1935 {65, "Tag_also_compatible_with", NULL}, 1936 {66, "Tag_T2EE_use", aeabi_t2ee}, 1937 {67, "Tag_conformance", NULL}, 1938 {68, "Tag_Virtualization_use", aeabi_virtual}, 1939 {70, "Tag_MPextension_use", aeabi_mpext}, 1940 }; 1941 1942 static const char * 1943 mips_abi_fp(uint64_t fp) 1944 { 1945 static char s_mips_abi_fp[64]; 1946 1947 switch (fp) { 1948 case 0: return "N/A"; 1949 case 1: return "Hard float (double precision)"; 1950 case 2: return "Hard float (single precision)"; 1951 case 3: return "Soft float"; 1952 case 4: return "64-bit float (-mips32r2 -mfp64)"; 1953 default: 1954 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 1955 (uintmax_t) fp); 1956 return (s_mips_abi_fp); 1957 } 1958 } 1959 1960 static const char * 1961 ppc_abi_fp(uint64_t fp) 1962 { 1963 static char s_ppc_abi_fp[64]; 1964 1965 switch (fp) { 1966 case 0: return "N/A"; 1967 case 1: return "Hard float (double precision)"; 1968 case 2: return "Soft float"; 1969 case 3: return "Hard float (single precision)"; 1970 default: 1971 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 1972 (uintmax_t) fp); 1973 return (s_ppc_abi_fp); 1974 } 1975 } 1976 1977 static const char * 1978 ppc_abi_vector(uint64_t vec) 1979 { 1980 static char s_vec[64]; 1981 1982 switch (vec) { 1983 case 0: return "N/A"; 1984 case 1: return "Generic purpose registers"; 1985 case 2: return "AltiVec registers"; 1986 case 3: return "SPE registers"; 1987 default: 1988 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 1989 return (s_vec); 1990 } 1991 } 1992 1993 static const char * 1994 dwarf_reg(unsigned int mach, unsigned int reg) 1995 { 1996 1997 switch (mach) { 1998 case EM_386: 1999 case EM_IAMCU: 2000 switch (reg) { 2001 case 0: return "eax"; 2002 case 1: return "ecx"; 2003 case 2: return "edx"; 2004 case 3: return "ebx"; 2005 case 4: return "esp"; 2006 case 5: return "ebp"; 2007 case 6: return "esi"; 2008 case 7: return "edi"; 2009 case 8: return "eip"; 2010 case 9: return "eflags"; 2011 case 11: return "st0"; 2012 case 12: return "st1"; 2013 case 13: return "st2"; 2014 case 14: return "st3"; 2015 case 15: return "st4"; 2016 case 16: return "st5"; 2017 case 17: return "st6"; 2018 case 18: return "st7"; 2019 case 21: return "xmm0"; 2020 case 22: return "xmm1"; 2021 case 23: return "xmm2"; 2022 case 24: return "xmm3"; 2023 case 25: return "xmm4"; 2024 case 26: return "xmm5"; 2025 case 27: return "xmm6"; 2026 case 28: return "xmm7"; 2027 case 29: return "mm0"; 2028 case 30: return "mm1"; 2029 case 31: return "mm2"; 2030 case 32: return "mm3"; 2031 case 33: return "mm4"; 2032 case 34: return "mm5"; 2033 case 35: return "mm6"; 2034 case 36: return "mm7"; 2035 case 37: return "fcw"; 2036 case 38: return "fsw"; 2037 case 39: return "mxcsr"; 2038 case 40: return "es"; 2039 case 41: return "cs"; 2040 case 42: return "ss"; 2041 case 43: return "ds"; 2042 case 44: return "fs"; 2043 case 45: return "gs"; 2044 case 48: return "tr"; 2045 case 49: return "ldtr"; 2046 default: return (NULL); 2047 } 2048 case EM_X86_64: 2049 switch (reg) { 2050 case 0: return "rax"; 2051 case 1: return "rdx"; 2052 case 2: return "rcx"; 2053 case 3: return "rbx"; 2054 case 4: return "rsi"; 2055 case 5: return "rdi"; 2056 case 6: return "rbp"; 2057 case 7: return "rsp"; 2058 case 16: return "rip"; 2059 case 17: return "xmm0"; 2060 case 18: return "xmm1"; 2061 case 19: return "xmm2"; 2062 case 20: return "xmm3"; 2063 case 21: return "xmm4"; 2064 case 22: return "xmm5"; 2065 case 23: return "xmm6"; 2066 case 24: return "xmm7"; 2067 case 25: return "xmm8"; 2068 case 26: return "xmm9"; 2069 case 27: return "xmm10"; 2070 case 28: return "xmm11"; 2071 case 29: return "xmm12"; 2072 case 30: return "xmm13"; 2073 case 31: return "xmm14"; 2074 case 32: return "xmm15"; 2075 case 33: return "st0"; 2076 case 34: return "st1"; 2077 case 35: return "st2"; 2078 case 36: return "st3"; 2079 case 37: return "st4"; 2080 case 38: return "st5"; 2081 case 39: return "st6"; 2082 case 40: return "st7"; 2083 case 41: return "mm0"; 2084 case 42: return "mm1"; 2085 case 43: return "mm2"; 2086 case 44: return "mm3"; 2087 case 45: return "mm4"; 2088 case 46: return "mm5"; 2089 case 47: return "mm6"; 2090 case 48: return "mm7"; 2091 case 49: return "rflags"; 2092 case 50: return "es"; 2093 case 51: return "cs"; 2094 case 52: return "ss"; 2095 case 53: return "ds"; 2096 case 54: return "fs"; 2097 case 55: return "gs"; 2098 case 58: return "fs.base"; 2099 case 59: return "gs.base"; 2100 case 62: return "tr"; 2101 case 63: return "ldtr"; 2102 case 64: return "mxcsr"; 2103 case 65: return "fcw"; 2104 case 66: return "fsw"; 2105 default: return (NULL); 2106 } 2107 default: 2108 return (NULL); 2109 } 2110 } 2111 2112 static void 2113 dump_ehdr(struct readelf *re) 2114 { 2115 size_t shnum, shstrndx; 2116 int i; 2117 2118 printf("ELF Header:\n"); 2119 2120 /* e_ident[]. */ 2121 printf(" Magic: "); 2122 for (i = 0; i < EI_NIDENT; i++) 2123 printf("%.2x ", re->ehdr.e_ident[i]); 2124 putchar('\n'); 2125 2126 /* EI_CLASS. */ 2127 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2128 2129 /* EI_DATA. */ 2130 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2131 2132 /* EI_VERSION. */ 2133 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2134 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2135 2136 /* EI_OSABI. */ 2137 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2138 2139 /* EI_ABIVERSION. */ 2140 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2141 2142 /* e_type. */ 2143 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2144 2145 /* e_machine. */ 2146 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2147 2148 /* e_version. */ 2149 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2150 2151 /* e_entry. */ 2152 printf("%-37s%#jx\n", " Entry point address:", 2153 (uintmax_t)re->ehdr.e_entry); 2154 2155 /* e_phoff. */ 2156 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2157 (uintmax_t)re->ehdr.e_phoff); 2158 2159 /* e_shoff. */ 2160 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2161 (uintmax_t)re->ehdr.e_shoff); 2162 2163 /* e_flags. */ 2164 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2165 dump_eflags(re, re->ehdr.e_flags); 2166 putchar('\n'); 2167 2168 /* e_ehsize. */ 2169 printf("%-37s%u (bytes)\n", " Size of this header:", 2170 re->ehdr.e_ehsize); 2171 2172 /* e_phentsize. */ 2173 printf("%-37s%u (bytes)\n", " Size of program headers:", 2174 re->ehdr.e_phentsize); 2175 2176 /* e_phnum. */ 2177 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2178 2179 /* e_shentsize. */ 2180 printf("%-37s%u (bytes)\n", " Size of section headers:", 2181 re->ehdr.e_shentsize); 2182 2183 /* e_shnum. */ 2184 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2185 if (re->ehdr.e_shnum == SHN_UNDEF) { 2186 /* Extended section numbering is in use. */ 2187 if (elf_getshnum(re->elf, &shnum)) 2188 printf(" (%ju)", (uintmax_t)shnum); 2189 } 2190 putchar('\n'); 2191 2192 /* e_shstrndx. */ 2193 printf("%-37s%u", " Section header string table index:", 2194 re->ehdr.e_shstrndx); 2195 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2196 /* Extended section numbering is in use. */ 2197 if (elf_getshstrndx(re->elf, &shstrndx)) 2198 printf(" (%ju)", (uintmax_t)shstrndx); 2199 } 2200 putchar('\n'); 2201 } 2202 2203 static void 2204 dump_eflags(struct readelf *re, uint64_t e_flags) 2205 { 2206 struct eflags_desc *edesc; 2207 int arm_eabi; 2208 2209 edesc = NULL; 2210 switch (re->ehdr.e_machine) { 2211 case EM_ARM: 2212 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2213 if (arm_eabi == 0) 2214 printf(", GNU EABI"); 2215 else if (arm_eabi <= 5) 2216 printf(", Version%d EABI", arm_eabi); 2217 edesc = arm_eflags_desc; 2218 break; 2219 case EM_MIPS: 2220 case EM_MIPS_RS3_LE: 2221 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2222 case 0: printf(", mips1"); break; 2223 case 1: printf(", mips2"); break; 2224 case 2: printf(", mips3"); break; 2225 case 3: printf(", mips4"); break; 2226 case 4: printf(", mips5"); break; 2227 case 5: printf(", mips32"); break; 2228 case 6: printf(", mips64"); break; 2229 case 7: printf(", mips32r2"); break; 2230 case 8: printf(", mips64r2"); break; 2231 default: break; 2232 } 2233 switch ((e_flags & 0x00FF0000) >> 16) { 2234 case 0x81: printf(", 3900"); break; 2235 case 0x82: printf(", 4010"); break; 2236 case 0x83: printf(", 4100"); break; 2237 case 0x85: printf(", 4650"); break; 2238 case 0x87: printf(", 4120"); break; 2239 case 0x88: printf(", 4111"); break; 2240 case 0x8a: printf(", sb1"); break; 2241 case 0x8b: printf(", octeon"); break; 2242 case 0x8c: printf(", xlr"); break; 2243 case 0x91: printf(", 5400"); break; 2244 case 0x98: printf(", 5500"); break; 2245 case 0x99: printf(", 9000"); break; 2246 case 0xa0: printf(", loongson-2e"); break; 2247 case 0xa1: printf(", loongson-2f"); break; 2248 default: break; 2249 } 2250 switch ((e_flags & 0x0000F000) >> 12) { 2251 case 1: printf(", o32"); break; 2252 case 2: printf(", o64"); break; 2253 case 3: printf(", eabi32"); break; 2254 case 4: printf(", eabi64"); break; 2255 default: break; 2256 } 2257 edesc = mips_eflags_desc; 2258 break; 2259 case EM_PPC: 2260 case EM_PPC64: 2261 edesc = powerpc_eflags_desc; 2262 break; 2263 case EM_SPARC: 2264 case EM_SPARC32PLUS: 2265 case EM_SPARCV9: 2266 switch ((e_flags & EF_SPARCV9_MM)) { 2267 case EF_SPARCV9_TSO: printf(", tso"); break; 2268 case EF_SPARCV9_PSO: printf(", pso"); break; 2269 case EF_SPARCV9_MM: printf(", rmo"); break; 2270 default: break; 2271 } 2272 edesc = sparc_eflags_desc; 2273 break; 2274 default: 2275 break; 2276 } 2277 2278 if (edesc != NULL) { 2279 while (edesc->desc != NULL) { 2280 if (e_flags & edesc->flag) 2281 printf(", %s", edesc->desc); 2282 edesc++; 2283 } 2284 } 2285 } 2286 2287 static void 2288 dump_phdr(struct readelf *re) 2289 { 2290 const char *rawfile; 2291 GElf_Phdr phdr; 2292 size_t phnum, size; 2293 int i, j; 2294 2295 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2296 "MemSiz", "Flg", "Align" 2297 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ 2298 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ 2299 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ 2300 (uintmax_t)phdr.p_memsz, \ 2301 phdr.p_flags & PF_R ? 'R' : ' ', \ 2302 phdr.p_flags & PF_W ? 'W' : ' ', \ 2303 phdr.p_flags & PF_X ? 'E' : ' ', \ 2304 (uintmax_t)phdr.p_align 2305 2306 if (elf_getphnum(re->elf, &phnum) == 0) { 2307 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2308 return; 2309 } 2310 if (phnum == 0) { 2311 printf("\nThere are no program headers in this file.\n"); 2312 return; 2313 } 2314 2315 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2316 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2317 printf("There are %ju program headers, starting at offset %ju\n", 2318 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2319 2320 /* Dump program headers. */ 2321 printf("\nProgram Headers:\n"); 2322 if (re->ec == ELFCLASS32) 2323 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2324 else if (re->options & RE_WW) 2325 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2326 else 2327 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2328 "%-7s%s\n", PH_HDR); 2329 for (i = 0; (size_t) i < phnum; i++) { 2330 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2331 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2332 continue; 2333 } 2334 /* TODO: Add arch-specific segment type dump. */ 2335 if (re->ec == ELFCLASS32) 2336 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2337 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2338 else if (re->options & RE_WW) 2339 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2340 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2341 else 2342 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2343 " 0x%16.16jx 0x%16.16jx %c%c%c" 2344 " %#jx\n", PH_CT); 2345 if (phdr.p_type == PT_INTERP) { 2346 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2347 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2348 continue; 2349 } 2350 if (phdr.p_offset >= size) { 2351 warnx("invalid program header offset"); 2352 continue; 2353 } 2354 printf(" [Requesting program interpreter: %s]\n", 2355 rawfile + phdr.p_offset); 2356 } 2357 } 2358 2359 /* Dump section to segment mapping. */ 2360 if (re->shnum == 0) 2361 return; 2362 printf("\n Section to Segment mapping:\n"); 2363 printf(" Segment Sections...\n"); 2364 for (i = 0; (size_t)i < phnum; i++) { 2365 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2366 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2367 continue; 2368 } 2369 printf(" %2.2d ", i); 2370 /* skip NULL section. */ 2371 for (j = 1; (size_t)j < re->shnum; j++) 2372 if (re->sl[j].addr >= phdr.p_vaddr && 2373 re->sl[j].addr + re->sl[j].sz <= 2374 phdr.p_vaddr + phdr.p_memsz) 2375 printf("%s ", re->sl[j].name); 2376 printf("\n"); 2377 } 2378 #undef PH_HDR 2379 #undef PH_CT 2380 } 2381 2382 static char * 2383 section_flags(struct readelf *re, struct section *s) 2384 { 2385 #define BUF_SZ 256 2386 static char buf[BUF_SZ]; 2387 int i, p, nb; 2388 2389 p = 0; 2390 nb = re->ec == ELFCLASS32 ? 8 : 16; 2391 if (re->options & RE_T) { 2392 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2393 (uintmax_t)s->flags); 2394 p += nb + 4; 2395 } 2396 for (i = 0; section_flag[i].ln != NULL; i++) { 2397 if ((s->flags & section_flag[i].value) == 0) 2398 continue; 2399 if (re->options & RE_T) { 2400 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2401 section_flag[i].ln); 2402 p += strlen(section_flag[i].ln) + 2; 2403 } else 2404 buf[p++] = section_flag[i].sn; 2405 } 2406 if (re->options & RE_T && p > nb + 4) 2407 p -= 2; 2408 buf[p] = '\0'; 2409 2410 return (buf); 2411 } 2412 2413 static void 2414 dump_shdr(struct readelf *re) 2415 { 2416 struct section *s; 2417 int i; 2418 2419 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2420 "Flg", "Lk", "Inf", "Al" 2421 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2422 "EntSize", "Flags", "Link", "Info", "Align" 2423 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2424 "Lk", "Inf", "Al", "Flags" 2425 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2426 "Size", "EntSize", "Info", "Align", "Flags" 2427 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2428 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2429 (uintmax_t)s->entsize, section_flags(re, s), \ 2430 s->link, s->info, (uintmax_t)s->align 2431 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2432 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2433 (uintmax_t)s->entsize, s->link, s->info, \ 2434 (uintmax_t)s->align, section_flags(re, s) 2435 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2436 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2437 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2438 (uintmax_t)s->align, section_flags(re, s) 2439 2440 if (re->shnum == 0) { 2441 printf("\nThere are no sections in this file.\n"); 2442 return; 2443 } 2444 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2445 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2446 printf("\nSection Headers:\n"); 2447 if (re->ec == ELFCLASS32) { 2448 if (re->options & RE_T) 2449 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2450 "%12s\n", ST_HDR); 2451 else 2452 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2453 S_HDR); 2454 } else if (re->options & RE_WW) { 2455 if (re->options & RE_T) 2456 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2457 "%12s\n", ST_HDR); 2458 else 2459 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2460 S_HDR); 2461 } else { 2462 if (re->options & RE_T) 2463 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2464 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2465 else 2466 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2467 "-6s%-6s%s\n", S_HDRL); 2468 } 2469 for (i = 0; (size_t)i < re->shnum; i++) { 2470 s = &re->sl[i]; 2471 if (re->ec == ELFCLASS32) { 2472 if (re->options & RE_T) 2473 printf(" [%2d] %s\n %-15.15s %8.8jx" 2474 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2475 " %s\n", ST_CT); 2476 else 2477 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2478 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2479 S_CT); 2480 } else if (re->options & RE_WW) { 2481 if (re->options & RE_T) 2482 printf(" [%2d] %s\n %-15.15s %16.16jx" 2483 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2484 " %s\n", ST_CT); 2485 else 2486 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2487 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2488 S_CT); 2489 } else { 2490 if (re->options & RE_T) 2491 printf(" [%2d] %s\n %-15.15s %16.16jx" 2492 " %16.16jx %u\n %16.16jx %16.16jx" 2493 " %-16u %ju\n %s\n", ST_CTL); 2494 else 2495 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2496 " %8.8jx\n %16.16jx %16.16jx " 2497 "%3s %2u %3u %ju\n", S_CT); 2498 } 2499 } 2500 if ((re->options & RE_T) == 0) 2501 printf("Key to Flags:\n W (write), A (alloc)," 2502 " X (execute), M (merge), S (strings)\n" 2503 " I (info), L (link order), G (group), x (unknown)\n" 2504 " O (extra OS processing required)" 2505 " o (OS specific), p (processor specific)\n"); 2506 2507 #undef S_HDR 2508 #undef S_HDRL 2509 #undef ST_HDR 2510 #undef ST_HDRL 2511 #undef S_CT 2512 #undef ST_CT 2513 #undef ST_CTL 2514 } 2515 2516 /* 2517 * Return number of entries in the given section. We'd prefer ent_count be a 2518 * size_t *, but libelf APIs already use int for section indices. 2519 */ 2520 static int 2521 get_ent_count(struct section *s, int *ent_count) 2522 { 2523 if (s->entsize == 0) { 2524 warnx("section %s has entry size 0", s->name); 2525 return (0); 2526 } else if (s->sz / s->entsize > INT_MAX) { 2527 warnx("section %s has invalid section count", s->name); 2528 return (0); 2529 } 2530 *ent_count = (int)(s->sz / s->entsize); 2531 return (1); 2532 } 2533 2534 static void 2535 dump_dynamic(struct readelf *re) 2536 { 2537 GElf_Dyn dyn; 2538 Elf_Data *d; 2539 struct section *s; 2540 int elferr, i, is_dynamic, j, jmax, nentries; 2541 2542 is_dynamic = 0; 2543 2544 for (i = 0; (size_t)i < re->shnum; i++) { 2545 s = &re->sl[i]; 2546 if (s->type != SHT_DYNAMIC) 2547 continue; 2548 (void) elf_errno(); 2549 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2550 elferr = elf_errno(); 2551 if (elferr != 0) 2552 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 2553 continue; 2554 } 2555 if (d->d_size <= 0) 2556 continue; 2557 2558 is_dynamic = 1; 2559 2560 /* Determine the actual number of table entries. */ 2561 nentries = 0; 2562 if (!get_ent_count(s, &jmax)) 2563 continue; 2564 for (j = 0; j < jmax; j++) { 2565 if (gelf_getdyn(d, j, &dyn) != &dyn) { 2566 warnx("gelf_getdyn failed: %s", 2567 elf_errmsg(-1)); 2568 continue; 2569 } 2570 nentries ++; 2571 if (dyn.d_tag == DT_NULL) 2572 break; 2573 } 2574 2575 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 2576 printf(" contains %u entries:\n", nentries); 2577 2578 if (re->ec == ELFCLASS32) 2579 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 2580 else 2581 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 2582 2583 for (j = 0; j < nentries; j++) { 2584 if (gelf_getdyn(d, j, &dyn) != &dyn) 2585 continue; 2586 /* Dump dynamic entry type. */ 2587 if (re->ec == ELFCLASS32) 2588 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 2589 else 2590 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 2591 printf(" %-20s", dt_type(re->ehdr.e_machine, 2592 dyn.d_tag)); 2593 /* Dump dynamic entry value. */ 2594 dump_dyn_val(re, &dyn, s->link); 2595 } 2596 } 2597 2598 if (!is_dynamic) 2599 printf("\nThere is no dynamic section in this file.\n"); 2600 } 2601 2602 static char * 2603 timestamp(time_t ti) 2604 { 2605 static char ts[32]; 2606 struct tm *t; 2607 2608 t = gmtime(&ti); 2609 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 2610 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 2611 t->tm_min, t->tm_sec); 2612 2613 return (ts); 2614 } 2615 2616 static const char * 2617 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 2618 { 2619 const char *name; 2620 2621 if (stab == SHN_UNDEF) 2622 name = "ERROR"; 2623 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 2624 (void) elf_errno(); /* clear error */ 2625 name = "ERROR"; 2626 } 2627 2628 return (name); 2629 } 2630 2631 static void 2632 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2633 { 2634 const char *name; 2635 2636 switch (re->ehdr.e_machine) { 2637 case EM_MIPS: 2638 case EM_MIPS_RS3_LE: 2639 switch (dyn->d_tag) { 2640 case DT_MIPS_RLD_VERSION: 2641 case DT_MIPS_LOCAL_GOTNO: 2642 case DT_MIPS_CONFLICTNO: 2643 case DT_MIPS_LIBLISTNO: 2644 case DT_MIPS_SYMTABNO: 2645 case DT_MIPS_UNREFEXTNO: 2646 case DT_MIPS_GOTSYM: 2647 case DT_MIPS_HIPAGENO: 2648 case DT_MIPS_DELTA_CLASS_NO: 2649 case DT_MIPS_DELTA_INSTANCE_NO: 2650 case DT_MIPS_DELTA_RELOC_NO: 2651 case DT_MIPS_DELTA_SYM_NO: 2652 case DT_MIPS_DELTA_CLASSSYM_NO: 2653 case DT_MIPS_LOCALPAGE_GOTIDX: 2654 case DT_MIPS_LOCAL_GOTIDX: 2655 case DT_MIPS_HIDDEN_GOTIDX: 2656 case DT_MIPS_PROTECTED_GOTIDX: 2657 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2658 break; 2659 case DT_MIPS_ICHECKSUM: 2660 case DT_MIPS_FLAGS: 2661 case DT_MIPS_BASE_ADDRESS: 2662 case DT_MIPS_CONFLICT: 2663 case DT_MIPS_LIBLIST: 2664 case DT_MIPS_RLD_MAP: 2665 case DT_MIPS_DELTA_CLASS: 2666 case DT_MIPS_DELTA_INSTANCE: 2667 case DT_MIPS_DELTA_RELOC: 2668 case DT_MIPS_DELTA_SYM: 2669 case DT_MIPS_DELTA_CLASSSYM: 2670 case DT_MIPS_CXX_FLAGS: 2671 case DT_MIPS_PIXIE_INIT: 2672 case DT_MIPS_SYMBOL_LIB: 2673 case DT_MIPS_OPTIONS: 2674 case DT_MIPS_INTERFACE: 2675 case DT_MIPS_DYNSTR_ALIGN: 2676 case DT_MIPS_INTERFACE_SIZE: 2677 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2678 case DT_MIPS_COMPACT_SIZE: 2679 case DT_MIPS_GP_VALUE: 2680 case DT_MIPS_AUX_DYNAMIC: 2681 case DT_MIPS_PLTGOT: 2682 case DT_MIPS_RLD_OBJ_UPDATE: 2683 case DT_MIPS_RWPLT: 2684 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2685 break; 2686 case DT_MIPS_IVERSION: 2687 case DT_MIPS_PERF_SUFFIX: 2688 case DT_AUXILIARY: 2689 case DT_FILTER: 2690 name = dyn_str(re, stab, dyn->d_un.d_val); 2691 printf(" %s\n", name); 2692 break; 2693 case DT_MIPS_TIME_STAMP: 2694 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2695 break; 2696 } 2697 break; 2698 default: 2699 printf("\n"); 2700 break; 2701 } 2702 } 2703 2704 static void 2705 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 2706 { 2707 const char *name; 2708 2709 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 2710 dump_arch_dyn_val(re, dyn, stab); 2711 return; 2712 } 2713 2714 /* These entry values are index into the string table. */ 2715 name = NULL; 2716 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 2717 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 2718 name = dyn_str(re, stab, dyn->d_un.d_val); 2719 2720 switch(dyn->d_tag) { 2721 case DT_NULL: 2722 case DT_PLTGOT: 2723 case DT_HASH: 2724 case DT_STRTAB: 2725 case DT_SYMTAB: 2726 case DT_RELA: 2727 case DT_INIT: 2728 case DT_SYMBOLIC: 2729 case DT_REL: 2730 case DT_DEBUG: 2731 case DT_TEXTREL: 2732 case DT_JMPREL: 2733 case DT_FINI: 2734 case DT_VERDEF: 2735 case DT_VERNEED: 2736 case DT_VERSYM: 2737 case DT_GNU_HASH: 2738 case DT_GNU_LIBLIST: 2739 case DT_GNU_CONFLICT: 2740 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 2741 break; 2742 case DT_PLTRELSZ: 2743 case DT_RELASZ: 2744 case DT_RELAENT: 2745 case DT_STRSZ: 2746 case DT_SYMENT: 2747 case DT_RELSZ: 2748 case DT_RELENT: 2749 case DT_INIT_ARRAYSZ: 2750 case DT_FINI_ARRAYSZ: 2751 case DT_GNU_CONFLICTSZ: 2752 case DT_GNU_LIBLISTSZ: 2753 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 2754 break; 2755 case DT_RELACOUNT: 2756 case DT_RELCOUNT: 2757 case DT_VERDEFNUM: 2758 case DT_VERNEEDNUM: 2759 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 2760 break; 2761 case DT_NEEDED: 2762 printf(" Shared library: [%s]\n", name); 2763 break; 2764 case DT_SONAME: 2765 printf(" Library soname: [%s]\n", name); 2766 break; 2767 case DT_RPATH: 2768 printf(" Library rpath: [%s]\n", name); 2769 break; 2770 case DT_RUNPATH: 2771 printf(" Library runpath: [%s]\n", name); 2772 break; 2773 case DT_PLTREL: 2774 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 2775 break; 2776 case DT_GNU_PRELINKED: 2777 printf(" %s\n", timestamp(dyn->d_un.d_val)); 2778 break; 2779 default: 2780 printf("\n"); 2781 } 2782 } 2783 2784 static void 2785 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 2786 { 2787 GElf_Rel r; 2788 const char *symname; 2789 uint64_t symval; 2790 int i, len; 2791 uint32_t type; 2792 uint8_t type2, type3; 2793 2794 if (s->link >= re->shnum) 2795 return; 2796 2797 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 2798 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2799 elftc_reloc_type_str(re->ehdr.e_machine, \ 2800 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2801 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2802 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2803 (uintmax_t)symval, symname 2804 2805 printf("\nRelocation section (%s):\n", s->name); 2806 if (re->ec == ELFCLASS32) 2807 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 2808 else { 2809 if (re->options & RE_WW) 2810 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 2811 else 2812 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 2813 } 2814 assert(d->d_size == s->sz); 2815 if (!get_ent_count(s, &len)) 2816 return; 2817 for (i = 0; i < len; i++) { 2818 if (gelf_getrel(d, i, &r) != &r) { 2819 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2820 continue; 2821 } 2822 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2823 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2824 if (re->ec == ELFCLASS32) { 2825 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2826 ELF64_R_TYPE(r.r_info)); 2827 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 2828 } else { 2829 type = ELF64_R_TYPE(r.r_info); 2830 if (re->ehdr.e_machine == EM_MIPS) { 2831 type2 = (type >> 8) & 0xFF; 2832 type3 = (type >> 16) & 0xFF; 2833 type = type & 0xFF; 2834 } else { 2835 type2 = type3 = 0; 2836 } 2837 if (re->options & RE_WW) 2838 printf("%16.16jx %16.16jx %-24.24s" 2839 " %16.16jx %s\n", REL_CT64); 2840 else 2841 printf("%12.12jx %12.12jx %-19.19s" 2842 " %16.16jx %s\n", REL_CT64); 2843 if (re->ehdr.e_machine == EM_MIPS) { 2844 if (re->options & RE_WW) { 2845 printf("%32s: %s\n", "Type2", 2846 elftc_reloc_type_str(EM_MIPS, 2847 type2)); 2848 printf("%32s: %s\n", "Type3", 2849 elftc_reloc_type_str(EM_MIPS, 2850 type3)); 2851 } else { 2852 printf("%24s: %s\n", "Type2", 2853 elftc_reloc_type_str(EM_MIPS, 2854 type2)); 2855 printf("%24s: %s\n", "Type3", 2856 elftc_reloc_type_str(EM_MIPS, 2857 type3)); 2858 } 2859 } 2860 } 2861 } 2862 2863 #undef REL_HDR 2864 #undef REL_CT 2865 } 2866 2867 static void 2868 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 2869 { 2870 GElf_Rela r; 2871 const char *symname; 2872 uint64_t symval; 2873 int i, len; 2874 uint32_t type; 2875 uint8_t type2, type3; 2876 2877 if (s->link >= re->shnum) 2878 return; 2879 2880 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 2881 "st_name + r_addend" 2882 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2883 elftc_reloc_type_str(re->ehdr.e_machine, \ 2884 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname 2885 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 2886 elftc_reloc_type_str(re->ehdr.e_machine, type), \ 2887 (uintmax_t)symval, symname 2888 2889 printf("\nRelocation section with addend (%s):\n", s->name); 2890 if (re->ec == ELFCLASS32) 2891 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 2892 else { 2893 if (re->options & RE_WW) 2894 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 2895 else 2896 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 2897 } 2898 assert(d->d_size == s->sz); 2899 if (!get_ent_count(s, &len)) 2900 return; 2901 for (i = 0; i < len; i++) { 2902 if (gelf_getrela(d, i, &r) != &r) { 2903 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2904 continue; 2905 } 2906 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 2907 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 2908 if (re->ec == ELFCLASS32) { 2909 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 2910 ELF64_R_TYPE(r.r_info)); 2911 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 2912 printf(" + %x\n", (uint32_t) r.r_addend); 2913 } else { 2914 type = ELF64_R_TYPE(r.r_info); 2915 if (re->ehdr.e_machine == EM_MIPS) { 2916 type2 = (type >> 8) & 0xFF; 2917 type3 = (type >> 16) & 0xFF; 2918 type = type & 0xFF; 2919 } else { 2920 type2 = type3 = 0; 2921 } 2922 if (re->options & RE_WW) 2923 printf("%16.16jx %16.16jx %-24.24s" 2924 " %16.16jx %s", RELA_CT64); 2925 else 2926 printf("%12.12jx %12.12jx %-19.19s" 2927 " %16.16jx %s", RELA_CT64); 2928 printf(" + %jx\n", (uintmax_t) r.r_addend); 2929 if (re->ehdr.e_machine == EM_MIPS) { 2930 if (re->options & RE_WW) { 2931 printf("%32s: %s\n", "Type2", 2932 elftc_reloc_type_str(EM_MIPS, 2933 type2)); 2934 printf("%32s: %s\n", "Type3", 2935 elftc_reloc_type_str(EM_MIPS, 2936 type3)); 2937 } else { 2938 printf("%24s: %s\n", "Type2", 2939 elftc_reloc_type_str(EM_MIPS, 2940 type2)); 2941 printf("%24s: %s\n", "Type3", 2942 elftc_reloc_type_str(EM_MIPS, 2943 type3)); 2944 } 2945 } 2946 } 2947 } 2948 2949 #undef RELA_HDR 2950 #undef RELA_CT 2951 } 2952 2953 static void 2954 dump_reloc(struct readelf *re) 2955 { 2956 struct section *s; 2957 Elf_Data *d; 2958 int i, elferr; 2959 2960 for (i = 0; (size_t)i < re->shnum; i++) { 2961 s = &re->sl[i]; 2962 if (s->type == SHT_REL || s->type == SHT_RELA) { 2963 (void) elf_errno(); 2964 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2965 elferr = elf_errno(); 2966 if (elferr != 0) 2967 warnx("elf_getdata failed: %s", 2968 elf_errmsg(elferr)); 2969 continue; 2970 } 2971 if (s->type == SHT_REL) 2972 dump_rel(re, s, d); 2973 else 2974 dump_rela(re, s, d); 2975 } 2976 } 2977 } 2978 2979 static void 2980 dump_symtab(struct readelf *re, int i) 2981 { 2982 struct section *s; 2983 Elf_Data *d; 2984 GElf_Sym sym; 2985 const char *name; 2986 uint32_t stab; 2987 int elferr, j, len; 2988 uint16_t vs; 2989 2990 s = &re->sl[i]; 2991 if (s->link >= re->shnum) 2992 return; 2993 stab = s->link; 2994 (void) elf_errno(); 2995 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 2996 elferr = elf_errno(); 2997 if (elferr != 0) 2998 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 2999 return; 3000 } 3001 if (d->d_size <= 0) 3002 return; 3003 if (!get_ent_count(s, &len)) 3004 return; 3005 printf("Symbol table (%s)", s->name); 3006 printf(" contains %d entries:\n", len); 3007 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3008 "Bind", "Vis", "Ndx", "Name"); 3009 3010 for (j = 0; j < len; j++) { 3011 if (gelf_getsym(d, j, &sym) != &sym) { 3012 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3013 continue; 3014 } 3015 printf("%6d:", j); 3016 printf(" %16.16jx", (uintmax_t) sym.st_value); 3017 printf(" %5ju", (uintmax_t) sym.st_size); 3018 printf(" %-7s", st_type(re->ehdr.e_machine, 3019 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); 3020 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3021 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3022 printf(" %3s", st_shndx(sym.st_shndx)); 3023 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3024 printf(" %s", name); 3025 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3026 if (s->type == SHT_DYNSYM && re->ver != NULL && 3027 re->vs != NULL && re->vs[j] > 1) { 3028 vs = re->vs[j] & VERSYM_VERSION; 3029 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3030 warnx("invalid versym version index %u", vs); 3031 break; 3032 } 3033 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3034 printf("@%s (%d)", re->ver[vs].name, vs); 3035 else 3036 printf("@@%s (%d)", re->ver[vs].name, vs); 3037 } 3038 putchar('\n'); 3039 } 3040 3041 } 3042 3043 static void 3044 dump_symtabs(struct readelf *re) 3045 { 3046 GElf_Dyn dyn; 3047 Elf_Data *d; 3048 struct section *s; 3049 uint64_t dyn_off; 3050 int elferr, i, len; 3051 3052 /* 3053 * If -D is specified, only dump the symbol table specified by 3054 * the DT_SYMTAB entry in the .dynamic section. 3055 */ 3056 dyn_off = 0; 3057 if (re->options & RE_DD) { 3058 s = NULL; 3059 for (i = 0; (size_t)i < re->shnum; i++) 3060 if (re->sl[i].type == SHT_DYNAMIC) { 3061 s = &re->sl[i]; 3062 break; 3063 } 3064 if (s == NULL) 3065 return; 3066 (void) elf_errno(); 3067 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3068 elferr = elf_errno(); 3069 if (elferr != 0) 3070 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3071 return; 3072 } 3073 if (d->d_size <= 0) 3074 return; 3075 if (!get_ent_count(s, &len)) 3076 return; 3077 3078 for (i = 0; i < len; i++) { 3079 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3080 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3081 continue; 3082 } 3083 if (dyn.d_tag == DT_SYMTAB) { 3084 dyn_off = dyn.d_un.d_val; 3085 break; 3086 } 3087 } 3088 } 3089 3090 /* Find and dump symbol tables. */ 3091 for (i = 0; (size_t)i < re->shnum; i++) { 3092 s = &re->sl[i]; 3093 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3094 if (re->options & RE_DD) { 3095 if (dyn_off == s->addr) { 3096 dump_symtab(re, i); 3097 break; 3098 } 3099 } else 3100 dump_symtab(re, i); 3101 } 3102 } 3103 } 3104 3105 static void 3106 dump_svr4_hash(struct section *s) 3107 { 3108 Elf_Data *d; 3109 uint32_t *buf; 3110 uint32_t nbucket, nchain; 3111 uint32_t *bucket, *chain; 3112 uint32_t *bl, *c, maxl, total; 3113 int elferr, i, j; 3114 3115 /* Read and parse the content of .hash section. */ 3116 (void) elf_errno(); 3117 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3118 elferr = elf_errno(); 3119 if (elferr != 0) 3120 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3121 return; 3122 } 3123 if (d->d_size < 2 * sizeof(uint32_t)) { 3124 warnx(".hash section too small"); 3125 return; 3126 } 3127 buf = d->d_buf; 3128 nbucket = buf[0]; 3129 nchain = buf[1]; 3130 if (nbucket <= 0 || nchain <= 0) { 3131 warnx("Malformed .hash section"); 3132 return; 3133 } 3134 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3135 warnx("Malformed .hash section"); 3136 return; 3137 } 3138 bucket = &buf[2]; 3139 chain = &buf[2 + nbucket]; 3140 3141 maxl = 0; 3142 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3143 errx(EXIT_FAILURE, "calloc failed"); 3144 for (i = 0; (uint32_t)i < nbucket; i++) 3145 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3146 if (++bl[i] > maxl) 3147 maxl = bl[i]; 3148 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3149 errx(EXIT_FAILURE, "calloc failed"); 3150 for (i = 0; (uint32_t)i < nbucket; i++) 3151 c[bl[i]]++; 3152 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3153 nbucket); 3154 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3155 total = 0; 3156 for (i = 0; (uint32_t)i <= maxl; i++) { 3157 total += c[i] * i; 3158 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3159 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3160 } 3161 free(c); 3162 free(bl); 3163 } 3164 3165 static void 3166 dump_svr4_hash64(struct readelf *re, struct section *s) 3167 { 3168 Elf_Data *d, dst; 3169 uint64_t *buf; 3170 uint64_t nbucket, nchain; 3171 uint64_t *bucket, *chain; 3172 uint64_t *bl, *c, maxl, total; 3173 int elferr, i, j; 3174 3175 /* 3176 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3177 * .hash section contains only 32-bit entry, an explicit 3178 * gelf_xlatetom is needed here. 3179 */ 3180 (void) elf_errno(); 3181 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3182 elferr = elf_errno(); 3183 if (elferr != 0) 3184 warnx("elf_rawdata failed: %s", 3185 elf_errmsg(elferr)); 3186 return; 3187 } 3188 d->d_type = ELF_T_XWORD; 3189 memcpy(&dst, d, sizeof(Elf_Data)); 3190 if (gelf_xlatetom(re->elf, &dst, d, 3191 re->ehdr.e_ident[EI_DATA]) != &dst) { 3192 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3193 return; 3194 } 3195 if (dst.d_size < 2 * sizeof(uint64_t)) { 3196 warnx(".hash section too small"); 3197 return; 3198 } 3199 buf = dst.d_buf; 3200 nbucket = buf[0]; 3201 nchain = buf[1]; 3202 if (nbucket <= 0 || nchain <= 0) { 3203 warnx("Malformed .hash section"); 3204 return; 3205 } 3206 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3207 warnx("Malformed .hash section"); 3208 return; 3209 } 3210 bucket = &buf[2]; 3211 chain = &buf[2 + nbucket]; 3212 3213 maxl = 0; 3214 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3215 errx(EXIT_FAILURE, "calloc failed"); 3216 for (i = 0; (uint32_t)i < nbucket; i++) 3217 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3218 if (++bl[i] > maxl) 3219 maxl = bl[i]; 3220 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3221 errx(EXIT_FAILURE, "calloc failed"); 3222 for (i = 0; (uint64_t)i < nbucket; i++) 3223 c[bl[i]]++; 3224 printf("Histogram for bucket list length (total of %ju buckets):\n", 3225 (uintmax_t)nbucket); 3226 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3227 total = 0; 3228 for (i = 0; (uint64_t)i <= maxl; i++) { 3229 total += c[i] * i; 3230 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3231 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3232 } 3233 free(c); 3234 free(bl); 3235 } 3236 3237 static void 3238 dump_gnu_hash(struct readelf *re, struct section *s) 3239 { 3240 struct section *ds; 3241 Elf_Data *d; 3242 uint32_t *buf; 3243 uint32_t *bucket, *chain; 3244 uint32_t nbucket, nchain, symndx, maskwords; 3245 uint32_t *bl, *c, maxl, total; 3246 int elferr, dynsymcount, i, j; 3247 3248 (void) elf_errno(); 3249 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3250 elferr = elf_errno(); 3251 if (elferr != 0) 3252 warnx("elf_getdata failed: %s", 3253 elf_errmsg(elferr)); 3254 return; 3255 } 3256 if (d->d_size < 4 * sizeof(uint32_t)) { 3257 warnx(".gnu.hash section too small"); 3258 return; 3259 } 3260 buf = d->d_buf; 3261 nbucket = buf[0]; 3262 symndx = buf[1]; 3263 maskwords = buf[2]; 3264 buf += 4; 3265 if (s->link >= re->shnum) 3266 return; 3267 ds = &re->sl[s->link]; 3268 if (!get_ent_count(ds, &dynsymcount)) 3269 return; 3270 if (symndx >= (uint32_t)dynsymcount) { 3271 warnx("Malformed .gnu.hash section (symndx out of range)"); 3272 return; 3273 } 3274 nchain = dynsymcount - symndx; 3275 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3276 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3277 (nbucket + nchain) * sizeof(uint32_t)) { 3278 warnx("Malformed .gnu.hash section"); 3279 return; 3280 } 3281 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3282 chain = bucket + nbucket; 3283 3284 maxl = 0; 3285 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3286 errx(EXIT_FAILURE, "calloc failed"); 3287 for (i = 0; (uint32_t)i < nbucket; i++) 3288 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3289 j++) { 3290 if (++bl[i] > maxl) 3291 maxl = bl[i]; 3292 if (chain[j - symndx] & 1) 3293 break; 3294 } 3295 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3296 errx(EXIT_FAILURE, "calloc failed"); 3297 for (i = 0; (uint32_t)i < nbucket; i++) 3298 c[bl[i]]++; 3299 printf("Histogram for bucket list length (total of %u buckets):\n", 3300 nbucket); 3301 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3302 total = 0; 3303 for (i = 0; (uint32_t)i <= maxl; i++) { 3304 total += c[i] * i; 3305 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3306 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3307 } 3308 free(c); 3309 free(bl); 3310 } 3311 3312 static void 3313 dump_hash(struct readelf *re) 3314 { 3315 struct section *s; 3316 int i; 3317 3318 for (i = 0; (size_t) i < re->shnum; i++) { 3319 s = &re->sl[i]; 3320 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3321 if (s->type == SHT_GNU_HASH) 3322 dump_gnu_hash(re, s); 3323 else if (re->ehdr.e_machine == EM_ALPHA && 3324 s->entsize == 8) 3325 dump_svr4_hash64(re, s); 3326 else 3327 dump_svr4_hash(s); 3328 } 3329 } 3330 } 3331 3332 static void 3333 dump_notes(struct readelf *re) 3334 { 3335 struct section *s; 3336 const char *rawfile; 3337 GElf_Phdr phdr; 3338 Elf_Data *d; 3339 size_t filesize, phnum; 3340 int i, elferr; 3341 3342 if (re->ehdr.e_type == ET_CORE) { 3343 /* 3344 * Search program headers in the core file for 3345 * PT_NOTE entry. 3346 */ 3347 if (elf_getphnum(re->elf, &phnum) == 0) { 3348 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3349 return; 3350 } 3351 if (phnum == 0) 3352 return; 3353 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { 3354 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3355 return; 3356 } 3357 for (i = 0; (size_t) i < phnum; i++) { 3358 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3359 warnx("gelf_getphdr failed: %s", 3360 elf_errmsg(-1)); 3361 continue; 3362 } 3363 if (phdr.p_type == PT_NOTE) { 3364 if (phdr.p_offset >= filesize || 3365 phdr.p_filesz > filesize - phdr.p_offset) { 3366 warnx("invalid PHDR offset"); 3367 continue; 3368 } 3369 dump_notes_content(re, rawfile + phdr.p_offset, 3370 phdr.p_filesz, phdr.p_offset); 3371 } 3372 } 3373 3374 } else { 3375 /* 3376 * For objects other than core files, Search for 3377 * SHT_NOTE sections. 3378 */ 3379 for (i = 0; (size_t) i < re->shnum; i++) { 3380 s = &re->sl[i]; 3381 if (s->type == SHT_NOTE) { 3382 (void) elf_errno(); 3383 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3384 elferr = elf_errno(); 3385 if (elferr != 0) 3386 warnx("elf_getdata failed: %s", 3387 elf_errmsg(elferr)); 3388 continue; 3389 } 3390 dump_notes_content(re, d->d_buf, d->d_size, 3391 s->off); 3392 } 3393 } 3394 } 3395 } 3396 3397 static void 3398 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3399 { 3400 Elf_Note *note; 3401 const char *end, *name; 3402 3403 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3404 (uintmax_t) off, (uintmax_t) sz); 3405 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3406 end = buf + sz; 3407 while (buf < end) { 3408 if (buf + sizeof(*note) > end) { 3409 warnx("invalid note header"); 3410 return; 3411 } 3412 note = (Elf_Note *)(uintptr_t) buf; 3413 name = (char *)(uintptr_t)(note + 1); 3414 /* 3415 * The name field is required to be nul-terminated, and 3416 * n_namesz includes the terminating nul in observed 3417 * implementations (contrary to the ELF-64 spec). A special 3418 * case is needed for cores generated by some older Linux 3419 * versions, which write a note named "CORE" without a nul 3420 * terminator and n_namesz = 4. 3421 */ 3422 if (note->n_namesz == 0) 3423 name = ""; 3424 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3425 name = "CORE"; 3426 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3427 name = "<invalid>"; 3428 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3429 printf(" %s\n", note_type(name, re->ehdr.e_type, 3430 note->n_type)); 3431 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3432 roundup2(note->n_descsz, 4); 3433 } 3434 } 3435 3436 /* 3437 * Symbol versioning sections are the same for 32bit and 64bit 3438 * ELF objects. 3439 */ 3440 #define Elf_Verdef Elf32_Verdef 3441 #define Elf_Verdaux Elf32_Verdaux 3442 #define Elf_Verneed Elf32_Verneed 3443 #define Elf_Vernaux Elf32_Vernaux 3444 3445 #define SAVE_VERSION_NAME(x, n, t) \ 3446 do { \ 3447 while (x >= re->ver_sz) { \ 3448 nv = realloc(re->ver, \ 3449 sizeof(*re->ver) * re->ver_sz * 2); \ 3450 if (nv == NULL) { \ 3451 warn("realloc failed"); \ 3452 free(re->ver); \ 3453 return; \ 3454 } \ 3455 re->ver = nv; \ 3456 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3457 re->ver[i].name = NULL; \ 3458 re->ver[i].type = 0; \ 3459 } \ 3460 re->ver_sz *= 2; \ 3461 } \ 3462 if (x > 1) { \ 3463 re->ver[x].name = n; \ 3464 re->ver[x].type = t; \ 3465 } \ 3466 } while (0) 3467 3468 3469 static void 3470 dump_verdef(struct readelf *re, int dump) 3471 { 3472 struct section *s; 3473 struct symver *nv; 3474 Elf_Data *d; 3475 Elf_Verdef *vd; 3476 Elf_Verdaux *vda; 3477 uint8_t *buf, *end, *buf2; 3478 const char *name; 3479 int elferr, i, j; 3480 3481 if ((s = re->vd_s) == NULL) 3482 return; 3483 if (s->link >= re->shnum) 3484 return; 3485 3486 if (re->ver == NULL) { 3487 re->ver_sz = 16; 3488 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3489 NULL) { 3490 warn("calloc failed"); 3491 return; 3492 } 3493 re->ver[0].name = "*local*"; 3494 re->ver[1].name = "*global*"; 3495 } 3496 3497 if (dump) 3498 printf("\nVersion definition section (%s):\n", s->name); 3499 (void) elf_errno(); 3500 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3501 elferr = elf_errno(); 3502 if (elferr != 0) 3503 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3504 return; 3505 } 3506 if (d->d_size == 0) 3507 return; 3508 3509 buf = d->d_buf; 3510 end = buf + d->d_size; 3511 while (buf + sizeof(Elf_Verdef) <= end) { 3512 vd = (Elf_Verdef *) (uintptr_t) buf; 3513 if (dump) { 3514 printf(" 0x%4.4lx", (unsigned long) 3515 (buf - (uint8_t *)d->d_buf)); 3516 printf(" vd_version: %u vd_flags: %d" 3517 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3518 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3519 } 3520 buf2 = buf + vd->vd_aux; 3521 j = 0; 3522 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3523 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3524 name = get_string(re, s->link, vda->vda_name); 3525 if (j == 0) { 3526 if (dump) 3527 printf(" vda_name: %s\n", name); 3528 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3529 } else if (dump) 3530 printf(" 0x%4.4lx parent: %s\n", 3531 (unsigned long) (buf2 - 3532 (uint8_t *)d->d_buf), name); 3533 if (vda->vda_next == 0) 3534 break; 3535 buf2 += vda->vda_next; 3536 j++; 3537 } 3538 if (vd->vd_next == 0) 3539 break; 3540 buf += vd->vd_next; 3541 } 3542 } 3543 3544 static void 3545 dump_verneed(struct readelf *re, int dump) 3546 { 3547 struct section *s; 3548 struct symver *nv; 3549 Elf_Data *d; 3550 Elf_Verneed *vn; 3551 Elf_Vernaux *vna; 3552 uint8_t *buf, *end, *buf2; 3553 const char *name; 3554 int elferr, i, j; 3555 3556 if ((s = re->vn_s) == NULL) 3557 return; 3558 if (s->link >= re->shnum) 3559 return; 3560 3561 if (re->ver == NULL) { 3562 re->ver_sz = 16; 3563 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3564 NULL) { 3565 warn("calloc failed"); 3566 return; 3567 } 3568 re->ver[0].name = "*local*"; 3569 re->ver[1].name = "*global*"; 3570 } 3571 3572 if (dump) 3573 printf("\nVersion needed section (%s):\n", s->name); 3574 (void) elf_errno(); 3575 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3576 elferr = elf_errno(); 3577 if (elferr != 0) 3578 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3579 return; 3580 } 3581 if (d->d_size == 0) 3582 return; 3583 3584 buf = d->d_buf; 3585 end = buf + d->d_size; 3586 while (buf + sizeof(Elf_Verneed) <= end) { 3587 vn = (Elf_Verneed *) (uintptr_t) buf; 3588 if (dump) { 3589 printf(" 0x%4.4lx", (unsigned long) 3590 (buf - (uint8_t *)d->d_buf)); 3591 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 3592 vn->vn_version, 3593 get_string(re, s->link, vn->vn_file), 3594 vn->vn_cnt); 3595 } 3596 buf2 = buf + vn->vn_aux; 3597 j = 0; 3598 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 3599 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 3600 if (dump) 3601 printf(" 0x%4.4lx", (unsigned long) 3602 (buf2 - (uint8_t *)d->d_buf)); 3603 name = get_string(re, s->link, vna->vna_name); 3604 if (dump) 3605 printf(" vna_name: %s vna_flags: %u" 3606 " vna_other: %u\n", name, 3607 vna->vna_flags, vna->vna_other); 3608 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 3609 if (vna->vna_next == 0) 3610 break; 3611 buf2 += vna->vna_next; 3612 j++; 3613 } 3614 if (vn->vn_next == 0) 3615 break; 3616 buf += vn->vn_next; 3617 } 3618 } 3619 3620 static void 3621 dump_versym(struct readelf *re) 3622 { 3623 int i; 3624 uint16_t vs; 3625 3626 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 3627 return; 3628 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 3629 for (i = 0; i < re->vs_sz; i++) { 3630 if ((i & 3) == 0) { 3631 if (i > 0) 3632 putchar('\n'); 3633 printf(" %03x:", i); 3634 } 3635 vs = re->vs[i] & VERSYM_VERSION; 3636 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3637 warnx("invalid versym version index %u", re->vs[i]); 3638 break; 3639 } 3640 if (re->vs[i] & VERSYM_HIDDEN) 3641 printf(" %3xh %-12s ", vs, 3642 re->ver[re->vs[i] & VERSYM_VERSION].name); 3643 else 3644 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 3645 } 3646 putchar('\n'); 3647 } 3648 3649 static void 3650 dump_ver(struct readelf *re) 3651 { 3652 3653 if (re->vs_s && re->ver && re->vs) 3654 dump_versym(re); 3655 if (re->vd_s) 3656 dump_verdef(re, 1); 3657 if (re->vn_s) 3658 dump_verneed(re, 1); 3659 } 3660 3661 static void 3662 search_ver(struct readelf *re) 3663 { 3664 struct section *s; 3665 Elf_Data *d; 3666 int elferr, i; 3667 3668 for (i = 0; (size_t) i < re->shnum; i++) { 3669 s = &re->sl[i]; 3670 if (s->type == SHT_SUNW_versym) 3671 re->vs_s = s; 3672 if (s->type == SHT_SUNW_verneed) 3673 re->vn_s = s; 3674 if (s->type == SHT_SUNW_verdef) 3675 re->vd_s = s; 3676 } 3677 if (re->vd_s) 3678 dump_verdef(re, 0); 3679 if (re->vn_s) 3680 dump_verneed(re, 0); 3681 if (re->vs_s && re->ver != NULL) { 3682 (void) elf_errno(); 3683 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 3684 elferr = elf_errno(); 3685 if (elferr != 0) 3686 warnx("elf_getdata failed: %s", 3687 elf_errmsg(elferr)); 3688 return; 3689 } 3690 if (d->d_size == 0) 3691 return; 3692 re->vs = d->d_buf; 3693 re->vs_sz = d->d_size / sizeof(Elf32_Half); 3694 } 3695 } 3696 3697 #undef Elf_Verdef 3698 #undef Elf_Verdaux 3699 #undef Elf_Verneed 3700 #undef Elf_Vernaux 3701 #undef SAVE_VERSION_NAME 3702 3703 /* 3704 * Elf32_Lib and Elf64_Lib are identical. 3705 */ 3706 #define Elf_Lib Elf32_Lib 3707 3708 static void 3709 dump_liblist(struct readelf *re) 3710 { 3711 struct section *s; 3712 struct tm *t; 3713 time_t ti; 3714 char tbuf[20]; 3715 Elf_Data *d; 3716 Elf_Lib *lib; 3717 int i, j, k, elferr, first, len; 3718 3719 for (i = 0; (size_t) i < re->shnum; i++) { 3720 s = &re->sl[i]; 3721 if (s->type != SHT_GNU_LIBLIST) 3722 continue; 3723 if (s->link >= re->shnum) 3724 continue; 3725 (void) elf_errno(); 3726 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3727 elferr = elf_errno(); 3728 if (elferr != 0) 3729 warnx("elf_getdata failed: %s", 3730 elf_errmsg(elferr)); 3731 continue; 3732 } 3733 if (d->d_size <= 0) 3734 continue; 3735 lib = d->d_buf; 3736 if (!get_ent_count(s, &len)) 3737 continue; 3738 printf("\nLibrary list section '%s' ", s->name); 3739 printf("contains %d entries:\n", len); 3740 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 3741 "Checksum", "Version", "Flags"); 3742 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 3743 printf("%3d: ", j); 3744 printf("%-20.20s ", 3745 get_string(re, s->link, lib->l_name)); 3746 ti = lib->l_time_stamp; 3747 t = gmtime(&ti); 3748 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 3749 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 3750 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 3751 printf("%-19.19s ", tbuf); 3752 printf("0x%08x ", lib->l_checksum); 3753 printf("%-7d %#x", lib->l_version, lib->l_flags); 3754 if (lib->l_flags != 0) { 3755 first = 1; 3756 putchar('('); 3757 for (k = 0; l_flag[k].name != NULL; k++) { 3758 if ((l_flag[k].value & lib->l_flags) == 3759 0) 3760 continue; 3761 if (!first) 3762 putchar(','); 3763 else 3764 first = 0; 3765 printf("%s", l_flag[k].name); 3766 } 3767 putchar(')'); 3768 } 3769 putchar('\n'); 3770 lib++; 3771 } 3772 } 3773 } 3774 3775 #undef Elf_Lib 3776 3777 static void 3778 dump_section_groups(struct readelf *re) 3779 { 3780 struct section *s; 3781 const char *symname; 3782 Elf_Data *d; 3783 uint32_t *w; 3784 int i, j, elferr; 3785 size_t n; 3786 3787 for (i = 0; (size_t) i < re->shnum; i++) { 3788 s = &re->sl[i]; 3789 if (s->type != SHT_GROUP) 3790 continue; 3791 if (s->link >= re->shnum) 3792 continue; 3793 (void) elf_errno(); 3794 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3795 elferr = elf_errno(); 3796 if (elferr != 0) 3797 warnx("elf_getdata failed: %s", 3798 elf_errmsg(elferr)); 3799 continue; 3800 } 3801 if (d->d_size <= 0) 3802 continue; 3803 3804 w = d->d_buf; 3805 3806 /* We only support COMDAT section. */ 3807 #ifndef GRP_COMDAT 3808 #define GRP_COMDAT 0x1 3809 #endif 3810 if ((*w++ & GRP_COMDAT) == 0) 3811 return; 3812 3813 if (s->entsize == 0) 3814 s->entsize = 4; 3815 3816 symname = get_symbol_name(re, s->link, s->info); 3817 n = s->sz / s->entsize; 3818 if (n-- < 1) 3819 return; 3820 3821 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 3822 " sections:\n", i, s->name, symname, (uintmax_t)n); 3823 printf(" %-10.10s %s\n", "[Index]", "Name"); 3824 for (j = 0; (size_t) j < n; j++, w++) { 3825 if (*w >= re->shnum) { 3826 warnx("invalid section index: %u", *w); 3827 continue; 3828 } 3829 printf(" [%5u] %s\n", *w, re->sl[*w].name); 3830 } 3831 } 3832 } 3833 3834 static uint8_t * 3835 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 3836 { 3837 uint64_t val; 3838 3839 /* 3840 * According to ARM EABI: For tags > 32, even numbered tags have 3841 * a ULEB128 param and odd numbered ones have NUL-terminated 3842 * string param. This rule probably also applies for tags <= 32 3843 * if the object arch is not ARM. 3844 */ 3845 3846 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 3847 3848 if (tag & 1) { 3849 printf("%s\n", (char *) p); 3850 p += strlen((char *) p) + 1; 3851 } else { 3852 val = _decode_uleb128(&p, pe); 3853 printf("%ju\n", (uintmax_t) val); 3854 } 3855 3856 return (p); 3857 } 3858 3859 static uint8_t * 3860 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 3861 { 3862 uint64_t val; 3863 3864 val = _decode_uleb128(&p, pe); 3865 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 3866 p += strlen((char *) p) + 1; 3867 3868 return (p); 3869 } 3870 3871 static void 3872 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3873 { 3874 uint64_t tag, val; 3875 size_t i; 3876 int found, desc; 3877 3878 (void) re; 3879 3880 while (p < pe) { 3881 tag = _decode_uleb128(&p, pe); 3882 found = desc = 0; 3883 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 3884 i++) { 3885 if (tag == aeabi_tags[i].tag) { 3886 found = 1; 3887 printf(" %s: ", aeabi_tags[i].s_tag); 3888 if (aeabi_tags[i].get_desc) { 3889 desc = 1; 3890 val = _decode_uleb128(&p, pe); 3891 printf("%s\n", 3892 aeabi_tags[i].get_desc(val)); 3893 } 3894 break; 3895 } 3896 if (tag < aeabi_tags[i].tag) 3897 break; 3898 } 3899 if (!found) { 3900 p = dump_unknown_tag(tag, p, pe); 3901 continue; 3902 } 3903 if (desc) 3904 continue; 3905 3906 switch (tag) { 3907 case 4: /* Tag_CPU_raw_name */ 3908 case 5: /* Tag_CPU_name */ 3909 case 67: /* Tag_conformance */ 3910 printf("%s\n", (char *) p); 3911 p += strlen((char *) p) + 1; 3912 break; 3913 case 32: /* Tag_compatibility */ 3914 p = dump_compatibility_tag(p, pe); 3915 break; 3916 case 64: /* Tag_nodefaults */ 3917 /* ignored, written as 0. */ 3918 (void) _decode_uleb128(&p, pe); 3919 printf("True\n"); 3920 break; 3921 case 65: /* Tag_also_compatible_with */ 3922 val = _decode_uleb128(&p, pe); 3923 /* Must be Tag_CPU_arch */ 3924 if (val != 6) { 3925 printf("unknown\n"); 3926 break; 3927 } 3928 val = _decode_uleb128(&p, pe); 3929 printf("%s\n", aeabi_cpu_arch(val)); 3930 /* Skip NUL terminator. */ 3931 p++; 3932 break; 3933 default: 3934 putchar('\n'); 3935 break; 3936 } 3937 } 3938 } 3939 3940 #ifndef Tag_GNU_MIPS_ABI_FP 3941 #define Tag_GNU_MIPS_ABI_FP 4 3942 #endif 3943 3944 static void 3945 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 3946 { 3947 uint64_t tag, val; 3948 3949 (void) re; 3950 3951 while (p < pe) { 3952 tag = _decode_uleb128(&p, pe); 3953 switch (tag) { 3954 case Tag_GNU_MIPS_ABI_FP: 3955 val = _decode_uleb128(&p, pe); 3956 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 3957 break; 3958 case 32: /* Tag_compatibility */ 3959 p = dump_compatibility_tag(p, pe); 3960 break; 3961 default: 3962 p = dump_unknown_tag(tag, p, pe); 3963 break; 3964 } 3965 } 3966 } 3967 3968 #ifndef Tag_GNU_Power_ABI_FP 3969 #define Tag_GNU_Power_ABI_FP 4 3970 #endif 3971 3972 #ifndef Tag_GNU_Power_ABI_Vector 3973 #define Tag_GNU_Power_ABI_Vector 8 3974 #endif 3975 3976 static void 3977 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 3978 { 3979 uint64_t tag, val; 3980 3981 while (p < pe) { 3982 tag = _decode_uleb128(&p, pe); 3983 switch (tag) { 3984 case Tag_GNU_Power_ABI_FP: 3985 val = _decode_uleb128(&p, pe); 3986 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 3987 break; 3988 case Tag_GNU_Power_ABI_Vector: 3989 val = _decode_uleb128(&p, pe); 3990 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 3991 ppc_abi_vector(val)); 3992 break; 3993 case 32: /* Tag_compatibility */ 3994 p = dump_compatibility_tag(p, pe); 3995 break; 3996 default: 3997 p = dump_unknown_tag(tag, p, pe); 3998 break; 3999 } 4000 } 4001 } 4002 4003 static void 4004 dump_attributes(struct readelf *re) 4005 { 4006 struct section *s; 4007 Elf_Data *d; 4008 uint8_t *p, *pe, *sp; 4009 size_t len, seclen, nlen, sublen; 4010 uint64_t val; 4011 int tag, i, elferr; 4012 4013 for (i = 0; (size_t) i < re->shnum; i++) { 4014 s = &re->sl[i]; 4015 if (s->type != SHT_GNU_ATTRIBUTES && 4016 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4017 continue; 4018 (void) elf_errno(); 4019 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4020 elferr = elf_errno(); 4021 if (elferr != 0) 4022 warnx("elf_rawdata failed: %s", 4023 elf_errmsg(elferr)); 4024 continue; 4025 } 4026 if (d->d_size <= 0) 4027 continue; 4028 p = d->d_buf; 4029 pe = p + d->d_size; 4030 if (*p != 'A') { 4031 printf("Unknown Attribute Section Format: %c\n", 4032 (char) *p); 4033 continue; 4034 } 4035 len = d->d_size - 1; 4036 p++; 4037 while (len > 0) { 4038 if (len < 4) { 4039 warnx("truncated attribute section length"); 4040 return; 4041 } 4042 seclen = re->dw_decode(&p, 4); 4043 if (seclen > len) { 4044 warnx("invalid attribute section length"); 4045 return; 4046 } 4047 len -= seclen; 4048 nlen = strlen((char *) p) + 1; 4049 if (nlen + 4 > seclen) { 4050 warnx("invalid attribute section name"); 4051 return; 4052 } 4053 printf("Attribute Section: %s\n", (char *) p); 4054 p += nlen; 4055 seclen -= nlen + 4; 4056 while (seclen > 0) { 4057 sp = p; 4058 tag = *p++; 4059 sublen = re->dw_decode(&p, 4); 4060 if (sublen > seclen) { 4061 warnx("invalid attribute sub-section" 4062 " length"); 4063 return; 4064 } 4065 seclen -= sublen; 4066 printf("%s", top_tag(tag)); 4067 if (tag == 2 || tag == 3) { 4068 putchar(':'); 4069 for (;;) { 4070 val = _decode_uleb128(&p, pe); 4071 if (val == 0) 4072 break; 4073 printf(" %ju", (uintmax_t) val); 4074 } 4075 } 4076 putchar('\n'); 4077 if (re->ehdr.e_machine == EM_ARM && 4078 s->type == SHT_LOPROC + 3) 4079 dump_arm_attributes(re, p, sp + sublen); 4080 else if (re->ehdr.e_machine == EM_MIPS || 4081 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4082 dump_mips_attributes(re, p, 4083 sp + sublen); 4084 else if (re->ehdr.e_machine == EM_PPC) 4085 dump_ppc_attributes(p, sp + sublen); 4086 p = sp + sublen; 4087 } 4088 } 4089 } 4090 } 4091 4092 static void 4093 dump_mips_specific_info(struct readelf *re) 4094 { 4095 struct section *s; 4096 int i, options_found; 4097 4098 options_found = 0; 4099 s = NULL; 4100 for (i = 0; (size_t) i < re->shnum; i++) { 4101 s = &re->sl[i]; 4102 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4103 (s->type == SHT_MIPS_OPTIONS))) { 4104 dump_mips_options(re, s); 4105 options_found = 1; 4106 } 4107 } 4108 4109 /* 4110 * According to SGI mips64 spec, .reginfo should be ignored if 4111 * .MIPS.options section is present. 4112 */ 4113 if (!options_found) { 4114 for (i = 0; (size_t) i < re->shnum; i++) { 4115 s = &re->sl[i]; 4116 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4117 (s->type == SHT_MIPS_REGINFO))) 4118 dump_mips_reginfo(re, s); 4119 } 4120 } 4121 } 4122 4123 static void 4124 dump_mips_reginfo(struct readelf *re, struct section *s) 4125 { 4126 Elf_Data *d; 4127 int elferr, len; 4128 4129 (void) elf_errno(); 4130 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4131 elferr = elf_errno(); 4132 if (elferr != 0) 4133 warnx("elf_rawdata failed: %s", 4134 elf_errmsg(elferr)); 4135 return; 4136 } 4137 if (d->d_size <= 0) 4138 return; 4139 if (!get_ent_count(s, &len)) 4140 return; 4141 4142 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4143 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4144 } 4145 4146 static void 4147 dump_mips_options(struct readelf *re, struct section *s) 4148 { 4149 Elf_Data *d; 4150 uint32_t info; 4151 uint16_t sndx; 4152 uint8_t *p, *pe; 4153 uint8_t kind, size; 4154 int elferr; 4155 4156 (void) elf_errno(); 4157 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4158 elferr = elf_errno(); 4159 if (elferr != 0) 4160 warnx("elf_rawdata failed: %s", 4161 elf_errmsg(elferr)); 4162 return; 4163 } 4164 if (d->d_size == 0) 4165 return; 4166 4167 printf("\nSection %s contains:\n", s->name); 4168 p = d->d_buf; 4169 pe = p + d->d_size; 4170 while (p < pe) { 4171 if (pe - p < 8) { 4172 warnx("Truncated MIPS option header"); 4173 return; 4174 } 4175 kind = re->dw_decode(&p, 1); 4176 size = re->dw_decode(&p, 1); 4177 sndx = re->dw_decode(&p, 2); 4178 info = re->dw_decode(&p, 4); 4179 if (size < 8 || size - 8 > pe - p) { 4180 warnx("Malformed MIPS option header"); 4181 return; 4182 } 4183 size -= 8; 4184 switch (kind) { 4185 case ODK_REGINFO: 4186 dump_mips_odk_reginfo(re, p, size); 4187 break; 4188 case ODK_EXCEPTIONS: 4189 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4190 info & OEX_FPU_MIN); 4191 printf("%11.11s FPU_MAX: %#x\n", "", 4192 info & OEX_FPU_MAX); 4193 dump_mips_option_flags("", mips_exceptions_option, 4194 info); 4195 break; 4196 case ODK_PAD: 4197 printf(" %-10.10s section: %ju\n", "OPAD", 4198 (uintmax_t) sndx); 4199 dump_mips_option_flags("", mips_pad_option, info); 4200 break; 4201 case ODK_HWPATCH: 4202 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4203 info); 4204 break; 4205 case ODK_HWAND: 4206 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4207 break; 4208 case ODK_HWOR: 4209 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4210 break; 4211 case ODK_FILL: 4212 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4213 break; 4214 case ODK_TAGS: 4215 printf(" %-10.10s\n", "TAGS"); 4216 break; 4217 case ODK_GP_GROUP: 4218 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4219 info & 0xFFFF); 4220 if (info & 0x10000) 4221 printf(" %-10.10s GP group is " 4222 "self-contained\n", ""); 4223 break; 4224 case ODK_IDENT: 4225 printf(" %-10.10s default GP group number: %#x\n", 4226 "IDENT", info & 0xFFFF); 4227 if (info & 0x10000) 4228 printf(" %-10.10s default GP group is " 4229 "self-contained\n", ""); 4230 break; 4231 case ODK_PAGESIZE: 4232 printf(" %-10.10s\n", "PAGESIZE"); 4233 break; 4234 default: 4235 break; 4236 } 4237 p += size; 4238 } 4239 } 4240 4241 static void 4242 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4243 { 4244 int first; 4245 4246 first = 1; 4247 for (; opt->desc != NULL; opt++) { 4248 if (info & opt->flag) { 4249 printf(" %-10.10s %s\n", first ? name : "", 4250 opt->desc); 4251 first = 0; 4252 } 4253 } 4254 } 4255 4256 static void 4257 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4258 { 4259 uint32_t ri_gprmask; 4260 uint32_t ri_cprmask[4]; 4261 uint64_t ri_gp_value; 4262 uint8_t *pe; 4263 int i; 4264 4265 pe = p + sz; 4266 while (p < pe) { 4267 ri_gprmask = re->dw_decode(&p, 4); 4268 /* Skip ri_pad padding field for mips64. */ 4269 if (re->ec == ELFCLASS64) 4270 re->dw_decode(&p, 4); 4271 for (i = 0; i < 4; i++) 4272 ri_cprmask[i] = re->dw_decode(&p, 4); 4273 if (re->ec == ELFCLASS32) 4274 ri_gp_value = re->dw_decode(&p, 4); 4275 else 4276 ri_gp_value = re->dw_decode(&p, 8); 4277 printf(" %s ", option_kind(ODK_REGINFO)); 4278 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4279 for (i = 0; i < 4; i++) 4280 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4281 (uintmax_t) ri_cprmask[i]); 4282 printf("%12.12s", ""); 4283 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4284 } 4285 } 4286 4287 static void 4288 dump_arch_specific_info(struct readelf *re) 4289 { 4290 4291 dump_liblist(re); 4292 dump_attributes(re); 4293 4294 switch (re->ehdr.e_machine) { 4295 case EM_MIPS: 4296 case EM_MIPS_RS3_LE: 4297 dump_mips_specific_info(re); 4298 default: 4299 break; 4300 } 4301 } 4302 4303 static const char * 4304 dwarf_regname(struct readelf *re, unsigned int num) 4305 { 4306 static char rx[32]; 4307 const char *rn; 4308 4309 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4310 return (rn); 4311 4312 snprintf(rx, sizeof(rx), "r%u", num); 4313 4314 return (rx); 4315 } 4316 4317 static void 4318 dump_dwarf_line(struct readelf *re) 4319 { 4320 struct section *s; 4321 Dwarf_Die die; 4322 Dwarf_Error de; 4323 Dwarf_Half tag, version, pointer_size; 4324 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4325 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4326 Elf_Data *d; 4327 char *pn; 4328 uint64_t address, file, line, column, isa, opsize, udelta; 4329 int64_t sdelta; 4330 uint8_t *p, *pe; 4331 int8_t lbase; 4332 int i, is_stmt, dwarf_size, elferr, ret; 4333 4334 printf("\nDump of debug contents of section .debug_line:\n"); 4335 4336 s = NULL; 4337 for (i = 0; (size_t) i < re->shnum; i++) { 4338 s = &re->sl[i]; 4339 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4340 break; 4341 } 4342 if ((size_t) i >= re->shnum) 4343 return; 4344 4345 (void) elf_errno(); 4346 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4347 elferr = elf_errno(); 4348 if (elferr != 0) 4349 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4350 return; 4351 } 4352 if (d->d_size <= 0) 4353 return; 4354 4355 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4356 NULL, &de)) == DW_DLV_OK) { 4357 die = NULL; 4358 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4359 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4360 warnx("dwarf_tag failed: %s", 4361 dwarf_errmsg(de)); 4362 return; 4363 } 4364 /* XXX: What about DW_TAG_partial_unit? */ 4365 if (tag == DW_TAG_compile_unit) 4366 break; 4367 } 4368 if (die == NULL) { 4369 warnx("could not find DW_TAG_compile_unit die"); 4370 return; 4371 } 4372 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4373 &de) != DW_DLV_OK) 4374 continue; 4375 4376 length = re->dw_read(d, &offset, 4); 4377 if (length == 0xffffffff) { 4378 dwarf_size = 8; 4379 length = re->dw_read(d, &offset, 8); 4380 } else 4381 dwarf_size = 4; 4382 4383 if (length > d->d_size - offset) { 4384 warnx("invalid .dwarf_line section"); 4385 continue; 4386 } 4387 4388 endoff = offset + length; 4389 pe = (uint8_t *) d->d_buf + endoff; 4390 version = re->dw_read(d, &offset, 2); 4391 hdrlen = re->dw_read(d, &offset, dwarf_size); 4392 minlen = re->dw_read(d, &offset, 1); 4393 defstmt = re->dw_read(d, &offset, 1); 4394 lbase = re->dw_read(d, &offset, 1); 4395 lrange = re->dw_read(d, &offset, 1); 4396 opbase = re->dw_read(d, &offset, 1); 4397 4398 printf("\n"); 4399 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4400 printf(" DWARF version:\t\t%u\n", version); 4401 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4402 printf(" Minimum Instruction Length:\t%u\n", minlen); 4403 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4404 printf(" Line Base:\t\t\t%d\n", lbase); 4405 printf(" Line Range:\t\t\t%u\n", lrange); 4406 printf(" Opcode Base:\t\t\t%u\n", opbase); 4407 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4408 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4409 4410 printf("\n"); 4411 printf(" Opcodes:\n"); 4412 for (i = 1; i < opbase; i++) { 4413 oplen = re->dw_read(d, &offset, 1); 4414 printf(" Opcode %d has %u args\n", i, oplen); 4415 } 4416 4417 printf("\n"); 4418 printf(" The Directory Table:\n"); 4419 p = (uint8_t *) d->d_buf + offset; 4420 while (*p != '\0') { 4421 printf(" %s\n", (char *) p); 4422 p += strlen((char *) p) + 1; 4423 } 4424 4425 p++; 4426 printf("\n"); 4427 printf(" The File Name Table:\n"); 4428 printf(" Entry\tDir\tTime\tSize\tName\n"); 4429 i = 0; 4430 while (*p != '\0') { 4431 i++; 4432 pn = (char *) p; 4433 p += strlen(pn) + 1; 4434 dirndx = _decode_uleb128(&p, pe); 4435 mtime = _decode_uleb128(&p, pe); 4436 fsize = _decode_uleb128(&p, pe); 4437 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4438 (uintmax_t) dirndx, (uintmax_t) mtime, 4439 (uintmax_t) fsize, pn); 4440 } 4441 4442 #define RESET_REGISTERS \ 4443 do { \ 4444 address = 0; \ 4445 file = 1; \ 4446 line = 1; \ 4447 column = 0; \ 4448 is_stmt = defstmt; \ 4449 } while(0) 4450 4451 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4452 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4453 4454 p++; 4455 printf("\n"); 4456 printf(" Line Number Statements:\n"); 4457 4458 RESET_REGISTERS; 4459 4460 while (p < pe) { 4461 4462 if (*p == 0) { 4463 /* 4464 * Extended Opcodes. 4465 */ 4466 p++; 4467 opsize = _decode_uleb128(&p, pe); 4468 printf(" Extended opcode %u: ", *p); 4469 switch (*p) { 4470 case DW_LNE_end_sequence: 4471 p++; 4472 RESET_REGISTERS; 4473 printf("End of Sequence\n"); 4474 break; 4475 case DW_LNE_set_address: 4476 p++; 4477 address = re->dw_decode(&p, 4478 pointer_size); 4479 printf("set Address to %#jx\n", 4480 (uintmax_t) address); 4481 break; 4482 case DW_LNE_define_file: 4483 p++; 4484 pn = (char *) p; 4485 p += strlen(pn) + 1; 4486 dirndx = _decode_uleb128(&p, pe); 4487 mtime = _decode_uleb128(&p, pe); 4488 fsize = _decode_uleb128(&p, pe); 4489 printf("define new file: %s\n", pn); 4490 break; 4491 default: 4492 /* Unrecognized extened opcodes. */ 4493 p += opsize; 4494 printf("unknown opcode\n"); 4495 } 4496 } else if (*p > 0 && *p < opbase) { 4497 /* 4498 * Standard Opcodes. 4499 */ 4500 switch(*p++) { 4501 case DW_LNS_copy: 4502 printf(" Copy\n"); 4503 break; 4504 case DW_LNS_advance_pc: 4505 udelta = _decode_uleb128(&p, pe) * 4506 minlen; 4507 address += udelta; 4508 printf(" Advance PC by %ju to %#jx\n", 4509 (uintmax_t) udelta, 4510 (uintmax_t) address); 4511 break; 4512 case DW_LNS_advance_line: 4513 sdelta = _decode_sleb128(&p, pe); 4514 line += sdelta; 4515 printf(" Advance Line by %jd to %ju\n", 4516 (intmax_t) sdelta, 4517 (uintmax_t) line); 4518 break; 4519 case DW_LNS_set_file: 4520 file = _decode_uleb128(&p, pe); 4521 printf(" Set File to %ju\n", 4522 (uintmax_t) file); 4523 break; 4524 case DW_LNS_set_column: 4525 column = _decode_uleb128(&p, pe); 4526 printf(" Set Column to %ju\n", 4527 (uintmax_t) column); 4528 break; 4529 case DW_LNS_negate_stmt: 4530 is_stmt = !is_stmt; 4531 printf(" Set is_stmt to %d\n", is_stmt); 4532 break; 4533 case DW_LNS_set_basic_block: 4534 printf(" Set basic block flag\n"); 4535 break; 4536 case DW_LNS_const_add_pc: 4537 address += ADDRESS(255); 4538 printf(" Advance PC by constant %ju" 4539 " to %#jx\n", 4540 (uintmax_t) ADDRESS(255), 4541 (uintmax_t) address); 4542 break; 4543 case DW_LNS_fixed_advance_pc: 4544 udelta = re->dw_decode(&p, 2); 4545 address += udelta; 4546 printf(" Advance PC by fixed value " 4547 "%ju to %#jx\n", 4548 (uintmax_t) udelta, 4549 (uintmax_t) address); 4550 break; 4551 case DW_LNS_set_prologue_end: 4552 printf(" Set prologue end flag\n"); 4553 break; 4554 case DW_LNS_set_epilogue_begin: 4555 printf(" Set epilogue begin flag\n"); 4556 break; 4557 case DW_LNS_set_isa: 4558 isa = _decode_uleb128(&p, pe); 4559 printf(" Set isa to %ju\n", 4560 (uintmax_t) isa); 4561 break; 4562 default: 4563 /* Unrecognized extended opcodes. */ 4564 printf(" Unknown extended opcode %u\n", 4565 *(p - 1)); 4566 break; 4567 } 4568 4569 } else { 4570 /* 4571 * Special Opcodes. 4572 */ 4573 line += LINE(*p); 4574 address += ADDRESS(*p); 4575 printf(" Special opcode %u: advance Address " 4576 "by %ju to %#jx and Line by %jd to %ju\n", 4577 *p - opbase, (uintmax_t) ADDRESS(*p), 4578 (uintmax_t) address, (intmax_t) LINE(*p), 4579 (uintmax_t) line); 4580 p++; 4581 } 4582 4583 4584 } 4585 } 4586 if (ret == DW_DLV_ERROR) 4587 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 4588 4589 #undef RESET_REGISTERS 4590 #undef LINE 4591 #undef ADDRESS 4592 } 4593 4594 static void 4595 dump_dwarf_line_decoded(struct readelf *re) 4596 { 4597 Dwarf_Die die; 4598 Dwarf_Line *linebuf, ln; 4599 Dwarf_Addr lineaddr; 4600 Dwarf_Signed linecount, srccount; 4601 Dwarf_Unsigned lineno, fn; 4602 Dwarf_Error de; 4603 const char *dir, *file; 4604 char **srcfiles; 4605 int i, ret; 4606 4607 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 4608 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4609 NULL, &de)) == DW_DLV_OK) { 4610 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 4611 continue; 4612 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 4613 DW_DLV_OK) 4614 file = NULL; 4615 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 4616 DW_DLV_OK) 4617 dir = NULL; 4618 printf("CU: "); 4619 if (dir && file) 4620 printf("%s/", dir); 4621 if (file) 4622 printf("%s", file); 4623 putchar('\n'); 4624 printf("%-37s %11s %s\n", "Filename", "Line Number", 4625 "Starting Address"); 4626 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 4627 continue; 4628 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 4629 continue; 4630 for (i = 0; i < linecount; i++) { 4631 ln = linebuf[i]; 4632 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 4633 continue; 4634 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 4635 continue; 4636 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 4637 continue; 4638 printf("%-37s %11ju %#18jx\n", 4639 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 4640 (uintmax_t) lineaddr); 4641 } 4642 putchar('\n'); 4643 } 4644 } 4645 4646 static void 4647 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 4648 { 4649 Dwarf_Attribute *attr_list; 4650 Dwarf_Die ret_die; 4651 Dwarf_Off dieoff, cuoff, culen, attroff; 4652 Dwarf_Unsigned ate, lang, v_udata, v_sig; 4653 Dwarf_Signed attr_count, v_sdata; 4654 Dwarf_Off v_off; 4655 Dwarf_Addr v_addr; 4656 Dwarf_Half tag, attr, form; 4657 Dwarf_Block *v_block; 4658 Dwarf_Bool v_bool, is_info; 4659 Dwarf_Sig8 v_sig8; 4660 Dwarf_Error de; 4661 Dwarf_Ptr v_expr; 4662 const char *tag_str, *attr_str, *ate_str, *lang_str; 4663 char unk_tag[32], unk_attr[32]; 4664 char *v_str; 4665 uint8_t *b, *p; 4666 int i, j, abc, ret; 4667 4668 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 4669 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 4670 goto cont_search; 4671 } 4672 4673 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 4674 4675 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 4676 warnx("dwarf_die_CU_offset_range failed: %s", 4677 dwarf_errmsg(de)); 4678 cuoff = 0; 4679 } 4680 4681 abc = dwarf_die_abbrev_code(die); 4682 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4683 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 4684 goto cont_search; 4685 } 4686 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 4687 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 4688 tag_str = unk_tag; 4689 } 4690 4691 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 4692 4693 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 4694 DW_DLV_OK) { 4695 if (ret == DW_DLV_ERROR) 4696 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 4697 goto cont_search; 4698 } 4699 4700 for (i = 0; i < attr_count; i++) { 4701 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 4702 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 4703 continue; 4704 } 4705 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 4706 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 4707 continue; 4708 } 4709 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 4710 snprintf(unk_attr, sizeof(unk_attr), 4711 "[Unknown AT: %#x]", attr); 4712 attr_str = unk_attr; 4713 } 4714 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 4715 DW_DLV_OK) { 4716 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 4717 attroff = 0; 4718 } 4719 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 4720 switch (form) { 4721 case DW_FORM_ref_addr: 4722 case DW_FORM_sec_offset: 4723 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 4724 DW_DLV_OK) { 4725 warnx("dwarf_global_formref failed: %s", 4726 dwarf_errmsg(de)); 4727 continue; 4728 } 4729 if (form == DW_FORM_ref_addr) 4730 printf("<0x%jx>", (uintmax_t) v_off); 4731 else 4732 printf("0x%jx", (uintmax_t) v_off); 4733 break; 4734 4735 case DW_FORM_ref1: 4736 case DW_FORM_ref2: 4737 case DW_FORM_ref4: 4738 case DW_FORM_ref8: 4739 case DW_FORM_ref_udata: 4740 if (dwarf_formref(attr_list[i], &v_off, &de) != 4741 DW_DLV_OK) { 4742 warnx("dwarf_formref failed: %s", 4743 dwarf_errmsg(de)); 4744 continue; 4745 } 4746 v_off += cuoff; 4747 printf("<0x%jx>", (uintmax_t) v_off); 4748 break; 4749 4750 case DW_FORM_addr: 4751 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 4752 DW_DLV_OK) { 4753 warnx("dwarf_formaddr failed: %s", 4754 dwarf_errmsg(de)); 4755 continue; 4756 } 4757 printf("%#jx", (uintmax_t) v_addr); 4758 break; 4759 4760 case DW_FORM_data1: 4761 case DW_FORM_data2: 4762 case DW_FORM_data4: 4763 case DW_FORM_data8: 4764 case DW_FORM_udata: 4765 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 4766 DW_DLV_OK) { 4767 warnx("dwarf_formudata failed: %s", 4768 dwarf_errmsg(de)); 4769 continue; 4770 } 4771 if (attr == DW_AT_high_pc) 4772 printf("0x%jx", (uintmax_t) v_udata); 4773 else 4774 printf("%ju", (uintmax_t) v_udata); 4775 break; 4776 4777 case DW_FORM_sdata: 4778 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 4779 DW_DLV_OK) { 4780 warnx("dwarf_formudata failed: %s", 4781 dwarf_errmsg(de)); 4782 continue; 4783 } 4784 printf("%jd", (intmax_t) v_sdata); 4785 break; 4786 4787 case DW_FORM_flag: 4788 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 4789 DW_DLV_OK) { 4790 warnx("dwarf_formflag failed: %s", 4791 dwarf_errmsg(de)); 4792 continue; 4793 } 4794 printf("%jd", (intmax_t) v_bool); 4795 break; 4796 4797 case DW_FORM_flag_present: 4798 putchar('1'); 4799 break; 4800 4801 case DW_FORM_string: 4802 case DW_FORM_strp: 4803 if (dwarf_formstring(attr_list[i], &v_str, &de) != 4804 DW_DLV_OK) { 4805 warnx("dwarf_formstring failed: %s", 4806 dwarf_errmsg(de)); 4807 continue; 4808 } 4809 if (form == DW_FORM_string) 4810 printf("%s", v_str); 4811 else 4812 printf("(indirect string) %s", v_str); 4813 break; 4814 4815 case DW_FORM_block: 4816 case DW_FORM_block1: 4817 case DW_FORM_block2: 4818 case DW_FORM_block4: 4819 if (dwarf_formblock(attr_list[i], &v_block, &de) != 4820 DW_DLV_OK) { 4821 warnx("dwarf_formblock failed: %s", 4822 dwarf_errmsg(de)); 4823 continue; 4824 } 4825 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 4826 b = v_block->bl_data; 4827 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 4828 printf(" %x", b[j]); 4829 printf("\t("); 4830 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 4831 putchar(')'); 4832 break; 4833 4834 case DW_FORM_exprloc: 4835 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 4836 &de) != DW_DLV_OK) { 4837 warnx("dwarf_formexprloc failed: %s", 4838 dwarf_errmsg(de)); 4839 continue; 4840 } 4841 printf("%ju byte block:", (uintmax_t) v_udata); 4842 b = v_expr; 4843 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 4844 printf(" %x", b[j]); 4845 printf("\t("); 4846 dump_dwarf_block(re, v_expr, v_udata); 4847 putchar(')'); 4848 break; 4849 4850 case DW_FORM_ref_sig8: 4851 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 4852 DW_DLV_OK) { 4853 warnx("dwarf_formsig8 failed: %s", 4854 dwarf_errmsg(de)); 4855 continue; 4856 } 4857 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 4858 v_sig = re->dw_decode(&p, 8); 4859 printf("signature: 0x%jx", (uintmax_t) v_sig); 4860 } 4861 switch (attr) { 4862 case DW_AT_encoding: 4863 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 4864 DW_DLV_OK) 4865 break; 4866 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 4867 ate_str = "DW_ATE_UNKNOWN"; 4868 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 4869 break; 4870 4871 case DW_AT_language: 4872 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 4873 DW_DLV_OK) 4874 break; 4875 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 4876 break; 4877 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 4878 break; 4879 4880 case DW_AT_location: 4881 case DW_AT_string_length: 4882 case DW_AT_return_addr: 4883 case DW_AT_data_member_location: 4884 case DW_AT_frame_base: 4885 case DW_AT_segment: 4886 case DW_AT_static_link: 4887 case DW_AT_use_location: 4888 case DW_AT_vtable_elem_location: 4889 switch (form) { 4890 case DW_FORM_data4: 4891 case DW_FORM_data8: 4892 case DW_FORM_sec_offset: 4893 printf("\t(location list)"); 4894 break; 4895 default: 4896 break; 4897 } 4898 4899 default: 4900 break; 4901 } 4902 putchar('\n'); 4903 } 4904 4905 4906 cont_search: 4907 /* Search children. */ 4908 ret = dwarf_child(die, &ret_die, &de); 4909 if (ret == DW_DLV_ERROR) 4910 warnx("dwarf_child: %s", dwarf_errmsg(de)); 4911 else if (ret == DW_DLV_OK) 4912 dump_dwarf_die(re, ret_die, level + 1); 4913 4914 /* Search sibling. */ 4915 is_info = dwarf_get_die_infotypes_flag(die); 4916 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 4917 if (ret == DW_DLV_ERROR) 4918 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 4919 else if (ret == DW_DLV_OK) 4920 dump_dwarf_die(re, ret_die, level); 4921 4922 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 4923 } 4924 4925 static void 4926 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 4927 Dwarf_Half ver) 4928 { 4929 4930 re->cu_psize = psize; 4931 re->cu_osize = osize; 4932 re->cu_ver = ver; 4933 } 4934 4935 static void 4936 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 4937 { 4938 struct section *s; 4939 Dwarf_Die die; 4940 Dwarf_Error de; 4941 Dwarf_Half tag, version, pointer_size, off_size; 4942 Dwarf_Off cu_offset, cu_length; 4943 Dwarf_Off aboff; 4944 Dwarf_Unsigned typeoff; 4945 Dwarf_Sig8 sig8; 4946 Dwarf_Unsigned sig; 4947 uint8_t *p; 4948 const char *sn; 4949 int i, ret; 4950 4951 sn = is_info ? ".debug_info" : ".debug_types"; 4952 4953 s = NULL; 4954 for (i = 0; (size_t) i < re->shnum; i++) { 4955 s = &re->sl[i]; 4956 if (s->name != NULL && !strcmp(s->name, sn)) 4957 break; 4958 } 4959 if ((size_t) i >= re->shnum) 4960 return; 4961 4962 do { 4963 printf("\nDump of debug contents of section %s:\n", sn); 4964 4965 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 4966 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 4967 &typeoff, NULL, &de)) == DW_DLV_OK) { 4968 set_cu_context(re, pointer_size, off_size, version); 4969 die = NULL; 4970 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 4971 &de) == DW_DLV_OK) { 4972 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4973 warnx("dwarf_tag failed: %s", 4974 dwarf_errmsg(de)); 4975 continue; 4976 } 4977 /* XXX: What about DW_TAG_partial_unit? */ 4978 if ((is_info && tag == DW_TAG_compile_unit) || 4979 (!is_info && tag == DW_TAG_type_unit)) 4980 break; 4981 } 4982 if (die == NULL && is_info) { 4983 warnx("could not find DW_TAG_compile_unit " 4984 "die"); 4985 continue; 4986 } else if (die == NULL && !is_info) { 4987 warnx("could not find DW_TAG_type_unit die"); 4988 continue; 4989 } 4990 4991 if (dwarf_die_CU_offset_range(die, &cu_offset, 4992 &cu_length, &de) != DW_DLV_OK) { 4993 warnx("dwarf_die_CU_offset failed: %s", 4994 dwarf_errmsg(de)); 4995 continue; 4996 } 4997 4998 cu_length -= off_size == 4 ? 4 : 12; 4999 5000 sig = 0; 5001 if (!is_info) { 5002 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5003 sig = re->dw_decode(&p, 8); 5004 } 5005 5006 printf("\n Type Unit @ offset 0x%jx:\n", 5007 (uintmax_t) cu_offset); 5008 printf(" Length:\t\t%#jx (%d-bit)\n", 5009 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5010 printf(" Version:\t\t%u\n", version); 5011 printf(" Abbrev Offset:\t0x%jx\n", 5012 (uintmax_t) aboff); 5013 printf(" Pointer Size:\t%u\n", pointer_size); 5014 if (!is_info) { 5015 printf(" Signature:\t\t0x%016jx\n", 5016 (uintmax_t) sig); 5017 printf(" Type Offset:\t0x%jx\n", 5018 (uintmax_t) typeoff); 5019 } 5020 5021 dump_dwarf_die(re, die, 0); 5022 } 5023 if (ret == DW_DLV_ERROR) 5024 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5025 if (is_info) 5026 break; 5027 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5028 } 5029 5030 static void 5031 dump_dwarf_abbrev(struct readelf *re) 5032 { 5033 Dwarf_Abbrev ab; 5034 Dwarf_Off aboff, atoff; 5035 Dwarf_Unsigned length, attr_count; 5036 Dwarf_Signed flag, form; 5037 Dwarf_Half tag, attr; 5038 Dwarf_Error de; 5039 const char *tag_str, *attr_str, *form_str; 5040 char unk_tag[32], unk_attr[32], unk_form[32]; 5041 int i, j, ret; 5042 5043 printf("\nContents of section .debug_abbrev:\n\n"); 5044 5045 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5046 NULL, NULL, &de)) == DW_DLV_OK) { 5047 printf(" Number TAG\n"); 5048 i = 0; 5049 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5050 &attr_count, &de)) == DW_DLV_OK) { 5051 if (length == 1) { 5052 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5053 break; 5054 } 5055 aboff += length; 5056 printf("%4d", ++i); 5057 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5058 warnx("dwarf_get_abbrev_tag failed: %s", 5059 dwarf_errmsg(de)); 5060 goto next_abbrev; 5061 } 5062 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5063 snprintf(unk_tag, sizeof(unk_tag), 5064 "[Unknown Tag: %#x]", tag); 5065 tag_str = unk_tag; 5066 } 5067 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5068 DW_DLV_OK) { 5069 warnx("dwarf_get_abbrev_children_flag failed:" 5070 " %s", dwarf_errmsg(de)); 5071 goto next_abbrev; 5072 } 5073 printf(" %s %s\n", tag_str, 5074 flag ? "[has children]" : "[no children]"); 5075 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5076 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5077 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5078 warnx("dwarf_get_abbrev_entry failed:" 5079 " %s", dwarf_errmsg(de)); 5080 continue; 5081 } 5082 if (dwarf_get_AT_name(attr, &attr_str) != 5083 DW_DLV_OK) { 5084 snprintf(unk_attr, sizeof(unk_attr), 5085 "[Unknown AT: %#x]", attr); 5086 attr_str = unk_attr; 5087 } 5088 if (dwarf_get_FORM_name(form, &form_str) != 5089 DW_DLV_OK) { 5090 snprintf(unk_form, sizeof(unk_form), 5091 "[Unknown Form: %#x]", 5092 (Dwarf_Half) form); 5093 form_str = unk_form; 5094 } 5095 printf(" %-18s %s\n", attr_str, form_str); 5096 } 5097 next_abbrev: 5098 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5099 } 5100 if (ret != DW_DLV_OK) 5101 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5102 } 5103 if (ret == DW_DLV_ERROR) 5104 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5105 } 5106 5107 static void 5108 dump_dwarf_pubnames(struct readelf *re) 5109 { 5110 struct section *s; 5111 Dwarf_Off die_off; 5112 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5113 Dwarf_Signed cnt; 5114 Dwarf_Global *globs; 5115 Dwarf_Half nt_version; 5116 Dwarf_Error de; 5117 Elf_Data *d; 5118 char *glob_name; 5119 int i, dwarf_size, elferr; 5120 5121 printf("\nContents of the .debug_pubnames section:\n"); 5122 5123 s = NULL; 5124 for (i = 0; (size_t) i < re->shnum; i++) { 5125 s = &re->sl[i]; 5126 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5127 break; 5128 } 5129 if ((size_t) i >= re->shnum) 5130 return; 5131 5132 (void) elf_errno(); 5133 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5134 elferr = elf_errno(); 5135 if (elferr != 0) 5136 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5137 return; 5138 } 5139 if (d->d_size <= 0) 5140 return; 5141 5142 /* Read in .debug_pubnames section table header. */ 5143 offset = 0; 5144 length = re->dw_read(d, &offset, 4); 5145 if (length == 0xffffffff) { 5146 dwarf_size = 8; 5147 length = re->dw_read(d, &offset, 8); 5148 } else 5149 dwarf_size = 4; 5150 5151 if (length > d->d_size - offset) { 5152 warnx("invalid .dwarf_pubnames section"); 5153 return; 5154 } 5155 5156 nt_version = re->dw_read(d, &offset, 2); 5157 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5158 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5159 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5160 printf(" Version:\t\t\t\t%u\n", nt_version); 5161 printf(" Offset into .debug_info section:\t%ju\n", 5162 (uintmax_t) nt_cu_offset); 5163 printf(" Size of area in .debug_info section:\t%ju\n", 5164 (uintmax_t) nt_cu_length); 5165 5166 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5167 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5168 return; 5169 } 5170 5171 printf("\n Offset Name\n"); 5172 for (i = 0; i < cnt; i++) { 5173 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5174 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5175 continue; 5176 } 5177 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5178 DW_DLV_OK) { 5179 warnx("dwarf_global_die_offset failed: %s", 5180 dwarf_errmsg(de)); 5181 continue; 5182 } 5183 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5184 } 5185 } 5186 5187 static void 5188 dump_dwarf_aranges(struct readelf *re) 5189 { 5190 struct section *s; 5191 Dwarf_Arange *aranges; 5192 Dwarf_Addr start; 5193 Dwarf_Unsigned offset, length, as_cu_offset; 5194 Dwarf_Off die_off; 5195 Dwarf_Signed cnt; 5196 Dwarf_Half as_version, as_addrsz, as_segsz; 5197 Dwarf_Error de; 5198 Elf_Data *d; 5199 int i, dwarf_size, elferr; 5200 5201 printf("\nContents of section .debug_aranges:\n"); 5202 5203 s = NULL; 5204 for (i = 0; (size_t) i < re->shnum; i++) { 5205 s = &re->sl[i]; 5206 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5207 break; 5208 } 5209 if ((size_t) i >= re->shnum) 5210 return; 5211 5212 (void) elf_errno(); 5213 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5214 elferr = elf_errno(); 5215 if (elferr != 0) 5216 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5217 return; 5218 } 5219 if (d->d_size <= 0) 5220 return; 5221 5222 /* Read in the .debug_aranges section table header. */ 5223 offset = 0; 5224 length = re->dw_read(d, &offset, 4); 5225 if (length == 0xffffffff) { 5226 dwarf_size = 8; 5227 length = re->dw_read(d, &offset, 8); 5228 } else 5229 dwarf_size = 4; 5230 5231 if (length > d->d_size - offset) { 5232 warnx("invalid .dwarf_aranges section"); 5233 return; 5234 } 5235 5236 as_version = re->dw_read(d, &offset, 2); 5237 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5238 as_addrsz = re->dw_read(d, &offset, 1); 5239 as_segsz = re->dw_read(d, &offset, 1); 5240 5241 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5242 printf(" Version:\t\t\t%u\n", as_version); 5243 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5244 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5245 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5246 5247 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5248 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5249 return; 5250 } 5251 5252 printf("\n Address Length\n"); 5253 for (i = 0; i < cnt; i++) { 5254 if (dwarf_get_arange_info(aranges[i], &start, &length, 5255 &die_off, &de) != DW_DLV_OK) { 5256 warnx("dwarf_get_arange_info failed: %s", 5257 dwarf_errmsg(de)); 5258 continue; 5259 } 5260 printf(" %08jx %ju\n", (uintmax_t) start, 5261 (uintmax_t) length); 5262 } 5263 } 5264 5265 static void 5266 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5267 { 5268 Dwarf_Attribute *attr_list; 5269 Dwarf_Ranges *ranges; 5270 Dwarf_Die ret_die; 5271 Dwarf_Error de; 5272 Dwarf_Addr base0; 5273 Dwarf_Half attr; 5274 Dwarf_Signed attr_count, cnt; 5275 Dwarf_Unsigned off, bytecnt; 5276 int i, j, ret; 5277 5278 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5279 DW_DLV_OK) { 5280 if (ret == DW_DLV_ERROR) 5281 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5282 goto cont_search; 5283 } 5284 5285 for (i = 0; i < attr_count; i++) { 5286 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5287 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5288 continue; 5289 } 5290 if (attr != DW_AT_ranges) 5291 continue; 5292 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5293 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5294 continue; 5295 } 5296 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5297 &bytecnt, &de) != DW_DLV_OK) 5298 continue; 5299 base0 = base; 5300 for (j = 0; j < cnt; j++) { 5301 printf(" %08jx ", (uintmax_t) off); 5302 if (ranges[j].dwr_type == DW_RANGES_END) { 5303 printf("%s\n", "<End of list>"); 5304 continue; 5305 } else if (ranges[j].dwr_type == 5306 DW_RANGES_ADDRESS_SELECTION) { 5307 base0 = ranges[j].dwr_addr2; 5308 continue; 5309 } 5310 if (re->ec == ELFCLASS32) 5311 printf("%08jx %08jx\n", 5312 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5313 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5314 else 5315 printf("%016jx %016jx\n", 5316 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5317 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5318 } 5319 } 5320 5321 cont_search: 5322 /* Search children. */ 5323 ret = dwarf_child(die, &ret_die, &de); 5324 if (ret == DW_DLV_ERROR) 5325 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5326 else if (ret == DW_DLV_OK) 5327 dump_dwarf_ranges_foreach(re, ret_die, base); 5328 5329 /* Search sibling. */ 5330 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5331 if (ret == DW_DLV_ERROR) 5332 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5333 else if (ret == DW_DLV_OK) 5334 dump_dwarf_ranges_foreach(re, ret_die, base); 5335 } 5336 5337 static void 5338 dump_dwarf_ranges(struct readelf *re) 5339 { 5340 Dwarf_Ranges *ranges; 5341 Dwarf_Die die; 5342 Dwarf_Signed cnt; 5343 Dwarf_Unsigned bytecnt; 5344 Dwarf_Half tag; 5345 Dwarf_Error de; 5346 Dwarf_Unsigned lowpc; 5347 int ret; 5348 5349 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5350 DW_DLV_OK) 5351 return; 5352 5353 printf("Contents of the .debug_ranges section:\n\n"); 5354 if (re->ec == ELFCLASS32) 5355 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5356 else 5357 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5358 5359 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5360 NULL, &de)) == DW_DLV_OK) { 5361 die = NULL; 5362 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5363 continue; 5364 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5365 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5366 continue; 5367 } 5368 /* XXX: What about DW_TAG_partial_unit? */ 5369 lowpc = 0; 5370 if (tag == DW_TAG_compile_unit) { 5371 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5372 &de) != DW_DLV_OK) 5373 lowpc = 0; 5374 } 5375 5376 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5377 } 5378 putchar('\n'); 5379 } 5380 5381 static void 5382 dump_dwarf_macinfo(struct readelf *re) 5383 { 5384 Dwarf_Unsigned offset; 5385 Dwarf_Signed cnt; 5386 Dwarf_Macro_Details *md; 5387 Dwarf_Error de; 5388 const char *mi_str; 5389 char unk_mi[32]; 5390 int i; 5391 5392 #define _MAX_MACINFO_ENTRY 65535 5393 5394 printf("\nContents of section .debug_macinfo:\n\n"); 5395 5396 offset = 0; 5397 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5398 &cnt, &md, &de) == DW_DLV_OK) { 5399 for (i = 0; i < cnt; i++) { 5400 offset = md[i].dmd_offset + 1; 5401 if (md[i].dmd_type == 0) 5402 break; 5403 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5404 DW_DLV_OK) { 5405 snprintf(unk_mi, sizeof(unk_mi), 5406 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5407 mi_str = unk_mi; 5408 } 5409 printf(" %s", mi_str); 5410 switch (md[i].dmd_type) { 5411 case DW_MACINFO_define: 5412 case DW_MACINFO_undef: 5413 printf(" - lineno : %jd macro : %s\n", 5414 (intmax_t) md[i].dmd_lineno, 5415 md[i].dmd_macro); 5416 break; 5417 case DW_MACINFO_start_file: 5418 printf(" - lineno : %jd filenum : %jd\n", 5419 (intmax_t) md[i].dmd_lineno, 5420 (intmax_t) md[i].dmd_fileindex); 5421 break; 5422 default: 5423 putchar('\n'); 5424 break; 5425 } 5426 } 5427 } 5428 5429 #undef _MAX_MACINFO_ENTRY 5430 } 5431 5432 static void 5433 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5434 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5435 Dwarf_Debug dbg) 5436 { 5437 Dwarf_Frame_Op *oplist; 5438 Dwarf_Signed opcnt, delta; 5439 Dwarf_Small op; 5440 Dwarf_Error de; 5441 const char *op_str; 5442 char unk_op[32]; 5443 int i; 5444 5445 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5446 &opcnt, &de) != DW_DLV_OK) { 5447 warnx("dwarf_expand_frame_instructions failed: %s", 5448 dwarf_errmsg(de)); 5449 return; 5450 } 5451 5452 for (i = 0; i < opcnt; i++) { 5453 if (oplist[i].fp_base_op != 0) 5454 op = oplist[i].fp_base_op << 6; 5455 else 5456 op = oplist[i].fp_extended_op; 5457 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5458 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5459 op); 5460 op_str = unk_op; 5461 } 5462 printf(" %s", op_str); 5463 switch (op) { 5464 case DW_CFA_advance_loc: 5465 delta = oplist[i].fp_offset * caf; 5466 pc += delta; 5467 printf(": %ju to %08jx", (uintmax_t) delta, 5468 (uintmax_t) pc); 5469 break; 5470 case DW_CFA_offset: 5471 case DW_CFA_offset_extended: 5472 case DW_CFA_offset_extended_sf: 5473 delta = oplist[i].fp_offset * daf; 5474 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5475 dwarf_regname(re, oplist[i].fp_register), 5476 (intmax_t) delta); 5477 break; 5478 case DW_CFA_restore: 5479 printf(": r%u (%s)", oplist[i].fp_register, 5480 dwarf_regname(re, oplist[i].fp_register)); 5481 break; 5482 case DW_CFA_set_loc: 5483 pc = oplist[i].fp_offset; 5484 printf(": to %08jx", (uintmax_t) pc); 5485 break; 5486 case DW_CFA_advance_loc1: 5487 case DW_CFA_advance_loc2: 5488 case DW_CFA_advance_loc4: 5489 pc += oplist[i].fp_offset; 5490 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5491 (uintmax_t) pc); 5492 break; 5493 case DW_CFA_def_cfa: 5494 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5495 dwarf_regname(re, oplist[i].fp_register), 5496 (uintmax_t) oplist[i].fp_offset); 5497 break; 5498 case DW_CFA_def_cfa_sf: 5499 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5500 dwarf_regname(re, oplist[i].fp_register), 5501 (intmax_t) (oplist[i].fp_offset * daf)); 5502 break; 5503 case DW_CFA_def_cfa_register: 5504 printf(": r%u (%s)", oplist[i].fp_register, 5505 dwarf_regname(re, oplist[i].fp_register)); 5506 break; 5507 case DW_CFA_def_cfa_offset: 5508 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5509 break; 5510 case DW_CFA_def_cfa_offset_sf: 5511 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5512 break; 5513 default: 5514 break; 5515 } 5516 putchar('\n'); 5517 } 5518 5519 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5520 } 5521 5522 static char * 5523 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5524 { 5525 static char rs[16]; 5526 5527 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5528 snprintf(rs, sizeof(rs), "%c", 'u'); 5529 else if (reg == DW_FRAME_CFA_COL) 5530 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5531 else 5532 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5533 (intmax_t) off); 5534 5535 return (rs); 5536 } 5537 5538 static int 5539 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5540 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5541 { 5542 Dwarf_Regtable rt; 5543 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5544 Dwarf_Error de; 5545 char *vec; 5546 int i; 5547 5548 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5549 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5550 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5551 #define RT(x) rt.rules[(x)] 5552 5553 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5554 if (vec == NULL) 5555 err(EXIT_FAILURE, "calloc failed"); 5556 5557 pre_pc = ~((Dwarf_Addr) 0); 5558 cur_pc = pc; 5559 end_pc = pc + func_len; 5560 for (; cur_pc < end_pc; cur_pc++) { 5561 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5562 &de) != DW_DLV_OK) { 5563 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5564 dwarf_errmsg(de)); 5565 return (-1); 5566 } 5567 if (row_pc == pre_pc) 5568 continue; 5569 pre_pc = row_pc; 5570 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5571 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5572 BIT_SET(vec, i); 5573 } 5574 } 5575 5576 printf(" LOC CFA "); 5577 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5578 if (BIT_ISSET(vec, i)) { 5579 if ((Dwarf_Half) i == cie_ra) 5580 printf("ra "); 5581 else 5582 printf("%-5s", 5583 dwarf_regname(re, (unsigned int) i)); 5584 } 5585 } 5586 putchar('\n'); 5587 5588 pre_pc = ~((Dwarf_Addr) 0); 5589 cur_pc = pc; 5590 end_pc = pc + func_len; 5591 for (; cur_pc < end_pc; cur_pc++) { 5592 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5593 &de) != DW_DLV_OK) { 5594 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5595 dwarf_errmsg(de)); 5596 return (-1); 5597 } 5598 if (row_pc == pre_pc) 5599 continue; 5600 pre_pc = row_pc; 5601 printf("%08jx ", (uintmax_t) row_pc); 5602 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 5603 RT(0).dw_offset)); 5604 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5605 if (BIT_ISSET(vec, i)) { 5606 printf("%-5s", get_regoff_str(re, 5607 RT(i).dw_regnum, RT(i).dw_offset)); 5608 } 5609 } 5610 putchar('\n'); 5611 } 5612 5613 free(vec); 5614 5615 return (0); 5616 5617 #undef BIT_SET 5618 #undef BIT_CLR 5619 #undef BIT_ISSET 5620 #undef RT 5621 } 5622 5623 static void 5624 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 5625 { 5626 Dwarf_Cie *cie_list, cie, pre_cie; 5627 Dwarf_Fde *fde_list, fde; 5628 Dwarf_Off cie_offset, fde_offset; 5629 Dwarf_Unsigned cie_length, fde_instlen; 5630 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 5631 Dwarf_Signed cie_count, fde_count, cie_index; 5632 Dwarf_Addr low_pc; 5633 Dwarf_Half cie_ra; 5634 Dwarf_Small cie_version; 5635 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 5636 char *cie_aug, c; 5637 int i, eh_frame; 5638 Dwarf_Error de; 5639 5640 printf("\nThe section %s contains:\n\n", s->name); 5641 5642 if (!strcmp(s->name, ".debug_frame")) { 5643 eh_frame = 0; 5644 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 5645 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5646 warnx("dwarf_get_fde_list failed: %s", 5647 dwarf_errmsg(de)); 5648 return; 5649 } 5650 } else if (!strcmp(s->name, ".eh_frame")) { 5651 eh_frame = 1; 5652 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 5653 &fde_list, &fde_count, &de) != DW_DLV_OK) { 5654 warnx("dwarf_get_fde_list_eh failed: %s", 5655 dwarf_errmsg(de)); 5656 return; 5657 } 5658 } else 5659 return; 5660 5661 pre_cie = NULL; 5662 for (i = 0; i < fde_count; i++) { 5663 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 5664 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5665 continue; 5666 } 5667 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 5668 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 5669 continue; 5670 } 5671 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 5672 &fde_length, &cie_offset, &cie_index, &fde_offset, 5673 &de) != DW_DLV_OK) { 5674 warnx("dwarf_get_fde_range failed: %s", 5675 dwarf_errmsg(de)); 5676 continue; 5677 } 5678 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 5679 &de) != DW_DLV_OK) { 5680 warnx("dwarf_get_fde_instr_bytes failed: %s", 5681 dwarf_errmsg(de)); 5682 continue; 5683 } 5684 if (pre_cie == NULL || cie != pre_cie) { 5685 pre_cie = cie; 5686 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 5687 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 5688 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 5689 warnx("dwarf_get_cie_info failed: %s", 5690 dwarf_errmsg(de)); 5691 continue; 5692 } 5693 printf("%08jx %08jx %8.8jx CIE", 5694 (uintmax_t) cie_offset, 5695 (uintmax_t) cie_length, 5696 (uintmax_t) (eh_frame ? 0 : ~0U)); 5697 if (!alt) { 5698 putchar('\n'); 5699 printf(" Version:\t\t\t%u\n", cie_version); 5700 printf(" Augmentation:\t\t\t\""); 5701 while ((c = *cie_aug++) != '\0') 5702 putchar(c); 5703 printf("\"\n"); 5704 printf(" Code alignment factor:\t%ju\n", 5705 (uintmax_t) cie_caf); 5706 printf(" Data alignment factor:\t%jd\n", 5707 (intmax_t) cie_daf); 5708 printf(" Return address column:\t%ju\n", 5709 (uintmax_t) cie_ra); 5710 putchar('\n'); 5711 dump_dwarf_frame_inst(re, cie, cie_inst, 5712 cie_instlen, cie_caf, cie_daf, 0, 5713 re->dbg); 5714 putchar('\n'); 5715 } else { 5716 printf(" \""); 5717 while ((c = *cie_aug++) != '\0') 5718 putchar(c); 5719 putchar('"'); 5720 printf(" cf=%ju df=%jd ra=%ju\n", 5721 (uintmax_t) cie_caf, 5722 (uintmax_t) cie_daf, 5723 (uintmax_t) cie_ra); 5724 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 5725 cie_ra); 5726 putchar('\n'); 5727 } 5728 } 5729 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 5730 (uintmax_t) fde_offset, (uintmax_t) fde_length, 5731 (uintmax_t) cie_offset, 5732 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 5733 cie_offset), 5734 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 5735 if (!alt) 5736 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 5737 cie_caf, cie_daf, low_pc, re->dbg); 5738 else 5739 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 5740 cie_ra); 5741 putchar('\n'); 5742 } 5743 } 5744 5745 static void 5746 dump_dwarf_frame(struct readelf *re, int alt) 5747 { 5748 struct section *s; 5749 int i; 5750 5751 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 5752 5753 for (i = 0; (size_t) i < re->shnum; i++) { 5754 s = &re->sl[i]; 5755 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 5756 !strcmp(s->name, ".eh_frame"))) 5757 dump_dwarf_frame_section(re, s, alt); 5758 } 5759 } 5760 5761 static void 5762 dump_dwarf_str(struct readelf *re) 5763 { 5764 struct section *s; 5765 Elf_Data *d; 5766 unsigned char *p; 5767 int elferr, end, i, j; 5768 5769 printf("\nContents of section .debug_str:\n"); 5770 5771 s = NULL; 5772 for (i = 0; (size_t) i < re->shnum; i++) { 5773 s = &re->sl[i]; 5774 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 5775 break; 5776 } 5777 if ((size_t) i >= re->shnum) 5778 return; 5779 5780 (void) elf_errno(); 5781 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5782 elferr = elf_errno(); 5783 if (elferr != 0) 5784 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5785 return; 5786 } 5787 if (d->d_size <= 0) 5788 return; 5789 5790 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 5791 printf(" 0x%08x", (unsigned int) i); 5792 if ((size_t) i + 16 > d->d_size) 5793 end = d->d_size; 5794 else 5795 end = i + 16; 5796 for (j = i; j < i + 16; j++) { 5797 if ((j - i) % 4 == 0) 5798 putchar(' '); 5799 if (j >= end) { 5800 printf(" "); 5801 continue; 5802 } 5803 printf("%02x", (uint8_t) p[j]); 5804 } 5805 putchar(' '); 5806 for (j = i; j < end; j++) { 5807 if (isprint(p[j])) 5808 putchar(p[j]); 5809 else if (p[j] == 0) 5810 putchar('.'); 5811 else 5812 putchar(' '); 5813 } 5814 putchar('\n'); 5815 } 5816 } 5817 5818 struct loc_at { 5819 Dwarf_Attribute la_at; 5820 Dwarf_Unsigned la_off; 5821 Dwarf_Unsigned la_lowpc; 5822 Dwarf_Half la_cu_psize; 5823 Dwarf_Half la_cu_osize; 5824 Dwarf_Half la_cu_ver; 5825 TAILQ_ENTRY(loc_at) la_next; 5826 }; 5827 5828 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 5829 5830 static void 5831 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 5832 { 5833 Dwarf_Attribute *attr_list; 5834 Dwarf_Die ret_die; 5835 Dwarf_Unsigned off; 5836 Dwarf_Off ref; 5837 Dwarf_Signed attr_count; 5838 Dwarf_Half attr, form; 5839 Dwarf_Bool is_info; 5840 Dwarf_Error de; 5841 struct loc_at *la, *nla; 5842 int i, ret; 5843 5844 is_info = dwarf_get_die_infotypes_flag(die); 5845 5846 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5847 DW_DLV_OK) { 5848 if (ret == DW_DLV_ERROR) 5849 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5850 goto cont_search; 5851 } 5852 for (i = 0; i < attr_count; i++) { 5853 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5854 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5855 continue; 5856 } 5857 if (attr != DW_AT_location && 5858 attr != DW_AT_string_length && 5859 attr != DW_AT_return_addr && 5860 attr != DW_AT_data_member_location && 5861 attr != DW_AT_frame_base && 5862 attr != DW_AT_segment && 5863 attr != DW_AT_static_link && 5864 attr != DW_AT_use_location && 5865 attr != DW_AT_vtable_elem_location) 5866 continue; 5867 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5868 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5869 continue; 5870 } 5871 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 5872 if (dwarf_formudata(attr_list[i], &off, &de) != 5873 DW_DLV_OK) { 5874 warnx("dwarf_formudata failed: %s", 5875 dwarf_errmsg(de)); 5876 continue; 5877 } 5878 } else if (form == DW_FORM_sec_offset) { 5879 if (dwarf_global_formref(attr_list[i], &ref, &de) != 5880 DW_DLV_OK) { 5881 warnx("dwarf_global_formref failed: %s", 5882 dwarf_errmsg(de)); 5883 continue; 5884 } 5885 off = ref; 5886 } else 5887 continue; 5888 5889 TAILQ_FOREACH(la, &lalist, la_next) { 5890 if (off == la->la_off) 5891 break; 5892 if (off < la->la_off) { 5893 if ((nla = malloc(sizeof(*nla))) == NULL) 5894 err(EXIT_FAILURE, "malloc failed"); 5895 nla->la_at = attr_list[i]; 5896 nla->la_off = off; 5897 nla->la_lowpc = lowpc; 5898 nla->la_cu_psize = re->cu_psize; 5899 nla->la_cu_osize = re->cu_osize; 5900 nla->la_cu_ver = re->cu_ver; 5901 TAILQ_INSERT_BEFORE(la, nla, la_next); 5902 break; 5903 } 5904 } 5905 if (la == NULL) { 5906 if ((nla = malloc(sizeof(*nla))) == NULL) 5907 err(EXIT_FAILURE, "malloc failed"); 5908 nla->la_at = attr_list[i]; 5909 nla->la_off = off; 5910 nla->la_lowpc = lowpc; 5911 nla->la_cu_psize = re->cu_psize; 5912 nla->la_cu_osize = re->cu_osize; 5913 nla->la_cu_ver = re->cu_ver; 5914 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 5915 } 5916 } 5917 5918 cont_search: 5919 /* Search children. */ 5920 ret = dwarf_child(die, &ret_die, &de); 5921 if (ret == DW_DLV_ERROR) 5922 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5923 else if (ret == DW_DLV_OK) 5924 search_loclist_at(re, ret_die, lowpc); 5925 5926 /* Search sibling. */ 5927 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5928 if (ret == DW_DLV_ERROR) 5929 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5930 else if (ret == DW_DLV_OK) 5931 search_loclist_at(re, ret_die, lowpc); 5932 } 5933 5934 static void 5935 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 5936 { 5937 const char *op_str; 5938 char unk_op[32]; 5939 uint8_t *b, n; 5940 int i; 5941 5942 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 5943 DW_DLV_OK) { 5944 snprintf(unk_op, sizeof(unk_op), 5945 "[Unknown OP: %#x]", lr->lr_atom); 5946 op_str = unk_op; 5947 } 5948 5949 printf("%s", op_str); 5950 5951 switch (lr->lr_atom) { 5952 case DW_OP_reg0: 5953 case DW_OP_reg1: 5954 case DW_OP_reg2: 5955 case DW_OP_reg3: 5956 case DW_OP_reg4: 5957 case DW_OP_reg5: 5958 case DW_OP_reg6: 5959 case DW_OP_reg7: 5960 case DW_OP_reg8: 5961 case DW_OP_reg9: 5962 case DW_OP_reg10: 5963 case DW_OP_reg11: 5964 case DW_OP_reg12: 5965 case DW_OP_reg13: 5966 case DW_OP_reg14: 5967 case DW_OP_reg15: 5968 case DW_OP_reg16: 5969 case DW_OP_reg17: 5970 case DW_OP_reg18: 5971 case DW_OP_reg19: 5972 case DW_OP_reg20: 5973 case DW_OP_reg21: 5974 case DW_OP_reg22: 5975 case DW_OP_reg23: 5976 case DW_OP_reg24: 5977 case DW_OP_reg25: 5978 case DW_OP_reg26: 5979 case DW_OP_reg27: 5980 case DW_OP_reg28: 5981 case DW_OP_reg29: 5982 case DW_OP_reg30: 5983 case DW_OP_reg31: 5984 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 5985 break; 5986 5987 case DW_OP_deref: 5988 case DW_OP_lit0: 5989 case DW_OP_lit1: 5990 case DW_OP_lit2: 5991 case DW_OP_lit3: 5992 case DW_OP_lit4: 5993 case DW_OP_lit5: 5994 case DW_OP_lit6: 5995 case DW_OP_lit7: 5996 case DW_OP_lit8: 5997 case DW_OP_lit9: 5998 case DW_OP_lit10: 5999 case DW_OP_lit11: 6000 case DW_OP_lit12: 6001 case DW_OP_lit13: 6002 case DW_OP_lit14: 6003 case DW_OP_lit15: 6004 case DW_OP_lit16: 6005 case DW_OP_lit17: 6006 case DW_OP_lit18: 6007 case DW_OP_lit19: 6008 case DW_OP_lit20: 6009 case DW_OP_lit21: 6010 case DW_OP_lit22: 6011 case DW_OP_lit23: 6012 case DW_OP_lit24: 6013 case DW_OP_lit25: 6014 case DW_OP_lit26: 6015 case DW_OP_lit27: 6016 case DW_OP_lit28: 6017 case DW_OP_lit29: 6018 case DW_OP_lit30: 6019 case DW_OP_lit31: 6020 case DW_OP_dup: 6021 case DW_OP_drop: 6022 case DW_OP_over: 6023 case DW_OP_swap: 6024 case DW_OP_rot: 6025 case DW_OP_xderef: 6026 case DW_OP_abs: 6027 case DW_OP_and: 6028 case DW_OP_div: 6029 case DW_OP_minus: 6030 case DW_OP_mod: 6031 case DW_OP_mul: 6032 case DW_OP_neg: 6033 case DW_OP_not: 6034 case DW_OP_or: 6035 case DW_OP_plus: 6036 case DW_OP_shl: 6037 case DW_OP_shr: 6038 case DW_OP_shra: 6039 case DW_OP_xor: 6040 case DW_OP_eq: 6041 case DW_OP_ge: 6042 case DW_OP_gt: 6043 case DW_OP_le: 6044 case DW_OP_lt: 6045 case DW_OP_ne: 6046 case DW_OP_nop: 6047 case DW_OP_push_object_address: 6048 case DW_OP_form_tls_address: 6049 case DW_OP_call_frame_cfa: 6050 case DW_OP_stack_value: 6051 case DW_OP_GNU_push_tls_address: 6052 case DW_OP_GNU_uninit: 6053 break; 6054 6055 case DW_OP_const1u: 6056 case DW_OP_pick: 6057 case DW_OP_deref_size: 6058 case DW_OP_xderef_size: 6059 case DW_OP_const2u: 6060 case DW_OP_bra: 6061 case DW_OP_skip: 6062 case DW_OP_const4u: 6063 case DW_OP_const8u: 6064 case DW_OP_constu: 6065 case DW_OP_plus_uconst: 6066 case DW_OP_regx: 6067 case DW_OP_piece: 6068 printf(": %ju", (uintmax_t) 6069 lr->lr_number); 6070 break; 6071 6072 case DW_OP_const1s: 6073 case DW_OP_const2s: 6074 case DW_OP_const4s: 6075 case DW_OP_const8s: 6076 case DW_OP_consts: 6077 printf(": %jd", (intmax_t) 6078 lr->lr_number); 6079 break; 6080 6081 case DW_OP_breg0: 6082 case DW_OP_breg1: 6083 case DW_OP_breg2: 6084 case DW_OP_breg3: 6085 case DW_OP_breg4: 6086 case DW_OP_breg5: 6087 case DW_OP_breg6: 6088 case DW_OP_breg7: 6089 case DW_OP_breg8: 6090 case DW_OP_breg9: 6091 case DW_OP_breg10: 6092 case DW_OP_breg11: 6093 case DW_OP_breg12: 6094 case DW_OP_breg13: 6095 case DW_OP_breg14: 6096 case DW_OP_breg15: 6097 case DW_OP_breg16: 6098 case DW_OP_breg17: 6099 case DW_OP_breg18: 6100 case DW_OP_breg19: 6101 case DW_OP_breg20: 6102 case DW_OP_breg21: 6103 case DW_OP_breg22: 6104 case DW_OP_breg23: 6105 case DW_OP_breg24: 6106 case DW_OP_breg25: 6107 case DW_OP_breg26: 6108 case DW_OP_breg27: 6109 case DW_OP_breg28: 6110 case DW_OP_breg29: 6111 case DW_OP_breg30: 6112 case DW_OP_breg31: 6113 printf(" (%s): %jd", 6114 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6115 (intmax_t) lr->lr_number); 6116 break; 6117 6118 case DW_OP_fbreg: 6119 printf(": %jd", (intmax_t) 6120 lr->lr_number); 6121 break; 6122 6123 case DW_OP_bregx: 6124 printf(": %ju (%s) %jd", 6125 (uintmax_t) lr->lr_number, 6126 dwarf_regname(re, (unsigned int) lr->lr_number), 6127 (intmax_t) lr->lr_number2); 6128 break; 6129 6130 case DW_OP_addr: 6131 case DW_OP_GNU_encoded_addr: 6132 printf(": %#jx", (uintmax_t) 6133 lr->lr_number); 6134 break; 6135 6136 case DW_OP_GNU_implicit_pointer: 6137 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6138 (intmax_t) lr->lr_number2); 6139 break; 6140 6141 case DW_OP_implicit_value: 6142 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6143 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6144 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6145 printf(" %x", b[i]); 6146 break; 6147 6148 case DW_OP_GNU_entry_value: 6149 printf(": ("); 6150 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6151 lr->lr_number); 6152 putchar(')'); 6153 break; 6154 6155 case DW_OP_GNU_const_type: 6156 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6157 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6158 n = *b; 6159 for (i = 1; (uint8_t) i < n; i++) 6160 printf(" %x", b[i]); 6161 break; 6162 6163 case DW_OP_GNU_regval_type: 6164 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6165 dwarf_regname(re, (unsigned int) lr->lr_number), 6166 (uintmax_t) lr->lr_number2); 6167 break; 6168 6169 case DW_OP_GNU_convert: 6170 case DW_OP_GNU_deref_type: 6171 case DW_OP_GNU_parameter_ref: 6172 case DW_OP_GNU_reinterpret: 6173 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6174 break; 6175 6176 default: 6177 break; 6178 } 6179 } 6180 6181 static void 6182 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6183 { 6184 Dwarf_Locdesc *llbuf; 6185 Dwarf_Signed lcnt; 6186 Dwarf_Error de; 6187 int i; 6188 6189 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6190 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6191 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6192 return; 6193 } 6194 6195 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6196 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6197 if (i < llbuf->ld_cents - 1) 6198 printf("; "); 6199 } 6200 6201 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6202 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6203 } 6204 6205 static void 6206 dump_dwarf_loclist(struct readelf *re) 6207 { 6208 Dwarf_Die die; 6209 Dwarf_Locdesc **llbuf; 6210 Dwarf_Unsigned lowpc; 6211 Dwarf_Signed lcnt; 6212 Dwarf_Half tag, version, pointer_size, off_size; 6213 Dwarf_Error de; 6214 struct loc_at *la; 6215 int i, j, ret; 6216 6217 printf("\nContents of section .debug_loc:\n"); 6218 6219 /* Search .debug_info section. */ 6220 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6221 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6222 set_cu_context(re, pointer_size, off_size, version); 6223 die = NULL; 6224 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6225 continue; 6226 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6227 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6228 continue; 6229 } 6230 /* XXX: What about DW_TAG_partial_unit? */ 6231 lowpc = 0; 6232 if (tag == DW_TAG_compile_unit) { 6233 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6234 &lowpc, &de) != DW_DLV_OK) 6235 lowpc = 0; 6236 } 6237 6238 /* Search attributes for reference to .debug_loc section. */ 6239 search_loclist_at(re, die, lowpc); 6240 } 6241 if (ret == DW_DLV_ERROR) 6242 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6243 6244 /* Search .debug_types section. */ 6245 do { 6246 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6247 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6248 NULL, NULL, &de)) == DW_DLV_OK) { 6249 set_cu_context(re, pointer_size, off_size, version); 6250 die = NULL; 6251 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6252 DW_DLV_OK) 6253 continue; 6254 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6255 warnx("dwarf_tag failed: %s", 6256 dwarf_errmsg(de)); 6257 continue; 6258 } 6259 6260 lowpc = 0; 6261 if (tag == DW_TAG_type_unit) { 6262 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6263 &lowpc, &de) != DW_DLV_OK) 6264 lowpc = 0; 6265 } 6266 6267 /* 6268 * Search attributes for reference to .debug_loc 6269 * section. 6270 */ 6271 search_loclist_at(re, die, lowpc); 6272 } 6273 if (ret == DW_DLV_ERROR) 6274 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6275 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6276 6277 if (TAILQ_EMPTY(&lalist)) 6278 return; 6279 6280 printf(" Offset Begin End Expression\n"); 6281 6282 TAILQ_FOREACH(la, &lalist, la_next) { 6283 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 6284 DW_DLV_OK) { 6285 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 6286 continue; 6287 } 6288 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6289 la->la_cu_ver); 6290 for (i = 0; i < lcnt; i++) { 6291 printf(" %8.8jx ", (uintmax_t) la->la_off); 6292 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6293 printf("<End of list>\n"); 6294 continue; 6295 } 6296 6297 /* TODO: handle base selection entry. */ 6298 6299 printf("%8.8jx %8.8jx ", 6300 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6301 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6302 6303 putchar('('); 6304 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6305 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6306 if (j < llbuf[i]->ld_cents - 1) 6307 printf("; "); 6308 } 6309 putchar(')'); 6310 6311 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6312 printf(" (start == end)"); 6313 putchar('\n'); 6314 } 6315 for (i = 0; i < lcnt; i++) { 6316 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6317 DW_DLA_LOC_BLOCK); 6318 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6319 } 6320 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6321 } 6322 } 6323 6324 /* 6325 * Retrieve a string using string table section index and the string offset. 6326 */ 6327 static const char* 6328 get_string(struct readelf *re, int strtab, size_t off) 6329 { 6330 const char *name; 6331 6332 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6333 return (""); 6334 6335 return (name); 6336 } 6337 6338 /* 6339 * Retrieve the name of a symbol using the section index of the symbol 6340 * table and the index of the symbol within that table. 6341 */ 6342 static const char * 6343 get_symbol_name(struct readelf *re, int symtab, int i) 6344 { 6345 struct section *s; 6346 const char *name; 6347 GElf_Sym sym; 6348 Elf_Data *data; 6349 int elferr; 6350 6351 s = &re->sl[symtab]; 6352 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6353 return (""); 6354 (void) elf_errno(); 6355 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6356 elferr = elf_errno(); 6357 if (elferr != 0) 6358 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6359 return (""); 6360 } 6361 if (gelf_getsym(data, i, &sym) != &sym) 6362 return (""); 6363 /* Return section name for STT_SECTION symbol. */ 6364 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 6365 if (sym.st_shndx < re->shnum && 6366 re->sl[sym.st_shndx].name != NULL) 6367 return (re->sl[sym.st_shndx].name); 6368 return (""); 6369 } 6370 if (s->link >= re->shnum || 6371 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6372 return (""); 6373 6374 return (name); 6375 } 6376 6377 static uint64_t 6378 get_symbol_value(struct readelf *re, int symtab, int i) 6379 { 6380 struct section *s; 6381 GElf_Sym sym; 6382 Elf_Data *data; 6383 int elferr; 6384 6385 s = &re->sl[symtab]; 6386 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6387 return (0); 6388 (void) elf_errno(); 6389 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6390 elferr = elf_errno(); 6391 if (elferr != 0) 6392 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6393 return (0); 6394 } 6395 if (gelf_getsym(data, i, &sym) != &sym) 6396 return (0); 6397 6398 return (sym.st_value); 6399 } 6400 6401 static void 6402 hex_dump(struct readelf *re) 6403 { 6404 struct section *s; 6405 Elf_Data *d; 6406 uint8_t *buf; 6407 size_t sz, nbytes; 6408 uint64_t addr; 6409 int elferr, i, j; 6410 6411 for (i = 1; (size_t) i < re->shnum; i++) { 6412 s = &re->sl[i]; 6413 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6414 continue; 6415 (void) elf_errno(); 6416 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6417 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6418 elferr = elf_errno(); 6419 if (elferr != 0) 6420 warnx("elf_getdata failed: %s", 6421 elf_errmsg(elferr)); 6422 continue; 6423 } 6424 (void) elf_errno(); 6425 if (d->d_size <= 0 || d->d_buf == NULL) { 6426 printf("\nSection '%s' has no data to dump.\n", 6427 s->name); 6428 continue; 6429 } 6430 buf = d->d_buf; 6431 sz = d->d_size; 6432 addr = s->addr; 6433 printf("\nHex dump of section '%s':\n", s->name); 6434 while (sz > 0) { 6435 printf(" 0x%8.8jx ", (uintmax_t)addr); 6436 nbytes = sz > 16? 16 : sz; 6437 for (j = 0; j < 16; j++) { 6438 if ((size_t)j < nbytes) 6439 printf("%2.2x", buf[j]); 6440 else 6441 printf(" "); 6442 if ((j & 3) == 3) 6443 printf(" "); 6444 } 6445 for (j = 0; (size_t)j < nbytes; j++) { 6446 if (isprint(buf[j])) 6447 printf("%c", buf[j]); 6448 else 6449 printf("."); 6450 } 6451 printf("\n"); 6452 buf += nbytes; 6453 addr += nbytes; 6454 sz -= nbytes; 6455 } 6456 } 6457 } 6458 6459 static void 6460 str_dump(struct readelf *re) 6461 { 6462 struct section *s; 6463 Elf_Data *d; 6464 unsigned char *start, *end, *buf_end; 6465 unsigned int len; 6466 int i, j, elferr, found; 6467 6468 for (i = 1; (size_t) i < re->shnum; i++) { 6469 s = &re->sl[i]; 6470 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6471 continue; 6472 (void) elf_errno(); 6473 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6474 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6475 elferr = elf_errno(); 6476 if (elferr != 0) 6477 warnx("elf_getdata failed: %s", 6478 elf_errmsg(elferr)); 6479 continue; 6480 } 6481 (void) elf_errno(); 6482 if (d->d_size <= 0 || d->d_buf == NULL) { 6483 printf("\nSection '%s' has no data to dump.\n", 6484 s->name); 6485 continue; 6486 } 6487 buf_end = (unsigned char *) d->d_buf + d->d_size; 6488 start = (unsigned char *) d->d_buf; 6489 found = 0; 6490 printf("\nString dump of section '%s':\n", s->name); 6491 for (;;) { 6492 while (start < buf_end && !isprint(*start)) 6493 start++; 6494 if (start >= buf_end) 6495 break; 6496 end = start + 1; 6497 while (end < buf_end && isprint(*end)) 6498 end++; 6499 printf(" [%6lx] ", 6500 (long) (start - (unsigned char *) d->d_buf)); 6501 len = end - start; 6502 for (j = 0; (unsigned int) j < len; j++) 6503 putchar(start[j]); 6504 putchar('\n'); 6505 found = 1; 6506 if (end >= buf_end) 6507 break; 6508 start = end + 1; 6509 } 6510 if (!found) 6511 printf(" No strings found in this section."); 6512 putchar('\n'); 6513 } 6514 } 6515 6516 static void 6517 load_sections(struct readelf *re) 6518 { 6519 struct section *s; 6520 const char *name; 6521 Elf_Scn *scn; 6522 GElf_Shdr sh; 6523 size_t shstrndx, ndx; 6524 int elferr; 6525 6526 /* Allocate storage for internal section list. */ 6527 if (!elf_getshnum(re->elf, &re->shnum)) { 6528 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6529 return; 6530 } 6531 if (re->sl != NULL) 6532 free(re->sl); 6533 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6534 err(EXIT_FAILURE, "calloc failed"); 6535 6536 /* Get the index of .shstrtab section. */ 6537 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6538 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6539 return; 6540 } 6541 6542 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6543 return; 6544 6545 (void) elf_errno(); 6546 do { 6547 if (gelf_getshdr(scn, &sh) == NULL) { 6548 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6549 (void) elf_errno(); 6550 continue; 6551 } 6552 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6553 (void) elf_errno(); 6554 name = "ERROR"; 6555 } 6556 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6557 if ((elferr = elf_errno()) != 0) 6558 warnx("elf_ndxscn failed: %s", 6559 elf_errmsg(elferr)); 6560 continue; 6561 } 6562 if (ndx >= re->shnum) { 6563 warnx("section index of '%s' out of range", name); 6564 continue; 6565 } 6566 if (sh.sh_link >= re->shnum) 6567 warnx("section link %llu of '%s' out of range", 6568 (unsigned long long)sh.sh_link, name); 6569 s = &re->sl[ndx]; 6570 s->name = name; 6571 s->scn = scn; 6572 s->off = sh.sh_offset; 6573 s->sz = sh.sh_size; 6574 s->entsize = sh.sh_entsize; 6575 s->align = sh.sh_addralign; 6576 s->type = sh.sh_type; 6577 s->flags = sh.sh_flags; 6578 s->addr = sh.sh_addr; 6579 s->link = sh.sh_link; 6580 s->info = sh.sh_info; 6581 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 6582 elferr = elf_errno(); 6583 if (elferr != 0) 6584 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 6585 } 6586 6587 static void 6588 unload_sections(struct readelf *re) 6589 { 6590 6591 if (re->sl != NULL) { 6592 free(re->sl); 6593 re->sl = NULL; 6594 } 6595 re->shnum = 0; 6596 re->vd_s = NULL; 6597 re->vn_s = NULL; 6598 re->vs_s = NULL; 6599 re->vs = NULL; 6600 re->vs_sz = 0; 6601 if (re->ver != NULL) { 6602 free(re->ver); 6603 re->ver = NULL; 6604 re->ver_sz = 0; 6605 } 6606 } 6607 6608 static void 6609 dump_elf(struct readelf *re) 6610 { 6611 6612 /* Fetch ELF header. No need to continue if it fails. */ 6613 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 6614 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 6615 return; 6616 } 6617 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 6618 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 6619 return; 6620 } 6621 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 6622 re->dw_read = _read_msb; 6623 re->dw_decode = _decode_msb; 6624 } else { 6625 re->dw_read = _read_lsb; 6626 re->dw_decode = _decode_lsb; 6627 } 6628 6629 if (re->options & ~RE_H) 6630 load_sections(re); 6631 if ((re->options & RE_VV) || (re->options & RE_S)) 6632 search_ver(re); 6633 if (re->options & RE_H) 6634 dump_ehdr(re); 6635 if (re->options & RE_L) 6636 dump_phdr(re); 6637 if (re->options & RE_SS) 6638 dump_shdr(re); 6639 if (re->options & RE_G) 6640 dump_section_groups(re); 6641 if (re->options & RE_D) 6642 dump_dynamic(re); 6643 if (re->options & RE_R) 6644 dump_reloc(re); 6645 if (re->options & RE_S) 6646 dump_symtabs(re); 6647 if (re->options & RE_N) 6648 dump_notes(re); 6649 if (re->options & RE_II) 6650 dump_hash(re); 6651 if (re->options & RE_X) 6652 hex_dump(re); 6653 if (re->options & RE_P) 6654 str_dump(re); 6655 if (re->options & RE_VV) 6656 dump_ver(re); 6657 if (re->options & RE_AA) 6658 dump_arch_specific_info(re); 6659 if (re->options & RE_W) 6660 dump_dwarf(re); 6661 if (re->options & ~RE_H) 6662 unload_sections(re); 6663 } 6664 6665 static void 6666 dump_dwarf(struct readelf *re) 6667 { 6668 int error; 6669 Dwarf_Error de; 6670 6671 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 6672 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 6673 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 6674 dwarf_errmsg(de)); 6675 return; 6676 } 6677 6678 if (re->dop & DW_A) 6679 dump_dwarf_abbrev(re); 6680 if (re->dop & DW_L) 6681 dump_dwarf_line(re); 6682 if (re->dop & DW_LL) 6683 dump_dwarf_line_decoded(re); 6684 if (re->dop & DW_I) { 6685 dump_dwarf_info(re, 0); 6686 dump_dwarf_info(re, 1); 6687 } 6688 if (re->dop & DW_P) 6689 dump_dwarf_pubnames(re); 6690 if (re->dop & DW_R) 6691 dump_dwarf_aranges(re); 6692 if (re->dop & DW_RR) 6693 dump_dwarf_ranges(re); 6694 if (re->dop & DW_M) 6695 dump_dwarf_macinfo(re); 6696 if (re->dop & DW_F) 6697 dump_dwarf_frame(re, 0); 6698 else if (re->dop & DW_FF) 6699 dump_dwarf_frame(re, 1); 6700 if (re->dop & DW_S) 6701 dump_dwarf_str(re); 6702 if (re->dop & DW_O) 6703 dump_dwarf_loclist(re); 6704 6705 dwarf_finish(re->dbg, &de); 6706 } 6707 6708 static void 6709 dump_ar(struct readelf *re, int fd) 6710 { 6711 Elf_Arsym *arsym; 6712 Elf_Arhdr *arhdr; 6713 Elf_Cmd cmd; 6714 Elf *e; 6715 size_t sz; 6716 off_t off; 6717 int i; 6718 6719 re->ar = re->elf; 6720 6721 if (re->options & RE_C) { 6722 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 6723 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 6724 goto process_members; 6725 } 6726 printf("Index of archive %s: (%ju entries)\n", re->filename, 6727 (uintmax_t) sz - 1); 6728 off = 0; 6729 for (i = 0; (size_t) i < sz; i++) { 6730 if (arsym[i].as_name == NULL) 6731 break; 6732 if (arsym[i].as_off != off) { 6733 off = arsym[i].as_off; 6734 if (elf_rand(re->ar, off) != off) { 6735 warnx("elf_rand() failed: %s", 6736 elf_errmsg(-1)); 6737 continue; 6738 } 6739 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 6740 NULL) { 6741 warnx("elf_begin() failed: %s", 6742 elf_errmsg(-1)); 6743 continue; 6744 } 6745 if ((arhdr = elf_getarhdr(e)) == NULL) { 6746 warnx("elf_getarhdr() failed: %s", 6747 elf_errmsg(-1)); 6748 elf_end(e); 6749 continue; 6750 } 6751 printf("Binary %s(%s) contains:\n", 6752 re->filename, arhdr->ar_name); 6753 } 6754 printf("\t%s\n", arsym[i].as_name); 6755 } 6756 if (elf_rand(re->ar, SARMAG) != SARMAG) { 6757 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 6758 return; 6759 } 6760 } 6761 6762 process_members: 6763 6764 if ((re->options & ~RE_C) == 0) 6765 return; 6766 6767 cmd = ELF_C_READ; 6768 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 6769 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 6770 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 6771 goto next_member; 6772 } 6773 if (strcmp(arhdr->ar_name, "/") == 0 || 6774 strcmp(arhdr->ar_name, "//") == 0 || 6775 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 6776 goto next_member; 6777 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 6778 dump_elf(re); 6779 6780 next_member: 6781 cmd = elf_next(re->elf); 6782 elf_end(re->elf); 6783 } 6784 re->elf = re->ar; 6785 } 6786 6787 static void 6788 dump_object(struct readelf *re) 6789 { 6790 int fd; 6791 6792 if ((fd = open(re->filename, O_RDONLY)) == -1) { 6793 warn("open %s failed", re->filename); 6794 return; 6795 } 6796 6797 if ((re->flags & DISPLAY_FILENAME) != 0) 6798 printf("\nFile: %s\n", re->filename); 6799 6800 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 6801 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 6802 return; 6803 } 6804 6805 switch (elf_kind(re->elf)) { 6806 case ELF_K_NONE: 6807 warnx("Not an ELF file."); 6808 return; 6809 case ELF_K_ELF: 6810 dump_elf(re); 6811 break; 6812 case ELF_K_AR: 6813 dump_ar(re, fd); 6814 break; 6815 default: 6816 warnx("Internal: libelf returned unknown elf kind."); 6817 return; 6818 } 6819 6820 elf_end(re->elf); 6821 } 6822 6823 static void 6824 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6825 { 6826 struct dumpop *d; 6827 6828 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 6829 if ((d = calloc(1, sizeof(*d))) == NULL) 6830 err(EXIT_FAILURE, "calloc failed"); 6831 if (t == DUMP_BY_INDEX) 6832 d->u.si = si; 6833 else 6834 d->u.sn = sn; 6835 d->type = t; 6836 d->op = op; 6837 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 6838 } else 6839 d->op |= op; 6840 } 6841 6842 static struct dumpop * 6843 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 6844 { 6845 struct dumpop *d; 6846 6847 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 6848 if ((op == -1 || op & d->op) && 6849 (t == -1 || (unsigned) t == d->type)) { 6850 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 6851 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 6852 return (d); 6853 } 6854 } 6855 6856 return (NULL); 6857 } 6858 6859 static struct { 6860 const char *ln; 6861 char sn; 6862 int value; 6863 } dwarf_op[] = { 6864 {"rawline", 'l', DW_L}, 6865 {"decodedline", 'L', DW_LL}, 6866 {"info", 'i', DW_I}, 6867 {"abbrev", 'a', DW_A}, 6868 {"pubnames", 'p', DW_P}, 6869 {"aranges", 'r', DW_R}, 6870 {"ranges", 'r', DW_R}, 6871 {"Ranges", 'R', DW_RR}, 6872 {"macro", 'm', DW_M}, 6873 {"frames", 'f', DW_F}, 6874 {"frames-interp", 'F', DW_FF}, 6875 {"str", 's', DW_S}, 6876 {"loc", 'o', DW_O}, 6877 {NULL, 0, 0} 6878 }; 6879 6880 static void 6881 parse_dwarf_op_short(struct readelf *re, const char *op) 6882 { 6883 int i; 6884 6885 if (op == NULL) { 6886 re->dop |= DW_DEFAULT_OPTIONS; 6887 return; 6888 } 6889 6890 for (; *op != '\0'; op++) { 6891 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6892 if (dwarf_op[i].sn == *op) { 6893 re->dop |= dwarf_op[i].value; 6894 break; 6895 } 6896 } 6897 } 6898 } 6899 6900 static void 6901 parse_dwarf_op_long(struct readelf *re, const char *op) 6902 { 6903 char *p, *token, *bp; 6904 int i; 6905 6906 if (op == NULL) { 6907 re->dop |= DW_DEFAULT_OPTIONS; 6908 return; 6909 } 6910 6911 if ((p = strdup(op)) == NULL) 6912 err(EXIT_FAILURE, "strdup failed"); 6913 bp = p; 6914 6915 while ((token = strsep(&p, ",")) != NULL) { 6916 for (i = 0; dwarf_op[i].ln != NULL; i++) { 6917 if (!strcmp(token, dwarf_op[i].ln)) { 6918 re->dop |= dwarf_op[i].value; 6919 break; 6920 } 6921 } 6922 } 6923 6924 free(bp); 6925 } 6926 6927 static uint64_t 6928 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 6929 { 6930 uint64_t ret; 6931 uint8_t *src; 6932 6933 src = (uint8_t *) d->d_buf + *offsetp; 6934 6935 ret = 0; 6936 switch (bytes_to_read) { 6937 case 8: 6938 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 6939 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 6940 /* FALLTHROUGH */ 6941 case 4: 6942 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 6943 /* FALLTHROUGH */ 6944 case 2: 6945 ret |= ((uint64_t) src[1]) << 8; 6946 /* FALLTHROUGH */ 6947 case 1: 6948 ret |= src[0]; 6949 break; 6950 default: 6951 return (0); 6952 } 6953 6954 *offsetp += bytes_to_read; 6955 6956 return (ret); 6957 } 6958 6959 static uint64_t 6960 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 6961 { 6962 uint64_t ret; 6963 uint8_t *src; 6964 6965 src = (uint8_t *) d->d_buf + *offsetp; 6966 6967 switch (bytes_to_read) { 6968 case 1: 6969 ret = src[0]; 6970 break; 6971 case 2: 6972 ret = src[1] | ((uint64_t) src[0]) << 8; 6973 break; 6974 case 4: 6975 ret = src[3] | ((uint64_t) src[2]) << 8; 6976 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 6977 break; 6978 case 8: 6979 ret = src[7] | ((uint64_t) src[6]) << 8; 6980 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 6981 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 6982 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 6983 break; 6984 default: 6985 return (0); 6986 } 6987 6988 *offsetp += bytes_to_read; 6989 6990 return (ret); 6991 } 6992 6993 static uint64_t 6994 _decode_lsb(uint8_t **data, int bytes_to_read) 6995 { 6996 uint64_t ret; 6997 uint8_t *src; 6998 6999 src = *data; 7000 7001 ret = 0; 7002 switch (bytes_to_read) { 7003 case 8: 7004 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7005 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7006 /* FALLTHROUGH */ 7007 case 4: 7008 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7009 /* FALLTHROUGH */ 7010 case 2: 7011 ret |= ((uint64_t) src[1]) << 8; 7012 /* FALLTHROUGH */ 7013 case 1: 7014 ret |= src[0]; 7015 break; 7016 default: 7017 return (0); 7018 } 7019 7020 *data += bytes_to_read; 7021 7022 return (ret); 7023 } 7024 7025 static uint64_t 7026 _decode_msb(uint8_t **data, int bytes_to_read) 7027 { 7028 uint64_t ret; 7029 uint8_t *src; 7030 7031 src = *data; 7032 7033 ret = 0; 7034 switch (bytes_to_read) { 7035 case 1: 7036 ret = src[0]; 7037 break; 7038 case 2: 7039 ret = src[1] | ((uint64_t) src[0]) << 8; 7040 break; 7041 case 4: 7042 ret = src[3] | ((uint64_t) src[2]) << 8; 7043 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7044 break; 7045 case 8: 7046 ret = src[7] | ((uint64_t) src[6]) << 8; 7047 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7048 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7049 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7050 break; 7051 default: 7052 return (0); 7053 break; 7054 } 7055 7056 *data += bytes_to_read; 7057 7058 return (ret); 7059 } 7060 7061 static int64_t 7062 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7063 { 7064 int64_t ret = 0; 7065 uint8_t b = 0; 7066 int shift = 0; 7067 7068 uint8_t *src = *dp; 7069 7070 do { 7071 if (src >= dpe) 7072 break; 7073 b = *src++; 7074 ret |= ((b & 0x7f) << shift); 7075 shift += 7; 7076 } while ((b & 0x80) != 0); 7077 7078 if (shift < 32 && (b & 0x40) != 0) 7079 ret |= (-1 << shift); 7080 7081 *dp = src; 7082 7083 return (ret); 7084 } 7085 7086 static uint64_t 7087 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7088 { 7089 uint64_t ret = 0; 7090 uint8_t b; 7091 int shift = 0; 7092 7093 uint8_t *src = *dp; 7094 7095 do { 7096 if (src >= dpe) 7097 break; 7098 b = *src++; 7099 ret |= ((b & 0x7f) << shift); 7100 shift += 7; 7101 } while ((b & 0x80) != 0); 7102 7103 *dp = src; 7104 7105 return (ret); 7106 } 7107 7108 static void 7109 readelf_version(void) 7110 { 7111 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7112 elftc_version()); 7113 exit(EXIT_SUCCESS); 7114 } 7115 7116 #define USAGE_MESSAGE "\ 7117 Usage: %s [options] file...\n\ 7118 Display information about ELF objects and ar(1) archives.\n\n\ 7119 Options:\n\ 7120 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7121 -c | --archive-index Print the archive symbol table for archives.\n\ 7122 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7123 -e | --headers Print all headers in the object.\n\ 7124 -g | --section-groups Print the contents of the section groups.\n\ 7125 -h | --file-header Print the file header for the object.\n\ 7126 -l | --program-headers Print the PHDR table for the object.\n\ 7127 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7128 -p INDEX | --string-dump=INDEX\n\ 7129 Print the contents of section at index INDEX.\n\ 7130 -r | --relocs Print relocation information.\n\ 7131 -s | --syms | --symbols Print symbol tables.\n\ 7132 -t | --section-details Print additional information about sections.\n\ 7133 -v | --version Print a version identifier and exit.\n\ 7134 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7135 frames-interp,info,loc,macro,pubnames,\n\ 7136 ranges,Ranges,rawline,str}\n\ 7137 Display DWARF information.\n\ 7138 -x INDEX | --hex-dump=INDEX\n\ 7139 Display contents of a section as hexadecimal.\n\ 7140 -A | --arch-specific (accepted, but ignored)\n\ 7141 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7142 entry in the \".dynamic\" section.\n\ 7143 -H | --help Print a help message.\n\ 7144 -I | --histogram Print information on bucket list lengths for \n\ 7145 hash sections.\n\ 7146 -N | --full-section-name (accepted, but ignored)\n\ 7147 -S | --sections | --section-headers\n\ 7148 Print information about section headers.\n\ 7149 -V | --version-info Print symbol versoning information.\n\ 7150 -W | --wide Print information without wrapping long lines.\n" 7151 7152 7153 static void 7154 readelf_usage(int status) 7155 { 7156 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7157 exit(status); 7158 } 7159 7160 int 7161 main(int argc, char **argv) 7162 { 7163 struct readelf *re, re_storage; 7164 unsigned long si; 7165 int opt, i; 7166 char *ep; 7167 7168 re = &re_storage; 7169 memset(re, 0, sizeof(*re)); 7170 STAILQ_INIT(&re->v_dumpop); 7171 7172 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7173 longopts, NULL)) != -1) { 7174 switch(opt) { 7175 case '?': 7176 readelf_usage(EXIT_SUCCESS); 7177 break; 7178 case 'A': 7179 re->options |= RE_AA; 7180 break; 7181 case 'a': 7182 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7183 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7184 break; 7185 case 'c': 7186 re->options |= RE_C; 7187 break; 7188 case 'D': 7189 re->options |= RE_DD; 7190 break; 7191 case 'd': 7192 re->options |= RE_D; 7193 break; 7194 case 'e': 7195 re->options |= RE_H | RE_L | RE_SS; 7196 break; 7197 case 'g': 7198 re->options |= RE_G; 7199 break; 7200 case 'H': 7201 readelf_usage(EXIT_SUCCESS); 7202 break; 7203 case 'h': 7204 re->options |= RE_H; 7205 break; 7206 case 'I': 7207 re->options |= RE_II; 7208 break; 7209 case 'i': 7210 /* Not implemented yet. */ 7211 break; 7212 case 'l': 7213 re->options |= RE_L; 7214 break; 7215 case 'N': 7216 re->options |= RE_NN; 7217 break; 7218 case 'n': 7219 re->options |= RE_N; 7220 break; 7221 case 'p': 7222 re->options |= RE_P; 7223 si = strtoul(optarg, &ep, 10); 7224 if (*ep == '\0') 7225 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7226 DUMP_BY_INDEX); 7227 else 7228 add_dumpop(re, 0, optarg, STR_DUMP, 7229 DUMP_BY_NAME); 7230 break; 7231 case 'r': 7232 re->options |= RE_R; 7233 break; 7234 case 'S': 7235 re->options |= RE_SS; 7236 break; 7237 case 's': 7238 re->options |= RE_S; 7239 break; 7240 case 't': 7241 re->options |= RE_T; 7242 break; 7243 case 'u': 7244 re->options |= RE_U; 7245 break; 7246 case 'V': 7247 re->options |= RE_VV; 7248 break; 7249 case 'v': 7250 readelf_version(); 7251 break; 7252 case 'W': 7253 re->options |= RE_WW; 7254 break; 7255 case 'w': 7256 re->options |= RE_W; 7257 parse_dwarf_op_short(re, optarg); 7258 break; 7259 case 'x': 7260 re->options |= RE_X; 7261 si = strtoul(optarg, &ep, 10); 7262 if (*ep == '\0') 7263 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7264 DUMP_BY_INDEX); 7265 else 7266 add_dumpop(re, 0, optarg, HEX_DUMP, 7267 DUMP_BY_NAME); 7268 break; 7269 case OPTION_DEBUG_DUMP: 7270 re->options |= RE_W; 7271 parse_dwarf_op_long(re, optarg); 7272 } 7273 } 7274 7275 argv += optind; 7276 argc -= optind; 7277 7278 if (argc == 0 || re->options == 0) 7279 readelf_usage(EXIT_FAILURE); 7280 7281 if (argc > 1) 7282 re->flags |= DISPLAY_FILENAME; 7283 7284 if (elf_version(EV_CURRENT) == EV_NONE) 7285 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7286 elf_errmsg(-1)); 7287 7288 for (i = 0; i < argc; i++) { 7289 re->filename = argv[i]; 7290 dump_object(re); 7291 } 7292 7293 exit(EXIT_SUCCESS); 7294 } 7295