1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3271 2015-12-11 18:53:08Z kaiwang27 $"); 51 52 /* 53 * readelf(1) options. 54 */ 55 #define RE_AA 0x00000001 56 #define RE_C 0x00000002 57 #define RE_DD 0x00000004 58 #define RE_D 0x00000008 59 #define RE_G 0x00000010 60 #define RE_H 0x00000020 61 #define RE_II 0x00000040 62 #define RE_I 0x00000080 63 #define RE_L 0x00000100 64 #define RE_NN 0x00000200 65 #define RE_N 0x00000400 66 #define RE_P 0x00000800 67 #define RE_R 0x00001000 68 #define RE_SS 0x00002000 69 #define RE_S 0x00004000 70 #define RE_T 0x00008000 71 #define RE_U 0x00010000 72 #define RE_VV 0x00020000 73 #define RE_WW 0x00040000 74 #define RE_W 0x00080000 75 #define RE_X 0x00100000 76 77 /* 78 * dwarf dump options. 79 */ 80 #define DW_A 0x00000001 81 #define DW_FF 0x00000002 82 #define DW_F 0x00000004 83 #define DW_I 0x00000008 84 #define DW_LL 0x00000010 85 #define DW_L 0x00000020 86 #define DW_M 0x00000040 87 #define DW_O 0x00000080 88 #define DW_P 0x00000100 89 #define DW_RR 0x00000200 90 #define DW_R 0x00000400 91 #define DW_S 0x00000800 92 93 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 94 DW_R | DW_RR | DW_S) 95 96 /* 97 * readelf(1) run control flags. 98 */ 99 #define DISPLAY_FILENAME 0x0001 100 101 /* 102 * Internal data structure for sections. 103 */ 104 struct section { 105 const char *name; /* section name */ 106 Elf_Scn *scn; /* section scn */ 107 uint64_t off; /* section offset */ 108 uint64_t sz; /* section size */ 109 uint64_t entsize; /* section entsize */ 110 uint64_t align; /* section alignment */ 111 uint64_t type; /* section type */ 112 uint64_t flags; /* section flags */ 113 uint64_t addr; /* section virtual addr */ 114 uint32_t link; /* section link ndx */ 115 uint32_t info; /* section info ndx */ 116 }; 117 118 struct dumpop { 119 union { 120 size_t si; /* section index */ 121 const char *sn; /* section name */ 122 } u; 123 enum { 124 DUMP_BY_INDEX = 0, 125 DUMP_BY_NAME 126 } type; /* dump type */ 127 #define HEX_DUMP 0x0001 128 #define STR_DUMP 0x0002 129 int op; /* dump operation */ 130 STAILQ_ENTRY(dumpop) dumpop_list; 131 }; 132 133 struct symver { 134 const char *name; 135 int type; 136 }; 137 138 /* 139 * Structure encapsulates the global data for readelf(1). 140 */ 141 struct readelf { 142 const char *filename; /* current processing file. */ 143 int options; /* command line options. */ 144 int flags; /* run control flags. */ 145 int dop; /* dwarf dump options. */ 146 Elf *elf; /* underlying ELF descriptor. */ 147 Elf *ar; /* archive ELF descriptor. */ 148 Dwarf_Debug dbg; /* DWARF handle. */ 149 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 150 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 151 Dwarf_Half cu_ver; /* DWARF CU version. */ 152 GElf_Ehdr ehdr; /* ELF header. */ 153 int ec; /* ELF class. */ 154 size_t shnum; /* #sections. */ 155 struct section *vd_s; /* Verdef section. */ 156 struct section *vn_s; /* Verneed section. */ 157 struct section *vs_s; /* Versym section. */ 158 uint16_t *vs; /* Versym array. */ 159 int vs_sz; /* Versym array size. */ 160 struct symver *ver; /* Version array. */ 161 int ver_sz; /* Size of version array. */ 162 struct section *sl; /* list of sections. */ 163 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 164 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 165 uint64_t (*dw_decode)(uint8_t **, int); 166 }; 167 168 enum options 169 { 170 OPTION_DEBUG_DUMP 171 }; 172 173 static struct option longopts[] = { 174 {"all", no_argument, NULL, 'a'}, 175 {"arch-specific", no_argument, NULL, 'A'}, 176 {"archive-index", no_argument, NULL, 'c'}, 177 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 178 {"dynamic", no_argument, NULL, 'd'}, 179 {"file-header", no_argument, NULL, 'h'}, 180 {"full-section-name", no_argument, NULL, 'N'}, 181 {"headers", no_argument, NULL, 'e'}, 182 {"help", no_argument, 0, 'H'}, 183 {"hex-dump", required_argument, NULL, 'x'}, 184 {"histogram", no_argument, NULL, 'I'}, 185 {"notes", no_argument, NULL, 'n'}, 186 {"program-headers", no_argument, NULL, 'l'}, 187 {"relocs", no_argument, NULL, 'r'}, 188 {"sections", no_argument, NULL, 'S'}, 189 {"section-headers", no_argument, NULL, 'S'}, 190 {"section-groups", no_argument, NULL, 'g'}, 191 {"section-details", no_argument, NULL, 't'}, 192 {"segments", no_argument, NULL, 'l'}, 193 {"string-dump", required_argument, NULL, 'p'}, 194 {"symbols", no_argument, NULL, 's'}, 195 {"syms", no_argument, NULL, 's'}, 196 {"unwind", no_argument, NULL, 'u'}, 197 {"use-dynamic", no_argument, NULL, 'D'}, 198 {"version-info", no_argument, 0, 'V'}, 199 {"version", no_argument, 0, 'v'}, 200 {"wide", no_argument, 0, 'W'}, 201 {NULL, 0, NULL, 0} 202 }; 203 204 struct eflags_desc { 205 uint64_t flag; 206 const char *desc; 207 }; 208 209 struct mips_option { 210 uint64_t flag; 211 const char *desc; 212 }; 213 214 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 215 int t); 216 static const char *aeabi_adv_simd_arch(uint64_t simd); 217 static const char *aeabi_align_needed(uint64_t an); 218 static const char *aeabi_align_preserved(uint64_t ap); 219 static const char *aeabi_arm_isa(uint64_t ai); 220 static const char *aeabi_cpu_arch(uint64_t arch); 221 static const char *aeabi_cpu_arch_profile(uint64_t pf); 222 static const char *aeabi_div(uint64_t du); 223 static const char *aeabi_enum_size(uint64_t es); 224 static const char *aeabi_fp_16bit_format(uint64_t fp16); 225 static const char *aeabi_fp_arch(uint64_t fp); 226 static const char *aeabi_fp_denormal(uint64_t fd); 227 static const char *aeabi_fp_exceptions(uint64_t fe); 228 static const char *aeabi_fp_hpext(uint64_t fh); 229 static const char *aeabi_fp_number_model(uint64_t fn); 230 static const char *aeabi_fp_optm_goal(uint64_t fog); 231 static const char *aeabi_fp_rounding(uint64_t fr); 232 static const char *aeabi_hardfp(uint64_t hfp); 233 static const char *aeabi_mpext(uint64_t mp); 234 static const char *aeabi_optm_goal(uint64_t og); 235 static const char *aeabi_pcs_config(uint64_t pcs); 236 static const char *aeabi_pcs_got(uint64_t got); 237 static const char *aeabi_pcs_r9(uint64_t r9); 238 static const char *aeabi_pcs_ro(uint64_t ro); 239 static const char *aeabi_pcs_rw(uint64_t rw); 240 static const char *aeabi_pcs_wchar_t(uint64_t wt); 241 static const char *aeabi_t2ee(uint64_t t2ee); 242 static const char *aeabi_thumb_isa(uint64_t ti); 243 static const char *aeabi_fp_user_exceptions(uint64_t fu); 244 static const char *aeabi_unaligned_access(uint64_t ua); 245 static const char *aeabi_vfp_args(uint64_t va); 246 static const char *aeabi_virtual(uint64_t vt); 247 static const char *aeabi_wmmx_arch(uint64_t wmmx); 248 static const char *aeabi_wmmx_args(uint64_t wa); 249 static const char *elf_class(unsigned int class); 250 static const char *elf_endian(unsigned int endian); 251 static const char *elf_machine(unsigned int mach); 252 static const char *elf_osabi(unsigned int abi); 253 static const char *elf_type(unsigned int type); 254 static const char *elf_ver(unsigned int ver); 255 static const char *dt_type(unsigned int mach, unsigned int dtype); 256 static void dump_ar(struct readelf *re, int); 257 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 258 static void dump_attributes(struct readelf *re); 259 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 260 static void dump_dwarf(struct readelf *re); 261 static void dump_dwarf_abbrev(struct readelf *re); 262 static void dump_dwarf_aranges(struct readelf *re); 263 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 264 Dwarf_Unsigned len); 265 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 266 static void dump_dwarf_frame(struct readelf *re, int alt); 267 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 268 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 269 Dwarf_Addr pc, Dwarf_Debug dbg); 270 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 271 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 272 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 273 int alt); 274 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 275 static void dump_dwarf_macinfo(struct readelf *re); 276 static void dump_dwarf_line(struct readelf *re); 277 static void dump_dwarf_line_decoded(struct readelf *re); 278 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 279 static void dump_dwarf_loclist(struct readelf *re); 280 static void dump_dwarf_pubnames(struct readelf *re); 281 static void dump_dwarf_ranges(struct readelf *re); 282 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 283 Dwarf_Addr base); 284 static void dump_dwarf_str(struct readelf *re); 285 static void dump_eflags(struct readelf *re, uint64_t e_flags); 286 static void dump_elf(struct readelf *re); 287 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 288 static void dump_dynamic(struct readelf *re); 289 static void dump_liblist(struct readelf *re); 290 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 291 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 292 static void dump_mips_options(struct readelf *re, struct section *s); 293 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 294 uint64_t info); 295 static void dump_mips_reginfo(struct readelf *re, struct section *s); 296 static void dump_mips_specific_info(struct readelf *re); 297 static void dump_notes(struct readelf *re); 298 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 299 off_t off); 300 static void dump_svr4_hash(struct section *s); 301 static void dump_svr4_hash64(struct readelf *re, struct section *s); 302 static void dump_gnu_hash(struct readelf *re, struct section *s); 303 static void dump_hash(struct readelf *re); 304 static void dump_phdr(struct readelf *re); 305 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 306 static void dump_section_groups(struct readelf *re); 307 static void dump_symtab(struct readelf *re, int i); 308 static void dump_symtabs(struct readelf *re); 309 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 310 static void dump_ver(struct readelf *re); 311 static void dump_verdef(struct readelf *re, int dump); 312 static void dump_verneed(struct readelf *re, int dump); 313 static void dump_versym(struct readelf *re); 314 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 315 static const char *dwarf_regname(struct readelf *re, unsigned int num); 316 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 317 const char *sn, int op, int t); 318 static int get_ent_count(struct section *s, int *ent_count); 319 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 320 Dwarf_Addr off); 321 static const char *get_string(struct readelf *re, int strtab, size_t off); 322 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 323 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 324 static void load_sections(struct readelf *re); 325 static const char *mips_abi_fp(uint64_t fp); 326 static const char *note_type(const char *note_name, unsigned int et, 327 unsigned int nt); 328 static const char *note_type_freebsd(unsigned int nt); 329 static const char *note_type_freebsd_core(unsigned int nt); 330 static const char *note_type_linux_core(unsigned int nt); 331 static const char *note_type_gnu(unsigned int nt); 332 static const char *note_type_netbsd(unsigned int nt); 333 static const char *note_type_openbsd(unsigned int nt); 334 static const char *note_type_unknown(unsigned int nt); 335 static const char *note_type_xen(unsigned int nt); 336 static const char *option_kind(uint8_t kind); 337 static const char *phdr_type(unsigned int ptype); 338 static const char *ppc_abi_fp(uint64_t fp); 339 static const char *ppc_abi_vector(uint64_t vec); 340 static const char *r_type(unsigned int mach, unsigned int type); 341 static void readelf_usage(void); 342 static void readelf_version(void); 343 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 344 Dwarf_Unsigned lowpc); 345 static void search_ver(struct readelf *re); 346 static const char *section_type(unsigned int mach, unsigned int stype); 347 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 348 Dwarf_Half osize, Dwarf_Half ver); 349 static const char *st_bind(unsigned int sbind); 350 static const char *st_shndx(unsigned int shndx); 351 static const char *st_type(unsigned int stype); 352 static const char *st_vis(unsigned int svis); 353 static const char *top_tag(unsigned int tag); 354 static void unload_sections(struct readelf *re); 355 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 356 int bytes_to_read); 357 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 358 int bytes_to_read); 359 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 360 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 361 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 362 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 363 364 static struct eflags_desc arm_eflags_desc[] = { 365 {EF_ARM_RELEXEC, "relocatable executable"}, 366 {EF_ARM_HASENTRY, "has entry point"}, 367 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 368 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 369 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 370 {EF_ARM_BE8, "BE8"}, 371 {EF_ARM_LE8, "LE8"}, 372 {EF_ARM_INTERWORK, "interworking enabled"}, 373 {EF_ARM_APCS_26, "uses APCS/26"}, 374 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 375 {EF_ARM_PIC, "position independent"}, 376 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 377 {EF_ARM_NEW_ABI, "uses new ABI"}, 378 {EF_ARM_OLD_ABI, "uses old ABI"}, 379 {EF_ARM_SOFT_FLOAT, "software FP"}, 380 {EF_ARM_VFP_FLOAT, "VFP"}, 381 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 382 {0, NULL} 383 }; 384 385 static struct eflags_desc mips_eflags_desc[] = { 386 {EF_MIPS_NOREORDER, "noreorder"}, 387 {EF_MIPS_PIC, "pic"}, 388 {EF_MIPS_CPIC, "cpic"}, 389 {EF_MIPS_UCODE, "ugen_reserved"}, 390 {EF_MIPS_ABI2, "abi2"}, 391 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 392 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 393 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 394 {0, NULL} 395 }; 396 397 static struct eflags_desc powerpc_eflags_desc[] = { 398 {EF_PPC_EMB, "emb"}, 399 {EF_PPC_RELOCATABLE, "relocatable"}, 400 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 401 {0, NULL} 402 }; 403 404 static struct eflags_desc sparc_eflags_desc[] = { 405 {EF_SPARC_32PLUS, "v8+"}, 406 {EF_SPARC_SUN_US1, "ultrasparcI"}, 407 {EF_SPARC_HAL_R1, "halr1"}, 408 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 409 {0, NULL} 410 }; 411 412 static const char * 413 elf_osabi(unsigned int abi) 414 { 415 static char s_abi[32]; 416 417 switch(abi) { 418 case ELFOSABI_NONE: return "NONE"; 419 case ELFOSABI_HPUX: return "HPUX"; 420 case ELFOSABI_NETBSD: return "NetBSD"; 421 case ELFOSABI_GNU: return "GNU"; 422 case ELFOSABI_HURD: return "HURD"; 423 case ELFOSABI_86OPEN: return "86OPEN"; 424 case ELFOSABI_SOLARIS: return "Solaris"; 425 case ELFOSABI_AIX: return "AIX"; 426 case ELFOSABI_IRIX: return "IRIX"; 427 case ELFOSABI_FREEBSD: return "FreeBSD"; 428 case ELFOSABI_TRU64: return "TRU64"; 429 case ELFOSABI_MODESTO: return "MODESTO"; 430 case ELFOSABI_OPENBSD: return "OpenBSD"; 431 case ELFOSABI_OPENVMS: return "OpenVMS"; 432 case ELFOSABI_NSK: return "NSK"; 433 case ELFOSABI_ARM: return "ARM"; 434 case ELFOSABI_STANDALONE: return "StandAlone"; 435 default: 436 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 437 return (s_abi); 438 } 439 }; 440 441 static const char * 442 elf_machine(unsigned int mach) 443 { 444 static char s_mach[32]; 445 446 switch (mach) { 447 case EM_NONE: return "Unknown machine"; 448 case EM_M32: return "AT&T WE32100"; 449 case EM_SPARC: return "Sun SPARC"; 450 case EM_386: return "Intel i386"; 451 case EM_68K: return "Motorola 68000"; 452 case EM_IAMCU: return "Intel MCU"; 453 case EM_88K: return "Motorola 88000"; 454 case EM_860: return "Intel i860"; 455 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 456 case EM_S370: return "IBM System/370"; 457 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 458 case EM_PARISC: return "HP PA-RISC"; 459 case EM_VPP500: return "Fujitsu VPP500"; 460 case EM_SPARC32PLUS: return "SPARC v8plus"; 461 case EM_960: return "Intel 80960"; 462 case EM_PPC: return "PowerPC 32-bit"; 463 case EM_PPC64: return "PowerPC 64-bit"; 464 case EM_S390: return "IBM System/390"; 465 case EM_V800: return "NEC V800"; 466 case EM_FR20: return "Fujitsu FR20"; 467 case EM_RH32: return "TRW RH-32"; 468 case EM_RCE: return "Motorola RCE"; 469 case EM_ARM: return "ARM"; 470 case EM_SH: return "Hitachi SH"; 471 case EM_SPARCV9: return "SPARC v9 64-bit"; 472 case EM_TRICORE: return "Siemens TriCore embedded processor"; 473 case EM_ARC: return "Argonaut RISC Core"; 474 case EM_H8_300: return "Hitachi H8/300"; 475 case EM_H8_300H: return "Hitachi H8/300H"; 476 case EM_H8S: return "Hitachi H8S"; 477 case EM_H8_500: return "Hitachi H8/500"; 478 case EM_IA_64: return "Intel IA-64 Processor"; 479 case EM_MIPS_X: return "Stanford MIPS-X"; 480 case EM_COLDFIRE: return "Motorola ColdFire"; 481 case EM_68HC12: return "Motorola M68HC12"; 482 case EM_MMA: return "Fujitsu MMA"; 483 case EM_PCP: return "Siemens PCP"; 484 case EM_NCPU: return "Sony nCPU"; 485 case EM_NDR1: return "Denso NDR1 microprocessor"; 486 case EM_STARCORE: return "Motorola Star*Core processor"; 487 case EM_ME16: return "Toyota ME16 processor"; 488 case EM_ST100: return "STMicroelectronics ST100 processor"; 489 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 490 case EM_X86_64: return "Advanced Micro Devices x86-64"; 491 case EM_PDSP: return "Sony DSP Processor"; 492 case EM_FX66: return "Siemens FX66 microcontroller"; 493 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 494 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 495 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 496 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 497 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 498 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 499 case EM_SVX: return "Silicon Graphics SVx"; 500 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 501 case EM_VAX: return "Digital VAX"; 502 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 503 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 504 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 505 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 506 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 507 case EM_HUANY: return "Harvard University MI object files"; 508 case EM_PRISM: return "SiTera Prism"; 509 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 510 case EM_FR30: return "Fujitsu FR30"; 511 case EM_D10V: return "Mitsubishi D10V"; 512 case EM_D30V: return "Mitsubishi D30V"; 513 case EM_V850: return "NEC v850"; 514 case EM_M32R: return "Mitsubishi M32R"; 515 case EM_MN10300: return "Matsushita MN10300"; 516 case EM_MN10200: return "Matsushita MN10200"; 517 case EM_PJ: return "picoJava"; 518 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 519 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 520 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 521 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 522 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 523 case EM_NS32K: return "National Semiconductor 32000 series"; 524 case EM_TPC: return "Tenor Network TPC processor"; 525 case EM_SNP1K: return "Trebia SNP 1000 processor"; 526 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 527 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 528 case EM_MAX: return "MAX Processor"; 529 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 530 case EM_F2MC16: return "Fujitsu F2MC16"; 531 case EM_MSP430: return "TI embedded microcontroller msp430"; 532 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 533 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 534 case EM_SEP: return "Sharp embedded microprocessor"; 535 case EM_ARCA: return "Arca RISC Microprocessor"; 536 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 537 case EM_AARCH64: return "AArch64"; 538 case EM_RISCV: return "RISC-V"; 539 default: 540 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 541 return (s_mach); 542 } 543 544 } 545 546 static const char * 547 elf_class(unsigned int class) 548 { 549 static char s_class[32]; 550 551 switch (class) { 552 case ELFCLASSNONE: return "none"; 553 case ELFCLASS32: return "ELF32"; 554 case ELFCLASS64: return "ELF64"; 555 default: 556 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 557 return (s_class); 558 } 559 } 560 561 static const char * 562 elf_endian(unsigned int endian) 563 { 564 static char s_endian[32]; 565 566 switch (endian) { 567 case ELFDATANONE: return "none"; 568 case ELFDATA2LSB: return "2's complement, little endian"; 569 case ELFDATA2MSB: return "2's complement, big endian"; 570 default: 571 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 572 return (s_endian); 573 } 574 } 575 576 static const char * 577 elf_type(unsigned int type) 578 { 579 static char s_type[32]; 580 581 switch (type) { 582 case ET_NONE: return "NONE (None)"; 583 case ET_REL: return "REL (Relocatable file)"; 584 case ET_EXEC: return "EXEC (Executable file)"; 585 case ET_DYN: return "DYN (Shared object file)"; 586 case ET_CORE: return "CORE (Core file)"; 587 default: 588 if (type >= ET_LOPROC) 589 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 590 else if (type >= ET_LOOS && type <= ET_HIOS) 591 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 592 else 593 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 594 type); 595 return (s_type); 596 } 597 } 598 599 static const char * 600 elf_ver(unsigned int ver) 601 { 602 static char s_ver[32]; 603 604 switch (ver) { 605 case EV_CURRENT: return "(current)"; 606 case EV_NONE: return "(none)"; 607 default: 608 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 609 ver); 610 return (s_ver); 611 } 612 } 613 614 static const char * 615 phdr_type(unsigned int ptype) 616 { 617 static char s_ptype[32]; 618 619 switch (ptype) { 620 case PT_NULL: return "NULL"; 621 case PT_LOAD: return "LOAD"; 622 case PT_DYNAMIC: return "DYNAMIC"; 623 case PT_INTERP: return "INTERP"; 624 case PT_NOTE: return "NOTE"; 625 case PT_SHLIB: return "SHLIB"; 626 case PT_PHDR: return "PHDR"; 627 case PT_TLS: return "TLS"; 628 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 629 case PT_GNU_STACK: return "GNU_STACK"; 630 case PT_GNU_RELRO: return "GNU_RELRO"; 631 default: 632 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) 633 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 634 ptype - PT_LOPROC); 635 else if (ptype >= PT_LOOS && ptype <= PT_HIOS) 636 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 637 ptype - PT_LOOS); 638 else 639 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 640 ptype); 641 return (s_ptype); 642 } 643 } 644 645 static const char * 646 section_type(unsigned int mach, unsigned int stype) 647 { 648 static char s_stype[32]; 649 650 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 651 switch (mach) { 652 case EM_X86_64: 653 switch (stype) { 654 case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; 655 default: 656 break; 657 } 658 break; 659 case EM_MIPS: 660 case EM_MIPS_RS3_LE: 661 switch (stype) { 662 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 663 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 664 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 665 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 666 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 667 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 668 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 669 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 670 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 671 case SHT_MIPS_RELD: return "MIPS_RELD"; 672 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 673 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 674 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 675 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 676 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 677 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 678 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 679 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 680 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 681 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 682 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 683 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 684 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 685 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 686 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 687 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 688 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 689 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 690 default: 691 break; 692 } 693 break; 694 default: 695 break; 696 } 697 698 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 699 stype - SHT_LOPROC); 700 return (s_stype); 701 } 702 703 switch (stype) { 704 case SHT_NULL: return "NULL"; 705 case SHT_PROGBITS: return "PROGBITS"; 706 case SHT_SYMTAB: return "SYMTAB"; 707 case SHT_STRTAB: return "STRTAB"; 708 case SHT_RELA: return "RELA"; 709 case SHT_HASH: return "HASH"; 710 case SHT_DYNAMIC: return "DYNAMIC"; 711 case SHT_NOTE: return "NOTE"; 712 case SHT_NOBITS: return "NOBITS"; 713 case SHT_REL: return "REL"; 714 case SHT_SHLIB: return "SHLIB"; 715 case SHT_DYNSYM: return "DYNSYM"; 716 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 717 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 718 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 719 case SHT_GROUP: return "GROUP"; 720 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 721 case SHT_SUNW_dof: return "SUNW_dof"; 722 case SHT_SUNW_cap: return "SUNW_cap"; 723 case SHT_GNU_HASH: return "GNU_HASH"; 724 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 725 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 726 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 727 case SHT_SUNW_move: return "SUNW_move"; 728 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 729 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 730 case SHT_SUNW_verdef: return "SUNW_verdef"; 731 case SHT_SUNW_verneed: return "SUNW_verneed"; 732 case SHT_SUNW_versym: return "SUNW_versym"; 733 default: 734 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 735 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 736 stype - SHT_LOOS); 737 else if (stype >= SHT_LOUSER) 738 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 739 stype - SHT_LOUSER); 740 else 741 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 742 stype); 743 return (s_stype); 744 } 745 } 746 747 static const char * 748 dt_type(unsigned int mach, unsigned int dtype) 749 { 750 static char s_dtype[32]; 751 752 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 753 switch (mach) { 754 case EM_ARM: 755 switch (dtype) { 756 case DT_ARM_SYMTABSZ: 757 return "ARM_SYMTABSZ"; 758 default: 759 break; 760 } 761 break; 762 case EM_MIPS: 763 case EM_MIPS_RS3_LE: 764 switch (dtype) { 765 case DT_MIPS_RLD_VERSION: 766 return "MIPS_RLD_VERSION"; 767 case DT_MIPS_TIME_STAMP: 768 return "MIPS_TIME_STAMP"; 769 case DT_MIPS_ICHECKSUM: 770 return "MIPS_ICHECKSUM"; 771 case DT_MIPS_IVERSION: 772 return "MIPS_IVERSION"; 773 case DT_MIPS_FLAGS: 774 return "MIPS_FLAGS"; 775 case DT_MIPS_BASE_ADDRESS: 776 return "MIPS_BASE_ADDRESS"; 777 case DT_MIPS_CONFLICT: 778 return "MIPS_CONFLICT"; 779 case DT_MIPS_LIBLIST: 780 return "MIPS_LIBLIST"; 781 case DT_MIPS_LOCAL_GOTNO: 782 return "MIPS_LOCAL_GOTNO"; 783 case DT_MIPS_CONFLICTNO: 784 return "MIPS_CONFLICTNO"; 785 case DT_MIPS_LIBLISTNO: 786 return "MIPS_LIBLISTNO"; 787 case DT_MIPS_SYMTABNO: 788 return "MIPS_SYMTABNO"; 789 case DT_MIPS_UNREFEXTNO: 790 return "MIPS_UNREFEXTNO"; 791 case DT_MIPS_GOTSYM: 792 return "MIPS_GOTSYM"; 793 case DT_MIPS_HIPAGENO: 794 return "MIPS_HIPAGENO"; 795 case DT_MIPS_RLD_MAP: 796 return "MIPS_RLD_MAP"; 797 case DT_MIPS_DELTA_CLASS: 798 return "MIPS_DELTA_CLASS"; 799 case DT_MIPS_DELTA_CLASS_NO: 800 return "MIPS_DELTA_CLASS_NO"; 801 case DT_MIPS_DELTA_INSTANCE: 802 return "MIPS_DELTA_INSTANCE"; 803 case DT_MIPS_DELTA_INSTANCE_NO: 804 return "MIPS_DELTA_INSTANCE_NO"; 805 case DT_MIPS_DELTA_RELOC: 806 return "MIPS_DELTA_RELOC"; 807 case DT_MIPS_DELTA_RELOC_NO: 808 return "MIPS_DELTA_RELOC_NO"; 809 case DT_MIPS_DELTA_SYM: 810 return "MIPS_DELTA_SYM"; 811 case DT_MIPS_DELTA_SYM_NO: 812 return "MIPS_DELTA_SYM_NO"; 813 case DT_MIPS_DELTA_CLASSSYM: 814 return "MIPS_DELTA_CLASSSYM"; 815 case DT_MIPS_DELTA_CLASSSYM_NO: 816 return "MIPS_DELTA_CLASSSYM_NO"; 817 case DT_MIPS_CXX_FLAGS: 818 return "MIPS_CXX_FLAGS"; 819 case DT_MIPS_PIXIE_INIT: 820 return "MIPS_PIXIE_INIT"; 821 case DT_MIPS_SYMBOL_LIB: 822 return "MIPS_SYMBOL_LIB"; 823 case DT_MIPS_LOCALPAGE_GOTIDX: 824 return "MIPS_LOCALPAGE_GOTIDX"; 825 case DT_MIPS_LOCAL_GOTIDX: 826 return "MIPS_LOCAL_GOTIDX"; 827 case DT_MIPS_HIDDEN_GOTIDX: 828 return "MIPS_HIDDEN_GOTIDX"; 829 case DT_MIPS_PROTECTED_GOTIDX: 830 return "MIPS_PROTECTED_GOTIDX"; 831 case DT_MIPS_OPTIONS: 832 return "MIPS_OPTIONS"; 833 case DT_MIPS_INTERFACE: 834 return "MIPS_INTERFACE"; 835 case DT_MIPS_DYNSTR_ALIGN: 836 return "MIPS_DYNSTR_ALIGN"; 837 case DT_MIPS_INTERFACE_SIZE: 838 return "MIPS_INTERFACE_SIZE"; 839 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 840 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 841 case DT_MIPS_PERF_SUFFIX: 842 return "MIPS_PERF_SUFFIX"; 843 case DT_MIPS_COMPACT_SIZE: 844 return "MIPS_COMPACT_SIZE"; 845 case DT_MIPS_GP_VALUE: 846 return "MIPS_GP_VALUE"; 847 case DT_MIPS_AUX_DYNAMIC: 848 return "MIPS_AUX_DYNAMIC"; 849 case DT_MIPS_PLTGOT: 850 return "MIPS_PLTGOT"; 851 case DT_MIPS_RLD_OBJ_UPDATE: 852 return "MIPS_RLD_OBJ_UPDATE"; 853 case DT_MIPS_RWPLT: 854 return "MIPS_RWPLT"; 855 default: 856 break; 857 } 858 break; 859 case EM_SPARC: 860 case EM_SPARC32PLUS: 861 case EM_SPARCV9: 862 switch (dtype) { 863 case DT_SPARC_REGISTER: 864 return "DT_SPARC_REGISTER"; 865 default: 866 break; 867 } 868 break; 869 default: 870 break; 871 } 872 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 873 return (s_dtype); 874 } 875 876 switch (dtype) { 877 case DT_NULL: return "NULL"; 878 case DT_NEEDED: return "NEEDED"; 879 case DT_PLTRELSZ: return "PLTRELSZ"; 880 case DT_PLTGOT: return "PLTGOT"; 881 case DT_HASH: return "HASH"; 882 case DT_STRTAB: return "STRTAB"; 883 case DT_SYMTAB: return "SYMTAB"; 884 case DT_RELA: return "RELA"; 885 case DT_RELASZ: return "RELASZ"; 886 case DT_RELAENT: return "RELAENT"; 887 case DT_STRSZ: return "STRSZ"; 888 case DT_SYMENT: return "SYMENT"; 889 case DT_INIT: return "INIT"; 890 case DT_FINI: return "FINI"; 891 case DT_SONAME: return "SONAME"; 892 case DT_RPATH: return "RPATH"; 893 case DT_SYMBOLIC: return "SYMBOLIC"; 894 case DT_REL: return "REL"; 895 case DT_RELSZ: return "RELSZ"; 896 case DT_RELENT: return "RELENT"; 897 case DT_PLTREL: return "PLTREL"; 898 case DT_DEBUG: return "DEBUG"; 899 case DT_TEXTREL: return "TEXTREL"; 900 case DT_JMPREL: return "JMPREL"; 901 case DT_BIND_NOW: return "BIND_NOW"; 902 case DT_INIT_ARRAY: return "INIT_ARRAY"; 903 case DT_FINI_ARRAY: return "FINI_ARRAY"; 904 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 905 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 906 case DT_RUNPATH: return "RUNPATH"; 907 case DT_FLAGS: return "FLAGS"; 908 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 909 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 910 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 911 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 912 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 913 case DT_SUNW_FILTER: return "SUNW_FILTER"; 914 case DT_SUNW_CAP: return "SUNW_CAP"; 915 case DT_CHECKSUM: return "CHECKSUM"; 916 case DT_PLTPADSZ: return "PLTPADSZ"; 917 case DT_MOVEENT: return "MOVEENT"; 918 case DT_MOVESZ: return "MOVESZ"; 919 case DT_FEATURE: return "FEATURE"; 920 case DT_POSFLAG_1: return "POSFLAG_1"; 921 case DT_SYMINSZ: return "SYMINSZ"; 922 case DT_SYMINENT: return "SYMINENT"; 923 case DT_GNU_HASH: return "GNU_HASH"; 924 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 925 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 926 case DT_CONFIG: return "CONFIG"; 927 case DT_DEPAUDIT: return "DEPAUDIT"; 928 case DT_AUDIT: return "AUDIT"; 929 case DT_PLTPAD: return "PLTPAD"; 930 case DT_MOVETAB: return "MOVETAB"; 931 case DT_SYMINFO: return "SYMINFO"; 932 case DT_VERSYM: return "VERSYM"; 933 case DT_RELACOUNT: return "RELACOUNT"; 934 case DT_RELCOUNT: return "RELCOUNT"; 935 case DT_FLAGS_1: return "FLAGS_1"; 936 case DT_VERDEF: return "VERDEF"; 937 case DT_VERDEFNUM: return "VERDEFNUM"; 938 case DT_VERNEED: return "VERNEED"; 939 case DT_VERNEEDNUM: return "VERNEEDNUM"; 940 case DT_AUXILIARY: return "AUXILIARY"; 941 case DT_USED: return "USED"; 942 case DT_FILTER: return "FILTER"; 943 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 944 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 945 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 946 default: 947 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 948 return (s_dtype); 949 } 950 } 951 952 static const char * 953 st_bind(unsigned int sbind) 954 { 955 static char s_sbind[32]; 956 957 switch (sbind) { 958 case STB_LOCAL: return "LOCAL"; 959 case STB_GLOBAL: return "GLOBAL"; 960 case STB_WEAK: return "WEAK"; 961 default: 962 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 963 return "OS"; 964 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 965 return "PROC"; 966 else 967 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 968 sbind); 969 return (s_sbind); 970 } 971 } 972 973 static const char * 974 st_type(unsigned int stype) 975 { 976 static char s_stype[32]; 977 978 switch (stype) { 979 case STT_NOTYPE: return "NOTYPE"; 980 case STT_OBJECT: return "OBJECT"; 981 case STT_FUNC: return "FUNC"; 982 case STT_SECTION: return "SECTION"; 983 case STT_FILE: return "FILE"; 984 case STT_COMMON: return "COMMON"; 985 case STT_TLS: return "TLS"; 986 default: 987 if (stype >= STT_LOOS && stype <= STT_HIOS) 988 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 989 stype - STT_LOOS); 990 else if (stype >= STT_LOPROC && stype <= STT_HIPROC) 991 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 992 stype - STT_LOPROC); 993 else 994 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 995 stype); 996 return (s_stype); 997 } 998 } 999 1000 static const char * 1001 st_vis(unsigned int svis) 1002 { 1003 static char s_svis[32]; 1004 1005 switch(svis) { 1006 case STV_DEFAULT: return "DEFAULT"; 1007 case STV_INTERNAL: return "INTERNAL"; 1008 case STV_HIDDEN: return "HIDDEN"; 1009 case STV_PROTECTED: return "PROTECTED"; 1010 default: 1011 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1012 return (s_svis); 1013 } 1014 } 1015 1016 static const char * 1017 st_shndx(unsigned int shndx) 1018 { 1019 static char s_shndx[32]; 1020 1021 switch (shndx) { 1022 case SHN_UNDEF: return "UND"; 1023 case SHN_ABS: return "ABS"; 1024 case SHN_COMMON: return "COM"; 1025 default: 1026 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1027 return "PRC"; 1028 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1029 return "OS"; 1030 else 1031 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1032 return (s_shndx); 1033 } 1034 } 1035 1036 static struct { 1037 const char *ln; 1038 char sn; 1039 int value; 1040 } section_flag[] = { 1041 {"WRITE", 'W', SHF_WRITE}, 1042 {"ALLOC", 'A', SHF_ALLOC}, 1043 {"EXEC", 'X', SHF_EXECINSTR}, 1044 {"MERGE", 'M', SHF_MERGE}, 1045 {"STRINGS", 'S', SHF_STRINGS}, 1046 {"INFO LINK", 'I', SHF_INFO_LINK}, 1047 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1048 {"GROUP", 'G', SHF_GROUP}, 1049 {"TLS", 'T', SHF_TLS}, 1050 {NULL, 0, 0} 1051 }; 1052 1053 static const char * 1054 r_type(unsigned int mach, unsigned int type) 1055 { 1056 switch(mach) { 1057 case EM_NONE: return ""; 1058 case EM_386: 1059 case EM_IAMCU: 1060 switch(type) { 1061 case 0: return "R_386_NONE"; 1062 case 1: return "R_386_32"; 1063 case 2: return "R_386_PC32"; 1064 case 3: return "R_386_GOT32"; 1065 case 4: return "R_386_PLT32"; 1066 case 5: return "R_386_COPY"; 1067 case 6: return "R_386_GLOB_DAT"; 1068 case 7: return "R_386_JMP_SLOT"; 1069 case 8: return "R_386_RELATIVE"; 1070 case 9: return "R_386_GOTOFF"; 1071 case 10: return "R_386_GOTPC"; 1072 case 14: return "R_386_TLS_TPOFF"; 1073 case 15: return "R_386_TLS_IE"; 1074 case 16: return "R_386_TLS_GOTIE"; 1075 case 17: return "R_386_TLS_LE"; 1076 case 18: return "R_386_TLS_GD"; 1077 case 19: return "R_386_TLS_LDM"; 1078 case 24: return "R_386_TLS_GD_32"; 1079 case 25: return "R_386_TLS_GD_PUSH"; 1080 case 26: return "R_386_TLS_GD_CALL"; 1081 case 27: return "R_386_TLS_GD_POP"; 1082 case 28: return "R_386_TLS_LDM_32"; 1083 case 29: return "R_386_TLS_LDM_PUSH"; 1084 case 30: return "R_386_TLS_LDM_CALL"; 1085 case 31: return "R_386_TLS_LDM_POP"; 1086 case 32: return "R_386_TLS_LDO_32"; 1087 case 33: return "R_386_TLS_IE_32"; 1088 case 34: return "R_386_TLS_LE_32"; 1089 case 35: return "R_386_TLS_DTPMOD32"; 1090 case 36: return "R_386_TLS_DTPOFF32"; 1091 case 37: return "R_386_TLS_TPOFF32"; 1092 default: return ""; 1093 } 1094 case EM_AARCH64: 1095 switch(type) { 1096 case 0: return "R_AARCH64_NONE"; 1097 case 257: return "R_AARCH64_ABS64"; 1098 case 258: return "R_AARCH64_ABS32"; 1099 case 259: return "R_AARCH64_ABS16"; 1100 case 260: return "R_AARCH64_PREL64"; 1101 case 261: return "R_AARCH64_PREL32"; 1102 case 262: return "R_AARCH64_PREL16"; 1103 case 263: return "R_AARCH64_MOVW_UABS_G0"; 1104 case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; 1105 case 265: return "R_AARCH64_MOVW_UABS_G1"; 1106 case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; 1107 case 267: return "R_AARCH64_MOVW_UABS_G2"; 1108 case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; 1109 case 269: return "R_AARCH64_MOVW_UABS_G3"; 1110 case 270: return "R_AARCH64_MOVW_SABS_G0"; 1111 case 271: return "R_AARCH64_MOVW_SABS_G1"; 1112 case 272: return "R_AARCH64_MOVW_SABS_G2"; 1113 case 273: return "R_AARCH64_LD_PREL_LO19"; 1114 case 274: return "R_AARCH64_ADR_PREL_LO21"; 1115 case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; 1116 case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; 1117 case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; 1118 case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; 1119 case 279: return "R_AARCH64_TSTBR14"; 1120 case 280: return "R_AARCH64_CONDBR19"; 1121 case 282: return "R_AARCH64_JUMP26"; 1122 case 283: return "R_AARCH64_CALL26"; 1123 case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; 1124 case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; 1125 case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; 1126 case 287: return "R_AARCH64_MOVW_PREL_G0"; 1127 case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; 1128 case 289: return "R_AARCH64_MOVW_PREL_G1"; 1129 case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; 1130 case 291: return "R_AARCH64_MOVW_PREL_G2"; 1131 case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; 1132 case 293: return "R_AARCH64_MOVW_PREL_G3"; 1133 case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; 1134 case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; 1135 case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; 1136 case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; 1137 case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; 1138 case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; 1139 case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; 1140 case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; 1141 case 307: return "R_AARCH64_GOTREL64"; 1142 case 308: return "R_AARCH64_GOTREL32"; 1143 case 309: return "R_AARCH64_GOT_LD_PREL19"; 1144 case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; 1145 case 311: return "R_AARCH64_ADR_GOT_PAGE"; 1146 case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; 1147 case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; 1148 case 1024: return "R_AARCH64_COPY"; 1149 case 1025: return "R_AARCH64_GLOB_DAT"; 1150 case 1026: return "R_AARCH64_JUMP_SLOT"; 1151 case 1027: return "R_AARCH64_RELATIVE"; 1152 case 1028: return "R_AARCH64_TLS_DTPREL64"; 1153 case 1029: return "R_AARCH64_TLS_DTPMOD64"; 1154 case 1030: return "R_AARCH64_TLS_TPREL64"; 1155 case 1031: return "R_AARCH64_TLSDESC"; 1156 case 1032: return "R_AARCH64_IRELATIVE"; 1157 default: return ""; 1158 } 1159 case EM_ARM: 1160 switch(type) { 1161 case 0: return "R_ARM_NONE"; 1162 case 1: return "R_ARM_PC24"; 1163 case 2: return "R_ARM_ABS32"; 1164 case 3: return "R_ARM_REL32"; 1165 case 4: return "R_ARM_PC13"; 1166 case 5: return "R_ARM_ABS16"; 1167 case 6: return "R_ARM_ABS12"; 1168 case 7: return "R_ARM_THM_ABS5"; 1169 case 8: return "R_ARM_ABS8"; 1170 case 9: return "R_ARM_SBREL32"; 1171 case 10: return "R_ARM_THM_PC22"; 1172 case 11: return "R_ARM_THM_PC8"; 1173 case 12: return "R_ARM_AMP_VCALL9"; 1174 case 13: return "R_ARM_TLS_DESC"; 1175 /* Obsolete R_ARM_SWI24 is also 13 */ 1176 case 14: return "R_ARM_THM_SWI8"; 1177 case 15: return "R_ARM_XPC25"; 1178 case 16: return "R_ARM_THM_XPC22"; 1179 case 17: return "R_ARM_TLS_DTPMOD32"; 1180 case 18: return "R_ARM_TLS_DTPOFF32"; 1181 case 19: return "R_ARM_TLS_TPOFF32"; 1182 case 20: return "R_ARM_COPY"; 1183 case 21: return "R_ARM_GLOB_DAT"; 1184 case 22: return "R_ARM_JUMP_SLOT"; 1185 case 23: return "R_ARM_RELATIVE"; 1186 case 24: return "R_ARM_GOTOFF"; 1187 case 25: return "R_ARM_GOTPC"; 1188 case 26: return "R_ARM_GOT32"; 1189 case 27: return "R_ARM_PLT32"; 1190 case 28: return "R_ARM_CALL"; 1191 case 29: return "R_ARM_JUMP24"; 1192 case 30: return "R_ARM_THM_JUMP24"; 1193 case 31: return "R_ARM_BASE_ABS"; 1194 case 38: return "R_ARM_TARGET1"; 1195 case 40: return "R_ARM_V4BX"; 1196 case 42: return "R_ARM_PREL31"; 1197 case 43: return "R_ARM_MOVW_ABS_NC"; 1198 case 44: return "R_ARM_MOVT_ABS"; 1199 case 45: return "R_ARM_MOVW_PREL_NC"; 1200 case 46: return "R_ARM_MOVT_PREL"; 1201 case 100: return "R_ARM_GNU_VTENTRY"; 1202 case 101: return "R_ARM_GNU_VTINHERIT"; 1203 case 250: return "R_ARM_RSBREL32"; 1204 case 251: return "R_ARM_THM_RPC22"; 1205 case 252: return "R_ARM_RREL32"; 1206 case 253: return "R_ARM_RABS32"; 1207 case 254: return "R_ARM_RPC24"; 1208 case 255: return "R_ARM_RBASE"; 1209 default: return ""; 1210 } 1211 case EM_IA_64: 1212 switch(type) { 1213 case 0: return "R_IA_64_NONE"; 1214 case 33: return "R_IA_64_IMM14"; 1215 case 34: return "R_IA_64_IMM22"; 1216 case 35: return "R_IA_64_IMM64"; 1217 case 36: return "R_IA_64_DIR32MSB"; 1218 case 37: return "R_IA_64_DIR32LSB"; 1219 case 38: return "R_IA_64_DIR64MSB"; 1220 case 39: return "R_IA_64_DIR64LSB"; 1221 case 42: return "R_IA_64_GPREL22"; 1222 case 43: return "R_IA_64_GPREL64I"; 1223 case 44: return "R_IA_64_GPREL32MSB"; 1224 case 45: return "R_IA_64_GPREL32LSB"; 1225 case 46: return "R_IA_64_GPREL64MSB"; 1226 case 47: return "R_IA_64_GPREL64LSB"; 1227 case 50: return "R_IA_64_LTOFF22"; 1228 case 51: return "R_IA_64_LTOFF64I"; 1229 case 58: return "R_IA_64_PLTOFF22"; 1230 case 59: return "R_IA_64_PLTOFF64I"; 1231 case 62: return "R_IA_64_PLTOFF64MSB"; 1232 case 63: return "R_IA_64_PLTOFF64LSB"; 1233 case 67: return "R_IA_64_FPTR64I"; 1234 case 68: return "R_IA_64_FPTR32MSB"; 1235 case 69: return "R_IA_64_FPTR32LSB"; 1236 case 70: return "R_IA_64_FPTR64MSB"; 1237 case 71: return "R_IA_64_FPTR64LSB"; 1238 case 72: return "R_IA_64_PCREL60B"; 1239 case 73: return "R_IA_64_PCREL21B"; 1240 case 74: return "R_IA_64_PCREL21M"; 1241 case 75: return "R_IA_64_PCREL21F"; 1242 case 76: return "R_IA_64_PCREL32MSB"; 1243 case 77: return "R_IA_64_PCREL32LSB"; 1244 case 78: return "R_IA_64_PCREL64MSB"; 1245 case 79: return "R_IA_64_PCREL64LSB"; 1246 case 82: return "R_IA_64_LTOFF_FPTR22"; 1247 case 83: return "R_IA_64_LTOFF_FPTR64I"; 1248 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 1249 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 1250 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 1251 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 1252 case 92: return "R_IA_64_SEGREL32MSB"; 1253 case 93: return "R_IA_64_SEGREL32LSB"; 1254 case 94: return "R_IA_64_SEGREL64MSB"; 1255 case 95: return "R_IA_64_SEGREL64LSB"; 1256 case 100: return "R_IA_64_SECREL32MSB"; 1257 case 101: return "R_IA_64_SECREL32LSB"; 1258 case 102: return "R_IA_64_SECREL64MSB"; 1259 case 103: return "R_IA_64_SECREL64LSB"; 1260 case 108: return "R_IA_64_REL32MSB"; 1261 case 109: return "R_IA_64_REL32LSB"; 1262 case 110: return "R_IA_64_REL64MSB"; 1263 case 111: return "R_IA_64_REL64LSB"; 1264 case 116: return "R_IA_64_LTV32MSB"; 1265 case 117: return "R_IA_64_LTV32LSB"; 1266 case 118: return "R_IA_64_LTV64MSB"; 1267 case 119: return "R_IA_64_LTV64LSB"; 1268 case 121: return "R_IA_64_PCREL21BI"; 1269 case 122: return "R_IA_64_PCREL22"; 1270 case 123: return "R_IA_64_PCREL64I"; 1271 case 128: return "R_IA_64_IPLTMSB"; 1272 case 129: return "R_IA_64_IPLTLSB"; 1273 case 133: return "R_IA_64_SUB"; 1274 case 134: return "R_IA_64_LTOFF22X"; 1275 case 135: return "R_IA_64_LDXMOV"; 1276 case 145: return "R_IA_64_TPREL14"; 1277 case 146: return "R_IA_64_TPREL22"; 1278 case 147: return "R_IA_64_TPREL64I"; 1279 case 150: return "R_IA_64_TPREL64MSB"; 1280 case 151: return "R_IA_64_TPREL64LSB"; 1281 case 154: return "R_IA_64_LTOFF_TPREL22"; 1282 case 166: return "R_IA_64_DTPMOD64MSB"; 1283 case 167: return "R_IA_64_DTPMOD64LSB"; 1284 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 1285 case 177: return "R_IA_64_DTPREL14"; 1286 case 178: return "R_IA_64_DTPREL22"; 1287 case 179: return "R_IA_64_DTPREL64I"; 1288 case 180: return "R_IA_64_DTPREL32MSB"; 1289 case 181: return "R_IA_64_DTPREL32LSB"; 1290 case 182: return "R_IA_64_DTPREL64MSB"; 1291 case 183: return "R_IA_64_DTPREL64LSB"; 1292 case 186: return "R_IA_64_LTOFF_DTPREL22"; 1293 default: return ""; 1294 } 1295 case EM_MIPS: 1296 switch(type) { 1297 case 0: return "R_MIPS_NONE"; 1298 case 1: return "R_MIPS_16"; 1299 case 2: return "R_MIPS_32"; 1300 case 3: return "R_MIPS_REL32"; 1301 case 4: return "R_MIPS_26"; 1302 case 5: return "R_MIPS_HI16"; 1303 case 6: return "R_MIPS_LO16"; 1304 case 7: return "R_MIPS_GPREL16"; 1305 case 8: return "R_MIPS_LITERAL"; 1306 case 9: return "R_MIPS_GOT16"; 1307 case 10: return "R_MIPS_PC16"; 1308 case 11: return "R_MIPS_CALL16"; 1309 case 12: return "R_MIPS_GPREL32"; 1310 case 21: return "R_MIPS_GOTHI16"; 1311 case 22: return "R_MIPS_GOTLO16"; 1312 case 30: return "R_MIPS_CALLHI16"; 1313 case 31: return "R_MIPS_CALLLO16"; 1314 case 38: return "R_MIPS_TLS_DTPMOD32"; 1315 case 39: return "R_MIPS_TLS_DTPREL32"; 1316 case 40: return "R_MIPS_TLS_DTPMOD64"; 1317 case 41: return "R_MIPS_TLS_DTPREL64"; 1318 case 42: return "R_MIPS_TLS_GD"; 1319 case 43: return "R_MIPS_TLS_LDM"; 1320 case 44: return "R_MIPS_TLS_DTPREL_HI16"; 1321 case 45: return "R_MIPS_TLS_DTPREL_LO16"; 1322 case 46: return "R_MIPS_TLS_GOTTPREL"; 1323 case 47: return "R_MIPS_TLS_TPREL32"; 1324 case 48: return "R_MIPS_TLS_TPREL64"; 1325 case 49: return "R_MIPS_TLS_TPREL_HI16"; 1326 case 50: return "R_MIPS_TLS_TPREL_LO16"; 1327 1328 default: return ""; 1329 } 1330 case EM_PPC: 1331 switch(type) { 1332 case 0: return "R_PPC_NONE"; 1333 case 1: return "R_PPC_ADDR32"; 1334 case 2: return "R_PPC_ADDR24"; 1335 case 3: return "R_PPC_ADDR16"; 1336 case 4: return "R_PPC_ADDR16_LO"; 1337 case 5: return "R_PPC_ADDR16_HI"; 1338 case 6: return "R_PPC_ADDR16_HA"; 1339 case 7: return "R_PPC_ADDR14"; 1340 case 8: return "R_PPC_ADDR14_BRTAKEN"; 1341 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 1342 case 10: return "R_PPC_REL24"; 1343 case 11: return "R_PPC_REL14"; 1344 case 12: return "R_PPC_REL14_BRTAKEN"; 1345 case 13: return "R_PPC_REL14_BRNTAKEN"; 1346 case 14: return "R_PPC_GOT16"; 1347 case 15: return "R_PPC_GOT16_LO"; 1348 case 16: return "R_PPC_GOT16_HI"; 1349 case 17: return "R_PPC_GOT16_HA"; 1350 case 18: return "R_PPC_PLTREL24"; 1351 case 19: return "R_PPC_COPY"; 1352 case 20: return "R_PPC_GLOB_DAT"; 1353 case 21: return "R_PPC_JMP_SLOT"; 1354 case 22: return "R_PPC_RELATIVE"; 1355 case 23: return "R_PPC_LOCAL24PC"; 1356 case 24: return "R_PPC_UADDR32"; 1357 case 25: return "R_PPC_UADDR16"; 1358 case 26: return "R_PPC_REL32"; 1359 case 27: return "R_PPC_PLT32"; 1360 case 28: return "R_PPC_PLTREL32"; 1361 case 29: return "R_PPC_PLT16_LO"; 1362 case 30: return "R_PPC_PLT16_HI"; 1363 case 31: return "R_PPC_PLT16_HA"; 1364 case 32: return "R_PPC_SDAREL16"; 1365 case 33: return "R_PPC_SECTOFF"; 1366 case 34: return "R_PPC_SECTOFF_LO"; 1367 case 35: return "R_PPC_SECTOFF_HI"; 1368 case 36: return "R_PPC_SECTOFF_HA"; 1369 case 67: return "R_PPC_TLS"; 1370 case 68: return "R_PPC_DTPMOD32"; 1371 case 69: return "R_PPC_TPREL16"; 1372 case 70: return "R_PPC_TPREL16_LO"; 1373 case 71: return "R_PPC_TPREL16_HI"; 1374 case 72: return "R_PPC_TPREL16_HA"; 1375 case 73: return "R_PPC_TPREL32"; 1376 case 74: return "R_PPC_DTPREL16"; 1377 case 75: return "R_PPC_DTPREL16_LO"; 1378 case 76: return "R_PPC_DTPREL16_HI"; 1379 case 77: return "R_PPC_DTPREL16_HA"; 1380 case 78: return "R_PPC_DTPREL32"; 1381 case 79: return "R_PPC_GOT_TLSGD16"; 1382 case 80: return "R_PPC_GOT_TLSGD16_LO"; 1383 case 81: return "R_PPC_GOT_TLSGD16_HI"; 1384 case 82: return "R_PPC_GOT_TLSGD16_HA"; 1385 case 83: return "R_PPC_GOT_TLSLD16"; 1386 case 84: return "R_PPC_GOT_TLSLD16_LO"; 1387 case 85: return "R_PPC_GOT_TLSLD16_HI"; 1388 case 86: return "R_PPC_GOT_TLSLD16_HA"; 1389 case 87: return "R_PPC_GOT_TPREL16"; 1390 case 88: return "R_PPC_GOT_TPREL16_LO"; 1391 case 89: return "R_PPC_GOT_TPREL16_HI"; 1392 case 90: return "R_PPC_GOT_TPREL16_HA"; 1393 case 101: return "R_PPC_EMB_NADDR32"; 1394 case 102: return "R_PPC_EMB_NADDR16"; 1395 case 103: return "R_PPC_EMB_NADDR16_LO"; 1396 case 104: return "R_PPC_EMB_NADDR16_HI"; 1397 case 105: return "R_PPC_EMB_NADDR16_HA"; 1398 case 106: return "R_PPC_EMB_SDAI16"; 1399 case 107: return "R_PPC_EMB_SDA2I16"; 1400 case 108: return "R_PPC_EMB_SDA2REL"; 1401 case 109: return "R_PPC_EMB_SDA21"; 1402 case 110: return "R_PPC_EMB_MRKREF"; 1403 case 111: return "R_PPC_EMB_RELSEC16"; 1404 case 112: return "R_PPC_EMB_RELST_LO"; 1405 case 113: return "R_PPC_EMB_RELST_HI"; 1406 case 114: return "R_PPC_EMB_RELST_HA"; 1407 case 115: return "R_PPC_EMB_BIT_FLD"; 1408 case 116: return "R_PPC_EMB_RELSDA"; 1409 default: return ""; 1410 } 1411 case EM_RISCV: 1412 switch(type) { 1413 case 0: return "R_RISCV_NONE"; 1414 case 1: return "R_RISCV_32"; 1415 case 2: return "R_RISCV_64"; 1416 case 3: return "R_RISCV_RELATIVE"; 1417 case 4: return "R_RISCV_COPY"; 1418 case 5: return "R_RISCV_JUMP_SLOT"; 1419 case 6: return "R_RISCV_TLS_DTPMOD32"; 1420 case 7: return "R_RISCV_TLS_DTPMOD64"; 1421 case 8: return "R_RISCV_TLS_DTPREL32"; 1422 case 9: return "R_RISCV_TLS_DTPREL64"; 1423 case 10: return "R_RISCV_TLS_TPREL32"; 1424 case 11: return "R_RISCV_TLS_TPREL64"; 1425 case 16: return "R_RISCV_BRANCH"; 1426 case 17: return "R_RISCV_JAL"; 1427 case 18: return "R_RISCV_CALL"; 1428 case 19: return "R_RISCV_CALL_PLT"; 1429 case 20: return "R_RISCV_GOT_HI20"; 1430 case 21: return "R_RISCV_TLS_GOT_HI20"; 1431 case 22: return "R_RISCV_TLS_GD_HI20"; 1432 case 23: return "R_RISCV_PCREL_HI20"; 1433 case 24: return "R_RISCV_PCREL_LO12_I"; 1434 case 25: return "R_RISCV_PCREL_LO12_S"; 1435 case 26: return "R_RISCV_HI20"; 1436 case 27: return "R_RISCV_LO12_I"; 1437 case 28: return "R_RISCV_LO12_S"; 1438 case 29: return "R_RISCV_TPREL_HI20"; 1439 case 30: return "R_RISCV_TPREL_LO12_I"; 1440 case 31: return "R_RISCV_TPREL_LO12_S"; 1441 case 32: return "R_RISCV_TPREL_ADD"; 1442 case 33: return "R_RISCV_ADD8"; 1443 case 34: return "R_RISCV_ADD16"; 1444 case 35: return "R_RISCV_ADD32"; 1445 case 36: return "R_RISCV_ADD64"; 1446 case 37: return "R_RISCV_SUB8"; 1447 case 38: return "R_RISCV_SUB16"; 1448 case 39: return "R_RISCV_SUB32"; 1449 case 40: return "R_RISCV_SUB64"; 1450 case 41: return "R_RISCV_GNU_VTINHERIT"; 1451 case 42: return "R_RISCV_GNU_VTENTRY"; 1452 case 43: return "R_RISCV_ALIGN"; 1453 case 44: return "R_RISCV_RVC_BRANCH"; 1454 case 45: return "R_RISCV_RVC_JUMP"; 1455 } 1456 case EM_SPARC: 1457 case EM_SPARCV9: 1458 switch(type) { 1459 case 0: return "R_SPARC_NONE"; 1460 case 1: return "R_SPARC_8"; 1461 case 2: return "R_SPARC_16"; 1462 case 3: return "R_SPARC_32"; 1463 case 4: return "R_SPARC_DISP8"; 1464 case 5: return "R_SPARC_DISP16"; 1465 case 6: return "R_SPARC_DISP32"; 1466 case 7: return "R_SPARC_WDISP30"; 1467 case 8: return "R_SPARC_WDISP22"; 1468 case 9: return "R_SPARC_HI22"; 1469 case 10: return "R_SPARC_22"; 1470 case 11: return "R_SPARC_13"; 1471 case 12: return "R_SPARC_LO10"; 1472 case 13: return "R_SPARC_GOT10"; 1473 case 14: return "R_SPARC_GOT13"; 1474 case 15: return "R_SPARC_GOT22"; 1475 case 16: return "R_SPARC_PC10"; 1476 case 17: return "R_SPARC_PC22"; 1477 case 18: return "R_SPARC_WPLT30"; 1478 case 19: return "R_SPARC_COPY"; 1479 case 20: return "R_SPARC_GLOB_DAT"; 1480 case 21: return "R_SPARC_JMP_SLOT"; 1481 case 22: return "R_SPARC_RELATIVE"; 1482 case 23: return "R_SPARC_UA32"; 1483 case 24: return "R_SPARC_PLT32"; 1484 case 25: return "R_SPARC_HIPLT22"; 1485 case 26: return "R_SPARC_LOPLT10"; 1486 case 27: return "R_SPARC_PCPLT32"; 1487 case 28: return "R_SPARC_PCPLT22"; 1488 case 29: return "R_SPARC_PCPLT10"; 1489 case 30: return "R_SPARC_10"; 1490 case 31: return "R_SPARC_11"; 1491 case 32: return "R_SPARC_64"; 1492 case 33: return "R_SPARC_OLO10"; 1493 case 34: return "R_SPARC_HH22"; 1494 case 35: return "R_SPARC_HM10"; 1495 case 36: return "R_SPARC_LM22"; 1496 case 37: return "R_SPARC_PC_HH22"; 1497 case 38: return "R_SPARC_PC_HM10"; 1498 case 39: return "R_SPARC_PC_LM22"; 1499 case 40: return "R_SPARC_WDISP16"; 1500 case 41: return "R_SPARC_WDISP19"; 1501 case 42: return "R_SPARC_GLOB_JMP"; 1502 case 43: return "R_SPARC_7"; 1503 case 44: return "R_SPARC_5"; 1504 case 45: return "R_SPARC_6"; 1505 case 46: return "R_SPARC_DISP64"; 1506 case 47: return "R_SPARC_PLT64"; 1507 case 48: return "R_SPARC_HIX22"; 1508 case 49: return "R_SPARC_LOX10"; 1509 case 50: return "R_SPARC_H44"; 1510 case 51: return "R_SPARC_M44"; 1511 case 52: return "R_SPARC_L44"; 1512 case 53: return "R_SPARC_REGISTER"; 1513 case 54: return "R_SPARC_UA64"; 1514 case 55: return "R_SPARC_UA16"; 1515 case 56: return "R_SPARC_TLS_GD_HI22"; 1516 case 57: return "R_SPARC_TLS_GD_LO10"; 1517 case 58: return "R_SPARC_TLS_GD_ADD"; 1518 case 59: return "R_SPARC_TLS_GD_CALL"; 1519 case 60: return "R_SPARC_TLS_LDM_HI22"; 1520 case 61: return "R_SPARC_TLS_LDM_LO10"; 1521 case 62: return "R_SPARC_TLS_LDM_ADD"; 1522 case 63: return "R_SPARC_TLS_LDM_CALL"; 1523 case 64: return "R_SPARC_TLS_LDO_HIX22"; 1524 case 65: return "R_SPARC_TLS_LDO_LOX10"; 1525 case 66: return "R_SPARC_TLS_LDO_ADD"; 1526 case 67: return "R_SPARC_TLS_IE_HI22"; 1527 case 68: return "R_SPARC_TLS_IE_LO10"; 1528 case 69: return "R_SPARC_TLS_IE_LD"; 1529 case 70: return "R_SPARC_TLS_IE_LDX"; 1530 case 71: return "R_SPARC_TLS_IE_ADD"; 1531 case 72: return "R_SPARC_TLS_LE_HIX22"; 1532 case 73: return "R_SPARC_TLS_LE_LOX10"; 1533 case 74: return "R_SPARC_TLS_DTPMOD32"; 1534 case 75: return "R_SPARC_TLS_DTPMOD64"; 1535 case 76: return "R_SPARC_TLS_DTPOFF32"; 1536 case 77: return "R_SPARC_TLS_DTPOFF64"; 1537 case 78: return "R_SPARC_TLS_TPOFF32"; 1538 case 79: return "R_SPARC_TLS_TPOFF64"; 1539 default: return ""; 1540 } 1541 case EM_X86_64: 1542 switch(type) { 1543 case 0: return "R_X86_64_NONE"; 1544 case 1: return "R_X86_64_64"; 1545 case 2: return "R_X86_64_PC32"; 1546 case 3: return "R_X86_64_GOT32"; 1547 case 4: return "R_X86_64_PLT32"; 1548 case 5: return "R_X86_64_COPY"; 1549 case 6: return "R_X86_64_GLOB_DAT"; 1550 case 7: return "R_X86_64_JMP_SLOT"; 1551 case 8: return "R_X86_64_RELATIVE"; 1552 case 9: return "R_X86_64_GOTPCREL"; 1553 case 10: return "R_X86_64_32"; 1554 case 11: return "R_X86_64_32S"; 1555 case 12: return "R_X86_64_16"; 1556 case 13: return "R_X86_64_PC16"; 1557 case 14: return "R_X86_64_8"; 1558 case 15: return "R_X86_64_PC8"; 1559 case 16: return "R_X86_64_DTPMOD64"; 1560 case 17: return "R_X86_64_DTPOFF64"; 1561 case 18: return "R_X86_64_TPOFF64"; 1562 case 19: return "R_X86_64_TLSGD"; 1563 case 20: return "R_X86_64_TLSLD"; 1564 case 21: return "R_X86_64_DTPOFF32"; 1565 case 22: return "R_X86_64_GOTTPOFF"; 1566 case 23: return "R_X86_64_TPOFF32"; 1567 case 24: return "R_X86_64_PC64"; 1568 case 25: return "R_X86_64_GOTOFF64"; 1569 case 26: return "R_X86_64_GOTPC32"; 1570 case 27: return "R_X86_64_GOT64"; 1571 case 28: return "R_X86_64_GOTPCREL64"; 1572 case 29: return "R_X86_64_GOTPC64"; 1573 case 30: return "R_X86_64_GOTPLT64"; 1574 case 31: return "R_X86_64_PLTOFF64"; 1575 case 32: return "R_X86_64_SIZE32"; 1576 case 33: return "R_X86_64_SIZE64"; 1577 case 34: return "R_X86_64_GOTPC32_TLSDESC"; 1578 case 35: return "R_X86_64_TLSDESC_CALL"; 1579 case 36: return "R_X86_64_TLSDESC"; 1580 case 37: return "R_X86_64_IRELATIVE"; 1581 default: return ""; 1582 } 1583 default: return ""; 1584 } 1585 } 1586 1587 static const char * 1588 note_type(const char *name, unsigned int et, unsigned int nt) 1589 { 1590 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1591 et == ET_CORE) 1592 return note_type_linux_core(nt); 1593 else if (strcmp(name, "FreeBSD") == 0) 1594 if (et == ET_CORE) 1595 return note_type_freebsd_core(nt); 1596 else 1597 return note_type_freebsd(nt); 1598 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1599 return note_type_gnu(nt); 1600 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1601 return note_type_netbsd(nt); 1602 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1603 return note_type_openbsd(nt); 1604 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1605 return note_type_xen(nt); 1606 return note_type_unknown(nt); 1607 } 1608 1609 static const char * 1610 note_type_freebsd(unsigned int nt) 1611 { 1612 switch (nt) { 1613 case 1: return "NT_FREEBSD_ABI_TAG"; 1614 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1615 case 3: return "NT_FREEBSD_ARCH_TAG"; 1616 default: return (note_type_unknown(nt)); 1617 } 1618 } 1619 1620 static const char * 1621 note_type_freebsd_core(unsigned int nt) 1622 { 1623 switch (nt) { 1624 case 1: return "NT_PRSTATUS"; 1625 case 2: return "NT_FPREGSET"; 1626 case 3: return "NT_PRPSINFO"; 1627 case 7: return "NT_THRMISC"; 1628 case 8: return "NT_PROCSTAT_PROC"; 1629 case 9: return "NT_PROCSTAT_FILES"; 1630 case 10: return "NT_PROCSTAT_VMMAP"; 1631 case 11: return "NT_PROCSTAT_GROUPS"; 1632 case 12: return "NT_PROCSTAT_UMASK"; 1633 case 13: return "NT_PROCSTAT_RLIMIT"; 1634 case 14: return "NT_PROCSTAT_OSREL"; 1635 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1636 case 16: return "NT_PROCSTAT_AUXV"; 1637 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1638 default: return (note_type_unknown(nt)); 1639 } 1640 } 1641 1642 static const char * 1643 note_type_linux_core(unsigned int nt) 1644 { 1645 switch (nt) { 1646 case 1: return "NT_PRSTATUS (Process status)"; 1647 case 2: return "NT_FPREGSET (Floating point information)"; 1648 case 3: return "NT_PRPSINFO (Process information)"; 1649 case 4: return "NT_TASKSTRUCT (Task structure)"; 1650 case 6: return "NT_AUXV (Auxiliary vector)"; 1651 case 10: return "NT_PSTATUS (Linux process status)"; 1652 case 12: return "NT_FPREGS (Linux floating point regset)"; 1653 case 13: return "NT_PSINFO (Linux process information)"; 1654 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1655 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1656 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1657 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1658 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1659 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1660 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1661 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1662 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1663 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1664 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1665 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1666 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1667 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1668 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1669 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1670 default: return (note_type_unknown(nt)); 1671 } 1672 } 1673 1674 static const char * 1675 note_type_gnu(unsigned int nt) 1676 { 1677 switch (nt) { 1678 case 1: return "NT_GNU_ABI_TAG"; 1679 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1680 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1681 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1682 default: return (note_type_unknown(nt)); 1683 } 1684 } 1685 1686 static const char * 1687 note_type_netbsd(unsigned int nt) 1688 { 1689 switch (nt) { 1690 case 1: return "NT_NETBSD_IDENT"; 1691 default: return (note_type_unknown(nt)); 1692 } 1693 } 1694 1695 static const char * 1696 note_type_openbsd(unsigned int nt) 1697 { 1698 switch (nt) { 1699 case 1: return "NT_OPENBSD_IDENT"; 1700 default: return (note_type_unknown(nt)); 1701 } 1702 } 1703 1704 static const char * 1705 note_type_unknown(unsigned int nt) 1706 { 1707 static char s_nt[32]; 1708 1709 snprintf(s_nt, sizeof(s_nt), 1710 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1711 return (s_nt); 1712 } 1713 1714 static const char * 1715 note_type_xen(unsigned int nt) 1716 { 1717 switch (nt) { 1718 case 0: return "XEN_ELFNOTE_INFO"; 1719 case 1: return "XEN_ELFNOTE_ENTRY"; 1720 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1721 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1722 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1723 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1724 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1725 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1726 case 8: return "XEN_ELFNOTE_LOADER"; 1727 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1728 case 10: return "XEN_ELFNOTE_FEATURES"; 1729 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1730 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1731 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1732 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1733 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1734 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1735 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1736 default: return (note_type_unknown(nt)); 1737 } 1738 } 1739 1740 static struct { 1741 const char *name; 1742 int value; 1743 } l_flag[] = { 1744 {"EXACT_MATCH", LL_EXACT_MATCH}, 1745 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1746 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1747 {"EXPORTS", LL_EXPORTS}, 1748 {"DELAY_LOAD", LL_DELAY_LOAD}, 1749 {"DELTA", LL_DELTA}, 1750 {NULL, 0} 1751 }; 1752 1753 static struct mips_option mips_exceptions_option[] = { 1754 {OEX_PAGE0, "PAGE0"}, 1755 {OEX_SMM, "SMM"}, 1756 {OEX_PRECISEFP, "PRECISEFP"}, 1757 {OEX_DISMISS, "DISMISS"}, 1758 {0, NULL} 1759 }; 1760 1761 static struct mips_option mips_pad_option[] = { 1762 {OPAD_PREFIX, "PREFIX"}, 1763 {OPAD_POSTFIX, "POSTFIX"}, 1764 {OPAD_SYMBOL, "SYMBOL"}, 1765 {0, NULL} 1766 }; 1767 1768 static struct mips_option mips_hwpatch_option[] = { 1769 {OHW_R4KEOP, "R4KEOP"}, 1770 {OHW_R8KPFETCH, "R8KPFETCH"}, 1771 {OHW_R5KEOP, "R5KEOP"}, 1772 {OHW_R5KCVTL, "R5KCVTL"}, 1773 {0, NULL} 1774 }; 1775 1776 static struct mips_option mips_hwa_option[] = { 1777 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1778 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1779 {0, NULL} 1780 }; 1781 1782 static struct mips_option mips_hwo_option[] = { 1783 {OHWO0_FIXADE, "FIXADE"}, 1784 {0, NULL} 1785 }; 1786 1787 static const char * 1788 option_kind(uint8_t kind) 1789 { 1790 static char s_kind[32]; 1791 1792 switch (kind) { 1793 case ODK_NULL: return "NULL"; 1794 case ODK_REGINFO: return "REGINFO"; 1795 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1796 case ODK_PAD: return "PAD"; 1797 case ODK_HWPATCH: return "HWPATCH"; 1798 case ODK_FILL: return "FILL"; 1799 case ODK_TAGS: return "TAGS"; 1800 case ODK_HWAND: return "HWAND"; 1801 case ODK_HWOR: return "HWOR"; 1802 case ODK_GP_GROUP: return "GP_GROUP"; 1803 case ODK_IDENT: return "IDENT"; 1804 default: 1805 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1806 return (s_kind); 1807 } 1808 } 1809 1810 static const char * 1811 top_tag(unsigned int tag) 1812 { 1813 static char s_top_tag[32]; 1814 1815 switch (tag) { 1816 case 1: return "File Attributes"; 1817 case 2: return "Section Attributes"; 1818 case 3: return "Symbol Attributes"; 1819 default: 1820 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1821 return (s_top_tag); 1822 } 1823 } 1824 1825 static const char * 1826 aeabi_cpu_arch(uint64_t arch) 1827 { 1828 static char s_cpu_arch[32]; 1829 1830 switch (arch) { 1831 case 0: return "Pre-V4"; 1832 case 1: return "ARM v4"; 1833 case 2: return "ARM v4T"; 1834 case 3: return "ARM v5T"; 1835 case 4: return "ARM v5TE"; 1836 case 5: return "ARM v5TEJ"; 1837 case 6: return "ARM v6"; 1838 case 7: return "ARM v6KZ"; 1839 case 8: return "ARM v6T2"; 1840 case 9: return "ARM v6K"; 1841 case 10: return "ARM v7"; 1842 case 11: return "ARM v6-M"; 1843 case 12: return "ARM v6S-M"; 1844 case 13: return "ARM v7E-M"; 1845 default: 1846 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1847 "Unknown (%ju)", (uintmax_t) arch); 1848 return (s_cpu_arch); 1849 } 1850 } 1851 1852 static const char * 1853 aeabi_cpu_arch_profile(uint64_t pf) 1854 { 1855 static char s_arch_profile[32]; 1856 1857 switch (pf) { 1858 case 0: 1859 return "Not applicable"; 1860 case 0x41: /* 'A' */ 1861 return "Application Profile"; 1862 case 0x52: /* 'R' */ 1863 return "Real-Time Profile"; 1864 case 0x4D: /* 'M' */ 1865 return "Microcontroller Profile"; 1866 case 0x53: /* 'S' */ 1867 return "Application or Real-Time Profile"; 1868 default: 1869 snprintf(s_arch_profile, sizeof(s_arch_profile), 1870 "Unknown (%ju)\n", (uintmax_t) pf); 1871 return (s_arch_profile); 1872 } 1873 } 1874 1875 static const char * 1876 aeabi_arm_isa(uint64_t ai) 1877 { 1878 static char s_ai[32]; 1879 1880 switch (ai) { 1881 case 0: return "No"; 1882 case 1: return "Yes"; 1883 default: 1884 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1885 (uintmax_t) ai); 1886 return (s_ai); 1887 } 1888 } 1889 1890 static const char * 1891 aeabi_thumb_isa(uint64_t ti) 1892 { 1893 static char s_ti[32]; 1894 1895 switch (ti) { 1896 case 0: return "No"; 1897 case 1: return "16-bit Thumb"; 1898 case 2: return "32-bit Thumb"; 1899 default: 1900 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1901 (uintmax_t) ti); 1902 return (s_ti); 1903 } 1904 } 1905 1906 static const char * 1907 aeabi_fp_arch(uint64_t fp) 1908 { 1909 static char s_fp_arch[32]; 1910 1911 switch (fp) { 1912 case 0: return "No"; 1913 case 1: return "VFPv1"; 1914 case 2: return "VFPv2"; 1915 case 3: return "VFPv3"; 1916 case 4: return "VFPv3-D16"; 1917 case 5: return "VFPv4"; 1918 case 6: return "VFPv4-D16"; 1919 default: 1920 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1921 (uintmax_t) fp); 1922 return (s_fp_arch); 1923 } 1924 } 1925 1926 static const char * 1927 aeabi_wmmx_arch(uint64_t wmmx) 1928 { 1929 static char s_wmmx[32]; 1930 1931 switch (wmmx) { 1932 case 0: return "No"; 1933 case 1: return "WMMXv1"; 1934 case 2: return "WMMXv2"; 1935 default: 1936 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1937 (uintmax_t) wmmx); 1938 return (s_wmmx); 1939 } 1940 } 1941 1942 static const char * 1943 aeabi_adv_simd_arch(uint64_t simd) 1944 { 1945 static char s_simd[32]; 1946 1947 switch (simd) { 1948 case 0: return "No"; 1949 case 1: return "NEONv1"; 1950 case 2: return "NEONv2"; 1951 default: 1952 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1953 (uintmax_t) simd); 1954 return (s_simd); 1955 } 1956 } 1957 1958 static const char * 1959 aeabi_pcs_config(uint64_t pcs) 1960 { 1961 static char s_pcs[32]; 1962 1963 switch (pcs) { 1964 case 0: return "None"; 1965 case 1: return "Bare platform"; 1966 case 2: return "Linux"; 1967 case 3: return "Linux DSO"; 1968 case 4: return "Palm OS 2004"; 1969 case 5: return "Palm OS (future)"; 1970 case 6: return "Symbian OS 2004"; 1971 case 7: return "Symbian OS (future)"; 1972 default: 1973 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1974 (uintmax_t) pcs); 1975 return (s_pcs); 1976 } 1977 } 1978 1979 static const char * 1980 aeabi_pcs_r9(uint64_t r9) 1981 { 1982 static char s_r9[32]; 1983 1984 switch (r9) { 1985 case 0: return "V6"; 1986 case 1: return "SB"; 1987 case 2: return "TLS pointer"; 1988 case 3: return "Unused"; 1989 default: 1990 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 1991 return (s_r9); 1992 } 1993 } 1994 1995 static const char * 1996 aeabi_pcs_rw(uint64_t rw) 1997 { 1998 static char s_rw[32]; 1999 2000 switch (rw) { 2001 case 0: return "Absolute"; 2002 case 1: return "PC-relative"; 2003 case 2: return "SB-relative"; 2004 case 3: return "None"; 2005 default: 2006 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 2007 return (s_rw); 2008 } 2009 } 2010 2011 static const char * 2012 aeabi_pcs_ro(uint64_t ro) 2013 { 2014 static char s_ro[32]; 2015 2016 switch (ro) { 2017 case 0: return "Absolute"; 2018 case 1: return "PC-relative"; 2019 case 2: return "None"; 2020 default: 2021 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 2022 return (s_ro); 2023 } 2024 } 2025 2026 static const char * 2027 aeabi_pcs_got(uint64_t got) 2028 { 2029 static char s_got[32]; 2030 2031 switch (got) { 2032 case 0: return "None"; 2033 case 1: return "direct"; 2034 case 2: return "indirect via GOT"; 2035 default: 2036 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 2037 (uintmax_t) got); 2038 return (s_got); 2039 } 2040 } 2041 2042 static const char * 2043 aeabi_pcs_wchar_t(uint64_t wt) 2044 { 2045 static char s_wt[32]; 2046 2047 switch (wt) { 2048 case 0: return "None"; 2049 case 2: return "wchar_t size 2"; 2050 case 4: return "wchar_t size 4"; 2051 default: 2052 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 2053 return (s_wt); 2054 } 2055 } 2056 2057 static const char * 2058 aeabi_enum_size(uint64_t es) 2059 { 2060 static char s_es[32]; 2061 2062 switch (es) { 2063 case 0: return "None"; 2064 case 1: return "smallest"; 2065 case 2: return "32-bit"; 2066 case 3: return "visible 32-bit"; 2067 default: 2068 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 2069 return (s_es); 2070 } 2071 } 2072 2073 static const char * 2074 aeabi_align_needed(uint64_t an) 2075 { 2076 static char s_align_n[64]; 2077 2078 switch (an) { 2079 case 0: return "No"; 2080 case 1: return "8-byte align"; 2081 case 2: return "4-byte align"; 2082 case 3: return "Reserved"; 2083 default: 2084 if (an >= 4 && an <= 12) 2085 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 2086 " and up to 2^%ju-byte extended align", 2087 (uintmax_t) an); 2088 else 2089 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 2090 (uintmax_t) an); 2091 return (s_align_n); 2092 } 2093 } 2094 2095 static const char * 2096 aeabi_align_preserved(uint64_t ap) 2097 { 2098 static char s_align_p[128]; 2099 2100 switch (ap) { 2101 case 0: return "No"; 2102 case 1: return "8-byte align"; 2103 case 2: return "8-byte align and SP % 8 == 0"; 2104 case 3: return "Reserved"; 2105 default: 2106 if (ap >= 4 && ap <= 12) 2107 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 2108 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 2109 " align", (uintmax_t) ap); 2110 else 2111 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 2112 (uintmax_t) ap); 2113 return (s_align_p); 2114 } 2115 } 2116 2117 static const char * 2118 aeabi_fp_rounding(uint64_t fr) 2119 { 2120 static char s_fp_r[32]; 2121 2122 switch (fr) { 2123 case 0: return "Unused"; 2124 case 1: return "Needed"; 2125 default: 2126 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 2127 (uintmax_t) fr); 2128 return (s_fp_r); 2129 } 2130 } 2131 2132 static const char * 2133 aeabi_fp_denormal(uint64_t fd) 2134 { 2135 static char s_fp_d[32]; 2136 2137 switch (fd) { 2138 case 0: return "Unused"; 2139 case 1: return "Needed"; 2140 case 2: return "Sign Only"; 2141 default: 2142 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 2143 (uintmax_t) fd); 2144 return (s_fp_d); 2145 } 2146 } 2147 2148 static const char * 2149 aeabi_fp_exceptions(uint64_t fe) 2150 { 2151 static char s_fp_e[32]; 2152 2153 switch (fe) { 2154 case 0: return "Unused"; 2155 case 1: return "Needed"; 2156 default: 2157 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 2158 (uintmax_t) fe); 2159 return (s_fp_e); 2160 } 2161 } 2162 2163 static const char * 2164 aeabi_fp_user_exceptions(uint64_t fu) 2165 { 2166 static char s_fp_u[32]; 2167 2168 switch (fu) { 2169 case 0: return "Unused"; 2170 case 1: return "Needed"; 2171 default: 2172 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 2173 (uintmax_t) fu); 2174 return (s_fp_u); 2175 } 2176 } 2177 2178 static const char * 2179 aeabi_fp_number_model(uint64_t fn) 2180 { 2181 static char s_fp_n[32]; 2182 2183 switch (fn) { 2184 case 0: return "Unused"; 2185 case 1: return "IEEE 754 normal"; 2186 case 2: return "RTABI"; 2187 case 3: return "IEEE 754"; 2188 default: 2189 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 2190 (uintmax_t) fn); 2191 return (s_fp_n); 2192 } 2193 } 2194 2195 static const char * 2196 aeabi_fp_16bit_format(uint64_t fp16) 2197 { 2198 static char s_fp_16[64]; 2199 2200 switch (fp16) { 2201 case 0: return "None"; 2202 case 1: return "IEEE 754"; 2203 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 2204 default: 2205 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 2206 (uintmax_t) fp16); 2207 return (s_fp_16); 2208 } 2209 } 2210 2211 static const char * 2212 aeabi_mpext(uint64_t mp) 2213 { 2214 static char s_mp[32]; 2215 2216 switch (mp) { 2217 case 0: return "Not allowed"; 2218 case 1: return "Allowed"; 2219 default: 2220 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 2221 (uintmax_t) mp); 2222 return (s_mp); 2223 } 2224 } 2225 2226 static const char * 2227 aeabi_div(uint64_t du) 2228 { 2229 static char s_du[32]; 2230 2231 switch (du) { 2232 case 0: return "Yes (V7-R/V7-M)"; 2233 case 1: return "No"; 2234 case 2: return "Yes (V7-A)"; 2235 default: 2236 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 2237 (uintmax_t) du); 2238 return (s_du); 2239 } 2240 } 2241 2242 static const char * 2243 aeabi_t2ee(uint64_t t2ee) 2244 { 2245 static char s_t2ee[32]; 2246 2247 switch (t2ee) { 2248 case 0: return "Not allowed"; 2249 case 1: return "Allowed"; 2250 default: 2251 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 2252 (uintmax_t) t2ee); 2253 return (s_t2ee); 2254 } 2255 2256 } 2257 2258 static const char * 2259 aeabi_hardfp(uint64_t hfp) 2260 { 2261 static char s_hfp[32]; 2262 2263 switch (hfp) { 2264 case 0: return "Tag_FP_arch"; 2265 case 1: return "only SP"; 2266 case 2: return "only DP"; 2267 case 3: return "both SP and DP"; 2268 default: 2269 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 2270 (uintmax_t) hfp); 2271 return (s_hfp); 2272 } 2273 } 2274 2275 static const char * 2276 aeabi_vfp_args(uint64_t va) 2277 { 2278 static char s_va[32]; 2279 2280 switch (va) { 2281 case 0: return "AAPCS (base variant)"; 2282 case 1: return "AAPCS (VFP variant)"; 2283 case 2: return "toolchain-specific"; 2284 default: 2285 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 2286 return (s_va); 2287 } 2288 } 2289 2290 static const char * 2291 aeabi_wmmx_args(uint64_t wa) 2292 { 2293 static char s_wa[32]; 2294 2295 switch (wa) { 2296 case 0: return "AAPCS (base variant)"; 2297 case 1: return "Intel WMMX"; 2298 case 2: return "toolchain-specific"; 2299 default: 2300 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 2301 return (s_wa); 2302 } 2303 } 2304 2305 static const char * 2306 aeabi_unaligned_access(uint64_t ua) 2307 { 2308 static char s_ua[32]; 2309 2310 switch (ua) { 2311 case 0: return "Not allowed"; 2312 case 1: return "Allowed"; 2313 default: 2314 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 2315 return (s_ua); 2316 } 2317 } 2318 2319 static const char * 2320 aeabi_fp_hpext(uint64_t fh) 2321 { 2322 static char s_fh[32]; 2323 2324 switch (fh) { 2325 case 0: return "Not allowed"; 2326 case 1: return "Allowed"; 2327 default: 2328 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 2329 return (s_fh); 2330 } 2331 } 2332 2333 static const char * 2334 aeabi_optm_goal(uint64_t og) 2335 { 2336 static char s_og[32]; 2337 2338 switch (og) { 2339 case 0: return "None"; 2340 case 1: return "Speed"; 2341 case 2: return "Speed aggressive"; 2342 case 3: return "Space"; 2343 case 4: return "Space aggressive"; 2344 case 5: return "Debugging"; 2345 case 6: return "Best Debugging"; 2346 default: 2347 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 2348 return (s_og); 2349 } 2350 } 2351 2352 static const char * 2353 aeabi_fp_optm_goal(uint64_t fog) 2354 { 2355 static char s_fog[32]; 2356 2357 switch (fog) { 2358 case 0: return "None"; 2359 case 1: return "Speed"; 2360 case 2: return "Speed aggressive"; 2361 case 3: return "Space"; 2362 case 4: return "Space aggressive"; 2363 case 5: return "Accurary"; 2364 case 6: return "Best Accurary"; 2365 default: 2366 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 2367 (uintmax_t) fog); 2368 return (s_fog); 2369 } 2370 } 2371 2372 static const char * 2373 aeabi_virtual(uint64_t vt) 2374 { 2375 static char s_virtual[64]; 2376 2377 switch (vt) { 2378 case 0: return "No"; 2379 case 1: return "TrustZone"; 2380 case 2: return "Virtualization extension"; 2381 case 3: return "TrustZone and virtualization extension"; 2382 default: 2383 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 2384 (uintmax_t) vt); 2385 return (s_virtual); 2386 } 2387 } 2388 2389 static struct { 2390 uint64_t tag; 2391 const char *s_tag; 2392 const char *(*get_desc)(uint64_t val); 2393 } aeabi_tags[] = { 2394 {4, "Tag_CPU_raw_name", NULL}, 2395 {5, "Tag_CPU_name", NULL}, 2396 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 2397 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 2398 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 2399 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 2400 {10, "Tag_FP_arch", aeabi_fp_arch}, 2401 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 2402 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 2403 {13, "Tag_PCS_config", aeabi_pcs_config}, 2404 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 2405 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 2406 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 2407 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 2408 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 2409 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 2410 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 2411 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 2412 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 2413 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 2414 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 2415 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 2416 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 2417 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 2418 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 2419 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 2420 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 2421 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 2422 {32, "Tag_compatibility", NULL}, 2423 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 2424 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 2425 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 2426 {42, "Tag_MPextension_use", aeabi_mpext}, 2427 {44, "Tag_DIV_use", aeabi_div}, 2428 {64, "Tag_nodefaults", NULL}, 2429 {65, "Tag_also_compatible_with", NULL}, 2430 {66, "Tag_T2EE_use", aeabi_t2ee}, 2431 {67, "Tag_conformance", NULL}, 2432 {68, "Tag_Virtualization_use", aeabi_virtual}, 2433 {70, "Tag_MPextension_use", aeabi_mpext}, 2434 }; 2435 2436 static const char * 2437 mips_abi_fp(uint64_t fp) 2438 { 2439 static char s_mips_abi_fp[64]; 2440 2441 switch (fp) { 2442 case 0: return "N/A"; 2443 case 1: return "Hard float (double precision)"; 2444 case 2: return "Hard float (single precision)"; 2445 case 3: return "Soft float"; 2446 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2447 default: 2448 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2449 (uintmax_t) fp); 2450 return (s_mips_abi_fp); 2451 } 2452 } 2453 2454 static const char * 2455 ppc_abi_fp(uint64_t fp) 2456 { 2457 static char s_ppc_abi_fp[64]; 2458 2459 switch (fp) { 2460 case 0: return "N/A"; 2461 case 1: return "Hard float (double precision)"; 2462 case 2: return "Soft float"; 2463 case 3: return "Hard float (single precision)"; 2464 default: 2465 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2466 (uintmax_t) fp); 2467 return (s_ppc_abi_fp); 2468 } 2469 } 2470 2471 static const char * 2472 ppc_abi_vector(uint64_t vec) 2473 { 2474 static char s_vec[64]; 2475 2476 switch (vec) { 2477 case 0: return "N/A"; 2478 case 1: return "Generic purpose registers"; 2479 case 2: return "AltiVec registers"; 2480 case 3: return "SPE registers"; 2481 default: 2482 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2483 return (s_vec); 2484 } 2485 } 2486 2487 static const char * 2488 dwarf_reg(unsigned int mach, unsigned int reg) 2489 { 2490 2491 switch (mach) { 2492 case EM_386: 2493 case EM_IAMCU: 2494 switch (reg) { 2495 case 0: return "eax"; 2496 case 1: return "ecx"; 2497 case 2: return "edx"; 2498 case 3: return "ebx"; 2499 case 4: return "esp"; 2500 case 5: return "ebp"; 2501 case 6: return "esi"; 2502 case 7: return "edi"; 2503 case 8: return "eip"; 2504 case 9: return "eflags"; 2505 case 11: return "st0"; 2506 case 12: return "st1"; 2507 case 13: return "st2"; 2508 case 14: return "st3"; 2509 case 15: return "st4"; 2510 case 16: return "st5"; 2511 case 17: return "st6"; 2512 case 18: return "st7"; 2513 case 21: return "xmm0"; 2514 case 22: return "xmm1"; 2515 case 23: return "xmm2"; 2516 case 24: return "xmm3"; 2517 case 25: return "xmm4"; 2518 case 26: return "xmm5"; 2519 case 27: return "xmm6"; 2520 case 28: return "xmm7"; 2521 case 29: return "mm0"; 2522 case 30: return "mm1"; 2523 case 31: return "mm2"; 2524 case 32: return "mm3"; 2525 case 33: return "mm4"; 2526 case 34: return "mm5"; 2527 case 35: return "mm6"; 2528 case 36: return "mm7"; 2529 case 37: return "fcw"; 2530 case 38: return "fsw"; 2531 case 39: return "mxcsr"; 2532 case 40: return "es"; 2533 case 41: return "cs"; 2534 case 42: return "ss"; 2535 case 43: return "ds"; 2536 case 44: return "fs"; 2537 case 45: return "gs"; 2538 case 48: return "tr"; 2539 case 49: return "ldtr"; 2540 default: return (NULL); 2541 } 2542 case EM_X86_64: 2543 switch (reg) { 2544 case 0: return "rax"; 2545 case 1: return "rdx"; 2546 case 2: return "rcx"; 2547 case 3: return "rbx"; 2548 case 4: return "rsi"; 2549 case 5: return "rdi"; 2550 case 6: return "rbp"; 2551 case 7: return "rsp"; 2552 case 16: return "rip"; 2553 case 17: return "xmm0"; 2554 case 18: return "xmm1"; 2555 case 19: return "xmm2"; 2556 case 20: return "xmm3"; 2557 case 21: return "xmm4"; 2558 case 22: return "xmm5"; 2559 case 23: return "xmm6"; 2560 case 24: return "xmm7"; 2561 case 25: return "xmm8"; 2562 case 26: return "xmm9"; 2563 case 27: return "xmm10"; 2564 case 28: return "xmm11"; 2565 case 29: return "xmm12"; 2566 case 30: return "xmm13"; 2567 case 31: return "xmm14"; 2568 case 32: return "xmm15"; 2569 case 33: return "st0"; 2570 case 34: return "st1"; 2571 case 35: return "st2"; 2572 case 36: return "st3"; 2573 case 37: return "st4"; 2574 case 38: return "st5"; 2575 case 39: return "st6"; 2576 case 40: return "st7"; 2577 case 41: return "mm0"; 2578 case 42: return "mm1"; 2579 case 43: return "mm2"; 2580 case 44: return "mm3"; 2581 case 45: return "mm4"; 2582 case 46: return "mm5"; 2583 case 47: return "mm6"; 2584 case 48: return "mm7"; 2585 case 49: return "rflags"; 2586 case 50: return "es"; 2587 case 51: return "cs"; 2588 case 52: return "ss"; 2589 case 53: return "ds"; 2590 case 54: return "fs"; 2591 case 55: return "gs"; 2592 case 58: return "fs.base"; 2593 case 59: return "gs.base"; 2594 case 62: return "tr"; 2595 case 63: return "ldtr"; 2596 case 64: return "mxcsr"; 2597 case 65: return "fcw"; 2598 case 66: return "fsw"; 2599 default: return (NULL); 2600 } 2601 default: 2602 return (NULL); 2603 } 2604 } 2605 2606 static void 2607 dump_ehdr(struct readelf *re) 2608 { 2609 size_t shnum, shstrndx; 2610 int i; 2611 2612 printf("ELF Header:\n"); 2613 2614 /* e_ident[]. */ 2615 printf(" Magic: "); 2616 for (i = 0; i < EI_NIDENT; i++) 2617 printf("%.2x ", re->ehdr.e_ident[i]); 2618 putchar('\n'); 2619 2620 /* EI_CLASS. */ 2621 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2622 2623 /* EI_DATA. */ 2624 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2625 2626 /* EI_VERSION. */ 2627 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2628 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2629 2630 /* EI_OSABI. */ 2631 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2632 2633 /* EI_ABIVERSION. */ 2634 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2635 2636 /* e_type. */ 2637 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2638 2639 /* e_machine. */ 2640 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2641 2642 /* e_version. */ 2643 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2644 2645 /* e_entry. */ 2646 printf("%-37s%#jx\n", " Entry point address:", 2647 (uintmax_t)re->ehdr.e_entry); 2648 2649 /* e_phoff. */ 2650 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2651 (uintmax_t)re->ehdr.e_phoff); 2652 2653 /* e_shoff. */ 2654 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2655 (uintmax_t)re->ehdr.e_shoff); 2656 2657 /* e_flags. */ 2658 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2659 dump_eflags(re, re->ehdr.e_flags); 2660 putchar('\n'); 2661 2662 /* e_ehsize. */ 2663 printf("%-37s%u (bytes)\n", " Size of this header:", 2664 re->ehdr.e_ehsize); 2665 2666 /* e_phentsize. */ 2667 printf("%-37s%u (bytes)\n", " Size of program headers:", 2668 re->ehdr.e_phentsize); 2669 2670 /* e_phnum. */ 2671 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2672 2673 /* e_shentsize. */ 2674 printf("%-37s%u (bytes)\n", " Size of section headers:", 2675 re->ehdr.e_shentsize); 2676 2677 /* e_shnum. */ 2678 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2679 if (re->ehdr.e_shnum == SHN_UNDEF) { 2680 /* Extended section numbering is in use. */ 2681 if (elf_getshnum(re->elf, &shnum)) 2682 printf(" (%ju)", (uintmax_t)shnum); 2683 } 2684 putchar('\n'); 2685 2686 /* e_shstrndx. */ 2687 printf("%-37s%u", " Section header string table index:", 2688 re->ehdr.e_shstrndx); 2689 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2690 /* Extended section numbering is in use. */ 2691 if (elf_getshstrndx(re->elf, &shstrndx)) 2692 printf(" (%ju)", (uintmax_t)shstrndx); 2693 } 2694 putchar('\n'); 2695 } 2696 2697 static void 2698 dump_eflags(struct readelf *re, uint64_t e_flags) 2699 { 2700 struct eflags_desc *edesc; 2701 int arm_eabi; 2702 2703 edesc = NULL; 2704 switch (re->ehdr.e_machine) { 2705 case EM_ARM: 2706 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2707 if (arm_eabi == 0) 2708 printf(", GNU EABI"); 2709 else if (arm_eabi <= 5) 2710 printf(", Version%d EABI", arm_eabi); 2711 edesc = arm_eflags_desc; 2712 break; 2713 case EM_MIPS: 2714 case EM_MIPS_RS3_LE: 2715 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2716 case 0: printf(", mips1"); break; 2717 case 1: printf(", mips2"); break; 2718 case 2: printf(", mips3"); break; 2719 case 3: printf(", mips4"); break; 2720 case 4: printf(", mips5"); break; 2721 case 5: printf(", mips32"); break; 2722 case 6: printf(", mips64"); break; 2723 case 7: printf(", mips32r2"); break; 2724 case 8: printf(", mips64r2"); break; 2725 default: break; 2726 } 2727 switch ((e_flags & 0x00FF0000) >> 16) { 2728 case 0x81: printf(", 3900"); break; 2729 case 0x82: printf(", 4010"); break; 2730 case 0x83: printf(", 4100"); break; 2731 case 0x85: printf(", 4650"); break; 2732 case 0x87: printf(", 4120"); break; 2733 case 0x88: printf(", 4111"); break; 2734 case 0x8a: printf(", sb1"); break; 2735 case 0x8b: printf(", octeon"); break; 2736 case 0x8c: printf(", xlr"); break; 2737 case 0x91: printf(", 5400"); break; 2738 case 0x98: printf(", 5500"); break; 2739 case 0x99: printf(", 9000"); break; 2740 case 0xa0: printf(", loongson-2e"); break; 2741 case 0xa1: printf(", loongson-2f"); break; 2742 default: break; 2743 } 2744 switch ((e_flags & 0x0000F000) >> 12) { 2745 case 1: printf(", o32"); break; 2746 case 2: printf(", o64"); break; 2747 case 3: printf(", eabi32"); break; 2748 case 4: printf(", eabi64"); break; 2749 default: break; 2750 } 2751 edesc = mips_eflags_desc; 2752 break; 2753 case EM_PPC: 2754 case EM_PPC64: 2755 edesc = powerpc_eflags_desc; 2756 break; 2757 case EM_SPARC: 2758 case EM_SPARC32PLUS: 2759 case EM_SPARCV9: 2760 switch ((e_flags & EF_SPARCV9_MM)) { 2761 case EF_SPARCV9_TSO: printf(", tso"); break; 2762 case EF_SPARCV9_PSO: printf(", pso"); break; 2763 case EF_SPARCV9_MM: printf(", rmo"); break; 2764 default: break; 2765 } 2766 edesc = sparc_eflags_desc; 2767 break; 2768 default: 2769 break; 2770 } 2771 2772 if (edesc != NULL) { 2773 while (edesc->desc != NULL) { 2774 if (e_flags & edesc->flag) 2775 printf(", %s", edesc->desc); 2776 edesc++; 2777 } 2778 } 2779 } 2780 2781 static void 2782 dump_phdr(struct readelf *re) 2783 { 2784 const char *rawfile; 2785 GElf_Phdr phdr; 2786 size_t phnum, size; 2787 int i, j; 2788 2789 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2790 "MemSiz", "Flg", "Align" 2791 #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ 2792 (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ 2793 (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ 2794 phdr.p_flags & PF_R ? 'R' : ' ', \ 2795 phdr.p_flags & PF_W ? 'W' : ' ', \ 2796 phdr.p_flags & PF_X ? 'E' : ' ', \ 2797 (uintmax_t)phdr.p_align 2798 2799 if (elf_getphnum(re->elf, &phnum) == 0) { 2800 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2801 return; 2802 } 2803 if (phnum == 0) { 2804 printf("\nThere are no program headers in this file.\n"); 2805 return; 2806 } 2807 2808 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2809 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2810 printf("There are %ju program headers, starting at offset %ju\n", 2811 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2812 2813 /* Dump program headers. */ 2814 printf("\nProgram Headers:\n"); 2815 if (re->ec == ELFCLASS32) 2816 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2817 else if (re->options & RE_WW) 2818 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2819 else 2820 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2821 "%-7s%s\n", PH_HDR); 2822 for (i = 0; (size_t) i < phnum; i++) { 2823 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2824 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2825 continue; 2826 } 2827 /* TODO: Add arch-specific segment type dump. */ 2828 if (re->ec == ELFCLASS32) 2829 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2830 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2831 else if (re->options & RE_WW) 2832 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2833 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2834 else 2835 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2836 " 0x%16.16jx 0x%16.16jx %c%c%c" 2837 " %#jx\n", PH_CT); 2838 if (phdr.p_type == PT_INTERP) { 2839 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2840 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2841 continue; 2842 } 2843 if (phdr.p_offset >= size) { 2844 warnx("invalid program header offset"); 2845 continue; 2846 } 2847 printf(" [Requesting program interpreter: %s]\n", 2848 rawfile + phdr.p_offset); 2849 } 2850 } 2851 2852 /* Dump section to segment mapping. */ 2853 if (re->shnum == 0) 2854 return; 2855 printf("\n Section to Segment mapping:\n"); 2856 printf(" Segment Sections...\n"); 2857 for (i = 0; (size_t)i < phnum; i++) { 2858 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2859 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2860 continue; 2861 } 2862 printf(" %2.2d ", i); 2863 /* skip NULL section. */ 2864 for (j = 1; (size_t)j < re->shnum; j++) 2865 if (re->sl[j].addr >= phdr.p_vaddr && 2866 re->sl[j].addr + re->sl[j].sz <= 2867 phdr.p_vaddr + phdr.p_memsz) 2868 printf("%s ", re->sl[j].name); 2869 printf("\n"); 2870 } 2871 #undef PH_HDR 2872 #undef PH_CT 2873 } 2874 2875 static char * 2876 section_flags(struct readelf *re, struct section *s) 2877 { 2878 #define BUF_SZ 256 2879 static char buf[BUF_SZ]; 2880 int i, p, nb; 2881 2882 p = 0; 2883 nb = re->ec == ELFCLASS32 ? 8 : 16; 2884 if (re->options & RE_T) { 2885 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2886 (uintmax_t)s->flags); 2887 p += nb + 4; 2888 } 2889 for (i = 0; section_flag[i].ln != NULL; i++) { 2890 if ((s->flags & section_flag[i].value) == 0) 2891 continue; 2892 if (re->options & RE_T) { 2893 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2894 section_flag[i].ln); 2895 p += strlen(section_flag[i].ln) + 2; 2896 } else 2897 buf[p++] = section_flag[i].sn; 2898 } 2899 if (re->options & RE_T && p > nb + 4) 2900 p -= 2; 2901 buf[p] = '\0'; 2902 2903 return (buf); 2904 } 2905 2906 static void 2907 dump_shdr(struct readelf *re) 2908 { 2909 struct section *s; 2910 int i; 2911 2912 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2913 "Flg", "Lk", "Inf", "Al" 2914 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2915 "EntSize", "Flags", "Link", "Info", "Align" 2916 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2917 "Lk", "Inf", "Al", "Flags" 2918 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2919 "Size", "EntSize", "Info", "Align", "Flags" 2920 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2921 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2922 (uintmax_t)s->entsize, section_flags(re, s), \ 2923 s->link, s->info, (uintmax_t)s->align 2924 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2925 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2926 (uintmax_t)s->entsize, s->link, s->info, \ 2927 (uintmax_t)s->align, section_flags(re, s) 2928 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2929 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2930 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2931 (uintmax_t)s->align, section_flags(re, s) 2932 2933 if (re->shnum == 0) { 2934 printf("\nThere are no sections in this file.\n"); 2935 return; 2936 } 2937 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2938 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2939 printf("\nSection Headers:\n"); 2940 if (re->ec == ELFCLASS32) { 2941 if (re->options & RE_T) 2942 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2943 "%12s\n", ST_HDR); 2944 else 2945 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2946 S_HDR); 2947 } else if (re->options & RE_WW) { 2948 if (re->options & RE_T) 2949 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2950 "%12s\n", ST_HDR); 2951 else 2952 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2953 S_HDR); 2954 } else { 2955 if (re->options & RE_T) 2956 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2957 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2958 else 2959 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2960 "-6s%-6s%s\n", S_HDRL); 2961 } 2962 for (i = 0; (size_t)i < re->shnum; i++) { 2963 s = &re->sl[i]; 2964 if (re->ec == ELFCLASS32) { 2965 if (re->options & RE_T) 2966 printf(" [%2d] %s\n %-15.15s %8.8jx" 2967 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2968 " %s\n", ST_CT); 2969 else 2970 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2971 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2972 S_CT); 2973 } else if (re->options & RE_WW) { 2974 if (re->options & RE_T) 2975 printf(" [%2d] %s\n %-15.15s %16.16jx" 2976 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2977 " %s\n", ST_CT); 2978 else 2979 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2980 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2981 S_CT); 2982 } else { 2983 if (re->options & RE_T) 2984 printf(" [%2d] %s\n %-15.15s %16.16jx" 2985 " %16.16jx %u\n %16.16jx %16.16jx" 2986 " %-16u %ju\n %s\n", ST_CTL); 2987 else 2988 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 2989 " %8.8jx\n %16.16jx %16.16jx " 2990 "%3s %2u %3u %ju\n", S_CT); 2991 } 2992 } 2993 if ((re->options & RE_T) == 0) 2994 printf("Key to Flags:\n W (write), A (alloc)," 2995 " X (execute), M (merge), S (strings)\n" 2996 " I (info), L (link order), G (group), x (unknown)\n" 2997 " O (extra OS processing required)" 2998 " o (OS specific), p (processor specific)\n"); 2999 3000 #undef S_HDR 3001 #undef S_HDRL 3002 #undef ST_HDR 3003 #undef ST_HDRL 3004 #undef S_CT 3005 #undef ST_CT 3006 #undef ST_CTL 3007 } 3008 3009 /* 3010 * Return number of entries in the given section. We'd prefer ent_count be a 3011 * size_t *, but libelf APIs already use int for section indices. 3012 */ 3013 static int 3014 get_ent_count(struct section *s, int *ent_count) 3015 { 3016 if (s->entsize == 0) { 3017 warnx("section %s has entry size 0", s->name); 3018 return (0); 3019 } else if (s->sz / s->entsize > INT_MAX) { 3020 warnx("section %s has invalid section count", s->name); 3021 return (0); 3022 } 3023 *ent_count = (int)(s->sz / s->entsize); 3024 return (1); 3025 } 3026 3027 static void 3028 dump_dynamic(struct readelf *re) 3029 { 3030 GElf_Dyn dyn; 3031 Elf_Data *d; 3032 struct section *s; 3033 int elferr, i, is_dynamic, j, jmax, nentries; 3034 3035 is_dynamic = 0; 3036 3037 for (i = 0; (size_t)i < re->shnum; i++) { 3038 s = &re->sl[i]; 3039 if (s->type != SHT_DYNAMIC) 3040 continue; 3041 (void) elf_errno(); 3042 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3043 elferr = elf_errno(); 3044 if (elferr != 0) 3045 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3046 continue; 3047 } 3048 if (d->d_size <= 0) 3049 continue; 3050 3051 is_dynamic = 1; 3052 3053 /* Determine the actual number of table entries. */ 3054 nentries = 0; 3055 if (!get_ent_count(s, &jmax)) 3056 continue; 3057 for (j = 0; j < jmax; j++) { 3058 if (gelf_getdyn(d, j, &dyn) != &dyn) { 3059 warnx("gelf_getdyn failed: %s", 3060 elf_errmsg(-1)); 3061 continue; 3062 } 3063 nentries ++; 3064 if (dyn.d_tag == DT_NULL) 3065 break; 3066 } 3067 3068 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 3069 printf(" contains %u entries:\n", nentries); 3070 3071 if (re->ec == ELFCLASS32) 3072 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 3073 else 3074 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 3075 3076 for (j = 0; j < nentries; j++) { 3077 if (gelf_getdyn(d, j, &dyn) != &dyn) 3078 continue; 3079 /* Dump dynamic entry type. */ 3080 if (re->ec == ELFCLASS32) 3081 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 3082 else 3083 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 3084 printf(" %-20s", dt_type(re->ehdr.e_machine, 3085 dyn.d_tag)); 3086 /* Dump dynamic entry value. */ 3087 dump_dyn_val(re, &dyn, s->link); 3088 } 3089 } 3090 3091 if (!is_dynamic) 3092 printf("\nThere is no dynamic section in this file.\n"); 3093 } 3094 3095 static char * 3096 timestamp(time_t ti) 3097 { 3098 static char ts[32]; 3099 struct tm *t; 3100 3101 t = gmtime(&ti); 3102 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 3103 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 3104 t->tm_min, t->tm_sec); 3105 3106 return (ts); 3107 } 3108 3109 static const char * 3110 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 3111 { 3112 const char *name; 3113 3114 if (stab == SHN_UNDEF) 3115 name = "ERROR"; 3116 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 3117 (void) elf_errno(); /* clear error */ 3118 name = "ERROR"; 3119 } 3120 3121 return (name); 3122 } 3123 3124 static void 3125 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3126 { 3127 const char *name; 3128 3129 switch (re->ehdr.e_machine) { 3130 case EM_MIPS: 3131 case EM_MIPS_RS3_LE: 3132 switch (dyn->d_tag) { 3133 case DT_MIPS_RLD_VERSION: 3134 case DT_MIPS_LOCAL_GOTNO: 3135 case DT_MIPS_CONFLICTNO: 3136 case DT_MIPS_LIBLISTNO: 3137 case DT_MIPS_SYMTABNO: 3138 case DT_MIPS_UNREFEXTNO: 3139 case DT_MIPS_GOTSYM: 3140 case DT_MIPS_HIPAGENO: 3141 case DT_MIPS_DELTA_CLASS_NO: 3142 case DT_MIPS_DELTA_INSTANCE_NO: 3143 case DT_MIPS_DELTA_RELOC_NO: 3144 case DT_MIPS_DELTA_SYM_NO: 3145 case DT_MIPS_DELTA_CLASSSYM_NO: 3146 case DT_MIPS_LOCALPAGE_GOTIDX: 3147 case DT_MIPS_LOCAL_GOTIDX: 3148 case DT_MIPS_HIDDEN_GOTIDX: 3149 case DT_MIPS_PROTECTED_GOTIDX: 3150 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3151 break; 3152 case DT_MIPS_ICHECKSUM: 3153 case DT_MIPS_FLAGS: 3154 case DT_MIPS_BASE_ADDRESS: 3155 case DT_MIPS_CONFLICT: 3156 case DT_MIPS_LIBLIST: 3157 case DT_MIPS_RLD_MAP: 3158 case DT_MIPS_DELTA_CLASS: 3159 case DT_MIPS_DELTA_INSTANCE: 3160 case DT_MIPS_DELTA_RELOC: 3161 case DT_MIPS_DELTA_SYM: 3162 case DT_MIPS_DELTA_CLASSSYM: 3163 case DT_MIPS_CXX_FLAGS: 3164 case DT_MIPS_PIXIE_INIT: 3165 case DT_MIPS_SYMBOL_LIB: 3166 case DT_MIPS_OPTIONS: 3167 case DT_MIPS_INTERFACE: 3168 case DT_MIPS_DYNSTR_ALIGN: 3169 case DT_MIPS_INTERFACE_SIZE: 3170 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 3171 case DT_MIPS_COMPACT_SIZE: 3172 case DT_MIPS_GP_VALUE: 3173 case DT_MIPS_AUX_DYNAMIC: 3174 case DT_MIPS_PLTGOT: 3175 case DT_MIPS_RLD_OBJ_UPDATE: 3176 case DT_MIPS_RWPLT: 3177 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3178 break; 3179 case DT_MIPS_IVERSION: 3180 case DT_MIPS_PERF_SUFFIX: 3181 case DT_AUXILIARY: 3182 case DT_FILTER: 3183 name = dyn_str(re, stab, dyn->d_un.d_val); 3184 printf(" %s\n", name); 3185 break; 3186 case DT_MIPS_TIME_STAMP: 3187 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3188 break; 3189 } 3190 break; 3191 default: 3192 printf("\n"); 3193 break; 3194 } 3195 } 3196 3197 static void 3198 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3199 { 3200 const char *name; 3201 3202 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 3203 dump_arch_dyn_val(re, dyn, stab); 3204 return; 3205 } 3206 3207 /* These entry values are index into the string table. */ 3208 name = NULL; 3209 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 3210 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 3211 name = dyn_str(re, stab, dyn->d_un.d_val); 3212 3213 switch(dyn->d_tag) { 3214 case DT_NULL: 3215 case DT_PLTGOT: 3216 case DT_HASH: 3217 case DT_STRTAB: 3218 case DT_SYMTAB: 3219 case DT_RELA: 3220 case DT_INIT: 3221 case DT_SYMBOLIC: 3222 case DT_REL: 3223 case DT_DEBUG: 3224 case DT_TEXTREL: 3225 case DT_JMPREL: 3226 case DT_FINI: 3227 case DT_VERDEF: 3228 case DT_VERNEED: 3229 case DT_VERSYM: 3230 case DT_GNU_HASH: 3231 case DT_GNU_LIBLIST: 3232 case DT_GNU_CONFLICT: 3233 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3234 break; 3235 case DT_PLTRELSZ: 3236 case DT_RELASZ: 3237 case DT_RELAENT: 3238 case DT_STRSZ: 3239 case DT_SYMENT: 3240 case DT_RELSZ: 3241 case DT_RELENT: 3242 case DT_INIT_ARRAYSZ: 3243 case DT_FINI_ARRAYSZ: 3244 case DT_GNU_CONFLICTSZ: 3245 case DT_GNU_LIBLISTSZ: 3246 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 3247 break; 3248 case DT_RELACOUNT: 3249 case DT_RELCOUNT: 3250 case DT_VERDEFNUM: 3251 case DT_VERNEEDNUM: 3252 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3253 break; 3254 case DT_NEEDED: 3255 printf(" Shared library: [%s]\n", name); 3256 break; 3257 case DT_SONAME: 3258 printf(" Library soname: [%s]\n", name); 3259 break; 3260 case DT_RPATH: 3261 printf(" Library rpath: [%s]\n", name); 3262 break; 3263 case DT_RUNPATH: 3264 printf(" Library runpath: [%s]\n", name); 3265 break; 3266 case DT_PLTREL: 3267 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 3268 break; 3269 case DT_GNU_PRELINKED: 3270 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3271 break; 3272 default: 3273 printf("\n"); 3274 } 3275 } 3276 3277 static void 3278 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3279 { 3280 GElf_Rel r; 3281 const char *symname; 3282 uint64_t symval; 3283 int i, len; 3284 3285 if (s->link >= re->shnum) 3286 return; 3287 3288 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3289 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3290 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3291 (uintmax_t)symval, symname 3292 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3293 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3294 (uintmax_t)symval, symname 3295 3296 printf("\nRelocation section (%s):\n", s->name); 3297 if (re->ec == ELFCLASS32) 3298 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3299 else { 3300 if (re->options & RE_WW) 3301 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3302 else 3303 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3304 } 3305 assert(d->d_size == s->sz); 3306 if (!get_ent_count(s, &len)) 3307 return; 3308 for (i = 0; i < len; i++) { 3309 if (gelf_getrel(d, i, &r) != &r) { 3310 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3311 continue; 3312 } 3313 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3314 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3315 if (re->ec == ELFCLASS32) { 3316 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3317 ELF64_R_TYPE(r.r_info)); 3318 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3319 } else { 3320 if (re->options & RE_WW) 3321 printf("%16.16jx %16.16jx %-24.24s" 3322 " %16.16jx %s\n", REL_CT64); 3323 else 3324 printf("%12.12jx %12.12jx %-19.19s" 3325 " %16.16jx %s\n", REL_CT64); 3326 } 3327 } 3328 3329 #undef REL_HDR 3330 #undef REL_CT 3331 } 3332 3333 static void 3334 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3335 { 3336 GElf_Rela r; 3337 const char *symname; 3338 uint64_t symval; 3339 int i, len; 3340 3341 if (s->link >= re->shnum) 3342 return; 3343 3344 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3345 "st_name + r_addend" 3346 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3347 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3348 (uintmax_t)symval, symname 3349 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3350 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3351 (uintmax_t)symval, symname 3352 3353 printf("\nRelocation section with addend (%s):\n", s->name); 3354 if (re->ec == ELFCLASS32) 3355 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3356 else { 3357 if (re->options & RE_WW) 3358 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3359 else 3360 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3361 } 3362 assert(d->d_size == s->sz); 3363 if (!get_ent_count(s, &len)) 3364 return; 3365 for (i = 0; i < len; i++) { 3366 if (gelf_getrela(d, i, &r) != &r) { 3367 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3368 continue; 3369 } 3370 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3371 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3372 if (re->ec == ELFCLASS32) { 3373 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3374 ELF64_R_TYPE(r.r_info)); 3375 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3376 printf(" + %x\n", (uint32_t) r.r_addend); 3377 } else { 3378 if (re->options & RE_WW) 3379 printf("%16.16jx %16.16jx %-24.24s" 3380 " %16.16jx %s", RELA_CT64); 3381 else 3382 printf("%12.12jx %12.12jx %-19.19s" 3383 " %16.16jx %s", RELA_CT64); 3384 printf(" + %jx\n", (uintmax_t) r.r_addend); 3385 } 3386 } 3387 3388 #undef RELA_HDR 3389 #undef RELA_CT 3390 } 3391 3392 static void 3393 dump_reloc(struct readelf *re) 3394 { 3395 struct section *s; 3396 Elf_Data *d; 3397 int i, elferr; 3398 3399 for (i = 0; (size_t)i < re->shnum; i++) { 3400 s = &re->sl[i]; 3401 if (s->type == SHT_REL || s->type == SHT_RELA) { 3402 (void) elf_errno(); 3403 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3404 elferr = elf_errno(); 3405 if (elferr != 0) 3406 warnx("elf_getdata failed: %s", 3407 elf_errmsg(elferr)); 3408 continue; 3409 } 3410 if (s->type == SHT_REL) 3411 dump_rel(re, s, d); 3412 else 3413 dump_rela(re, s, d); 3414 } 3415 } 3416 } 3417 3418 static void 3419 dump_symtab(struct readelf *re, int i) 3420 { 3421 struct section *s; 3422 Elf_Data *d; 3423 GElf_Sym sym; 3424 const char *name; 3425 uint32_t stab; 3426 int elferr, j, len; 3427 uint16_t vs; 3428 3429 s = &re->sl[i]; 3430 if (s->link >= re->shnum) 3431 return; 3432 stab = s->link; 3433 (void) elf_errno(); 3434 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3435 elferr = elf_errno(); 3436 if (elferr != 0) 3437 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3438 return; 3439 } 3440 if (d->d_size <= 0) 3441 return; 3442 if (!get_ent_count(s, &len)) 3443 return; 3444 printf("Symbol table (%s)", s->name); 3445 printf(" contains %d entries:\n", len); 3446 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3447 "Bind", "Vis", "Ndx", "Name"); 3448 3449 for (j = 0; j < len; j++) { 3450 if (gelf_getsym(d, j, &sym) != &sym) { 3451 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3452 continue; 3453 } 3454 printf("%6d:", j); 3455 printf(" %16.16jx", (uintmax_t)sym.st_value); 3456 printf(" %5ju", sym.st_size); 3457 printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info))); 3458 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3459 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3460 printf(" %3s", st_shndx(sym.st_shndx)); 3461 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3462 printf(" %s", name); 3463 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3464 if (s->type == SHT_DYNSYM && re->ver != NULL && 3465 re->vs != NULL && re->vs[j] > 1) { 3466 vs = re->vs[j] & VERSYM_VERSION; 3467 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3468 warnx("invalid versym version index %u", vs); 3469 break; 3470 } 3471 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3472 printf("@%s (%d)", re->ver[vs].name, vs); 3473 else 3474 printf("@@%s (%d)", re->ver[vs].name, vs); 3475 } 3476 putchar('\n'); 3477 } 3478 3479 } 3480 3481 static void 3482 dump_symtabs(struct readelf *re) 3483 { 3484 GElf_Dyn dyn; 3485 Elf_Data *d; 3486 struct section *s; 3487 uint64_t dyn_off; 3488 int elferr, i, len; 3489 3490 /* 3491 * If -D is specified, only dump the symbol table specified by 3492 * the DT_SYMTAB entry in the .dynamic section. 3493 */ 3494 dyn_off = 0; 3495 if (re->options & RE_DD) { 3496 s = NULL; 3497 for (i = 0; (size_t)i < re->shnum; i++) 3498 if (re->sl[i].type == SHT_DYNAMIC) { 3499 s = &re->sl[i]; 3500 break; 3501 } 3502 if (s == NULL) 3503 return; 3504 (void) elf_errno(); 3505 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3506 elferr = elf_errno(); 3507 if (elferr != 0) 3508 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3509 return; 3510 } 3511 if (d->d_size <= 0) 3512 return; 3513 if (!get_ent_count(s, &len)) 3514 return; 3515 3516 for (i = 0; i < len; i++) { 3517 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3518 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3519 continue; 3520 } 3521 if (dyn.d_tag == DT_SYMTAB) { 3522 dyn_off = dyn.d_un.d_val; 3523 break; 3524 } 3525 } 3526 } 3527 3528 /* Find and dump symbol tables. */ 3529 for (i = 0; (size_t)i < re->shnum; i++) { 3530 s = &re->sl[i]; 3531 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3532 if (re->options & RE_DD) { 3533 if (dyn_off == s->addr) { 3534 dump_symtab(re, i); 3535 break; 3536 } 3537 } else 3538 dump_symtab(re, i); 3539 } 3540 } 3541 } 3542 3543 static void 3544 dump_svr4_hash(struct section *s) 3545 { 3546 Elf_Data *d; 3547 uint32_t *buf; 3548 uint32_t nbucket, nchain; 3549 uint32_t *bucket, *chain; 3550 uint32_t *bl, *c, maxl, total; 3551 int elferr, i, j; 3552 3553 /* Read and parse the content of .hash section. */ 3554 (void) elf_errno(); 3555 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3556 elferr = elf_errno(); 3557 if (elferr != 0) 3558 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3559 return; 3560 } 3561 if (d->d_size < 2 * sizeof(uint32_t)) { 3562 warnx(".hash section too small"); 3563 return; 3564 } 3565 buf = d->d_buf; 3566 nbucket = buf[0]; 3567 nchain = buf[1]; 3568 if (nbucket <= 0 || nchain <= 0) { 3569 warnx("Malformed .hash section"); 3570 return; 3571 } 3572 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3573 warnx("Malformed .hash section"); 3574 return; 3575 } 3576 bucket = &buf[2]; 3577 chain = &buf[2 + nbucket]; 3578 3579 maxl = 0; 3580 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3581 errx(EXIT_FAILURE, "calloc failed"); 3582 for (i = 0; (uint32_t)i < nbucket; i++) 3583 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3584 if (++bl[i] > maxl) 3585 maxl = bl[i]; 3586 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3587 errx(EXIT_FAILURE, "calloc failed"); 3588 for (i = 0; (uint32_t)i < nbucket; i++) 3589 c[bl[i]]++; 3590 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3591 nbucket); 3592 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3593 total = 0; 3594 for (i = 0; (uint32_t)i <= maxl; i++) { 3595 total += c[i] * i; 3596 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3597 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3598 } 3599 free(c); 3600 free(bl); 3601 } 3602 3603 static void 3604 dump_svr4_hash64(struct readelf *re, struct section *s) 3605 { 3606 Elf_Data *d, dst; 3607 uint64_t *buf; 3608 uint64_t nbucket, nchain; 3609 uint64_t *bucket, *chain; 3610 uint64_t *bl, *c, maxl, total; 3611 int elferr, i, j; 3612 3613 /* 3614 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3615 * .hash section contains only 32-bit entry, an explicit 3616 * gelf_xlatetom is needed here. 3617 */ 3618 (void) elf_errno(); 3619 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3620 elferr = elf_errno(); 3621 if (elferr != 0) 3622 warnx("elf_rawdata failed: %s", 3623 elf_errmsg(elferr)); 3624 return; 3625 } 3626 d->d_type = ELF_T_XWORD; 3627 memcpy(&dst, d, sizeof(Elf_Data)); 3628 if (gelf_xlatetom(re->elf, &dst, d, 3629 re->ehdr.e_ident[EI_DATA]) != &dst) { 3630 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3631 return; 3632 } 3633 if (dst.d_size < 2 * sizeof(uint64_t)) { 3634 warnx(".hash section too small"); 3635 return; 3636 } 3637 buf = dst.d_buf; 3638 nbucket = buf[0]; 3639 nchain = buf[1]; 3640 if (nbucket <= 0 || nchain <= 0) { 3641 warnx("Malformed .hash section"); 3642 return; 3643 } 3644 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3645 warnx("Malformed .hash section"); 3646 return; 3647 } 3648 bucket = &buf[2]; 3649 chain = &buf[2 + nbucket]; 3650 3651 maxl = 0; 3652 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3653 errx(EXIT_FAILURE, "calloc failed"); 3654 for (i = 0; (uint32_t)i < nbucket; i++) 3655 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3656 if (++bl[i] > maxl) 3657 maxl = bl[i]; 3658 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3659 errx(EXIT_FAILURE, "calloc failed"); 3660 for (i = 0; (uint64_t)i < nbucket; i++) 3661 c[bl[i]]++; 3662 printf("Histogram for bucket list length (total of %ju buckets):\n", 3663 (uintmax_t)nbucket); 3664 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3665 total = 0; 3666 for (i = 0; (uint64_t)i <= maxl; i++) { 3667 total += c[i] * i; 3668 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3669 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3670 } 3671 free(c); 3672 free(bl); 3673 } 3674 3675 static void 3676 dump_gnu_hash(struct readelf *re, struct section *s) 3677 { 3678 struct section *ds; 3679 Elf_Data *d; 3680 uint32_t *buf; 3681 uint32_t *bucket, *chain; 3682 uint32_t nbucket, nchain, symndx, maskwords; 3683 uint32_t *bl, *c, maxl, total; 3684 int elferr, dynsymcount, i, j; 3685 3686 (void) elf_errno(); 3687 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3688 elferr = elf_errno(); 3689 if (elferr != 0) 3690 warnx("elf_getdata failed: %s", 3691 elf_errmsg(elferr)); 3692 return; 3693 } 3694 if (d->d_size < 4 * sizeof(uint32_t)) { 3695 warnx(".gnu.hash section too small"); 3696 return; 3697 } 3698 buf = d->d_buf; 3699 nbucket = buf[0]; 3700 symndx = buf[1]; 3701 maskwords = buf[2]; 3702 buf += 4; 3703 if (s->link >= re->shnum) 3704 return; 3705 ds = &re->sl[s->link]; 3706 if (!get_ent_count(ds, &dynsymcount)) 3707 return; 3708 nchain = dynsymcount - symndx; 3709 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3710 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3711 (nbucket + nchain) * sizeof(uint32_t)) { 3712 warnx("Malformed .gnu.hash section"); 3713 return; 3714 } 3715 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3716 chain = bucket + nbucket; 3717 3718 maxl = 0; 3719 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3720 errx(EXIT_FAILURE, "calloc failed"); 3721 for (i = 0; (uint32_t)i < nbucket; i++) 3722 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3723 j++) { 3724 if (++bl[i] > maxl) 3725 maxl = bl[i]; 3726 if (chain[j - symndx] & 1) 3727 break; 3728 } 3729 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3730 errx(EXIT_FAILURE, "calloc failed"); 3731 for (i = 0; (uint32_t)i < nbucket; i++) 3732 c[bl[i]]++; 3733 printf("Histogram for bucket list length (total of %u buckets):\n", 3734 nbucket); 3735 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3736 total = 0; 3737 for (i = 0; (uint32_t)i <= maxl; i++) { 3738 total += c[i] * i; 3739 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3740 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3741 } 3742 free(c); 3743 free(bl); 3744 } 3745 3746 static void 3747 dump_hash(struct readelf *re) 3748 { 3749 struct section *s; 3750 int i; 3751 3752 for (i = 0; (size_t) i < re->shnum; i++) { 3753 s = &re->sl[i]; 3754 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3755 if (s->type == SHT_GNU_HASH) 3756 dump_gnu_hash(re, s); 3757 else if (re->ehdr.e_machine == EM_ALPHA && 3758 s->entsize == 8) 3759 dump_svr4_hash64(re, s); 3760 else 3761 dump_svr4_hash(s); 3762 } 3763 } 3764 } 3765 3766 static void 3767 dump_notes(struct readelf *re) 3768 { 3769 struct section *s; 3770 const char *rawfile; 3771 GElf_Phdr phdr; 3772 Elf_Data *d; 3773 size_t phnum; 3774 int i, elferr; 3775 3776 if (re->ehdr.e_type == ET_CORE) { 3777 /* 3778 * Search program headers in the core file for 3779 * PT_NOTE entry. 3780 */ 3781 if (elf_getphnum(re->elf, &phnum) == 0) { 3782 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3783 return; 3784 } 3785 if (phnum == 0) 3786 return; 3787 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 3788 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3789 return; 3790 } 3791 for (i = 0; (size_t) i < phnum; i++) { 3792 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3793 warnx("gelf_getphdr failed: %s", 3794 elf_errmsg(-1)); 3795 continue; 3796 } 3797 if (phdr.p_type == PT_NOTE) 3798 dump_notes_content(re, rawfile + phdr.p_offset, 3799 phdr.p_filesz, phdr.p_offset); 3800 } 3801 3802 } else { 3803 /* 3804 * For objects other than core files, Search for 3805 * SHT_NOTE sections. 3806 */ 3807 for (i = 0; (size_t) i < re->shnum; i++) { 3808 s = &re->sl[i]; 3809 if (s->type == SHT_NOTE) { 3810 (void) elf_errno(); 3811 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3812 elferr = elf_errno(); 3813 if (elferr != 0) 3814 warnx("elf_getdata failed: %s", 3815 elf_errmsg(elferr)); 3816 continue; 3817 } 3818 dump_notes_content(re, d->d_buf, d->d_size, 3819 s->off); 3820 } 3821 } 3822 } 3823 } 3824 3825 static void 3826 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3827 { 3828 Elf_Note *note; 3829 const char *end, *name; 3830 3831 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3832 (uintmax_t) off, (uintmax_t) sz); 3833 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3834 end = buf + sz; 3835 while (buf < end) { 3836 if (buf + sizeof(*note) > end) { 3837 warnx("invalid note header"); 3838 return; 3839 } 3840 note = (Elf_Note *)(uintptr_t) buf; 3841 name = (char *)(uintptr_t)(note + 1); 3842 /* 3843 * The name field is required to be nul-terminated, and 3844 * n_namesz includes the terminating nul in observed 3845 * implementations (contrary to the ELF-64 spec). A special 3846 * case is needed for cores generated by some older Linux 3847 * versions, which write a note named "CORE" without a nul 3848 * terminator and n_namesz = 4. 3849 */ 3850 if (note->n_namesz == 0) 3851 name = ""; 3852 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3853 name = "CORE"; 3854 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3855 name = "<invalid>"; 3856 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3857 printf(" %s\n", note_type(name, re->ehdr.e_type, 3858 note->n_type)); 3859 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3860 roundup2(note->n_descsz, 4); 3861 } 3862 } 3863 3864 /* 3865 * Symbol versioning sections are the same for 32bit and 64bit 3866 * ELF objects. 3867 */ 3868 #define Elf_Verdef Elf32_Verdef 3869 #define Elf_Verdaux Elf32_Verdaux 3870 #define Elf_Verneed Elf32_Verneed 3871 #define Elf_Vernaux Elf32_Vernaux 3872 3873 #define SAVE_VERSION_NAME(x, n, t) \ 3874 do { \ 3875 while (x >= re->ver_sz) { \ 3876 nv = realloc(re->ver, \ 3877 sizeof(*re->ver) * re->ver_sz * 2); \ 3878 if (nv == NULL) { \ 3879 warn("realloc failed"); \ 3880 free(re->ver); \ 3881 return; \ 3882 } \ 3883 re->ver = nv; \ 3884 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3885 re->ver[i].name = NULL; \ 3886 re->ver[i].type = 0; \ 3887 } \ 3888 re->ver_sz *= 2; \ 3889 } \ 3890 if (x > 1) { \ 3891 re->ver[x].name = n; \ 3892 re->ver[x].type = t; \ 3893 } \ 3894 } while (0) 3895 3896 3897 static void 3898 dump_verdef(struct readelf *re, int dump) 3899 { 3900 struct section *s; 3901 struct symver *nv; 3902 Elf_Data *d; 3903 Elf_Verdef *vd; 3904 Elf_Verdaux *vda; 3905 uint8_t *buf, *end, *buf2; 3906 const char *name; 3907 int elferr, i, j; 3908 3909 if ((s = re->vd_s) == NULL) 3910 return; 3911 if (s->link >= re->shnum) 3912 return; 3913 3914 if (re->ver == NULL) { 3915 re->ver_sz = 16; 3916 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3917 NULL) { 3918 warn("calloc failed"); 3919 return; 3920 } 3921 re->ver[0].name = "*local*"; 3922 re->ver[1].name = "*global*"; 3923 } 3924 3925 if (dump) 3926 printf("\nVersion definition section (%s):\n", s->name); 3927 (void) elf_errno(); 3928 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3929 elferr = elf_errno(); 3930 if (elferr != 0) 3931 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3932 return; 3933 } 3934 if (d->d_size == 0) 3935 return; 3936 3937 buf = d->d_buf; 3938 end = buf + d->d_size; 3939 while (buf + sizeof(Elf_Verdef) <= end) { 3940 vd = (Elf_Verdef *) (uintptr_t) buf; 3941 if (dump) { 3942 printf(" 0x%4.4lx", (unsigned long) 3943 (buf - (uint8_t *)d->d_buf)); 3944 printf(" vd_version: %u vd_flags: %d" 3945 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3946 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3947 } 3948 buf2 = buf + vd->vd_aux; 3949 j = 0; 3950 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3951 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3952 name = get_string(re, s->link, vda->vda_name); 3953 if (j == 0) { 3954 if (dump) 3955 printf(" vda_name: %s\n", name); 3956 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3957 } else if (dump) 3958 printf(" 0x%4.4lx parent: %s\n", 3959 (unsigned long) (buf2 - 3960 (uint8_t *)d->d_buf), name); 3961 if (vda->vda_next == 0) 3962 break; 3963 buf2 += vda->vda_next; 3964 j++; 3965 } 3966 if (vd->vd_next == 0) 3967 break; 3968 buf += vd->vd_next; 3969 } 3970 } 3971 3972 static void 3973 dump_verneed(struct readelf *re, int dump) 3974 { 3975 struct section *s; 3976 struct symver *nv; 3977 Elf_Data *d; 3978 Elf_Verneed *vn; 3979 Elf_Vernaux *vna; 3980 uint8_t *buf, *end, *buf2; 3981 const char *name; 3982 int elferr, i, j; 3983 3984 if ((s = re->vn_s) == NULL) 3985 return; 3986 if (s->link >= re->shnum) 3987 return; 3988 3989 if (re->ver == NULL) { 3990 re->ver_sz = 16; 3991 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3992 NULL) { 3993 warn("calloc failed"); 3994 return; 3995 } 3996 re->ver[0].name = "*local*"; 3997 re->ver[1].name = "*global*"; 3998 } 3999 4000 if (dump) 4001 printf("\nVersion needed section (%s):\n", s->name); 4002 (void) elf_errno(); 4003 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4004 elferr = elf_errno(); 4005 if (elferr != 0) 4006 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 4007 return; 4008 } 4009 if (d->d_size == 0) 4010 return; 4011 4012 buf = d->d_buf; 4013 end = buf + d->d_size; 4014 while (buf + sizeof(Elf_Verneed) <= end) { 4015 vn = (Elf_Verneed *) (uintptr_t) buf; 4016 if (dump) { 4017 printf(" 0x%4.4lx", (unsigned long) 4018 (buf - (uint8_t *)d->d_buf)); 4019 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 4020 vn->vn_version, 4021 get_string(re, s->link, vn->vn_file), 4022 vn->vn_cnt); 4023 } 4024 buf2 = buf + vn->vn_aux; 4025 j = 0; 4026 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 4027 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 4028 if (dump) 4029 printf(" 0x%4.4lx", (unsigned long) 4030 (buf2 - (uint8_t *)d->d_buf)); 4031 name = get_string(re, s->link, vna->vna_name); 4032 if (dump) 4033 printf(" vna_name: %s vna_flags: %u" 4034 " vna_other: %u\n", name, 4035 vna->vna_flags, vna->vna_other); 4036 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 4037 if (vna->vna_next == 0) 4038 break; 4039 buf2 += vna->vna_next; 4040 j++; 4041 } 4042 if (vn->vn_next == 0) 4043 break; 4044 buf += vn->vn_next; 4045 } 4046 } 4047 4048 static void 4049 dump_versym(struct readelf *re) 4050 { 4051 int i; 4052 uint16_t vs; 4053 4054 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 4055 return; 4056 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 4057 for (i = 0; i < re->vs_sz; i++) { 4058 if ((i & 3) == 0) { 4059 if (i > 0) 4060 putchar('\n'); 4061 printf(" %03x:", i); 4062 } 4063 vs = re->vs[i] & VERSYM_VERSION; 4064 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 4065 warnx("invalid versym version index %u", re->vs[i]); 4066 break; 4067 } 4068 if (re->vs[i] & VERSYM_HIDDEN) 4069 printf(" %3xh %-12s ", vs, 4070 re->ver[re->vs[i] & VERSYM_VERSION].name); 4071 else 4072 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 4073 } 4074 putchar('\n'); 4075 } 4076 4077 static void 4078 dump_ver(struct readelf *re) 4079 { 4080 4081 if (re->vs_s && re->ver && re->vs) 4082 dump_versym(re); 4083 if (re->vd_s) 4084 dump_verdef(re, 1); 4085 if (re->vn_s) 4086 dump_verneed(re, 1); 4087 } 4088 4089 static void 4090 search_ver(struct readelf *re) 4091 { 4092 struct section *s; 4093 Elf_Data *d; 4094 int elferr, i; 4095 4096 for (i = 0; (size_t) i < re->shnum; i++) { 4097 s = &re->sl[i]; 4098 if (s->type == SHT_SUNW_versym) 4099 re->vs_s = s; 4100 if (s->type == SHT_SUNW_verneed) 4101 re->vn_s = s; 4102 if (s->type == SHT_SUNW_verdef) 4103 re->vd_s = s; 4104 } 4105 if (re->vd_s) 4106 dump_verdef(re, 0); 4107 if (re->vn_s) 4108 dump_verneed(re, 0); 4109 if (re->vs_s && re->ver != NULL) { 4110 (void) elf_errno(); 4111 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 4112 elferr = elf_errno(); 4113 if (elferr != 0) 4114 warnx("elf_getdata failed: %s", 4115 elf_errmsg(elferr)); 4116 return; 4117 } 4118 if (d->d_size == 0) 4119 return; 4120 re->vs = d->d_buf; 4121 re->vs_sz = d->d_size / sizeof(Elf32_Half); 4122 } 4123 } 4124 4125 #undef Elf_Verdef 4126 #undef Elf_Verdaux 4127 #undef Elf_Verneed 4128 #undef Elf_Vernaux 4129 #undef SAVE_VERSION_NAME 4130 4131 /* 4132 * Elf32_Lib and Elf64_Lib are identical. 4133 */ 4134 #define Elf_Lib Elf32_Lib 4135 4136 static void 4137 dump_liblist(struct readelf *re) 4138 { 4139 struct section *s; 4140 struct tm *t; 4141 time_t ti; 4142 char tbuf[20]; 4143 Elf_Data *d; 4144 Elf_Lib *lib; 4145 int i, j, k, elferr, first, len; 4146 4147 for (i = 0; (size_t) i < re->shnum; i++) { 4148 s = &re->sl[i]; 4149 if (s->type != SHT_GNU_LIBLIST) 4150 continue; 4151 if (s->link >= re->shnum) 4152 continue; 4153 (void) elf_errno(); 4154 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4155 elferr = elf_errno(); 4156 if (elferr != 0) 4157 warnx("elf_getdata failed: %s", 4158 elf_errmsg(elferr)); 4159 continue; 4160 } 4161 if (d->d_size <= 0) 4162 continue; 4163 lib = d->d_buf; 4164 if (!get_ent_count(s, &len)) 4165 continue; 4166 printf("\nLibrary list section '%s' ", s->name); 4167 printf("contains %d entries:\n", len); 4168 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 4169 "Checksum", "Version", "Flags"); 4170 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 4171 printf("%3d: ", j); 4172 printf("%-20.20s ", 4173 get_string(re, s->link, lib->l_name)); 4174 ti = lib->l_time_stamp; 4175 t = gmtime(&ti); 4176 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 4177 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 4178 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 4179 printf("%-19.19s ", tbuf); 4180 printf("0x%08x ", lib->l_checksum); 4181 printf("%-7d %#x", lib->l_version, lib->l_flags); 4182 if (lib->l_flags != 0) { 4183 first = 1; 4184 putchar('('); 4185 for (k = 0; l_flag[k].name != NULL; k++) { 4186 if ((l_flag[k].value & lib->l_flags) == 4187 0) 4188 continue; 4189 if (!first) 4190 putchar(','); 4191 else 4192 first = 0; 4193 printf("%s", l_flag[k].name); 4194 } 4195 putchar(')'); 4196 } 4197 putchar('\n'); 4198 lib++; 4199 } 4200 } 4201 } 4202 4203 #undef Elf_Lib 4204 4205 static void 4206 dump_section_groups(struct readelf *re) 4207 { 4208 struct section *s; 4209 const char *symname; 4210 Elf_Data *d; 4211 uint32_t *w; 4212 int i, j, elferr; 4213 size_t n; 4214 4215 for (i = 0; (size_t) i < re->shnum; i++) { 4216 s = &re->sl[i]; 4217 if (s->type != SHT_GROUP) 4218 continue; 4219 if (s->link >= re->shnum) 4220 continue; 4221 (void) elf_errno(); 4222 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4223 elferr = elf_errno(); 4224 if (elferr != 0) 4225 warnx("elf_getdata failed: %s", 4226 elf_errmsg(elferr)); 4227 continue; 4228 } 4229 if (d->d_size <= 0) 4230 continue; 4231 4232 w = d->d_buf; 4233 4234 /* We only support COMDAT section. */ 4235 #ifndef GRP_COMDAT 4236 #define GRP_COMDAT 0x1 4237 #endif 4238 if ((*w++ & GRP_COMDAT) == 0) 4239 return; 4240 4241 if (s->entsize == 0) 4242 s->entsize = 4; 4243 4244 symname = get_symbol_name(re, s->link, s->info); 4245 n = s->sz / s->entsize; 4246 if (n-- < 1) 4247 return; 4248 4249 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 4250 " sections:\n", i, s->name, symname, (uintmax_t)n); 4251 printf(" %-10.10s %s\n", "[Index]", "Name"); 4252 for (j = 0; (size_t) j < n; j++, w++) { 4253 if (*w >= re->shnum) { 4254 warnx("invalid section index: %u", *w); 4255 continue; 4256 } 4257 printf(" [%5u] %s\n", *w, re->sl[*w].name); 4258 } 4259 } 4260 } 4261 4262 static uint8_t * 4263 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 4264 { 4265 uint64_t val; 4266 4267 /* 4268 * According to ARM EABI: For tags > 32, even numbered tags have 4269 * a ULEB128 param and odd numbered ones have NUL-terminated 4270 * string param. This rule probably also applies for tags <= 32 4271 * if the object arch is not ARM. 4272 */ 4273 4274 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4275 4276 if (tag & 1) { 4277 printf("%s\n", (char *) p); 4278 p += strlen((char *) p) + 1; 4279 } else { 4280 val = _decode_uleb128(&p, pe); 4281 printf("%ju\n", (uintmax_t) val); 4282 } 4283 4284 return (p); 4285 } 4286 4287 static uint8_t * 4288 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 4289 { 4290 uint64_t val; 4291 4292 val = _decode_uleb128(&p, pe); 4293 printf("flag = %ju, vendor = %s\n", val, p); 4294 p += strlen((char *) p) + 1; 4295 4296 return (p); 4297 } 4298 4299 static void 4300 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4301 { 4302 uint64_t tag, val; 4303 size_t i; 4304 int found, desc; 4305 4306 (void) re; 4307 4308 while (p < pe) { 4309 tag = _decode_uleb128(&p, pe); 4310 found = desc = 0; 4311 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4312 i++) { 4313 if (tag == aeabi_tags[i].tag) { 4314 found = 1; 4315 printf(" %s: ", aeabi_tags[i].s_tag); 4316 if (aeabi_tags[i].get_desc) { 4317 desc = 1; 4318 val = _decode_uleb128(&p, pe); 4319 printf("%s\n", 4320 aeabi_tags[i].get_desc(val)); 4321 } 4322 break; 4323 } 4324 if (tag < aeabi_tags[i].tag) 4325 break; 4326 } 4327 if (!found) { 4328 p = dump_unknown_tag(tag, p, pe); 4329 continue; 4330 } 4331 if (desc) 4332 continue; 4333 4334 switch (tag) { 4335 case 4: /* Tag_CPU_raw_name */ 4336 case 5: /* Tag_CPU_name */ 4337 case 67: /* Tag_conformance */ 4338 printf("%s\n", (char *) p); 4339 p += strlen((char *) p) + 1; 4340 break; 4341 case 32: /* Tag_compatibility */ 4342 p = dump_compatibility_tag(p, pe); 4343 break; 4344 case 64: /* Tag_nodefaults */ 4345 /* ignored, written as 0. */ 4346 (void) _decode_uleb128(&p, pe); 4347 printf("True\n"); 4348 break; 4349 case 65: /* Tag_also_compatible_with */ 4350 val = _decode_uleb128(&p, pe); 4351 /* Must be Tag_CPU_arch */ 4352 if (val != 6) { 4353 printf("unknown\n"); 4354 break; 4355 } 4356 val = _decode_uleb128(&p, pe); 4357 printf("%s\n", aeabi_cpu_arch(val)); 4358 /* Skip NUL terminator. */ 4359 p++; 4360 break; 4361 default: 4362 putchar('\n'); 4363 break; 4364 } 4365 } 4366 } 4367 4368 #ifndef Tag_GNU_MIPS_ABI_FP 4369 #define Tag_GNU_MIPS_ABI_FP 4 4370 #endif 4371 4372 static void 4373 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4374 { 4375 uint64_t tag, val; 4376 4377 (void) re; 4378 4379 while (p < pe) { 4380 tag = _decode_uleb128(&p, pe); 4381 switch (tag) { 4382 case Tag_GNU_MIPS_ABI_FP: 4383 val = _decode_uleb128(&p, pe); 4384 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4385 break; 4386 case 32: /* Tag_compatibility */ 4387 p = dump_compatibility_tag(p, pe); 4388 break; 4389 default: 4390 p = dump_unknown_tag(tag, p, pe); 4391 break; 4392 } 4393 } 4394 } 4395 4396 #ifndef Tag_GNU_Power_ABI_FP 4397 #define Tag_GNU_Power_ABI_FP 4 4398 #endif 4399 4400 #ifndef Tag_GNU_Power_ABI_Vector 4401 #define Tag_GNU_Power_ABI_Vector 8 4402 #endif 4403 4404 static void 4405 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4406 { 4407 uint64_t tag, val; 4408 4409 while (p < pe) { 4410 tag = _decode_uleb128(&p, pe); 4411 switch (tag) { 4412 case Tag_GNU_Power_ABI_FP: 4413 val = _decode_uleb128(&p, pe); 4414 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4415 break; 4416 case Tag_GNU_Power_ABI_Vector: 4417 val = _decode_uleb128(&p, pe); 4418 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4419 ppc_abi_vector(val)); 4420 break; 4421 case 32: /* Tag_compatibility */ 4422 p = dump_compatibility_tag(p, pe); 4423 break; 4424 default: 4425 p = dump_unknown_tag(tag, p, pe); 4426 break; 4427 } 4428 } 4429 } 4430 4431 static void 4432 dump_attributes(struct readelf *re) 4433 { 4434 struct section *s; 4435 Elf_Data *d; 4436 uint8_t *p, *pe, *sp; 4437 size_t len, seclen, nlen, sublen; 4438 uint64_t val; 4439 int tag, i, elferr; 4440 4441 for (i = 0; (size_t) i < re->shnum; i++) { 4442 s = &re->sl[i]; 4443 if (s->type != SHT_GNU_ATTRIBUTES && 4444 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4445 continue; 4446 (void) elf_errno(); 4447 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4448 elferr = elf_errno(); 4449 if (elferr != 0) 4450 warnx("elf_rawdata failed: %s", 4451 elf_errmsg(elferr)); 4452 continue; 4453 } 4454 if (d->d_size <= 0) 4455 continue; 4456 p = d->d_buf; 4457 pe = p + d->d_size; 4458 if (*p != 'A') { 4459 printf("Unknown Attribute Section Format: %c\n", 4460 (char) *p); 4461 continue; 4462 } 4463 len = d->d_size - 1; 4464 p++; 4465 while (len > 0) { 4466 if (len < 4) { 4467 warnx("truncated attribute section length"); 4468 return; 4469 } 4470 seclen = re->dw_decode(&p, 4); 4471 if (seclen > len) { 4472 warnx("invalid attribute section length"); 4473 return; 4474 } 4475 len -= seclen; 4476 nlen = strlen((char *) p) + 1; 4477 if (nlen + 4 > seclen) { 4478 warnx("invalid attribute section name"); 4479 return; 4480 } 4481 printf("Attribute Section: %s\n", (char *) p); 4482 p += nlen; 4483 seclen -= nlen + 4; 4484 while (seclen > 0) { 4485 sp = p; 4486 tag = *p++; 4487 sublen = re->dw_decode(&p, 4); 4488 if (sublen > seclen) { 4489 warnx("invalid attribute sub-section" 4490 " length"); 4491 return; 4492 } 4493 seclen -= sublen; 4494 printf("%s", top_tag(tag)); 4495 if (tag == 2 || tag == 3) { 4496 putchar(':'); 4497 for (;;) { 4498 val = _decode_uleb128(&p, pe); 4499 if (val == 0) 4500 break; 4501 printf(" %ju", (uintmax_t) val); 4502 } 4503 } 4504 putchar('\n'); 4505 if (re->ehdr.e_machine == EM_ARM && 4506 s->type == SHT_LOPROC + 3) 4507 dump_arm_attributes(re, p, sp + sublen); 4508 else if (re->ehdr.e_machine == EM_MIPS || 4509 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4510 dump_mips_attributes(re, p, 4511 sp + sublen); 4512 else if (re->ehdr.e_machine == EM_PPC) 4513 dump_ppc_attributes(p, sp + sublen); 4514 p = sp + sublen; 4515 } 4516 } 4517 } 4518 } 4519 4520 static void 4521 dump_mips_specific_info(struct readelf *re) 4522 { 4523 struct section *s; 4524 int i, options_found; 4525 4526 options_found = 0; 4527 s = NULL; 4528 for (i = 0; (size_t) i < re->shnum; i++) { 4529 s = &re->sl[i]; 4530 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4531 (s->type == SHT_MIPS_OPTIONS))) { 4532 dump_mips_options(re, s); 4533 options_found = 1; 4534 } 4535 } 4536 4537 /* 4538 * According to SGI mips64 spec, .reginfo should be ignored if 4539 * .MIPS.options section is present. 4540 */ 4541 if (!options_found) { 4542 for (i = 0; (size_t) i < re->shnum; i++) { 4543 s = &re->sl[i]; 4544 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4545 (s->type == SHT_MIPS_REGINFO))) 4546 dump_mips_reginfo(re, s); 4547 } 4548 } 4549 } 4550 4551 static void 4552 dump_mips_reginfo(struct readelf *re, struct section *s) 4553 { 4554 Elf_Data *d; 4555 int elferr, len; 4556 4557 (void) elf_errno(); 4558 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4559 elferr = elf_errno(); 4560 if (elferr != 0) 4561 warnx("elf_rawdata failed: %s", 4562 elf_errmsg(elferr)); 4563 return; 4564 } 4565 if (d->d_size <= 0) 4566 return; 4567 if (!get_ent_count(s, &len)) 4568 return; 4569 4570 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4571 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4572 } 4573 4574 static void 4575 dump_mips_options(struct readelf *re, struct section *s) 4576 { 4577 Elf_Data *d; 4578 uint32_t info; 4579 uint16_t sndx; 4580 uint8_t *p, *pe; 4581 uint8_t kind, size; 4582 int elferr; 4583 4584 (void) elf_errno(); 4585 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4586 elferr = elf_errno(); 4587 if (elferr != 0) 4588 warnx("elf_rawdata failed: %s", 4589 elf_errmsg(elferr)); 4590 return; 4591 } 4592 if (d->d_size == 0) 4593 return; 4594 4595 printf("\nSection %s contains:\n", s->name); 4596 p = d->d_buf; 4597 pe = p + d->d_size; 4598 while (p < pe) { 4599 if (pe - p < 8) { 4600 warnx("Truncated MIPS option header"); 4601 return; 4602 } 4603 kind = re->dw_decode(&p, 1); 4604 size = re->dw_decode(&p, 1); 4605 sndx = re->dw_decode(&p, 2); 4606 info = re->dw_decode(&p, 4); 4607 if (size < 8 || size - 8 > pe - p) { 4608 warnx("Malformed MIPS option header"); 4609 return; 4610 } 4611 size -= 8; 4612 switch (kind) { 4613 case ODK_REGINFO: 4614 dump_mips_odk_reginfo(re, p, size); 4615 break; 4616 case ODK_EXCEPTIONS: 4617 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4618 info & OEX_FPU_MIN); 4619 printf("%11.11s FPU_MAX: %#x\n", "", 4620 info & OEX_FPU_MAX); 4621 dump_mips_option_flags("", mips_exceptions_option, 4622 info); 4623 break; 4624 case ODK_PAD: 4625 printf(" %-10.10s section: %ju\n", "OPAD", 4626 (uintmax_t) sndx); 4627 dump_mips_option_flags("", mips_pad_option, info); 4628 break; 4629 case ODK_HWPATCH: 4630 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4631 info); 4632 break; 4633 case ODK_HWAND: 4634 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4635 break; 4636 case ODK_HWOR: 4637 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4638 break; 4639 case ODK_FILL: 4640 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4641 break; 4642 case ODK_TAGS: 4643 printf(" %-10.10s\n", "TAGS"); 4644 break; 4645 case ODK_GP_GROUP: 4646 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4647 info & 0xFFFF); 4648 if (info & 0x10000) 4649 printf(" %-10.10s GP group is " 4650 "self-contained\n", ""); 4651 break; 4652 case ODK_IDENT: 4653 printf(" %-10.10s default GP group number: %#x\n", 4654 "IDENT", info & 0xFFFF); 4655 if (info & 0x10000) 4656 printf(" %-10.10s default GP group is " 4657 "self-contained\n", ""); 4658 break; 4659 case ODK_PAGESIZE: 4660 printf(" %-10.10s\n", "PAGESIZE"); 4661 break; 4662 default: 4663 break; 4664 } 4665 p += size; 4666 } 4667 } 4668 4669 static void 4670 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4671 { 4672 int first; 4673 4674 first = 1; 4675 for (; opt->desc != NULL; opt++) { 4676 if (info & opt->flag) { 4677 printf(" %-10.10s %s\n", first ? name : "", 4678 opt->desc); 4679 first = 0; 4680 } 4681 } 4682 } 4683 4684 static void 4685 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4686 { 4687 uint32_t ri_gprmask; 4688 uint32_t ri_cprmask[4]; 4689 uint64_t ri_gp_value; 4690 uint8_t *pe; 4691 int i; 4692 4693 pe = p + sz; 4694 while (p < pe) { 4695 ri_gprmask = re->dw_decode(&p, 4); 4696 /* Skip ri_pad padding field for mips64. */ 4697 if (re->ec == ELFCLASS64) 4698 re->dw_decode(&p, 4); 4699 for (i = 0; i < 4; i++) 4700 ri_cprmask[i] = re->dw_decode(&p, 4); 4701 if (re->ec == ELFCLASS32) 4702 ri_gp_value = re->dw_decode(&p, 4); 4703 else 4704 ri_gp_value = re->dw_decode(&p, 8); 4705 printf(" %s ", option_kind(ODK_REGINFO)); 4706 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4707 for (i = 0; i < 4; i++) 4708 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4709 (uintmax_t) ri_cprmask[i]); 4710 printf("%12.12s", ""); 4711 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4712 } 4713 } 4714 4715 static void 4716 dump_arch_specific_info(struct readelf *re) 4717 { 4718 4719 dump_liblist(re); 4720 dump_attributes(re); 4721 4722 switch (re->ehdr.e_machine) { 4723 case EM_MIPS: 4724 case EM_MIPS_RS3_LE: 4725 dump_mips_specific_info(re); 4726 default: 4727 break; 4728 } 4729 } 4730 4731 static const char * 4732 dwarf_regname(struct readelf *re, unsigned int num) 4733 { 4734 static char rx[32]; 4735 const char *rn; 4736 4737 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4738 return (rn); 4739 4740 snprintf(rx, sizeof(rx), "r%u", num); 4741 4742 return (rx); 4743 } 4744 4745 static void 4746 dump_dwarf_line(struct readelf *re) 4747 { 4748 struct section *s; 4749 Dwarf_Die die; 4750 Dwarf_Error de; 4751 Dwarf_Half tag, version, pointer_size; 4752 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4753 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4754 Elf_Data *d; 4755 char *pn; 4756 uint64_t address, file, line, column, isa, opsize, udelta; 4757 int64_t sdelta; 4758 uint8_t *p, *pe; 4759 int8_t lbase; 4760 int i, is_stmt, dwarf_size, elferr, ret; 4761 4762 printf("\nDump of debug contents of section .debug_line:\n"); 4763 4764 s = NULL; 4765 for (i = 0; (size_t) i < re->shnum; i++) { 4766 s = &re->sl[i]; 4767 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4768 break; 4769 } 4770 if ((size_t) i >= re->shnum) 4771 return; 4772 4773 (void) elf_errno(); 4774 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4775 elferr = elf_errno(); 4776 if (elferr != 0) 4777 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4778 return; 4779 } 4780 if (d->d_size <= 0) 4781 return; 4782 4783 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4784 NULL, &de)) == DW_DLV_OK) { 4785 die = NULL; 4786 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4787 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4788 warnx("dwarf_tag failed: %s", 4789 dwarf_errmsg(de)); 4790 return; 4791 } 4792 /* XXX: What about DW_TAG_partial_unit? */ 4793 if (tag == DW_TAG_compile_unit) 4794 break; 4795 } 4796 if (die == NULL) { 4797 warnx("could not find DW_TAG_compile_unit die"); 4798 return; 4799 } 4800 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4801 &de) != DW_DLV_OK) 4802 continue; 4803 4804 length = re->dw_read(d, &offset, 4); 4805 if (length == 0xffffffff) { 4806 dwarf_size = 8; 4807 length = re->dw_read(d, &offset, 8); 4808 } else 4809 dwarf_size = 4; 4810 4811 if (length > d->d_size - offset) { 4812 warnx("invalid .dwarf_line section"); 4813 continue; 4814 } 4815 4816 endoff = offset + length; 4817 pe = (uint8_t *) d->d_buf + endoff; 4818 version = re->dw_read(d, &offset, 2); 4819 hdrlen = re->dw_read(d, &offset, dwarf_size); 4820 minlen = re->dw_read(d, &offset, 1); 4821 defstmt = re->dw_read(d, &offset, 1); 4822 lbase = re->dw_read(d, &offset, 1); 4823 lrange = re->dw_read(d, &offset, 1); 4824 opbase = re->dw_read(d, &offset, 1); 4825 4826 printf("\n"); 4827 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4828 printf(" DWARF version:\t\t%u\n", version); 4829 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4830 printf(" Minimum Instruction Length:\t%u\n", minlen); 4831 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4832 printf(" Line Base:\t\t\t%d\n", lbase); 4833 printf(" Line Range:\t\t\t%u\n", lrange); 4834 printf(" Opcode Base:\t\t\t%u\n", opbase); 4835 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4836 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4837 4838 printf("\n"); 4839 printf(" Opcodes:\n"); 4840 for (i = 1; i < opbase; i++) { 4841 oplen = re->dw_read(d, &offset, 1); 4842 printf(" Opcode %d has %u args\n", i, oplen); 4843 } 4844 4845 printf("\n"); 4846 printf(" The Directory Table:\n"); 4847 p = (uint8_t *) d->d_buf + offset; 4848 while (*p != '\0') { 4849 printf(" %s\n", (char *) p); 4850 p += strlen((char *) p) + 1; 4851 } 4852 4853 p++; 4854 printf("\n"); 4855 printf(" The File Name Table:\n"); 4856 printf(" Entry\tDir\tTime\tSize\tName\n"); 4857 i = 0; 4858 while (*p != '\0') { 4859 i++; 4860 pn = (char *) p; 4861 p += strlen(pn) + 1; 4862 dirndx = _decode_uleb128(&p, pe); 4863 mtime = _decode_uleb128(&p, pe); 4864 fsize = _decode_uleb128(&p, pe); 4865 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4866 (uintmax_t) dirndx, (uintmax_t) mtime, 4867 (uintmax_t) fsize, pn); 4868 } 4869 4870 #define RESET_REGISTERS \ 4871 do { \ 4872 address = 0; \ 4873 file = 1; \ 4874 line = 1; \ 4875 column = 0; \ 4876 is_stmt = defstmt; \ 4877 } while(0) 4878 4879 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4880 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4881 4882 p++; 4883 printf("\n"); 4884 printf(" Line Number Statements:\n"); 4885 4886 RESET_REGISTERS; 4887 4888 while (p < pe) { 4889 4890 if (*p == 0) { 4891 /* 4892 * Extended Opcodes. 4893 */ 4894 p++; 4895 opsize = _decode_uleb128(&p, pe); 4896 printf(" Extended opcode %u: ", *p); 4897 switch (*p) { 4898 case DW_LNE_end_sequence: 4899 p++; 4900 RESET_REGISTERS; 4901 printf("End of Sequence\n"); 4902 break; 4903 case DW_LNE_set_address: 4904 p++; 4905 address = re->dw_decode(&p, 4906 pointer_size); 4907 printf("set Address to %#jx\n", 4908 (uintmax_t) address); 4909 break; 4910 case DW_LNE_define_file: 4911 p++; 4912 pn = (char *) p; 4913 p += strlen(pn) + 1; 4914 dirndx = _decode_uleb128(&p, pe); 4915 mtime = _decode_uleb128(&p, pe); 4916 fsize = _decode_uleb128(&p, pe); 4917 printf("define new file: %s\n", pn); 4918 break; 4919 default: 4920 /* Unrecognized extened opcodes. */ 4921 p += opsize; 4922 printf("unknown opcode\n"); 4923 } 4924 } else if (*p > 0 && *p < opbase) { 4925 /* 4926 * Standard Opcodes. 4927 */ 4928 switch(*p++) { 4929 case DW_LNS_copy: 4930 printf(" Copy\n"); 4931 break; 4932 case DW_LNS_advance_pc: 4933 udelta = _decode_uleb128(&p, pe) * 4934 minlen; 4935 address += udelta; 4936 printf(" Advance PC by %ju to %#jx\n", 4937 (uintmax_t) udelta, 4938 (uintmax_t) address); 4939 break; 4940 case DW_LNS_advance_line: 4941 sdelta = _decode_sleb128(&p, pe); 4942 line += sdelta; 4943 printf(" Advance Line by %jd to %ju\n", 4944 (intmax_t) sdelta, 4945 (uintmax_t) line); 4946 break; 4947 case DW_LNS_set_file: 4948 file = _decode_uleb128(&p, pe); 4949 printf(" Set File to %ju\n", 4950 (uintmax_t) file); 4951 break; 4952 case DW_LNS_set_column: 4953 column = _decode_uleb128(&p, pe); 4954 printf(" Set Column to %ju\n", 4955 (uintmax_t) column); 4956 break; 4957 case DW_LNS_negate_stmt: 4958 is_stmt = !is_stmt; 4959 printf(" Set is_stmt to %d\n", is_stmt); 4960 break; 4961 case DW_LNS_set_basic_block: 4962 printf(" Set basic block flag\n"); 4963 break; 4964 case DW_LNS_const_add_pc: 4965 address += ADDRESS(255); 4966 printf(" Advance PC by constant %ju" 4967 " to %#jx\n", 4968 (uintmax_t) ADDRESS(255), 4969 (uintmax_t) address); 4970 break; 4971 case DW_LNS_fixed_advance_pc: 4972 udelta = re->dw_decode(&p, 2); 4973 address += udelta; 4974 printf(" Advance PC by fixed value " 4975 "%ju to %#jx\n", 4976 (uintmax_t) udelta, 4977 (uintmax_t) address); 4978 break; 4979 case DW_LNS_set_prologue_end: 4980 printf(" Set prologue end flag\n"); 4981 break; 4982 case DW_LNS_set_epilogue_begin: 4983 printf(" Set epilogue begin flag\n"); 4984 break; 4985 case DW_LNS_set_isa: 4986 isa = _decode_uleb128(&p, pe); 4987 printf(" Set isa to %ju\n", isa); 4988 break; 4989 default: 4990 /* Unrecognized extended opcodes. */ 4991 printf(" Unknown extended opcode %u\n", 4992 *(p - 1)); 4993 break; 4994 } 4995 4996 } else { 4997 /* 4998 * Special Opcodes. 4999 */ 5000 line += LINE(*p); 5001 address += ADDRESS(*p); 5002 printf(" Special opcode %u: advance Address " 5003 "by %ju to %#jx and Line by %jd to %ju\n", 5004 *p - opbase, (uintmax_t) ADDRESS(*p), 5005 (uintmax_t) address, (intmax_t) LINE(*p), 5006 (uintmax_t) line); 5007 p++; 5008 } 5009 5010 5011 } 5012 } 5013 if (ret == DW_DLV_ERROR) 5014 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5015 5016 #undef RESET_REGISTERS 5017 #undef LINE 5018 #undef ADDRESS 5019 } 5020 5021 static void 5022 dump_dwarf_line_decoded(struct readelf *re) 5023 { 5024 Dwarf_Die die; 5025 Dwarf_Line *linebuf, ln; 5026 Dwarf_Addr lineaddr; 5027 Dwarf_Signed linecount, srccount; 5028 Dwarf_Unsigned lineno, fn; 5029 Dwarf_Error de; 5030 const char *dir, *file; 5031 char **srcfiles; 5032 int i, ret; 5033 5034 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 5035 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5036 NULL, &de)) == DW_DLV_OK) { 5037 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 5038 continue; 5039 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 5040 DW_DLV_OK) 5041 file = NULL; 5042 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 5043 DW_DLV_OK) 5044 dir = NULL; 5045 printf("CU: "); 5046 if (dir && file) 5047 printf("%s/", dir); 5048 if (file) 5049 printf("%s", file); 5050 putchar('\n'); 5051 printf("%-37s %11s %s\n", "Filename", "Line Number", 5052 "Starting Address"); 5053 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 5054 continue; 5055 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 5056 continue; 5057 for (i = 0; i < linecount; i++) { 5058 ln = linebuf[i]; 5059 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 5060 continue; 5061 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 5062 continue; 5063 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 5064 continue; 5065 printf("%-37s %11ju %#18jx\n", 5066 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 5067 (uintmax_t) lineaddr); 5068 } 5069 putchar('\n'); 5070 } 5071 } 5072 5073 static void 5074 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 5075 { 5076 Dwarf_Attribute *attr_list; 5077 Dwarf_Die ret_die; 5078 Dwarf_Off dieoff, cuoff, culen, attroff; 5079 Dwarf_Unsigned ate, lang, v_udata, v_sig; 5080 Dwarf_Signed attr_count, v_sdata; 5081 Dwarf_Off v_off; 5082 Dwarf_Addr v_addr; 5083 Dwarf_Half tag, attr, form; 5084 Dwarf_Block *v_block; 5085 Dwarf_Bool v_bool, is_info; 5086 Dwarf_Sig8 v_sig8; 5087 Dwarf_Error de; 5088 Dwarf_Ptr v_expr; 5089 const char *tag_str, *attr_str, *ate_str, *lang_str; 5090 char unk_tag[32], unk_attr[32]; 5091 char *v_str; 5092 uint8_t *b, *p; 5093 int i, j, abc, ret; 5094 5095 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 5096 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 5097 goto cont_search; 5098 } 5099 5100 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 5101 5102 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 5103 warnx("dwarf_die_CU_offset_range failed: %s", 5104 dwarf_errmsg(de)); 5105 cuoff = 0; 5106 } 5107 5108 abc = dwarf_die_abbrev_code(die); 5109 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5110 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5111 goto cont_search; 5112 } 5113 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5114 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 5115 tag_str = unk_tag; 5116 } 5117 5118 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 5119 5120 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5121 DW_DLV_OK) { 5122 if (ret == DW_DLV_ERROR) 5123 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5124 goto cont_search; 5125 } 5126 5127 for (i = 0; i < attr_count; i++) { 5128 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5129 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5130 continue; 5131 } 5132 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5133 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5134 continue; 5135 } 5136 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 5137 snprintf(unk_attr, sizeof(unk_attr), 5138 "[Unknown AT: %#x]", attr); 5139 attr_str = unk_attr; 5140 } 5141 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 5142 DW_DLV_OK) { 5143 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 5144 attroff = 0; 5145 } 5146 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 5147 switch (form) { 5148 case DW_FORM_ref_addr: 5149 case DW_FORM_sec_offset: 5150 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 5151 DW_DLV_OK) { 5152 warnx("dwarf_global_formref failed: %s", 5153 dwarf_errmsg(de)); 5154 continue; 5155 } 5156 if (form == DW_FORM_ref_addr) 5157 printf("<0x%jx>", (uintmax_t) v_off); 5158 else 5159 printf("0x%jx", (uintmax_t) v_off); 5160 break; 5161 5162 case DW_FORM_ref1: 5163 case DW_FORM_ref2: 5164 case DW_FORM_ref4: 5165 case DW_FORM_ref8: 5166 case DW_FORM_ref_udata: 5167 if (dwarf_formref(attr_list[i], &v_off, &de) != 5168 DW_DLV_OK) { 5169 warnx("dwarf_formref failed: %s", 5170 dwarf_errmsg(de)); 5171 continue; 5172 } 5173 v_off += cuoff; 5174 printf("<0x%jx>", (uintmax_t) v_off); 5175 break; 5176 5177 case DW_FORM_addr: 5178 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 5179 DW_DLV_OK) { 5180 warnx("dwarf_formaddr failed: %s", 5181 dwarf_errmsg(de)); 5182 continue; 5183 } 5184 printf("%#jx", (uintmax_t) v_addr); 5185 break; 5186 5187 case DW_FORM_data1: 5188 case DW_FORM_data2: 5189 case DW_FORM_data4: 5190 case DW_FORM_data8: 5191 case DW_FORM_udata: 5192 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 5193 DW_DLV_OK) { 5194 warnx("dwarf_formudata failed: %s", 5195 dwarf_errmsg(de)); 5196 continue; 5197 } 5198 if (attr == DW_AT_high_pc) 5199 printf("0x%jx", (uintmax_t) v_udata); 5200 else 5201 printf("%ju", (uintmax_t) v_udata); 5202 break; 5203 5204 case DW_FORM_sdata: 5205 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 5206 DW_DLV_OK) { 5207 warnx("dwarf_formudata failed: %s", 5208 dwarf_errmsg(de)); 5209 continue; 5210 } 5211 printf("%jd", (intmax_t) v_sdata); 5212 break; 5213 5214 case DW_FORM_flag: 5215 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 5216 DW_DLV_OK) { 5217 warnx("dwarf_formflag failed: %s", 5218 dwarf_errmsg(de)); 5219 continue; 5220 } 5221 printf("%jd", (intmax_t) v_bool); 5222 break; 5223 5224 case DW_FORM_flag_present: 5225 putchar('1'); 5226 break; 5227 5228 case DW_FORM_string: 5229 case DW_FORM_strp: 5230 if (dwarf_formstring(attr_list[i], &v_str, &de) != 5231 DW_DLV_OK) { 5232 warnx("dwarf_formstring failed: %s", 5233 dwarf_errmsg(de)); 5234 continue; 5235 } 5236 if (form == DW_FORM_string) 5237 printf("%s", v_str); 5238 else 5239 printf("(indirect string) %s", v_str); 5240 break; 5241 5242 case DW_FORM_block: 5243 case DW_FORM_block1: 5244 case DW_FORM_block2: 5245 case DW_FORM_block4: 5246 if (dwarf_formblock(attr_list[i], &v_block, &de) != 5247 DW_DLV_OK) { 5248 warnx("dwarf_formblock failed: %s", 5249 dwarf_errmsg(de)); 5250 continue; 5251 } 5252 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 5253 b = v_block->bl_data; 5254 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 5255 printf(" %x", b[j]); 5256 printf("\t("); 5257 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 5258 putchar(')'); 5259 break; 5260 5261 case DW_FORM_exprloc: 5262 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5263 &de) != DW_DLV_OK) { 5264 warnx("dwarf_formexprloc failed: %s", 5265 dwarf_errmsg(de)); 5266 continue; 5267 } 5268 printf("%ju byte block:", (uintmax_t) v_udata); 5269 b = v_expr; 5270 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5271 printf(" %x", b[j]); 5272 printf("\t("); 5273 dump_dwarf_block(re, v_expr, v_udata); 5274 putchar(')'); 5275 break; 5276 5277 case DW_FORM_ref_sig8: 5278 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5279 DW_DLV_OK) { 5280 warnx("dwarf_formsig8 failed: %s", 5281 dwarf_errmsg(de)); 5282 continue; 5283 } 5284 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5285 v_sig = re->dw_decode(&p, 8); 5286 printf("signature: 0x%jx", (uintmax_t) v_sig); 5287 } 5288 switch (attr) { 5289 case DW_AT_encoding: 5290 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5291 DW_DLV_OK) 5292 break; 5293 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5294 ate_str = "DW_ATE_UNKNOWN"; 5295 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5296 break; 5297 5298 case DW_AT_language: 5299 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5300 DW_DLV_OK) 5301 break; 5302 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5303 break; 5304 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5305 break; 5306 5307 case DW_AT_location: 5308 case DW_AT_string_length: 5309 case DW_AT_return_addr: 5310 case DW_AT_data_member_location: 5311 case DW_AT_frame_base: 5312 case DW_AT_segment: 5313 case DW_AT_static_link: 5314 case DW_AT_use_location: 5315 case DW_AT_vtable_elem_location: 5316 switch (form) { 5317 case DW_FORM_data4: 5318 case DW_FORM_data8: 5319 case DW_FORM_sec_offset: 5320 printf("\t(location list)"); 5321 break; 5322 default: 5323 break; 5324 } 5325 5326 default: 5327 break; 5328 } 5329 putchar('\n'); 5330 } 5331 5332 5333 cont_search: 5334 /* Search children. */ 5335 ret = dwarf_child(die, &ret_die, &de); 5336 if (ret == DW_DLV_ERROR) 5337 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5338 else if (ret == DW_DLV_OK) 5339 dump_dwarf_die(re, ret_die, level + 1); 5340 5341 /* Search sibling. */ 5342 is_info = dwarf_get_die_infotypes_flag(die); 5343 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5344 if (ret == DW_DLV_ERROR) 5345 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5346 else if (ret == DW_DLV_OK) 5347 dump_dwarf_die(re, ret_die, level); 5348 5349 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5350 } 5351 5352 static void 5353 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5354 Dwarf_Half ver) 5355 { 5356 5357 re->cu_psize = psize; 5358 re->cu_osize = osize; 5359 re->cu_ver = ver; 5360 } 5361 5362 static void 5363 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5364 { 5365 struct section *s; 5366 Dwarf_Die die; 5367 Dwarf_Error de; 5368 Dwarf_Half tag, version, pointer_size, off_size; 5369 Dwarf_Off cu_offset, cu_length; 5370 Dwarf_Off aboff; 5371 Dwarf_Unsigned typeoff; 5372 Dwarf_Sig8 sig8; 5373 Dwarf_Unsigned sig; 5374 uint8_t *p; 5375 const char *sn; 5376 int i, ret; 5377 5378 sn = is_info ? ".debug_info" : ".debug_types"; 5379 5380 s = NULL; 5381 for (i = 0; (size_t) i < re->shnum; i++) { 5382 s = &re->sl[i]; 5383 if (s->name != NULL && !strcmp(s->name, sn)) 5384 break; 5385 } 5386 if ((size_t) i >= re->shnum) 5387 return; 5388 5389 do { 5390 printf("\nDump of debug contents of section %s:\n", sn); 5391 5392 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5393 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5394 &typeoff, NULL, &de)) == DW_DLV_OK) { 5395 set_cu_context(re, pointer_size, off_size, version); 5396 die = NULL; 5397 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5398 &de) == DW_DLV_OK) { 5399 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5400 warnx("dwarf_tag failed: %s", 5401 dwarf_errmsg(de)); 5402 continue; 5403 } 5404 /* XXX: What about DW_TAG_partial_unit? */ 5405 if ((is_info && tag == DW_TAG_compile_unit) || 5406 (!is_info && tag == DW_TAG_type_unit)) 5407 break; 5408 } 5409 if (die == NULL && is_info) { 5410 warnx("could not find DW_TAG_compile_unit " 5411 "die"); 5412 continue; 5413 } else if (die == NULL && !is_info) { 5414 warnx("could not find DW_TAG_type_unit die"); 5415 continue; 5416 } 5417 5418 if (dwarf_die_CU_offset_range(die, &cu_offset, 5419 &cu_length, &de) != DW_DLV_OK) { 5420 warnx("dwarf_die_CU_offset failed: %s", 5421 dwarf_errmsg(de)); 5422 continue; 5423 } 5424 5425 cu_length -= off_size == 4 ? 4 : 12; 5426 5427 sig = 0; 5428 if (!is_info) { 5429 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5430 sig = re->dw_decode(&p, 8); 5431 } 5432 5433 printf("\n Type Unit @ offset 0x%jx:\n", 5434 (uintmax_t) cu_offset); 5435 printf(" Length:\t\t%#jx (%d-bit)\n", 5436 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5437 printf(" Version:\t\t%u\n", version); 5438 printf(" Abbrev Offset:\t0x%jx\n", 5439 (uintmax_t) aboff); 5440 printf(" Pointer Size:\t%u\n", pointer_size); 5441 if (!is_info) { 5442 printf(" Signature:\t\t0x%016jx\n", 5443 (uintmax_t) sig); 5444 printf(" Type Offset:\t0x%jx\n", 5445 (uintmax_t) typeoff); 5446 } 5447 5448 dump_dwarf_die(re, die, 0); 5449 } 5450 if (ret == DW_DLV_ERROR) 5451 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5452 if (is_info) 5453 break; 5454 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5455 } 5456 5457 static void 5458 dump_dwarf_abbrev(struct readelf *re) 5459 { 5460 Dwarf_Abbrev ab; 5461 Dwarf_Off aboff, atoff; 5462 Dwarf_Unsigned length, attr_count; 5463 Dwarf_Signed flag, form; 5464 Dwarf_Half tag, attr; 5465 Dwarf_Error de; 5466 const char *tag_str, *attr_str, *form_str; 5467 char unk_tag[32], unk_attr[32], unk_form[32]; 5468 int i, j, ret; 5469 5470 printf("\nContents of section .debug_abbrev:\n\n"); 5471 5472 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5473 NULL, NULL, &de)) == DW_DLV_OK) { 5474 printf(" Number TAG\n"); 5475 i = 0; 5476 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5477 &attr_count, &de)) == DW_DLV_OK) { 5478 if (length == 1) { 5479 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5480 break; 5481 } 5482 aboff += length; 5483 printf("%4d", ++i); 5484 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5485 warnx("dwarf_get_abbrev_tag failed: %s", 5486 dwarf_errmsg(de)); 5487 goto next_abbrev; 5488 } 5489 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5490 snprintf(unk_tag, sizeof(unk_tag), 5491 "[Unknown Tag: %#x]", tag); 5492 tag_str = unk_tag; 5493 } 5494 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5495 DW_DLV_OK) { 5496 warnx("dwarf_get_abbrev_children_flag failed:" 5497 " %s", dwarf_errmsg(de)); 5498 goto next_abbrev; 5499 } 5500 printf(" %s %s\n", tag_str, 5501 flag ? "[has children]" : "[no children]"); 5502 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5503 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5504 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5505 warnx("dwarf_get_abbrev_entry failed:" 5506 " %s", dwarf_errmsg(de)); 5507 continue; 5508 } 5509 if (dwarf_get_AT_name(attr, &attr_str) != 5510 DW_DLV_OK) { 5511 snprintf(unk_attr, sizeof(unk_attr), 5512 "[Unknown AT: %#x]", attr); 5513 attr_str = unk_attr; 5514 } 5515 if (dwarf_get_FORM_name(form, &form_str) != 5516 DW_DLV_OK) { 5517 snprintf(unk_form, sizeof(unk_form), 5518 "[Unknown Form: %#x]", 5519 (Dwarf_Half) form); 5520 form_str = unk_form; 5521 } 5522 printf(" %-18s %s\n", attr_str, form_str); 5523 } 5524 next_abbrev: 5525 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5526 } 5527 if (ret != DW_DLV_OK) 5528 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5529 } 5530 if (ret == DW_DLV_ERROR) 5531 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5532 } 5533 5534 static void 5535 dump_dwarf_pubnames(struct readelf *re) 5536 { 5537 struct section *s; 5538 Dwarf_Off die_off; 5539 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5540 Dwarf_Signed cnt; 5541 Dwarf_Global *globs; 5542 Dwarf_Half nt_version; 5543 Dwarf_Error de; 5544 Elf_Data *d; 5545 char *glob_name; 5546 int i, dwarf_size, elferr; 5547 5548 printf("\nContents of the .debug_pubnames section:\n"); 5549 5550 s = NULL; 5551 for (i = 0; (size_t) i < re->shnum; i++) { 5552 s = &re->sl[i]; 5553 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5554 break; 5555 } 5556 if ((size_t) i >= re->shnum) 5557 return; 5558 5559 (void) elf_errno(); 5560 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5561 elferr = elf_errno(); 5562 if (elferr != 0) 5563 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5564 return; 5565 } 5566 if (d->d_size <= 0) 5567 return; 5568 5569 /* Read in .debug_pubnames section table header. */ 5570 offset = 0; 5571 length = re->dw_read(d, &offset, 4); 5572 if (length == 0xffffffff) { 5573 dwarf_size = 8; 5574 length = re->dw_read(d, &offset, 8); 5575 } else 5576 dwarf_size = 4; 5577 5578 if (length > d->d_size - offset) { 5579 warnx("invalid .dwarf_pubnames section"); 5580 return; 5581 } 5582 5583 nt_version = re->dw_read(d, &offset, 2); 5584 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5585 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5586 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5587 printf(" Version:\t\t\t\t%u\n", nt_version); 5588 printf(" Offset into .debug_info section:\t%ju\n", 5589 (uintmax_t) nt_cu_offset); 5590 printf(" Size of area in .debug_info section:\t%ju\n", 5591 (uintmax_t) nt_cu_length); 5592 5593 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5594 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5595 return; 5596 } 5597 5598 printf("\n Offset Name\n"); 5599 for (i = 0; i < cnt; i++) { 5600 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5601 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5602 continue; 5603 } 5604 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5605 DW_DLV_OK) { 5606 warnx("dwarf_global_die_offset failed: %s", 5607 dwarf_errmsg(de)); 5608 continue; 5609 } 5610 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5611 } 5612 } 5613 5614 static void 5615 dump_dwarf_aranges(struct readelf *re) 5616 { 5617 struct section *s; 5618 Dwarf_Arange *aranges; 5619 Dwarf_Addr start; 5620 Dwarf_Unsigned offset, length, as_cu_offset; 5621 Dwarf_Off die_off; 5622 Dwarf_Signed cnt; 5623 Dwarf_Half as_version, as_addrsz, as_segsz; 5624 Dwarf_Error de; 5625 Elf_Data *d; 5626 int i, dwarf_size, elferr; 5627 5628 printf("\nContents of section .debug_aranges:\n"); 5629 5630 s = NULL; 5631 for (i = 0; (size_t) i < re->shnum; i++) { 5632 s = &re->sl[i]; 5633 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5634 break; 5635 } 5636 if ((size_t) i >= re->shnum) 5637 return; 5638 5639 (void) elf_errno(); 5640 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5641 elferr = elf_errno(); 5642 if (elferr != 0) 5643 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5644 return; 5645 } 5646 if (d->d_size <= 0) 5647 return; 5648 5649 /* Read in the .debug_aranges section table header. */ 5650 offset = 0; 5651 length = re->dw_read(d, &offset, 4); 5652 if (length == 0xffffffff) { 5653 dwarf_size = 8; 5654 length = re->dw_read(d, &offset, 8); 5655 } else 5656 dwarf_size = 4; 5657 5658 if (length > d->d_size - offset) { 5659 warnx("invalid .dwarf_aranges section"); 5660 return; 5661 } 5662 5663 as_version = re->dw_read(d, &offset, 2); 5664 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5665 as_addrsz = re->dw_read(d, &offset, 1); 5666 as_segsz = re->dw_read(d, &offset, 1); 5667 5668 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5669 printf(" Version:\t\t\t%u\n", as_version); 5670 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5671 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5672 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5673 5674 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5675 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5676 return; 5677 } 5678 5679 printf("\n Address Length\n"); 5680 for (i = 0; i < cnt; i++) { 5681 if (dwarf_get_arange_info(aranges[i], &start, &length, 5682 &die_off, &de) != DW_DLV_OK) { 5683 warnx("dwarf_get_arange_info failed: %s", 5684 dwarf_errmsg(de)); 5685 continue; 5686 } 5687 printf(" %08jx %ju\n", (uintmax_t) start, 5688 (uintmax_t) length); 5689 } 5690 } 5691 5692 static void 5693 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5694 { 5695 Dwarf_Attribute *attr_list; 5696 Dwarf_Ranges *ranges; 5697 Dwarf_Die ret_die; 5698 Dwarf_Error de; 5699 Dwarf_Addr base0; 5700 Dwarf_Half attr; 5701 Dwarf_Signed attr_count, cnt; 5702 Dwarf_Unsigned off, bytecnt; 5703 int i, j, ret; 5704 5705 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5706 DW_DLV_OK) { 5707 if (ret == DW_DLV_ERROR) 5708 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5709 goto cont_search; 5710 } 5711 5712 for (i = 0; i < attr_count; i++) { 5713 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5714 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5715 continue; 5716 } 5717 if (attr != DW_AT_ranges) 5718 continue; 5719 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5720 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5721 continue; 5722 } 5723 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5724 &bytecnt, &de) != DW_DLV_OK) 5725 continue; 5726 base0 = base; 5727 for (j = 0; j < cnt; j++) { 5728 printf(" %08jx ", (uintmax_t) off); 5729 if (ranges[j].dwr_type == DW_RANGES_END) { 5730 printf("%s\n", "<End of list>"); 5731 continue; 5732 } else if (ranges[j].dwr_type == 5733 DW_RANGES_ADDRESS_SELECTION) { 5734 base0 = ranges[j].dwr_addr2; 5735 continue; 5736 } 5737 if (re->ec == ELFCLASS32) 5738 printf("%08jx %08jx\n", 5739 ranges[j].dwr_addr1 + base0, 5740 ranges[j].dwr_addr2 + base0); 5741 else 5742 printf("%016jx %016jx\n", 5743 ranges[j].dwr_addr1 + base0, 5744 ranges[j].dwr_addr2 + base0); 5745 } 5746 } 5747 5748 cont_search: 5749 /* Search children. */ 5750 ret = dwarf_child(die, &ret_die, &de); 5751 if (ret == DW_DLV_ERROR) 5752 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5753 else if (ret == DW_DLV_OK) 5754 dump_dwarf_ranges_foreach(re, ret_die, base); 5755 5756 /* Search sibling. */ 5757 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5758 if (ret == DW_DLV_ERROR) 5759 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5760 else if (ret == DW_DLV_OK) 5761 dump_dwarf_ranges_foreach(re, ret_die, base); 5762 } 5763 5764 static void 5765 dump_dwarf_ranges(struct readelf *re) 5766 { 5767 Dwarf_Ranges *ranges; 5768 Dwarf_Die die; 5769 Dwarf_Signed cnt; 5770 Dwarf_Unsigned bytecnt; 5771 Dwarf_Half tag; 5772 Dwarf_Error de; 5773 Dwarf_Unsigned lowpc; 5774 int ret; 5775 5776 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5777 DW_DLV_OK) 5778 return; 5779 5780 printf("Contents of the .debug_ranges section:\n\n"); 5781 if (re->ec == ELFCLASS32) 5782 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5783 else 5784 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5785 5786 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5787 NULL, &de)) == DW_DLV_OK) { 5788 die = NULL; 5789 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5790 continue; 5791 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5792 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5793 continue; 5794 } 5795 /* XXX: What about DW_TAG_partial_unit? */ 5796 lowpc = 0; 5797 if (tag == DW_TAG_compile_unit) { 5798 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5799 &de) != DW_DLV_OK) 5800 lowpc = 0; 5801 } 5802 5803 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5804 } 5805 putchar('\n'); 5806 } 5807 5808 static void 5809 dump_dwarf_macinfo(struct readelf *re) 5810 { 5811 Dwarf_Unsigned offset; 5812 Dwarf_Signed cnt; 5813 Dwarf_Macro_Details *md; 5814 Dwarf_Error de; 5815 const char *mi_str; 5816 char unk_mi[32]; 5817 int i; 5818 5819 #define _MAX_MACINFO_ENTRY 65535 5820 5821 printf("\nContents of section .debug_macinfo:\n\n"); 5822 5823 offset = 0; 5824 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5825 &cnt, &md, &de) == DW_DLV_OK) { 5826 for (i = 0; i < cnt; i++) { 5827 offset = md[i].dmd_offset + 1; 5828 if (md[i].dmd_type == 0) 5829 break; 5830 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5831 DW_DLV_OK) { 5832 snprintf(unk_mi, sizeof(unk_mi), 5833 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5834 mi_str = unk_mi; 5835 } 5836 printf(" %s", mi_str); 5837 switch (md[i].dmd_type) { 5838 case DW_MACINFO_define: 5839 case DW_MACINFO_undef: 5840 printf(" - lineno : %jd macro : %s\n", 5841 (intmax_t) md[i].dmd_lineno, 5842 md[i].dmd_macro); 5843 break; 5844 case DW_MACINFO_start_file: 5845 printf(" - lineno : %jd filenum : %jd\n", 5846 (intmax_t) md[i].dmd_lineno, 5847 (intmax_t) md[i].dmd_fileindex); 5848 break; 5849 default: 5850 putchar('\n'); 5851 break; 5852 } 5853 } 5854 } 5855 5856 #undef _MAX_MACINFO_ENTRY 5857 } 5858 5859 static void 5860 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5861 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5862 Dwarf_Debug dbg) 5863 { 5864 Dwarf_Frame_Op *oplist; 5865 Dwarf_Signed opcnt, delta; 5866 Dwarf_Small op; 5867 Dwarf_Error de; 5868 const char *op_str; 5869 char unk_op[32]; 5870 int i; 5871 5872 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5873 &opcnt, &de) != DW_DLV_OK) { 5874 warnx("dwarf_expand_frame_instructions failed: %s", 5875 dwarf_errmsg(de)); 5876 return; 5877 } 5878 5879 for (i = 0; i < opcnt; i++) { 5880 if (oplist[i].fp_base_op != 0) 5881 op = oplist[i].fp_base_op << 6; 5882 else 5883 op = oplist[i].fp_extended_op; 5884 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5885 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5886 op); 5887 op_str = unk_op; 5888 } 5889 printf(" %s", op_str); 5890 switch (op) { 5891 case DW_CFA_advance_loc: 5892 delta = oplist[i].fp_offset * caf; 5893 pc += delta; 5894 printf(": %ju to %08jx", (uintmax_t) delta, 5895 (uintmax_t) pc); 5896 break; 5897 case DW_CFA_offset: 5898 case DW_CFA_offset_extended: 5899 case DW_CFA_offset_extended_sf: 5900 delta = oplist[i].fp_offset * daf; 5901 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5902 dwarf_regname(re, oplist[i].fp_register), 5903 (intmax_t) delta); 5904 break; 5905 case DW_CFA_restore: 5906 printf(": r%u (%s)", oplist[i].fp_register, 5907 dwarf_regname(re, oplist[i].fp_register)); 5908 break; 5909 case DW_CFA_set_loc: 5910 pc = oplist[i].fp_offset; 5911 printf(": to %08jx", (uintmax_t) pc); 5912 break; 5913 case DW_CFA_advance_loc1: 5914 case DW_CFA_advance_loc2: 5915 case DW_CFA_advance_loc4: 5916 pc += oplist[i].fp_offset; 5917 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5918 (uintmax_t) pc); 5919 break; 5920 case DW_CFA_def_cfa: 5921 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5922 dwarf_regname(re, oplist[i].fp_register), 5923 (uintmax_t) oplist[i].fp_offset); 5924 break; 5925 case DW_CFA_def_cfa_sf: 5926 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5927 dwarf_regname(re, oplist[i].fp_register), 5928 (intmax_t) (oplist[i].fp_offset * daf)); 5929 break; 5930 case DW_CFA_def_cfa_register: 5931 printf(": r%u (%s)", oplist[i].fp_register, 5932 dwarf_regname(re, oplist[i].fp_register)); 5933 break; 5934 case DW_CFA_def_cfa_offset: 5935 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5936 break; 5937 case DW_CFA_def_cfa_offset_sf: 5938 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5939 break; 5940 default: 5941 break; 5942 } 5943 putchar('\n'); 5944 } 5945 5946 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5947 } 5948 5949 static char * 5950 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5951 { 5952 static char rs[16]; 5953 5954 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5955 snprintf(rs, sizeof(rs), "%c", 'u'); 5956 else if (reg == DW_FRAME_CFA_COL) 5957 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5958 else 5959 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5960 (intmax_t) off); 5961 5962 return (rs); 5963 } 5964 5965 static int 5966 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5967 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5968 { 5969 Dwarf_Regtable rt; 5970 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5971 Dwarf_Error de; 5972 char *vec; 5973 int i; 5974 5975 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 5976 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 5977 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 5978 #define RT(x) rt.rules[(x)] 5979 5980 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 5981 if (vec == NULL) 5982 err(EXIT_FAILURE, "calloc failed"); 5983 5984 pre_pc = ~((Dwarf_Addr) 0); 5985 cur_pc = pc; 5986 end_pc = pc + func_len; 5987 for (; cur_pc < end_pc; cur_pc++) { 5988 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 5989 &de) != DW_DLV_OK) { 5990 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 5991 dwarf_errmsg(de)); 5992 return (-1); 5993 } 5994 if (row_pc == pre_pc) 5995 continue; 5996 pre_pc = row_pc; 5997 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 5998 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 5999 BIT_SET(vec, i); 6000 } 6001 } 6002 6003 printf(" LOC CFA "); 6004 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6005 if (BIT_ISSET(vec, i)) { 6006 if ((Dwarf_Half) i == cie_ra) 6007 printf("ra "); 6008 else 6009 printf("%-5s", 6010 dwarf_regname(re, (unsigned int) i)); 6011 } 6012 } 6013 putchar('\n'); 6014 6015 pre_pc = ~((Dwarf_Addr) 0); 6016 cur_pc = pc; 6017 end_pc = pc + func_len; 6018 for (; cur_pc < end_pc; cur_pc++) { 6019 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6020 &de) != DW_DLV_OK) { 6021 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6022 dwarf_errmsg(de)); 6023 return (-1); 6024 } 6025 if (row_pc == pre_pc) 6026 continue; 6027 pre_pc = row_pc; 6028 printf("%08jx ", (uintmax_t) row_pc); 6029 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 6030 RT(0).dw_offset)); 6031 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6032 if (BIT_ISSET(vec, i)) { 6033 printf("%-5s", get_regoff_str(re, 6034 RT(i).dw_regnum, RT(i).dw_offset)); 6035 } 6036 } 6037 putchar('\n'); 6038 } 6039 6040 free(vec); 6041 6042 return (0); 6043 6044 #undef BIT_SET 6045 #undef BIT_CLR 6046 #undef BIT_ISSET 6047 #undef RT 6048 } 6049 6050 static void 6051 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 6052 { 6053 Dwarf_Cie *cie_list, cie, pre_cie; 6054 Dwarf_Fde *fde_list, fde; 6055 Dwarf_Off cie_offset, fde_offset; 6056 Dwarf_Unsigned cie_length, fde_instlen; 6057 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 6058 Dwarf_Signed cie_count, fde_count, cie_index; 6059 Dwarf_Addr low_pc; 6060 Dwarf_Half cie_ra; 6061 Dwarf_Small cie_version; 6062 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 6063 char *cie_aug, c; 6064 int i, eh_frame; 6065 Dwarf_Error de; 6066 6067 printf("\nThe section %s contains:\n\n", s->name); 6068 6069 if (!strcmp(s->name, ".debug_frame")) { 6070 eh_frame = 0; 6071 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 6072 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6073 warnx("dwarf_get_fde_list failed: %s", 6074 dwarf_errmsg(de)); 6075 return; 6076 } 6077 } else if (!strcmp(s->name, ".eh_frame")) { 6078 eh_frame = 1; 6079 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 6080 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6081 warnx("dwarf_get_fde_list_eh failed: %s", 6082 dwarf_errmsg(de)); 6083 return; 6084 } 6085 } else 6086 return; 6087 6088 pre_cie = NULL; 6089 for (i = 0; i < fde_count; i++) { 6090 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 6091 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6092 continue; 6093 } 6094 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 6095 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6096 continue; 6097 } 6098 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 6099 &fde_length, &cie_offset, &cie_index, &fde_offset, 6100 &de) != DW_DLV_OK) { 6101 warnx("dwarf_get_fde_range failed: %s", 6102 dwarf_errmsg(de)); 6103 continue; 6104 } 6105 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 6106 &de) != DW_DLV_OK) { 6107 warnx("dwarf_get_fde_instr_bytes failed: %s", 6108 dwarf_errmsg(de)); 6109 continue; 6110 } 6111 if (pre_cie == NULL || cie != pre_cie) { 6112 pre_cie = cie; 6113 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 6114 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 6115 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 6116 warnx("dwarf_get_cie_info failed: %s", 6117 dwarf_errmsg(de)); 6118 continue; 6119 } 6120 printf("%08jx %08jx %8.8jx CIE", 6121 (uintmax_t) cie_offset, 6122 (uintmax_t) cie_length, 6123 (uintmax_t) (eh_frame ? 0 : ~0U)); 6124 if (!alt) { 6125 putchar('\n'); 6126 printf(" Version:\t\t\t%u\n", cie_version); 6127 printf(" Augmentation:\t\t\t\""); 6128 while ((c = *cie_aug++) != '\0') 6129 putchar(c); 6130 printf("\"\n"); 6131 printf(" Code alignment factor:\t%ju\n", 6132 (uintmax_t) cie_caf); 6133 printf(" Data alignment factor:\t%jd\n", 6134 (intmax_t) cie_daf); 6135 printf(" Return address column:\t%ju\n", 6136 (uintmax_t) cie_ra); 6137 putchar('\n'); 6138 dump_dwarf_frame_inst(re, cie, cie_inst, 6139 cie_instlen, cie_caf, cie_daf, 0, 6140 re->dbg); 6141 putchar('\n'); 6142 } else { 6143 printf(" \""); 6144 while ((c = *cie_aug++) != '\0') 6145 putchar(c); 6146 putchar('"'); 6147 printf(" cf=%ju df=%jd ra=%ju\n", 6148 (uintmax_t) cie_caf, 6149 (uintmax_t) cie_daf, 6150 (uintmax_t) cie_ra); 6151 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 6152 cie_ra); 6153 putchar('\n'); 6154 } 6155 } 6156 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 6157 (uintmax_t) fde_offset, (uintmax_t) fde_length, 6158 (uintmax_t) cie_offset, 6159 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 6160 cie_offset), 6161 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 6162 if (!alt) 6163 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 6164 cie_caf, cie_daf, low_pc, re->dbg); 6165 else 6166 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 6167 cie_ra); 6168 putchar('\n'); 6169 } 6170 } 6171 6172 static void 6173 dump_dwarf_frame(struct readelf *re, int alt) 6174 { 6175 struct section *s; 6176 int i; 6177 6178 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 6179 6180 for (i = 0; (size_t) i < re->shnum; i++) { 6181 s = &re->sl[i]; 6182 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 6183 !strcmp(s->name, ".eh_frame"))) 6184 dump_dwarf_frame_section(re, s, alt); 6185 } 6186 } 6187 6188 static void 6189 dump_dwarf_str(struct readelf *re) 6190 { 6191 struct section *s; 6192 Elf_Data *d; 6193 unsigned char *p; 6194 int elferr, end, i, j; 6195 6196 printf("\nContents of section .debug_str:\n"); 6197 6198 s = NULL; 6199 for (i = 0; (size_t) i < re->shnum; i++) { 6200 s = &re->sl[i]; 6201 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 6202 break; 6203 } 6204 if ((size_t) i >= re->shnum) 6205 return; 6206 6207 (void) elf_errno(); 6208 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6209 elferr = elf_errno(); 6210 if (elferr != 0) 6211 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 6212 return; 6213 } 6214 if (d->d_size <= 0) 6215 return; 6216 6217 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 6218 printf(" 0x%08x", (unsigned int) i); 6219 if ((size_t) i + 16 > d->d_size) 6220 end = d->d_size; 6221 else 6222 end = i + 16; 6223 for (j = i; j < i + 16; j++) { 6224 if ((j - i) % 4 == 0) 6225 putchar(' '); 6226 if (j >= end) { 6227 printf(" "); 6228 continue; 6229 } 6230 printf("%02x", (uint8_t) p[j]); 6231 } 6232 putchar(' '); 6233 for (j = i; j < end; j++) { 6234 if (isprint(p[j])) 6235 putchar(p[j]); 6236 else if (p[j] == 0) 6237 putchar('.'); 6238 else 6239 putchar(' '); 6240 } 6241 putchar('\n'); 6242 } 6243 } 6244 6245 struct loc_at { 6246 Dwarf_Attribute la_at; 6247 Dwarf_Unsigned la_off; 6248 Dwarf_Unsigned la_lowpc; 6249 Dwarf_Half la_cu_psize; 6250 Dwarf_Half la_cu_osize; 6251 Dwarf_Half la_cu_ver; 6252 TAILQ_ENTRY(loc_at) la_next; 6253 }; 6254 6255 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 6256 6257 static void 6258 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 6259 { 6260 Dwarf_Attribute *attr_list; 6261 Dwarf_Die ret_die; 6262 Dwarf_Unsigned off; 6263 Dwarf_Off ref; 6264 Dwarf_Signed attr_count; 6265 Dwarf_Half attr, form; 6266 Dwarf_Bool is_info; 6267 Dwarf_Error de; 6268 struct loc_at *la, *nla; 6269 int i, ret; 6270 6271 is_info = dwarf_get_die_infotypes_flag(die); 6272 6273 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6274 DW_DLV_OK) { 6275 if (ret == DW_DLV_ERROR) 6276 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6277 goto cont_search; 6278 } 6279 for (i = 0; i < attr_count; i++) { 6280 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6281 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6282 continue; 6283 } 6284 if (attr != DW_AT_location && 6285 attr != DW_AT_string_length && 6286 attr != DW_AT_return_addr && 6287 attr != DW_AT_data_member_location && 6288 attr != DW_AT_frame_base && 6289 attr != DW_AT_segment && 6290 attr != DW_AT_static_link && 6291 attr != DW_AT_use_location && 6292 attr != DW_AT_vtable_elem_location) 6293 continue; 6294 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6295 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6296 continue; 6297 } 6298 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6299 if (dwarf_formudata(attr_list[i], &off, &de) != 6300 DW_DLV_OK) { 6301 warnx("dwarf_formudata failed: %s", 6302 dwarf_errmsg(de)); 6303 continue; 6304 } 6305 } else if (form == DW_FORM_sec_offset) { 6306 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6307 DW_DLV_OK) { 6308 warnx("dwarf_global_formref failed: %s", 6309 dwarf_errmsg(de)); 6310 continue; 6311 } 6312 off = ref; 6313 } else 6314 continue; 6315 6316 TAILQ_FOREACH(la, &lalist, la_next) { 6317 if (off == la->la_off) 6318 break; 6319 if (off < la->la_off) { 6320 if ((nla = malloc(sizeof(*nla))) == NULL) 6321 err(EXIT_FAILURE, "malloc failed"); 6322 nla->la_at = attr_list[i]; 6323 nla->la_off = off; 6324 nla->la_lowpc = lowpc; 6325 nla->la_cu_psize = re->cu_psize; 6326 nla->la_cu_osize = re->cu_osize; 6327 nla->la_cu_ver = re->cu_ver; 6328 TAILQ_INSERT_BEFORE(la, nla, la_next); 6329 break; 6330 } 6331 } 6332 if (la == NULL) { 6333 if ((nla = malloc(sizeof(*nla))) == NULL) 6334 err(EXIT_FAILURE, "malloc failed"); 6335 nla->la_at = attr_list[i]; 6336 nla->la_off = off; 6337 nla->la_lowpc = lowpc; 6338 nla->la_cu_psize = re->cu_psize; 6339 nla->la_cu_osize = re->cu_osize; 6340 nla->la_cu_ver = re->cu_ver; 6341 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6342 } 6343 } 6344 6345 cont_search: 6346 /* Search children. */ 6347 ret = dwarf_child(die, &ret_die, &de); 6348 if (ret == DW_DLV_ERROR) 6349 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6350 else if (ret == DW_DLV_OK) 6351 search_loclist_at(re, ret_die, lowpc); 6352 6353 /* Search sibling. */ 6354 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6355 if (ret == DW_DLV_ERROR) 6356 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6357 else if (ret == DW_DLV_OK) 6358 search_loclist_at(re, ret_die, lowpc); 6359 } 6360 6361 static void 6362 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6363 { 6364 const char *op_str; 6365 char unk_op[32]; 6366 uint8_t *b, n; 6367 int i; 6368 6369 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6370 DW_DLV_OK) { 6371 snprintf(unk_op, sizeof(unk_op), 6372 "[Unknown OP: %#x]", lr->lr_atom); 6373 op_str = unk_op; 6374 } 6375 6376 printf("%s", op_str); 6377 6378 switch (lr->lr_atom) { 6379 case DW_OP_reg0: 6380 case DW_OP_reg1: 6381 case DW_OP_reg2: 6382 case DW_OP_reg3: 6383 case DW_OP_reg4: 6384 case DW_OP_reg5: 6385 case DW_OP_reg6: 6386 case DW_OP_reg7: 6387 case DW_OP_reg8: 6388 case DW_OP_reg9: 6389 case DW_OP_reg10: 6390 case DW_OP_reg11: 6391 case DW_OP_reg12: 6392 case DW_OP_reg13: 6393 case DW_OP_reg14: 6394 case DW_OP_reg15: 6395 case DW_OP_reg16: 6396 case DW_OP_reg17: 6397 case DW_OP_reg18: 6398 case DW_OP_reg19: 6399 case DW_OP_reg20: 6400 case DW_OP_reg21: 6401 case DW_OP_reg22: 6402 case DW_OP_reg23: 6403 case DW_OP_reg24: 6404 case DW_OP_reg25: 6405 case DW_OP_reg26: 6406 case DW_OP_reg27: 6407 case DW_OP_reg28: 6408 case DW_OP_reg29: 6409 case DW_OP_reg30: 6410 case DW_OP_reg31: 6411 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6412 break; 6413 6414 case DW_OP_deref: 6415 case DW_OP_lit0: 6416 case DW_OP_lit1: 6417 case DW_OP_lit2: 6418 case DW_OP_lit3: 6419 case DW_OP_lit4: 6420 case DW_OP_lit5: 6421 case DW_OP_lit6: 6422 case DW_OP_lit7: 6423 case DW_OP_lit8: 6424 case DW_OP_lit9: 6425 case DW_OP_lit10: 6426 case DW_OP_lit11: 6427 case DW_OP_lit12: 6428 case DW_OP_lit13: 6429 case DW_OP_lit14: 6430 case DW_OP_lit15: 6431 case DW_OP_lit16: 6432 case DW_OP_lit17: 6433 case DW_OP_lit18: 6434 case DW_OP_lit19: 6435 case DW_OP_lit20: 6436 case DW_OP_lit21: 6437 case DW_OP_lit22: 6438 case DW_OP_lit23: 6439 case DW_OP_lit24: 6440 case DW_OP_lit25: 6441 case DW_OP_lit26: 6442 case DW_OP_lit27: 6443 case DW_OP_lit28: 6444 case DW_OP_lit29: 6445 case DW_OP_lit30: 6446 case DW_OP_lit31: 6447 case DW_OP_dup: 6448 case DW_OP_drop: 6449 case DW_OP_over: 6450 case DW_OP_swap: 6451 case DW_OP_rot: 6452 case DW_OP_xderef: 6453 case DW_OP_abs: 6454 case DW_OP_and: 6455 case DW_OP_div: 6456 case DW_OP_minus: 6457 case DW_OP_mod: 6458 case DW_OP_mul: 6459 case DW_OP_neg: 6460 case DW_OP_not: 6461 case DW_OP_or: 6462 case DW_OP_plus: 6463 case DW_OP_shl: 6464 case DW_OP_shr: 6465 case DW_OP_shra: 6466 case DW_OP_xor: 6467 case DW_OP_eq: 6468 case DW_OP_ge: 6469 case DW_OP_gt: 6470 case DW_OP_le: 6471 case DW_OP_lt: 6472 case DW_OP_ne: 6473 case DW_OP_nop: 6474 case DW_OP_push_object_address: 6475 case DW_OP_form_tls_address: 6476 case DW_OP_call_frame_cfa: 6477 case DW_OP_stack_value: 6478 case DW_OP_GNU_push_tls_address: 6479 case DW_OP_GNU_uninit: 6480 break; 6481 6482 case DW_OP_const1u: 6483 case DW_OP_pick: 6484 case DW_OP_deref_size: 6485 case DW_OP_xderef_size: 6486 case DW_OP_const2u: 6487 case DW_OP_bra: 6488 case DW_OP_skip: 6489 case DW_OP_const4u: 6490 case DW_OP_const8u: 6491 case DW_OP_constu: 6492 case DW_OP_plus_uconst: 6493 case DW_OP_regx: 6494 case DW_OP_piece: 6495 printf(": %ju", (uintmax_t) 6496 lr->lr_number); 6497 break; 6498 6499 case DW_OP_const1s: 6500 case DW_OP_const2s: 6501 case DW_OP_const4s: 6502 case DW_OP_const8s: 6503 case DW_OP_consts: 6504 printf(": %jd", (intmax_t) 6505 lr->lr_number); 6506 break; 6507 6508 case DW_OP_breg0: 6509 case DW_OP_breg1: 6510 case DW_OP_breg2: 6511 case DW_OP_breg3: 6512 case DW_OP_breg4: 6513 case DW_OP_breg5: 6514 case DW_OP_breg6: 6515 case DW_OP_breg7: 6516 case DW_OP_breg8: 6517 case DW_OP_breg9: 6518 case DW_OP_breg10: 6519 case DW_OP_breg11: 6520 case DW_OP_breg12: 6521 case DW_OP_breg13: 6522 case DW_OP_breg14: 6523 case DW_OP_breg15: 6524 case DW_OP_breg16: 6525 case DW_OP_breg17: 6526 case DW_OP_breg18: 6527 case DW_OP_breg19: 6528 case DW_OP_breg20: 6529 case DW_OP_breg21: 6530 case DW_OP_breg22: 6531 case DW_OP_breg23: 6532 case DW_OP_breg24: 6533 case DW_OP_breg25: 6534 case DW_OP_breg26: 6535 case DW_OP_breg27: 6536 case DW_OP_breg28: 6537 case DW_OP_breg29: 6538 case DW_OP_breg30: 6539 case DW_OP_breg31: 6540 printf(" (%s): %jd", 6541 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6542 (intmax_t) lr->lr_number); 6543 break; 6544 6545 case DW_OP_fbreg: 6546 printf(": %jd", (intmax_t) 6547 lr->lr_number); 6548 break; 6549 6550 case DW_OP_bregx: 6551 printf(": %ju (%s) %jd", 6552 (uintmax_t) lr->lr_number, 6553 dwarf_regname(re, (unsigned int) lr->lr_number), 6554 (intmax_t) lr->lr_number2); 6555 break; 6556 6557 case DW_OP_addr: 6558 case DW_OP_GNU_encoded_addr: 6559 printf(": %#jx", (uintmax_t) 6560 lr->lr_number); 6561 break; 6562 6563 case DW_OP_GNU_implicit_pointer: 6564 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6565 (intmax_t) lr->lr_number2); 6566 break; 6567 6568 case DW_OP_implicit_value: 6569 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6570 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6571 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6572 printf(" %x", b[i]); 6573 break; 6574 6575 case DW_OP_GNU_entry_value: 6576 printf(": ("); 6577 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6578 lr->lr_number); 6579 putchar(')'); 6580 break; 6581 6582 case DW_OP_GNU_const_type: 6583 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6584 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6585 n = *b; 6586 for (i = 1; (uint8_t) i < n; i++) 6587 printf(" %x", b[i]); 6588 break; 6589 6590 case DW_OP_GNU_regval_type: 6591 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6592 dwarf_regname(re, (unsigned int) lr->lr_number), 6593 (uintmax_t) lr->lr_number2); 6594 break; 6595 6596 case DW_OP_GNU_convert: 6597 case DW_OP_GNU_deref_type: 6598 case DW_OP_GNU_parameter_ref: 6599 case DW_OP_GNU_reinterpret: 6600 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6601 break; 6602 6603 default: 6604 break; 6605 } 6606 } 6607 6608 static void 6609 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6610 { 6611 Dwarf_Locdesc *llbuf; 6612 Dwarf_Signed lcnt; 6613 Dwarf_Error de; 6614 int i; 6615 6616 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6617 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6618 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6619 return; 6620 } 6621 6622 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6623 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6624 if (i < llbuf->ld_cents - 1) 6625 printf("; "); 6626 } 6627 6628 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6629 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6630 } 6631 6632 static void 6633 dump_dwarf_loclist(struct readelf *re) 6634 { 6635 Dwarf_Die die; 6636 Dwarf_Locdesc **llbuf; 6637 Dwarf_Unsigned lowpc; 6638 Dwarf_Signed lcnt; 6639 Dwarf_Half tag, version, pointer_size, off_size; 6640 Dwarf_Error de; 6641 struct loc_at *la; 6642 int i, j, ret; 6643 6644 printf("\nContents of section .debug_loc:\n"); 6645 6646 /* Search .debug_info section. */ 6647 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6648 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6649 set_cu_context(re, pointer_size, off_size, version); 6650 die = NULL; 6651 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6652 continue; 6653 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6654 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6655 continue; 6656 } 6657 /* XXX: What about DW_TAG_partial_unit? */ 6658 lowpc = 0; 6659 if (tag == DW_TAG_compile_unit) { 6660 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6661 &lowpc, &de) != DW_DLV_OK) 6662 lowpc = 0; 6663 } 6664 6665 /* Search attributes for reference to .debug_loc section. */ 6666 search_loclist_at(re, die, lowpc); 6667 } 6668 if (ret == DW_DLV_ERROR) 6669 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6670 6671 /* Search .debug_types section. */ 6672 do { 6673 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6674 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6675 NULL, NULL, &de)) == DW_DLV_OK) { 6676 set_cu_context(re, pointer_size, off_size, version); 6677 die = NULL; 6678 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6679 DW_DLV_OK) 6680 continue; 6681 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6682 warnx("dwarf_tag failed: %s", 6683 dwarf_errmsg(de)); 6684 continue; 6685 } 6686 6687 lowpc = 0; 6688 if (tag == DW_TAG_type_unit) { 6689 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6690 &lowpc, &de) != DW_DLV_OK) 6691 lowpc = 0; 6692 } 6693 6694 /* 6695 * Search attributes for reference to .debug_loc 6696 * section. 6697 */ 6698 search_loclist_at(re, die, lowpc); 6699 } 6700 if (ret == DW_DLV_ERROR) 6701 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6702 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6703 6704 if (TAILQ_EMPTY(&lalist)) 6705 return; 6706 6707 printf(" Offset Begin End Expression\n"); 6708 6709 TAILQ_FOREACH(la, &lalist, la_next) { 6710 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 6711 DW_DLV_OK) { 6712 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 6713 continue; 6714 } 6715 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6716 la->la_cu_ver); 6717 for (i = 0; i < lcnt; i++) { 6718 printf(" %8.8jx ", la->la_off); 6719 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6720 printf("<End of list>\n"); 6721 continue; 6722 } 6723 6724 /* TODO: handle base selection entry. */ 6725 6726 printf("%8.8jx %8.8jx ", 6727 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6728 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6729 6730 putchar('('); 6731 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6732 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6733 if (j < llbuf[i]->ld_cents - 1) 6734 printf("; "); 6735 } 6736 putchar(')'); 6737 6738 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6739 printf(" (start == end)"); 6740 putchar('\n'); 6741 } 6742 for (i = 0; i < lcnt; i++) { 6743 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6744 DW_DLA_LOC_BLOCK); 6745 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6746 } 6747 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6748 } 6749 } 6750 6751 /* 6752 * Retrieve a string using string table section index and the string offset. 6753 */ 6754 static const char* 6755 get_string(struct readelf *re, int strtab, size_t off) 6756 { 6757 const char *name; 6758 6759 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6760 return (""); 6761 6762 return (name); 6763 } 6764 6765 /* 6766 * Retrieve the name of a symbol using the section index of the symbol 6767 * table and the index of the symbol within that table. 6768 */ 6769 static const char * 6770 get_symbol_name(struct readelf *re, int symtab, int i) 6771 { 6772 struct section *s; 6773 const char *name; 6774 GElf_Sym sym; 6775 Elf_Data *data; 6776 int elferr; 6777 6778 s = &re->sl[symtab]; 6779 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6780 return (""); 6781 (void) elf_errno(); 6782 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6783 elferr = elf_errno(); 6784 if (elferr != 0) 6785 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6786 return (""); 6787 } 6788 if (gelf_getsym(data, i, &sym) != &sym) 6789 return (""); 6790 /* Return section name for STT_SECTION symbol. */ 6791 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 6792 re->sl[sym.st_shndx].name != NULL) 6793 return (re->sl[sym.st_shndx].name); 6794 if (s->link >= re->shnum || 6795 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6796 return (""); 6797 6798 return (name); 6799 } 6800 6801 static uint64_t 6802 get_symbol_value(struct readelf *re, int symtab, int i) 6803 { 6804 struct section *s; 6805 GElf_Sym sym; 6806 Elf_Data *data; 6807 int elferr; 6808 6809 s = &re->sl[symtab]; 6810 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6811 return (0); 6812 (void) elf_errno(); 6813 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6814 elferr = elf_errno(); 6815 if (elferr != 0) 6816 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6817 return (0); 6818 } 6819 if (gelf_getsym(data, i, &sym) != &sym) 6820 return (0); 6821 6822 return (sym.st_value); 6823 } 6824 6825 static void 6826 hex_dump(struct readelf *re) 6827 { 6828 struct section *s; 6829 Elf_Data *d; 6830 uint8_t *buf; 6831 size_t sz, nbytes; 6832 uint64_t addr; 6833 int elferr, i, j; 6834 6835 for (i = 1; (size_t) i < re->shnum; i++) { 6836 s = &re->sl[i]; 6837 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6838 continue; 6839 (void) elf_errno(); 6840 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6841 elferr = elf_errno(); 6842 if (elferr != 0) 6843 warnx("elf_getdata failed: %s", 6844 elf_errmsg(elferr)); 6845 continue; 6846 } 6847 if (d->d_size <= 0 || d->d_buf == NULL) { 6848 printf("\nSection '%s' has no data to dump.\n", 6849 s->name); 6850 continue; 6851 } 6852 buf = d->d_buf; 6853 sz = d->d_size; 6854 addr = s->addr; 6855 printf("\nHex dump of section '%s':\n", s->name); 6856 while (sz > 0) { 6857 printf(" 0x%8.8jx ", (uintmax_t)addr); 6858 nbytes = sz > 16? 16 : sz; 6859 for (j = 0; j < 16; j++) { 6860 if ((size_t)j < nbytes) 6861 printf("%2.2x", buf[j]); 6862 else 6863 printf(" "); 6864 if ((j & 3) == 3) 6865 printf(" "); 6866 } 6867 for (j = 0; (size_t)j < nbytes; j++) { 6868 if (isprint(buf[j])) 6869 printf("%c", buf[j]); 6870 else 6871 printf("."); 6872 } 6873 printf("\n"); 6874 buf += nbytes; 6875 addr += nbytes; 6876 sz -= nbytes; 6877 } 6878 } 6879 } 6880 6881 static void 6882 str_dump(struct readelf *re) 6883 { 6884 struct section *s; 6885 Elf_Data *d; 6886 unsigned char *start, *end, *buf_end; 6887 unsigned int len; 6888 int i, j, elferr, found; 6889 6890 for (i = 1; (size_t) i < re->shnum; i++) { 6891 s = &re->sl[i]; 6892 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6893 continue; 6894 (void) elf_errno(); 6895 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6896 elferr = elf_errno(); 6897 if (elferr != 0) 6898 warnx("elf_getdata failed: %s", 6899 elf_errmsg(elferr)); 6900 continue; 6901 } 6902 if (d->d_size <= 0 || d->d_buf == NULL) { 6903 printf("\nSection '%s' has no data to dump.\n", 6904 s->name); 6905 continue; 6906 } 6907 buf_end = (unsigned char *) d->d_buf + d->d_size; 6908 start = (unsigned char *) d->d_buf; 6909 found = 0; 6910 printf("\nString dump of section '%s':\n", s->name); 6911 for (;;) { 6912 while (start < buf_end && !isprint(*start)) 6913 start++; 6914 if (start >= buf_end) 6915 break; 6916 end = start + 1; 6917 while (end < buf_end && isprint(*end)) 6918 end++; 6919 printf(" [%6lx] ", 6920 (long) (start - (unsigned char *) d->d_buf)); 6921 len = end - start; 6922 for (j = 0; (unsigned int) j < len; j++) 6923 putchar(start[j]); 6924 putchar('\n'); 6925 found = 1; 6926 if (end >= buf_end) 6927 break; 6928 start = end + 1; 6929 } 6930 if (!found) 6931 printf(" No strings found in this section."); 6932 putchar('\n'); 6933 } 6934 } 6935 6936 static void 6937 load_sections(struct readelf *re) 6938 { 6939 struct section *s; 6940 const char *name; 6941 Elf_Scn *scn; 6942 GElf_Shdr sh; 6943 size_t shstrndx, ndx; 6944 int elferr; 6945 6946 /* Allocate storage for internal section list. */ 6947 if (!elf_getshnum(re->elf, &re->shnum)) { 6948 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6949 return; 6950 } 6951 if (re->sl != NULL) 6952 free(re->sl); 6953 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6954 err(EXIT_FAILURE, "calloc failed"); 6955 6956 /* Get the index of .shstrtab section. */ 6957 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6958 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6959 return; 6960 } 6961 6962 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6963 return; 6964 6965 (void) elf_errno(); 6966 do { 6967 if (gelf_getshdr(scn, &sh) == NULL) { 6968 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 6969 (void) elf_errno(); 6970 continue; 6971 } 6972 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 6973 (void) elf_errno(); 6974 name = "ERROR"; 6975 } 6976 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 6977 if ((elferr = elf_errno()) != 0) 6978 warnx("elf_ndxscn failed: %s", 6979 elf_errmsg(elferr)); 6980 continue; 6981 } 6982 if (ndx >= re->shnum) { 6983 warnx("section index of '%s' out of range", name); 6984 continue; 6985 } 6986 if (sh.sh_link >= re->shnum) 6987 warnx("section link %llu of '%s' out of range", 6988 (unsigned long long)sh.sh_link, name); 6989 s = &re->sl[ndx]; 6990 s->name = name; 6991 s->scn = scn; 6992 s->off = sh.sh_offset; 6993 s->sz = sh.sh_size; 6994 s->entsize = sh.sh_entsize; 6995 s->align = sh.sh_addralign; 6996 s->type = sh.sh_type; 6997 s->flags = sh.sh_flags; 6998 s->addr = sh.sh_addr; 6999 s->link = sh.sh_link; 7000 s->info = sh.sh_info; 7001 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 7002 elferr = elf_errno(); 7003 if (elferr != 0) 7004 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 7005 } 7006 7007 static void 7008 unload_sections(struct readelf *re) 7009 { 7010 7011 if (re->sl != NULL) { 7012 free(re->sl); 7013 re->sl = NULL; 7014 } 7015 re->shnum = 0; 7016 re->vd_s = NULL; 7017 re->vn_s = NULL; 7018 re->vs_s = NULL; 7019 re->vs = NULL; 7020 re->vs_sz = 0; 7021 if (re->ver != NULL) { 7022 free(re->ver); 7023 re->ver = NULL; 7024 re->ver_sz = 0; 7025 } 7026 } 7027 7028 static void 7029 dump_elf(struct readelf *re) 7030 { 7031 7032 /* Fetch ELF header. No need to continue if it fails. */ 7033 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 7034 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 7035 return; 7036 } 7037 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 7038 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 7039 return; 7040 } 7041 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 7042 re->dw_read = _read_msb; 7043 re->dw_decode = _decode_msb; 7044 } else { 7045 re->dw_read = _read_lsb; 7046 re->dw_decode = _decode_lsb; 7047 } 7048 7049 if (re->options & ~RE_H) 7050 load_sections(re); 7051 if ((re->options & RE_VV) || (re->options & RE_S)) 7052 search_ver(re); 7053 if (re->options & RE_H) 7054 dump_ehdr(re); 7055 if (re->options & RE_L) 7056 dump_phdr(re); 7057 if (re->options & RE_SS) 7058 dump_shdr(re); 7059 if (re->options & RE_G) 7060 dump_section_groups(re); 7061 if (re->options & RE_D) 7062 dump_dynamic(re); 7063 if (re->options & RE_R) 7064 dump_reloc(re); 7065 if (re->options & RE_S) 7066 dump_symtabs(re); 7067 if (re->options & RE_N) 7068 dump_notes(re); 7069 if (re->options & RE_II) 7070 dump_hash(re); 7071 if (re->options & RE_X) 7072 hex_dump(re); 7073 if (re->options & RE_P) 7074 str_dump(re); 7075 if (re->options & RE_VV) 7076 dump_ver(re); 7077 if (re->options & RE_AA) 7078 dump_arch_specific_info(re); 7079 if (re->options & RE_W) 7080 dump_dwarf(re); 7081 if (re->options & ~RE_H) 7082 unload_sections(re); 7083 } 7084 7085 static void 7086 dump_dwarf(struct readelf *re) 7087 { 7088 int error; 7089 Dwarf_Error de; 7090 7091 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 7092 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 7093 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 7094 dwarf_errmsg(de)); 7095 return; 7096 } 7097 7098 if (re->dop & DW_A) 7099 dump_dwarf_abbrev(re); 7100 if (re->dop & DW_L) 7101 dump_dwarf_line(re); 7102 if (re->dop & DW_LL) 7103 dump_dwarf_line_decoded(re); 7104 if (re->dop & DW_I) { 7105 dump_dwarf_info(re, 0); 7106 dump_dwarf_info(re, 1); 7107 } 7108 if (re->dop & DW_P) 7109 dump_dwarf_pubnames(re); 7110 if (re->dop & DW_R) 7111 dump_dwarf_aranges(re); 7112 if (re->dop & DW_RR) 7113 dump_dwarf_ranges(re); 7114 if (re->dop & DW_M) 7115 dump_dwarf_macinfo(re); 7116 if (re->dop & DW_F) 7117 dump_dwarf_frame(re, 0); 7118 else if (re->dop & DW_FF) 7119 dump_dwarf_frame(re, 1); 7120 if (re->dop & DW_S) 7121 dump_dwarf_str(re); 7122 if (re->dop & DW_O) 7123 dump_dwarf_loclist(re); 7124 7125 dwarf_finish(re->dbg, &de); 7126 } 7127 7128 static void 7129 dump_ar(struct readelf *re, int fd) 7130 { 7131 Elf_Arsym *arsym; 7132 Elf_Arhdr *arhdr; 7133 Elf_Cmd cmd; 7134 Elf *e; 7135 size_t sz; 7136 off_t off; 7137 int i; 7138 7139 re->ar = re->elf; 7140 7141 if (re->options & RE_C) { 7142 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 7143 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 7144 goto process_members; 7145 } 7146 printf("Index of archive %s: (%ju entries)\n", re->filename, 7147 (uintmax_t) sz - 1); 7148 off = 0; 7149 for (i = 0; (size_t) i < sz; i++) { 7150 if (arsym[i].as_name == NULL) 7151 break; 7152 if (arsym[i].as_off != off) { 7153 off = arsym[i].as_off; 7154 if (elf_rand(re->ar, off) != off) { 7155 warnx("elf_rand() failed: %s", 7156 elf_errmsg(-1)); 7157 continue; 7158 } 7159 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 7160 NULL) { 7161 warnx("elf_begin() failed: %s", 7162 elf_errmsg(-1)); 7163 continue; 7164 } 7165 if ((arhdr = elf_getarhdr(e)) == NULL) { 7166 warnx("elf_getarhdr() failed: %s", 7167 elf_errmsg(-1)); 7168 elf_end(e); 7169 continue; 7170 } 7171 printf("Binary %s(%s) contains:\n", 7172 re->filename, arhdr->ar_name); 7173 } 7174 printf("\t%s\n", arsym[i].as_name); 7175 } 7176 if (elf_rand(re->ar, SARMAG) != SARMAG) { 7177 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 7178 return; 7179 } 7180 } 7181 7182 process_members: 7183 7184 if ((re->options & ~RE_C) == 0) 7185 return; 7186 7187 cmd = ELF_C_READ; 7188 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 7189 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 7190 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 7191 goto next_member; 7192 } 7193 if (strcmp(arhdr->ar_name, "/") == 0 || 7194 strcmp(arhdr->ar_name, "//") == 0 || 7195 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 7196 goto next_member; 7197 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 7198 dump_elf(re); 7199 7200 next_member: 7201 cmd = elf_next(re->elf); 7202 elf_end(re->elf); 7203 } 7204 re->elf = re->ar; 7205 } 7206 7207 static void 7208 dump_object(struct readelf *re) 7209 { 7210 int fd; 7211 7212 if ((fd = open(re->filename, O_RDONLY)) == -1) { 7213 warn("open %s failed", re->filename); 7214 return; 7215 } 7216 7217 if ((re->flags & DISPLAY_FILENAME) != 0) 7218 printf("\nFile: %s\n", re->filename); 7219 7220 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 7221 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 7222 return; 7223 } 7224 7225 switch (elf_kind(re->elf)) { 7226 case ELF_K_NONE: 7227 warnx("Not an ELF file."); 7228 return; 7229 case ELF_K_ELF: 7230 dump_elf(re); 7231 break; 7232 case ELF_K_AR: 7233 dump_ar(re, fd); 7234 break; 7235 default: 7236 warnx("Internal: libelf returned unknown elf kind."); 7237 return; 7238 } 7239 7240 elf_end(re->elf); 7241 } 7242 7243 static void 7244 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7245 { 7246 struct dumpop *d; 7247 7248 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 7249 if ((d = calloc(1, sizeof(*d))) == NULL) 7250 err(EXIT_FAILURE, "calloc failed"); 7251 if (t == DUMP_BY_INDEX) 7252 d->u.si = si; 7253 else 7254 d->u.sn = sn; 7255 d->type = t; 7256 d->op = op; 7257 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 7258 } else 7259 d->op |= op; 7260 } 7261 7262 static struct dumpop * 7263 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7264 { 7265 struct dumpop *d; 7266 7267 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7268 if ((op == -1 || op & d->op) && 7269 (t == -1 || (unsigned) t == d->type)) { 7270 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7271 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7272 return (d); 7273 } 7274 } 7275 7276 return (NULL); 7277 } 7278 7279 static struct { 7280 const char *ln; 7281 char sn; 7282 int value; 7283 } dwarf_op[] = { 7284 {"rawline", 'l', DW_L}, 7285 {"decodedline", 'L', DW_LL}, 7286 {"info", 'i', DW_I}, 7287 {"abbrev", 'a', DW_A}, 7288 {"pubnames", 'p', DW_P}, 7289 {"aranges", 'r', DW_R}, 7290 {"ranges", 'r', DW_R}, 7291 {"Ranges", 'R', DW_RR}, 7292 {"macro", 'm', DW_M}, 7293 {"frames", 'f', DW_F}, 7294 {"frames-interp", 'F', DW_FF}, 7295 {"str", 's', DW_S}, 7296 {"loc", 'o', DW_O}, 7297 {NULL, 0, 0} 7298 }; 7299 7300 static void 7301 parse_dwarf_op_short(struct readelf *re, const char *op) 7302 { 7303 int i; 7304 7305 if (op == NULL) { 7306 re->dop |= DW_DEFAULT_OPTIONS; 7307 return; 7308 } 7309 7310 for (; *op != '\0'; op++) { 7311 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7312 if (dwarf_op[i].sn == *op) { 7313 re->dop |= dwarf_op[i].value; 7314 break; 7315 } 7316 } 7317 } 7318 } 7319 7320 static void 7321 parse_dwarf_op_long(struct readelf *re, const char *op) 7322 { 7323 char *p, *token, *bp; 7324 int i; 7325 7326 if (op == NULL) { 7327 re->dop |= DW_DEFAULT_OPTIONS; 7328 return; 7329 } 7330 7331 if ((p = strdup(op)) == NULL) 7332 err(EXIT_FAILURE, "strdup failed"); 7333 bp = p; 7334 7335 while ((token = strsep(&p, ",")) != NULL) { 7336 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7337 if (!strcmp(token, dwarf_op[i].ln)) { 7338 re->dop |= dwarf_op[i].value; 7339 break; 7340 } 7341 } 7342 } 7343 7344 free(bp); 7345 } 7346 7347 static uint64_t 7348 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7349 { 7350 uint64_t ret; 7351 uint8_t *src; 7352 7353 src = (uint8_t *) d->d_buf + *offsetp; 7354 7355 ret = 0; 7356 switch (bytes_to_read) { 7357 case 8: 7358 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7359 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7360 case 4: 7361 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7362 case 2: 7363 ret |= ((uint64_t) src[1]) << 8; 7364 case 1: 7365 ret |= src[0]; 7366 break; 7367 default: 7368 return (0); 7369 } 7370 7371 *offsetp += bytes_to_read; 7372 7373 return (ret); 7374 } 7375 7376 static uint64_t 7377 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7378 { 7379 uint64_t ret; 7380 uint8_t *src; 7381 7382 src = (uint8_t *) d->d_buf + *offsetp; 7383 7384 switch (bytes_to_read) { 7385 case 1: 7386 ret = src[0]; 7387 break; 7388 case 2: 7389 ret = src[1] | ((uint64_t) src[0]) << 8; 7390 break; 7391 case 4: 7392 ret = src[3] | ((uint64_t) src[2]) << 8; 7393 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7394 break; 7395 case 8: 7396 ret = src[7] | ((uint64_t) src[6]) << 8; 7397 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7398 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7399 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7400 break; 7401 default: 7402 return (0); 7403 } 7404 7405 *offsetp += bytes_to_read; 7406 7407 return (ret); 7408 } 7409 7410 static uint64_t 7411 _decode_lsb(uint8_t **data, int bytes_to_read) 7412 { 7413 uint64_t ret; 7414 uint8_t *src; 7415 7416 src = *data; 7417 7418 ret = 0; 7419 switch (bytes_to_read) { 7420 case 8: 7421 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7422 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7423 case 4: 7424 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7425 case 2: 7426 ret |= ((uint64_t) src[1]) << 8; 7427 case 1: 7428 ret |= src[0]; 7429 break; 7430 default: 7431 return (0); 7432 } 7433 7434 *data += bytes_to_read; 7435 7436 return (ret); 7437 } 7438 7439 static uint64_t 7440 _decode_msb(uint8_t **data, int bytes_to_read) 7441 { 7442 uint64_t ret; 7443 uint8_t *src; 7444 7445 src = *data; 7446 7447 ret = 0; 7448 switch (bytes_to_read) { 7449 case 1: 7450 ret = src[0]; 7451 break; 7452 case 2: 7453 ret = src[1] | ((uint64_t) src[0]) << 8; 7454 break; 7455 case 4: 7456 ret = src[3] | ((uint64_t) src[2]) << 8; 7457 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7458 break; 7459 case 8: 7460 ret = src[7] | ((uint64_t) src[6]) << 8; 7461 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7462 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7463 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7464 break; 7465 default: 7466 return (0); 7467 break; 7468 } 7469 7470 *data += bytes_to_read; 7471 7472 return (ret); 7473 } 7474 7475 static int64_t 7476 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7477 { 7478 int64_t ret = 0; 7479 uint8_t b = 0; 7480 int shift = 0; 7481 7482 uint8_t *src = *dp; 7483 7484 do { 7485 if (src >= dpe) 7486 break; 7487 b = *src++; 7488 ret |= ((b & 0x7f) << shift); 7489 shift += 7; 7490 } while ((b & 0x80) != 0); 7491 7492 if (shift < 32 && (b & 0x40) != 0) 7493 ret |= (-1 << shift); 7494 7495 *dp = src; 7496 7497 return (ret); 7498 } 7499 7500 static uint64_t 7501 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7502 { 7503 uint64_t ret = 0; 7504 uint8_t b; 7505 int shift = 0; 7506 7507 uint8_t *src = *dp; 7508 7509 do { 7510 if (src >= dpe) 7511 break; 7512 b = *src++; 7513 ret |= ((b & 0x7f) << shift); 7514 shift += 7; 7515 } while ((b & 0x80) != 0); 7516 7517 *dp = src; 7518 7519 return (ret); 7520 } 7521 7522 static void 7523 readelf_version(void) 7524 { 7525 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7526 elftc_version()); 7527 exit(EXIT_SUCCESS); 7528 } 7529 7530 #define USAGE_MESSAGE "\ 7531 Usage: %s [options] file...\n\ 7532 Display information about ELF objects and ar(1) archives.\n\n\ 7533 Options:\n\ 7534 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7535 -c | --archive-index Print the archive symbol table for archives.\n\ 7536 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7537 -e | --headers Print all headers in the object.\n\ 7538 -g | --section-groups Print the contents of the section groups.\n\ 7539 -h | --file-header Print the file header for the object.\n\ 7540 -l | --program-headers Print the PHDR table for the object.\n\ 7541 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7542 -p INDEX | --string-dump=INDEX\n\ 7543 Print the contents of section at index INDEX.\n\ 7544 -r | --relocs Print relocation information.\n\ 7545 -s | --syms | --symbols Print symbol tables.\n\ 7546 -t | --section-details Print additional information about sections.\n\ 7547 -v | --version Print a version identifier and exit.\n\ 7548 -x INDEX | --hex-dump=INDEX\n\ 7549 Display contents of a section as hexadecimal.\n\ 7550 -A | --arch-specific (accepted, but ignored)\n\ 7551 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7552 entry in the \".dynamic\" section.\n\ 7553 -H | --help Print a help message.\n\ 7554 -I | --histogram Print information on bucket list lengths for \n\ 7555 hash sections.\n\ 7556 -N | --full-section-name (accepted, but ignored)\n\ 7557 -S | --sections | --section-headers\n\ 7558 Print information about section headers.\n\ 7559 -V | --version-info Print symbol versoning information.\n\ 7560 -W | --wide Print information without wrapping long lines.\n" 7561 7562 7563 static void 7564 readelf_usage(void) 7565 { 7566 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7567 exit(EXIT_FAILURE); 7568 } 7569 7570 int 7571 main(int argc, char **argv) 7572 { 7573 struct readelf *re, re_storage; 7574 unsigned long si; 7575 int opt, i; 7576 char *ep; 7577 7578 re = &re_storage; 7579 memset(re, 0, sizeof(*re)); 7580 STAILQ_INIT(&re->v_dumpop); 7581 7582 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7583 longopts, NULL)) != -1) { 7584 switch(opt) { 7585 case '?': 7586 readelf_usage(); 7587 break; 7588 case 'A': 7589 re->options |= RE_AA; 7590 break; 7591 case 'a': 7592 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7593 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7594 break; 7595 case 'c': 7596 re->options |= RE_C; 7597 break; 7598 case 'D': 7599 re->options |= RE_DD; 7600 break; 7601 case 'd': 7602 re->options |= RE_D; 7603 break; 7604 case 'e': 7605 re->options |= RE_H | RE_L | RE_SS; 7606 break; 7607 case 'g': 7608 re->options |= RE_G; 7609 break; 7610 case 'H': 7611 readelf_usage(); 7612 break; 7613 case 'h': 7614 re->options |= RE_H; 7615 break; 7616 case 'I': 7617 re->options |= RE_II; 7618 break; 7619 case 'i': 7620 /* Not implemented yet. */ 7621 break; 7622 case 'l': 7623 re->options |= RE_L; 7624 break; 7625 case 'N': 7626 re->options |= RE_NN; 7627 break; 7628 case 'n': 7629 re->options |= RE_N; 7630 break; 7631 case 'p': 7632 re->options |= RE_P; 7633 si = strtoul(optarg, &ep, 10); 7634 if (*ep == '\0') 7635 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7636 DUMP_BY_INDEX); 7637 else 7638 add_dumpop(re, 0, optarg, STR_DUMP, 7639 DUMP_BY_NAME); 7640 break; 7641 case 'r': 7642 re->options |= RE_R; 7643 break; 7644 case 'S': 7645 re->options |= RE_SS; 7646 break; 7647 case 's': 7648 re->options |= RE_S; 7649 break; 7650 case 't': 7651 re->options |= RE_T; 7652 break; 7653 case 'u': 7654 re->options |= RE_U; 7655 break; 7656 case 'V': 7657 re->options |= RE_VV; 7658 break; 7659 case 'v': 7660 readelf_version(); 7661 break; 7662 case 'W': 7663 re->options |= RE_WW; 7664 break; 7665 case 'w': 7666 re->options |= RE_W; 7667 parse_dwarf_op_short(re, optarg); 7668 break; 7669 case 'x': 7670 re->options |= RE_X; 7671 si = strtoul(optarg, &ep, 10); 7672 if (*ep == '\0') 7673 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7674 DUMP_BY_INDEX); 7675 else 7676 add_dumpop(re, 0, optarg, HEX_DUMP, 7677 DUMP_BY_NAME); 7678 break; 7679 case OPTION_DEBUG_DUMP: 7680 re->options |= RE_W; 7681 parse_dwarf_op_long(re, optarg); 7682 } 7683 } 7684 7685 argv += optind; 7686 argc -= optind; 7687 7688 if (argc == 0 || re->options == 0) 7689 readelf_usage(); 7690 7691 if (argc > 1) 7692 re->flags |= DISPLAY_FILENAME; 7693 7694 if (elf_version(EV_CURRENT) == EV_NONE) 7695 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7696 elf_errmsg(-1)); 7697 7698 for (i = 0; i < argc; i++) { 7699 re->filename = argv[i]; 7700 dump_object(re); 7701 } 7702 7703 exit(EXIT_SUCCESS); 7704 } 7705