1 /*- 2 * Copyright (c) 2009-2015 Kai Wang 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/queue.h> 29 #include <ar.h> 30 #include <assert.h> 31 #include <ctype.h> 32 #include <dwarf.h> 33 #include <err.h> 34 #include <fcntl.h> 35 #include <gelf.h> 36 #include <getopt.h> 37 #include <libdwarf.h> 38 #include <libelftc.h> 39 #include <libgen.h> 40 #include <stdarg.h> 41 #include <stdint.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <time.h> 46 #include <unistd.h> 47 48 #include "_elftc.h" 49 50 ELFTC_VCSID("$Id: readelf.c 3395 2016-02-10 16:29:44Z emaste $"); 51 52 /* Backwards compatability for older FreeBSD releases. */ 53 #ifndef STB_GNU_UNIQUE 54 #define STB_GNU_UNIQUE 10 55 #endif 56 #ifndef STT_SPARC_REGISTER 57 #define STT_SPARC_REGISTER 13 58 #endif 59 60 61 /* 62 * readelf(1) options. 63 */ 64 #define RE_AA 0x00000001 65 #define RE_C 0x00000002 66 #define RE_DD 0x00000004 67 #define RE_D 0x00000008 68 #define RE_G 0x00000010 69 #define RE_H 0x00000020 70 #define RE_II 0x00000040 71 #define RE_I 0x00000080 72 #define RE_L 0x00000100 73 #define RE_NN 0x00000200 74 #define RE_N 0x00000400 75 #define RE_P 0x00000800 76 #define RE_R 0x00001000 77 #define RE_SS 0x00002000 78 #define RE_S 0x00004000 79 #define RE_T 0x00008000 80 #define RE_U 0x00010000 81 #define RE_VV 0x00020000 82 #define RE_WW 0x00040000 83 #define RE_W 0x00080000 84 #define RE_X 0x00100000 85 86 /* 87 * dwarf dump options. 88 */ 89 #define DW_A 0x00000001 90 #define DW_FF 0x00000002 91 #define DW_F 0x00000004 92 #define DW_I 0x00000008 93 #define DW_LL 0x00000010 94 #define DW_L 0x00000020 95 #define DW_M 0x00000040 96 #define DW_O 0x00000080 97 #define DW_P 0x00000100 98 #define DW_RR 0x00000200 99 #define DW_R 0x00000400 100 #define DW_S 0x00000800 101 102 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ 103 DW_R | DW_RR | DW_S) 104 105 /* 106 * readelf(1) run control flags. 107 */ 108 #define DISPLAY_FILENAME 0x0001 109 110 /* 111 * Internal data structure for sections. 112 */ 113 struct section { 114 const char *name; /* section name */ 115 Elf_Scn *scn; /* section scn */ 116 uint64_t off; /* section offset */ 117 uint64_t sz; /* section size */ 118 uint64_t entsize; /* section entsize */ 119 uint64_t align; /* section alignment */ 120 uint64_t type; /* section type */ 121 uint64_t flags; /* section flags */ 122 uint64_t addr; /* section virtual addr */ 123 uint32_t link; /* section link ndx */ 124 uint32_t info; /* section info ndx */ 125 }; 126 127 struct dumpop { 128 union { 129 size_t si; /* section index */ 130 const char *sn; /* section name */ 131 } u; 132 enum { 133 DUMP_BY_INDEX = 0, 134 DUMP_BY_NAME 135 } type; /* dump type */ 136 #define HEX_DUMP 0x0001 137 #define STR_DUMP 0x0002 138 int op; /* dump operation */ 139 STAILQ_ENTRY(dumpop) dumpop_list; 140 }; 141 142 struct symver { 143 const char *name; 144 int type; 145 }; 146 147 /* 148 * Structure encapsulates the global data for readelf(1). 149 */ 150 struct readelf { 151 const char *filename; /* current processing file. */ 152 int options; /* command line options. */ 153 int flags; /* run control flags. */ 154 int dop; /* dwarf dump options. */ 155 Elf *elf; /* underlying ELF descriptor. */ 156 Elf *ar; /* archive ELF descriptor. */ 157 Dwarf_Debug dbg; /* DWARF handle. */ 158 Dwarf_Half cu_psize; /* DWARF CU pointer size. */ 159 Dwarf_Half cu_osize; /* DWARF CU offset size. */ 160 Dwarf_Half cu_ver; /* DWARF CU version. */ 161 GElf_Ehdr ehdr; /* ELF header. */ 162 int ec; /* ELF class. */ 163 size_t shnum; /* #sections. */ 164 struct section *vd_s; /* Verdef section. */ 165 struct section *vn_s; /* Verneed section. */ 166 struct section *vs_s; /* Versym section. */ 167 uint16_t *vs; /* Versym array. */ 168 int vs_sz; /* Versym array size. */ 169 struct symver *ver; /* Version array. */ 170 int ver_sz; /* Size of version array. */ 171 struct section *sl; /* list of sections. */ 172 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ 173 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); 174 uint64_t (*dw_decode)(uint8_t **, int); 175 }; 176 177 enum options 178 { 179 OPTION_DEBUG_DUMP 180 }; 181 182 static struct option longopts[] = { 183 {"all", no_argument, NULL, 'a'}, 184 {"arch-specific", no_argument, NULL, 'A'}, 185 {"archive-index", no_argument, NULL, 'c'}, 186 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, 187 {"dynamic", no_argument, NULL, 'd'}, 188 {"file-header", no_argument, NULL, 'h'}, 189 {"full-section-name", no_argument, NULL, 'N'}, 190 {"headers", no_argument, NULL, 'e'}, 191 {"help", no_argument, 0, 'H'}, 192 {"hex-dump", required_argument, NULL, 'x'}, 193 {"histogram", no_argument, NULL, 'I'}, 194 {"notes", no_argument, NULL, 'n'}, 195 {"program-headers", no_argument, NULL, 'l'}, 196 {"relocs", no_argument, NULL, 'r'}, 197 {"sections", no_argument, NULL, 'S'}, 198 {"section-headers", no_argument, NULL, 'S'}, 199 {"section-groups", no_argument, NULL, 'g'}, 200 {"section-details", no_argument, NULL, 't'}, 201 {"segments", no_argument, NULL, 'l'}, 202 {"string-dump", required_argument, NULL, 'p'}, 203 {"symbols", no_argument, NULL, 's'}, 204 {"syms", no_argument, NULL, 's'}, 205 {"unwind", no_argument, NULL, 'u'}, 206 {"use-dynamic", no_argument, NULL, 'D'}, 207 {"version-info", no_argument, 0, 'V'}, 208 {"version", no_argument, 0, 'v'}, 209 {"wide", no_argument, 0, 'W'}, 210 {NULL, 0, NULL, 0} 211 }; 212 213 struct eflags_desc { 214 uint64_t flag; 215 const char *desc; 216 }; 217 218 struct mips_option { 219 uint64_t flag; 220 const char *desc; 221 }; 222 223 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, 224 int t); 225 static const char *aeabi_adv_simd_arch(uint64_t simd); 226 static const char *aeabi_align_needed(uint64_t an); 227 static const char *aeabi_align_preserved(uint64_t ap); 228 static const char *aeabi_arm_isa(uint64_t ai); 229 static const char *aeabi_cpu_arch(uint64_t arch); 230 static const char *aeabi_cpu_arch_profile(uint64_t pf); 231 static const char *aeabi_div(uint64_t du); 232 static const char *aeabi_enum_size(uint64_t es); 233 static const char *aeabi_fp_16bit_format(uint64_t fp16); 234 static const char *aeabi_fp_arch(uint64_t fp); 235 static const char *aeabi_fp_denormal(uint64_t fd); 236 static const char *aeabi_fp_exceptions(uint64_t fe); 237 static const char *aeabi_fp_hpext(uint64_t fh); 238 static const char *aeabi_fp_number_model(uint64_t fn); 239 static const char *aeabi_fp_optm_goal(uint64_t fog); 240 static const char *aeabi_fp_rounding(uint64_t fr); 241 static const char *aeabi_hardfp(uint64_t hfp); 242 static const char *aeabi_mpext(uint64_t mp); 243 static const char *aeabi_optm_goal(uint64_t og); 244 static const char *aeabi_pcs_config(uint64_t pcs); 245 static const char *aeabi_pcs_got(uint64_t got); 246 static const char *aeabi_pcs_r9(uint64_t r9); 247 static const char *aeabi_pcs_ro(uint64_t ro); 248 static const char *aeabi_pcs_rw(uint64_t rw); 249 static const char *aeabi_pcs_wchar_t(uint64_t wt); 250 static const char *aeabi_t2ee(uint64_t t2ee); 251 static const char *aeabi_thumb_isa(uint64_t ti); 252 static const char *aeabi_fp_user_exceptions(uint64_t fu); 253 static const char *aeabi_unaligned_access(uint64_t ua); 254 static const char *aeabi_vfp_args(uint64_t va); 255 static const char *aeabi_virtual(uint64_t vt); 256 static const char *aeabi_wmmx_arch(uint64_t wmmx); 257 static const char *aeabi_wmmx_args(uint64_t wa); 258 static const char *elf_class(unsigned int class); 259 static const char *elf_endian(unsigned int endian); 260 static const char *elf_machine(unsigned int mach); 261 static const char *elf_osabi(unsigned int abi); 262 static const char *elf_type(unsigned int type); 263 static const char *elf_ver(unsigned int ver); 264 static const char *dt_type(unsigned int mach, unsigned int dtype); 265 static void dump_ar(struct readelf *re, int); 266 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 267 static void dump_attributes(struct readelf *re); 268 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); 269 static void dump_dwarf(struct readelf *re); 270 static void dump_dwarf_abbrev(struct readelf *re); 271 static void dump_dwarf_aranges(struct readelf *re); 272 static void dump_dwarf_block(struct readelf *re, uint8_t *b, 273 Dwarf_Unsigned len); 274 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); 275 static void dump_dwarf_frame(struct readelf *re, int alt); 276 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, 277 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, 278 Dwarf_Addr pc, Dwarf_Debug dbg); 279 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, 280 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); 281 static void dump_dwarf_frame_section(struct readelf *re, struct section *s, 282 int alt); 283 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); 284 static void dump_dwarf_macinfo(struct readelf *re); 285 static void dump_dwarf_line(struct readelf *re); 286 static void dump_dwarf_line_decoded(struct readelf *re); 287 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); 288 static void dump_dwarf_loclist(struct readelf *re); 289 static void dump_dwarf_pubnames(struct readelf *re); 290 static void dump_dwarf_ranges(struct readelf *re); 291 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, 292 Dwarf_Addr base); 293 static void dump_dwarf_str(struct readelf *re); 294 static void dump_eflags(struct readelf *re, uint64_t e_flags); 295 static void dump_elf(struct readelf *re); 296 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); 297 static void dump_dynamic(struct readelf *re); 298 static void dump_liblist(struct readelf *re); 299 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); 300 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); 301 static void dump_mips_options(struct readelf *re, struct section *s); 302 static void dump_mips_option_flags(const char *name, struct mips_option *opt, 303 uint64_t info); 304 static void dump_mips_reginfo(struct readelf *re, struct section *s); 305 static void dump_mips_specific_info(struct readelf *re); 306 static void dump_notes(struct readelf *re); 307 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, 308 off_t off); 309 static void dump_svr4_hash(struct section *s); 310 static void dump_svr4_hash64(struct readelf *re, struct section *s); 311 static void dump_gnu_hash(struct readelf *re, struct section *s); 312 static void dump_hash(struct readelf *re); 313 static void dump_phdr(struct readelf *re); 314 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); 315 static void dump_section_groups(struct readelf *re); 316 static void dump_symtab(struct readelf *re, int i); 317 static void dump_symtabs(struct readelf *re); 318 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); 319 static void dump_ver(struct readelf *re); 320 static void dump_verdef(struct readelf *re, int dump); 321 static void dump_verneed(struct readelf *re, int dump); 322 static void dump_versym(struct readelf *re); 323 static const char *dwarf_reg(unsigned int mach, unsigned int reg); 324 static const char *dwarf_regname(struct readelf *re, unsigned int num); 325 static struct dumpop *find_dumpop(struct readelf *re, size_t si, 326 const char *sn, int op, int t); 327 static int get_ent_count(struct section *s, int *ent_count); 328 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, 329 Dwarf_Addr off); 330 static const char *get_string(struct readelf *re, int strtab, size_t off); 331 static const char *get_symbol_name(struct readelf *re, int symtab, int i); 332 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); 333 static void load_sections(struct readelf *re); 334 static const char *mips_abi_fp(uint64_t fp); 335 static const char *note_type(const char *note_name, unsigned int et, 336 unsigned int nt); 337 static const char *note_type_freebsd(unsigned int nt); 338 static const char *note_type_freebsd_core(unsigned int nt); 339 static const char *note_type_linux_core(unsigned int nt); 340 static const char *note_type_gnu(unsigned int nt); 341 static const char *note_type_netbsd(unsigned int nt); 342 static const char *note_type_openbsd(unsigned int nt); 343 static const char *note_type_unknown(unsigned int nt); 344 static const char *note_type_xen(unsigned int nt); 345 static const char *option_kind(uint8_t kind); 346 static const char *phdr_type(unsigned int ptype); 347 static const char *ppc_abi_fp(uint64_t fp); 348 static const char *ppc_abi_vector(uint64_t vec); 349 static const char *r_type(unsigned int mach, unsigned int type); 350 static void readelf_usage(int status); 351 static void readelf_version(void); 352 static void search_loclist_at(struct readelf *re, Dwarf_Die die, 353 Dwarf_Unsigned lowpc); 354 static void search_ver(struct readelf *re); 355 static const char *section_type(unsigned int mach, unsigned int stype); 356 static void set_cu_context(struct readelf *re, Dwarf_Half psize, 357 Dwarf_Half osize, Dwarf_Half ver); 358 static const char *st_bind(unsigned int sbind); 359 static const char *st_shndx(unsigned int shndx); 360 static const char *st_type(unsigned int mach, unsigned int stype); 361 static const char *st_vis(unsigned int svis); 362 static const char *top_tag(unsigned int tag); 363 static void unload_sections(struct readelf *re); 364 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, 365 int bytes_to_read); 366 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, 367 int bytes_to_read); 368 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); 369 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); 370 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); 371 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); 372 373 static struct eflags_desc arm_eflags_desc[] = { 374 {EF_ARM_RELEXEC, "relocatable executable"}, 375 {EF_ARM_HASENTRY, "has entry point"}, 376 {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, 377 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, 378 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, 379 {EF_ARM_BE8, "BE8"}, 380 {EF_ARM_LE8, "LE8"}, 381 {EF_ARM_INTERWORK, "interworking enabled"}, 382 {EF_ARM_APCS_26, "uses APCS/26"}, 383 {EF_ARM_APCS_FLOAT, "uses APCS/float"}, 384 {EF_ARM_PIC, "position independent"}, 385 {EF_ARM_ALIGN8, "8 bit structure alignment"}, 386 {EF_ARM_NEW_ABI, "uses new ABI"}, 387 {EF_ARM_OLD_ABI, "uses old ABI"}, 388 {EF_ARM_SOFT_FLOAT, "software FP"}, 389 {EF_ARM_VFP_FLOAT, "VFP"}, 390 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, 391 {0, NULL} 392 }; 393 394 static struct eflags_desc mips_eflags_desc[] = { 395 {EF_MIPS_NOREORDER, "noreorder"}, 396 {EF_MIPS_PIC, "pic"}, 397 {EF_MIPS_CPIC, "cpic"}, 398 {EF_MIPS_UCODE, "ugen_reserved"}, 399 {EF_MIPS_ABI2, "abi2"}, 400 {EF_MIPS_OPTIONS_FIRST, "odk first"}, 401 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, 402 {EF_MIPS_ARCH_ASE_M16, "mips16"}, 403 {0, NULL} 404 }; 405 406 static struct eflags_desc powerpc_eflags_desc[] = { 407 {EF_PPC_EMB, "emb"}, 408 {EF_PPC_RELOCATABLE, "relocatable"}, 409 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, 410 {0, NULL} 411 }; 412 413 static struct eflags_desc sparc_eflags_desc[] = { 414 {EF_SPARC_32PLUS, "v8+"}, 415 {EF_SPARC_SUN_US1, "ultrasparcI"}, 416 {EF_SPARC_HAL_R1, "halr1"}, 417 {EF_SPARC_SUN_US3, "ultrasparcIII"}, 418 {0, NULL} 419 }; 420 421 static const char * 422 elf_osabi(unsigned int abi) 423 { 424 static char s_abi[32]; 425 426 switch(abi) { 427 case ELFOSABI_NONE: return "NONE"; 428 case ELFOSABI_HPUX: return "HPUX"; 429 case ELFOSABI_NETBSD: return "NetBSD"; 430 case ELFOSABI_GNU: return "GNU"; 431 case ELFOSABI_HURD: return "HURD"; 432 case ELFOSABI_86OPEN: return "86OPEN"; 433 case ELFOSABI_SOLARIS: return "Solaris"; 434 case ELFOSABI_AIX: return "AIX"; 435 case ELFOSABI_IRIX: return "IRIX"; 436 case ELFOSABI_FREEBSD: return "FreeBSD"; 437 case ELFOSABI_TRU64: return "TRU64"; 438 case ELFOSABI_MODESTO: return "MODESTO"; 439 case ELFOSABI_OPENBSD: return "OpenBSD"; 440 case ELFOSABI_OPENVMS: return "OpenVMS"; 441 case ELFOSABI_NSK: return "NSK"; 442 case ELFOSABI_ARM: return "ARM"; 443 case ELFOSABI_STANDALONE: return "StandAlone"; 444 default: 445 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); 446 return (s_abi); 447 } 448 }; 449 450 static const char * 451 elf_machine(unsigned int mach) 452 { 453 static char s_mach[32]; 454 455 switch (mach) { 456 case EM_NONE: return "Unknown machine"; 457 case EM_M32: return "AT&T WE32100"; 458 case EM_SPARC: return "Sun SPARC"; 459 case EM_386: return "Intel i386"; 460 case EM_68K: return "Motorola 68000"; 461 case EM_IAMCU: return "Intel MCU"; 462 case EM_88K: return "Motorola 88000"; 463 case EM_860: return "Intel i860"; 464 case EM_MIPS: return "MIPS R3000 Big-Endian only"; 465 case EM_S370: return "IBM System/370"; 466 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; 467 case EM_PARISC: return "HP PA-RISC"; 468 case EM_VPP500: return "Fujitsu VPP500"; 469 case EM_SPARC32PLUS: return "SPARC v8plus"; 470 case EM_960: return "Intel 80960"; 471 case EM_PPC: return "PowerPC 32-bit"; 472 case EM_PPC64: return "PowerPC 64-bit"; 473 case EM_S390: return "IBM System/390"; 474 case EM_V800: return "NEC V800"; 475 case EM_FR20: return "Fujitsu FR20"; 476 case EM_RH32: return "TRW RH-32"; 477 case EM_RCE: return "Motorola RCE"; 478 case EM_ARM: return "ARM"; 479 case EM_SH: return "Hitachi SH"; 480 case EM_SPARCV9: return "SPARC v9 64-bit"; 481 case EM_TRICORE: return "Siemens TriCore embedded processor"; 482 case EM_ARC: return "Argonaut RISC Core"; 483 case EM_H8_300: return "Hitachi H8/300"; 484 case EM_H8_300H: return "Hitachi H8/300H"; 485 case EM_H8S: return "Hitachi H8S"; 486 case EM_H8_500: return "Hitachi H8/500"; 487 case EM_IA_64: return "Intel IA-64 Processor"; 488 case EM_MIPS_X: return "Stanford MIPS-X"; 489 case EM_COLDFIRE: return "Motorola ColdFire"; 490 case EM_68HC12: return "Motorola M68HC12"; 491 case EM_MMA: return "Fujitsu MMA"; 492 case EM_PCP: return "Siemens PCP"; 493 case EM_NCPU: return "Sony nCPU"; 494 case EM_NDR1: return "Denso NDR1 microprocessor"; 495 case EM_STARCORE: return "Motorola Star*Core processor"; 496 case EM_ME16: return "Toyota ME16 processor"; 497 case EM_ST100: return "STMicroelectronics ST100 processor"; 498 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; 499 case EM_X86_64: return "Advanced Micro Devices x86-64"; 500 case EM_PDSP: return "Sony DSP Processor"; 501 case EM_FX66: return "Siemens FX66 microcontroller"; 502 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; 503 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; 504 case EM_68HC16: return "Motorola MC68HC16 microcontroller"; 505 case EM_68HC11: return "Motorola MC68HC11 microcontroller"; 506 case EM_68HC08: return "Motorola MC68HC08 microcontroller"; 507 case EM_68HC05: return "Motorola MC68HC05 microcontroller"; 508 case EM_SVX: return "Silicon Graphics SVx"; 509 case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; 510 case EM_VAX: return "Digital VAX"; 511 case EM_CRIS: return "Axis Communications 32-bit embedded processor"; 512 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; 513 case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; 514 case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; 515 case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; 516 case EM_HUANY: return "Harvard University MI object files"; 517 case EM_PRISM: return "SiTera Prism"; 518 case EM_AVR: return "Atmel AVR 8-bit microcontroller"; 519 case EM_FR30: return "Fujitsu FR30"; 520 case EM_D10V: return "Mitsubishi D10V"; 521 case EM_D30V: return "Mitsubishi D30V"; 522 case EM_V850: return "NEC v850"; 523 case EM_M32R: return "Mitsubishi M32R"; 524 case EM_MN10300: return "Matsushita MN10300"; 525 case EM_MN10200: return "Matsushita MN10200"; 526 case EM_PJ: return "picoJava"; 527 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; 528 case EM_ARC_A5: return "ARC Cores Tangent-A5"; 529 case EM_XTENSA: return "Tensilica Xtensa Architecture"; 530 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; 531 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; 532 case EM_NS32K: return "National Semiconductor 32000 series"; 533 case EM_TPC: return "Tenor Network TPC processor"; 534 case EM_SNP1K: return "Trebia SNP 1000 processor"; 535 case EM_ST200: return "STMicroelectronics ST200 microcontroller"; 536 case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; 537 case EM_MAX: return "MAX Processor"; 538 case EM_CR: return "National Semiconductor CompactRISC microprocessor"; 539 case EM_F2MC16: return "Fujitsu F2MC16"; 540 case EM_MSP430: return "TI embedded microcontroller msp430"; 541 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; 542 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; 543 case EM_SEP: return "Sharp embedded microprocessor"; 544 case EM_ARCA: return "Arca RISC Microprocessor"; 545 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; 546 case EM_AARCH64: return "AArch64"; 547 case EM_RISCV: return "RISC-V"; 548 default: 549 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); 550 return (s_mach); 551 } 552 553 } 554 555 static const char * 556 elf_class(unsigned int class) 557 { 558 static char s_class[32]; 559 560 switch (class) { 561 case ELFCLASSNONE: return "none"; 562 case ELFCLASS32: return "ELF32"; 563 case ELFCLASS64: return "ELF64"; 564 default: 565 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); 566 return (s_class); 567 } 568 } 569 570 static const char * 571 elf_endian(unsigned int endian) 572 { 573 static char s_endian[32]; 574 575 switch (endian) { 576 case ELFDATANONE: return "none"; 577 case ELFDATA2LSB: return "2's complement, little endian"; 578 case ELFDATA2MSB: return "2's complement, big endian"; 579 default: 580 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); 581 return (s_endian); 582 } 583 } 584 585 static const char * 586 elf_type(unsigned int type) 587 { 588 static char s_type[32]; 589 590 switch (type) { 591 case ET_NONE: return "NONE (None)"; 592 case ET_REL: return "REL (Relocatable file)"; 593 case ET_EXEC: return "EXEC (Executable file)"; 594 case ET_DYN: return "DYN (Shared object file)"; 595 case ET_CORE: return "CORE (Core file)"; 596 default: 597 if (type >= ET_LOPROC) 598 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); 599 else if (type >= ET_LOOS && type <= ET_HIOS) 600 snprintf(s_type, sizeof(s_type), "<os: %#x>", type); 601 else 602 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", 603 type); 604 return (s_type); 605 } 606 } 607 608 static const char * 609 elf_ver(unsigned int ver) 610 { 611 static char s_ver[32]; 612 613 switch (ver) { 614 case EV_CURRENT: return "(current)"; 615 case EV_NONE: return "(none)"; 616 default: 617 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", 618 ver); 619 return (s_ver); 620 } 621 } 622 623 static const char * 624 phdr_type(unsigned int ptype) 625 { 626 static char s_ptype[32]; 627 628 switch (ptype) { 629 case PT_NULL: return "NULL"; 630 case PT_LOAD: return "LOAD"; 631 case PT_DYNAMIC: return "DYNAMIC"; 632 case PT_INTERP: return "INTERP"; 633 case PT_NOTE: return "NOTE"; 634 case PT_SHLIB: return "SHLIB"; 635 case PT_PHDR: return "PHDR"; 636 case PT_TLS: return "TLS"; 637 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; 638 case PT_GNU_STACK: return "GNU_STACK"; 639 case PT_GNU_RELRO: return "GNU_RELRO"; 640 default: 641 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) 642 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", 643 ptype - PT_LOPROC); 644 else if (ptype >= PT_LOOS && ptype <= PT_HIOS) 645 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", 646 ptype - PT_LOOS); 647 else 648 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", 649 ptype); 650 return (s_ptype); 651 } 652 } 653 654 static const char * 655 section_type(unsigned int mach, unsigned int stype) 656 { 657 static char s_stype[32]; 658 659 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { 660 switch (mach) { 661 case EM_X86_64: 662 switch (stype) { 663 case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; 664 default: 665 break; 666 } 667 break; 668 case EM_MIPS: 669 case EM_MIPS_RS3_LE: 670 switch (stype) { 671 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; 672 case SHT_MIPS_MSYM: return "MIPS_MSYM"; 673 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; 674 case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; 675 case SHT_MIPS_UCODE: return "MIPS_UCODE"; 676 case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; 677 case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; 678 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; 679 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; 680 case SHT_MIPS_RELD: return "MIPS_RELD"; 681 case SHT_MIPS_IFACE: return "MIPS_IFACE"; 682 case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; 683 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; 684 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; 685 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; 686 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; 687 case SHT_MIPS_DWARF: return "MIPS_DWARF"; 688 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; 689 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; 690 case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; 691 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; 692 case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; 693 case SHT_MIPS_XLATE: return "MIPS_XLATE"; 694 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; 695 case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; 696 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; 697 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; 698 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; 699 default: 700 break; 701 } 702 break; 703 default: 704 break; 705 } 706 707 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", 708 stype - SHT_LOPROC); 709 return (s_stype); 710 } 711 712 switch (stype) { 713 case SHT_NULL: return "NULL"; 714 case SHT_PROGBITS: return "PROGBITS"; 715 case SHT_SYMTAB: return "SYMTAB"; 716 case SHT_STRTAB: return "STRTAB"; 717 case SHT_RELA: return "RELA"; 718 case SHT_HASH: return "HASH"; 719 case SHT_DYNAMIC: return "DYNAMIC"; 720 case SHT_NOTE: return "NOTE"; 721 case SHT_NOBITS: return "NOBITS"; 722 case SHT_REL: return "REL"; 723 case SHT_SHLIB: return "SHLIB"; 724 case SHT_DYNSYM: return "DYNSYM"; 725 case SHT_INIT_ARRAY: return "INIT_ARRAY"; 726 case SHT_FINI_ARRAY: return "FINI_ARRAY"; 727 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 728 case SHT_GROUP: return "GROUP"; 729 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; 730 case SHT_SUNW_dof: return "SUNW_dof"; 731 case SHT_SUNW_cap: return "SUNW_cap"; 732 case SHT_GNU_HASH: return "GNU_HASH"; 733 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; 734 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; 735 case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; 736 case SHT_SUNW_move: return "SUNW_move"; 737 case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; 738 case SHT_SUNW_syminfo: return "SUNW_syminfo"; 739 case SHT_SUNW_verdef: return "SUNW_verdef"; 740 case SHT_SUNW_verneed: return "SUNW_verneed"; 741 case SHT_SUNW_versym: return "SUNW_versym"; 742 default: 743 if (stype >= SHT_LOOS && stype <= SHT_HIOS) 744 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", 745 stype - SHT_LOOS); 746 else if (stype >= SHT_LOUSER) 747 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", 748 stype - SHT_LOUSER); 749 else 750 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 751 stype); 752 return (s_stype); 753 } 754 } 755 756 static const char * 757 dt_type(unsigned int mach, unsigned int dtype) 758 { 759 static char s_dtype[32]; 760 761 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { 762 switch (mach) { 763 case EM_ARM: 764 switch (dtype) { 765 case DT_ARM_SYMTABSZ: 766 return "ARM_SYMTABSZ"; 767 default: 768 break; 769 } 770 break; 771 case EM_MIPS: 772 case EM_MIPS_RS3_LE: 773 switch (dtype) { 774 case DT_MIPS_RLD_VERSION: 775 return "MIPS_RLD_VERSION"; 776 case DT_MIPS_TIME_STAMP: 777 return "MIPS_TIME_STAMP"; 778 case DT_MIPS_ICHECKSUM: 779 return "MIPS_ICHECKSUM"; 780 case DT_MIPS_IVERSION: 781 return "MIPS_IVERSION"; 782 case DT_MIPS_FLAGS: 783 return "MIPS_FLAGS"; 784 case DT_MIPS_BASE_ADDRESS: 785 return "MIPS_BASE_ADDRESS"; 786 case DT_MIPS_CONFLICT: 787 return "MIPS_CONFLICT"; 788 case DT_MIPS_LIBLIST: 789 return "MIPS_LIBLIST"; 790 case DT_MIPS_LOCAL_GOTNO: 791 return "MIPS_LOCAL_GOTNO"; 792 case DT_MIPS_CONFLICTNO: 793 return "MIPS_CONFLICTNO"; 794 case DT_MIPS_LIBLISTNO: 795 return "MIPS_LIBLISTNO"; 796 case DT_MIPS_SYMTABNO: 797 return "MIPS_SYMTABNO"; 798 case DT_MIPS_UNREFEXTNO: 799 return "MIPS_UNREFEXTNO"; 800 case DT_MIPS_GOTSYM: 801 return "MIPS_GOTSYM"; 802 case DT_MIPS_HIPAGENO: 803 return "MIPS_HIPAGENO"; 804 case DT_MIPS_RLD_MAP: 805 return "MIPS_RLD_MAP"; 806 case DT_MIPS_DELTA_CLASS: 807 return "MIPS_DELTA_CLASS"; 808 case DT_MIPS_DELTA_CLASS_NO: 809 return "MIPS_DELTA_CLASS_NO"; 810 case DT_MIPS_DELTA_INSTANCE: 811 return "MIPS_DELTA_INSTANCE"; 812 case DT_MIPS_DELTA_INSTANCE_NO: 813 return "MIPS_DELTA_INSTANCE_NO"; 814 case DT_MIPS_DELTA_RELOC: 815 return "MIPS_DELTA_RELOC"; 816 case DT_MIPS_DELTA_RELOC_NO: 817 return "MIPS_DELTA_RELOC_NO"; 818 case DT_MIPS_DELTA_SYM: 819 return "MIPS_DELTA_SYM"; 820 case DT_MIPS_DELTA_SYM_NO: 821 return "MIPS_DELTA_SYM_NO"; 822 case DT_MIPS_DELTA_CLASSSYM: 823 return "MIPS_DELTA_CLASSSYM"; 824 case DT_MIPS_DELTA_CLASSSYM_NO: 825 return "MIPS_DELTA_CLASSSYM_NO"; 826 case DT_MIPS_CXX_FLAGS: 827 return "MIPS_CXX_FLAGS"; 828 case DT_MIPS_PIXIE_INIT: 829 return "MIPS_PIXIE_INIT"; 830 case DT_MIPS_SYMBOL_LIB: 831 return "MIPS_SYMBOL_LIB"; 832 case DT_MIPS_LOCALPAGE_GOTIDX: 833 return "MIPS_LOCALPAGE_GOTIDX"; 834 case DT_MIPS_LOCAL_GOTIDX: 835 return "MIPS_LOCAL_GOTIDX"; 836 case DT_MIPS_HIDDEN_GOTIDX: 837 return "MIPS_HIDDEN_GOTIDX"; 838 case DT_MIPS_PROTECTED_GOTIDX: 839 return "MIPS_PROTECTED_GOTIDX"; 840 case DT_MIPS_OPTIONS: 841 return "MIPS_OPTIONS"; 842 case DT_MIPS_INTERFACE: 843 return "MIPS_INTERFACE"; 844 case DT_MIPS_DYNSTR_ALIGN: 845 return "MIPS_DYNSTR_ALIGN"; 846 case DT_MIPS_INTERFACE_SIZE: 847 return "MIPS_INTERFACE_SIZE"; 848 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 849 return "MIPS_RLD_TEXT_RESOLVE_ADDR"; 850 case DT_MIPS_PERF_SUFFIX: 851 return "MIPS_PERF_SUFFIX"; 852 case DT_MIPS_COMPACT_SIZE: 853 return "MIPS_COMPACT_SIZE"; 854 case DT_MIPS_GP_VALUE: 855 return "MIPS_GP_VALUE"; 856 case DT_MIPS_AUX_DYNAMIC: 857 return "MIPS_AUX_DYNAMIC"; 858 case DT_MIPS_PLTGOT: 859 return "MIPS_PLTGOT"; 860 case DT_MIPS_RLD_OBJ_UPDATE: 861 return "MIPS_RLD_OBJ_UPDATE"; 862 case DT_MIPS_RWPLT: 863 return "MIPS_RWPLT"; 864 default: 865 break; 866 } 867 break; 868 case EM_SPARC: 869 case EM_SPARC32PLUS: 870 case EM_SPARCV9: 871 switch (dtype) { 872 case DT_SPARC_REGISTER: 873 return "DT_SPARC_REGISTER"; 874 default: 875 break; 876 } 877 break; 878 default: 879 break; 880 } 881 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 882 return (s_dtype); 883 } 884 885 switch (dtype) { 886 case DT_NULL: return "NULL"; 887 case DT_NEEDED: return "NEEDED"; 888 case DT_PLTRELSZ: return "PLTRELSZ"; 889 case DT_PLTGOT: return "PLTGOT"; 890 case DT_HASH: return "HASH"; 891 case DT_STRTAB: return "STRTAB"; 892 case DT_SYMTAB: return "SYMTAB"; 893 case DT_RELA: return "RELA"; 894 case DT_RELASZ: return "RELASZ"; 895 case DT_RELAENT: return "RELAENT"; 896 case DT_STRSZ: return "STRSZ"; 897 case DT_SYMENT: return "SYMENT"; 898 case DT_INIT: return "INIT"; 899 case DT_FINI: return "FINI"; 900 case DT_SONAME: return "SONAME"; 901 case DT_RPATH: return "RPATH"; 902 case DT_SYMBOLIC: return "SYMBOLIC"; 903 case DT_REL: return "REL"; 904 case DT_RELSZ: return "RELSZ"; 905 case DT_RELENT: return "RELENT"; 906 case DT_PLTREL: return "PLTREL"; 907 case DT_DEBUG: return "DEBUG"; 908 case DT_TEXTREL: return "TEXTREL"; 909 case DT_JMPREL: return "JMPREL"; 910 case DT_BIND_NOW: return "BIND_NOW"; 911 case DT_INIT_ARRAY: return "INIT_ARRAY"; 912 case DT_FINI_ARRAY: return "FINI_ARRAY"; 913 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; 914 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; 915 case DT_RUNPATH: return "RUNPATH"; 916 case DT_FLAGS: return "FLAGS"; 917 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; 918 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; 919 case DT_MAXPOSTAGS: return "MAXPOSTAGS"; 920 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; 921 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; 922 case DT_SUNW_FILTER: return "SUNW_FILTER"; 923 case DT_SUNW_CAP: return "SUNW_CAP"; 924 case DT_CHECKSUM: return "CHECKSUM"; 925 case DT_PLTPADSZ: return "PLTPADSZ"; 926 case DT_MOVEENT: return "MOVEENT"; 927 case DT_MOVESZ: return "MOVESZ"; 928 case DT_FEATURE: return "FEATURE"; 929 case DT_POSFLAG_1: return "POSFLAG_1"; 930 case DT_SYMINSZ: return "SYMINSZ"; 931 case DT_SYMINENT: return "SYMINENT"; 932 case DT_GNU_HASH: return "GNU_HASH"; 933 case DT_GNU_CONFLICT: return "GNU_CONFLICT"; 934 case DT_GNU_LIBLIST: return "GNU_LIBLIST"; 935 case DT_CONFIG: return "CONFIG"; 936 case DT_DEPAUDIT: return "DEPAUDIT"; 937 case DT_AUDIT: return "AUDIT"; 938 case DT_PLTPAD: return "PLTPAD"; 939 case DT_MOVETAB: return "MOVETAB"; 940 case DT_SYMINFO: return "SYMINFO"; 941 case DT_VERSYM: return "VERSYM"; 942 case DT_RELACOUNT: return "RELACOUNT"; 943 case DT_RELCOUNT: return "RELCOUNT"; 944 case DT_FLAGS_1: return "FLAGS_1"; 945 case DT_VERDEF: return "VERDEF"; 946 case DT_VERDEFNUM: return "VERDEFNUM"; 947 case DT_VERNEED: return "VERNEED"; 948 case DT_VERNEEDNUM: return "VERNEEDNUM"; 949 case DT_AUXILIARY: return "AUXILIARY"; 950 case DT_USED: return "USED"; 951 case DT_FILTER: return "FILTER"; 952 case DT_GNU_PRELINKED: return "GNU_PRELINKED"; 953 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; 954 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; 955 default: 956 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); 957 return (s_dtype); 958 } 959 } 960 961 static const char * 962 st_bind(unsigned int sbind) 963 { 964 static char s_sbind[32]; 965 966 switch (sbind) { 967 case STB_LOCAL: return "LOCAL"; 968 case STB_GLOBAL: return "GLOBAL"; 969 case STB_WEAK: return "WEAK"; 970 case STB_GNU_UNIQUE: return "UNIQUE"; 971 default: 972 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 973 return "OS"; 974 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 975 return "PROC"; 976 else 977 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 978 sbind); 979 return (s_sbind); 980 } 981 } 982 983 static const char * 984 st_type(unsigned int mach, unsigned int stype) 985 { 986 static char s_stype[32]; 987 988 switch (stype) { 989 case STT_NOTYPE: return "NOTYPE"; 990 case STT_OBJECT: return "OBJECT"; 991 case STT_FUNC: return "FUNC"; 992 case STT_SECTION: return "SECTION"; 993 case STT_FILE: return "FILE"; 994 case STT_COMMON: return "COMMON"; 995 case STT_TLS: return "TLS"; 996 default: 997 if (stype >= STT_LOOS && stype <= STT_HIOS) 998 snprintf(s_stype, sizeof(s_stype), "OS+%#x", 999 stype - STT_LOOS); 1000 else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { 1001 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) 1002 return "REGISTER"; 1003 snprintf(s_stype, sizeof(s_stype), "PROC+%#x", 1004 stype - STT_LOPROC); 1005 } else 1006 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", 1007 stype); 1008 return (s_stype); 1009 } 1010 } 1011 1012 static const char * 1013 st_vis(unsigned int svis) 1014 { 1015 static char s_svis[32]; 1016 1017 switch(svis) { 1018 case STV_DEFAULT: return "DEFAULT"; 1019 case STV_INTERNAL: return "INTERNAL"; 1020 case STV_HIDDEN: return "HIDDEN"; 1021 case STV_PROTECTED: return "PROTECTED"; 1022 default: 1023 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); 1024 return (s_svis); 1025 } 1026 } 1027 1028 static const char * 1029 st_shndx(unsigned int shndx) 1030 { 1031 static char s_shndx[32]; 1032 1033 switch (shndx) { 1034 case SHN_UNDEF: return "UND"; 1035 case SHN_ABS: return "ABS"; 1036 case SHN_COMMON: return "COM"; 1037 default: 1038 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) 1039 return "PRC"; 1040 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) 1041 return "OS"; 1042 else 1043 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); 1044 return (s_shndx); 1045 } 1046 } 1047 1048 static struct { 1049 const char *ln; 1050 char sn; 1051 int value; 1052 } section_flag[] = { 1053 {"WRITE", 'W', SHF_WRITE}, 1054 {"ALLOC", 'A', SHF_ALLOC}, 1055 {"EXEC", 'X', SHF_EXECINSTR}, 1056 {"MERGE", 'M', SHF_MERGE}, 1057 {"STRINGS", 'S', SHF_STRINGS}, 1058 {"INFO LINK", 'I', SHF_INFO_LINK}, 1059 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, 1060 {"GROUP", 'G', SHF_GROUP}, 1061 {"TLS", 'T', SHF_TLS}, 1062 {NULL, 0, 0} 1063 }; 1064 1065 static const char * 1066 r_type(unsigned int mach, unsigned int type) 1067 { 1068 static char s_type[32]; 1069 1070 switch(mach) { 1071 case EM_386: 1072 case EM_IAMCU: 1073 switch(type) { 1074 case 0: return "R_386_NONE"; 1075 case 1: return "R_386_32"; 1076 case 2: return "R_386_PC32"; 1077 case 3: return "R_386_GOT32"; 1078 case 4: return "R_386_PLT32"; 1079 case 5: return "R_386_COPY"; 1080 case 6: return "R_386_GLOB_DAT"; 1081 case 7: return "R_386_JUMP_SLOT"; 1082 case 8: return "R_386_RELATIVE"; 1083 case 9: return "R_386_GOTOFF"; 1084 case 10: return "R_386_GOTPC"; 1085 case 14: return "R_386_TLS_TPOFF"; 1086 case 15: return "R_386_TLS_IE"; 1087 case 16: return "R_386_TLS_GOTIE"; 1088 case 17: return "R_386_TLS_LE"; 1089 case 18: return "R_386_TLS_GD"; 1090 case 19: return "R_386_TLS_LDM"; 1091 case 24: return "R_386_TLS_GD_32"; 1092 case 25: return "R_386_TLS_GD_PUSH"; 1093 case 26: return "R_386_TLS_GD_CALL"; 1094 case 27: return "R_386_TLS_GD_POP"; 1095 case 28: return "R_386_TLS_LDM_32"; 1096 case 29: return "R_386_TLS_LDM_PUSH"; 1097 case 30: return "R_386_TLS_LDM_CALL"; 1098 case 31: return "R_386_TLS_LDM_POP"; 1099 case 32: return "R_386_TLS_LDO_32"; 1100 case 33: return "R_386_TLS_IE_32"; 1101 case 34: return "R_386_TLS_LE_32"; 1102 case 35: return "R_386_TLS_DTPMOD32"; 1103 case 36: return "R_386_TLS_DTPOFF32"; 1104 case 37: return "R_386_TLS_TPOFF32"; 1105 } 1106 break; 1107 case EM_AARCH64: 1108 switch(type) { 1109 case 0: return "R_AARCH64_NONE"; 1110 case 257: return "R_AARCH64_ABS64"; 1111 case 258: return "R_AARCH64_ABS32"; 1112 case 259: return "R_AARCH64_ABS16"; 1113 case 260: return "R_AARCH64_PREL64"; 1114 case 261: return "R_AARCH64_PREL32"; 1115 case 262: return "R_AARCH64_PREL16"; 1116 case 263: return "R_AARCH64_MOVW_UABS_G0"; 1117 case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; 1118 case 265: return "R_AARCH64_MOVW_UABS_G1"; 1119 case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; 1120 case 267: return "R_AARCH64_MOVW_UABS_G2"; 1121 case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; 1122 case 269: return "R_AARCH64_MOVW_UABS_G3"; 1123 case 270: return "R_AARCH64_MOVW_SABS_G0"; 1124 case 271: return "R_AARCH64_MOVW_SABS_G1"; 1125 case 272: return "R_AARCH64_MOVW_SABS_G2"; 1126 case 273: return "R_AARCH64_LD_PREL_LO19"; 1127 case 274: return "R_AARCH64_ADR_PREL_LO21"; 1128 case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; 1129 case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; 1130 case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; 1131 case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; 1132 case 279: return "R_AARCH64_TSTBR14"; 1133 case 280: return "R_AARCH64_CONDBR19"; 1134 case 282: return "R_AARCH64_JUMP26"; 1135 case 283: return "R_AARCH64_CALL26"; 1136 case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; 1137 case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; 1138 case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; 1139 case 287: return "R_AARCH64_MOVW_PREL_G0"; 1140 case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; 1141 case 289: return "R_AARCH64_MOVW_PREL_G1"; 1142 case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; 1143 case 291: return "R_AARCH64_MOVW_PREL_G2"; 1144 case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; 1145 case 293: return "R_AARCH64_MOVW_PREL_G3"; 1146 case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; 1147 case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; 1148 case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; 1149 case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; 1150 case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; 1151 case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; 1152 case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; 1153 case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; 1154 case 307: return "R_AARCH64_GOTREL64"; 1155 case 308: return "R_AARCH64_GOTREL32"; 1156 case 309: return "R_AARCH64_GOT_LD_PREL19"; 1157 case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; 1158 case 311: return "R_AARCH64_ADR_GOT_PAGE"; 1159 case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; 1160 case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; 1161 case 560: return "R_AARCH64_TLSDESC_LD_PREL19"; 1162 case 561: return "R_AARCH64_TLSDESC_ADR_PREL21"; 1163 case 562: return "R_AARCH64_TLSDESC_ADR_PAGE21"; 1164 case 563: return "R_AARCH64_TLSDESC_LD64_LO12"; 1165 case 564: return "R_AARCH64_TLSDESC_ADD_LO12"; 1166 case 565: return "R_AARCH64_TLSDESC_OFF_G1"; 1167 case 566: return "R_AARCH64_TLSDESC_OFF_G0_NC"; 1168 case 567: return "R_AARCH64_TLSDESC_LDR"; 1169 case 568: return "R_AARCH64_TLSDESC_ADD"; 1170 case 569: return "R_AARCH64_TLSDESC_CALL"; 1171 case 1024: return "R_AARCH64_COPY"; 1172 case 1025: return "R_AARCH64_GLOB_DAT"; 1173 case 1026: return "R_AARCH64_JUMP_SLOT"; 1174 case 1027: return "R_AARCH64_RELATIVE"; 1175 case 1028: return "R_AARCH64_TLS_DTPREL64"; 1176 case 1029: return "R_AARCH64_TLS_DTPMOD64"; 1177 case 1030: return "R_AARCH64_TLS_TPREL64"; 1178 case 1031: return "R_AARCH64_TLSDESC"; 1179 case 1032: return "R_AARCH64_IRELATIVE"; 1180 } 1181 break; 1182 case EM_ARM: 1183 switch(type) { 1184 case 0: return "R_ARM_NONE"; 1185 case 1: return "R_ARM_PC24"; 1186 case 2: return "R_ARM_ABS32"; 1187 case 3: return "R_ARM_REL32"; 1188 case 4: return "R_ARM_PC13"; 1189 case 5: return "R_ARM_ABS16"; 1190 case 6: return "R_ARM_ABS12"; 1191 case 7: return "R_ARM_THM_ABS5"; 1192 case 8: return "R_ARM_ABS8"; 1193 case 9: return "R_ARM_SBREL32"; 1194 case 10: return "R_ARM_THM_PC22"; 1195 case 11: return "R_ARM_THM_PC8"; 1196 case 12: return "R_ARM_AMP_VCALL9"; 1197 case 13: return "R_ARM_TLS_DESC"; 1198 /* Obsolete R_ARM_SWI24 is also 13 */ 1199 case 14: return "R_ARM_THM_SWI8"; 1200 case 15: return "R_ARM_XPC25"; 1201 case 16: return "R_ARM_THM_XPC22"; 1202 case 17: return "R_ARM_TLS_DTPMOD32"; 1203 case 18: return "R_ARM_TLS_DTPOFF32"; 1204 case 19: return "R_ARM_TLS_TPOFF32"; 1205 case 20: return "R_ARM_COPY"; 1206 case 21: return "R_ARM_GLOB_DAT"; 1207 case 22: return "R_ARM_JUMP_SLOT"; 1208 case 23: return "R_ARM_RELATIVE"; 1209 case 24: return "R_ARM_GOTOFF"; 1210 case 25: return "R_ARM_GOTPC"; 1211 case 26: return "R_ARM_GOT32"; 1212 case 27: return "R_ARM_PLT32"; 1213 case 28: return "R_ARM_CALL"; 1214 case 29: return "R_ARM_JUMP24"; 1215 case 30: return "R_ARM_THM_JUMP24"; 1216 case 31: return "R_ARM_BASE_ABS"; 1217 case 38: return "R_ARM_TARGET1"; 1218 case 40: return "R_ARM_V4BX"; 1219 case 42: return "R_ARM_PREL31"; 1220 case 43: return "R_ARM_MOVW_ABS_NC"; 1221 case 44: return "R_ARM_MOVT_ABS"; 1222 case 45: return "R_ARM_MOVW_PREL_NC"; 1223 case 46: return "R_ARM_MOVT_PREL"; 1224 case 100: return "R_ARM_GNU_VTENTRY"; 1225 case 101: return "R_ARM_GNU_VTINHERIT"; 1226 case 250: return "R_ARM_RSBREL32"; 1227 case 251: return "R_ARM_THM_RPC22"; 1228 case 252: return "R_ARM_RREL32"; 1229 case 253: return "R_ARM_RABS32"; 1230 case 254: return "R_ARM_RPC24"; 1231 case 255: return "R_ARM_RBASE"; 1232 } 1233 break; 1234 case EM_IA_64: 1235 switch(type) { 1236 case 0: return "R_IA_64_NONE"; 1237 case 33: return "R_IA_64_IMM14"; 1238 case 34: return "R_IA_64_IMM22"; 1239 case 35: return "R_IA_64_IMM64"; 1240 case 36: return "R_IA_64_DIR32MSB"; 1241 case 37: return "R_IA_64_DIR32LSB"; 1242 case 38: return "R_IA_64_DIR64MSB"; 1243 case 39: return "R_IA_64_DIR64LSB"; 1244 case 42: return "R_IA_64_GPREL22"; 1245 case 43: return "R_IA_64_GPREL64I"; 1246 case 44: return "R_IA_64_GPREL32MSB"; 1247 case 45: return "R_IA_64_GPREL32LSB"; 1248 case 46: return "R_IA_64_GPREL64MSB"; 1249 case 47: return "R_IA_64_GPREL64LSB"; 1250 case 50: return "R_IA_64_LTOFF22"; 1251 case 51: return "R_IA_64_LTOFF64I"; 1252 case 58: return "R_IA_64_PLTOFF22"; 1253 case 59: return "R_IA_64_PLTOFF64I"; 1254 case 62: return "R_IA_64_PLTOFF64MSB"; 1255 case 63: return "R_IA_64_PLTOFF64LSB"; 1256 case 67: return "R_IA_64_FPTR64I"; 1257 case 68: return "R_IA_64_FPTR32MSB"; 1258 case 69: return "R_IA_64_FPTR32LSB"; 1259 case 70: return "R_IA_64_FPTR64MSB"; 1260 case 71: return "R_IA_64_FPTR64LSB"; 1261 case 72: return "R_IA_64_PCREL60B"; 1262 case 73: return "R_IA_64_PCREL21B"; 1263 case 74: return "R_IA_64_PCREL21M"; 1264 case 75: return "R_IA_64_PCREL21F"; 1265 case 76: return "R_IA_64_PCREL32MSB"; 1266 case 77: return "R_IA_64_PCREL32LSB"; 1267 case 78: return "R_IA_64_PCREL64MSB"; 1268 case 79: return "R_IA_64_PCREL64LSB"; 1269 case 82: return "R_IA_64_LTOFF_FPTR22"; 1270 case 83: return "R_IA_64_LTOFF_FPTR64I"; 1271 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 1272 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 1273 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 1274 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 1275 case 92: return "R_IA_64_SEGREL32MSB"; 1276 case 93: return "R_IA_64_SEGREL32LSB"; 1277 case 94: return "R_IA_64_SEGREL64MSB"; 1278 case 95: return "R_IA_64_SEGREL64LSB"; 1279 case 100: return "R_IA_64_SECREL32MSB"; 1280 case 101: return "R_IA_64_SECREL32LSB"; 1281 case 102: return "R_IA_64_SECREL64MSB"; 1282 case 103: return "R_IA_64_SECREL64LSB"; 1283 case 108: return "R_IA_64_REL32MSB"; 1284 case 109: return "R_IA_64_REL32LSB"; 1285 case 110: return "R_IA_64_REL64MSB"; 1286 case 111: return "R_IA_64_REL64LSB"; 1287 case 116: return "R_IA_64_LTV32MSB"; 1288 case 117: return "R_IA_64_LTV32LSB"; 1289 case 118: return "R_IA_64_LTV64MSB"; 1290 case 119: return "R_IA_64_LTV64LSB"; 1291 case 121: return "R_IA_64_PCREL21BI"; 1292 case 122: return "R_IA_64_PCREL22"; 1293 case 123: return "R_IA_64_PCREL64I"; 1294 case 128: return "R_IA_64_IPLTMSB"; 1295 case 129: return "R_IA_64_IPLTLSB"; 1296 case 133: return "R_IA_64_SUB"; 1297 case 134: return "R_IA_64_LTOFF22X"; 1298 case 135: return "R_IA_64_LDXMOV"; 1299 case 145: return "R_IA_64_TPREL14"; 1300 case 146: return "R_IA_64_TPREL22"; 1301 case 147: return "R_IA_64_TPREL64I"; 1302 case 150: return "R_IA_64_TPREL64MSB"; 1303 case 151: return "R_IA_64_TPREL64LSB"; 1304 case 154: return "R_IA_64_LTOFF_TPREL22"; 1305 case 166: return "R_IA_64_DTPMOD64MSB"; 1306 case 167: return "R_IA_64_DTPMOD64LSB"; 1307 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 1308 case 177: return "R_IA_64_DTPREL14"; 1309 case 178: return "R_IA_64_DTPREL22"; 1310 case 179: return "R_IA_64_DTPREL64I"; 1311 case 180: return "R_IA_64_DTPREL32MSB"; 1312 case 181: return "R_IA_64_DTPREL32LSB"; 1313 case 182: return "R_IA_64_DTPREL64MSB"; 1314 case 183: return "R_IA_64_DTPREL64LSB"; 1315 case 186: return "R_IA_64_LTOFF_DTPREL22"; 1316 } 1317 break; 1318 case EM_MIPS: 1319 switch(type) { 1320 case 0: return "R_MIPS_NONE"; 1321 case 1: return "R_MIPS_16"; 1322 case 2: return "R_MIPS_32"; 1323 case 3: return "R_MIPS_REL32"; 1324 case 4: return "R_MIPS_26"; 1325 case 5: return "R_MIPS_HI16"; 1326 case 6: return "R_MIPS_LO16"; 1327 case 7: return "R_MIPS_GPREL16"; 1328 case 8: return "R_MIPS_LITERAL"; 1329 case 9: return "R_MIPS_GOT16"; 1330 case 10: return "R_MIPS_PC16"; 1331 case 11: return "R_MIPS_CALL16"; 1332 case 12: return "R_MIPS_GPREL32"; 1333 case 21: return "R_MIPS_GOTHI16"; 1334 case 22: return "R_MIPS_GOTLO16"; 1335 case 30: return "R_MIPS_CALLHI16"; 1336 case 31: return "R_MIPS_CALLLO16"; 1337 case 38: return "R_MIPS_TLS_DTPMOD32"; 1338 case 39: return "R_MIPS_TLS_DTPREL32"; 1339 case 40: return "R_MIPS_TLS_DTPMOD64"; 1340 case 41: return "R_MIPS_TLS_DTPREL64"; 1341 case 42: return "R_MIPS_TLS_GD"; 1342 case 43: return "R_MIPS_TLS_LDM"; 1343 case 44: return "R_MIPS_TLS_DTPREL_HI16"; 1344 case 45: return "R_MIPS_TLS_DTPREL_LO16"; 1345 case 46: return "R_MIPS_TLS_GOTTPREL"; 1346 case 47: return "R_MIPS_TLS_TPREL32"; 1347 case 48: return "R_MIPS_TLS_TPREL64"; 1348 case 49: return "R_MIPS_TLS_TPREL_HI16"; 1349 case 50: return "R_MIPS_TLS_TPREL_LO16"; 1350 } 1351 break; 1352 case EM_PPC: 1353 switch(type) { 1354 case 0: return "R_PPC_NONE"; 1355 case 1: return "R_PPC_ADDR32"; 1356 case 2: return "R_PPC_ADDR24"; 1357 case 3: return "R_PPC_ADDR16"; 1358 case 4: return "R_PPC_ADDR16_LO"; 1359 case 5: return "R_PPC_ADDR16_HI"; 1360 case 6: return "R_PPC_ADDR16_HA"; 1361 case 7: return "R_PPC_ADDR14"; 1362 case 8: return "R_PPC_ADDR14_BRTAKEN"; 1363 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 1364 case 10: return "R_PPC_REL24"; 1365 case 11: return "R_PPC_REL14"; 1366 case 12: return "R_PPC_REL14_BRTAKEN"; 1367 case 13: return "R_PPC_REL14_BRNTAKEN"; 1368 case 14: return "R_PPC_GOT16"; 1369 case 15: return "R_PPC_GOT16_LO"; 1370 case 16: return "R_PPC_GOT16_HI"; 1371 case 17: return "R_PPC_GOT16_HA"; 1372 case 18: return "R_PPC_PLTREL24"; 1373 case 19: return "R_PPC_COPY"; 1374 case 20: return "R_PPC_GLOB_DAT"; 1375 case 21: return "R_PPC_JMP_SLOT"; 1376 case 22: return "R_PPC_RELATIVE"; 1377 case 23: return "R_PPC_LOCAL24PC"; 1378 case 24: return "R_PPC_UADDR32"; 1379 case 25: return "R_PPC_UADDR16"; 1380 case 26: return "R_PPC_REL32"; 1381 case 27: return "R_PPC_PLT32"; 1382 case 28: return "R_PPC_PLTREL32"; 1383 case 29: return "R_PPC_PLT16_LO"; 1384 case 30: return "R_PPC_PLT16_HI"; 1385 case 31: return "R_PPC_PLT16_HA"; 1386 case 32: return "R_PPC_SDAREL16"; 1387 case 33: return "R_PPC_SECTOFF"; 1388 case 34: return "R_PPC_SECTOFF_LO"; 1389 case 35: return "R_PPC_SECTOFF_HI"; 1390 case 36: return "R_PPC_SECTOFF_HA"; 1391 case 67: return "R_PPC_TLS"; 1392 case 68: return "R_PPC_DTPMOD32"; 1393 case 69: return "R_PPC_TPREL16"; 1394 case 70: return "R_PPC_TPREL16_LO"; 1395 case 71: return "R_PPC_TPREL16_HI"; 1396 case 72: return "R_PPC_TPREL16_HA"; 1397 case 73: return "R_PPC_TPREL32"; 1398 case 74: return "R_PPC_DTPREL16"; 1399 case 75: return "R_PPC_DTPREL16_LO"; 1400 case 76: return "R_PPC_DTPREL16_HI"; 1401 case 77: return "R_PPC_DTPREL16_HA"; 1402 case 78: return "R_PPC_DTPREL32"; 1403 case 79: return "R_PPC_GOT_TLSGD16"; 1404 case 80: return "R_PPC_GOT_TLSGD16_LO"; 1405 case 81: return "R_PPC_GOT_TLSGD16_HI"; 1406 case 82: return "R_PPC_GOT_TLSGD16_HA"; 1407 case 83: return "R_PPC_GOT_TLSLD16"; 1408 case 84: return "R_PPC_GOT_TLSLD16_LO"; 1409 case 85: return "R_PPC_GOT_TLSLD16_HI"; 1410 case 86: return "R_PPC_GOT_TLSLD16_HA"; 1411 case 87: return "R_PPC_GOT_TPREL16"; 1412 case 88: return "R_PPC_GOT_TPREL16_LO"; 1413 case 89: return "R_PPC_GOT_TPREL16_HI"; 1414 case 90: return "R_PPC_GOT_TPREL16_HA"; 1415 case 101: return "R_PPC_EMB_NADDR32"; 1416 case 102: return "R_PPC_EMB_NADDR16"; 1417 case 103: return "R_PPC_EMB_NADDR16_LO"; 1418 case 104: return "R_PPC_EMB_NADDR16_HI"; 1419 case 105: return "R_PPC_EMB_NADDR16_HA"; 1420 case 106: return "R_PPC_EMB_SDAI16"; 1421 case 107: return "R_PPC_EMB_SDA2I16"; 1422 case 108: return "R_PPC_EMB_SDA2REL"; 1423 case 109: return "R_PPC_EMB_SDA21"; 1424 case 110: return "R_PPC_EMB_MRKREF"; 1425 case 111: return "R_PPC_EMB_RELSEC16"; 1426 case 112: return "R_PPC_EMB_RELST_LO"; 1427 case 113: return "R_PPC_EMB_RELST_HI"; 1428 case 114: return "R_PPC_EMB_RELST_HA"; 1429 case 115: return "R_PPC_EMB_BIT_FLD"; 1430 case 116: return "R_PPC_EMB_RELSDA"; 1431 } 1432 break; 1433 case EM_RISCV: 1434 switch(type) { 1435 case 0: return "R_RISCV_NONE"; 1436 case 1: return "R_RISCV_32"; 1437 case 2: return "R_RISCV_64"; 1438 case 3: return "R_RISCV_RELATIVE"; 1439 case 4: return "R_RISCV_COPY"; 1440 case 5: return "R_RISCV_JUMP_SLOT"; 1441 case 6: return "R_RISCV_TLS_DTPMOD32"; 1442 case 7: return "R_RISCV_TLS_DTPMOD64"; 1443 case 8: return "R_RISCV_TLS_DTPREL32"; 1444 case 9: return "R_RISCV_TLS_DTPREL64"; 1445 case 10: return "R_RISCV_TLS_TPREL32"; 1446 case 11: return "R_RISCV_TLS_TPREL64"; 1447 case 16: return "R_RISCV_BRANCH"; 1448 case 17: return "R_RISCV_JAL"; 1449 case 18: return "R_RISCV_CALL"; 1450 case 19: return "R_RISCV_CALL_PLT"; 1451 case 20: return "R_RISCV_GOT_HI20"; 1452 case 21: return "R_RISCV_TLS_GOT_HI20"; 1453 case 22: return "R_RISCV_TLS_GD_HI20"; 1454 case 23: return "R_RISCV_PCREL_HI20"; 1455 case 24: return "R_RISCV_PCREL_LO12_I"; 1456 case 25: return "R_RISCV_PCREL_LO12_S"; 1457 case 26: return "R_RISCV_HI20"; 1458 case 27: return "R_RISCV_LO12_I"; 1459 case 28: return "R_RISCV_LO12_S"; 1460 case 29: return "R_RISCV_TPREL_HI20"; 1461 case 30: return "R_RISCV_TPREL_LO12_I"; 1462 case 31: return "R_RISCV_TPREL_LO12_S"; 1463 case 32: return "R_RISCV_TPREL_ADD"; 1464 case 33: return "R_RISCV_ADD8"; 1465 case 34: return "R_RISCV_ADD16"; 1466 case 35: return "R_RISCV_ADD32"; 1467 case 36: return "R_RISCV_ADD64"; 1468 case 37: return "R_RISCV_SUB8"; 1469 case 38: return "R_RISCV_SUB16"; 1470 case 39: return "R_RISCV_SUB32"; 1471 case 40: return "R_RISCV_SUB64"; 1472 case 41: return "R_RISCV_GNU_VTINHERIT"; 1473 case 42: return "R_RISCV_GNU_VTENTRY"; 1474 case 43: return "R_RISCV_ALIGN"; 1475 case 44: return "R_RISCV_RVC_BRANCH"; 1476 case 45: return "R_RISCV_RVC_JUMP"; 1477 } 1478 break; 1479 case EM_SPARC: 1480 case EM_SPARCV9: 1481 switch(type) { 1482 case 0: return "R_SPARC_NONE"; 1483 case 1: return "R_SPARC_8"; 1484 case 2: return "R_SPARC_16"; 1485 case 3: return "R_SPARC_32"; 1486 case 4: return "R_SPARC_DISP8"; 1487 case 5: return "R_SPARC_DISP16"; 1488 case 6: return "R_SPARC_DISP32"; 1489 case 7: return "R_SPARC_WDISP30"; 1490 case 8: return "R_SPARC_WDISP22"; 1491 case 9: return "R_SPARC_HI22"; 1492 case 10: return "R_SPARC_22"; 1493 case 11: return "R_SPARC_13"; 1494 case 12: return "R_SPARC_LO10"; 1495 case 13: return "R_SPARC_GOT10"; 1496 case 14: return "R_SPARC_GOT13"; 1497 case 15: return "R_SPARC_GOT22"; 1498 case 16: return "R_SPARC_PC10"; 1499 case 17: return "R_SPARC_PC22"; 1500 case 18: return "R_SPARC_WPLT30"; 1501 case 19: return "R_SPARC_COPY"; 1502 case 20: return "R_SPARC_GLOB_DAT"; 1503 case 21: return "R_SPARC_JMP_SLOT"; 1504 case 22: return "R_SPARC_RELATIVE"; 1505 case 23: return "R_SPARC_UA32"; 1506 case 24: return "R_SPARC_PLT32"; 1507 case 25: return "R_SPARC_HIPLT22"; 1508 case 26: return "R_SPARC_LOPLT10"; 1509 case 27: return "R_SPARC_PCPLT32"; 1510 case 28: return "R_SPARC_PCPLT22"; 1511 case 29: return "R_SPARC_PCPLT10"; 1512 case 30: return "R_SPARC_10"; 1513 case 31: return "R_SPARC_11"; 1514 case 32: return "R_SPARC_64"; 1515 case 33: return "R_SPARC_OLO10"; 1516 case 34: return "R_SPARC_HH22"; 1517 case 35: return "R_SPARC_HM10"; 1518 case 36: return "R_SPARC_LM22"; 1519 case 37: return "R_SPARC_PC_HH22"; 1520 case 38: return "R_SPARC_PC_HM10"; 1521 case 39: return "R_SPARC_PC_LM22"; 1522 case 40: return "R_SPARC_WDISP16"; 1523 case 41: return "R_SPARC_WDISP19"; 1524 case 42: return "R_SPARC_GLOB_JMP"; 1525 case 43: return "R_SPARC_7"; 1526 case 44: return "R_SPARC_5"; 1527 case 45: return "R_SPARC_6"; 1528 case 46: return "R_SPARC_DISP64"; 1529 case 47: return "R_SPARC_PLT64"; 1530 case 48: return "R_SPARC_HIX22"; 1531 case 49: return "R_SPARC_LOX10"; 1532 case 50: return "R_SPARC_H44"; 1533 case 51: return "R_SPARC_M44"; 1534 case 52: return "R_SPARC_L44"; 1535 case 53: return "R_SPARC_REGISTER"; 1536 case 54: return "R_SPARC_UA64"; 1537 case 55: return "R_SPARC_UA16"; 1538 case 56: return "R_SPARC_TLS_GD_HI22"; 1539 case 57: return "R_SPARC_TLS_GD_LO10"; 1540 case 58: return "R_SPARC_TLS_GD_ADD"; 1541 case 59: return "R_SPARC_TLS_GD_CALL"; 1542 case 60: return "R_SPARC_TLS_LDM_HI22"; 1543 case 61: return "R_SPARC_TLS_LDM_LO10"; 1544 case 62: return "R_SPARC_TLS_LDM_ADD"; 1545 case 63: return "R_SPARC_TLS_LDM_CALL"; 1546 case 64: return "R_SPARC_TLS_LDO_HIX22"; 1547 case 65: return "R_SPARC_TLS_LDO_LOX10"; 1548 case 66: return "R_SPARC_TLS_LDO_ADD"; 1549 case 67: return "R_SPARC_TLS_IE_HI22"; 1550 case 68: return "R_SPARC_TLS_IE_LO10"; 1551 case 69: return "R_SPARC_TLS_IE_LD"; 1552 case 70: return "R_SPARC_TLS_IE_LDX"; 1553 case 71: return "R_SPARC_TLS_IE_ADD"; 1554 case 72: return "R_SPARC_TLS_LE_HIX22"; 1555 case 73: return "R_SPARC_TLS_LE_LOX10"; 1556 case 74: return "R_SPARC_TLS_DTPMOD32"; 1557 case 75: return "R_SPARC_TLS_DTPMOD64"; 1558 case 76: return "R_SPARC_TLS_DTPOFF32"; 1559 case 77: return "R_SPARC_TLS_DTPOFF64"; 1560 case 78: return "R_SPARC_TLS_TPOFF32"; 1561 case 79: return "R_SPARC_TLS_TPOFF64"; 1562 } 1563 break; 1564 case EM_X86_64: 1565 switch(type) { 1566 case 0: return "R_X86_64_NONE"; 1567 case 1: return "R_X86_64_64"; 1568 case 2: return "R_X86_64_PC32"; 1569 case 3: return "R_X86_64_GOT32"; 1570 case 4: return "R_X86_64_PLT32"; 1571 case 5: return "R_X86_64_COPY"; 1572 case 6: return "R_X86_64_GLOB_DAT"; 1573 case 7: return "R_X86_64_JUMP_SLOT"; 1574 case 8: return "R_X86_64_RELATIVE"; 1575 case 9: return "R_X86_64_GOTPCREL"; 1576 case 10: return "R_X86_64_32"; 1577 case 11: return "R_X86_64_32S"; 1578 case 12: return "R_X86_64_16"; 1579 case 13: return "R_X86_64_PC16"; 1580 case 14: return "R_X86_64_8"; 1581 case 15: return "R_X86_64_PC8"; 1582 case 16: return "R_X86_64_DTPMOD64"; 1583 case 17: return "R_X86_64_DTPOFF64"; 1584 case 18: return "R_X86_64_TPOFF64"; 1585 case 19: return "R_X86_64_TLSGD"; 1586 case 20: return "R_X86_64_TLSLD"; 1587 case 21: return "R_X86_64_DTPOFF32"; 1588 case 22: return "R_X86_64_GOTTPOFF"; 1589 case 23: return "R_X86_64_TPOFF32"; 1590 case 24: return "R_X86_64_PC64"; 1591 case 25: return "R_X86_64_GOTOFF64"; 1592 case 26: return "R_X86_64_GOTPC32"; 1593 case 27: return "R_X86_64_GOT64"; 1594 case 28: return "R_X86_64_GOTPCREL64"; 1595 case 29: return "R_X86_64_GOTPC64"; 1596 case 30: return "R_X86_64_GOTPLT64"; 1597 case 31: return "R_X86_64_PLTOFF64"; 1598 case 32: return "R_X86_64_SIZE32"; 1599 case 33: return "R_X86_64_SIZE64"; 1600 case 34: return "R_X86_64_GOTPC32_TLSDESC"; 1601 case 35: return "R_X86_64_TLSDESC_CALL"; 1602 case 36: return "R_X86_64_TLSDESC"; 1603 case 37: return "R_X86_64_IRELATIVE"; 1604 } 1605 break; 1606 } 1607 1608 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type); 1609 return (s_type); 1610 } 1611 1612 static const char * 1613 note_type(const char *name, unsigned int et, unsigned int nt) 1614 { 1615 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && 1616 et == ET_CORE) 1617 return note_type_linux_core(nt); 1618 else if (strcmp(name, "FreeBSD") == 0) 1619 if (et == ET_CORE) 1620 return note_type_freebsd_core(nt); 1621 else 1622 return note_type_freebsd(nt); 1623 else if (strcmp(name, "GNU") == 0 && et != ET_CORE) 1624 return note_type_gnu(nt); 1625 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) 1626 return note_type_netbsd(nt); 1627 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) 1628 return note_type_openbsd(nt); 1629 else if (strcmp(name, "Xen") == 0 && et != ET_CORE) 1630 return note_type_xen(nt); 1631 return note_type_unknown(nt); 1632 } 1633 1634 static const char * 1635 note_type_freebsd(unsigned int nt) 1636 { 1637 switch (nt) { 1638 case 1: return "NT_FREEBSD_ABI_TAG"; 1639 case 2: return "NT_FREEBSD_NOINIT_TAG"; 1640 case 3: return "NT_FREEBSD_ARCH_TAG"; 1641 default: return (note_type_unknown(nt)); 1642 } 1643 } 1644 1645 static const char * 1646 note_type_freebsd_core(unsigned int nt) 1647 { 1648 switch (nt) { 1649 case 1: return "NT_PRSTATUS"; 1650 case 2: return "NT_FPREGSET"; 1651 case 3: return "NT_PRPSINFO"; 1652 case 7: return "NT_THRMISC"; 1653 case 8: return "NT_PROCSTAT_PROC"; 1654 case 9: return "NT_PROCSTAT_FILES"; 1655 case 10: return "NT_PROCSTAT_VMMAP"; 1656 case 11: return "NT_PROCSTAT_GROUPS"; 1657 case 12: return "NT_PROCSTAT_UMASK"; 1658 case 13: return "NT_PROCSTAT_RLIMIT"; 1659 case 14: return "NT_PROCSTAT_OSREL"; 1660 case 15: return "NT_PROCSTAT_PSSTRINGS"; 1661 case 16: return "NT_PROCSTAT_AUXV"; 1662 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1663 default: return (note_type_unknown(nt)); 1664 } 1665 } 1666 1667 static const char * 1668 note_type_linux_core(unsigned int nt) 1669 { 1670 switch (nt) { 1671 case 1: return "NT_PRSTATUS (Process status)"; 1672 case 2: return "NT_FPREGSET (Floating point information)"; 1673 case 3: return "NT_PRPSINFO (Process information)"; 1674 case 4: return "NT_TASKSTRUCT (Task structure)"; 1675 case 6: return "NT_AUXV (Auxiliary vector)"; 1676 case 10: return "NT_PSTATUS (Linux process status)"; 1677 case 12: return "NT_FPREGS (Linux floating point regset)"; 1678 case 13: return "NT_PSINFO (Linux process information)"; 1679 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; 1680 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; 1681 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; 1682 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; 1683 case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; 1684 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; 1685 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; 1686 case 0x301: return "NT_S390_TIMER (s390 timer register)"; 1687 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; 1688 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; 1689 case 0x304: return "NT_S390_CTRS (s390 control registers)"; 1690 case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; 1691 case 0x400: return "NT_ARM_VFP (arm VFP registers)"; 1692 case 0x46494c45UL: return "NT_FILE (mapped files)"; 1693 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; 1694 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; 1695 default: return (note_type_unknown(nt)); 1696 } 1697 } 1698 1699 static const char * 1700 note_type_gnu(unsigned int nt) 1701 { 1702 switch (nt) { 1703 case 1: return "NT_GNU_ABI_TAG"; 1704 case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; 1705 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; 1706 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; 1707 default: return (note_type_unknown(nt)); 1708 } 1709 } 1710 1711 static const char * 1712 note_type_netbsd(unsigned int nt) 1713 { 1714 switch (nt) { 1715 case 1: return "NT_NETBSD_IDENT"; 1716 default: return (note_type_unknown(nt)); 1717 } 1718 } 1719 1720 static const char * 1721 note_type_openbsd(unsigned int nt) 1722 { 1723 switch (nt) { 1724 case 1: return "NT_OPENBSD_IDENT"; 1725 default: return (note_type_unknown(nt)); 1726 } 1727 } 1728 1729 static const char * 1730 note_type_unknown(unsigned int nt) 1731 { 1732 static char s_nt[32]; 1733 1734 snprintf(s_nt, sizeof(s_nt), 1735 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); 1736 return (s_nt); 1737 } 1738 1739 static const char * 1740 note_type_xen(unsigned int nt) 1741 { 1742 switch (nt) { 1743 case 0: return "XEN_ELFNOTE_INFO"; 1744 case 1: return "XEN_ELFNOTE_ENTRY"; 1745 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; 1746 case 3: return "XEN_ELFNOTE_VIRT_BASE"; 1747 case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; 1748 case 5: return "XEN_ELFNOTE_XEN_VERSION"; 1749 case 6: return "XEN_ELFNOTE_GUEST_OS"; 1750 case 7: return "XEN_ELFNOTE_GUEST_VERSION"; 1751 case 8: return "XEN_ELFNOTE_LOADER"; 1752 case 9: return "XEN_ELFNOTE_PAE_MODE"; 1753 case 10: return "XEN_ELFNOTE_FEATURES"; 1754 case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; 1755 case 12: return "XEN_ELFNOTE_HV_START_LOW"; 1756 case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; 1757 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; 1758 case 15: return "XEN_ELFNOTE_INIT_P2M"; 1759 case 16: return "XEN_ELFNOTE_MOD_START_PFN"; 1760 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; 1761 default: return (note_type_unknown(nt)); 1762 } 1763 } 1764 1765 static struct { 1766 const char *name; 1767 int value; 1768 } l_flag[] = { 1769 {"EXACT_MATCH", LL_EXACT_MATCH}, 1770 {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, 1771 {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, 1772 {"EXPORTS", LL_EXPORTS}, 1773 {"DELAY_LOAD", LL_DELAY_LOAD}, 1774 {"DELTA", LL_DELTA}, 1775 {NULL, 0} 1776 }; 1777 1778 static struct mips_option mips_exceptions_option[] = { 1779 {OEX_PAGE0, "PAGE0"}, 1780 {OEX_SMM, "SMM"}, 1781 {OEX_PRECISEFP, "PRECISEFP"}, 1782 {OEX_DISMISS, "DISMISS"}, 1783 {0, NULL} 1784 }; 1785 1786 static struct mips_option mips_pad_option[] = { 1787 {OPAD_PREFIX, "PREFIX"}, 1788 {OPAD_POSTFIX, "POSTFIX"}, 1789 {OPAD_SYMBOL, "SYMBOL"}, 1790 {0, NULL} 1791 }; 1792 1793 static struct mips_option mips_hwpatch_option[] = { 1794 {OHW_R4KEOP, "R4KEOP"}, 1795 {OHW_R8KPFETCH, "R8KPFETCH"}, 1796 {OHW_R5KEOP, "R5KEOP"}, 1797 {OHW_R5KCVTL, "R5KCVTL"}, 1798 {0, NULL} 1799 }; 1800 1801 static struct mips_option mips_hwa_option[] = { 1802 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, 1803 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, 1804 {0, NULL} 1805 }; 1806 1807 static struct mips_option mips_hwo_option[] = { 1808 {OHWO0_FIXADE, "FIXADE"}, 1809 {0, NULL} 1810 }; 1811 1812 static const char * 1813 option_kind(uint8_t kind) 1814 { 1815 static char s_kind[32]; 1816 1817 switch (kind) { 1818 case ODK_NULL: return "NULL"; 1819 case ODK_REGINFO: return "REGINFO"; 1820 case ODK_EXCEPTIONS: return "EXCEPTIONS"; 1821 case ODK_PAD: return "PAD"; 1822 case ODK_HWPATCH: return "HWPATCH"; 1823 case ODK_FILL: return "FILL"; 1824 case ODK_TAGS: return "TAGS"; 1825 case ODK_HWAND: return "HWAND"; 1826 case ODK_HWOR: return "HWOR"; 1827 case ODK_GP_GROUP: return "GP_GROUP"; 1828 case ODK_IDENT: return "IDENT"; 1829 default: 1830 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); 1831 return (s_kind); 1832 } 1833 } 1834 1835 static const char * 1836 top_tag(unsigned int tag) 1837 { 1838 static char s_top_tag[32]; 1839 1840 switch (tag) { 1841 case 1: return "File Attributes"; 1842 case 2: return "Section Attributes"; 1843 case 3: return "Symbol Attributes"; 1844 default: 1845 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); 1846 return (s_top_tag); 1847 } 1848 } 1849 1850 static const char * 1851 aeabi_cpu_arch(uint64_t arch) 1852 { 1853 static char s_cpu_arch[32]; 1854 1855 switch (arch) { 1856 case 0: return "Pre-V4"; 1857 case 1: return "ARM v4"; 1858 case 2: return "ARM v4T"; 1859 case 3: return "ARM v5T"; 1860 case 4: return "ARM v5TE"; 1861 case 5: return "ARM v5TEJ"; 1862 case 6: return "ARM v6"; 1863 case 7: return "ARM v6KZ"; 1864 case 8: return "ARM v6T2"; 1865 case 9: return "ARM v6K"; 1866 case 10: return "ARM v7"; 1867 case 11: return "ARM v6-M"; 1868 case 12: return "ARM v6S-M"; 1869 case 13: return "ARM v7E-M"; 1870 default: 1871 snprintf(s_cpu_arch, sizeof(s_cpu_arch), 1872 "Unknown (%ju)", (uintmax_t) arch); 1873 return (s_cpu_arch); 1874 } 1875 } 1876 1877 static const char * 1878 aeabi_cpu_arch_profile(uint64_t pf) 1879 { 1880 static char s_arch_profile[32]; 1881 1882 switch (pf) { 1883 case 0: 1884 return "Not applicable"; 1885 case 0x41: /* 'A' */ 1886 return "Application Profile"; 1887 case 0x52: /* 'R' */ 1888 return "Real-Time Profile"; 1889 case 0x4D: /* 'M' */ 1890 return "Microcontroller Profile"; 1891 case 0x53: /* 'S' */ 1892 return "Application or Real-Time Profile"; 1893 default: 1894 snprintf(s_arch_profile, sizeof(s_arch_profile), 1895 "Unknown (%ju)\n", (uintmax_t) pf); 1896 return (s_arch_profile); 1897 } 1898 } 1899 1900 static const char * 1901 aeabi_arm_isa(uint64_t ai) 1902 { 1903 static char s_ai[32]; 1904 1905 switch (ai) { 1906 case 0: return "No"; 1907 case 1: return "Yes"; 1908 default: 1909 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", 1910 (uintmax_t) ai); 1911 return (s_ai); 1912 } 1913 } 1914 1915 static const char * 1916 aeabi_thumb_isa(uint64_t ti) 1917 { 1918 static char s_ti[32]; 1919 1920 switch (ti) { 1921 case 0: return "No"; 1922 case 1: return "16-bit Thumb"; 1923 case 2: return "32-bit Thumb"; 1924 default: 1925 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", 1926 (uintmax_t) ti); 1927 return (s_ti); 1928 } 1929 } 1930 1931 static const char * 1932 aeabi_fp_arch(uint64_t fp) 1933 { 1934 static char s_fp_arch[32]; 1935 1936 switch (fp) { 1937 case 0: return "No"; 1938 case 1: return "VFPv1"; 1939 case 2: return "VFPv2"; 1940 case 3: return "VFPv3"; 1941 case 4: return "VFPv3-D16"; 1942 case 5: return "VFPv4"; 1943 case 6: return "VFPv4-D16"; 1944 default: 1945 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", 1946 (uintmax_t) fp); 1947 return (s_fp_arch); 1948 } 1949 } 1950 1951 static const char * 1952 aeabi_wmmx_arch(uint64_t wmmx) 1953 { 1954 static char s_wmmx[32]; 1955 1956 switch (wmmx) { 1957 case 0: return "No"; 1958 case 1: return "WMMXv1"; 1959 case 2: return "WMMXv2"; 1960 default: 1961 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", 1962 (uintmax_t) wmmx); 1963 return (s_wmmx); 1964 } 1965 } 1966 1967 static const char * 1968 aeabi_adv_simd_arch(uint64_t simd) 1969 { 1970 static char s_simd[32]; 1971 1972 switch (simd) { 1973 case 0: return "No"; 1974 case 1: return "NEONv1"; 1975 case 2: return "NEONv2"; 1976 default: 1977 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", 1978 (uintmax_t) simd); 1979 return (s_simd); 1980 } 1981 } 1982 1983 static const char * 1984 aeabi_pcs_config(uint64_t pcs) 1985 { 1986 static char s_pcs[32]; 1987 1988 switch (pcs) { 1989 case 0: return "None"; 1990 case 1: return "Bare platform"; 1991 case 2: return "Linux"; 1992 case 3: return "Linux DSO"; 1993 case 4: return "Palm OS 2004"; 1994 case 5: return "Palm OS (future)"; 1995 case 6: return "Symbian OS 2004"; 1996 case 7: return "Symbian OS (future)"; 1997 default: 1998 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", 1999 (uintmax_t) pcs); 2000 return (s_pcs); 2001 } 2002 } 2003 2004 static const char * 2005 aeabi_pcs_r9(uint64_t r9) 2006 { 2007 static char s_r9[32]; 2008 2009 switch (r9) { 2010 case 0: return "V6"; 2011 case 1: return "SB"; 2012 case 2: return "TLS pointer"; 2013 case 3: return "Unused"; 2014 default: 2015 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); 2016 return (s_r9); 2017 } 2018 } 2019 2020 static const char * 2021 aeabi_pcs_rw(uint64_t rw) 2022 { 2023 static char s_rw[32]; 2024 2025 switch (rw) { 2026 case 0: return "Absolute"; 2027 case 1: return "PC-relative"; 2028 case 2: return "SB-relative"; 2029 case 3: return "None"; 2030 default: 2031 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); 2032 return (s_rw); 2033 } 2034 } 2035 2036 static const char * 2037 aeabi_pcs_ro(uint64_t ro) 2038 { 2039 static char s_ro[32]; 2040 2041 switch (ro) { 2042 case 0: return "Absolute"; 2043 case 1: return "PC-relative"; 2044 case 2: return "None"; 2045 default: 2046 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); 2047 return (s_ro); 2048 } 2049 } 2050 2051 static const char * 2052 aeabi_pcs_got(uint64_t got) 2053 { 2054 static char s_got[32]; 2055 2056 switch (got) { 2057 case 0: return "None"; 2058 case 1: return "direct"; 2059 case 2: return "indirect via GOT"; 2060 default: 2061 snprintf(s_got, sizeof(s_got), "Unknown (%ju)", 2062 (uintmax_t) got); 2063 return (s_got); 2064 } 2065 } 2066 2067 static const char * 2068 aeabi_pcs_wchar_t(uint64_t wt) 2069 { 2070 static char s_wt[32]; 2071 2072 switch (wt) { 2073 case 0: return "None"; 2074 case 2: return "wchar_t size 2"; 2075 case 4: return "wchar_t size 4"; 2076 default: 2077 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); 2078 return (s_wt); 2079 } 2080 } 2081 2082 static const char * 2083 aeabi_enum_size(uint64_t es) 2084 { 2085 static char s_es[32]; 2086 2087 switch (es) { 2088 case 0: return "None"; 2089 case 1: return "smallest"; 2090 case 2: return "32-bit"; 2091 case 3: return "visible 32-bit"; 2092 default: 2093 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); 2094 return (s_es); 2095 } 2096 } 2097 2098 static const char * 2099 aeabi_align_needed(uint64_t an) 2100 { 2101 static char s_align_n[64]; 2102 2103 switch (an) { 2104 case 0: return "No"; 2105 case 1: return "8-byte align"; 2106 case 2: return "4-byte align"; 2107 case 3: return "Reserved"; 2108 default: 2109 if (an >= 4 && an <= 12) 2110 snprintf(s_align_n, sizeof(s_align_n), "8-byte align" 2111 " and up to 2^%ju-byte extended align", 2112 (uintmax_t) an); 2113 else 2114 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", 2115 (uintmax_t) an); 2116 return (s_align_n); 2117 } 2118 } 2119 2120 static const char * 2121 aeabi_align_preserved(uint64_t ap) 2122 { 2123 static char s_align_p[128]; 2124 2125 switch (ap) { 2126 case 0: return "No"; 2127 case 1: return "8-byte align"; 2128 case 2: return "8-byte align and SP % 8 == 0"; 2129 case 3: return "Reserved"; 2130 default: 2131 if (ap >= 4 && ap <= 12) 2132 snprintf(s_align_p, sizeof(s_align_p), "8-byte align" 2133 " and SP %% 8 == 0 and up to 2^%ju-byte extended" 2134 " align", (uintmax_t) ap); 2135 else 2136 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", 2137 (uintmax_t) ap); 2138 return (s_align_p); 2139 } 2140 } 2141 2142 static const char * 2143 aeabi_fp_rounding(uint64_t fr) 2144 { 2145 static char s_fp_r[32]; 2146 2147 switch (fr) { 2148 case 0: return "Unused"; 2149 case 1: return "Needed"; 2150 default: 2151 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", 2152 (uintmax_t) fr); 2153 return (s_fp_r); 2154 } 2155 } 2156 2157 static const char * 2158 aeabi_fp_denormal(uint64_t fd) 2159 { 2160 static char s_fp_d[32]; 2161 2162 switch (fd) { 2163 case 0: return "Unused"; 2164 case 1: return "Needed"; 2165 case 2: return "Sign Only"; 2166 default: 2167 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", 2168 (uintmax_t) fd); 2169 return (s_fp_d); 2170 } 2171 } 2172 2173 static const char * 2174 aeabi_fp_exceptions(uint64_t fe) 2175 { 2176 static char s_fp_e[32]; 2177 2178 switch (fe) { 2179 case 0: return "Unused"; 2180 case 1: return "Needed"; 2181 default: 2182 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", 2183 (uintmax_t) fe); 2184 return (s_fp_e); 2185 } 2186 } 2187 2188 static const char * 2189 aeabi_fp_user_exceptions(uint64_t fu) 2190 { 2191 static char s_fp_u[32]; 2192 2193 switch (fu) { 2194 case 0: return "Unused"; 2195 case 1: return "Needed"; 2196 default: 2197 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", 2198 (uintmax_t) fu); 2199 return (s_fp_u); 2200 } 2201 } 2202 2203 static const char * 2204 aeabi_fp_number_model(uint64_t fn) 2205 { 2206 static char s_fp_n[32]; 2207 2208 switch (fn) { 2209 case 0: return "Unused"; 2210 case 1: return "IEEE 754 normal"; 2211 case 2: return "RTABI"; 2212 case 3: return "IEEE 754"; 2213 default: 2214 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", 2215 (uintmax_t) fn); 2216 return (s_fp_n); 2217 } 2218 } 2219 2220 static const char * 2221 aeabi_fp_16bit_format(uint64_t fp16) 2222 { 2223 static char s_fp_16[64]; 2224 2225 switch (fp16) { 2226 case 0: return "None"; 2227 case 1: return "IEEE 754"; 2228 case 2: return "VFPv3/Advanced SIMD (alternative format)"; 2229 default: 2230 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", 2231 (uintmax_t) fp16); 2232 return (s_fp_16); 2233 } 2234 } 2235 2236 static const char * 2237 aeabi_mpext(uint64_t mp) 2238 { 2239 static char s_mp[32]; 2240 2241 switch (mp) { 2242 case 0: return "Not allowed"; 2243 case 1: return "Allowed"; 2244 default: 2245 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", 2246 (uintmax_t) mp); 2247 return (s_mp); 2248 } 2249 } 2250 2251 static const char * 2252 aeabi_div(uint64_t du) 2253 { 2254 static char s_du[32]; 2255 2256 switch (du) { 2257 case 0: return "Yes (V7-R/V7-M)"; 2258 case 1: return "No"; 2259 case 2: return "Yes (V7-A)"; 2260 default: 2261 snprintf(s_du, sizeof(s_du), "Unknown (%ju)", 2262 (uintmax_t) du); 2263 return (s_du); 2264 } 2265 } 2266 2267 static const char * 2268 aeabi_t2ee(uint64_t t2ee) 2269 { 2270 static char s_t2ee[32]; 2271 2272 switch (t2ee) { 2273 case 0: return "Not allowed"; 2274 case 1: return "Allowed"; 2275 default: 2276 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", 2277 (uintmax_t) t2ee); 2278 return (s_t2ee); 2279 } 2280 2281 } 2282 2283 static const char * 2284 aeabi_hardfp(uint64_t hfp) 2285 { 2286 static char s_hfp[32]; 2287 2288 switch (hfp) { 2289 case 0: return "Tag_FP_arch"; 2290 case 1: return "only SP"; 2291 case 2: return "only DP"; 2292 case 3: return "both SP and DP"; 2293 default: 2294 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", 2295 (uintmax_t) hfp); 2296 return (s_hfp); 2297 } 2298 } 2299 2300 static const char * 2301 aeabi_vfp_args(uint64_t va) 2302 { 2303 static char s_va[32]; 2304 2305 switch (va) { 2306 case 0: return "AAPCS (base variant)"; 2307 case 1: return "AAPCS (VFP variant)"; 2308 case 2: return "toolchain-specific"; 2309 default: 2310 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); 2311 return (s_va); 2312 } 2313 } 2314 2315 static const char * 2316 aeabi_wmmx_args(uint64_t wa) 2317 { 2318 static char s_wa[32]; 2319 2320 switch (wa) { 2321 case 0: return "AAPCS (base variant)"; 2322 case 1: return "Intel WMMX"; 2323 case 2: return "toolchain-specific"; 2324 default: 2325 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); 2326 return (s_wa); 2327 } 2328 } 2329 2330 static const char * 2331 aeabi_unaligned_access(uint64_t ua) 2332 { 2333 static char s_ua[32]; 2334 2335 switch (ua) { 2336 case 0: return "Not allowed"; 2337 case 1: return "Allowed"; 2338 default: 2339 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); 2340 return (s_ua); 2341 } 2342 } 2343 2344 static const char * 2345 aeabi_fp_hpext(uint64_t fh) 2346 { 2347 static char s_fh[32]; 2348 2349 switch (fh) { 2350 case 0: return "Not allowed"; 2351 case 1: return "Allowed"; 2352 default: 2353 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); 2354 return (s_fh); 2355 } 2356 } 2357 2358 static const char * 2359 aeabi_optm_goal(uint64_t og) 2360 { 2361 static char s_og[32]; 2362 2363 switch (og) { 2364 case 0: return "None"; 2365 case 1: return "Speed"; 2366 case 2: return "Speed aggressive"; 2367 case 3: return "Space"; 2368 case 4: return "Space aggressive"; 2369 case 5: return "Debugging"; 2370 case 6: return "Best Debugging"; 2371 default: 2372 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); 2373 return (s_og); 2374 } 2375 } 2376 2377 static const char * 2378 aeabi_fp_optm_goal(uint64_t fog) 2379 { 2380 static char s_fog[32]; 2381 2382 switch (fog) { 2383 case 0: return "None"; 2384 case 1: return "Speed"; 2385 case 2: return "Speed aggressive"; 2386 case 3: return "Space"; 2387 case 4: return "Space aggressive"; 2388 case 5: return "Accurary"; 2389 case 6: return "Best Accurary"; 2390 default: 2391 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", 2392 (uintmax_t) fog); 2393 return (s_fog); 2394 } 2395 } 2396 2397 static const char * 2398 aeabi_virtual(uint64_t vt) 2399 { 2400 static char s_virtual[64]; 2401 2402 switch (vt) { 2403 case 0: return "No"; 2404 case 1: return "TrustZone"; 2405 case 2: return "Virtualization extension"; 2406 case 3: return "TrustZone and virtualization extension"; 2407 default: 2408 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", 2409 (uintmax_t) vt); 2410 return (s_virtual); 2411 } 2412 } 2413 2414 static struct { 2415 uint64_t tag; 2416 const char *s_tag; 2417 const char *(*get_desc)(uint64_t val); 2418 } aeabi_tags[] = { 2419 {4, "Tag_CPU_raw_name", NULL}, 2420 {5, "Tag_CPU_name", NULL}, 2421 {6, "Tag_CPU_arch", aeabi_cpu_arch}, 2422 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, 2423 {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, 2424 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, 2425 {10, "Tag_FP_arch", aeabi_fp_arch}, 2426 {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, 2427 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, 2428 {13, "Tag_PCS_config", aeabi_pcs_config}, 2429 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, 2430 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, 2431 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, 2432 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, 2433 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, 2434 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, 2435 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, 2436 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, 2437 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, 2438 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, 2439 {24, "Tag_ABI_align_needed", aeabi_align_needed}, 2440 {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, 2441 {26, "Tag_ABI_enum_size", aeabi_enum_size}, 2442 {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, 2443 {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, 2444 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, 2445 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, 2446 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, 2447 {32, "Tag_compatibility", NULL}, 2448 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, 2449 {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, 2450 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, 2451 {42, "Tag_MPextension_use", aeabi_mpext}, 2452 {44, "Tag_DIV_use", aeabi_div}, 2453 {64, "Tag_nodefaults", NULL}, 2454 {65, "Tag_also_compatible_with", NULL}, 2455 {66, "Tag_T2EE_use", aeabi_t2ee}, 2456 {67, "Tag_conformance", NULL}, 2457 {68, "Tag_Virtualization_use", aeabi_virtual}, 2458 {70, "Tag_MPextension_use", aeabi_mpext}, 2459 }; 2460 2461 static const char * 2462 mips_abi_fp(uint64_t fp) 2463 { 2464 static char s_mips_abi_fp[64]; 2465 2466 switch (fp) { 2467 case 0: return "N/A"; 2468 case 1: return "Hard float (double precision)"; 2469 case 2: return "Hard float (single precision)"; 2470 case 3: return "Soft float"; 2471 case 4: return "64-bit float (-mips32r2 -mfp64)"; 2472 default: 2473 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", 2474 (uintmax_t) fp); 2475 return (s_mips_abi_fp); 2476 } 2477 } 2478 2479 static const char * 2480 ppc_abi_fp(uint64_t fp) 2481 { 2482 static char s_ppc_abi_fp[64]; 2483 2484 switch (fp) { 2485 case 0: return "N/A"; 2486 case 1: return "Hard float (double precision)"; 2487 case 2: return "Soft float"; 2488 case 3: return "Hard float (single precision)"; 2489 default: 2490 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", 2491 (uintmax_t) fp); 2492 return (s_ppc_abi_fp); 2493 } 2494 } 2495 2496 static const char * 2497 ppc_abi_vector(uint64_t vec) 2498 { 2499 static char s_vec[64]; 2500 2501 switch (vec) { 2502 case 0: return "N/A"; 2503 case 1: return "Generic purpose registers"; 2504 case 2: return "AltiVec registers"; 2505 case 3: return "SPE registers"; 2506 default: 2507 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); 2508 return (s_vec); 2509 } 2510 } 2511 2512 static const char * 2513 dwarf_reg(unsigned int mach, unsigned int reg) 2514 { 2515 2516 switch (mach) { 2517 case EM_386: 2518 case EM_IAMCU: 2519 switch (reg) { 2520 case 0: return "eax"; 2521 case 1: return "ecx"; 2522 case 2: return "edx"; 2523 case 3: return "ebx"; 2524 case 4: return "esp"; 2525 case 5: return "ebp"; 2526 case 6: return "esi"; 2527 case 7: return "edi"; 2528 case 8: return "eip"; 2529 case 9: return "eflags"; 2530 case 11: return "st0"; 2531 case 12: return "st1"; 2532 case 13: return "st2"; 2533 case 14: return "st3"; 2534 case 15: return "st4"; 2535 case 16: return "st5"; 2536 case 17: return "st6"; 2537 case 18: return "st7"; 2538 case 21: return "xmm0"; 2539 case 22: return "xmm1"; 2540 case 23: return "xmm2"; 2541 case 24: return "xmm3"; 2542 case 25: return "xmm4"; 2543 case 26: return "xmm5"; 2544 case 27: return "xmm6"; 2545 case 28: return "xmm7"; 2546 case 29: return "mm0"; 2547 case 30: return "mm1"; 2548 case 31: return "mm2"; 2549 case 32: return "mm3"; 2550 case 33: return "mm4"; 2551 case 34: return "mm5"; 2552 case 35: return "mm6"; 2553 case 36: return "mm7"; 2554 case 37: return "fcw"; 2555 case 38: return "fsw"; 2556 case 39: return "mxcsr"; 2557 case 40: return "es"; 2558 case 41: return "cs"; 2559 case 42: return "ss"; 2560 case 43: return "ds"; 2561 case 44: return "fs"; 2562 case 45: return "gs"; 2563 case 48: return "tr"; 2564 case 49: return "ldtr"; 2565 default: return (NULL); 2566 } 2567 case EM_X86_64: 2568 switch (reg) { 2569 case 0: return "rax"; 2570 case 1: return "rdx"; 2571 case 2: return "rcx"; 2572 case 3: return "rbx"; 2573 case 4: return "rsi"; 2574 case 5: return "rdi"; 2575 case 6: return "rbp"; 2576 case 7: return "rsp"; 2577 case 16: return "rip"; 2578 case 17: return "xmm0"; 2579 case 18: return "xmm1"; 2580 case 19: return "xmm2"; 2581 case 20: return "xmm3"; 2582 case 21: return "xmm4"; 2583 case 22: return "xmm5"; 2584 case 23: return "xmm6"; 2585 case 24: return "xmm7"; 2586 case 25: return "xmm8"; 2587 case 26: return "xmm9"; 2588 case 27: return "xmm10"; 2589 case 28: return "xmm11"; 2590 case 29: return "xmm12"; 2591 case 30: return "xmm13"; 2592 case 31: return "xmm14"; 2593 case 32: return "xmm15"; 2594 case 33: return "st0"; 2595 case 34: return "st1"; 2596 case 35: return "st2"; 2597 case 36: return "st3"; 2598 case 37: return "st4"; 2599 case 38: return "st5"; 2600 case 39: return "st6"; 2601 case 40: return "st7"; 2602 case 41: return "mm0"; 2603 case 42: return "mm1"; 2604 case 43: return "mm2"; 2605 case 44: return "mm3"; 2606 case 45: return "mm4"; 2607 case 46: return "mm5"; 2608 case 47: return "mm6"; 2609 case 48: return "mm7"; 2610 case 49: return "rflags"; 2611 case 50: return "es"; 2612 case 51: return "cs"; 2613 case 52: return "ss"; 2614 case 53: return "ds"; 2615 case 54: return "fs"; 2616 case 55: return "gs"; 2617 case 58: return "fs.base"; 2618 case 59: return "gs.base"; 2619 case 62: return "tr"; 2620 case 63: return "ldtr"; 2621 case 64: return "mxcsr"; 2622 case 65: return "fcw"; 2623 case 66: return "fsw"; 2624 default: return (NULL); 2625 } 2626 default: 2627 return (NULL); 2628 } 2629 } 2630 2631 static void 2632 dump_ehdr(struct readelf *re) 2633 { 2634 size_t shnum, shstrndx; 2635 int i; 2636 2637 printf("ELF Header:\n"); 2638 2639 /* e_ident[]. */ 2640 printf(" Magic: "); 2641 for (i = 0; i < EI_NIDENT; i++) 2642 printf("%.2x ", re->ehdr.e_ident[i]); 2643 putchar('\n'); 2644 2645 /* EI_CLASS. */ 2646 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); 2647 2648 /* EI_DATA. */ 2649 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); 2650 2651 /* EI_VERSION. */ 2652 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], 2653 elf_ver(re->ehdr.e_ident[EI_VERSION])); 2654 2655 /* EI_OSABI. */ 2656 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); 2657 2658 /* EI_ABIVERSION. */ 2659 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); 2660 2661 /* e_type. */ 2662 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); 2663 2664 /* e_machine. */ 2665 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); 2666 2667 /* e_version. */ 2668 printf("%-37s%#x\n", " Version:", re->ehdr.e_version); 2669 2670 /* e_entry. */ 2671 printf("%-37s%#jx\n", " Entry point address:", 2672 (uintmax_t)re->ehdr.e_entry); 2673 2674 /* e_phoff. */ 2675 printf("%-37s%ju (bytes into file)\n", " Start of program headers:", 2676 (uintmax_t)re->ehdr.e_phoff); 2677 2678 /* e_shoff. */ 2679 printf("%-37s%ju (bytes into file)\n", " Start of section headers:", 2680 (uintmax_t)re->ehdr.e_shoff); 2681 2682 /* e_flags. */ 2683 printf("%-37s%#x", " Flags:", re->ehdr.e_flags); 2684 dump_eflags(re, re->ehdr.e_flags); 2685 putchar('\n'); 2686 2687 /* e_ehsize. */ 2688 printf("%-37s%u (bytes)\n", " Size of this header:", 2689 re->ehdr.e_ehsize); 2690 2691 /* e_phentsize. */ 2692 printf("%-37s%u (bytes)\n", " Size of program headers:", 2693 re->ehdr.e_phentsize); 2694 2695 /* e_phnum. */ 2696 printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); 2697 2698 /* e_shentsize. */ 2699 printf("%-37s%u (bytes)\n", " Size of section headers:", 2700 re->ehdr.e_shentsize); 2701 2702 /* e_shnum. */ 2703 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); 2704 if (re->ehdr.e_shnum == SHN_UNDEF) { 2705 /* Extended section numbering is in use. */ 2706 if (elf_getshnum(re->elf, &shnum)) 2707 printf(" (%ju)", (uintmax_t)shnum); 2708 } 2709 putchar('\n'); 2710 2711 /* e_shstrndx. */ 2712 printf("%-37s%u", " Section header string table index:", 2713 re->ehdr.e_shstrndx); 2714 if (re->ehdr.e_shstrndx == SHN_XINDEX) { 2715 /* Extended section numbering is in use. */ 2716 if (elf_getshstrndx(re->elf, &shstrndx)) 2717 printf(" (%ju)", (uintmax_t)shstrndx); 2718 } 2719 putchar('\n'); 2720 } 2721 2722 static void 2723 dump_eflags(struct readelf *re, uint64_t e_flags) 2724 { 2725 struct eflags_desc *edesc; 2726 int arm_eabi; 2727 2728 edesc = NULL; 2729 switch (re->ehdr.e_machine) { 2730 case EM_ARM: 2731 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; 2732 if (arm_eabi == 0) 2733 printf(", GNU EABI"); 2734 else if (arm_eabi <= 5) 2735 printf(", Version%d EABI", arm_eabi); 2736 edesc = arm_eflags_desc; 2737 break; 2738 case EM_MIPS: 2739 case EM_MIPS_RS3_LE: 2740 switch ((e_flags & EF_MIPS_ARCH) >> 28) { 2741 case 0: printf(", mips1"); break; 2742 case 1: printf(", mips2"); break; 2743 case 2: printf(", mips3"); break; 2744 case 3: printf(", mips4"); break; 2745 case 4: printf(", mips5"); break; 2746 case 5: printf(", mips32"); break; 2747 case 6: printf(", mips64"); break; 2748 case 7: printf(", mips32r2"); break; 2749 case 8: printf(", mips64r2"); break; 2750 default: break; 2751 } 2752 switch ((e_flags & 0x00FF0000) >> 16) { 2753 case 0x81: printf(", 3900"); break; 2754 case 0x82: printf(", 4010"); break; 2755 case 0x83: printf(", 4100"); break; 2756 case 0x85: printf(", 4650"); break; 2757 case 0x87: printf(", 4120"); break; 2758 case 0x88: printf(", 4111"); break; 2759 case 0x8a: printf(", sb1"); break; 2760 case 0x8b: printf(", octeon"); break; 2761 case 0x8c: printf(", xlr"); break; 2762 case 0x91: printf(", 5400"); break; 2763 case 0x98: printf(", 5500"); break; 2764 case 0x99: printf(", 9000"); break; 2765 case 0xa0: printf(", loongson-2e"); break; 2766 case 0xa1: printf(", loongson-2f"); break; 2767 default: break; 2768 } 2769 switch ((e_flags & 0x0000F000) >> 12) { 2770 case 1: printf(", o32"); break; 2771 case 2: printf(", o64"); break; 2772 case 3: printf(", eabi32"); break; 2773 case 4: printf(", eabi64"); break; 2774 default: break; 2775 } 2776 edesc = mips_eflags_desc; 2777 break; 2778 case EM_PPC: 2779 case EM_PPC64: 2780 edesc = powerpc_eflags_desc; 2781 break; 2782 case EM_SPARC: 2783 case EM_SPARC32PLUS: 2784 case EM_SPARCV9: 2785 switch ((e_flags & EF_SPARCV9_MM)) { 2786 case EF_SPARCV9_TSO: printf(", tso"); break; 2787 case EF_SPARCV9_PSO: printf(", pso"); break; 2788 case EF_SPARCV9_MM: printf(", rmo"); break; 2789 default: break; 2790 } 2791 edesc = sparc_eflags_desc; 2792 break; 2793 default: 2794 break; 2795 } 2796 2797 if (edesc != NULL) { 2798 while (edesc->desc != NULL) { 2799 if (e_flags & edesc->flag) 2800 printf(", %s", edesc->desc); 2801 edesc++; 2802 } 2803 } 2804 } 2805 2806 static void 2807 dump_phdr(struct readelf *re) 2808 { 2809 const char *rawfile; 2810 GElf_Phdr phdr; 2811 size_t phnum, size; 2812 int i, j; 2813 2814 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ 2815 "MemSiz", "Flg", "Align" 2816 #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ 2817 (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ 2818 (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ 2819 phdr.p_flags & PF_R ? 'R' : ' ', \ 2820 phdr.p_flags & PF_W ? 'W' : ' ', \ 2821 phdr.p_flags & PF_X ? 'E' : ' ', \ 2822 (uintmax_t)phdr.p_align 2823 2824 if (elf_getphnum(re->elf, &phnum) == 0) { 2825 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2826 return; 2827 } 2828 if (phnum == 0) { 2829 printf("\nThere are no program headers in this file.\n"); 2830 return; 2831 } 2832 2833 printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); 2834 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); 2835 printf("There are %ju program headers, starting at offset %ju\n", 2836 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); 2837 2838 /* Dump program headers. */ 2839 printf("\nProgram Headers:\n"); 2840 if (re->ec == ELFCLASS32) 2841 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); 2842 else if (re->options & RE_WW) 2843 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); 2844 else 2845 printf(" %-15s%-19s%-19s%s\n %-19s%-20s" 2846 "%-7s%s\n", PH_HDR); 2847 for (i = 0; (size_t) i < phnum; i++) { 2848 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2849 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2850 continue; 2851 } 2852 /* TODO: Add arch-specific segment type dump. */ 2853 if (re->ec == ELFCLASS32) 2854 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " 2855 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); 2856 else if (re->options & RE_WW) 2857 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " 2858 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); 2859 else 2860 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" 2861 " 0x%16.16jx 0x%16.16jx %c%c%c" 2862 " %#jx\n", PH_CT); 2863 if (phdr.p_type == PT_INTERP) { 2864 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { 2865 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2866 continue; 2867 } 2868 if (phdr.p_offset >= size) { 2869 warnx("invalid program header offset"); 2870 continue; 2871 } 2872 printf(" [Requesting program interpreter: %s]\n", 2873 rawfile + phdr.p_offset); 2874 } 2875 } 2876 2877 /* Dump section to segment mapping. */ 2878 if (re->shnum == 0) 2879 return; 2880 printf("\n Section to Segment mapping:\n"); 2881 printf(" Segment Sections...\n"); 2882 for (i = 0; (size_t)i < phnum; i++) { 2883 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 2884 warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); 2885 continue; 2886 } 2887 printf(" %2.2d ", i); 2888 /* skip NULL section. */ 2889 for (j = 1; (size_t)j < re->shnum; j++) 2890 if (re->sl[j].addr >= phdr.p_vaddr && 2891 re->sl[j].addr + re->sl[j].sz <= 2892 phdr.p_vaddr + phdr.p_memsz) 2893 printf("%s ", re->sl[j].name); 2894 printf("\n"); 2895 } 2896 #undef PH_HDR 2897 #undef PH_CT 2898 } 2899 2900 static char * 2901 section_flags(struct readelf *re, struct section *s) 2902 { 2903 #define BUF_SZ 256 2904 static char buf[BUF_SZ]; 2905 int i, p, nb; 2906 2907 p = 0; 2908 nb = re->ec == ELFCLASS32 ? 8 : 16; 2909 if (re->options & RE_T) { 2910 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, 2911 (uintmax_t)s->flags); 2912 p += nb + 4; 2913 } 2914 for (i = 0; section_flag[i].ln != NULL; i++) { 2915 if ((s->flags & section_flag[i].value) == 0) 2916 continue; 2917 if (re->options & RE_T) { 2918 snprintf(&buf[p], BUF_SZ - p, "%s, ", 2919 section_flag[i].ln); 2920 p += strlen(section_flag[i].ln) + 2; 2921 } else 2922 buf[p++] = section_flag[i].sn; 2923 } 2924 if (re->options & RE_T && p > nb + 4) 2925 p -= 2; 2926 buf[p] = '\0'; 2927 2928 return (buf); 2929 } 2930 2931 static void 2932 dump_shdr(struct readelf *re) 2933 { 2934 struct section *s; 2935 int i; 2936 2937 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2938 "Flg", "Lk", "Inf", "Al" 2939 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ 2940 "EntSize", "Flags", "Link", "Info", "Align" 2941 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ 2942 "Lk", "Inf", "Al", "Flags" 2943 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ 2944 "Size", "EntSize", "Info", "Align", "Flags" 2945 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2946 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2947 (uintmax_t)s->entsize, section_flags(re, s), \ 2948 s->link, s->info, (uintmax_t)s->align 2949 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2950 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ 2951 (uintmax_t)s->entsize, s->link, s->info, \ 2952 (uintmax_t)s->align, section_flags(re, s) 2953 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ 2954 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ 2955 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ 2956 (uintmax_t)s->align, section_flags(re, s) 2957 2958 if (re->shnum == 0) { 2959 printf("\nThere are no sections in this file.\n"); 2960 return; 2961 } 2962 printf("There are %ju section headers, starting at offset 0x%jx:\n", 2963 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); 2964 printf("\nSection Headers:\n"); 2965 if (re->ec == ELFCLASS32) { 2966 if (re->options & RE_T) 2967 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" 2968 "%12s\n", ST_HDR); 2969 else 2970 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2971 S_HDR); 2972 } else if (re->options & RE_WW) { 2973 if (re->options & RE_T) 2974 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" 2975 "%12s\n", ST_HDR); 2976 else 2977 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", 2978 S_HDR); 2979 } else { 2980 if (re->options & RE_T) 2981 printf(" %s\n %-18s%-17s%-18s%s\n %-18s" 2982 "%-17s%-18s%s\n%12s\n", ST_HDRL); 2983 else 2984 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" 2985 "-6s%-6s%s\n", S_HDRL); 2986 } 2987 for (i = 0; (size_t)i < re->shnum; i++) { 2988 s = &re->sl[i]; 2989 if (re->ec == ELFCLASS32) { 2990 if (re->options & RE_T) 2991 printf(" [%2d] %s\n %-15.15s %8.8jx" 2992 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 2993 " %s\n", ST_CT); 2994 else 2995 printf(" [%2d] %-17.17s %-15.15s %8.8jx" 2996 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 2997 S_CT); 2998 } else if (re->options & RE_WW) { 2999 if (re->options & RE_T) 3000 printf(" [%2d] %s\n %-15.15s %16.16jx" 3001 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" 3002 " %s\n", ST_CT); 3003 else 3004 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 3005 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", 3006 S_CT); 3007 } else { 3008 if (re->options & RE_T) 3009 printf(" [%2d] %s\n %-15.15s %16.16jx" 3010 " %16.16jx %u\n %16.16jx %16.16jx" 3011 " %-16u %ju\n %s\n", ST_CTL); 3012 else 3013 printf(" [%2d] %-17.17s %-15.15s %16.16jx" 3014 " %8.8jx\n %16.16jx %16.16jx " 3015 "%3s %2u %3u %ju\n", S_CT); 3016 } 3017 } 3018 if ((re->options & RE_T) == 0) 3019 printf("Key to Flags:\n W (write), A (alloc)," 3020 " X (execute), M (merge), S (strings)\n" 3021 " I (info), L (link order), G (group), x (unknown)\n" 3022 " O (extra OS processing required)" 3023 " o (OS specific), p (processor specific)\n"); 3024 3025 #undef S_HDR 3026 #undef S_HDRL 3027 #undef ST_HDR 3028 #undef ST_HDRL 3029 #undef S_CT 3030 #undef ST_CT 3031 #undef ST_CTL 3032 } 3033 3034 /* 3035 * Return number of entries in the given section. We'd prefer ent_count be a 3036 * size_t *, but libelf APIs already use int for section indices. 3037 */ 3038 static int 3039 get_ent_count(struct section *s, int *ent_count) 3040 { 3041 if (s->entsize == 0) { 3042 warnx("section %s has entry size 0", s->name); 3043 return (0); 3044 } else if (s->sz / s->entsize > INT_MAX) { 3045 warnx("section %s has invalid section count", s->name); 3046 return (0); 3047 } 3048 *ent_count = (int)(s->sz / s->entsize); 3049 return (1); 3050 } 3051 3052 static void 3053 dump_dynamic(struct readelf *re) 3054 { 3055 GElf_Dyn dyn; 3056 Elf_Data *d; 3057 struct section *s; 3058 int elferr, i, is_dynamic, j, jmax, nentries; 3059 3060 is_dynamic = 0; 3061 3062 for (i = 0; (size_t)i < re->shnum; i++) { 3063 s = &re->sl[i]; 3064 if (s->type != SHT_DYNAMIC) 3065 continue; 3066 (void) elf_errno(); 3067 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3068 elferr = elf_errno(); 3069 if (elferr != 0) 3070 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3071 continue; 3072 } 3073 if (d->d_size <= 0) 3074 continue; 3075 3076 is_dynamic = 1; 3077 3078 /* Determine the actual number of table entries. */ 3079 nentries = 0; 3080 if (!get_ent_count(s, &jmax)) 3081 continue; 3082 for (j = 0; j < jmax; j++) { 3083 if (gelf_getdyn(d, j, &dyn) != &dyn) { 3084 warnx("gelf_getdyn failed: %s", 3085 elf_errmsg(-1)); 3086 continue; 3087 } 3088 nentries ++; 3089 if (dyn.d_tag == DT_NULL) 3090 break; 3091 } 3092 3093 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); 3094 printf(" contains %u entries:\n", nentries); 3095 3096 if (re->ec == ELFCLASS32) 3097 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); 3098 else 3099 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); 3100 3101 for (j = 0; j < nentries; j++) { 3102 if (gelf_getdyn(d, j, &dyn) != &dyn) 3103 continue; 3104 /* Dump dynamic entry type. */ 3105 if (re->ec == ELFCLASS32) 3106 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); 3107 else 3108 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); 3109 printf(" %-20s", dt_type(re->ehdr.e_machine, 3110 dyn.d_tag)); 3111 /* Dump dynamic entry value. */ 3112 dump_dyn_val(re, &dyn, s->link); 3113 } 3114 } 3115 3116 if (!is_dynamic) 3117 printf("\nThere is no dynamic section in this file.\n"); 3118 } 3119 3120 static char * 3121 timestamp(time_t ti) 3122 { 3123 static char ts[32]; 3124 struct tm *t; 3125 3126 t = gmtime(&ti); 3127 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", 3128 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, 3129 t->tm_min, t->tm_sec); 3130 3131 return (ts); 3132 } 3133 3134 static const char * 3135 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) 3136 { 3137 const char *name; 3138 3139 if (stab == SHN_UNDEF) 3140 name = "ERROR"; 3141 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { 3142 (void) elf_errno(); /* clear error */ 3143 name = "ERROR"; 3144 } 3145 3146 return (name); 3147 } 3148 3149 static void 3150 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3151 { 3152 const char *name; 3153 3154 switch (re->ehdr.e_machine) { 3155 case EM_MIPS: 3156 case EM_MIPS_RS3_LE: 3157 switch (dyn->d_tag) { 3158 case DT_MIPS_RLD_VERSION: 3159 case DT_MIPS_LOCAL_GOTNO: 3160 case DT_MIPS_CONFLICTNO: 3161 case DT_MIPS_LIBLISTNO: 3162 case DT_MIPS_SYMTABNO: 3163 case DT_MIPS_UNREFEXTNO: 3164 case DT_MIPS_GOTSYM: 3165 case DT_MIPS_HIPAGENO: 3166 case DT_MIPS_DELTA_CLASS_NO: 3167 case DT_MIPS_DELTA_INSTANCE_NO: 3168 case DT_MIPS_DELTA_RELOC_NO: 3169 case DT_MIPS_DELTA_SYM_NO: 3170 case DT_MIPS_DELTA_CLASSSYM_NO: 3171 case DT_MIPS_LOCALPAGE_GOTIDX: 3172 case DT_MIPS_LOCAL_GOTIDX: 3173 case DT_MIPS_HIDDEN_GOTIDX: 3174 case DT_MIPS_PROTECTED_GOTIDX: 3175 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3176 break; 3177 case DT_MIPS_ICHECKSUM: 3178 case DT_MIPS_FLAGS: 3179 case DT_MIPS_BASE_ADDRESS: 3180 case DT_MIPS_CONFLICT: 3181 case DT_MIPS_LIBLIST: 3182 case DT_MIPS_RLD_MAP: 3183 case DT_MIPS_DELTA_CLASS: 3184 case DT_MIPS_DELTA_INSTANCE: 3185 case DT_MIPS_DELTA_RELOC: 3186 case DT_MIPS_DELTA_SYM: 3187 case DT_MIPS_DELTA_CLASSSYM: 3188 case DT_MIPS_CXX_FLAGS: 3189 case DT_MIPS_PIXIE_INIT: 3190 case DT_MIPS_SYMBOL_LIB: 3191 case DT_MIPS_OPTIONS: 3192 case DT_MIPS_INTERFACE: 3193 case DT_MIPS_DYNSTR_ALIGN: 3194 case DT_MIPS_INTERFACE_SIZE: 3195 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 3196 case DT_MIPS_COMPACT_SIZE: 3197 case DT_MIPS_GP_VALUE: 3198 case DT_MIPS_AUX_DYNAMIC: 3199 case DT_MIPS_PLTGOT: 3200 case DT_MIPS_RLD_OBJ_UPDATE: 3201 case DT_MIPS_RWPLT: 3202 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3203 break; 3204 case DT_MIPS_IVERSION: 3205 case DT_MIPS_PERF_SUFFIX: 3206 case DT_AUXILIARY: 3207 case DT_FILTER: 3208 name = dyn_str(re, stab, dyn->d_un.d_val); 3209 printf(" %s\n", name); 3210 break; 3211 case DT_MIPS_TIME_STAMP: 3212 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3213 break; 3214 } 3215 break; 3216 default: 3217 printf("\n"); 3218 break; 3219 } 3220 } 3221 3222 static void 3223 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) 3224 { 3225 const char *name; 3226 3227 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { 3228 dump_arch_dyn_val(re, dyn, stab); 3229 return; 3230 } 3231 3232 /* These entry values are index into the string table. */ 3233 name = NULL; 3234 if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || 3235 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) 3236 name = dyn_str(re, stab, dyn->d_un.d_val); 3237 3238 switch(dyn->d_tag) { 3239 case DT_NULL: 3240 case DT_PLTGOT: 3241 case DT_HASH: 3242 case DT_STRTAB: 3243 case DT_SYMTAB: 3244 case DT_RELA: 3245 case DT_INIT: 3246 case DT_SYMBOLIC: 3247 case DT_REL: 3248 case DT_DEBUG: 3249 case DT_TEXTREL: 3250 case DT_JMPREL: 3251 case DT_FINI: 3252 case DT_VERDEF: 3253 case DT_VERNEED: 3254 case DT_VERSYM: 3255 case DT_GNU_HASH: 3256 case DT_GNU_LIBLIST: 3257 case DT_GNU_CONFLICT: 3258 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); 3259 break; 3260 case DT_PLTRELSZ: 3261 case DT_RELASZ: 3262 case DT_RELAENT: 3263 case DT_STRSZ: 3264 case DT_SYMENT: 3265 case DT_RELSZ: 3266 case DT_RELENT: 3267 case DT_INIT_ARRAYSZ: 3268 case DT_FINI_ARRAYSZ: 3269 case DT_GNU_CONFLICTSZ: 3270 case DT_GNU_LIBLISTSZ: 3271 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); 3272 break; 3273 case DT_RELACOUNT: 3274 case DT_RELCOUNT: 3275 case DT_VERDEFNUM: 3276 case DT_VERNEEDNUM: 3277 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); 3278 break; 3279 case DT_NEEDED: 3280 printf(" Shared library: [%s]\n", name); 3281 break; 3282 case DT_SONAME: 3283 printf(" Library soname: [%s]\n", name); 3284 break; 3285 case DT_RPATH: 3286 printf(" Library rpath: [%s]\n", name); 3287 break; 3288 case DT_RUNPATH: 3289 printf(" Library runpath: [%s]\n", name); 3290 break; 3291 case DT_PLTREL: 3292 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); 3293 break; 3294 case DT_GNU_PRELINKED: 3295 printf(" %s\n", timestamp(dyn->d_un.d_val)); 3296 break; 3297 default: 3298 printf("\n"); 3299 } 3300 } 3301 3302 static void 3303 dump_rel(struct readelf *re, struct section *s, Elf_Data *d) 3304 { 3305 GElf_Rel r; 3306 const char *symname; 3307 uint64_t symval; 3308 int i, len; 3309 3310 if (s->link >= re->shnum) 3311 return; 3312 3313 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" 3314 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3315 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3316 (uintmax_t)symval, symname 3317 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3318 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3319 (uintmax_t)symval, symname 3320 3321 printf("\nRelocation section (%s):\n", s->name); 3322 if (re->ec == ELFCLASS32) 3323 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); 3324 else { 3325 if (re->options & RE_WW) 3326 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); 3327 else 3328 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); 3329 } 3330 assert(d->d_size == s->sz); 3331 if (!get_ent_count(s, &len)) 3332 return; 3333 for (i = 0; i < len; i++) { 3334 if (gelf_getrel(d, i, &r) != &r) { 3335 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3336 continue; 3337 } 3338 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3339 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3340 if (re->ec == ELFCLASS32) { 3341 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3342 ELF64_R_TYPE(r.r_info)); 3343 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); 3344 } else { 3345 if (re->options & RE_WW) 3346 printf("%16.16jx %16.16jx %-24.24s" 3347 " %16.16jx %s\n", REL_CT64); 3348 else 3349 printf("%12.12jx %12.12jx %-19.19s" 3350 " %16.16jx %s\n", REL_CT64); 3351 } 3352 } 3353 3354 #undef REL_HDR 3355 #undef REL_CT 3356 } 3357 3358 static void 3359 dump_rela(struct readelf *re, struct section *s, Elf_Data *d) 3360 { 3361 GElf_Rela r; 3362 const char *symname; 3363 uint64_t symval; 3364 int i, len; 3365 3366 if (s->link >= re->shnum) 3367 return; 3368 3369 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ 3370 "st_name + r_addend" 3371 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3372 r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ 3373 (uintmax_t)symval, symname 3374 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ 3375 r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ 3376 (uintmax_t)symval, symname 3377 3378 printf("\nRelocation section with addend (%s):\n", s->name); 3379 if (re->ec == ELFCLASS32) 3380 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); 3381 else { 3382 if (re->options & RE_WW) 3383 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); 3384 else 3385 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); 3386 } 3387 assert(d->d_size == s->sz); 3388 if (!get_ent_count(s, &len)) 3389 return; 3390 for (i = 0; i < len; i++) { 3391 if (gelf_getrela(d, i, &r) != &r) { 3392 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 3393 continue; 3394 } 3395 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); 3396 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); 3397 if (re->ec == ELFCLASS32) { 3398 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), 3399 ELF64_R_TYPE(r.r_info)); 3400 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); 3401 printf(" + %x\n", (uint32_t) r.r_addend); 3402 } else { 3403 if (re->options & RE_WW) 3404 printf("%16.16jx %16.16jx %-24.24s" 3405 " %16.16jx %s", RELA_CT64); 3406 else 3407 printf("%12.12jx %12.12jx %-19.19s" 3408 " %16.16jx %s", RELA_CT64); 3409 printf(" + %jx\n", (uintmax_t) r.r_addend); 3410 } 3411 } 3412 3413 #undef RELA_HDR 3414 #undef RELA_CT 3415 } 3416 3417 static void 3418 dump_reloc(struct readelf *re) 3419 { 3420 struct section *s; 3421 Elf_Data *d; 3422 int i, elferr; 3423 3424 for (i = 0; (size_t)i < re->shnum; i++) { 3425 s = &re->sl[i]; 3426 if (s->type == SHT_REL || s->type == SHT_RELA) { 3427 (void) elf_errno(); 3428 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3429 elferr = elf_errno(); 3430 if (elferr != 0) 3431 warnx("elf_getdata failed: %s", 3432 elf_errmsg(elferr)); 3433 continue; 3434 } 3435 if (s->type == SHT_REL) 3436 dump_rel(re, s, d); 3437 else 3438 dump_rela(re, s, d); 3439 } 3440 } 3441 } 3442 3443 static void 3444 dump_symtab(struct readelf *re, int i) 3445 { 3446 struct section *s; 3447 Elf_Data *d; 3448 GElf_Sym sym; 3449 const char *name; 3450 uint32_t stab; 3451 int elferr, j, len; 3452 uint16_t vs; 3453 3454 s = &re->sl[i]; 3455 if (s->link >= re->shnum) 3456 return; 3457 stab = s->link; 3458 (void) elf_errno(); 3459 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3460 elferr = elf_errno(); 3461 if (elferr != 0) 3462 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3463 return; 3464 } 3465 if (d->d_size <= 0) 3466 return; 3467 if (!get_ent_count(s, &len)) 3468 return; 3469 printf("Symbol table (%s)", s->name); 3470 printf(" contains %d entries:\n", len); 3471 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", 3472 "Bind", "Vis", "Ndx", "Name"); 3473 3474 for (j = 0; j < len; j++) { 3475 if (gelf_getsym(d, j, &sym) != &sym) { 3476 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 3477 continue; 3478 } 3479 printf("%6d:", j); 3480 printf(" %16.16jx", (uintmax_t) sym.st_value); 3481 printf(" %5ju", (uintmax_t) sym.st_size); 3482 printf(" %-7s", st_type(re->ehdr.e_machine, 3483 GELF_ST_TYPE(sym.st_info))); 3484 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); 3485 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); 3486 printf(" %3s", st_shndx(sym.st_shndx)); 3487 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) 3488 printf(" %s", name); 3489 /* Append symbol version string for SHT_DYNSYM symbol table. */ 3490 if (s->type == SHT_DYNSYM && re->ver != NULL && 3491 re->vs != NULL && re->vs[j] > 1) { 3492 vs = re->vs[j] & VERSYM_VERSION; 3493 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 3494 warnx("invalid versym version index %u", vs); 3495 break; 3496 } 3497 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) 3498 printf("@%s (%d)", re->ver[vs].name, vs); 3499 else 3500 printf("@@%s (%d)", re->ver[vs].name, vs); 3501 } 3502 putchar('\n'); 3503 } 3504 3505 } 3506 3507 static void 3508 dump_symtabs(struct readelf *re) 3509 { 3510 GElf_Dyn dyn; 3511 Elf_Data *d; 3512 struct section *s; 3513 uint64_t dyn_off; 3514 int elferr, i, len; 3515 3516 /* 3517 * If -D is specified, only dump the symbol table specified by 3518 * the DT_SYMTAB entry in the .dynamic section. 3519 */ 3520 dyn_off = 0; 3521 if (re->options & RE_DD) { 3522 s = NULL; 3523 for (i = 0; (size_t)i < re->shnum; i++) 3524 if (re->sl[i].type == SHT_DYNAMIC) { 3525 s = &re->sl[i]; 3526 break; 3527 } 3528 if (s == NULL) 3529 return; 3530 (void) elf_errno(); 3531 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3532 elferr = elf_errno(); 3533 if (elferr != 0) 3534 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 3535 return; 3536 } 3537 if (d->d_size <= 0) 3538 return; 3539 if (!get_ent_count(s, &len)) 3540 return; 3541 3542 for (i = 0; i < len; i++) { 3543 if (gelf_getdyn(d, i, &dyn) != &dyn) { 3544 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 3545 continue; 3546 } 3547 if (dyn.d_tag == DT_SYMTAB) { 3548 dyn_off = dyn.d_un.d_val; 3549 break; 3550 } 3551 } 3552 } 3553 3554 /* Find and dump symbol tables. */ 3555 for (i = 0; (size_t)i < re->shnum; i++) { 3556 s = &re->sl[i]; 3557 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { 3558 if (re->options & RE_DD) { 3559 if (dyn_off == s->addr) { 3560 dump_symtab(re, i); 3561 break; 3562 } 3563 } else 3564 dump_symtab(re, i); 3565 } 3566 } 3567 } 3568 3569 static void 3570 dump_svr4_hash(struct section *s) 3571 { 3572 Elf_Data *d; 3573 uint32_t *buf; 3574 uint32_t nbucket, nchain; 3575 uint32_t *bucket, *chain; 3576 uint32_t *bl, *c, maxl, total; 3577 int elferr, i, j; 3578 3579 /* Read and parse the content of .hash section. */ 3580 (void) elf_errno(); 3581 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3582 elferr = elf_errno(); 3583 if (elferr != 0) 3584 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3585 return; 3586 } 3587 if (d->d_size < 2 * sizeof(uint32_t)) { 3588 warnx(".hash section too small"); 3589 return; 3590 } 3591 buf = d->d_buf; 3592 nbucket = buf[0]; 3593 nchain = buf[1]; 3594 if (nbucket <= 0 || nchain <= 0) { 3595 warnx("Malformed .hash section"); 3596 return; 3597 } 3598 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3599 warnx("Malformed .hash section"); 3600 return; 3601 } 3602 bucket = &buf[2]; 3603 chain = &buf[2 + nbucket]; 3604 3605 maxl = 0; 3606 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3607 errx(EXIT_FAILURE, "calloc failed"); 3608 for (i = 0; (uint32_t)i < nbucket; i++) 3609 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3610 if (++bl[i] > maxl) 3611 maxl = bl[i]; 3612 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3613 errx(EXIT_FAILURE, "calloc failed"); 3614 for (i = 0; (uint32_t)i < nbucket; i++) 3615 c[bl[i]]++; 3616 printf("\nHistogram for bucket list length (total of %u buckets):\n", 3617 nbucket); 3618 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3619 total = 0; 3620 for (i = 0; (uint32_t)i <= maxl; i++) { 3621 total += c[i] * i; 3622 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3623 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3624 } 3625 free(c); 3626 free(bl); 3627 } 3628 3629 static void 3630 dump_svr4_hash64(struct readelf *re, struct section *s) 3631 { 3632 Elf_Data *d, dst; 3633 uint64_t *buf; 3634 uint64_t nbucket, nchain; 3635 uint64_t *bucket, *chain; 3636 uint64_t *bl, *c, maxl, total; 3637 int elferr, i, j; 3638 3639 /* 3640 * ALPHA uses 64-bit hash entries. Since libelf assumes that 3641 * .hash section contains only 32-bit entry, an explicit 3642 * gelf_xlatetom is needed here. 3643 */ 3644 (void) elf_errno(); 3645 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 3646 elferr = elf_errno(); 3647 if (elferr != 0) 3648 warnx("elf_rawdata failed: %s", 3649 elf_errmsg(elferr)); 3650 return; 3651 } 3652 d->d_type = ELF_T_XWORD; 3653 memcpy(&dst, d, sizeof(Elf_Data)); 3654 if (gelf_xlatetom(re->elf, &dst, d, 3655 re->ehdr.e_ident[EI_DATA]) != &dst) { 3656 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 3657 return; 3658 } 3659 if (dst.d_size < 2 * sizeof(uint64_t)) { 3660 warnx(".hash section too small"); 3661 return; 3662 } 3663 buf = dst.d_buf; 3664 nbucket = buf[0]; 3665 nchain = buf[1]; 3666 if (nbucket <= 0 || nchain <= 0) { 3667 warnx("Malformed .hash section"); 3668 return; 3669 } 3670 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 3671 warnx("Malformed .hash section"); 3672 return; 3673 } 3674 bucket = &buf[2]; 3675 chain = &buf[2 + nbucket]; 3676 3677 maxl = 0; 3678 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3679 errx(EXIT_FAILURE, "calloc failed"); 3680 for (i = 0; (uint32_t)i < nbucket; i++) 3681 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) 3682 if (++bl[i] > maxl) 3683 maxl = bl[i]; 3684 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3685 errx(EXIT_FAILURE, "calloc failed"); 3686 for (i = 0; (uint64_t)i < nbucket; i++) 3687 c[bl[i]]++; 3688 printf("Histogram for bucket list length (total of %ju buckets):\n", 3689 (uintmax_t)nbucket); 3690 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3691 total = 0; 3692 for (i = 0; (uint64_t)i <= maxl; i++) { 3693 total += c[i] * i; 3694 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], 3695 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3696 } 3697 free(c); 3698 free(bl); 3699 } 3700 3701 static void 3702 dump_gnu_hash(struct readelf *re, struct section *s) 3703 { 3704 struct section *ds; 3705 Elf_Data *d; 3706 uint32_t *buf; 3707 uint32_t *bucket, *chain; 3708 uint32_t nbucket, nchain, symndx, maskwords; 3709 uint32_t *bl, *c, maxl, total; 3710 int elferr, dynsymcount, i, j; 3711 3712 (void) elf_errno(); 3713 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3714 elferr = elf_errno(); 3715 if (elferr != 0) 3716 warnx("elf_getdata failed: %s", 3717 elf_errmsg(elferr)); 3718 return; 3719 } 3720 if (d->d_size < 4 * sizeof(uint32_t)) { 3721 warnx(".gnu.hash section too small"); 3722 return; 3723 } 3724 buf = d->d_buf; 3725 nbucket = buf[0]; 3726 symndx = buf[1]; 3727 maskwords = buf[2]; 3728 buf += 4; 3729 if (s->link >= re->shnum) 3730 return; 3731 ds = &re->sl[s->link]; 3732 if (!get_ent_count(ds, &dynsymcount)) 3733 return; 3734 nchain = dynsymcount - symndx; 3735 if (d->d_size != 4 * sizeof(uint32_t) + maskwords * 3736 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 3737 (nbucket + nchain) * sizeof(uint32_t)) { 3738 warnx("Malformed .gnu.hash section"); 3739 return; 3740 } 3741 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); 3742 chain = bucket + nbucket; 3743 3744 maxl = 0; 3745 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 3746 errx(EXIT_FAILURE, "calloc failed"); 3747 for (i = 0; (uint32_t)i < nbucket; i++) 3748 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; 3749 j++) { 3750 if (++bl[i] > maxl) 3751 maxl = bl[i]; 3752 if (chain[j - symndx] & 1) 3753 break; 3754 } 3755 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 3756 errx(EXIT_FAILURE, "calloc failed"); 3757 for (i = 0; (uint32_t)i < nbucket; i++) 3758 c[bl[i]]++; 3759 printf("Histogram for bucket list length (total of %u buckets):\n", 3760 nbucket); 3761 printf(" Length\tNumber\t\t%% of total\tCoverage\n"); 3762 total = 0; 3763 for (i = 0; (uint32_t)i <= maxl; i++) { 3764 total += c[i] * i; 3765 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], 3766 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); 3767 } 3768 free(c); 3769 free(bl); 3770 } 3771 3772 static void 3773 dump_hash(struct readelf *re) 3774 { 3775 struct section *s; 3776 int i; 3777 3778 for (i = 0; (size_t) i < re->shnum; i++) { 3779 s = &re->sl[i]; 3780 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { 3781 if (s->type == SHT_GNU_HASH) 3782 dump_gnu_hash(re, s); 3783 else if (re->ehdr.e_machine == EM_ALPHA && 3784 s->entsize == 8) 3785 dump_svr4_hash64(re, s); 3786 else 3787 dump_svr4_hash(s); 3788 } 3789 } 3790 } 3791 3792 static void 3793 dump_notes(struct readelf *re) 3794 { 3795 struct section *s; 3796 const char *rawfile; 3797 GElf_Phdr phdr; 3798 Elf_Data *d; 3799 size_t phnum; 3800 int i, elferr; 3801 3802 if (re->ehdr.e_type == ET_CORE) { 3803 /* 3804 * Search program headers in the core file for 3805 * PT_NOTE entry. 3806 */ 3807 if (elf_getphnum(re->elf, &phnum) == 0) { 3808 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 3809 return; 3810 } 3811 if (phnum == 0) 3812 return; 3813 if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { 3814 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 3815 return; 3816 } 3817 for (i = 0; (size_t) i < phnum; i++) { 3818 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { 3819 warnx("gelf_getphdr failed: %s", 3820 elf_errmsg(-1)); 3821 continue; 3822 } 3823 if (phdr.p_type == PT_NOTE) 3824 dump_notes_content(re, rawfile + phdr.p_offset, 3825 phdr.p_filesz, phdr.p_offset); 3826 } 3827 3828 } else { 3829 /* 3830 * For objects other than core files, Search for 3831 * SHT_NOTE sections. 3832 */ 3833 for (i = 0; (size_t) i < re->shnum; i++) { 3834 s = &re->sl[i]; 3835 if (s->type == SHT_NOTE) { 3836 (void) elf_errno(); 3837 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3838 elferr = elf_errno(); 3839 if (elferr != 0) 3840 warnx("elf_getdata failed: %s", 3841 elf_errmsg(elferr)); 3842 continue; 3843 } 3844 dump_notes_content(re, d->d_buf, d->d_size, 3845 s->off); 3846 } 3847 } 3848 } 3849 } 3850 3851 static void 3852 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) 3853 { 3854 Elf_Note *note; 3855 const char *end, *name; 3856 3857 printf("\nNotes at offset %#010jx with length %#010jx:\n", 3858 (uintmax_t) off, (uintmax_t) sz); 3859 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); 3860 end = buf + sz; 3861 while (buf < end) { 3862 if (buf + sizeof(*note) > end) { 3863 warnx("invalid note header"); 3864 return; 3865 } 3866 note = (Elf_Note *)(uintptr_t) buf; 3867 name = (char *)(uintptr_t)(note + 1); 3868 /* 3869 * The name field is required to be nul-terminated, and 3870 * n_namesz includes the terminating nul in observed 3871 * implementations (contrary to the ELF-64 spec). A special 3872 * case is needed for cores generated by some older Linux 3873 * versions, which write a note named "CORE" without a nul 3874 * terminator and n_namesz = 4. 3875 */ 3876 if (note->n_namesz == 0) 3877 name = ""; 3878 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) 3879 name = "CORE"; 3880 else if (strnlen(name, note->n_namesz) >= note->n_namesz) 3881 name = "<invalid>"; 3882 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); 3883 printf(" %s\n", note_type(name, re->ehdr.e_type, 3884 note->n_type)); 3885 buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + 3886 roundup2(note->n_descsz, 4); 3887 } 3888 } 3889 3890 /* 3891 * Symbol versioning sections are the same for 32bit and 64bit 3892 * ELF objects. 3893 */ 3894 #define Elf_Verdef Elf32_Verdef 3895 #define Elf_Verdaux Elf32_Verdaux 3896 #define Elf_Verneed Elf32_Verneed 3897 #define Elf_Vernaux Elf32_Vernaux 3898 3899 #define SAVE_VERSION_NAME(x, n, t) \ 3900 do { \ 3901 while (x >= re->ver_sz) { \ 3902 nv = realloc(re->ver, \ 3903 sizeof(*re->ver) * re->ver_sz * 2); \ 3904 if (nv == NULL) { \ 3905 warn("realloc failed"); \ 3906 free(re->ver); \ 3907 return; \ 3908 } \ 3909 re->ver = nv; \ 3910 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ 3911 re->ver[i].name = NULL; \ 3912 re->ver[i].type = 0; \ 3913 } \ 3914 re->ver_sz *= 2; \ 3915 } \ 3916 if (x > 1) { \ 3917 re->ver[x].name = n; \ 3918 re->ver[x].type = t; \ 3919 } \ 3920 } while (0) 3921 3922 3923 static void 3924 dump_verdef(struct readelf *re, int dump) 3925 { 3926 struct section *s; 3927 struct symver *nv; 3928 Elf_Data *d; 3929 Elf_Verdef *vd; 3930 Elf_Verdaux *vda; 3931 uint8_t *buf, *end, *buf2; 3932 const char *name; 3933 int elferr, i, j; 3934 3935 if ((s = re->vd_s) == NULL) 3936 return; 3937 if (s->link >= re->shnum) 3938 return; 3939 3940 if (re->ver == NULL) { 3941 re->ver_sz = 16; 3942 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 3943 NULL) { 3944 warn("calloc failed"); 3945 return; 3946 } 3947 re->ver[0].name = "*local*"; 3948 re->ver[1].name = "*global*"; 3949 } 3950 3951 if (dump) 3952 printf("\nVersion definition section (%s):\n", s->name); 3953 (void) elf_errno(); 3954 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 3955 elferr = elf_errno(); 3956 if (elferr != 0) 3957 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 3958 return; 3959 } 3960 if (d->d_size == 0) 3961 return; 3962 3963 buf = d->d_buf; 3964 end = buf + d->d_size; 3965 while (buf + sizeof(Elf_Verdef) <= end) { 3966 vd = (Elf_Verdef *) (uintptr_t) buf; 3967 if (dump) { 3968 printf(" 0x%4.4lx", (unsigned long) 3969 (buf - (uint8_t *)d->d_buf)); 3970 printf(" vd_version: %u vd_flags: %d" 3971 " vd_ndx: %u vd_cnt: %u", vd->vd_version, 3972 vd->vd_flags, vd->vd_ndx, vd->vd_cnt); 3973 } 3974 buf2 = buf + vd->vd_aux; 3975 j = 0; 3976 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { 3977 vda = (Elf_Verdaux *) (uintptr_t) buf2; 3978 name = get_string(re, s->link, vda->vda_name); 3979 if (j == 0) { 3980 if (dump) 3981 printf(" vda_name: %s\n", name); 3982 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); 3983 } else if (dump) 3984 printf(" 0x%4.4lx parent: %s\n", 3985 (unsigned long) (buf2 - 3986 (uint8_t *)d->d_buf), name); 3987 if (vda->vda_next == 0) 3988 break; 3989 buf2 += vda->vda_next; 3990 j++; 3991 } 3992 if (vd->vd_next == 0) 3993 break; 3994 buf += vd->vd_next; 3995 } 3996 } 3997 3998 static void 3999 dump_verneed(struct readelf *re, int dump) 4000 { 4001 struct section *s; 4002 struct symver *nv; 4003 Elf_Data *d; 4004 Elf_Verneed *vn; 4005 Elf_Vernaux *vna; 4006 uint8_t *buf, *end, *buf2; 4007 const char *name; 4008 int elferr, i, j; 4009 4010 if ((s = re->vn_s) == NULL) 4011 return; 4012 if (s->link >= re->shnum) 4013 return; 4014 4015 if (re->ver == NULL) { 4016 re->ver_sz = 16; 4017 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == 4018 NULL) { 4019 warn("calloc failed"); 4020 return; 4021 } 4022 re->ver[0].name = "*local*"; 4023 re->ver[1].name = "*global*"; 4024 } 4025 4026 if (dump) 4027 printf("\nVersion needed section (%s):\n", s->name); 4028 (void) elf_errno(); 4029 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4030 elferr = elf_errno(); 4031 if (elferr != 0) 4032 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 4033 return; 4034 } 4035 if (d->d_size == 0) 4036 return; 4037 4038 buf = d->d_buf; 4039 end = buf + d->d_size; 4040 while (buf + sizeof(Elf_Verneed) <= end) { 4041 vn = (Elf_Verneed *) (uintptr_t) buf; 4042 if (dump) { 4043 printf(" 0x%4.4lx", (unsigned long) 4044 (buf - (uint8_t *)d->d_buf)); 4045 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", 4046 vn->vn_version, 4047 get_string(re, s->link, vn->vn_file), 4048 vn->vn_cnt); 4049 } 4050 buf2 = buf + vn->vn_aux; 4051 j = 0; 4052 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { 4053 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 4054 if (dump) 4055 printf(" 0x%4.4lx", (unsigned long) 4056 (buf2 - (uint8_t *)d->d_buf)); 4057 name = get_string(re, s->link, vna->vna_name); 4058 if (dump) 4059 printf(" vna_name: %s vna_flags: %u" 4060 " vna_other: %u\n", name, 4061 vna->vna_flags, vna->vna_other); 4062 SAVE_VERSION_NAME((int)vna->vna_other, name, 0); 4063 if (vna->vna_next == 0) 4064 break; 4065 buf2 += vna->vna_next; 4066 j++; 4067 } 4068 if (vn->vn_next == 0) 4069 break; 4070 buf += vn->vn_next; 4071 } 4072 } 4073 4074 static void 4075 dump_versym(struct readelf *re) 4076 { 4077 int i; 4078 uint16_t vs; 4079 4080 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) 4081 return; 4082 printf("\nVersion symbol section (%s):\n", re->vs_s->name); 4083 for (i = 0; i < re->vs_sz; i++) { 4084 if ((i & 3) == 0) { 4085 if (i > 0) 4086 putchar('\n'); 4087 printf(" %03x:", i); 4088 } 4089 vs = re->vs[i] & VERSYM_VERSION; 4090 if (vs >= re->ver_sz || re->ver[vs].name == NULL) { 4091 warnx("invalid versym version index %u", re->vs[i]); 4092 break; 4093 } 4094 if (re->vs[i] & VERSYM_HIDDEN) 4095 printf(" %3xh %-12s ", vs, 4096 re->ver[re->vs[i] & VERSYM_VERSION].name); 4097 else 4098 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); 4099 } 4100 putchar('\n'); 4101 } 4102 4103 static void 4104 dump_ver(struct readelf *re) 4105 { 4106 4107 if (re->vs_s && re->ver && re->vs) 4108 dump_versym(re); 4109 if (re->vd_s) 4110 dump_verdef(re, 1); 4111 if (re->vn_s) 4112 dump_verneed(re, 1); 4113 } 4114 4115 static void 4116 search_ver(struct readelf *re) 4117 { 4118 struct section *s; 4119 Elf_Data *d; 4120 int elferr, i; 4121 4122 for (i = 0; (size_t) i < re->shnum; i++) { 4123 s = &re->sl[i]; 4124 if (s->type == SHT_SUNW_versym) 4125 re->vs_s = s; 4126 if (s->type == SHT_SUNW_verneed) 4127 re->vn_s = s; 4128 if (s->type == SHT_SUNW_verdef) 4129 re->vd_s = s; 4130 } 4131 if (re->vd_s) 4132 dump_verdef(re, 0); 4133 if (re->vn_s) 4134 dump_verneed(re, 0); 4135 if (re->vs_s && re->ver != NULL) { 4136 (void) elf_errno(); 4137 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { 4138 elferr = elf_errno(); 4139 if (elferr != 0) 4140 warnx("elf_getdata failed: %s", 4141 elf_errmsg(elferr)); 4142 return; 4143 } 4144 if (d->d_size == 0) 4145 return; 4146 re->vs = d->d_buf; 4147 re->vs_sz = d->d_size / sizeof(Elf32_Half); 4148 } 4149 } 4150 4151 #undef Elf_Verdef 4152 #undef Elf_Verdaux 4153 #undef Elf_Verneed 4154 #undef Elf_Vernaux 4155 #undef SAVE_VERSION_NAME 4156 4157 /* 4158 * Elf32_Lib and Elf64_Lib are identical. 4159 */ 4160 #define Elf_Lib Elf32_Lib 4161 4162 static void 4163 dump_liblist(struct readelf *re) 4164 { 4165 struct section *s; 4166 struct tm *t; 4167 time_t ti; 4168 char tbuf[20]; 4169 Elf_Data *d; 4170 Elf_Lib *lib; 4171 int i, j, k, elferr, first, len; 4172 4173 for (i = 0; (size_t) i < re->shnum; i++) { 4174 s = &re->sl[i]; 4175 if (s->type != SHT_GNU_LIBLIST) 4176 continue; 4177 if (s->link >= re->shnum) 4178 continue; 4179 (void) elf_errno(); 4180 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4181 elferr = elf_errno(); 4182 if (elferr != 0) 4183 warnx("elf_getdata failed: %s", 4184 elf_errmsg(elferr)); 4185 continue; 4186 } 4187 if (d->d_size <= 0) 4188 continue; 4189 lib = d->d_buf; 4190 if (!get_ent_count(s, &len)) 4191 continue; 4192 printf("\nLibrary list section '%s' ", s->name); 4193 printf("contains %d entries:\n", len); 4194 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", 4195 "Checksum", "Version", "Flags"); 4196 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { 4197 printf("%3d: ", j); 4198 printf("%-20.20s ", 4199 get_string(re, s->link, lib->l_name)); 4200 ti = lib->l_time_stamp; 4201 t = gmtime(&ti); 4202 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" 4203 ":%2d", t->tm_year + 1900, t->tm_mon + 1, 4204 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); 4205 printf("%-19.19s ", tbuf); 4206 printf("0x%08x ", lib->l_checksum); 4207 printf("%-7d %#x", lib->l_version, lib->l_flags); 4208 if (lib->l_flags != 0) { 4209 first = 1; 4210 putchar('('); 4211 for (k = 0; l_flag[k].name != NULL; k++) { 4212 if ((l_flag[k].value & lib->l_flags) == 4213 0) 4214 continue; 4215 if (!first) 4216 putchar(','); 4217 else 4218 first = 0; 4219 printf("%s", l_flag[k].name); 4220 } 4221 putchar(')'); 4222 } 4223 putchar('\n'); 4224 lib++; 4225 } 4226 } 4227 } 4228 4229 #undef Elf_Lib 4230 4231 static void 4232 dump_section_groups(struct readelf *re) 4233 { 4234 struct section *s; 4235 const char *symname; 4236 Elf_Data *d; 4237 uint32_t *w; 4238 int i, j, elferr; 4239 size_t n; 4240 4241 for (i = 0; (size_t) i < re->shnum; i++) { 4242 s = &re->sl[i]; 4243 if (s->type != SHT_GROUP) 4244 continue; 4245 if (s->link >= re->shnum) 4246 continue; 4247 (void) elf_errno(); 4248 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4249 elferr = elf_errno(); 4250 if (elferr != 0) 4251 warnx("elf_getdata failed: %s", 4252 elf_errmsg(elferr)); 4253 continue; 4254 } 4255 if (d->d_size <= 0) 4256 continue; 4257 4258 w = d->d_buf; 4259 4260 /* We only support COMDAT section. */ 4261 #ifndef GRP_COMDAT 4262 #define GRP_COMDAT 0x1 4263 #endif 4264 if ((*w++ & GRP_COMDAT) == 0) 4265 return; 4266 4267 if (s->entsize == 0) 4268 s->entsize = 4; 4269 4270 symname = get_symbol_name(re, s->link, s->info); 4271 n = s->sz / s->entsize; 4272 if (n-- < 1) 4273 return; 4274 4275 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" 4276 " sections:\n", i, s->name, symname, (uintmax_t)n); 4277 printf(" %-10.10s %s\n", "[Index]", "Name"); 4278 for (j = 0; (size_t) j < n; j++, w++) { 4279 if (*w >= re->shnum) { 4280 warnx("invalid section index: %u", *w); 4281 continue; 4282 } 4283 printf(" [%5u] %s\n", *w, re->sl[*w].name); 4284 } 4285 } 4286 } 4287 4288 static uint8_t * 4289 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) 4290 { 4291 uint64_t val; 4292 4293 /* 4294 * According to ARM EABI: For tags > 32, even numbered tags have 4295 * a ULEB128 param and odd numbered ones have NUL-terminated 4296 * string param. This rule probably also applies for tags <= 32 4297 * if the object arch is not ARM. 4298 */ 4299 4300 printf(" Tag_unknown_%ju: ", (uintmax_t) tag); 4301 4302 if (tag & 1) { 4303 printf("%s\n", (char *) p); 4304 p += strlen((char *) p) + 1; 4305 } else { 4306 val = _decode_uleb128(&p, pe); 4307 printf("%ju\n", (uintmax_t) val); 4308 } 4309 4310 return (p); 4311 } 4312 4313 static uint8_t * 4314 dump_compatibility_tag(uint8_t *p, uint8_t *pe) 4315 { 4316 uint64_t val; 4317 4318 val = _decode_uleb128(&p, pe); 4319 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); 4320 p += strlen((char *) p) + 1; 4321 4322 return (p); 4323 } 4324 4325 static void 4326 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4327 { 4328 uint64_t tag, val; 4329 size_t i; 4330 int found, desc; 4331 4332 (void) re; 4333 4334 while (p < pe) { 4335 tag = _decode_uleb128(&p, pe); 4336 found = desc = 0; 4337 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); 4338 i++) { 4339 if (tag == aeabi_tags[i].tag) { 4340 found = 1; 4341 printf(" %s: ", aeabi_tags[i].s_tag); 4342 if (aeabi_tags[i].get_desc) { 4343 desc = 1; 4344 val = _decode_uleb128(&p, pe); 4345 printf("%s\n", 4346 aeabi_tags[i].get_desc(val)); 4347 } 4348 break; 4349 } 4350 if (tag < aeabi_tags[i].tag) 4351 break; 4352 } 4353 if (!found) { 4354 p = dump_unknown_tag(tag, p, pe); 4355 continue; 4356 } 4357 if (desc) 4358 continue; 4359 4360 switch (tag) { 4361 case 4: /* Tag_CPU_raw_name */ 4362 case 5: /* Tag_CPU_name */ 4363 case 67: /* Tag_conformance */ 4364 printf("%s\n", (char *) p); 4365 p += strlen((char *) p) + 1; 4366 break; 4367 case 32: /* Tag_compatibility */ 4368 p = dump_compatibility_tag(p, pe); 4369 break; 4370 case 64: /* Tag_nodefaults */ 4371 /* ignored, written as 0. */ 4372 (void) _decode_uleb128(&p, pe); 4373 printf("True\n"); 4374 break; 4375 case 65: /* Tag_also_compatible_with */ 4376 val = _decode_uleb128(&p, pe); 4377 /* Must be Tag_CPU_arch */ 4378 if (val != 6) { 4379 printf("unknown\n"); 4380 break; 4381 } 4382 val = _decode_uleb128(&p, pe); 4383 printf("%s\n", aeabi_cpu_arch(val)); 4384 /* Skip NUL terminator. */ 4385 p++; 4386 break; 4387 default: 4388 putchar('\n'); 4389 break; 4390 } 4391 } 4392 } 4393 4394 #ifndef Tag_GNU_MIPS_ABI_FP 4395 #define Tag_GNU_MIPS_ABI_FP 4 4396 #endif 4397 4398 static void 4399 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) 4400 { 4401 uint64_t tag, val; 4402 4403 (void) re; 4404 4405 while (p < pe) { 4406 tag = _decode_uleb128(&p, pe); 4407 switch (tag) { 4408 case Tag_GNU_MIPS_ABI_FP: 4409 val = _decode_uleb128(&p, pe); 4410 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); 4411 break; 4412 case 32: /* Tag_compatibility */ 4413 p = dump_compatibility_tag(p, pe); 4414 break; 4415 default: 4416 p = dump_unknown_tag(tag, p, pe); 4417 break; 4418 } 4419 } 4420 } 4421 4422 #ifndef Tag_GNU_Power_ABI_FP 4423 #define Tag_GNU_Power_ABI_FP 4 4424 #endif 4425 4426 #ifndef Tag_GNU_Power_ABI_Vector 4427 #define Tag_GNU_Power_ABI_Vector 8 4428 #endif 4429 4430 static void 4431 dump_ppc_attributes(uint8_t *p, uint8_t *pe) 4432 { 4433 uint64_t tag, val; 4434 4435 while (p < pe) { 4436 tag = _decode_uleb128(&p, pe); 4437 switch (tag) { 4438 case Tag_GNU_Power_ABI_FP: 4439 val = _decode_uleb128(&p, pe); 4440 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); 4441 break; 4442 case Tag_GNU_Power_ABI_Vector: 4443 val = _decode_uleb128(&p, pe); 4444 printf(" Tag_GNU_Power_ABI_Vector: %s\n", 4445 ppc_abi_vector(val)); 4446 break; 4447 case 32: /* Tag_compatibility */ 4448 p = dump_compatibility_tag(p, pe); 4449 break; 4450 default: 4451 p = dump_unknown_tag(tag, p, pe); 4452 break; 4453 } 4454 } 4455 } 4456 4457 static void 4458 dump_attributes(struct readelf *re) 4459 { 4460 struct section *s; 4461 Elf_Data *d; 4462 uint8_t *p, *pe, *sp; 4463 size_t len, seclen, nlen, sublen; 4464 uint64_t val; 4465 int tag, i, elferr; 4466 4467 for (i = 0; (size_t) i < re->shnum; i++) { 4468 s = &re->sl[i]; 4469 if (s->type != SHT_GNU_ATTRIBUTES && 4470 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) 4471 continue; 4472 (void) elf_errno(); 4473 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4474 elferr = elf_errno(); 4475 if (elferr != 0) 4476 warnx("elf_rawdata failed: %s", 4477 elf_errmsg(elferr)); 4478 continue; 4479 } 4480 if (d->d_size <= 0) 4481 continue; 4482 p = d->d_buf; 4483 pe = p + d->d_size; 4484 if (*p != 'A') { 4485 printf("Unknown Attribute Section Format: %c\n", 4486 (char) *p); 4487 continue; 4488 } 4489 len = d->d_size - 1; 4490 p++; 4491 while (len > 0) { 4492 if (len < 4) { 4493 warnx("truncated attribute section length"); 4494 return; 4495 } 4496 seclen = re->dw_decode(&p, 4); 4497 if (seclen > len) { 4498 warnx("invalid attribute section length"); 4499 return; 4500 } 4501 len -= seclen; 4502 nlen = strlen((char *) p) + 1; 4503 if (nlen + 4 > seclen) { 4504 warnx("invalid attribute section name"); 4505 return; 4506 } 4507 printf("Attribute Section: %s\n", (char *) p); 4508 p += nlen; 4509 seclen -= nlen + 4; 4510 while (seclen > 0) { 4511 sp = p; 4512 tag = *p++; 4513 sublen = re->dw_decode(&p, 4); 4514 if (sublen > seclen) { 4515 warnx("invalid attribute sub-section" 4516 " length"); 4517 return; 4518 } 4519 seclen -= sublen; 4520 printf("%s", top_tag(tag)); 4521 if (tag == 2 || tag == 3) { 4522 putchar(':'); 4523 for (;;) { 4524 val = _decode_uleb128(&p, pe); 4525 if (val == 0) 4526 break; 4527 printf(" %ju", (uintmax_t) val); 4528 } 4529 } 4530 putchar('\n'); 4531 if (re->ehdr.e_machine == EM_ARM && 4532 s->type == SHT_LOPROC + 3) 4533 dump_arm_attributes(re, p, sp + sublen); 4534 else if (re->ehdr.e_machine == EM_MIPS || 4535 re->ehdr.e_machine == EM_MIPS_RS3_LE) 4536 dump_mips_attributes(re, p, 4537 sp + sublen); 4538 else if (re->ehdr.e_machine == EM_PPC) 4539 dump_ppc_attributes(p, sp + sublen); 4540 p = sp + sublen; 4541 } 4542 } 4543 } 4544 } 4545 4546 static void 4547 dump_mips_specific_info(struct readelf *re) 4548 { 4549 struct section *s; 4550 int i, options_found; 4551 4552 options_found = 0; 4553 s = NULL; 4554 for (i = 0; (size_t) i < re->shnum; i++) { 4555 s = &re->sl[i]; 4556 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || 4557 (s->type == SHT_MIPS_OPTIONS))) { 4558 dump_mips_options(re, s); 4559 options_found = 1; 4560 } 4561 } 4562 4563 /* 4564 * According to SGI mips64 spec, .reginfo should be ignored if 4565 * .MIPS.options section is present. 4566 */ 4567 if (!options_found) { 4568 for (i = 0; (size_t) i < re->shnum; i++) { 4569 s = &re->sl[i]; 4570 if (s->name != NULL && (!strcmp(s->name, ".reginfo") || 4571 (s->type == SHT_MIPS_REGINFO))) 4572 dump_mips_reginfo(re, s); 4573 } 4574 } 4575 } 4576 4577 static void 4578 dump_mips_reginfo(struct readelf *re, struct section *s) 4579 { 4580 Elf_Data *d; 4581 int elferr, len; 4582 4583 (void) elf_errno(); 4584 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4585 elferr = elf_errno(); 4586 if (elferr != 0) 4587 warnx("elf_rawdata failed: %s", 4588 elf_errmsg(elferr)); 4589 return; 4590 } 4591 if (d->d_size <= 0) 4592 return; 4593 if (!get_ent_count(s, &len)) 4594 return; 4595 4596 printf("\nSection '%s' contains %d entries:\n", s->name, len); 4597 dump_mips_odk_reginfo(re, d->d_buf, d->d_size); 4598 } 4599 4600 static void 4601 dump_mips_options(struct readelf *re, struct section *s) 4602 { 4603 Elf_Data *d; 4604 uint32_t info; 4605 uint16_t sndx; 4606 uint8_t *p, *pe; 4607 uint8_t kind, size; 4608 int elferr; 4609 4610 (void) elf_errno(); 4611 if ((d = elf_rawdata(s->scn, NULL)) == NULL) { 4612 elferr = elf_errno(); 4613 if (elferr != 0) 4614 warnx("elf_rawdata failed: %s", 4615 elf_errmsg(elferr)); 4616 return; 4617 } 4618 if (d->d_size == 0) 4619 return; 4620 4621 printf("\nSection %s contains:\n", s->name); 4622 p = d->d_buf; 4623 pe = p + d->d_size; 4624 while (p < pe) { 4625 if (pe - p < 8) { 4626 warnx("Truncated MIPS option header"); 4627 return; 4628 } 4629 kind = re->dw_decode(&p, 1); 4630 size = re->dw_decode(&p, 1); 4631 sndx = re->dw_decode(&p, 2); 4632 info = re->dw_decode(&p, 4); 4633 if (size < 8 || size - 8 > pe - p) { 4634 warnx("Malformed MIPS option header"); 4635 return; 4636 } 4637 size -= 8; 4638 switch (kind) { 4639 case ODK_REGINFO: 4640 dump_mips_odk_reginfo(re, p, size); 4641 break; 4642 case ODK_EXCEPTIONS: 4643 printf(" EXCEPTIONS FPU_MIN: %#x\n", 4644 info & OEX_FPU_MIN); 4645 printf("%11.11s FPU_MAX: %#x\n", "", 4646 info & OEX_FPU_MAX); 4647 dump_mips_option_flags("", mips_exceptions_option, 4648 info); 4649 break; 4650 case ODK_PAD: 4651 printf(" %-10.10s section: %ju\n", "OPAD", 4652 (uintmax_t) sndx); 4653 dump_mips_option_flags("", mips_pad_option, info); 4654 break; 4655 case ODK_HWPATCH: 4656 dump_mips_option_flags("HWPATCH", mips_hwpatch_option, 4657 info); 4658 break; 4659 case ODK_HWAND: 4660 dump_mips_option_flags("HWAND", mips_hwa_option, info); 4661 break; 4662 case ODK_HWOR: 4663 dump_mips_option_flags("HWOR", mips_hwo_option, info); 4664 break; 4665 case ODK_FILL: 4666 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); 4667 break; 4668 case ODK_TAGS: 4669 printf(" %-10.10s\n", "TAGS"); 4670 break; 4671 case ODK_GP_GROUP: 4672 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", 4673 info & 0xFFFF); 4674 if (info & 0x10000) 4675 printf(" %-10.10s GP group is " 4676 "self-contained\n", ""); 4677 break; 4678 case ODK_IDENT: 4679 printf(" %-10.10s default GP group number: %#x\n", 4680 "IDENT", info & 0xFFFF); 4681 if (info & 0x10000) 4682 printf(" %-10.10s default GP group is " 4683 "self-contained\n", ""); 4684 break; 4685 case ODK_PAGESIZE: 4686 printf(" %-10.10s\n", "PAGESIZE"); 4687 break; 4688 default: 4689 break; 4690 } 4691 p += size; 4692 } 4693 } 4694 4695 static void 4696 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) 4697 { 4698 int first; 4699 4700 first = 1; 4701 for (; opt->desc != NULL; opt++) { 4702 if (info & opt->flag) { 4703 printf(" %-10.10s %s\n", first ? name : "", 4704 opt->desc); 4705 first = 0; 4706 } 4707 } 4708 } 4709 4710 static void 4711 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) 4712 { 4713 uint32_t ri_gprmask; 4714 uint32_t ri_cprmask[4]; 4715 uint64_t ri_gp_value; 4716 uint8_t *pe; 4717 int i; 4718 4719 pe = p + sz; 4720 while (p < pe) { 4721 ri_gprmask = re->dw_decode(&p, 4); 4722 /* Skip ri_pad padding field for mips64. */ 4723 if (re->ec == ELFCLASS64) 4724 re->dw_decode(&p, 4); 4725 for (i = 0; i < 4; i++) 4726 ri_cprmask[i] = re->dw_decode(&p, 4); 4727 if (re->ec == ELFCLASS32) 4728 ri_gp_value = re->dw_decode(&p, 4); 4729 else 4730 ri_gp_value = re->dw_decode(&p, 8); 4731 printf(" %s ", option_kind(ODK_REGINFO)); 4732 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); 4733 for (i = 0; i < 4; i++) 4734 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, 4735 (uintmax_t) ri_cprmask[i]); 4736 printf("%12.12s", ""); 4737 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); 4738 } 4739 } 4740 4741 static void 4742 dump_arch_specific_info(struct readelf *re) 4743 { 4744 4745 dump_liblist(re); 4746 dump_attributes(re); 4747 4748 switch (re->ehdr.e_machine) { 4749 case EM_MIPS: 4750 case EM_MIPS_RS3_LE: 4751 dump_mips_specific_info(re); 4752 default: 4753 break; 4754 } 4755 } 4756 4757 static const char * 4758 dwarf_regname(struct readelf *re, unsigned int num) 4759 { 4760 static char rx[32]; 4761 const char *rn; 4762 4763 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) 4764 return (rn); 4765 4766 snprintf(rx, sizeof(rx), "r%u", num); 4767 4768 return (rx); 4769 } 4770 4771 static void 4772 dump_dwarf_line(struct readelf *re) 4773 { 4774 struct section *s; 4775 Dwarf_Die die; 4776 Dwarf_Error de; 4777 Dwarf_Half tag, version, pointer_size; 4778 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; 4779 Dwarf_Small minlen, defstmt, lrange, opbase, oplen; 4780 Elf_Data *d; 4781 char *pn; 4782 uint64_t address, file, line, column, isa, opsize, udelta; 4783 int64_t sdelta; 4784 uint8_t *p, *pe; 4785 int8_t lbase; 4786 int i, is_stmt, dwarf_size, elferr, ret; 4787 4788 printf("\nDump of debug contents of section .debug_line:\n"); 4789 4790 s = NULL; 4791 for (i = 0; (size_t) i < re->shnum; i++) { 4792 s = &re->sl[i]; 4793 if (s->name != NULL && !strcmp(s->name, ".debug_line")) 4794 break; 4795 } 4796 if ((size_t) i >= re->shnum) 4797 return; 4798 4799 (void) elf_errno(); 4800 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 4801 elferr = elf_errno(); 4802 if (elferr != 0) 4803 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 4804 return; 4805 } 4806 if (d->d_size <= 0) 4807 return; 4808 4809 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 4810 NULL, &de)) == DW_DLV_OK) { 4811 die = NULL; 4812 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { 4813 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 4814 warnx("dwarf_tag failed: %s", 4815 dwarf_errmsg(de)); 4816 return; 4817 } 4818 /* XXX: What about DW_TAG_partial_unit? */ 4819 if (tag == DW_TAG_compile_unit) 4820 break; 4821 } 4822 if (die == NULL) { 4823 warnx("could not find DW_TAG_compile_unit die"); 4824 return; 4825 } 4826 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, 4827 &de) != DW_DLV_OK) 4828 continue; 4829 4830 length = re->dw_read(d, &offset, 4); 4831 if (length == 0xffffffff) { 4832 dwarf_size = 8; 4833 length = re->dw_read(d, &offset, 8); 4834 } else 4835 dwarf_size = 4; 4836 4837 if (length > d->d_size - offset) { 4838 warnx("invalid .dwarf_line section"); 4839 continue; 4840 } 4841 4842 endoff = offset + length; 4843 pe = (uint8_t *) d->d_buf + endoff; 4844 version = re->dw_read(d, &offset, 2); 4845 hdrlen = re->dw_read(d, &offset, dwarf_size); 4846 minlen = re->dw_read(d, &offset, 1); 4847 defstmt = re->dw_read(d, &offset, 1); 4848 lbase = re->dw_read(d, &offset, 1); 4849 lrange = re->dw_read(d, &offset, 1); 4850 opbase = re->dw_read(d, &offset, 1); 4851 4852 printf("\n"); 4853 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 4854 printf(" DWARF version:\t\t%u\n", version); 4855 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); 4856 printf(" Minimum Instruction Length:\t%u\n", minlen); 4857 printf(" Initial value of 'is_stmt':\t%u\n", defstmt); 4858 printf(" Line Base:\t\t\t%d\n", lbase); 4859 printf(" Line Range:\t\t\t%u\n", lrange); 4860 printf(" Opcode Base:\t\t\t%u\n", opbase); 4861 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); 4862 printf(" (Pointer size:\t\t%u)\n", pointer_size); 4863 4864 printf("\n"); 4865 printf(" Opcodes:\n"); 4866 for (i = 1; i < opbase; i++) { 4867 oplen = re->dw_read(d, &offset, 1); 4868 printf(" Opcode %d has %u args\n", i, oplen); 4869 } 4870 4871 printf("\n"); 4872 printf(" The Directory Table:\n"); 4873 p = (uint8_t *) d->d_buf + offset; 4874 while (*p != '\0') { 4875 printf(" %s\n", (char *) p); 4876 p += strlen((char *) p) + 1; 4877 } 4878 4879 p++; 4880 printf("\n"); 4881 printf(" The File Name Table:\n"); 4882 printf(" Entry\tDir\tTime\tSize\tName\n"); 4883 i = 0; 4884 while (*p != '\0') { 4885 i++; 4886 pn = (char *) p; 4887 p += strlen(pn) + 1; 4888 dirndx = _decode_uleb128(&p, pe); 4889 mtime = _decode_uleb128(&p, pe); 4890 fsize = _decode_uleb128(&p, pe); 4891 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, 4892 (uintmax_t) dirndx, (uintmax_t) mtime, 4893 (uintmax_t) fsize, pn); 4894 } 4895 4896 #define RESET_REGISTERS \ 4897 do { \ 4898 address = 0; \ 4899 file = 1; \ 4900 line = 1; \ 4901 column = 0; \ 4902 is_stmt = defstmt; \ 4903 } while(0) 4904 4905 #define LINE(x) (lbase + (((x) - opbase) % lrange)) 4906 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) 4907 4908 p++; 4909 printf("\n"); 4910 printf(" Line Number Statements:\n"); 4911 4912 RESET_REGISTERS; 4913 4914 while (p < pe) { 4915 4916 if (*p == 0) { 4917 /* 4918 * Extended Opcodes. 4919 */ 4920 p++; 4921 opsize = _decode_uleb128(&p, pe); 4922 printf(" Extended opcode %u: ", *p); 4923 switch (*p) { 4924 case DW_LNE_end_sequence: 4925 p++; 4926 RESET_REGISTERS; 4927 printf("End of Sequence\n"); 4928 break; 4929 case DW_LNE_set_address: 4930 p++; 4931 address = re->dw_decode(&p, 4932 pointer_size); 4933 printf("set Address to %#jx\n", 4934 (uintmax_t) address); 4935 break; 4936 case DW_LNE_define_file: 4937 p++; 4938 pn = (char *) p; 4939 p += strlen(pn) + 1; 4940 dirndx = _decode_uleb128(&p, pe); 4941 mtime = _decode_uleb128(&p, pe); 4942 fsize = _decode_uleb128(&p, pe); 4943 printf("define new file: %s\n", pn); 4944 break; 4945 default: 4946 /* Unrecognized extened opcodes. */ 4947 p += opsize; 4948 printf("unknown opcode\n"); 4949 } 4950 } else if (*p > 0 && *p < opbase) { 4951 /* 4952 * Standard Opcodes. 4953 */ 4954 switch(*p++) { 4955 case DW_LNS_copy: 4956 printf(" Copy\n"); 4957 break; 4958 case DW_LNS_advance_pc: 4959 udelta = _decode_uleb128(&p, pe) * 4960 minlen; 4961 address += udelta; 4962 printf(" Advance PC by %ju to %#jx\n", 4963 (uintmax_t) udelta, 4964 (uintmax_t) address); 4965 break; 4966 case DW_LNS_advance_line: 4967 sdelta = _decode_sleb128(&p, pe); 4968 line += sdelta; 4969 printf(" Advance Line by %jd to %ju\n", 4970 (intmax_t) sdelta, 4971 (uintmax_t) line); 4972 break; 4973 case DW_LNS_set_file: 4974 file = _decode_uleb128(&p, pe); 4975 printf(" Set File to %ju\n", 4976 (uintmax_t) file); 4977 break; 4978 case DW_LNS_set_column: 4979 column = _decode_uleb128(&p, pe); 4980 printf(" Set Column to %ju\n", 4981 (uintmax_t) column); 4982 break; 4983 case DW_LNS_negate_stmt: 4984 is_stmt = !is_stmt; 4985 printf(" Set is_stmt to %d\n", is_stmt); 4986 break; 4987 case DW_LNS_set_basic_block: 4988 printf(" Set basic block flag\n"); 4989 break; 4990 case DW_LNS_const_add_pc: 4991 address += ADDRESS(255); 4992 printf(" Advance PC by constant %ju" 4993 " to %#jx\n", 4994 (uintmax_t) ADDRESS(255), 4995 (uintmax_t) address); 4996 break; 4997 case DW_LNS_fixed_advance_pc: 4998 udelta = re->dw_decode(&p, 2); 4999 address += udelta; 5000 printf(" Advance PC by fixed value " 5001 "%ju to %#jx\n", 5002 (uintmax_t) udelta, 5003 (uintmax_t) address); 5004 break; 5005 case DW_LNS_set_prologue_end: 5006 printf(" Set prologue end flag\n"); 5007 break; 5008 case DW_LNS_set_epilogue_begin: 5009 printf(" Set epilogue begin flag\n"); 5010 break; 5011 case DW_LNS_set_isa: 5012 isa = _decode_uleb128(&p, pe); 5013 printf(" Set isa to %ju\n", 5014 (uintmax_t) isa); 5015 break; 5016 default: 5017 /* Unrecognized extended opcodes. */ 5018 printf(" Unknown extended opcode %u\n", 5019 *(p - 1)); 5020 break; 5021 } 5022 5023 } else { 5024 /* 5025 * Special Opcodes. 5026 */ 5027 line += LINE(*p); 5028 address += ADDRESS(*p); 5029 printf(" Special opcode %u: advance Address " 5030 "by %ju to %#jx and Line by %jd to %ju\n", 5031 *p - opbase, (uintmax_t) ADDRESS(*p), 5032 (uintmax_t) address, (intmax_t) LINE(*p), 5033 (uintmax_t) line); 5034 p++; 5035 } 5036 5037 5038 } 5039 } 5040 if (ret == DW_DLV_ERROR) 5041 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5042 5043 #undef RESET_REGISTERS 5044 #undef LINE 5045 #undef ADDRESS 5046 } 5047 5048 static void 5049 dump_dwarf_line_decoded(struct readelf *re) 5050 { 5051 Dwarf_Die die; 5052 Dwarf_Line *linebuf, ln; 5053 Dwarf_Addr lineaddr; 5054 Dwarf_Signed linecount, srccount; 5055 Dwarf_Unsigned lineno, fn; 5056 Dwarf_Error de; 5057 const char *dir, *file; 5058 char **srcfiles; 5059 int i, ret; 5060 5061 printf("Decoded dump of debug contents of section .debug_line:\n\n"); 5062 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5063 NULL, &de)) == DW_DLV_OK) { 5064 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) 5065 continue; 5066 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != 5067 DW_DLV_OK) 5068 file = NULL; 5069 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != 5070 DW_DLV_OK) 5071 dir = NULL; 5072 printf("CU: "); 5073 if (dir && file) 5074 printf("%s/", dir); 5075 if (file) 5076 printf("%s", file); 5077 putchar('\n'); 5078 printf("%-37s %11s %s\n", "Filename", "Line Number", 5079 "Starting Address"); 5080 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) 5081 continue; 5082 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) 5083 continue; 5084 for (i = 0; i < linecount; i++) { 5085 ln = linebuf[i]; 5086 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) 5087 continue; 5088 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) 5089 continue; 5090 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) 5091 continue; 5092 printf("%-37s %11ju %#18jx\n", 5093 basename(srcfiles[fn - 1]), (uintmax_t) lineno, 5094 (uintmax_t) lineaddr); 5095 } 5096 putchar('\n'); 5097 } 5098 } 5099 5100 static void 5101 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) 5102 { 5103 Dwarf_Attribute *attr_list; 5104 Dwarf_Die ret_die; 5105 Dwarf_Off dieoff, cuoff, culen, attroff; 5106 Dwarf_Unsigned ate, lang, v_udata, v_sig; 5107 Dwarf_Signed attr_count, v_sdata; 5108 Dwarf_Off v_off; 5109 Dwarf_Addr v_addr; 5110 Dwarf_Half tag, attr, form; 5111 Dwarf_Block *v_block; 5112 Dwarf_Bool v_bool, is_info; 5113 Dwarf_Sig8 v_sig8; 5114 Dwarf_Error de; 5115 Dwarf_Ptr v_expr; 5116 const char *tag_str, *attr_str, *ate_str, *lang_str; 5117 char unk_tag[32], unk_attr[32]; 5118 char *v_str; 5119 uint8_t *b, *p; 5120 int i, j, abc, ret; 5121 5122 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { 5123 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); 5124 goto cont_search; 5125 } 5126 5127 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); 5128 5129 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { 5130 warnx("dwarf_die_CU_offset_range failed: %s", 5131 dwarf_errmsg(de)); 5132 cuoff = 0; 5133 } 5134 5135 abc = dwarf_die_abbrev_code(die); 5136 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5137 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5138 goto cont_search; 5139 } 5140 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5141 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); 5142 tag_str = unk_tag; 5143 } 5144 5145 printf("Abbrev Number: %d (%s)\n", abc, tag_str); 5146 5147 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5148 DW_DLV_OK) { 5149 if (ret == DW_DLV_ERROR) 5150 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5151 goto cont_search; 5152 } 5153 5154 for (i = 0; i < attr_count; i++) { 5155 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 5156 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 5157 continue; 5158 } 5159 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5160 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5161 continue; 5162 } 5163 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { 5164 snprintf(unk_attr, sizeof(unk_attr), 5165 "[Unknown AT: %#x]", attr); 5166 attr_str = unk_attr; 5167 } 5168 if (dwarf_attroffset(attr_list[i], &attroff, &de) != 5169 DW_DLV_OK) { 5170 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); 5171 attroff = 0; 5172 } 5173 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); 5174 switch (form) { 5175 case DW_FORM_ref_addr: 5176 case DW_FORM_sec_offset: 5177 if (dwarf_global_formref(attr_list[i], &v_off, &de) != 5178 DW_DLV_OK) { 5179 warnx("dwarf_global_formref failed: %s", 5180 dwarf_errmsg(de)); 5181 continue; 5182 } 5183 if (form == DW_FORM_ref_addr) 5184 printf("<0x%jx>", (uintmax_t) v_off); 5185 else 5186 printf("0x%jx", (uintmax_t) v_off); 5187 break; 5188 5189 case DW_FORM_ref1: 5190 case DW_FORM_ref2: 5191 case DW_FORM_ref4: 5192 case DW_FORM_ref8: 5193 case DW_FORM_ref_udata: 5194 if (dwarf_formref(attr_list[i], &v_off, &de) != 5195 DW_DLV_OK) { 5196 warnx("dwarf_formref failed: %s", 5197 dwarf_errmsg(de)); 5198 continue; 5199 } 5200 v_off += cuoff; 5201 printf("<0x%jx>", (uintmax_t) v_off); 5202 break; 5203 5204 case DW_FORM_addr: 5205 if (dwarf_formaddr(attr_list[i], &v_addr, &de) != 5206 DW_DLV_OK) { 5207 warnx("dwarf_formaddr failed: %s", 5208 dwarf_errmsg(de)); 5209 continue; 5210 } 5211 printf("%#jx", (uintmax_t) v_addr); 5212 break; 5213 5214 case DW_FORM_data1: 5215 case DW_FORM_data2: 5216 case DW_FORM_data4: 5217 case DW_FORM_data8: 5218 case DW_FORM_udata: 5219 if (dwarf_formudata(attr_list[i], &v_udata, &de) != 5220 DW_DLV_OK) { 5221 warnx("dwarf_formudata failed: %s", 5222 dwarf_errmsg(de)); 5223 continue; 5224 } 5225 if (attr == DW_AT_high_pc) 5226 printf("0x%jx", (uintmax_t) v_udata); 5227 else 5228 printf("%ju", (uintmax_t) v_udata); 5229 break; 5230 5231 case DW_FORM_sdata: 5232 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != 5233 DW_DLV_OK) { 5234 warnx("dwarf_formudata failed: %s", 5235 dwarf_errmsg(de)); 5236 continue; 5237 } 5238 printf("%jd", (intmax_t) v_sdata); 5239 break; 5240 5241 case DW_FORM_flag: 5242 if (dwarf_formflag(attr_list[i], &v_bool, &de) != 5243 DW_DLV_OK) { 5244 warnx("dwarf_formflag failed: %s", 5245 dwarf_errmsg(de)); 5246 continue; 5247 } 5248 printf("%jd", (intmax_t) v_bool); 5249 break; 5250 5251 case DW_FORM_flag_present: 5252 putchar('1'); 5253 break; 5254 5255 case DW_FORM_string: 5256 case DW_FORM_strp: 5257 if (dwarf_formstring(attr_list[i], &v_str, &de) != 5258 DW_DLV_OK) { 5259 warnx("dwarf_formstring failed: %s", 5260 dwarf_errmsg(de)); 5261 continue; 5262 } 5263 if (form == DW_FORM_string) 5264 printf("%s", v_str); 5265 else 5266 printf("(indirect string) %s", v_str); 5267 break; 5268 5269 case DW_FORM_block: 5270 case DW_FORM_block1: 5271 case DW_FORM_block2: 5272 case DW_FORM_block4: 5273 if (dwarf_formblock(attr_list[i], &v_block, &de) != 5274 DW_DLV_OK) { 5275 warnx("dwarf_formblock failed: %s", 5276 dwarf_errmsg(de)); 5277 continue; 5278 } 5279 printf("%ju byte block:", (uintmax_t) v_block->bl_len); 5280 b = v_block->bl_data; 5281 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) 5282 printf(" %x", b[j]); 5283 printf("\t("); 5284 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); 5285 putchar(')'); 5286 break; 5287 5288 case DW_FORM_exprloc: 5289 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, 5290 &de) != DW_DLV_OK) { 5291 warnx("dwarf_formexprloc failed: %s", 5292 dwarf_errmsg(de)); 5293 continue; 5294 } 5295 printf("%ju byte block:", (uintmax_t) v_udata); 5296 b = v_expr; 5297 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) 5298 printf(" %x", b[j]); 5299 printf("\t("); 5300 dump_dwarf_block(re, v_expr, v_udata); 5301 putchar(')'); 5302 break; 5303 5304 case DW_FORM_ref_sig8: 5305 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != 5306 DW_DLV_OK) { 5307 warnx("dwarf_formsig8 failed: %s", 5308 dwarf_errmsg(de)); 5309 continue; 5310 } 5311 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; 5312 v_sig = re->dw_decode(&p, 8); 5313 printf("signature: 0x%jx", (uintmax_t) v_sig); 5314 } 5315 switch (attr) { 5316 case DW_AT_encoding: 5317 if (dwarf_attrval_unsigned(die, attr, &ate, &de) != 5318 DW_DLV_OK) 5319 break; 5320 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) 5321 ate_str = "DW_ATE_UNKNOWN"; 5322 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); 5323 break; 5324 5325 case DW_AT_language: 5326 if (dwarf_attrval_unsigned(die, attr, &lang, &de) != 5327 DW_DLV_OK) 5328 break; 5329 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) 5330 break; 5331 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); 5332 break; 5333 5334 case DW_AT_location: 5335 case DW_AT_string_length: 5336 case DW_AT_return_addr: 5337 case DW_AT_data_member_location: 5338 case DW_AT_frame_base: 5339 case DW_AT_segment: 5340 case DW_AT_static_link: 5341 case DW_AT_use_location: 5342 case DW_AT_vtable_elem_location: 5343 switch (form) { 5344 case DW_FORM_data4: 5345 case DW_FORM_data8: 5346 case DW_FORM_sec_offset: 5347 printf("\t(location list)"); 5348 break; 5349 default: 5350 break; 5351 } 5352 5353 default: 5354 break; 5355 } 5356 putchar('\n'); 5357 } 5358 5359 5360 cont_search: 5361 /* Search children. */ 5362 ret = dwarf_child(die, &ret_die, &de); 5363 if (ret == DW_DLV_ERROR) 5364 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5365 else if (ret == DW_DLV_OK) 5366 dump_dwarf_die(re, ret_die, level + 1); 5367 5368 /* Search sibling. */ 5369 is_info = dwarf_get_die_infotypes_flag(die); 5370 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 5371 if (ret == DW_DLV_ERROR) 5372 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5373 else if (ret == DW_DLV_OK) 5374 dump_dwarf_die(re, ret_die, level); 5375 5376 dwarf_dealloc(re->dbg, die, DW_DLA_DIE); 5377 } 5378 5379 static void 5380 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, 5381 Dwarf_Half ver) 5382 { 5383 5384 re->cu_psize = psize; 5385 re->cu_osize = osize; 5386 re->cu_ver = ver; 5387 } 5388 5389 static void 5390 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) 5391 { 5392 struct section *s; 5393 Dwarf_Die die; 5394 Dwarf_Error de; 5395 Dwarf_Half tag, version, pointer_size, off_size; 5396 Dwarf_Off cu_offset, cu_length; 5397 Dwarf_Off aboff; 5398 Dwarf_Unsigned typeoff; 5399 Dwarf_Sig8 sig8; 5400 Dwarf_Unsigned sig; 5401 uint8_t *p; 5402 const char *sn; 5403 int i, ret; 5404 5405 sn = is_info ? ".debug_info" : ".debug_types"; 5406 5407 s = NULL; 5408 for (i = 0; (size_t) i < re->shnum; i++) { 5409 s = &re->sl[i]; 5410 if (s->name != NULL && !strcmp(s->name, sn)) 5411 break; 5412 } 5413 if ((size_t) i >= re->shnum) 5414 return; 5415 5416 do { 5417 printf("\nDump of debug contents of section %s:\n", sn); 5418 5419 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, 5420 &version, &aboff, &pointer_size, &off_size, NULL, &sig8, 5421 &typeoff, NULL, &de)) == DW_DLV_OK) { 5422 set_cu_context(re, pointer_size, off_size, version); 5423 die = NULL; 5424 while (dwarf_siblingof_b(re->dbg, die, &die, is_info, 5425 &de) == DW_DLV_OK) { 5426 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5427 warnx("dwarf_tag failed: %s", 5428 dwarf_errmsg(de)); 5429 continue; 5430 } 5431 /* XXX: What about DW_TAG_partial_unit? */ 5432 if ((is_info && tag == DW_TAG_compile_unit) || 5433 (!is_info && tag == DW_TAG_type_unit)) 5434 break; 5435 } 5436 if (die == NULL && is_info) { 5437 warnx("could not find DW_TAG_compile_unit " 5438 "die"); 5439 continue; 5440 } else if (die == NULL && !is_info) { 5441 warnx("could not find DW_TAG_type_unit die"); 5442 continue; 5443 } 5444 5445 if (dwarf_die_CU_offset_range(die, &cu_offset, 5446 &cu_length, &de) != DW_DLV_OK) { 5447 warnx("dwarf_die_CU_offset failed: %s", 5448 dwarf_errmsg(de)); 5449 continue; 5450 } 5451 5452 cu_length -= off_size == 4 ? 4 : 12; 5453 5454 sig = 0; 5455 if (!is_info) { 5456 p = (uint8_t *)(uintptr_t) &sig8.signature[0]; 5457 sig = re->dw_decode(&p, 8); 5458 } 5459 5460 printf("\n Type Unit @ offset 0x%jx:\n", 5461 (uintmax_t) cu_offset); 5462 printf(" Length:\t\t%#jx (%d-bit)\n", 5463 (uintmax_t) cu_length, off_size == 4 ? 32 : 64); 5464 printf(" Version:\t\t%u\n", version); 5465 printf(" Abbrev Offset:\t0x%jx\n", 5466 (uintmax_t) aboff); 5467 printf(" Pointer Size:\t%u\n", pointer_size); 5468 if (!is_info) { 5469 printf(" Signature:\t\t0x%016jx\n", 5470 (uintmax_t) sig); 5471 printf(" Type Offset:\t0x%jx\n", 5472 (uintmax_t) typeoff); 5473 } 5474 5475 dump_dwarf_die(re, die, 0); 5476 } 5477 if (ret == DW_DLV_ERROR) 5478 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5479 if (is_info) 5480 break; 5481 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 5482 } 5483 5484 static void 5485 dump_dwarf_abbrev(struct readelf *re) 5486 { 5487 Dwarf_Abbrev ab; 5488 Dwarf_Off aboff, atoff; 5489 Dwarf_Unsigned length, attr_count; 5490 Dwarf_Signed flag, form; 5491 Dwarf_Half tag, attr; 5492 Dwarf_Error de; 5493 const char *tag_str, *attr_str, *form_str; 5494 char unk_tag[32], unk_attr[32], unk_form[32]; 5495 int i, j, ret; 5496 5497 printf("\nContents of section .debug_abbrev:\n\n"); 5498 5499 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, 5500 NULL, NULL, &de)) == DW_DLV_OK) { 5501 printf(" Number TAG\n"); 5502 i = 0; 5503 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, 5504 &attr_count, &de)) == DW_DLV_OK) { 5505 if (length == 1) { 5506 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5507 break; 5508 } 5509 aboff += length; 5510 printf("%4d", ++i); 5511 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { 5512 warnx("dwarf_get_abbrev_tag failed: %s", 5513 dwarf_errmsg(de)); 5514 goto next_abbrev; 5515 } 5516 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { 5517 snprintf(unk_tag, sizeof(unk_tag), 5518 "[Unknown Tag: %#x]", tag); 5519 tag_str = unk_tag; 5520 } 5521 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != 5522 DW_DLV_OK) { 5523 warnx("dwarf_get_abbrev_children_flag failed:" 5524 " %s", dwarf_errmsg(de)); 5525 goto next_abbrev; 5526 } 5527 printf(" %s %s\n", tag_str, 5528 flag ? "[has children]" : "[no children]"); 5529 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { 5530 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, 5531 &attr, &form, &atoff, &de) != DW_DLV_OK) { 5532 warnx("dwarf_get_abbrev_entry failed:" 5533 " %s", dwarf_errmsg(de)); 5534 continue; 5535 } 5536 if (dwarf_get_AT_name(attr, &attr_str) != 5537 DW_DLV_OK) { 5538 snprintf(unk_attr, sizeof(unk_attr), 5539 "[Unknown AT: %#x]", attr); 5540 attr_str = unk_attr; 5541 } 5542 if (dwarf_get_FORM_name(form, &form_str) != 5543 DW_DLV_OK) { 5544 snprintf(unk_form, sizeof(unk_form), 5545 "[Unknown Form: %#x]", 5546 (Dwarf_Half) form); 5547 form_str = unk_form; 5548 } 5549 printf(" %-18s %s\n", attr_str, form_str); 5550 } 5551 next_abbrev: 5552 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); 5553 } 5554 if (ret != DW_DLV_OK) 5555 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); 5556 } 5557 if (ret == DW_DLV_ERROR) 5558 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 5559 } 5560 5561 static void 5562 dump_dwarf_pubnames(struct readelf *re) 5563 { 5564 struct section *s; 5565 Dwarf_Off die_off; 5566 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; 5567 Dwarf_Signed cnt; 5568 Dwarf_Global *globs; 5569 Dwarf_Half nt_version; 5570 Dwarf_Error de; 5571 Elf_Data *d; 5572 char *glob_name; 5573 int i, dwarf_size, elferr; 5574 5575 printf("\nContents of the .debug_pubnames section:\n"); 5576 5577 s = NULL; 5578 for (i = 0; (size_t) i < re->shnum; i++) { 5579 s = &re->sl[i]; 5580 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) 5581 break; 5582 } 5583 if ((size_t) i >= re->shnum) 5584 return; 5585 5586 (void) elf_errno(); 5587 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5588 elferr = elf_errno(); 5589 if (elferr != 0) 5590 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5591 return; 5592 } 5593 if (d->d_size <= 0) 5594 return; 5595 5596 /* Read in .debug_pubnames section table header. */ 5597 offset = 0; 5598 length = re->dw_read(d, &offset, 4); 5599 if (length == 0xffffffff) { 5600 dwarf_size = 8; 5601 length = re->dw_read(d, &offset, 8); 5602 } else 5603 dwarf_size = 4; 5604 5605 if (length > d->d_size - offset) { 5606 warnx("invalid .dwarf_pubnames section"); 5607 return; 5608 } 5609 5610 nt_version = re->dw_read(d, &offset, 2); 5611 nt_cu_offset = re->dw_read(d, &offset, dwarf_size); 5612 nt_cu_length = re->dw_read(d, &offset, dwarf_size); 5613 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); 5614 printf(" Version:\t\t\t\t%u\n", nt_version); 5615 printf(" Offset into .debug_info section:\t%ju\n", 5616 (uintmax_t) nt_cu_offset); 5617 printf(" Size of area in .debug_info section:\t%ju\n", 5618 (uintmax_t) nt_cu_length); 5619 5620 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { 5621 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); 5622 return; 5623 } 5624 5625 printf("\n Offset Name\n"); 5626 for (i = 0; i < cnt; i++) { 5627 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { 5628 warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); 5629 continue; 5630 } 5631 if (dwarf_global_die_offset(globs[i], &die_off, &de) != 5632 DW_DLV_OK) { 5633 warnx("dwarf_global_die_offset failed: %s", 5634 dwarf_errmsg(de)); 5635 continue; 5636 } 5637 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); 5638 } 5639 } 5640 5641 static void 5642 dump_dwarf_aranges(struct readelf *re) 5643 { 5644 struct section *s; 5645 Dwarf_Arange *aranges; 5646 Dwarf_Addr start; 5647 Dwarf_Unsigned offset, length, as_cu_offset; 5648 Dwarf_Off die_off; 5649 Dwarf_Signed cnt; 5650 Dwarf_Half as_version, as_addrsz, as_segsz; 5651 Dwarf_Error de; 5652 Elf_Data *d; 5653 int i, dwarf_size, elferr; 5654 5655 printf("\nContents of section .debug_aranges:\n"); 5656 5657 s = NULL; 5658 for (i = 0; (size_t) i < re->shnum; i++) { 5659 s = &re->sl[i]; 5660 if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) 5661 break; 5662 } 5663 if ((size_t) i >= re->shnum) 5664 return; 5665 5666 (void) elf_errno(); 5667 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 5668 elferr = elf_errno(); 5669 if (elferr != 0) 5670 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 5671 return; 5672 } 5673 if (d->d_size <= 0) 5674 return; 5675 5676 /* Read in the .debug_aranges section table header. */ 5677 offset = 0; 5678 length = re->dw_read(d, &offset, 4); 5679 if (length == 0xffffffff) { 5680 dwarf_size = 8; 5681 length = re->dw_read(d, &offset, 8); 5682 } else 5683 dwarf_size = 4; 5684 5685 if (length > d->d_size - offset) { 5686 warnx("invalid .dwarf_aranges section"); 5687 return; 5688 } 5689 5690 as_version = re->dw_read(d, &offset, 2); 5691 as_cu_offset = re->dw_read(d, &offset, dwarf_size); 5692 as_addrsz = re->dw_read(d, &offset, 1); 5693 as_segsz = re->dw_read(d, &offset, 1); 5694 5695 printf(" Length:\t\t\t%ju\n", (uintmax_t) length); 5696 printf(" Version:\t\t\t%u\n", as_version); 5697 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); 5698 printf(" Pointer Size:\t\t\t%u\n", as_addrsz); 5699 printf(" Segment Size:\t\t\t%u\n", as_segsz); 5700 5701 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { 5702 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); 5703 return; 5704 } 5705 5706 printf("\n Address Length\n"); 5707 for (i = 0; i < cnt; i++) { 5708 if (dwarf_get_arange_info(aranges[i], &start, &length, 5709 &die_off, &de) != DW_DLV_OK) { 5710 warnx("dwarf_get_arange_info failed: %s", 5711 dwarf_errmsg(de)); 5712 continue; 5713 } 5714 printf(" %08jx %ju\n", (uintmax_t) start, 5715 (uintmax_t) length); 5716 } 5717 } 5718 5719 static void 5720 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) 5721 { 5722 Dwarf_Attribute *attr_list; 5723 Dwarf_Ranges *ranges; 5724 Dwarf_Die ret_die; 5725 Dwarf_Error de; 5726 Dwarf_Addr base0; 5727 Dwarf_Half attr; 5728 Dwarf_Signed attr_count, cnt; 5729 Dwarf_Unsigned off, bytecnt; 5730 int i, j, ret; 5731 5732 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 5733 DW_DLV_OK) { 5734 if (ret == DW_DLV_ERROR) 5735 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 5736 goto cont_search; 5737 } 5738 5739 for (i = 0; i < attr_count; i++) { 5740 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 5741 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 5742 continue; 5743 } 5744 if (attr != DW_AT_ranges) 5745 continue; 5746 if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { 5747 warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); 5748 continue; 5749 } 5750 if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, 5751 &bytecnt, &de) != DW_DLV_OK) 5752 continue; 5753 base0 = base; 5754 for (j = 0; j < cnt; j++) { 5755 printf(" %08jx ", (uintmax_t) off); 5756 if (ranges[j].dwr_type == DW_RANGES_END) { 5757 printf("%s\n", "<End of list>"); 5758 continue; 5759 } else if (ranges[j].dwr_type == 5760 DW_RANGES_ADDRESS_SELECTION) { 5761 base0 = ranges[j].dwr_addr2; 5762 continue; 5763 } 5764 if (re->ec == ELFCLASS32) 5765 printf("%08jx %08jx\n", 5766 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5767 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5768 else 5769 printf("%016jx %016jx\n", 5770 (uintmax_t) (ranges[j].dwr_addr1 + base0), 5771 (uintmax_t) (ranges[j].dwr_addr2 + base0)); 5772 } 5773 } 5774 5775 cont_search: 5776 /* Search children. */ 5777 ret = dwarf_child(die, &ret_die, &de); 5778 if (ret == DW_DLV_ERROR) 5779 warnx("dwarf_child: %s", dwarf_errmsg(de)); 5780 else if (ret == DW_DLV_OK) 5781 dump_dwarf_ranges_foreach(re, ret_die, base); 5782 5783 /* Search sibling. */ 5784 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); 5785 if (ret == DW_DLV_ERROR) 5786 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 5787 else if (ret == DW_DLV_OK) 5788 dump_dwarf_ranges_foreach(re, ret_die, base); 5789 } 5790 5791 static void 5792 dump_dwarf_ranges(struct readelf *re) 5793 { 5794 Dwarf_Ranges *ranges; 5795 Dwarf_Die die; 5796 Dwarf_Signed cnt; 5797 Dwarf_Unsigned bytecnt; 5798 Dwarf_Half tag; 5799 Dwarf_Error de; 5800 Dwarf_Unsigned lowpc; 5801 int ret; 5802 5803 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != 5804 DW_DLV_OK) 5805 return; 5806 5807 printf("Contents of the .debug_ranges section:\n\n"); 5808 if (re->ec == ELFCLASS32) 5809 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); 5810 else 5811 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); 5812 5813 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, 5814 NULL, &de)) == DW_DLV_OK) { 5815 die = NULL; 5816 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 5817 continue; 5818 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 5819 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 5820 continue; 5821 } 5822 /* XXX: What about DW_TAG_partial_unit? */ 5823 lowpc = 0; 5824 if (tag == DW_TAG_compile_unit) { 5825 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, 5826 &de) != DW_DLV_OK) 5827 lowpc = 0; 5828 } 5829 5830 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); 5831 } 5832 putchar('\n'); 5833 } 5834 5835 static void 5836 dump_dwarf_macinfo(struct readelf *re) 5837 { 5838 Dwarf_Unsigned offset; 5839 Dwarf_Signed cnt; 5840 Dwarf_Macro_Details *md; 5841 Dwarf_Error de; 5842 const char *mi_str; 5843 char unk_mi[32]; 5844 int i; 5845 5846 #define _MAX_MACINFO_ENTRY 65535 5847 5848 printf("\nContents of section .debug_macinfo:\n\n"); 5849 5850 offset = 0; 5851 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, 5852 &cnt, &md, &de) == DW_DLV_OK) { 5853 for (i = 0; i < cnt; i++) { 5854 offset = md[i].dmd_offset + 1; 5855 if (md[i].dmd_type == 0) 5856 break; 5857 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != 5858 DW_DLV_OK) { 5859 snprintf(unk_mi, sizeof(unk_mi), 5860 "[Unknown MACINFO: %#x]", md[i].dmd_type); 5861 mi_str = unk_mi; 5862 } 5863 printf(" %s", mi_str); 5864 switch (md[i].dmd_type) { 5865 case DW_MACINFO_define: 5866 case DW_MACINFO_undef: 5867 printf(" - lineno : %jd macro : %s\n", 5868 (intmax_t) md[i].dmd_lineno, 5869 md[i].dmd_macro); 5870 break; 5871 case DW_MACINFO_start_file: 5872 printf(" - lineno : %jd filenum : %jd\n", 5873 (intmax_t) md[i].dmd_lineno, 5874 (intmax_t) md[i].dmd_fileindex); 5875 break; 5876 default: 5877 putchar('\n'); 5878 break; 5879 } 5880 } 5881 } 5882 5883 #undef _MAX_MACINFO_ENTRY 5884 } 5885 5886 static void 5887 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, 5888 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, 5889 Dwarf_Debug dbg) 5890 { 5891 Dwarf_Frame_Op *oplist; 5892 Dwarf_Signed opcnt, delta; 5893 Dwarf_Small op; 5894 Dwarf_Error de; 5895 const char *op_str; 5896 char unk_op[32]; 5897 int i; 5898 5899 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, 5900 &opcnt, &de) != DW_DLV_OK) { 5901 warnx("dwarf_expand_frame_instructions failed: %s", 5902 dwarf_errmsg(de)); 5903 return; 5904 } 5905 5906 for (i = 0; i < opcnt; i++) { 5907 if (oplist[i].fp_base_op != 0) 5908 op = oplist[i].fp_base_op << 6; 5909 else 5910 op = oplist[i].fp_extended_op; 5911 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { 5912 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", 5913 op); 5914 op_str = unk_op; 5915 } 5916 printf(" %s", op_str); 5917 switch (op) { 5918 case DW_CFA_advance_loc: 5919 delta = oplist[i].fp_offset * caf; 5920 pc += delta; 5921 printf(": %ju to %08jx", (uintmax_t) delta, 5922 (uintmax_t) pc); 5923 break; 5924 case DW_CFA_offset: 5925 case DW_CFA_offset_extended: 5926 case DW_CFA_offset_extended_sf: 5927 delta = oplist[i].fp_offset * daf; 5928 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, 5929 dwarf_regname(re, oplist[i].fp_register), 5930 (intmax_t) delta); 5931 break; 5932 case DW_CFA_restore: 5933 printf(": r%u (%s)", oplist[i].fp_register, 5934 dwarf_regname(re, oplist[i].fp_register)); 5935 break; 5936 case DW_CFA_set_loc: 5937 pc = oplist[i].fp_offset; 5938 printf(": to %08jx", (uintmax_t) pc); 5939 break; 5940 case DW_CFA_advance_loc1: 5941 case DW_CFA_advance_loc2: 5942 case DW_CFA_advance_loc4: 5943 pc += oplist[i].fp_offset; 5944 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, 5945 (uintmax_t) pc); 5946 break; 5947 case DW_CFA_def_cfa: 5948 printf(": r%u (%s) ofs %ju", oplist[i].fp_register, 5949 dwarf_regname(re, oplist[i].fp_register), 5950 (uintmax_t) oplist[i].fp_offset); 5951 break; 5952 case DW_CFA_def_cfa_sf: 5953 printf(": r%u (%s) ofs %jd", oplist[i].fp_register, 5954 dwarf_regname(re, oplist[i].fp_register), 5955 (intmax_t) (oplist[i].fp_offset * daf)); 5956 break; 5957 case DW_CFA_def_cfa_register: 5958 printf(": r%u (%s)", oplist[i].fp_register, 5959 dwarf_regname(re, oplist[i].fp_register)); 5960 break; 5961 case DW_CFA_def_cfa_offset: 5962 printf(": %ju", (uintmax_t) oplist[i].fp_offset); 5963 break; 5964 case DW_CFA_def_cfa_offset_sf: 5965 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); 5966 break; 5967 default: 5968 break; 5969 } 5970 putchar('\n'); 5971 } 5972 5973 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); 5974 } 5975 5976 static char * 5977 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) 5978 { 5979 static char rs[16]; 5980 5981 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) 5982 snprintf(rs, sizeof(rs), "%c", 'u'); 5983 else if (reg == DW_FRAME_CFA_COL) 5984 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); 5985 else 5986 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), 5987 (intmax_t) off); 5988 5989 return (rs); 5990 } 5991 5992 static int 5993 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, 5994 Dwarf_Unsigned func_len, Dwarf_Half cie_ra) 5995 { 5996 Dwarf_Regtable rt; 5997 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; 5998 Dwarf_Error de; 5999 char *vec; 6000 int i; 6001 6002 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) 6003 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) 6004 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) 6005 #define RT(x) rt.rules[(x)] 6006 6007 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); 6008 if (vec == NULL) 6009 err(EXIT_FAILURE, "calloc failed"); 6010 6011 pre_pc = ~((Dwarf_Addr) 0); 6012 cur_pc = pc; 6013 end_pc = pc + func_len; 6014 for (; cur_pc < end_pc; cur_pc++) { 6015 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6016 &de) != DW_DLV_OK) { 6017 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6018 dwarf_errmsg(de)); 6019 return (-1); 6020 } 6021 if (row_pc == pre_pc) 6022 continue; 6023 pre_pc = row_pc; 6024 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6025 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) 6026 BIT_SET(vec, i); 6027 } 6028 } 6029 6030 printf(" LOC CFA "); 6031 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6032 if (BIT_ISSET(vec, i)) { 6033 if ((Dwarf_Half) i == cie_ra) 6034 printf("ra "); 6035 else 6036 printf("%-5s", 6037 dwarf_regname(re, (unsigned int) i)); 6038 } 6039 } 6040 putchar('\n'); 6041 6042 pre_pc = ~((Dwarf_Addr) 0); 6043 cur_pc = pc; 6044 end_pc = pc + func_len; 6045 for (; cur_pc < end_pc; cur_pc++) { 6046 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, 6047 &de) != DW_DLV_OK) { 6048 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", 6049 dwarf_errmsg(de)); 6050 return (-1); 6051 } 6052 if (row_pc == pre_pc) 6053 continue; 6054 pre_pc = row_pc; 6055 printf("%08jx ", (uintmax_t) row_pc); 6056 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, 6057 RT(0).dw_offset)); 6058 for (i = 1; i < DW_REG_TABLE_SIZE; i++) { 6059 if (BIT_ISSET(vec, i)) { 6060 printf("%-5s", get_regoff_str(re, 6061 RT(i).dw_regnum, RT(i).dw_offset)); 6062 } 6063 } 6064 putchar('\n'); 6065 } 6066 6067 free(vec); 6068 6069 return (0); 6070 6071 #undef BIT_SET 6072 #undef BIT_CLR 6073 #undef BIT_ISSET 6074 #undef RT 6075 } 6076 6077 static void 6078 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) 6079 { 6080 Dwarf_Cie *cie_list, cie, pre_cie; 6081 Dwarf_Fde *fde_list, fde; 6082 Dwarf_Off cie_offset, fde_offset; 6083 Dwarf_Unsigned cie_length, fde_instlen; 6084 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; 6085 Dwarf_Signed cie_count, fde_count, cie_index; 6086 Dwarf_Addr low_pc; 6087 Dwarf_Half cie_ra; 6088 Dwarf_Small cie_version; 6089 Dwarf_Ptr fde_addr, fde_inst, cie_inst; 6090 char *cie_aug, c; 6091 int i, eh_frame; 6092 Dwarf_Error de; 6093 6094 printf("\nThe section %s contains:\n\n", s->name); 6095 6096 if (!strcmp(s->name, ".debug_frame")) { 6097 eh_frame = 0; 6098 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, 6099 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6100 warnx("dwarf_get_fde_list failed: %s", 6101 dwarf_errmsg(de)); 6102 return; 6103 } 6104 } else if (!strcmp(s->name, ".eh_frame")) { 6105 eh_frame = 1; 6106 if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, 6107 &fde_list, &fde_count, &de) != DW_DLV_OK) { 6108 warnx("dwarf_get_fde_list_eh failed: %s", 6109 dwarf_errmsg(de)); 6110 return; 6111 } 6112 } else 6113 return; 6114 6115 pre_cie = NULL; 6116 for (i = 0; i < fde_count; i++) { 6117 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { 6118 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6119 continue; 6120 } 6121 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { 6122 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); 6123 continue; 6124 } 6125 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, 6126 &fde_length, &cie_offset, &cie_index, &fde_offset, 6127 &de) != DW_DLV_OK) { 6128 warnx("dwarf_get_fde_range failed: %s", 6129 dwarf_errmsg(de)); 6130 continue; 6131 } 6132 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, 6133 &de) != DW_DLV_OK) { 6134 warnx("dwarf_get_fde_instr_bytes failed: %s", 6135 dwarf_errmsg(de)); 6136 continue; 6137 } 6138 if (pre_cie == NULL || cie != pre_cie) { 6139 pre_cie = cie; 6140 if (dwarf_get_cie_info(cie, &cie_length, &cie_version, 6141 &cie_aug, &cie_caf, &cie_daf, &cie_ra, 6142 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { 6143 warnx("dwarf_get_cie_info failed: %s", 6144 dwarf_errmsg(de)); 6145 continue; 6146 } 6147 printf("%08jx %08jx %8.8jx CIE", 6148 (uintmax_t) cie_offset, 6149 (uintmax_t) cie_length, 6150 (uintmax_t) (eh_frame ? 0 : ~0U)); 6151 if (!alt) { 6152 putchar('\n'); 6153 printf(" Version:\t\t\t%u\n", cie_version); 6154 printf(" Augmentation:\t\t\t\""); 6155 while ((c = *cie_aug++) != '\0') 6156 putchar(c); 6157 printf("\"\n"); 6158 printf(" Code alignment factor:\t%ju\n", 6159 (uintmax_t) cie_caf); 6160 printf(" Data alignment factor:\t%jd\n", 6161 (intmax_t) cie_daf); 6162 printf(" Return address column:\t%ju\n", 6163 (uintmax_t) cie_ra); 6164 putchar('\n'); 6165 dump_dwarf_frame_inst(re, cie, cie_inst, 6166 cie_instlen, cie_caf, cie_daf, 0, 6167 re->dbg); 6168 putchar('\n'); 6169 } else { 6170 printf(" \""); 6171 while ((c = *cie_aug++) != '\0') 6172 putchar(c); 6173 putchar('"'); 6174 printf(" cf=%ju df=%jd ra=%ju\n", 6175 (uintmax_t) cie_caf, 6176 (uintmax_t) cie_daf, 6177 (uintmax_t) cie_ra); 6178 dump_dwarf_frame_regtable(re, fde, low_pc, 1, 6179 cie_ra); 6180 putchar('\n'); 6181 } 6182 } 6183 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", 6184 (uintmax_t) fde_offset, (uintmax_t) fde_length, 6185 (uintmax_t) cie_offset, 6186 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : 6187 cie_offset), 6188 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); 6189 if (!alt) 6190 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, 6191 cie_caf, cie_daf, low_pc, re->dbg); 6192 else 6193 dump_dwarf_frame_regtable(re, fde, low_pc, func_len, 6194 cie_ra); 6195 putchar('\n'); 6196 } 6197 } 6198 6199 static void 6200 dump_dwarf_frame(struct readelf *re, int alt) 6201 { 6202 struct section *s; 6203 int i; 6204 6205 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); 6206 6207 for (i = 0; (size_t) i < re->shnum; i++) { 6208 s = &re->sl[i]; 6209 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || 6210 !strcmp(s->name, ".eh_frame"))) 6211 dump_dwarf_frame_section(re, s, alt); 6212 } 6213 } 6214 6215 static void 6216 dump_dwarf_str(struct readelf *re) 6217 { 6218 struct section *s; 6219 Elf_Data *d; 6220 unsigned char *p; 6221 int elferr, end, i, j; 6222 6223 printf("\nContents of section .debug_str:\n"); 6224 6225 s = NULL; 6226 for (i = 0; (size_t) i < re->shnum; i++) { 6227 s = &re->sl[i]; 6228 if (s->name != NULL && !strcmp(s->name, ".debug_str")) 6229 break; 6230 } 6231 if ((size_t) i >= re->shnum) 6232 return; 6233 6234 (void) elf_errno(); 6235 if ((d = elf_getdata(s->scn, NULL)) == NULL) { 6236 elferr = elf_errno(); 6237 if (elferr != 0) 6238 warnx("elf_getdata failed: %s", elf_errmsg(-1)); 6239 return; 6240 } 6241 if (d->d_size <= 0) 6242 return; 6243 6244 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { 6245 printf(" 0x%08x", (unsigned int) i); 6246 if ((size_t) i + 16 > d->d_size) 6247 end = d->d_size; 6248 else 6249 end = i + 16; 6250 for (j = i; j < i + 16; j++) { 6251 if ((j - i) % 4 == 0) 6252 putchar(' '); 6253 if (j >= end) { 6254 printf(" "); 6255 continue; 6256 } 6257 printf("%02x", (uint8_t) p[j]); 6258 } 6259 putchar(' '); 6260 for (j = i; j < end; j++) { 6261 if (isprint(p[j])) 6262 putchar(p[j]); 6263 else if (p[j] == 0) 6264 putchar('.'); 6265 else 6266 putchar(' '); 6267 } 6268 putchar('\n'); 6269 } 6270 } 6271 6272 struct loc_at { 6273 Dwarf_Attribute la_at; 6274 Dwarf_Unsigned la_off; 6275 Dwarf_Unsigned la_lowpc; 6276 Dwarf_Half la_cu_psize; 6277 Dwarf_Half la_cu_osize; 6278 Dwarf_Half la_cu_ver; 6279 TAILQ_ENTRY(loc_at) la_next; 6280 }; 6281 6282 static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); 6283 6284 static void 6285 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) 6286 { 6287 Dwarf_Attribute *attr_list; 6288 Dwarf_Die ret_die; 6289 Dwarf_Unsigned off; 6290 Dwarf_Off ref; 6291 Dwarf_Signed attr_count; 6292 Dwarf_Half attr, form; 6293 Dwarf_Bool is_info; 6294 Dwarf_Error de; 6295 struct loc_at *la, *nla; 6296 int i, ret; 6297 6298 is_info = dwarf_get_die_infotypes_flag(die); 6299 6300 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != 6301 DW_DLV_OK) { 6302 if (ret == DW_DLV_ERROR) 6303 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); 6304 goto cont_search; 6305 } 6306 for (i = 0; i < attr_count; i++) { 6307 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { 6308 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); 6309 continue; 6310 } 6311 if (attr != DW_AT_location && 6312 attr != DW_AT_string_length && 6313 attr != DW_AT_return_addr && 6314 attr != DW_AT_data_member_location && 6315 attr != DW_AT_frame_base && 6316 attr != DW_AT_segment && 6317 attr != DW_AT_static_link && 6318 attr != DW_AT_use_location && 6319 attr != DW_AT_vtable_elem_location) 6320 continue; 6321 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { 6322 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); 6323 continue; 6324 } 6325 if (form == DW_FORM_data4 || form == DW_FORM_data8) { 6326 if (dwarf_formudata(attr_list[i], &off, &de) != 6327 DW_DLV_OK) { 6328 warnx("dwarf_formudata failed: %s", 6329 dwarf_errmsg(de)); 6330 continue; 6331 } 6332 } else if (form == DW_FORM_sec_offset) { 6333 if (dwarf_global_formref(attr_list[i], &ref, &de) != 6334 DW_DLV_OK) { 6335 warnx("dwarf_global_formref failed: %s", 6336 dwarf_errmsg(de)); 6337 continue; 6338 } 6339 off = ref; 6340 } else 6341 continue; 6342 6343 TAILQ_FOREACH(la, &lalist, la_next) { 6344 if (off == la->la_off) 6345 break; 6346 if (off < la->la_off) { 6347 if ((nla = malloc(sizeof(*nla))) == NULL) 6348 err(EXIT_FAILURE, "malloc failed"); 6349 nla->la_at = attr_list[i]; 6350 nla->la_off = off; 6351 nla->la_lowpc = lowpc; 6352 nla->la_cu_psize = re->cu_psize; 6353 nla->la_cu_osize = re->cu_osize; 6354 nla->la_cu_ver = re->cu_ver; 6355 TAILQ_INSERT_BEFORE(la, nla, la_next); 6356 break; 6357 } 6358 } 6359 if (la == NULL) { 6360 if ((nla = malloc(sizeof(*nla))) == NULL) 6361 err(EXIT_FAILURE, "malloc failed"); 6362 nla->la_at = attr_list[i]; 6363 nla->la_off = off; 6364 nla->la_lowpc = lowpc; 6365 nla->la_cu_psize = re->cu_psize; 6366 nla->la_cu_osize = re->cu_osize; 6367 nla->la_cu_ver = re->cu_ver; 6368 TAILQ_INSERT_TAIL(&lalist, nla, la_next); 6369 } 6370 } 6371 6372 cont_search: 6373 /* Search children. */ 6374 ret = dwarf_child(die, &ret_die, &de); 6375 if (ret == DW_DLV_ERROR) 6376 warnx("dwarf_child: %s", dwarf_errmsg(de)); 6377 else if (ret == DW_DLV_OK) 6378 search_loclist_at(re, ret_die, lowpc); 6379 6380 /* Search sibling. */ 6381 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); 6382 if (ret == DW_DLV_ERROR) 6383 warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); 6384 else if (ret == DW_DLV_OK) 6385 search_loclist_at(re, ret_die, lowpc); 6386 } 6387 6388 static void 6389 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) 6390 { 6391 const char *op_str; 6392 char unk_op[32]; 6393 uint8_t *b, n; 6394 int i; 6395 6396 if (dwarf_get_OP_name(lr->lr_atom, &op_str) != 6397 DW_DLV_OK) { 6398 snprintf(unk_op, sizeof(unk_op), 6399 "[Unknown OP: %#x]", lr->lr_atom); 6400 op_str = unk_op; 6401 } 6402 6403 printf("%s", op_str); 6404 6405 switch (lr->lr_atom) { 6406 case DW_OP_reg0: 6407 case DW_OP_reg1: 6408 case DW_OP_reg2: 6409 case DW_OP_reg3: 6410 case DW_OP_reg4: 6411 case DW_OP_reg5: 6412 case DW_OP_reg6: 6413 case DW_OP_reg7: 6414 case DW_OP_reg8: 6415 case DW_OP_reg9: 6416 case DW_OP_reg10: 6417 case DW_OP_reg11: 6418 case DW_OP_reg12: 6419 case DW_OP_reg13: 6420 case DW_OP_reg14: 6421 case DW_OP_reg15: 6422 case DW_OP_reg16: 6423 case DW_OP_reg17: 6424 case DW_OP_reg18: 6425 case DW_OP_reg19: 6426 case DW_OP_reg20: 6427 case DW_OP_reg21: 6428 case DW_OP_reg22: 6429 case DW_OP_reg23: 6430 case DW_OP_reg24: 6431 case DW_OP_reg25: 6432 case DW_OP_reg26: 6433 case DW_OP_reg27: 6434 case DW_OP_reg28: 6435 case DW_OP_reg29: 6436 case DW_OP_reg30: 6437 case DW_OP_reg31: 6438 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); 6439 break; 6440 6441 case DW_OP_deref: 6442 case DW_OP_lit0: 6443 case DW_OP_lit1: 6444 case DW_OP_lit2: 6445 case DW_OP_lit3: 6446 case DW_OP_lit4: 6447 case DW_OP_lit5: 6448 case DW_OP_lit6: 6449 case DW_OP_lit7: 6450 case DW_OP_lit8: 6451 case DW_OP_lit9: 6452 case DW_OP_lit10: 6453 case DW_OP_lit11: 6454 case DW_OP_lit12: 6455 case DW_OP_lit13: 6456 case DW_OP_lit14: 6457 case DW_OP_lit15: 6458 case DW_OP_lit16: 6459 case DW_OP_lit17: 6460 case DW_OP_lit18: 6461 case DW_OP_lit19: 6462 case DW_OP_lit20: 6463 case DW_OP_lit21: 6464 case DW_OP_lit22: 6465 case DW_OP_lit23: 6466 case DW_OP_lit24: 6467 case DW_OP_lit25: 6468 case DW_OP_lit26: 6469 case DW_OP_lit27: 6470 case DW_OP_lit28: 6471 case DW_OP_lit29: 6472 case DW_OP_lit30: 6473 case DW_OP_lit31: 6474 case DW_OP_dup: 6475 case DW_OP_drop: 6476 case DW_OP_over: 6477 case DW_OP_swap: 6478 case DW_OP_rot: 6479 case DW_OP_xderef: 6480 case DW_OP_abs: 6481 case DW_OP_and: 6482 case DW_OP_div: 6483 case DW_OP_minus: 6484 case DW_OP_mod: 6485 case DW_OP_mul: 6486 case DW_OP_neg: 6487 case DW_OP_not: 6488 case DW_OP_or: 6489 case DW_OP_plus: 6490 case DW_OP_shl: 6491 case DW_OP_shr: 6492 case DW_OP_shra: 6493 case DW_OP_xor: 6494 case DW_OP_eq: 6495 case DW_OP_ge: 6496 case DW_OP_gt: 6497 case DW_OP_le: 6498 case DW_OP_lt: 6499 case DW_OP_ne: 6500 case DW_OP_nop: 6501 case DW_OP_push_object_address: 6502 case DW_OP_form_tls_address: 6503 case DW_OP_call_frame_cfa: 6504 case DW_OP_stack_value: 6505 case DW_OP_GNU_push_tls_address: 6506 case DW_OP_GNU_uninit: 6507 break; 6508 6509 case DW_OP_const1u: 6510 case DW_OP_pick: 6511 case DW_OP_deref_size: 6512 case DW_OP_xderef_size: 6513 case DW_OP_const2u: 6514 case DW_OP_bra: 6515 case DW_OP_skip: 6516 case DW_OP_const4u: 6517 case DW_OP_const8u: 6518 case DW_OP_constu: 6519 case DW_OP_plus_uconst: 6520 case DW_OP_regx: 6521 case DW_OP_piece: 6522 printf(": %ju", (uintmax_t) 6523 lr->lr_number); 6524 break; 6525 6526 case DW_OP_const1s: 6527 case DW_OP_const2s: 6528 case DW_OP_const4s: 6529 case DW_OP_const8s: 6530 case DW_OP_consts: 6531 printf(": %jd", (intmax_t) 6532 lr->lr_number); 6533 break; 6534 6535 case DW_OP_breg0: 6536 case DW_OP_breg1: 6537 case DW_OP_breg2: 6538 case DW_OP_breg3: 6539 case DW_OP_breg4: 6540 case DW_OP_breg5: 6541 case DW_OP_breg6: 6542 case DW_OP_breg7: 6543 case DW_OP_breg8: 6544 case DW_OP_breg9: 6545 case DW_OP_breg10: 6546 case DW_OP_breg11: 6547 case DW_OP_breg12: 6548 case DW_OP_breg13: 6549 case DW_OP_breg14: 6550 case DW_OP_breg15: 6551 case DW_OP_breg16: 6552 case DW_OP_breg17: 6553 case DW_OP_breg18: 6554 case DW_OP_breg19: 6555 case DW_OP_breg20: 6556 case DW_OP_breg21: 6557 case DW_OP_breg22: 6558 case DW_OP_breg23: 6559 case DW_OP_breg24: 6560 case DW_OP_breg25: 6561 case DW_OP_breg26: 6562 case DW_OP_breg27: 6563 case DW_OP_breg28: 6564 case DW_OP_breg29: 6565 case DW_OP_breg30: 6566 case DW_OP_breg31: 6567 printf(" (%s): %jd", 6568 dwarf_regname(re, lr->lr_atom - DW_OP_breg0), 6569 (intmax_t) lr->lr_number); 6570 break; 6571 6572 case DW_OP_fbreg: 6573 printf(": %jd", (intmax_t) 6574 lr->lr_number); 6575 break; 6576 6577 case DW_OP_bregx: 6578 printf(": %ju (%s) %jd", 6579 (uintmax_t) lr->lr_number, 6580 dwarf_regname(re, (unsigned int) lr->lr_number), 6581 (intmax_t) lr->lr_number2); 6582 break; 6583 6584 case DW_OP_addr: 6585 case DW_OP_GNU_encoded_addr: 6586 printf(": %#jx", (uintmax_t) 6587 lr->lr_number); 6588 break; 6589 6590 case DW_OP_GNU_implicit_pointer: 6591 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, 6592 (intmax_t) lr->lr_number2); 6593 break; 6594 6595 case DW_OP_implicit_value: 6596 printf(": %ju byte block:", (uintmax_t) lr->lr_number); 6597 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6598 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) 6599 printf(" %x", b[i]); 6600 break; 6601 6602 case DW_OP_GNU_entry_value: 6603 printf(": ("); 6604 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, 6605 lr->lr_number); 6606 putchar(')'); 6607 break; 6608 6609 case DW_OP_GNU_const_type: 6610 printf(": <0x%jx> ", (uintmax_t) lr->lr_number); 6611 b = (uint8_t *)(uintptr_t) lr->lr_number2; 6612 n = *b; 6613 for (i = 1; (uint8_t) i < n; i++) 6614 printf(" %x", b[i]); 6615 break; 6616 6617 case DW_OP_GNU_regval_type: 6618 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, 6619 dwarf_regname(re, (unsigned int) lr->lr_number), 6620 (uintmax_t) lr->lr_number2); 6621 break; 6622 6623 case DW_OP_GNU_convert: 6624 case DW_OP_GNU_deref_type: 6625 case DW_OP_GNU_parameter_ref: 6626 case DW_OP_GNU_reinterpret: 6627 printf(": <0x%jx>", (uintmax_t) lr->lr_number); 6628 break; 6629 6630 default: 6631 break; 6632 } 6633 } 6634 6635 static void 6636 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) 6637 { 6638 Dwarf_Locdesc *llbuf; 6639 Dwarf_Signed lcnt; 6640 Dwarf_Error de; 6641 int i; 6642 6643 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, 6644 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { 6645 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); 6646 return; 6647 } 6648 6649 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { 6650 dump_dwarf_loc(re, &llbuf->ld_s[i]); 6651 if (i < llbuf->ld_cents - 1) 6652 printf("; "); 6653 } 6654 6655 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); 6656 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); 6657 } 6658 6659 static void 6660 dump_dwarf_loclist(struct readelf *re) 6661 { 6662 Dwarf_Die die; 6663 Dwarf_Locdesc **llbuf; 6664 Dwarf_Unsigned lowpc; 6665 Dwarf_Signed lcnt; 6666 Dwarf_Half tag, version, pointer_size, off_size; 6667 Dwarf_Error de; 6668 struct loc_at *la; 6669 int i, j, ret; 6670 6671 printf("\nContents of section .debug_loc:\n"); 6672 6673 /* Search .debug_info section. */ 6674 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, 6675 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { 6676 set_cu_context(re, pointer_size, off_size, version); 6677 die = NULL; 6678 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) 6679 continue; 6680 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6681 warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); 6682 continue; 6683 } 6684 /* XXX: What about DW_TAG_partial_unit? */ 6685 lowpc = 0; 6686 if (tag == DW_TAG_compile_unit) { 6687 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6688 &lowpc, &de) != DW_DLV_OK) 6689 lowpc = 0; 6690 } 6691 6692 /* Search attributes for reference to .debug_loc section. */ 6693 search_loclist_at(re, die, lowpc); 6694 } 6695 if (ret == DW_DLV_ERROR) 6696 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6697 6698 /* Search .debug_types section. */ 6699 do { 6700 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, 6701 &version, NULL, &pointer_size, &off_size, NULL, NULL, 6702 NULL, NULL, &de)) == DW_DLV_OK) { 6703 set_cu_context(re, pointer_size, off_size, version); 6704 die = NULL; 6705 if (dwarf_siblingof(re->dbg, die, &die, &de) != 6706 DW_DLV_OK) 6707 continue; 6708 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { 6709 warnx("dwarf_tag failed: %s", 6710 dwarf_errmsg(de)); 6711 continue; 6712 } 6713 6714 lowpc = 0; 6715 if (tag == DW_TAG_type_unit) { 6716 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, 6717 &lowpc, &de) != DW_DLV_OK) 6718 lowpc = 0; 6719 } 6720 6721 /* 6722 * Search attributes for reference to .debug_loc 6723 * section. 6724 */ 6725 search_loclist_at(re, die, lowpc); 6726 } 6727 if (ret == DW_DLV_ERROR) 6728 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); 6729 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); 6730 6731 if (TAILQ_EMPTY(&lalist)) 6732 return; 6733 6734 printf(" Offset Begin End Expression\n"); 6735 6736 TAILQ_FOREACH(la, &lalist, la_next) { 6737 if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != 6738 DW_DLV_OK) { 6739 warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); 6740 continue; 6741 } 6742 set_cu_context(re, la->la_cu_psize, la->la_cu_osize, 6743 la->la_cu_ver); 6744 for (i = 0; i < lcnt; i++) { 6745 printf(" %8.8jx ", (uintmax_t) la->la_off); 6746 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { 6747 printf("<End of list>\n"); 6748 continue; 6749 } 6750 6751 /* TODO: handle base selection entry. */ 6752 6753 printf("%8.8jx %8.8jx ", 6754 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), 6755 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); 6756 6757 putchar('('); 6758 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { 6759 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); 6760 if (j < llbuf[i]->ld_cents - 1) 6761 printf("; "); 6762 } 6763 putchar(')'); 6764 6765 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) 6766 printf(" (start == end)"); 6767 putchar('\n'); 6768 } 6769 for (i = 0; i < lcnt; i++) { 6770 dwarf_dealloc(re->dbg, llbuf[i]->ld_s, 6771 DW_DLA_LOC_BLOCK); 6772 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); 6773 } 6774 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); 6775 } 6776 } 6777 6778 /* 6779 * Retrieve a string using string table section index and the string offset. 6780 */ 6781 static const char* 6782 get_string(struct readelf *re, int strtab, size_t off) 6783 { 6784 const char *name; 6785 6786 if ((name = elf_strptr(re->elf, strtab, off)) == NULL) 6787 return (""); 6788 6789 return (name); 6790 } 6791 6792 /* 6793 * Retrieve the name of a symbol using the section index of the symbol 6794 * table and the index of the symbol within that table. 6795 */ 6796 static const char * 6797 get_symbol_name(struct readelf *re, int symtab, int i) 6798 { 6799 struct section *s; 6800 const char *name; 6801 GElf_Sym sym; 6802 Elf_Data *data; 6803 int elferr; 6804 6805 s = &re->sl[symtab]; 6806 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6807 return (""); 6808 (void) elf_errno(); 6809 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6810 elferr = elf_errno(); 6811 if (elferr != 0) 6812 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6813 return (""); 6814 } 6815 if (gelf_getsym(data, i, &sym) != &sym) 6816 return (""); 6817 /* Return section name for STT_SECTION symbol. */ 6818 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 6819 re->sl[sym.st_shndx].name != NULL) 6820 return (re->sl[sym.st_shndx].name); 6821 if (s->link >= re->shnum || 6822 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) 6823 return (""); 6824 6825 return (name); 6826 } 6827 6828 static uint64_t 6829 get_symbol_value(struct readelf *re, int symtab, int i) 6830 { 6831 struct section *s; 6832 GElf_Sym sym; 6833 Elf_Data *data; 6834 int elferr; 6835 6836 s = &re->sl[symtab]; 6837 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 6838 return (0); 6839 (void) elf_errno(); 6840 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 6841 elferr = elf_errno(); 6842 if (elferr != 0) 6843 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 6844 return (0); 6845 } 6846 if (gelf_getsym(data, i, &sym) != &sym) 6847 return (0); 6848 6849 return (sym.st_value); 6850 } 6851 6852 static void 6853 hex_dump(struct readelf *re) 6854 { 6855 struct section *s; 6856 Elf_Data *d; 6857 uint8_t *buf; 6858 size_t sz, nbytes; 6859 uint64_t addr; 6860 int elferr, i, j; 6861 6862 for (i = 1; (size_t) i < re->shnum; i++) { 6863 s = &re->sl[i]; 6864 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) 6865 continue; 6866 (void) elf_errno(); 6867 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6868 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6869 elferr = elf_errno(); 6870 if (elferr != 0) 6871 warnx("elf_getdata failed: %s", 6872 elf_errmsg(elferr)); 6873 continue; 6874 } 6875 (void) elf_errno(); 6876 if (d->d_size <= 0 || d->d_buf == NULL) { 6877 printf("\nSection '%s' has no data to dump.\n", 6878 s->name); 6879 continue; 6880 } 6881 buf = d->d_buf; 6882 sz = d->d_size; 6883 addr = s->addr; 6884 printf("\nHex dump of section '%s':\n", s->name); 6885 while (sz > 0) { 6886 printf(" 0x%8.8jx ", (uintmax_t)addr); 6887 nbytes = sz > 16? 16 : sz; 6888 for (j = 0; j < 16; j++) { 6889 if ((size_t)j < nbytes) 6890 printf("%2.2x", buf[j]); 6891 else 6892 printf(" "); 6893 if ((j & 3) == 3) 6894 printf(" "); 6895 } 6896 for (j = 0; (size_t)j < nbytes; j++) { 6897 if (isprint(buf[j])) 6898 printf("%c", buf[j]); 6899 else 6900 printf("."); 6901 } 6902 printf("\n"); 6903 buf += nbytes; 6904 addr += nbytes; 6905 sz -= nbytes; 6906 } 6907 } 6908 } 6909 6910 static void 6911 str_dump(struct readelf *re) 6912 { 6913 struct section *s; 6914 Elf_Data *d; 6915 unsigned char *start, *end, *buf_end; 6916 unsigned int len; 6917 int i, j, elferr, found; 6918 6919 for (i = 1; (size_t) i < re->shnum; i++) { 6920 s = &re->sl[i]; 6921 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) 6922 continue; 6923 (void) elf_errno(); 6924 if ((d = elf_getdata(s->scn, NULL)) == NULL && 6925 (d = elf_rawdata(s->scn, NULL)) == NULL) { 6926 elferr = elf_errno(); 6927 if (elferr != 0) 6928 warnx("elf_getdata failed: %s", 6929 elf_errmsg(elferr)); 6930 continue; 6931 } 6932 (void) elf_errno(); 6933 if (d->d_size <= 0 || d->d_buf == NULL) { 6934 printf("\nSection '%s' has no data to dump.\n", 6935 s->name); 6936 continue; 6937 } 6938 buf_end = (unsigned char *) d->d_buf + d->d_size; 6939 start = (unsigned char *) d->d_buf; 6940 found = 0; 6941 printf("\nString dump of section '%s':\n", s->name); 6942 for (;;) { 6943 while (start < buf_end && !isprint(*start)) 6944 start++; 6945 if (start >= buf_end) 6946 break; 6947 end = start + 1; 6948 while (end < buf_end && isprint(*end)) 6949 end++; 6950 printf(" [%6lx] ", 6951 (long) (start - (unsigned char *) d->d_buf)); 6952 len = end - start; 6953 for (j = 0; (unsigned int) j < len; j++) 6954 putchar(start[j]); 6955 putchar('\n'); 6956 found = 1; 6957 if (end >= buf_end) 6958 break; 6959 start = end + 1; 6960 } 6961 if (!found) 6962 printf(" No strings found in this section."); 6963 putchar('\n'); 6964 } 6965 } 6966 6967 static void 6968 load_sections(struct readelf *re) 6969 { 6970 struct section *s; 6971 const char *name; 6972 Elf_Scn *scn; 6973 GElf_Shdr sh; 6974 size_t shstrndx, ndx; 6975 int elferr; 6976 6977 /* Allocate storage for internal section list. */ 6978 if (!elf_getshnum(re->elf, &re->shnum)) { 6979 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 6980 return; 6981 } 6982 if (re->sl != NULL) 6983 free(re->sl); 6984 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) 6985 err(EXIT_FAILURE, "calloc failed"); 6986 6987 /* Get the index of .shstrtab section. */ 6988 if (!elf_getshstrndx(re->elf, &shstrndx)) { 6989 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 6990 return; 6991 } 6992 6993 if ((scn = elf_getscn(re->elf, 0)) == NULL) 6994 return; 6995 6996 (void) elf_errno(); 6997 do { 6998 if (gelf_getshdr(scn, &sh) == NULL) { 6999 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 7000 (void) elf_errno(); 7001 continue; 7002 } 7003 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { 7004 (void) elf_errno(); 7005 name = "ERROR"; 7006 } 7007 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { 7008 if ((elferr = elf_errno()) != 0) 7009 warnx("elf_ndxscn failed: %s", 7010 elf_errmsg(elferr)); 7011 continue; 7012 } 7013 if (ndx >= re->shnum) { 7014 warnx("section index of '%s' out of range", name); 7015 continue; 7016 } 7017 if (sh.sh_link >= re->shnum) 7018 warnx("section link %llu of '%s' out of range", 7019 (unsigned long long)sh.sh_link, name); 7020 s = &re->sl[ndx]; 7021 s->name = name; 7022 s->scn = scn; 7023 s->off = sh.sh_offset; 7024 s->sz = sh.sh_size; 7025 s->entsize = sh.sh_entsize; 7026 s->align = sh.sh_addralign; 7027 s->type = sh.sh_type; 7028 s->flags = sh.sh_flags; 7029 s->addr = sh.sh_addr; 7030 s->link = sh.sh_link; 7031 s->info = sh.sh_info; 7032 } while ((scn = elf_nextscn(re->elf, scn)) != NULL); 7033 elferr = elf_errno(); 7034 if (elferr != 0) 7035 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 7036 } 7037 7038 static void 7039 unload_sections(struct readelf *re) 7040 { 7041 7042 if (re->sl != NULL) { 7043 free(re->sl); 7044 re->sl = NULL; 7045 } 7046 re->shnum = 0; 7047 re->vd_s = NULL; 7048 re->vn_s = NULL; 7049 re->vs_s = NULL; 7050 re->vs = NULL; 7051 re->vs_sz = 0; 7052 if (re->ver != NULL) { 7053 free(re->ver); 7054 re->ver = NULL; 7055 re->ver_sz = 0; 7056 } 7057 } 7058 7059 static void 7060 dump_elf(struct readelf *re) 7061 { 7062 7063 /* Fetch ELF header. No need to continue if it fails. */ 7064 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { 7065 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 7066 return; 7067 } 7068 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { 7069 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 7070 return; 7071 } 7072 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { 7073 re->dw_read = _read_msb; 7074 re->dw_decode = _decode_msb; 7075 } else { 7076 re->dw_read = _read_lsb; 7077 re->dw_decode = _decode_lsb; 7078 } 7079 7080 if (re->options & ~RE_H) 7081 load_sections(re); 7082 if ((re->options & RE_VV) || (re->options & RE_S)) 7083 search_ver(re); 7084 if (re->options & RE_H) 7085 dump_ehdr(re); 7086 if (re->options & RE_L) 7087 dump_phdr(re); 7088 if (re->options & RE_SS) 7089 dump_shdr(re); 7090 if (re->options & RE_G) 7091 dump_section_groups(re); 7092 if (re->options & RE_D) 7093 dump_dynamic(re); 7094 if (re->options & RE_R) 7095 dump_reloc(re); 7096 if (re->options & RE_S) 7097 dump_symtabs(re); 7098 if (re->options & RE_N) 7099 dump_notes(re); 7100 if (re->options & RE_II) 7101 dump_hash(re); 7102 if (re->options & RE_X) 7103 hex_dump(re); 7104 if (re->options & RE_P) 7105 str_dump(re); 7106 if (re->options & RE_VV) 7107 dump_ver(re); 7108 if (re->options & RE_AA) 7109 dump_arch_specific_info(re); 7110 if (re->options & RE_W) 7111 dump_dwarf(re); 7112 if (re->options & ~RE_H) 7113 unload_sections(re); 7114 } 7115 7116 static void 7117 dump_dwarf(struct readelf *re) 7118 { 7119 int error; 7120 Dwarf_Error de; 7121 7122 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { 7123 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) 7124 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", 7125 dwarf_errmsg(de)); 7126 return; 7127 } 7128 7129 if (re->dop & DW_A) 7130 dump_dwarf_abbrev(re); 7131 if (re->dop & DW_L) 7132 dump_dwarf_line(re); 7133 if (re->dop & DW_LL) 7134 dump_dwarf_line_decoded(re); 7135 if (re->dop & DW_I) { 7136 dump_dwarf_info(re, 0); 7137 dump_dwarf_info(re, 1); 7138 } 7139 if (re->dop & DW_P) 7140 dump_dwarf_pubnames(re); 7141 if (re->dop & DW_R) 7142 dump_dwarf_aranges(re); 7143 if (re->dop & DW_RR) 7144 dump_dwarf_ranges(re); 7145 if (re->dop & DW_M) 7146 dump_dwarf_macinfo(re); 7147 if (re->dop & DW_F) 7148 dump_dwarf_frame(re, 0); 7149 else if (re->dop & DW_FF) 7150 dump_dwarf_frame(re, 1); 7151 if (re->dop & DW_S) 7152 dump_dwarf_str(re); 7153 if (re->dop & DW_O) 7154 dump_dwarf_loclist(re); 7155 7156 dwarf_finish(re->dbg, &de); 7157 } 7158 7159 static void 7160 dump_ar(struct readelf *re, int fd) 7161 { 7162 Elf_Arsym *arsym; 7163 Elf_Arhdr *arhdr; 7164 Elf_Cmd cmd; 7165 Elf *e; 7166 size_t sz; 7167 off_t off; 7168 int i; 7169 7170 re->ar = re->elf; 7171 7172 if (re->options & RE_C) { 7173 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { 7174 warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); 7175 goto process_members; 7176 } 7177 printf("Index of archive %s: (%ju entries)\n", re->filename, 7178 (uintmax_t) sz - 1); 7179 off = 0; 7180 for (i = 0; (size_t) i < sz; i++) { 7181 if (arsym[i].as_name == NULL) 7182 break; 7183 if (arsym[i].as_off != off) { 7184 off = arsym[i].as_off; 7185 if (elf_rand(re->ar, off) != off) { 7186 warnx("elf_rand() failed: %s", 7187 elf_errmsg(-1)); 7188 continue; 7189 } 7190 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == 7191 NULL) { 7192 warnx("elf_begin() failed: %s", 7193 elf_errmsg(-1)); 7194 continue; 7195 } 7196 if ((arhdr = elf_getarhdr(e)) == NULL) { 7197 warnx("elf_getarhdr() failed: %s", 7198 elf_errmsg(-1)); 7199 elf_end(e); 7200 continue; 7201 } 7202 printf("Binary %s(%s) contains:\n", 7203 re->filename, arhdr->ar_name); 7204 } 7205 printf("\t%s\n", arsym[i].as_name); 7206 } 7207 if (elf_rand(re->ar, SARMAG) != SARMAG) { 7208 warnx("elf_rand() failed: %s", elf_errmsg(-1)); 7209 return; 7210 } 7211 } 7212 7213 process_members: 7214 7215 if ((re->options & ~RE_C) == 0) 7216 return; 7217 7218 cmd = ELF_C_READ; 7219 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { 7220 if ((arhdr = elf_getarhdr(re->elf)) == NULL) { 7221 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); 7222 goto next_member; 7223 } 7224 if (strcmp(arhdr->ar_name, "/") == 0 || 7225 strcmp(arhdr->ar_name, "//") == 0 || 7226 strcmp(arhdr->ar_name, "__.SYMDEF") == 0) 7227 goto next_member; 7228 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); 7229 dump_elf(re); 7230 7231 next_member: 7232 cmd = elf_next(re->elf); 7233 elf_end(re->elf); 7234 } 7235 re->elf = re->ar; 7236 } 7237 7238 static void 7239 dump_object(struct readelf *re) 7240 { 7241 int fd; 7242 7243 if ((fd = open(re->filename, O_RDONLY)) == -1) { 7244 warn("open %s failed", re->filename); 7245 return; 7246 } 7247 7248 if ((re->flags & DISPLAY_FILENAME) != 0) 7249 printf("\nFile: %s\n", re->filename); 7250 7251 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 7252 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 7253 return; 7254 } 7255 7256 switch (elf_kind(re->elf)) { 7257 case ELF_K_NONE: 7258 warnx("Not an ELF file."); 7259 return; 7260 case ELF_K_ELF: 7261 dump_elf(re); 7262 break; 7263 case ELF_K_AR: 7264 dump_ar(re, fd); 7265 break; 7266 default: 7267 warnx("Internal: libelf returned unknown elf kind."); 7268 return; 7269 } 7270 7271 elf_end(re->elf); 7272 } 7273 7274 static void 7275 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7276 { 7277 struct dumpop *d; 7278 7279 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { 7280 if ((d = calloc(1, sizeof(*d))) == NULL) 7281 err(EXIT_FAILURE, "calloc failed"); 7282 if (t == DUMP_BY_INDEX) 7283 d->u.si = si; 7284 else 7285 d->u.sn = sn; 7286 d->type = t; 7287 d->op = op; 7288 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); 7289 } else 7290 d->op |= op; 7291 } 7292 7293 static struct dumpop * 7294 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) 7295 { 7296 struct dumpop *d; 7297 7298 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { 7299 if ((op == -1 || op & d->op) && 7300 (t == -1 || (unsigned) t == d->type)) { 7301 if ((d->type == DUMP_BY_INDEX && d->u.si == si) || 7302 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) 7303 return (d); 7304 } 7305 } 7306 7307 return (NULL); 7308 } 7309 7310 static struct { 7311 const char *ln; 7312 char sn; 7313 int value; 7314 } dwarf_op[] = { 7315 {"rawline", 'l', DW_L}, 7316 {"decodedline", 'L', DW_LL}, 7317 {"info", 'i', DW_I}, 7318 {"abbrev", 'a', DW_A}, 7319 {"pubnames", 'p', DW_P}, 7320 {"aranges", 'r', DW_R}, 7321 {"ranges", 'r', DW_R}, 7322 {"Ranges", 'R', DW_RR}, 7323 {"macro", 'm', DW_M}, 7324 {"frames", 'f', DW_F}, 7325 {"frames-interp", 'F', DW_FF}, 7326 {"str", 's', DW_S}, 7327 {"loc", 'o', DW_O}, 7328 {NULL, 0, 0} 7329 }; 7330 7331 static void 7332 parse_dwarf_op_short(struct readelf *re, const char *op) 7333 { 7334 int i; 7335 7336 if (op == NULL) { 7337 re->dop |= DW_DEFAULT_OPTIONS; 7338 return; 7339 } 7340 7341 for (; *op != '\0'; op++) { 7342 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7343 if (dwarf_op[i].sn == *op) { 7344 re->dop |= dwarf_op[i].value; 7345 break; 7346 } 7347 } 7348 } 7349 } 7350 7351 static void 7352 parse_dwarf_op_long(struct readelf *re, const char *op) 7353 { 7354 char *p, *token, *bp; 7355 int i; 7356 7357 if (op == NULL) { 7358 re->dop |= DW_DEFAULT_OPTIONS; 7359 return; 7360 } 7361 7362 if ((p = strdup(op)) == NULL) 7363 err(EXIT_FAILURE, "strdup failed"); 7364 bp = p; 7365 7366 while ((token = strsep(&p, ",")) != NULL) { 7367 for (i = 0; dwarf_op[i].ln != NULL; i++) { 7368 if (!strcmp(token, dwarf_op[i].ln)) { 7369 re->dop |= dwarf_op[i].value; 7370 break; 7371 } 7372 } 7373 } 7374 7375 free(bp); 7376 } 7377 7378 static uint64_t 7379 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7380 { 7381 uint64_t ret; 7382 uint8_t *src; 7383 7384 src = (uint8_t *) d->d_buf + *offsetp; 7385 7386 ret = 0; 7387 switch (bytes_to_read) { 7388 case 8: 7389 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7390 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7391 /* FALLTHROUGH */ 7392 case 4: 7393 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7394 /* FALLTHROUGH */ 7395 case 2: 7396 ret |= ((uint64_t) src[1]) << 8; 7397 /* FALLTHROUGH */ 7398 case 1: 7399 ret |= src[0]; 7400 break; 7401 default: 7402 return (0); 7403 } 7404 7405 *offsetp += bytes_to_read; 7406 7407 return (ret); 7408 } 7409 7410 static uint64_t 7411 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) 7412 { 7413 uint64_t ret; 7414 uint8_t *src; 7415 7416 src = (uint8_t *) d->d_buf + *offsetp; 7417 7418 switch (bytes_to_read) { 7419 case 1: 7420 ret = src[0]; 7421 break; 7422 case 2: 7423 ret = src[1] | ((uint64_t) src[0]) << 8; 7424 break; 7425 case 4: 7426 ret = src[3] | ((uint64_t) src[2]) << 8; 7427 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7428 break; 7429 case 8: 7430 ret = src[7] | ((uint64_t) src[6]) << 8; 7431 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7432 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7433 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7434 break; 7435 default: 7436 return (0); 7437 } 7438 7439 *offsetp += bytes_to_read; 7440 7441 return (ret); 7442 } 7443 7444 static uint64_t 7445 _decode_lsb(uint8_t **data, int bytes_to_read) 7446 { 7447 uint64_t ret; 7448 uint8_t *src; 7449 7450 src = *data; 7451 7452 ret = 0; 7453 switch (bytes_to_read) { 7454 case 8: 7455 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; 7456 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; 7457 /* FALLTHROUGH */ 7458 case 4: 7459 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; 7460 /* FALLTHROUGH */ 7461 case 2: 7462 ret |= ((uint64_t) src[1]) << 8; 7463 /* FALLTHROUGH */ 7464 case 1: 7465 ret |= src[0]; 7466 break; 7467 default: 7468 return (0); 7469 } 7470 7471 *data += bytes_to_read; 7472 7473 return (ret); 7474 } 7475 7476 static uint64_t 7477 _decode_msb(uint8_t **data, int bytes_to_read) 7478 { 7479 uint64_t ret; 7480 uint8_t *src; 7481 7482 src = *data; 7483 7484 ret = 0; 7485 switch (bytes_to_read) { 7486 case 1: 7487 ret = src[0]; 7488 break; 7489 case 2: 7490 ret = src[1] | ((uint64_t) src[0]) << 8; 7491 break; 7492 case 4: 7493 ret = src[3] | ((uint64_t) src[2]) << 8; 7494 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; 7495 break; 7496 case 8: 7497 ret = src[7] | ((uint64_t) src[6]) << 8; 7498 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; 7499 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; 7500 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; 7501 break; 7502 default: 7503 return (0); 7504 break; 7505 } 7506 7507 *data += bytes_to_read; 7508 7509 return (ret); 7510 } 7511 7512 static int64_t 7513 _decode_sleb128(uint8_t **dp, uint8_t *dpe) 7514 { 7515 int64_t ret = 0; 7516 uint8_t b = 0; 7517 int shift = 0; 7518 7519 uint8_t *src = *dp; 7520 7521 do { 7522 if (src >= dpe) 7523 break; 7524 b = *src++; 7525 ret |= ((b & 0x7f) << shift); 7526 shift += 7; 7527 } while ((b & 0x80) != 0); 7528 7529 if (shift < 32 && (b & 0x40) != 0) 7530 ret |= (-1 << shift); 7531 7532 *dp = src; 7533 7534 return (ret); 7535 } 7536 7537 static uint64_t 7538 _decode_uleb128(uint8_t **dp, uint8_t *dpe) 7539 { 7540 uint64_t ret = 0; 7541 uint8_t b; 7542 int shift = 0; 7543 7544 uint8_t *src = *dp; 7545 7546 do { 7547 if (src >= dpe) 7548 break; 7549 b = *src++; 7550 ret |= ((b & 0x7f) << shift); 7551 shift += 7; 7552 } while ((b & 0x80) != 0); 7553 7554 *dp = src; 7555 7556 return (ret); 7557 } 7558 7559 static void 7560 readelf_version(void) 7561 { 7562 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 7563 elftc_version()); 7564 exit(EXIT_SUCCESS); 7565 } 7566 7567 #define USAGE_MESSAGE "\ 7568 Usage: %s [options] file...\n\ 7569 Display information about ELF objects and ar(1) archives.\n\n\ 7570 Options:\n\ 7571 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ 7572 -c | --archive-index Print the archive symbol table for archives.\n\ 7573 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ 7574 -e | --headers Print all headers in the object.\n\ 7575 -g | --section-groups Print the contents of the section groups.\n\ 7576 -h | --file-header Print the file header for the object.\n\ 7577 -l | --program-headers Print the PHDR table for the object.\n\ 7578 -n | --notes Print the contents of SHT_NOTE sections.\n\ 7579 -p INDEX | --string-dump=INDEX\n\ 7580 Print the contents of section at index INDEX.\n\ 7581 -r | --relocs Print relocation information.\n\ 7582 -s | --syms | --symbols Print symbol tables.\n\ 7583 -t | --section-details Print additional information about sections.\n\ 7584 -v | --version Print a version identifier and exit.\n\ 7585 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ 7586 frames-interp,info,loc,macro,pubnames,\n\ 7587 ranges,Ranges,rawline,str}\n\ 7588 Display DWARF information.\n\ 7589 -x INDEX | --hex-dump=INDEX\n\ 7590 Display contents of a section as hexadecimal.\n\ 7591 -A | --arch-specific (accepted, but ignored)\n\ 7592 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ 7593 entry in the \".dynamic\" section.\n\ 7594 -H | --help Print a help message.\n\ 7595 -I | --histogram Print information on bucket list lengths for \n\ 7596 hash sections.\n\ 7597 -N | --full-section-name (accepted, but ignored)\n\ 7598 -S | --sections | --section-headers\n\ 7599 Print information about section headers.\n\ 7600 -V | --version-info Print symbol versoning information.\n\ 7601 -W | --wide Print information without wrapping long lines.\n" 7602 7603 7604 static void 7605 readelf_usage(int status) 7606 { 7607 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 7608 exit(status); 7609 } 7610 7611 int 7612 main(int argc, char **argv) 7613 { 7614 struct readelf *re, re_storage; 7615 unsigned long si; 7616 int opt, i; 7617 char *ep; 7618 7619 re = &re_storage; 7620 memset(re, 0, sizeof(*re)); 7621 STAILQ_INIT(&re->v_dumpop); 7622 7623 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", 7624 longopts, NULL)) != -1) { 7625 switch(opt) { 7626 case '?': 7627 readelf_usage(EXIT_SUCCESS); 7628 break; 7629 case 'A': 7630 re->options |= RE_AA; 7631 break; 7632 case 'a': 7633 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | 7634 RE_L | RE_R | RE_SS | RE_S | RE_VV; 7635 break; 7636 case 'c': 7637 re->options |= RE_C; 7638 break; 7639 case 'D': 7640 re->options |= RE_DD; 7641 break; 7642 case 'd': 7643 re->options |= RE_D; 7644 break; 7645 case 'e': 7646 re->options |= RE_H | RE_L | RE_SS; 7647 break; 7648 case 'g': 7649 re->options |= RE_G; 7650 break; 7651 case 'H': 7652 readelf_usage(EXIT_SUCCESS); 7653 break; 7654 case 'h': 7655 re->options |= RE_H; 7656 break; 7657 case 'I': 7658 re->options |= RE_II; 7659 break; 7660 case 'i': 7661 /* Not implemented yet. */ 7662 break; 7663 case 'l': 7664 re->options |= RE_L; 7665 break; 7666 case 'N': 7667 re->options |= RE_NN; 7668 break; 7669 case 'n': 7670 re->options |= RE_N; 7671 break; 7672 case 'p': 7673 re->options |= RE_P; 7674 si = strtoul(optarg, &ep, 10); 7675 if (*ep == '\0') 7676 add_dumpop(re, (size_t) si, NULL, STR_DUMP, 7677 DUMP_BY_INDEX); 7678 else 7679 add_dumpop(re, 0, optarg, STR_DUMP, 7680 DUMP_BY_NAME); 7681 break; 7682 case 'r': 7683 re->options |= RE_R; 7684 break; 7685 case 'S': 7686 re->options |= RE_SS; 7687 break; 7688 case 's': 7689 re->options |= RE_S; 7690 break; 7691 case 't': 7692 re->options |= RE_T; 7693 break; 7694 case 'u': 7695 re->options |= RE_U; 7696 break; 7697 case 'V': 7698 re->options |= RE_VV; 7699 break; 7700 case 'v': 7701 readelf_version(); 7702 break; 7703 case 'W': 7704 re->options |= RE_WW; 7705 break; 7706 case 'w': 7707 re->options |= RE_W; 7708 parse_dwarf_op_short(re, optarg); 7709 break; 7710 case 'x': 7711 re->options |= RE_X; 7712 si = strtoul(optarg, &ep, 10); 7713 if (*ep == '\0') 7714 add_dumpop(re, (size_t) si, NULL, HEX_DUMP, 7715 DUMP_BY_INDEX); 7716 else 7717 add_dumpop(re, 0, optarg, HEX_DUMP, 7718 DUMP_BY_NAME); 7719 break; 7720 case OPTION_DEBUG_DUMP: 7721 re->options |= RE_W; 7722 parse_dwarf_op_long(re, optarg); 7723 } 7724 } 7725 7726 argv += optind; 7727 argc -= optind; 7728 7729 if (argc == 0 || re->options == 0) 7730 readelf_usage(EXIT_FAILURE); 7731 7732 if (argc > 1) 7733 re->flags |= DISPLAY_FILENAME; 7734 7735 if (elf_version(EV_CURRENT) == EV_NONE) 7736 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 7737 elf_errmsg(-1)); 7738 7739 for (i = 0; i < argc; i++) { 7740 re->filename = argv[i]; 7741 dump_object(re); 7742 } 7743 7744 exit(EXIT_SUCCESS); 7745 } 7746