xref: /freebsd/contrib/elftoolchain/elfdump/elfdump.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (c) 2007-2012 Kai Wang
3  * Copyright (c) 2003 David O'Brien.  All rights reserved.
4  * Copyright (c) 2001 Jake Burkholder
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/stat.h>
32 
33 #include <ar.h>
34 #include <assert.h>
35 #include <err.h>
36 #include <fcntl.h>
37 #include <gelf.h>
38 #include <getopt.h>
39 #include <libelftc.h>
40 #include <inttypes.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 
46 #ifdef USE_LIBARCHIVE_AR
47 #include <archive.h>
48 #include <archive_entry.h>
49 #endif
50 
51 #include "_elftc.h"
52 
53 ELFTC_VCSID("$Id: elfdump.c 3198 2015-05-14 18:36:19Z emaste $");
54 
55 #if defined(ELFTC_NEED_ELF_NOTE_DEFINITION)
56 #include "native-elf-format.h"
57 #if ELFTC_CLASS == ELFCLASS32
58 typedef Elf32_Nhdr	Elf_Note;
59 #else
60 typedef Elf64_Nhdr	Elf_Note;
61 #endif
62 #endif
63 
64 /* elfdump(1) options. */
65 #define	ED_DYN		(1<<0)
66 #define	ED_EHDR		(1<<1)
67 #define	ED_GOT		(1<<2)
68 #define	ED_HASH		(1<<3)
69 #define	ED_INTERP	(1<<4)
70 #define	ED_NOTE		(1<<5)
71 #define	ED_PHDR		(1<<6)
72 #define	ED_REL		(1<<7)
73 #define	ED_SHDR		(1<<8)
74 #define	ED_SYMTAB	(1<<9)
75 #define	ED_SYMVER	(1<<10)
76 #define	ED_CHECKSUM	(1<<11)
77 #define	ED_ALL		((1<<12)-1)
78 
79 /* elfdump(1) run control flags. */
80 #define	SOLARIS_FMT		(1<<0)
81 #define	PRINT_FILENAME		(1<<1)
82 #define	PRINT_ARSYM		(1<<2)
83 #define	ONLY_ARSYM		(1<<3)
84 
85 /* Convenient print macro. */
86 #define	PRT(...)	fprintf(ed->out, __VA_ARGS__)
87 
88 /* Internal data structure for sections. */
89 struct section {
90 	const char	*name;		/* section name */
91 	Elf_Scn		*scn;		/* section scn */
92 	uint64_t	 off;		/* section offset */
93 	uint64_t	 sz;		/* section size */
94 	uint64_t	 entsize;	/* section entsize */
95 	uint64_t	 align;		/* section alignment */
96 	uint64_t	 type;		/* section type */
97 	uint64_t	 flags;		/* section flags */
98 	uint64_t	 addr;		/* section virtual addr */
99 	uint32_t	 link;		/* section link ndx */
100 	uint32_t	 info;		/* section info ndx */
101 };
102 
103 struct spec_name {
104 	const char	*name;
105 	STAILQ_ENTRY(spec_name)	sn_list;
106 };
107 
108 /* Structure encapsulates the global data for readelf(1). */
109 struct elfdump {
110 	FILE		*out;		/* output redirection. */
111 	const char	*filename;	/* current processing file. */
112 	const char	*archive;	/* archive name */
113 	int		 options;	/* command line options. */
114 	int		 flags;		/* run control flags. */
115 	Elf		*elf;		/* underlying ELF descriptor. */
116 #ifndef USE_LIBARCHIVE_AR
117 	Elf		*ar;		/* ar(1) archive descriptor. */
118 #endif
119 	GElf_Ehdr	 ehdr;		/* ELF header. */
120 	int		 ec;		/* ELF class. */
121 	size_t		 shnum;		/* #sections. */
122 	struct section	*sl;		/* list of sections. */
123 	STAILQ_HEAD(, spec_name) snl;	/* list of names specified by -N. */
124 };
125 
126 /* Relocation entry. */
127 struct rel_entry {
128 	union {
129 		GElf_Rel rel;
130 		GElf_Rela rela;
131 	} u_r;
132 	const char *symn;
133 	uint32_t type;
134 };
135 
136 #if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS)
137 static __inline uint32_t
138 be32dec(const void *pp)
139 {
140 	unsigned char const *p = (unsigned char const *)pp;
141 
142 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
143 }
144 
145 static __inline uint32_t
146 le32dec(const void *pp)
147 {
148 	unsigned char const *p = (unsigned char const *)pp;
149 
150 	return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
151 }
152 #endif
153 
154 /* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */
155 static const char *
156 d_tags(uint64_t tag)
157 {
158 	switch (tag) {
159 	case 0: return "DT_NULL";
160 	case 1: return "DT_NEEDED";
161 	case 2: return "DT_PLTRELSZ";
162 	case 3: return "DT_PLTGOT";
163 	case 4: return "DT_HASH";
164 	case 5: return "DT_STRTAB";
165 	case 6: return "DT_SYMTAB";
166 	case 7: return "DT_RELA";
167 	case 8: return "DT_RELASZ";
168 	case 9: return "DT_RELAENT";
169 	case 10: return "DT_STRSZ";
170 	case 11: return "DT_SYMENT";
171 	case 12: return "DT_INIT";
172 	case 13: return "DT_FINI";
173 	case 14: return "DT_SONAME";
174 	case 15: return "DT_RPATH";
175 	case 16: return "DT_SYMBOLIC";
176 	case 17: return "DT_REL";
177 	case 18: return "DT_RELSZ";
178 	case 19: return "DT_RELENT";
179 	case 20: return "DT_PLTREL";
180 	case 21: return "DT_DEBUG";
181 	case 22: return "DT_TEXTREL";
182 	case 23: return "DT_JMPREL";
183 	case 24: return "DT_BIND_NOW";
184 	case 25: return "DT_INIT_ARRAY";
185 	case 26: return "DT_FINI_ARRAY";
186 	case 27: return "DT_INIT_ARRAYSZ";
187 	case 28: return "DT_FINI_ARRAYSZ";
188 	case 29: return "DT_RUNPATH";
189 	case 30: return "DT_FLAGS";
190 	case 32: return "DT_PREINIT_ARRAY"; /* XXX: DT_ENCODING */
191 	case 33: return "DT_PREINIT_ARRAYSZ";
192 	/* 0x6000000D - 0x6ffff000 operating system-specific semantics */
193 	case 0x6ffffdf5: return "DT_GNU_PRELINKED";
194 	case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ";
195 	case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ";
196 	case 0x6ffffdf8: return "DT_SUNW_CHECKSUM";
197 	case 0x6ffffdf9: return "DT_PLTPADSZ";
198 	case 0x6ffffdfa: return "DT_MOVEENT";
199 	case 0x6ffffdfb: return "DT_MOVESZ";
200 	case 0x6ffffdfc: return "DT_FEATURE";
201 	case 0x6ffffdfd: return "DT_POSFLAG_1";
202 	case 0x6ffffdfe: return "DT_SYMINSZ";
203 	case 0x6ffffdff: return "DT_SYMINENT (DT_VALRNGHI)";
204 	case 0x6ffffe00: return "DT_ADDRRNGLO";
205 	case 0x6ffffef5: return "DT_GNU_HASH";
206 	case 0x6ffffef8: return "DT_GNU_CONFLICT";
207 	case 0x6ffffef9: return "DT_GNU_LIBLIST";
208 	case 0x6ffffefa: return "DT_SUNW_CONFIG";
209 	case 0x6ffffefb: return "DT_SUNW_DEPAUDIT";
210 	case 0x6ffffefc: return "DT_SUNW_AUDIT";
211 	case 0x6ffffefd: return "DT_SUNW_PLTPAD";
212 	case 0x6ffffefe: return "DT_SUNW_MOVETAB";
213 	case 0x6ffffeff: return "DT_SYMINFO (DT_ADDRRNGHI)";
214 	case 0x6ffffff9: return "DT_RELACOUNT";
215 	case 0x6ffffffa: return "DT_RELCOUNT";
216 	case 0x6ffffffb: return "DT_FLAGS_1";
217 	case 0x6ffffffc: return "DT_VERDEF";
218 	case 0x6ffffffd: return "DT_VERDEFNUM";
219 	case 0x6ffffffe: return "DT_VERNEED";
220 	case 0x6fffffff: return "DT_VERNEEDNUM";
221 	case 0x6ffffff0: return "DT_GNU_VERSYM";
222 	/* 0x70000000 - 0x7fffffff processor-specific semantics */
223 	case 0x70000000: return "DT_IA_64_PLT_RESERVE";
224 	case 0x7ffffffd: return "DT_SUNW_AUXILIARY";
225 	case 0x7ffffffe: return "DT_SUNW_USED";
226 	case 0x7fffffff: return "DT_SUNW_FILTER";
227 	default: return "ERROR: TAG NOT DEFINED";
228 	}
229 }
230 
231 static const char *
232 e_machines(unsigned int mach)
233 {
234 	static char machdesc[64];
235 
236 	switch (mach) {
237 	case EM_NONE:	return "EM_NONE";
238 	case EM_M32:	return "EM_M32";
239 	case EM_SPARC:	return "EM_SPARC";
240 	case EM_386:	return "EM_386";
241 	case EM_68K:	return "EM_68K";
242 	case EM_88K:	return "EM_88K";
243 	case EM_IAMCU:	return "EM_IAMCU";
244 	case EM_860:	return "EM_860";
245 	case EM_MIPS:	return "EM_MIPS";
246 	case EM_PPC:	return "EM_PPC";
247 	case EM_ARM:	return "EM_ARM";
248 	case EM_ALPHA:	return "EM_ALPHA (legacy)";
249 	case EM_SPARCV9:return "EM_SPARCV9";
250 	case EM_IA_64:	return "EM_IA_64";
251 	case EM_X86_64:	return "EM_X86_64";
252 	}
253 	snprintf(machdesc, sizeof(machdesc),
254 	    "(unknown machine) -- type 0x%x", mach);
255 	return (machdesc);
256 }
257 
258 static const char *e_types[] = {
259 	"ET_NONE", "ET_REL", "ET_EXEC", "ET_DYN", "ET_CORE"
260 };
261 
262 static const char *ei_versions[] = {
263 	"EV_NONE", "EV_CURRENT"
264 };
265 
266 static const char *ei_classes[] = {
267 	"ELFCLASSNONE", "ELFCLASS32", "ELFCLASS64"
268 };
269 
270 static const char *ei_data[] = {
271 	"ELFDATANONE", "ELFDATA2LSB", "ELFDATA2MSB"
272 };
273 
274 static const char *ei_abis[] = {
275 	"ELFOSABI_SYSV", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX",
276 	"ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS",
277 	"ELFOSABI_MONTEREY", "ELFOSABI_IRIX", "ELFOSABI_FREEBSD",
278 	"ELFOSABI_TRU64", "ELFOSABI_MODESTO", "ELFOSABI_OPENBSD"
279 };
280 
281 static const char *p_types[] = {
282 	"PT_NULL", "PT_LOAD", "PT_DYNAMIC", "PT_INTERP", "PT_NOTE",
283 	"PT_SHLIB", "PT_PHDR", "PT_TLS"
284 };
285 
286 static const char *p_flags[] = {
287 	"", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R",
288 	"PF_X|PF_W|PF_R"
289 };
290 
291 static const char *
292 sh_name(struct elfdump *ed, int ndx)
293 {
294 	static char num[10];
295 
296 	switch (ndx) {
297 	case SHN_UNDEF: return "UNDEF";
298 	case SHN_ABS: return "ABS";
299 	case SHN_COMMON: return "COMMON";
300 	default:
301 		if ((uint64_t)ndx < ed->shnum)
302 			return (ed->sl[ndx].name);
303 		else {
304 			snprintf(num, sizeof(num), "%d", ndx);
305 			return (num);
306 		}
307 	}
308 }
309 
310 /* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */
311 static const char *
312 sh_types(u_int64_t sht) {
313 	switch (sht) {
314 	case 0:	return "SHT_NULL";
315 	case 1: return "SHT_PROGBITS";
316 	case 2: return "SHT_SYMTAB";
317 	case 3: return "SHT_STRTAB";
318 	case 4: return "SHT_RELA";
319 	case 5: return "SHT_HASH";
320 	case 6: return "SHT_DYNAMIC";
321 	case 7: return "SHT_NOTE";
322 	case 8: return "SHT_NOBITS";
323 	case 9: return "SHT_REL";
324 	case 10: return "SHT_SHLIB";
325 	case 11: return "SHT_DYNSYM";
326 	case 14: return "SHT_INIT_ARRAY";
327 	case 15: return "SHT_FINI_ARRAY";
328 	case 16: return "SHT_PREINIT_ARRAY";
329 	case 17: return "SHT_GROUP";
330 	case 18: return "SHT_SYMTAB_SHNDX";
331 	/* 0x60000000 - 0x6fffffff operating system-specific semantics */
332 	case 0x6ffffff0: return "XXX:VERSYM";
333 	case 0x6ffffff6: return "SHT_GNU_HASH";
334 	case 0x6ffffff7: return "SHT_GNU_LIBLIST";
335 	case 0x6ffffffc: return "XXX:VERDEF";
336 	case 0x6ffffffd: return "SHT_SUNW(GNU)_verdef";
337 	case 0x6ffffffe: return "SHT_SUNW(GNU)_verneed";
338 	case 0x6fffffff: return "SHT_SUNW(GNU)_versym";
339 	/* 0x70000000 - 0x7fffffff processor-specific semantics */
340 	case 0x70000000: return "SHT_IA_64_EXT";
341 	case 0x70000001: return "SHT_IA_64_UNWIND";
342 	case 0x7ffffffd: return "XXX:AUXILIARY";
343 	case 0x7fffffff: return "XXX:FILTER";
344 	/* 0x80000000 - 0xffffffff application programs */
345 	default: return "ERROR: SHT NOT DEFINED";
346 	}
347 }
348 
349 /*
350  * Define known section flags. These flags are defined in the order
351  * they are to be printed out.
352  */
353 #define	DEFINE_SHFLAGS()			\
354 	DEFINE_SHF(WRITE)			\
355 	DEFINE_SHF(ALLOC)			\
356 	DEFINE_SHF(EXECINSTR)			\
357 	DEFINE_SHF(MERGE)			\
358 	DEFINE_SHF(STRINGS)			\
359 	DEFINE_SHF(INFO_LINK)			\
360 	DEFINE_SHF(LINK_ORDER)			\
361 	DEFINE_SHF(OS_NONCONFORMING)		\
362 	DEFINE_SHF(GROUP)			\
363 	DEFINE_SHF(TLS)
364 
365 #undef	DEFINE_SHF
366 #define	DEFINE_SHF(F) "SHF_" #F "|"
367 #define ALLSHFLAGS	DEFINE_SHFLAGS()
368 
369 static const char *
370 sh_flags(uint64_t shf)
371 {
372 	static char	flg[sizeof(ALLSHFLAGS)+1];
373 
374 	flg[0] = '\0';
375 
376 #undef	DEFINE_SHF
377 #define	DEFINE_SHF(N)				\
378 	if (shf & SHF_##N)			\
379 		strcat(flg, "SHF_" #N "|");	\
380 
381 	DEFINE_SHFLAGS()
382 
383 	flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */
384 
385 	return (flg);
386 }
387 
388 static const char *st_types[] = {
389 	"STT_NOTYPE", "STT_OBJECT", "STT_FUNC", "STT_SECTION", "STT_FILE",
390 	"STT_COMMON", "STT_TLS"
391 };
392 
393 static const char *st_types_S[] = {
394 	"NOTY", "OBJT", "FUNC", "SECT", "FILE"
395 };
396 
397 static const char *st_bindings[] = {
398 	"STB_LOCAL", "STB_GLOBAL", "STB_WEAK"
399 };
400 
401 static const char *st_bindings_S[] = {
402 	"LOCL", "GLOB", "WEAK"
403 };
404 
405 static unsigned char st_others[] = {
406 	'D', 'I', 'H', 'P'
407 };
408 
409 static const char *
410 r_type(unsigned int mach, unsigned int type)
411 {
412 	switch(mach) {
413 	case EM_NONE: return "";
414 	case EM_386:
415 	case EM_IAMCU:
416 		switch(type) {
417 		case 0: return "R_386_NONE";
418 		case 1: return "R_386_32";
419 		case 2: return "R_386_PC32";
420 		case 3: return "R_386_GOT32";
421 		case 4: return "R_386_PLT32";
422 		case 5: return "R_386_COPY";
423 		case 6: return "R_386_GLOB_DAT";
424 		case 7: return "R_386_JMP_SLOT";
425 		case 8: return "R_386_RELATIVE";
426 		case 9: return "R_386_GOTOFF";
427 		case 10: return "R_386_GOTPC";
428 		case 14: return "R_386_TLS_TPOFF";
429 		case 15: return "R_386_TLS_IE";
430 		case 16: return "R_386_TLS_GOTIE";
431 		case 17: return "R_386_TLS_LE";
432 		case 18: return "R_386_TLS_GD";
433 		case 19: return "R_386_TLS_LDM";
434 		case 24: return "R_386_TLS_GD_32";
435 		case 25: return "R_386_TLS_GD_PUSH";
436 		case 26: return "R_386_TLS_GD_CALL";
437 		case 27: return "R_386_TLS_GD_POP";
438 		case 28: return "R_386_TLS_LDM_32";
439 		case 29: return "R_386_TLS_LDM_PUSH";
440 		case 30: return "R_386_TLS_LDM_CALL";
441 		case 31: return "R_386_TLS_LDM_POP";
442 		case 32: return "R_386_TLS_LDO_32";
443 		case 33: return "R_386_TLS_IE_32";
444 		case 34: return "R_386_TLS_LE_32";
445 		case 35: return "R_386_TLS_DTPMOD32";
446 		case 36: return "R_386_TLS_DTPOFF32";
447 		case 37: return "R_386_TLS_TPOFF32";
448 		default: return "";
449 		}
450 	case EM_ARM:
451 		switch(type) {
452 		case 0: return "R_ARM_NONE";
453 		case 1: return "R_ARM_PC24";
454 		case 2: return "R_ARM_ABS32";
455 		case 3: return "R_ARM_REL32";
456 		case 4: return "R_ARM_PC13";
457 		case 5: return "R_ARM_ABS16";
458 		case 6: return "R_ARM_ABS12";
459 		case 7: return "R_ARM_THM_ABS5";
460 		case 8: return "R_ARM_ABS8";
461 		case 9: return "R_ARM_SBREL32";
462 		case 10: return "R_ARM_THM_PC22";
463 		case 11: return "R_ARM_THM_PC8";
464 		case 12: return "R_ARM_AMP_VCALL9";
465 		case 13: return "R_ARM_SWI24";
466 		case 14: return "R_ARM_THM_SWI8";
467 		case 15: return "R_ARM_XPC25";
468 		case 16: return "R_ARM_THM_XPC22";
469 		case 20: return "R_ARM_COPY";
470 		case 21: return "R_ARM_GLOB_DAT";
471 		case 22: return "R_ARM_JUMP_SLOT";
472 		case 23: return "R_ARM_RELATIVE";
473 		case 24: return "R_ARM_GOTOFF";
474 		case 25: return "R_ARM_GOTPC";
475 		case 26: return "R_ARM_GOT32";
476 		case 27: return "R_ARM_PLT32";
477 		case 100: return "R_ARM_GNU_VTENTRY";
478 		case 101: return "R_ARM_GNU_VTINHERIT";
479 		case 250: return "R_ARM_RSBREL32";
480 		case 251: return "R_ARM_THM_RPC22";
481 		case 252: return "R_ARM_RREL32";
482 		case 253: return "R_ARM_RABS32";
483 		case 254: return "R_ARM_RPC24";
484 		case 255: return "R_ARM_RBASE";
485 		default: return "";
486 		}
487 	case EM_IA_64:
488 		switch(type) {
489 		case 0: return "R_IA_64_NONE";
490 		case 33: return "R_IA_64_IMM14";
491 		case 34: return "R_IA_64_IMM22";
492 		case 35: return "R_IA_64_IMM64";
493 		case 36: return "R_IA_64_DIR32MSB";
494 		case 37: return "R_IA_64_DIR32LSB";
495 		case 38: return "R_IA_64_DIR64MSB";
496 		case 39: return "R_IA_64_DIR64LSB";
497 		case 42: return "R_IA_64_GPREL22";
498 		case 43: return "R_IA_64_GPREL64I";
499 		case 44: return "R_IA_64_GPREL32MSB";
500 		case 45: return "R_IA_64_GPREL32LSB";
501 		case 46: return "R_IA_64_GPREL64MSB";
502 		case 47: return "R_IA_64_GPREL64LSB";
503 		case 50: return "R_IA_64_LTOFF22";
504 		case 51: return "R_IA_64_LTOFF64I";
505 		case 58: return "R_IA_64_PLTOFF22";
506 		case 59: return "R_IA_64_PLTOFF64I";
507 		case 62: return "R_IA_64_PLTOFF64MSB";
508 		case 63: return "R_IA_64_PLTOFF64LSB";
509 		case 67: return "R_IA_64_FPTR64I";
510 		case 68: return "R_IA_64_FPTR32MSB";
511 		case 69: return "R_IA_64_FPTR32LSB";
512 		case 70: return "R_IA_64_FPTR64MSB";
513 		case 71: return "R_IA_64_FPTR64LSB";
514 		case 72: return "R_IA_64_PCREL60B";
515 		case 73: return "R_IA_64_PCREL21B";
516 		case 74: return "R_IA_64_PCREL21M";
517 		case 75: return "R_IA_64_PCREL21F";
518 		case 76: return "R_IA_64_PCREL32MSB";
519 		case 77: return "R_IA_64_PCREL32LSB";
520 		case 78: return "R_IA_64_PCREL64MSB";
521 		case 79: return "R_IA_64_PCREL64LSB";
522 		case 82: return "R_IA_64_LTOFF_FPTR22";
523 		case 83: return "R_IA_64_LTOFF_FPTR64I";
524 		case 84: return "R_IA_64_LTOFF_FPTR32MSB";
525 		case 85: return "R_IA_64_LTOFF_FPTR32LSB";
526 		case 86: return "R_IA_64_LTOFF_FPTR64MSB";
527 		case 87: return "R_IA_64_LTOFF_FPTR64LSB";
528 		case 92: return "R_IA_64_SEGREL32MSB";
529 		case 93: return "R_IA_64_SEGREL32LSB";
530 		case 94: return "R_IA_64_SEGREL64MSB";
531 		case 95: return "R_IA_64_SEGREL64LSB";
532 		case 100: return "R_IA_64_SECREL32MSB";
533 		case 101: return "R_IA_64_SECREL32LSB";
534 		case 102: return "R_IA_64_SECREL64MSB";
535 		case 103: return "R_IA_64_SECREL64LSB";
536 		case 108: return "R_IA_64_REL32MSB";
537 		case 109: return "R_IA_64_REL32LSB";
538 		case 110: return "R_IA_64_REL64MSB";
539 		case 111: return "R_IA_64_REL64LSB";
540 		case 116: return "R_IA_64_LTV32MSB";
541 		case 117: return "R_IA_64_LTV32LSB";
542 		case 118: return "R_IA_64_LTV64MSB";
543 		case 119: return "R_IA_64_LTV64LSB";
544 		case 121: return "R_IA_64_PCREL21BI";
545 		case 122: return "R_IA_64_PCREL22";
546 		case 123: return "R_IA_64_PCREL64I";
547 		case 128: return "R_IA_64_IPLTMSB";
548 		case 129: return "R_IA_64_IPLTLSB";
549 		case 133: return "R_IA_64_SUB";
550 		case 134: return "R_IA_64_LTOFF22X";
551 		case 135: return "R_IA_64_LDXMOV";
552 		case 145: return "R_IA_64_TPREL14";
553 		case 146: return "R_IA_64_TPREL22";
554 		case 147: return "R_IA_64_TPREL64I";
555 		case 150: return "R_IA_64_TPREL64MSB";
556 		case 151: return "R_IA_64_TPREL64LSB";
557 		case 154: return "R_IA_64_LTOFF_TPREL22";
558 		case 166: return "R_IA_64_DTPMOD64MSB";
559 		case 167: return "R_IA_64_DTPMOD64LSB";
560 		case 170: return "R_IA_64_LTOFF_DTPMOD22";
561 		case 177: return "R_IA_64_DTPREL14";
562 		case 178: return "R_IA_64_DTPREL22";
563 		case 179: return "R_IA_64_DTPREL64I";
564 		case 180: return "R_IA_64_DTPREL32MSB";
565 		case 181: return "R_IA_64_DTPREL32LSB";
566 		case 182: return "R_IA_64_DTPREL64MSB";
567 		case 183: return "R_IA_64_DTPREL64LSB";
568 		case 186: return "R_IA_64_LTOFF_DTPREL22";
569 		default: return "";
570 		}
571 	case EM_MIPS:
572 		switch(type) {
573 		case 0: return "R_MIPS_NONE";
574 		case 1: return "R_MIPS_16";
575 		case 2: return "R_MIPS_32";
576 		case 3: return "R_MIPS_REL32";
577 		case 4: return "R_MIPS_26";
578 		case 5: return "R_MIPS_HI16";
579 		case 6: return "R_MIPS_LO16";
580 		case 7: return "R_MIPS_GPREL16";
581 		case 8: return "R_MIPS_LITERAL";
582 		case 9: return "R_MIPS_GOT16";
583 		case 10: return "R_MIPS_PC16";
584 		case 11: return "R_MIPS_CALL16";
585 		case 12: return "R_MIPS_GPREL32";
586 		case 21: return "R_MIPS_GOTHI16";
587 		case 22: return "R_MIPS_GOTLO16";
588 		case 30: return "R_MIPS_CALLHI16";
589 		case 31: return "R_MIPS_CALLLO16";
590 		default: return "";
591 		}
592 	case EM_PPC:
593 		switch(type) {
594 		case 0: return "R_PPC_NONE";
595 		case 1: return "R_PPC_ADDR32";
596 		case 2: return "R_PPC_ADDR24";
597 		case 3: return "R_PPC_ADDR16";
598 		case 4: return "R_PPC_ADDR16_LO";
599 		case 5: return "R_PPC_ADDR16_HI";
600 		case 6: return "R_PPC_ADDR16_HA";
601 		case 7: return "R_PPC_ADDR14";
602 		case 8: return "R_PPC_ADDR14_BRTAKEN";
603 		case 9: return "R_PPC_ADDR14_BRNTAKEN";
604 		case 10: return "R_PPC_REL24";
605 		case 11: return "R_PPC_REL14";
606 		case 12: return "R_PPC_REL14_BRTAKEN";
607 		case 13: return "R_PPC_REL14_BRNTAKEN";
608 		case 14: return "R_PPC_GOT16";
609 		case 15: return "R_PPC_GOT16_LO";
610 		case 16: return "R_PPC_GOT16_HI";
611 		case 17: return "R_PPC_GOT16_HA";
612 		case 18: return "R_PPC_PLTREL24";
613 		case 19: return "R_PPC_COPY";
614 		case 20: return "R_PPC_GLOB_DAT";
615 		case 21: return "R_PPC_JMP_SLOT";
616 		case 22: return "R_PPC_RELATIVE";
617 		case 23: return "R_PPC_LOCAL24PC";
618 		case 24: return "R_PPC_UADDR32";
619 		case 25: return "R_PPC_UADDR16";
620 		case 26: return "R_PPC_REL32";
621 		case 27: return "R_PPC_PLT32";
622 		case 28: return "R_PPC_PLTREL32";
623 		case 29: return "R_PPC_PLT16_LO";
624 		case 30: return "R_PPC_PLT16_HI";
625 		case 31: return "R_PPC_PLT16_HA";
626 		case 32: return "R_PPC_SDAREL16";
627 		case 33: return "R_PPC_SECTOFF";
628 		case 34: return "R_PPC_SECTOFF_LO";
629 		case 35: return "R_PPC_SECTOFF_HI";
630 		case 36: return "R_PPC_SECTOFF_HA";
631 		case 67: return "R_PPC_TLS";
632 		case 68: return "R_PPC_DTPMOD32";
633 		case 69: return "R_PPC_TPREL16";
634 		case 70: return "R_PPC_TPREL16_LO";
635 		case 71: return "R_PPC_TPREL16_HI";
636 		case 72: return "R_PPC_TPREL16_HA";
637 		case 73: return "R_PPC_TPREL32";
638 		case 74: return "R_PPC_DTPREL16";
639 		case 75: return "R_PPC_DTPREL16_LO";
640 		case 76: return "R_PPC_DTPREL16_HI";
641 		case 77: return "R_PPC_DTPREL16_HA";
642 		case 78: return "R_PPC_DTPREL32";
643 		case 79: return "R_PPC_GOT_TLSGD16";
644 		case 80: return "R_PPC_GOT_TLSGD16_LO";
645 		case 81: return "R_PPC_GOT_TLSGD16_HI";
646 		case 82: return "R_PPC_GOT_TLSGD16_HA";
647 		case 83: return "R_PPC_GOT_TLSLD16";
648 		case 84: return "R_PPC_GOT_TLSLD16_LO";
649 		case 85: return "R_PPC_GOT_TLSLD16_HI";
650 		case 86: return "R_PPC_GOT_TLSLD16_HA";
651 		case 87: return "R_PPC_GOT_TPREL16";
652 		case 88: return "R_PPC_GOT_TPREL16_LO";
653 		case 89: return "R_PPC_GOT_TPREL16_HI";
654 		case 90: return "R_PPC_GOT_TPREL16_HA";
655 		case 101: return "R_PPC_EMB_NADDR32";
656 		case 102: return "R_PPC_EMB_NADDR16";
657 		case 103: return "R_PPC_EMB_NADDR16_LO";
658 		case 104: return "R_PPC_EMB_NADDR16_HI";
659 		case 105: return "R_PPC_EMB_NADDR16_HA";
660 		case 106: return "R_PPC_EMB_SDAI16";
661 		case 107: return "R_PPC_EMB_SDA2I16";
662 		case 108: return "R_PPC_EMB_SDA2REL";
663 		case 109: return "R_PPC_EMB_SDA21";
664 		case 110: return "R_PPC_EMB_MRKREF";
665 		case 111: return "R_PPC_EMB_RELSEC16";
666 		case 112: return "R_PPC_EMB_RELST_LO";
667 		case 113: return "R_PPC_EMB_RELST_HI";
668 		case 114: return "R_PPC_EMB_RELST_HA";
669 		case 115: return "R_PPC_EMB_BIT_FLD";
670 		case 116: return "R_PPC_EMB_RELSDA";
671 		default: return "";
672 		}
673 	case EM_SPARC:
674 	case EM_SPARCV9:
675 		switch(type) {
676 		case 0: return "R_SPARC_NONE";
677 		case 1: return "R_SPARC_8";
678 		case 2: return "R_SPARC_16";
679 		case 3: return "R_SPARC_32";
680 		case 4: return "R_SPARC_DISP8";
681 		case 5: return "R_SPARC_DISP16";
682 		case 6: return "R_SPARC_DISP32";
683 		case 7: return "R_SPARC_WDISP30";
684 		case 8: return "R_SPARC_WDISP22";
685 		case 9: return "R_SPARC_HI22";
686 		case 10: return "R_SPARC_22";
687 		case 11: return "R_SPARC_13";
688 		case 12: return "R_SPARC_LO10";
689 		case 13: return "R_SPARC_GOT10";
690 		case 14: return "R_SPARC_GOT13";
691 		case 15: return "R_SPARC_GOT22";
692 		case 16: return "R_SPARC_PC10";
693 		case 17: return "R_SPARC_PC22";
694 		case 18: return "R_SPARC_WPLT30";
695 		case 19: return "R_SPARC_COPY";
696 		case 20: return "R_SPARC_GLOB_DAT";
697 		case 21: return "R_SPARC_JMP_SLOT";
698 		case 22: return "R_SPARC_RELATIVE";
699 		case 23: return "R_SPARC_UA32";
700 		case 24: return "R_SPARC_PLT32";
701 		case 25: return "R_SPARC_HIPLT22";
702 		case 26: return "R_SPARC_LOPLT10";
703 		case 27: return "R_SPARC_PCPLT32";
704 		case 28: return "R_SPARC_PCPLT22";
705 		case 29: return "R_SPARC_PCPLT10";
706 		case 30: return "R_SPARC_10";
707 		case 31: return "R_SPARC_11";
708 		case 32: return "R_SPARC_64";
709 		case 33: return "R_SPARC_OLO10";
710 		case 34: return "R_SPARC_HH22";
711 		case 35: return "R_SPARC_HM10";
712 		case 36: return "R_SPARC_LM22";
713 		case 37: return "R_SPARC_PC_HH22";
714 		case 38: return "R_SPARC_PC_HM10";
715 		case 39: return "R_SPARC_PC_LM22";
716 		case 40: return "R_SPARC_WDISP16";
717 		case 41: return "R_SPARC_WDISP19";
718 		case 42: return "R_SPARC_GLOB_JMP";
719 		case 43: return "R_SPARC_7";
720 		case 44: return "R_SPARC_5";
721 		case 45: return "R_SPARC_6";
722 		case 46: return "R_SPARC_DISP64";
723 		case 47: return "R_SPARC_PLT64";
724 		case 48: return "R_SPARC_HIX22";
725 		case 49: return "R_SPARC_LOX10";
726 		case 50: return "R_SPARC_H44";
727 		case 51: return "R_SPARC_M44";
728 		case 52: return "R_SPARC_L44";
729 		case 53: return "R_SPARC_REGISTER";
730 		case 54: return "R_SPARC_UA64";
731 		case 55: return "R_SPARC_UA16";
732 		case 56: return "R_SPARC_TLS_GD_HI22";
733 		case 57: return "R_SPARC_TLS_GD_LO10";
734 		case 58: return "R_SPARC_TLS_GD_ADD";
735 		case 59: return "R_SPARC_TLS_GD_CALL";
736 		case 60: return "R_SPARC_TLS_LDM_HI22";
737 		case 61: return "R_SPARC_TLS_LDM_LO10";
738 		case 62: return "R_SPARC_TLS_LDM_ADD";
739 		case 63: return "R_SPARC_TLS_LDM_CALL";
740 		case 64: return "R_SPARC_TLS_LDO_HIX22";
741 		case 65: return "R_SPARC_TLS_LDO_LOX10";
742 		case 66: return "R_SPARC_TLS_LDO_ADD";
743 		case 67: return "R_SPARC_TLS_IE_HI22";
744 		case 68: return "R_SPARC_TLS_IE_LO10";
745 		case 69: return "R_SPARC_TLS_IE_LD";
746 		case 70: return "R_SPARC_TLS_IE_LDX";
747 		case 71: return "R_SPARC_TLS_IE_ADD";
748 		case 72: return "R_SPARC_TLS_LE_HIX22";
749 		case 73: return "R_SPARC_TLS_LE_LOX10";
750 		case 74: return "R_SPARC_TLS_DTPMOD32";
751 		case 75: return "R_SPARC_TLS_DTPMOD64";
752 		case 76: return "R_SPARC_TLS_DTPOFF32";
753 		case 77: return "R_SPARC_TLS_DTPOFF64";
754 		case 78: return "R_SPARC_TLS_TPOFF32";
755 		case 79: return "R_SPARC_TLS_TPOFF64";
756 		default: return "";
757 		}
758 	case EM_X86_64:
759 		switch(type) {
760 		case 0: return "R_X86_64_NONE";
761 		case 1: return "R_X86_64_64";
762 		case 2: return "R_X86_64_PC32";
763 		case 3: return "R_X86_64_GOT32";
764 		case 4: return "R_X86_64_PLT32";
765 		case 5: return "R_X86_64_COPY";
766 		case 6: return "R_X86_64_GLOB_DAT";
767 		case 7: return "R_X86_64_JMP_SLOT";
768 		case 8: return "R_X86_64_RELATIVE";
769 		case 9: return "R_X86_64_GOTPCREL";
770 		case 10: return "R_X86_64_32";
771 		case 11: return "R_X86_64_32S";
772 		case 12: return "R_X86_64_16";
773 		case 13: return "R_X86_64_PC16";
774 		case 14: return "R_X86_64_8";
775 		case 15: return "R_X86_64_PC8";
776 		case 16: return "R_X86_64_DTPMOD64";
777 		case 17: return "R_X86_64_DTPOFF64";
778 		case 18: return "R_X86_64_TPOFF64";
779 		case 19: return "R_X86_64_TLSGD";
780 		case 20: return "R_X86_64_TLSLD";
781 		case 21: return "R_X86_64_DTPOFF32";
782 		case 22: return "R_X86_64_GOTTPOFF";
783 		case 23: return "R_X86_64_TPOFF32";
784 		default: return "";
785 		}
786 	default: return "";
787 	}
788 }
789 
790 static void	add_name(struct elfdump *ed, const char *name);
791 static void	elf_print_object(struct elfdump *ed);
792 static void	elf_print_elf(struct elfdump *ed);
793 static void	elf_print_ehdr(struct elfdump *ed);
794 static void	elf_print_phdr(struct elfdump *ed);
795 static void	elf_print_shdr(struct elfdump *ed);
796 static void	elf_print_symtab(struct elfdump *ed, int i);
797 static void	elf_print_symtabs(struct elfdump *ed);
798 static void	elf_print_symver(struct elfdump *ed);
799 static void	elf_print_verdef(struct elfdump *ed, struct section *s);
800 static void	elf_print_verneed(struct elfdump *ed, struct section *s);
801 static void	elf_print_interp(struct elfdump *ed);
802 static void	elf_print_dynamic(struct elfdump *ed);
803 static void	elf_print_rel_entry(struct elfdump *ed, struct section *s,
804     int j, struct rel_entry *r);
805 static void	elf_print_rela(struct elfdump *ed, struct section *s,
806     Elf_Data *data);
807 static void	elf_print_rel(struct elfdump *ed, struct section *s,
808     Elf_Data *data);
809 static void	elf_print_reloc(struct elfdump *ed);
810 static void	elf_print_got(struct elfdump *ed);
811 static void	elf_print_got_section(struct elfdump *ed, struct section *s);
812 static void	elf_print_note(struct elfdump *ed);
813 static void	elf_print_svr4_hash(struct elfdump *ed, struct section *s);
814 static void	elf_print_svr4_hash64(struct elfdump *ed, struct section *s);
815 static void	elf_print_gnu_hash(struct elfdump *ed, struct section *s);
816 static void	elf_print_hash(struct elfdump *ed);
817 static void	elf_print_checksum(struct elfdump *ed);
818 static void	find_gotrel(struct elfdump *ed, struct section *gs,
819     struct rel_entry *got);
820 static struct spec_name	*find_name(struct elfdump *ed, const char *name);
821 static const char *get_symbol_name(struct elfdump *ed, int symtab, int i);
822 static const char *get_string(struct elfdump *ed, int strtab, size_t off);
823 static void	get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs);
824 static void	load_sections(struct elfdump *ed);
825 static void	unload_sections(struct elfdump *ed);
826 static void	usage(void);
827 #ifdef	USE_LIBARCHIVE_AR
828 static int	ac_detect_ar(int fd);
829 static void	ac_print_ar(struct elfdump *ed, int fd);
830 #else
831 static void	elf_print_ar(struct elfdump *ed, int fd);
832 #endif	/* USE_LIBARCHIVE_AR */
833 
834 static struct option elfdump_longopts[] =
835 {
836 	{ "help",	no_argument,	NULL,	'H' },
837 	{ "version",	no_argument,	NULL,	'V' },
838 	{ NULL,		0,		NULL,	0   }
839 };
840 
841 int
842 main(int ac, char **av)
843 {
844 	struct elfdump		*ed, ed_storage;
845 	struct spec_name	*sn;
846 	int			 ch, i;
847 
848 	ed = &ed_storage;
849 	memset(ed, 0, sizeof(*ed));
850 	STAILQ_INIT(&ed->snl);
851 	ed->out = stdout;
852 	while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:",
853 		elfdump_longopts, NULL)) != -1)
854 		switch (ch) {
855 		case 'a':
856 			ed->options = ED_ALL;
857 			break;
858 		case 'c':
859 			ed->options |= ED_SHDR;
860 			break;
861 		case 'd':
862 			ed->options |= ED_DYN;
863 			break;
864 		case 'e':
865 			ed->options |= ED_EHDR;
866 			break;
867 		case 'i':
868 			ed->options |= ED_INTERP;
869 			break;
870 		case 'G':
871 			ed->options |= ED_GOT;
872 			break;
873 		case 'h':
874 			ed->options |= ED_HASH;
875 			break;
876 		case 'k':
877 			ed->options |= ED_CHECKSUM;
878 			break;
879 		case 'n':
880 			ed->options |= ED_NOTE;
881 			break;
882 		case 'N':
883 			add_name(ed, optarg);
884 			break;
885 		case 'p':
886 			ed->options |= ED_PHDR;
887 			break;
888 		case 'r':
889 			ed->options |= ED_REL;
890 			break;
891 		case 's':
892 			ed->options |= ED_SYMTAB;
893 			break;
894 		case 'S':
895 			ed->flags |= SOLARIS_FMT;
896 			break;
897 		case 'v':
898 			ed->options |= ED_SYMVER;
899 			break;
900 		case 'V':
901 			(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
902 			    elftc_version());
903 			exit(EXIT_SUCCESS);
904 			break;
905 		case 'w':
906 			if ((ed->out = fopen(optarg, "w")) == NULL)
907 				err(EXIT_FAILURE, "%s", optarg);
908 			break;
909 		case '?':
910 		case 'H':
911 		default:
912 			usage();
913 		}
914 
915 	ac -= optind;
916 	av += optind;
917 
918 	if (ed->options == 0)
919 		ed->options = ED_ALL;
920 	sn = NULL;
921 	if (ed->options & ED_SYMTAB &&
922 	    (STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) {
923 		ed->flags |= PRINT_ARSYM;
924 		if (sn != NULL) {
925 			STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list);
926 			if (STAILQ_EMPTY(&ed->snl))
927 				ed->flags |= ONLY_ARSYM;
928 		}
929 	}
930 	if (ac == 0)
931 		usage();
932 	if (ac > 1)
933 		ed->flags |= PRINT_FILENAME;
934 	if (elf_version(EV_CURRENT) == EV_NONE)
935 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
936 		    elf_errmsg(-1));
937 
938 	for (i = 0; i < ac; i++) {
939 		ed->filename = av[i];
940 		ed->archive = NULL;
941 		elf_print_object(ed);
942 	}
943 
944 	exit(EXIT_SUCCESS);
945 }
946 
947 #ifdef USE_LIBARCHIVE_AR
948 
949 /* Archive symbol table entry. */
950 struct arsym_entry {
951 	char *sym_name;
952 	size_t off;
953 };
954 
955 /*
956  * Convenient wrapper for general libarchive error handling.
957  */
958 #define	AC(CALL) do {							\
959 	if ((CALL)) {							\
960 		warnx("%s", archive_error_string(a));			\
961 		return;							\
962 	}								\
963 } while (0)
964 
965 /*
966  * Detect an ar(1) archive using libarchive(3).
967  */
968 static int
969 ac_detect_ar(int fd)
970 {
971 	struct archive		*a;
972 	struct archive_entry	*entry;
973 	int			 r;
974 
975 	r = -1;
976 	if ((a = archive_read_new()) == NULL)
977 		return (0);
978 	archive_read_support_format_ar(a);
979 	if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK)
980 		r = archive_read_next_header(a, &entry);
981 	archive_read_close(a);
982 	archive_read_free(a);
983 
984 	return (r == ARCHIVE_OK);
985 }
986 
987 /*
988  * Dump an ar(1) archive using libarchive(3).
989  */
990 static void
991 ac_print_ar(struct elfdump *ed, int fd)
992 {
993 	struct archive		*a;
994 	struct archive_entry	*entry;
995 	struct arsym_entry	*arsym;
996 	const char		*name;
997 	char			 idx[10], *b;
998 	void			*buff;
999 	size_t			 size;
1000 	uint32_t		 cnt;
1001 	int			 i, r;
1002 
1003 	if (lseek(fd, 0, SEEK_SET) == -1)
1004 		err(EXIT_FAILURE, "lseek failed");
1005 	if ((a = archive_read_new()) == NULL)
1006 		errx(EXIT_FAILURE, "%s", archive_error_string(a));
1007 	archive_read_support_format_ar(a);
1008 	AC(archive_read_open_fd(a, fd, 10240));
1009 	for(;;) {
1010 		r = archive_read_next_header(a, &entry);
1011 		if (r == ARCHIVE_FATAL)
1012 			errx(EXIT_FAILURE, "%s", archive_error_string(a));
1013 		if (r == ARCHIVE_EOF)
1014 			break;
1015 		if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY)
1016 			warnx("%s", archive_error_string(a));
1017 		if (r == ARCHIVE_RETRY)
1018 			continue;
1019 		name = archive_entry_pathname(entry);
1020 		size = archive_entry_size(entry);
1021 		if (size == 0)
1022 			continue;
1023 		if ((buff = malloc(size)) == NULL) {
1024 			warn("malloc failed");
1025 			continue;
1026 		}
1027 		if (archive_read_data(a, buff, size) != (ssize_t)size) {
1028 			warnx("%s", archive_error_string(a));
1029 			free(buff);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * Note that when processing arsym via libarchive, there is
1035 		 * no way to tell which member a certain symbol belongs to,
1036 		 * since we can not just "lseek" to a member offset and read
1037 		 * the member header.
1038 		 */
1039 		if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) {
1040 			b = buff;
1041 			cnt = be32dec(b);
1042 			if (cnt == 0) {
1043 				free(buff);
1044 				continue;
1045 			}
1046 			arsym = calloc(cnt, sizeof(*arsym));
1047 			if (arsym == NULL)
1048 				err(EXIT_FAILURE, "calloc failed");
1049 			b += sizeof(uint32_t);
1050 			for (i = 0; (size_t)i < cnt; i++) {
1051 				arsym[i].off = be32dec(b);
1052 				b += sizeof(uint32_t);
1053 			}
1054 			for (i = 0; (size_t)i < cnt; i++) {
1055 				arsym[i].sym_name = b;
1056 				b += strlen(b) + 1;
1057 			}
1058 			if (ed->flags & SOLARIS_FMT) {
1059 				PRT("\nSymbol Table: (archive)\n");
1060 				PRT("     index    offset    symbol\n");
1061 			} else
1062 				PRT("\nsymbol table (archive):\n");
1063 			for (i = 0; (size_t)i < cnt; i++) {
1064 				if (ed->flags & SOLARIS_FMT) {
1065 					snprintf(idx, sizeof(idx), "[%d]", i);
1066 					PRT("%10s  ", idx);
1067 					PRT("0x%8.8jx  ",
1068 					    (uintmax_t)arsym[i].off);
1069 					PRT("%s\n", arsym[i].sym_name);
1070 				} else {
1071 					PRT("\nentry: %d\n", i);
1072 					PRT("\toffset: %#jx\n",
1073 					    (uintmax_t)arsym[i].off);
1074 					PRT("\tsymbol: %s\n",
1075 					    arsym[i].sym_name);
1076 				}
1077 			}
1078 			free(arsym);
1079 			free(buff);
1080 			/* No need to continue if we only dump ARSYM. */
1081 			if (ed->flags & ONLY_ARSYM) {
1082 				AC(archive_read_close(a));
1083 				AC(archive_read_free(a));
1084 				return;
1085 			}
1086 			continue;
1087 		}
1088 		if ((ed->elf = elf_memory(buff, size)) == NULL) {
1089 			warnx("elf_memroy() failed: %s",
1090 			      elf_errmsg(-1));
1091 			free(buff);
1092 			continue;
1093 		}
1094 		/* Skip non-ELF member. */
1095 		if (elf_kind(ed->elf) == ELF_K_ELF) {
1096 			printf("\n%s(%s):\n", ed->archive, name);
1097 			elf_print_elf(ed);
1098 		}
1099 		elf_end(ed->elf);
1100 		free(buff);
1101 	}
1102 	AC(archive_read_close(a));
1103 	AC(archive_read_free(a));
1104 }
1105 
1106 #else  /* USE_LIBARCHIVE_AR */
1107 
1108 /*
1109  * Dump an ar(1) archive.
1110  */
1111 static void
1112 elf_print_ar(struct elfdump *ed, int fd)
1113 {
1114 	Elf		*e;
1115 	Elf_Arhdr	*arh;
1116 	Elf_Arsym	*arsym;
1117 	Elf_Cmd		 cmd;
1118 	char		 idx[10];
1119 	size_t		 cnt;
1120 	int		 i;
1121 
1122 	ed->ar = ed->elf;
1123 
1124 	if (ed->flags & PRINT_ARSYM) {
1125 		cnt = 0;
1126 		if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) {
1127 			warnx("elf_getarsym failed: %s", elf_errmsg(-1));
1128 			goto print_members;
1129 		}
1130 		if (cnt == 0)
1131 			goto print_members;
1132 		if (ed->flags & SOLARIS_FMT) {
1133 			PRT("\nSymbol Table: (archive)\n");
1134 			PRT("     index    offset    member name and symbol\n");
1135 		} else
1136 			PRT("\nsymbol table (archive):\n");
1137 		for (i = 0; (size_t)i < cnt - 1; i++) {
1138 			if (elf_rand(ed->ar, arsym[i].as_off) !=
1139 			    arsym[i].as_off) {
1140 				warnx("elf_rand failed: %s", elf_errmsg(-1));
1141 				break;
1142 			}
1143 			if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) {
1144 				warnx("elf_begin failed: %s", elf_errmsg(-1));
1145 				break;
1146 			}
1147 			if ((arh = elf_getarhdr(e)) == NULL) {
1148 				warnx("elf_getarhdr failed: %s",
1149 				    elf_errmsg(-1));
1150 				break;
1151 			}
1152 			if (ed->flags & SOLARIS_FMT) {
1153 				snprintf(idx, sizeof(idx), "[%d]", i);
1154 				PRT("%10s  ", idx);
1155 				PRT("0x%8.8jx  ",
1156 				    (uintmax_t)arsym[i].as_off);
1157 				PRT("(%s):%s\n", arh->ar_name,
1158 				    arsym[i].as_name);
1159 			} else {
1160 				PRT("\nentry: %d\n", i);
1161 				PRT("\toffset: %#jx\n",
1162 				    (uintmax_t)arsym[i].as_off);
1163 				PRT("\tmember: %s\n", arh->ar_name);
1164 				PRT("\tsymbol: %s\n", arsym[i].as_name);
1165 			}
1166 			elf_end(e);
1167 		}
1168 
1169 		/* No need to continue if we only dump ARSYM. */
1170 		if (ed->flags & ONLY_ARSYM)
1171 			return;
1172 	}
1173 
1174 print_members:
1175 
1176 	/* Rewind the archive. */
1177 	if (elf_rand(ed->ar, SARMAG) != SARMAG) {
1178 		warnx("elf_rand failed: %s", elf_errmsg(-1));
1179 		return;
1180 	}
1181 
1182 	/* Dump each member of the archive. */
1183 	cmd = ELF_C_READ;
1184 	while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) {
1185 		/* Skip non-ELF member. */
1186 		if (elf_kind(ed->elf) == ELF_K_ELF) {
1187 			if ((arh = elf_getarhdr(ed->elf)) == NULL) {
1188 				warnx("elf_getarhdr failed: %s",
1189 				    elf_errmsg(-1));
1190 				break;
1191 			}
1192 			printf("\n%s(%s):\n", ed->archive, arh->ar_name);
1193 			elf_print_elf(ed);
1194 		}
1195 		cmd = elf_next(ed->elf);
1196 		elf_end(ed->elf);
1197 	}
1198 }
1199 
1200 #endif	/* USE_LIBARCHIVE_AR */
1201 
1202 /*
1203  * Dump an object. (ELF object or ar(1) archive)
1204  */
1205 static void
1206 elf_print_object(struct elfdump *ed)
1207 {
1208 	int fd;
1209 
1210 	if ((fd = open(ed->filename, O_RDONLY)) == -1) {
1211 		warn("open %s failed", ed->filename);
1212 		return;
1213 	}
1214 
1215 #ifdef	USE_LIBARCHIVE_AR
1216 	if (ac_detect_ar(fd)) {
1217 		ed->archive = ed->filename;
1218 		ac_print_ar(ed, fd);
1219 		return;
1220 	}
1221 #endif	/* USE_LIBARCHIVE_AR */
1222 
1223 	if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
1224 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
1225 		return;
1226 	}
1227 
1228 	switch (elf_kind(ed->elf)) {
1229 	case ELF_K_NONE:
1230 		warnx("Not an ELF file.");
1231 		return;
1232 	case ELF_K_ELF:
1233 		if (ed->flags & PRINT_FILENAME)
1234 			printf("\n%s:\n", ed->filename);
1235 		elf_print_elf(ed);
1236 		break;
1237 	case ELF_K_AR:
1238 #ifndef	USE_LIBARCHIVE_AR
1239 		ed->archive = ed->filename;
1240 		elf_print_ar(ed, fd);
1241 #endif
1242 		break;
1243 	default:
1244 		warnx("Internal: libelf returned unknown elf kind.");
1245 		return;
1246 	}
1247 
1248 	elf_end(ed->elf);
1249 }
1250 
1251 /*
1252  * Dump an ELF object.
1253  */
1254 static void
1255 elf_print_elf(struct elfdump *ed)
1256 {
1257 
1258 	if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) {
1259 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
1260 		return;
1261 	}
1262 	if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) {
1263 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
1264 		return;
1265 	}
1266 
1267 	if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB |
1268 	    ED_SYMVER | ED_NOTE | ED_HASH))
1269 		load_sections(ed);
1270 
1271 	if (ed->options & ED_EHDR)
1272 		elf_print_ehdr(ed);
1273 	if (ed->options & ED_PHDR)
1274 		elf_print_phdr(ed);
1275 	if (ed->options & ED_INTERP)
1276 		elf_print_interp(ed);
1277 	if (ed->options & ED_SHDR)
1278 		elf_print_shdr(ed);
1279 	if (ed->options & ED_DYN)
1280 		elf_print_dynamic(ed);
1281 	if (ed->options & ED_REL)
1282 		elf_print_reloc(ed);
1283 	if (ed->options & ED_GOT)
1284 		elf_print_got(ed);
1285 	if (ed->options & ED_SYMTAB)
1286 		elf_print_symtabs(ed);
1287 	if (ed->options & ED_SYMVER)
1288 		elf_print_symver(ed);
1289 	if (ed->options & ED_NOTE)
1290 		elf_print_note(ed);
1291 	if (ed->options & ED_HASH)
1292 		elf_print_hash(ed);
1293 	if (ed->options & ED_CHECKSUM)
1294 		elf_print_checksum(ed);
1295 
1296 	unload_sections(ed);
1297 }
1298 
1299 /*
1300  * Read the section headers from ELF object and store them in the
1301  * internal cache.
1302  */
1303 static void
1304 load_sections(struct elfdump *ed)
1305 {
1306 	struct section	*s;
1307 	const char	*name;
1308 	Elf_Scn		*scn;
1309 	GElf_Shdr	 sh;
1310 	size_t		 shstrndx, ndx;
1311 	int		 elferr;
1312 
1313 	assert(ed->sl == NULL);
1314 
1315 	if (!elf_getshnum(ed->elf, &ed->shnum)) {
1316 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
1317 		return;
1318 	}
1319 	if (ed->shnum == 0)
1320 		return;
1321 	if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL)
1322 		err(EXIT_FAILURE, "calloc failed");
1323 	if (!elf_getshstrndx(ed->elf, &shstrndx)) {
1324 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
1325 		return;
1326 	}
1327 	if ((scn = elf_getscn(ed->elf, 0)) == NULL) {
1328 		warnx("elf_getscn failed: %s", elf_errmsg(-1));
1329 		return;
1330 	}
1331 	(void) elf_errno();
1332 	do {
1333 		if (gelf_getshdr(scn, &sh) == NULL) {
1334 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
1335 			(void) elf_errno();
1336 			continue;
1337 		}
1338 		if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) {
1339 			(void) elf_errno();
1340 			name = "ERROR";
1341 		}
1342 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF)
1343 			if ((elferr = elf_errno()) != 0) {
1344 				warnx("elf_ndxscn failed: %s",
1345 				    elf_errmsg(elferr));
1346 				continue;
1347 			}
1348 		if (ndx >= ed->shnum) {
1349 			warnx("section index of '%s' out of range", name);
1350 			continue;
1351 		}
1352 		s = &ed->sl[ndx];
1353 		s->name = name;
1354 		s->scn = scn;
1355 		s->off = sh.sh_offset;
1356 		s->sz = sh.sh_size;
1357 		s->entsize = sh.sh_entsize;
1358 		s->align = sh.sh_addralign;
1359 		s->type = sh.sh_type;
1360 		s->flags = sh.sh_flags;
1361 		s->addr = sh.sh_addr;
1362 		s->link = sh.sh_link;
1363 		s->info = sh.sh_info;
1364 	} while ((scn = elf_nextscn(ed->elf, scn)) != NULL);
1365 	elferr = elf_errno();
1366 	if (elferr != 0)
1367 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
1368 }
1369 
1370 /*
1371  * Release section related resources.
1372  */
1373 static void
1374 unload_sections(struct elfdump *ed)
1375 {
1376 	if (ed->sl != NULL) {
1377 		free(ed->sl);
1378 		ed->sl = NULL;
1379 	}
1380 }
1381 
1382 /*
1383  * Add a name to the '-N' name list.
1384  */
1385 static void
1386 add_name(struct elfdump *ed, const char *name)
1387 {
1388 	struct spec_name *sn;
1389 
1390 	if (find_name(ed, name))
1391 		return;
1392 	if ((sn = malloc(sizeof(*sn))) == NULL) {
1393 		warn("malloc failed");
1394 		return;
1395 	}
1396 	sn->name = name;
1397 	STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list);
1398 }
1399 
1400 /*
1401  * Lookup a name in the '-N' name list.
1402  */
1403 static struct spec_name *
1404 find_name(struct elfdump *ed, const char *name)
1405 {
1406 	struct spec_name *sn;
1407 
1408 	STAILQ_FOREACH(sn, &ed->snl, sn_list) {
1409 		if (!strcmp(sn->name, name))
1410 			return (sn);
1411 	}
1412 
1413 	return (NULL);
1414 }
1415 
1416 /*
1417  * Retrieve the name of a symbol using the section index of the symbol
1418  * table and the index of the symbol within that table.
1419  */
1420 static const char *
1421 get_symbol_name(struct elfdump *ed, int symtab, int i)
1422 {
1423 	static char	 sname[64];
1424 	struct section	*s;
1425 	const char	*name;
1426 	GElf_Sym	 sym;
1427 	Elf_Data	*data;
1428 	int		 elferr;
1429 
1430 	s = &ed->sl[symtab];
1431 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
1432 		return ("");
1433 	(void) elf_errno();
1434 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1435 		elferr = elf_errno();
1436 		if (elferr != 0)
1437 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1438 		return ("");
1439 	}
1440 	if (gelf_getsym(data, i, &sym) != &sym)
1441 		return ("");
1442 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
1443 		if (sym.st_shndx < ed->shnum) {
1444 			snprintf(sname, sizeof(sname), "%s (section)",
1445 			    ed->sl[sym.st_shndx].name);
1446 			return (sname);
1447 		} else
1448 			return ("");
1449 	}
1450 	if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL)
1451 		return ("");
1452 
1453 	return (name);
1454 }
1455 
1456 /*
1457  * Retrieve a string using string table section index and the string offset.
1458  */
1459 static const char*
1460 get_string(struct elfdump *ed, int strtab, size_t off)
1461 {
1462 	const char *name;
1463 
1464 	if ((name = elf_strptr(ed->elf, strtab, off)) == NULL)
1465 		return ("");
1466 
1467 	return (name);
1468 }
1469 
1470 /*
1471  * Dump the ELF Executable Header.
1472  */
1473 static void
1474 elf_print_ehdr(struct elfdump *ed)
1475 {
1476 
1477 	if (!STAILQ_EMPTY(&ed->snl))
1478 		return;
1479 
1480 	if (ed->flags & SOLARIS_FMT) {
1481 		PRT("\nELF Header\n");
1482 		PRT("  ei_magic:   { %#x, %c, %c, %c }\n",
1483 		    ed->ehdr.e_ident[0], ed->ehdr.e_ident[1],
1484 		    ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]);
1485 		PRT("  ei_class:   %-18s",
1486 		    ei_classes[ed->ehdr.e_ident[EI_CLASS]]);
1487 		PRT("  ei_data:      %s\n", ei_data[ed->ehdr.e_ident[EI_DATA]]);
1488 		PRT("  e_machine:  %-18s", e_machines(ed->ehdr.e_machine));
1489 		PRT("  e_version:    %s\n", ei_versions[ed->ehdr.e_version]);
1490 		PRT("  e_type:     %s\n", e_types[ed->ehdr.e_type]);
1491 		PRT("  e_flags:    %18d\n", ed->ehdr.e_flags);
1492 		PRT("  e_entry:    %#18jx", (uintmax_t)ed->ehdr.e_entry);
1493 		PRT("  e_ehsize: %6d", ed->ehdr.e_ehsize);
1494 		PRT("  e_shstrndx:%5d\n", ed->ehdr.e_shstrndx);
1495 		PRT("  e_shoff:    %#18jx", (uintmax_t)ed->ehdr.e_shoff);
1496 		PRT("  e_shentsize: %3d", ed->ehdr.e_shentsize);
1497 		PRT("  e_shnum:   %5d\n", ed->ehdr.e_shnum);
1498 		PRT("  e_phoff:    %#18jx", (uintmax_t)ed->ehdr.e_phoff);
1499 		PRT("  e_phentsize: %3d", ed->ehdr.e_phentsize);
1500 		PRT("  e_phnum:   %5d\n", ed->ehdr.e_phnum);
1501 	} else {
1502 		PRT("\nelf header:\n");
1503 		PRT("\n");
1504 		PRT("\te_ident: %s %s %s\n",
1505 		    ei_classes[ed->ehdr.e_ident[EI_CLASS]],
1506 		    ei_data[ed->ehdr.e_ident[EI_DATA]],
1507 		    ei_abis[ed->ehdr.e_ident[EI_OSABI]]);
1508 		PRT("\te_type: %s\n", e_types[ed->ehdr.e_type]);
1509 		PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine));
1510 		PRT("\te_version: %s\n", ei_versions[ed->ehdr.e_version]);
1511 		PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry);
1512 		PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff);
1513 		PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff);
1514 		PRT("\te_flags: %u\n", ed->ehdr.e_flags);
1515 		PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize);
1516 		PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize);
1517 		PRT("\te_phnum: %u\n", ed->ehdr.e_phnum);
1518 		PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize);
1519 		PRT("\te_shnum: %u\n", ed->ehdr.e_shnum);
1520 		PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx);
1521 	}
1522 }
1523 
1524 /*
1525  * Dump the ELF Program Header Table.
1526  */
1527 static void
1528 elf_print_phdr(struct elfdump *ed)
1529 {
1530 	GElf_Phdr	 ph;
1531 	size_t		 phnum;
1532 	int		 header, i;
1533 
1534 	if (elf_getphnum(ed->elf, &phnum) == 0) {
1535 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
1536 		return;
1537 	}
1538 	header = 0;
1539 	for (i = 0; (u_int64_t) i < phnum; i++) {
1540 		if (gelf_getphdr(ed->elf, i, &ph) != &ph) {
1541 			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
1542 			continue;
1543 		}
1544 		if (!STAILQ_EMPTY(&ed->snl) &&
1545 		    find_name(ed, p_types[ph.p_type & 0x7]) == NULL)
1546 			continue;
1547 		if (ed->flags & SOLARIS_FMT) {
1548 			PRT("\nProgram Header[%d]:\n", i);
1549 			PRT("    p_vaddr:      %#-14jx", (uintmax_t)ph.p_vaddr);
1550 			PRT("  p_flags:    [ %s ]\n", p_flags[ph.p_flags]);
1551 			PRT("    p_paddr:      %#-14jx", (uintmax_t)ph.p_paddr);
1552 			PRT("  p_type:     [ %s ]\n", p_types[ph.p_type & 0x7]);
1553 			PRT("    p_filesz:     %#-14jx",
1554 			    (uintmax_t)ph.p_filesz);
1555 			PRT("  p_memsz:    %#jx\n", (uintmax_t)ph.p_memsz);
1556 			PRT("    p_offset:     %#-14jx",
1557 			    (uintmax_t)ph.p_offset);
1558 			PRT("  p_align:    %#jx\n", (uintmax_t)ph.p_align);
1559 		} else {
1560 			if (!header) {
1561 				PRT("\nprogram header:\n");
1562 				header = 1;
1563 			}
1564 			PRT("\n");
1565 			PRT("entry: %d\n", i);
1566 			PRT("\tp_type: %s\n", p_types[ph.p_type & 0x7]);
1567 			PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset);
1568 			PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr);
1569 			PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr);
1570 			PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz);
1571 			PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz);
1572 			PRT("\tp_flags: %s\n", p_flags[ph.p_flags]);
1573 			PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align);
1574 		}
1575 	}
1576 }
1577 
1578 /*
1579  * Dump the ELF Section Header Table.
1580  */
1581 static void
1582 elf_print_shdr(struct elfdump *ed)
1583 {
1584 	struct section *s;
1585 	int i;
1586 
1587 	if (!STAILQ_EMPTY(&ed->snl))
1588 		return;
1589 
1590 	if ((ed->flags & SOLARIS_FMT) == 0)
1591 		PRT("\nsection header:\n");
1592 	for (i = 0; (size_t)i < ed->shnum; i++) {
1593 		s = &ed->sl[i];
1594 		if (ed->flags & SOLARIS_FMT) {
1595 			if (i == 0)
1596 				continue;
1597 			PRT("\nSection Header[%d]:", i);
1598 			PRT("  sh_name: %s\n", s->name);
1599 			PRT("    sh_addr:      %#-14jx", (uintmax_t)s->addr);
1600 			if (s->flags != 0)
1601 				PRT("  sh_flags:   [ %s ]\n", sh_flags(s->flags));
1602 			else
1603 				PRT("  sh_flags:   0\n");
1604 			PRT("    sh_size:      %#-14jx", (uintmax_t)s->sz);
1605 			PRT("  sh_type:    [ %s ]\n", sh_types(s->type));
1606 			PRT("    sh_offset:    %#-14jx", (uintmax_t)s->off);
1607 			PRT("  sh_entsize: %#jx\n", (uintmax_t)s->entsize);
1608 			PRT("    sh_link:      %-14u", s->link);
1609 			PRT("  sh_info:    %u\n", s->info);
1610 			PRT("    sh_addralign: %#jx\n", (uintmax_t)s->align);
1611 		} else {
1612 			PRT("\n");
1613 			PRT("entry: %ju\n", (uintmax_t)i);
1614 			PRT("\tsh_name: %s\n", s->name);
1615 			PRT("\tsh_type: %s\n", sh_types(s->type));
1616 			PRT("\tsh_flags: %s\n", sh_flags(s->flags));
1617 			PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr);
1618 			PRT("\tsh_offset: %ju\n", (uintmax_t)s->off);
1619 			PRT("\tsh_size: %ju\n", (uintmax_t)s->sz);
1620 			PRT("\tsh_link: %u\n", s->link);
1621 			PRT("\tsh_info: %u\n", s->info);
1622 			PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align);
1623 			PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize);
1624 		}
1625 	}
1626 }
1627 
1628 /*
1629  * Retrieve the content of the corresponding SHT_SUNW_versym section for
1630  * a symbol table section.
1631  */
1632 static void
1633 get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs)
1634 {
1635 	struct section	*s;
1636 	Elf_Data	*data;
1637 	int		 j, elferr;
1638 
1639 	s = NULL;
1640 	for (j = 0; (size_t)j < ed->shnum; j++) {
1641 		s = &ed->sl[j];
1642 		if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i)
1643 			break;
1644 	}
1645 	if ((size_t)j >= ed->shnum) {
1646 		*vs = NULL;
1647 		return;
1648 	}
1649 	(void) elf_errno();
1650 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1651 		elferr = elf_errno();
1652 		if (elferr != 0)
1653 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1654 		*vs = NULL;
1655 		return;
1656 	}
1657 
1658 	*vs = data->d_buf;
1659 	*nvs = data->d_size / s->entsize;
1660 }
1661 
1662 /*
1663  * Dump the symbol table section.
1664  */
1665 static void
1666 elf_print_symtab(struct elfdump *ed, int i)
1667 {
1668 	struct section	*s;
1669 	const char	*name;
1670 	uint16_t	*vs;
1671 	char		 idx[10];
1672 	Elf_Data	*data;
1673 	GElf_Sym	 sym;
1674 	int		 len, j, elferr, nvs;
1675 
1676 	s = &ed->sl[i];
1677 	if (ed->flags & SOLARIS_FMT)
1678 		PRT("\nSymbol Table Section:  %s\n", s->name);
1679 	else
1680 		PRT("\nsymbol table (%s):\n", s->name);
1681 	(void) elf_errno();
1682 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1683 		elferr = elf_errno();
1684 		if (elferr != 0)
1685 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1686 		return;
1687 	}
1688 	vs = NULL;
1689 	nvs = 0;
1690 	len = data->d_size / s->entsize;
1691 	if (ed->flags & SOLARIS_FMT) {
1692 		if (ed->ec == ELFCLASS32)
1693 			PRT("     index    value       ");
1694 		else
1695 			PRT("     index        value           ");
1696 		PRT("size     type bind oth ver shndx       name\n");
1697 		get_versym(ed, i, &vs, &nvs);
1698 		if (vs != NULL && nvs != len) {
1699 			warnx("#symbol not equal to #versym");
1700 			vs = NULL;
1701 		}
1702 	}
1703 	for (j = 0; j < len; j++) {
1704 		if (gelf_getsym(data, j, &sym) != &sym) {
1705 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
1706 			continue;
1707 		}
1708 		name = get_string(ed, s->link, sym.st_name);
1709 		if (ed->flags & SOLARIS_FMT) {
1710 			snprintf(idx, sizeof(idx), "[%d]", j);
1711 			if (ed->ec == ELFCLASS32)
1712 				PRT("%10s  ", idx);
1713 			else
1714 				PRT("%10s      ", idx);
1715 			PRT("0x%8.8jx ", (uintmax_t)sym.st_value);
1716 			if (ed->ec == ELFCLASS32)
1717 				PRT("0x%8.8jx  ", (uintmax_t)sym.st_size);
1718 			else
1719 				PRT("0x%12.12jx  ", (uintmax_t)sym.st_size);
1720 			PRT("%s ", st_types_S[GELF_ST_TYPE(sym.st_info)]);
1721 			PRT("%s  ", st_bindings_S[GELF_ST_BIND(sym.st_info)]);
1722 			PRT("%c  ", st_others[sym.st_other]);
1723 			PRT("%3u ", (vs == NULL ? 0 : vs[j]));
1724 			PRT("%-11.11s ", sh_name(ed, sym.st_shndx));
1725 			PRT("%s\n", name);
1726 		} else {
1727 			PRT("\nentry: %d\n", j);
1728 			PRT("\tst_name: %s\n", name);
1729 			PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value);
1730 			PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size);
1731 			PRT("\tst_info: %s %s\n",
1732 			    st_types[GELF_ST_TYPE(sym.st_info)],
1733 			    st_bindings[GELF_ST_BIND(sym.st_info)]);
1734 			PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx);
1735 		}
1736 	}
1737 }
1738 
1739 /*
1740  * Dump the symbol tables. (.dynsym and .symtab)
1741  */
1742 static void
1743 elf_print_symtabs(struct elfdump *ed)
1744 {
1745 	int i;
1746 
1747 	for (i = 0; (size_t)i < ed->shnum; i++)
1748 		if ((ed->sl[i].type == SHT_SYMTAB ||
1749 		    ed->sl[i].type == SHT_DYNSYM) &&
1750 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name)))
1751 			elf_print_symtab(ed, i);
1752 }
1753 
1754 /*
1755  * Dump the content of .dynamic section.
1756  */
1757 static void
1758 elf_print_dynamic(struct elfdump *ed)
1759 {
1760 	struct section	*s;
1761 	const char	*name;
1762 	char		 idx[10];
1763 	Elf_Data	*data;
1764 	GElf_Dyn	 dyn;
1765 	int		 elferr, i, len;
1766 
1767 	s = NULL;
1768 	for (i = 0; (size_t)i < ed->shnum; i++) {
1769 		s = &ed->sl[i];
1770 		if (s->type == SHT_DYNAMIC &&
1771 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
1772 			break;
1773 	}
1774 	if ((size_t)i >= ed->shnum)
1775 		return;
1776 
1777 	if (ed->flags & SOLARIS_FMT) {
1778 		PRT("Dynamic Section:  %s\n", s->name);
1779 		PRT("     index  tag               value\n");
1780 	} else
1781 		PRT("\ndynamic:\n");
1782 	(void) elf_errno();
1783 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1784 		elferr = elf_errno();
1785 		if (elferr != 0)
1786 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1787 		return;
1788 	}
1789 	len = data->d_size / s->entsize;
1790 	for (i = 0; i < len; i++) {
1791 		if (gelf_getdyn(data, i, &dyn) != &dyn) {
1792 			warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
1793 			continue;
1794 		}
1795 
1796 		if (ed->flags & SOLARIS_FMT) {
1797 			snprintf(idx, sizeof(idx), "[%d]", i);
1798 			PRT("%10s  %-16s ", idx, d_tags(dyn.d_tag));
1799 		} else {
1800 			PRT("\n");
1801 			PRT("entry: %d\n", i);
1802 			PRT("\td_tag: %s\n", d_tags(dyn.d_tag));
1803 		}
1804 		switch(dyn.d_tag) {
1805 		case DT_NEEDED:
1806 		case DT_SONAME:
1807 		case DT_RPATH:
1808 			if ((name = elf_strptr(ed->elf, s->link,
1809 				    dyn.d_un.d_val)) == NULL)
1810 				name = "";
1811 			if (ed->flags & SOLARIS_FMT)
1812 				PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val,
1813 				    name);
1814 			else
1815 				PRT("\td_val: %s\n", name);
1816 			break;
1817 		case DT_PLTRELSZ:
1818 		case DT_RELA:
1819 		case DT_RELASZ:
1820 		case DT_RELAENT:
1821 		case DT_RELACOUNT:
1822 		case DT_STRSZ:
1823 		case DT_SYMENT:
1824 		case DT_RELSZ:
1825 		case DT_RELENT:
1826 		case DT_PLTREL:
1827 		case DT_VERDEF:
1828 		case DT_VERDEFNUM:
1829 		case DT_VERNEED:
1830 		case DT_VERNEEDNUM:
1831 		case DT_VERSYM:
1832 			if (ed->flags & SOLARIS_FMT)
1833 				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val);
1834 			else
1835 				PRT("\td_val: %ju\n",
1836 				    (uintmax_t)dyn.d_un.d_val);
1837 			break;
1838 		case DT_PLTGOT:
1839 		case DT_HASH:
1840 		case DT_GNU_HASH:
1841 		case DT_STRTAB:
1842 		case DT_SYMTAB:
1843 		case DT_INIT:
1844 		case DT_FINI:
1845 		case DT_REL:
1846 		case DT_JMPREL:
1847 		case DT_DEBUG:
1848 			if (ed->flags & SOLARIS_FMT)
1849 				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr);
1850 			else
1851 				PRT("\td_ptr: %#jx\n",
1852 				    (uintmax_t)dyn.d_un.d_ptr);
1853 			break;
1854 		case DT_NULL:
1855 		case DT_SYMBOLIC:
1856 		case DT_TEXTREL:
1857 		default:
1858 			if (ed->flags & SOLARIS_FMT)
1859 				PRT("\n");
1860 			break;
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * Dump a .rel/.rela section entry.
1867  */
1868 static void
1869 elf_print_rel_entry(struct elfdump *ed, struct section *s, int j,
1870     struct rel_entry *r)
1871 {
1872 
1873 	if (ed->flags & SOLARIS_FMT) {
1874 		PRT("        %-23s ", r_type(ed->ehdr.e_machine,
1875 			GELF_R_TYPE(r->u_r.rel.r_info)));
1876 		PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset);
1877 		if (r->type == SHT_RELA)
1878 			PRT("%10jd  ", (intmax_t)r->u_r.rela.r_addend);
1879 		else
1880 			PRT("    ");
1881 		PRT("%-14s ", s->name);
1882 		PRT("%s\n", r->symn);
1883 	} else {
1884 		PRT("\n");
1885 		PRT("entry: %d\n", j);
1886 		PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset);
1887 		if (ed->ec == ELFCLASS32)
1888 			PRT("\tr_info: %#jx\n", (uintmax_t)
1889 			    ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info),
1890 			    ELF64_R_TYPE(r->u_r.rel.r_info)));
1891 		else
1892 			PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info);
1893 		if (r->type == SHT_RELA)
1894 			PRT("\tr_addend: %jd\n",
1895 			    (intmax_t)r->u_r.rela.r_addend);
1896 	}
1897 }
1898 
1899 /*
1900  * Dump a relocation section of type SHT_RELA.
1901  */
1902 static void
1903 elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data)
1904 {
1905 	struct rel_entry	r;
1906 	int			j, len;
1907 
1908 	if (ed->flags & SOLARIS_FMT) {
1909 		PRT("\nRelocation Section:  %s\n", s->name);
1910 		PRT("        type                          offset     "
1911 		    "addend  section        with respect to\n");
1912 	} else
1913 		PRT("\nrelocation with addend (%s):\n", s->name);
1914 	r.type = SHT_RELA;
1915 	len = data->d_size / s->entsize;
1916 	for (j = 0; j < len; j++) {
1917 		if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) {
1918 			warnx("gelf_getrela failed: %s",
1919 			    elf_errmsg(-1));
1920 			continue;
1921 		}
1922 		r.symn = get_symbol_name(ed, s->link,
1923 		    GELF_R_SYM(r.u_r.rela.r_info));
1924 		elf_print_rel_entry(ed, s, j, &r);
1925 	}
1926 }
1927 
1928 /*
1929  * Dump a relocation section of type SHT_REL.
1930  */
1931 static void
1932 elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data)
1933 {
1934 	struct rel_entry	r;
1935 	int			j, len;
1936 
1937 	if (ed->flags & SOLARIS_FMT) {
1938 		PRT("\nRelocation Section:  %s\n", s->name);
1939 		PRT("        type                          offset     "
1940 		    "section        with respect to\n");
1941 	} else
1942 		PRT("\nrelocation (%s):\n", s->name);
1943 	r.type = SHT_REL;
1944 	len = data->d_size / s->entsize;
1945 	for (j = 0; j < len; j++) {
1946 		if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) {
1947 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
1948 			continue;
1949 		}
1950 		r.symn = get_symbol_name(ed, s->link,
1951 		    GELF_R_SYM(r.u_r.rel.r_info));
1952 		elf_print_rel_entry(ed, s, j, &r);
1953 	}
1954 }
1955 
1956 /*
1957  * Dump relocation sections.
1958  */
1959 static void
1960 elf_print_reloc(struct elfdump *ed)
1961 {
1962 	struct section	*s;
1963 	Elf_Data	*data;
1964 	int		 i, elferr;
1965 
1966 	for (i = 0; (size_t)i < ed->shnum; i++) {
1967 		s = &ed->sl[i];
1968 		if ((s->type == SHT_REL || s->type == SHT_RELA) &&
1969 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
1970 			(void) elf_errno();
1971 			if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1972 				elferr = elf_errno();
1973 				if (elferr != 0)
1974 					warnx("elf_getdata failed: %s",
1975 					    elf_errmsg(elferr));
1976 				continue;
1977 			}
1978 			if (s->type == SHT_REL)
1979 				elf_print_rel(ed, s, data);
1980 			else
1981 				elf_print_rela(ed, s, data);
1982 		}
1983 	}
1984 }
1985 
1986 /*
1987  * Dump the content of PT_INTERP segment.
1988  */
1989 static void
1990 elf_print_interp(struct elfdump *ed)
1991 {
1992 	const char *s;
1993 	GElf_Phdr phdr;
1994 	size_t phnum;
1995 	int i;
1996 
1997 	if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL)
1998 		return;
1999 
2000 	if ((s = elf_rawfile(ed->elf, NULL)) == NULL) {
2001 		warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2002 		return;
2003 	}
2004 	if (!elf_getphnum(ed->elf, &phnum)) {
2005 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2006 		return;
2007 	}
2008 	for (i = 0; (size_t)i < phnum; i++) {
2009 		if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) {
2010 			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
2011 			continue;
2012 		}
2013 		if (phdr.p_type == PT_INTERP) {
2014 			PRT("\ninterp:\n");
2015 			PRT("\t%s\n", s + phdr.p_offset);
2016 		}
2017 	}
2018 }
2019 
2020 /*
2021  * Search the relocation sections for entries refering to the .got section.
2022  */
2023 static void
2024 find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got)
2025 {
2026 	struct section		*s;
2027 	struct rel_entry	 r;
2028 	Elf_Data		*data;
2029 	int			 elferr, i, j, k, len;
2030 
2031 	for(i = 0; (size_t)i < ed->shnum; i++) {
2032 		s = &ed->sl[i];
2033 		if (s->type != SHT_REL && s->type != SHT_RELA)
2034 			continue;
2035 		(void) elf_errno();
2036 		if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2037 			elferr = elf_errno();
2038 			if (elferr != 0)
2039 				warnx("elf_getdata failed: %s",
2040 				    elf_errmsg(elferr));
2041 			return;
2042 		}
2043 		memset(&r, 0, sizeof(struct rel_entry));
2044 		r.type = s->type;
2045 		len = data->d_size / s->entsize;
2046 		for (j = 0; j < len; j++) {
2047 			if (s->type == SHT_REL) {
2048 				if (gelf_getrel(data, j, &r.u_r.rel) !=
2049 				    &r.u_r.rel) {
2050 					warnx("gelf_getrel failed: %s",
2051 					    elf_errmsg(-1));
2052 					continue;
2053 				}
2054 			} else {
2055 				if (gelf_getrela(data, j, &r.u_r.rela) !=
2056 				    &r.u_r.rela) {
2057 					warnx("gelf_getrel failed: %s",
2058 					    elf_errmsg(-1));
2059 					continue;
2060 				}
2061 			}
2062 			if (r.u_r.rel.r_offset >= gs->addr &&
2063 			    r.u_r.rel.r_offset < gs->addr + gs->sz) {
2064 				r.symn = get_symbol_name(ed, s->link,
2065 				    GELF_R_SYM(r.u_r.rel.r_info));
2066 				k = (r.u_r.rel.r_offset - gs->addr) /
2067 				    gs->entsize;
2068 				memcpy(&got[k], &r, sizeof(struct rel_entry));
2069 			}
2070 		}
2071 	}
2072 }
2073 
2074 static void
2075 elf_print_got_section(struct elfdump *ed, struct section *s)
2076 {
2077 	struct rel_entry	*got;
2078 	Elf_Data		*data, dst;
2079 	int			 elferr, i, len;
2080 
2081 	if (s->entsize == 0) {
2082 		/* XXX IA64 GOT section generated by gcc has entry size 0. */
2083 		if (s->align != 0)
2084 			s->entsize = s->align;
2085 		else
2086 			return;
2087 	}
2088 
2089 	if (ed->flags & SOLARIS_FMT)
2090 		PRT("\nGlobal Offset Table Section:  %s  (%jd entries)\n",
2091 		    s->name, s->sz / s->entsize);
2092 	else
2093 		PRT("\nglobal offset table: %s\n", s->name);
2094 	(void) elf_errno();
2095 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2096 		elferr = elf_errno();
2097 		if (elferr != 0)
2098 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * GOT section has section type SHT_PROGBITS, thus libelf treats it as
2104 	 * byte stream and will not perfrom any translation on it. As a result,
2105 	 * an exlicit call to gelf_xlatetom is needed here. Depends on arch,
2106 	 * GOT section should be translated to either WORD or XWORD.
2107 	 */
2108 	if (ed->ec == ELFCLASS32)
2109 		data->d_type = ELF_T_WORD;
2110 	else
2111 		data->d_type = ELF_T_XWORD;
2112 	memcpy(&dst, data, sizeof(Elf_Data));
2113 	if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) !=
2114 	    &dst) {
2115 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2116 		return;
2117 	}
2118 	len = dst.d_size / s->entsize;
2119 	if (ed->flags & SOLARIS_FMT) {
2120 		/*
2121 		 * In verbose/Solaris mode, we search the relocation sections
2122 		 * and try to find the corresponding reloc entry for each GOT
2123 		 * section entry.
2124 		 */
2125 		if ((got = calloc(len, sizeof(struct rel_entry))) == NULL)
2126 			err(EXIT_FAILURE, "calloc failed");
2127 		find_gotrel(ed, s, got);
2128 		if (ed->ec == ELFCLASS32) {
2129 			PRT(" ndx     addr      value    reloc              ");
2130 			PRT("addend   symbol\n");
2131 		} else {
2132 			PRT(" ndx     addr              value             ");
2133 			PRT("reloc              addend       symbol\n");
2134 		}
2135 		for(i = 0; i < len; i++) {
2136 			PRT("[%5.5d]  ", i);
2137 			if (ed->ec == ELFCLASS32) {
2138 				PRT("%-8.8jx  ", s->addr + i * s->entsize);
2139 				PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i));
2140 			} else {
2141 				PRT("%-16.16jx  ", s->addr + i * s->entsize);
2142 				PRT("%-16.16jx  ", *((uint64_t *)dst.d_buf + i));
2143 			}
2144 			PRT("%-18s ", r_type(ed->ehdr.e_machine,
2145 				GELF_R_TYPE(got[i].u_r.rel.r_info)));
2146 			if (ed->ec == ELFCLASS32)
2147 				PRT("%-8.8jd ",
2148 				    (intmax_t)got[i].u_r.rela.r_addend);
2149 			else
2150 				PRT("%-12.12jd ",
2151 				    (intmax_t)got[i].u_r.rela.r_addend);
2152 			if (got[i].symn == NULL)
2153 				got[i].symn = "";
2154 			PRT("%s\n", got[i].symn);
2155 		}
2156 		free(got);
2157 	} else {
2158 		for(i = 0; i < len; i++) {
2159 			PRT("\nentry: %d\n", i);
2160 			if (ed->ec == ELFCLASS32)
2161 				PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i));
2162 			else
2163 				PRT("\t%#jx\n", *((uint64_t *)dst.d_buf + i));
2164 		}
2165 	}
2166 }
2167 
2168 /*
2169  * Dump the content of Global Offset Table section.
2170  */
2171 static void
2172 elf_print_got(struct elfdump *ed)
2173 {
2174 	struct section	*s;
2175 	int		 i;
2176 
2177 	if (!STAILQ_EMPTY(&ed->snl))
2178 		return;
2179 
2180 	s = NULL;
2181 	for (i = 0; (size_t)i < ed->shnum; i++) {
2182 		s = &ed->sl[i];
2183 		if (s->name && !strncmp(s->name, ".got", 4) &&
2184 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2185 			elf_print_got_section(ed, s);
2186 	}
2187 }
2188 
2189 /*
2190  * Dump the content of .note.ABI-tag section.
2191  */
2192 static void
2193 elf_print_note(struct elfdump *ed)
2194 {
2195 	struct section	*s;
2196 	Elf_Data        *data;
2197 	Elf_Note	*en;
2198 	uint32_t	 namesz;
2199 	uint32_t	 descsz;
2200 	uint32_t	 desc;
2201 	size_t		 count;
2202 	int		 elferr, i;
2203 	char		*src, idx[10];
2204 
2205 	s = NULL;
2206 	for (i = 0; (size_t)i < ed->shnum; i++) {
2207 		s = &ed->sl[i];
2208 		if (s->type == SHT_NOTE && s->name &&
2209 		    !strcmp(s->name, ".note.ABI-tag") &&
2210 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2211 			break;
2212 	}
2213 	if ((size_t)i >= ed->shnum)
2214 		return;
2215 	if (ed->flags & SOLARIS_FMT)
2216 		PRT("\nNote Section:  %s\n", s->name);
2217 	else
2218 		PRT("\nnote (%s):\n", s->name);
2219 	(void) elf_errno();
2220 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2221 		elferr = elf_errno();
2222 		if (elferr != 0)
2223 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2224 		return;
2225 	}
2226 	src = data->d_buf;
2227 	count = data->d_size;
2228 	while (count > sizeof(Elf_Note)) {
2229 		en = (Elf_Note *) (uintptr_t) src;
2230 		namesz = en->n_namesz;
2231 		descsz = en->n_descsz;
2232 		src += sizeof(Elf_Note);
2233 		count -= sizeof(Elf_Note);
2234 		if (ed->flags & SOLARIS_FMT) {
2235 			PRT("\n    type   %#x\n", en->n_type);
2236 			PRT("    namesz %#x:\n", en->n_namesz);
2237 			PRT("%s\n", src);
2238 		} else
2239 			PRT("\t%s ", src);
2240 		src += roundup2(namesz, 4);
2241 		count -= roundup2(namesz, 4);
2242 
2243 		/*
2244 		 * Note that we dump the whole desc part if we're in
2245 		 * "Solaris mode", while in the normal mode, we only look
2246 		 * at the first 4 bytes (a 32bit word) of the desc, i.e,
2247 		 * we assume that it's always a FreeBSD version number.
2248 		 */
2249 		if (ed->flags & SOLARIS_FMT) {
2250 			PRT("    descsz %#x:", en->n_descsz);
2251 			for (i = 0; (uint32_t)i < descsz; i++) {
2252 				if ((i & 0xF) == 0) {
2253 					snprintf(idx, sizeof(idx), "desc[%d]",
2254 					    i);
2255 					PRT("\n      %-9s", idx);
2256 				} else if ((i & 0x3) == 0)
2257 					PRT("  ");
2258 				PRT(" %2.2x", src[i]);
2259 			}
2260 			PRT("\n");
2261 		} else {
2262 			if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
2263 				desc = be32dec(src);
2264 			else
2265 				desc = le32dec(src);
2266 			PRT("%d\n", desc);
2267 		}
2268 		src += roundup2(descsz, 4);
2269 		count -= roundup2(descsz, 4);
2270 	}
2271 }
2272 
2273 /*
2274  * Dump a hash table.
2275  */
2276 static void
2277 elf_print_svr4_hash(struct elfdump *ed, struct section *s)
2278 {
2279 	Elf_Data	*data;
2280 	uint32_t	*buf;
2281 	uint32_t	*bucket, *chain;
2282 	uint32_t	 nbucket, nchain;
2283 	uint32_t	*bl, *c, maxl, total;
2284 	int		 i, j, first, elferr;
2285 	char		 idx[10];
2286 
2287 	if (ed->flags & SOLARIS_FMT)
2288 		PRT("\nHash Section:  %s\n", s->name);
2289 	else
2290 		PRT("\nhash table (%s):\n", s->name);
2291 	(void) elf_errno();
2292 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2293 		elferr = elf_errno();
2294 		if (elferr != 0)
2295 			warnx("elf_getdata failed: %s",
2296 			    elf_errmsg(elferr));
2297 		return;
2298 	}
2299 	if (data->d_size < 2 * sizeof(uint32_t)) {
2300 		warnx(".hash section too small");
2301 		return;
2302 	}
2303 	buf = data->d_buf;
2304 	nbucket = buf[0];
2305 	nchain = buf[1];
2306 	if (nbucket <= 0 || nchain <= 0) {
2307 		warnx("Malformed .hash section");
2308 		return;
2309 	}
2310 	if (data->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
2311 		warnx("Malformed .hash section");
2312 		return;
2313 	}
2314 	bucket = &buf[2];
2315 	chain = &buf[2 + nbucket];
2316 
2317 	if (ed->flags & SOLARIS_FMT) {
2318 		maxl = 0;
2319 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2320 			err(EXIT_FAILURE, "calloc failed");
2321 		for (i = 0; (uint32_t)i < nbucket; i++)
2322 			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2323 			     j = chain[j])
2324 				if (++bl[i] > maxl)
2325 					maxl = bl[i];
2326 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2327 			err(EXIT_FAILURE, "calloc failed");
2328 		for (i = 0; (uint32_t)i < nbucket; i++)
2329 			c[bl[i]]++;
2330 		PRT("    bucket    symndx    name\n");
2331 		for (i = 0; (uint32_t)i < nbucket; i++) {
2332 			first = 1;
2333 			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2334 			     j = chain[j]) {
2335 				if (first) {
2336 					PRT("%10d  ", i);
2337 					first = 0;
2338 				} else
2339 					PRT("            ");
2340 				snprintf(idx, sizeof(idx), "[%d]", j);
2341 				PRT("%-10s  ", idx);
2342 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2343 			}
2344 		}
2345 		PRT("\n");
2346 		total = 0;
2347 		for (i = 0; (uint32_t)i <= maxl; i++) {
2348 			total += c[i] * i;
2349 			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2350 		}
2351 		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2352 		    total);
2353 	} else {
2354 		PRT("\nnbucket: %u\n", nbucket);
2355 		PRT("nchain: %u\n\n", nchain);
2356 		for (i = 0; (uint32_t)i < nbucket; i++)
2357 			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2358 		for (i = 0; (uint32_t)i < nchain; i++)
2359 			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2360 	}
2361 }
2362 
2363 /*
2364  * Dump a 64bit hash table.
2365  */
2366 static void
2367 elf_print_svr4_hash64(struct elfdump *ed, struct section *s)
2368 {
2369 	Elf_Data	*data, dst;
2370 	uint64_t	*buf;
2371 	uint64_t	*bucket, *chain;
2372 	uint64_t	 nbucket, nchain;
2373 	uint64_t	*bl, *c, maxl, total;
2374 	int		 i, j, elferr, first;
2375 	char		 idx[10];
2376 
2377 	if (ed->flags & SOLARIS_FMT)
2378 		PRT("\nHash Section:  %s\n", s->name);
2379 	else
2380 		PRT("\nhash table (%s):\n", s->name);
2381 
2382 	/*
2383 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
2384 	 * .hash section contains only 32-bit entry, an explicit
2385 	 * gelf_xlatetom is needed here.
2386 	 */
2387 	(void) elf_errno();
2388 	if ((data = elf_rawdata(s->scn, NULL)) == NULL) {
2389 		elferr = elf_errno();
2390 		if (elferr != 0)
2391 			warnx("elf_rawdata failed: %s",
2392 			    elf_errmsg(elferr));
2393 		return;
2394 	}
2395 	data->d_type = ELF_T_XWORD;
2396 	memcpy(&dst, data, sizeof(Elf_Data));
2397 	if (gelf_xlatetom(ed->elf, &dst, data,
2398 		ed->ehdr.e_ident[EI_DATA]) != &dst) {
2399 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2400 		return;
2401 	}
2402 	if (dst.d_size < 2 * sizeof(uint64_t)) {
2403 		warnx(".hash section too small");
2404 		return;
2405 	}
2406 	buf = dst.d_buf;
2407 	nbucket = buf[0];
2408 	nchain = buf[1];
2409 	if (nbucket <= 0 || nchain <= 0) {
2410 		warnx("Malformed .hash section");
2411 		return;
2412 	}
2413 	if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) {
2414 		warnx("Malformed .hash section");
2415 		return;
2416 	}
2417 	bucket = &buf[2];
2418 	chain = &buf[2 + nbucket];
2419 
2420 	if (ed->flags & SOLARIS_FMT) {
2421 		maxl = 0;
2422 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2423 			err(EXIT_FAILURE, "calloc failed");
2424 		for (i = 0; (uint64_t)i < nbucket; i++)
2425 			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2426 			     j = chain[j])
2427 				if (++bl[i] > maxl)
2428 					maxl = bl[i];
2429 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2430 			err(EXIT_FAILURE, "calloc failed");
2431 		for (i = 0; (uint64_t)i < nbucket; i++)
2432 			c[bl[i]]++;
2433 		PRT("    bucket    symndx    name\n");
2434 		for (i = 0; (uint64_t)i < nbucket; i++) {
2435 			first = 1;
2436 			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2437 			     j = chain[j]) {
2438 				if (first) {
2439 					PRT("%10d  ", i);
2440 					first = 0;
2441 				} else
2442 					PRT("            ");
2443 				snprintf(idx, sizeof(idx), "[%d]", j);
2444 				PRT("%-10s  ", idx);
2445 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2446 			}
2447 		}
2448 		PRT("\n");
2449 		total = 0;
2450 		for (i = 0; (uint64_t)i <= maxl; i++) {
2451 			total += c[i] * i;
2452 			PRT("%10ju  buckets contain %8d symbols\n",
2453 			    (uintmax_t)c[i], i);
2454 		}
2455 		PRT("%10ju  buckets         %8ju symbols (globals)\n",
2456 		    (uintmax_t)nbucket, (uintmax_t)total);
2457 	} else {
2458 		PRT("\nnbucket: %ju\n", (uintmax_t)nbucket);
2459 		PRT("nchain: %ju\n\n", (uintmax_t)nchain);
2460 		for (i = 0; (uint64_t)i < nbucket; i++)
2461 			PRT("bucket[%d]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]);
2462 		for (i = 0; (uint64_t)i < nchain; i++)
2463 			PRT("chain[%d]:\n\t%ju\n\n", i, (uintmax_t)chain[i]);
2464 	}
2465 
2466 }
2467 
2468 /*
2469  * Dump a GNU hash table.
2470  */
2471 static void
2472 elf_print_gnu_hash(struct elfdump *ed, struct section *s)
2473 {
2474 	struct section	*ds;
2475 	Elf_Data	*data;
2476 	uint32_t	*buf;
2477 	uint32_t	*bucket, *chain;
2478 	uint32_t	 nbucket, nchain, symndx, maskwords, shift2;
2479 	uint32_t	*bl, *c, maxl, total;
2480 	int		 i, j, first, elferr, dynsymcount;
2481 	char		 idx[10];
2482 
2483 	if (ed->flags & SOLARIS_FMT)
2484 		PRT("\nGNU Hash Section:  %s\n", s->name);
2485 	else
2486 		PRT("\ngnu hash table (%s):\n", s->name);
2487 	(void) elf_errno();
2488 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2489 		elferr = elf_errno();
2490 		if (elferr != 0)
2491 			warnx("elf_getdata failed: %s",
2492 			    elf_errmsg(elferr));
2493 		return;
2494 	}
2495 	if (data->d_size < 4 * sizeof(uint32_t)) {
2496 		warnx(".gnu.hash section too small");
2497 		return;
2498 	}
2499 	buf = data->d_buf;
2500 	nbucket = buf[0];
2501 	symndx = buf[1];
2502 	maskwords = buf[2];
2503 	shift2 = buf[3];
2504 	buf += 4;
2505 	ds = &ed->sl[s->link];
2506 	dynsymcount = ds->sz / ds->entsize;
2507 	nchain = dynsymcount - symndx;
2508 	if (data->d_size != 4 * sizeof(uint32_t) + maskwords *
2509 	    (ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
2510 	    (nbucket + nchain) * sizeof(uint32_t)) {
2511 		warnx("Malformed .gnu.hash section");
2512 		return;
2513 	}
2514 	bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2);
2515 	chain = bucket + nbucket;
2516 
2517 	if (ed->flags & SOLARIS_FMT) {
2518 		maxl = 0;
2519 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2520 			err(EXIT_FAILURE, "calloc failed");
2521 		for (i = 0; (uint32_t)i < nbucket; i++)
2522 			for (j = bucket[i];
2523 			     j > 0 && (uint32_t)j - symndx < nchain;
2524 			     j++) {
2525 				if (++bl[i] > maxl)
2526 					maxl = bl[i];
2527 				if (chain[j - symndx] & 1)
2528 					break;
2529 			}
2530 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2531 			err(EXIT_FAILURE, "calloc failed");
2532 		for (i = 0; (uint32_t)i < nbucket; i++)
2533 			c[bl[i]]++;
2534 		PRT("    bucket    symndx    name\n");
2535 		for (i = 0; (uint32_t)i < nbucket; i++) {
2536 			first = 1;
2537 			for (j = bucket[i];
2538 			     j > 0 && (uint32_t)j - symndx < nchain;
2539 			     j++) {
2540 				if (first) {
2541 					PRT("%10d  ", i);
2542 					first = 0;
2543 				} else
2544 					PRT("            ");
2545 				snprintf(idx, sizeof(idx), "[%d]", j );
2546 				PRT("%-10s  ", idx);
2547 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2548 				if (chain[j - symndx] & 1)
2549 					break;
2550 			}
2551 		}
2552 		PRT("\n");
2553 		total = 0;
2554 		for (i = 0; (uint32_t)i <= maxl; i++) {
2555 			total += c[i] * i;
2556 			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2557 		}
2558 		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2559 		    total);
2560 	} else {
2561 		PRT("\nnbucket: %u\n", nbucket);
2562 		PRT("symndx: %u\n", symndx);
2563 		PRT("maskwords: %u\n", maskwords);
2564 		PRT("shift2: %u\n", shift2);
2565 		PRT("nchain: %u\n\n", nchain);
2566 		for (i = 0; (uint32_t)i < nbucket; i++)
2567 			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2568 		for (i = 0; (uint32_t)i < nchain; i++)
2569 			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2570 	}
2571 }
2572 
2573 /*
2574  * Dump hash tables.
2575  */
2576 static void
2577 elf_print_hash(struct elfdump *ed)
2578 {
2579 	struct section	*s;
2580 	int		 i;
2581 
2582 	for (i = 0; (size_t)i < ed->shnum; i++) {
2583 		s = &ed->sl[i];
2584 		if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) &&
2585 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2586 			if (s->type == SHT_GNU_HASH)
2587 				elf_print_gnu_hash(ed, s);
2588 			else if (ed->ehdr.e_machine == EM_ALPHA &&
2589 			    s->entsize == 8)
2590 				elf_print_svr4_hash64(ed, s);
2591 			else
2592 				elf_print_svr4_hash(ed, s);
2593 		}
2594 	}
2595 }
2596 
2597 /*
2598  * Dump the content of a Version Definition(SHT_SUNW_Verdef) Section.
2599  */
2600 static void
2601 elf_print_verdef(struct elfdump *ed, struct section *s)
2602 {
2603 	Elf_Data	*data;
2604 	Elf32_Verdef	*vd;
2605 	Elf32_Verdaux	*vda;
2606 	const char 	*str;
2607 	char		 idx[10];
2608 	uint8_t		*buf, *end, *buf2;
2609 	int		 i, j, elferr, count;
2610 
2611 	if (ed->flags & SOLARIS_FMT)
2612 		PRT("Version Definition Section:  %s\n", s->name);
2613 	else
2614 		PRT("\nversion definition section (%s):\n", s->name);
2615 	(void) elf_errno();
2616 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2617 		elferr = elf_errno();
2618 		if (elferr != 0)
2619 			warnx("elf_getdata failed: %s",
2620 			    elf_errmsg(elferr));
2621 		return;
2622 	}
2623 	buf = data->d_buf;
2624 	end = buf + data->d_size;
2625 	i = 0;
2626 	if (ed->flags & SOLARIS_FMT)
2627 		PRT("     index  version                     dependency\n");
2628 	while (buf + sizeof(Elf32_Verdef) <= end) {
2629 		vd = (Elf32_Verdef *) (uintptr_t) buf;
2630 		if (ed->flags & SOLARIS_FMT) {
2631 			snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx);
2632 			PRT("%10s  ", idx);
2633 		} else {
2634 			PRT("\nentry: %d\n", i++);
2635 			PRT("\tvd_version: %u\n", vd->vd_version);
2636 			PRT("\tvd_flags: %u\n", vd->vd_flags);
2637 			PRT("\tvd_ndx: %u\n", vd->vd_ndx);
2638 			PRT("\tvd_cnt: %u\n", vd->vd_cnt);
2639 			PRT("\tvd_hash: %u\n", vd->vd_hash);
2640 			PRT("\tvd_aux: %u\n", vd->vd_aux);
2641 			PRT("\tvd_next: %u\n\n", vd->vd_next);
2642 		}
2643 		buf2 = buf + vd->vd_aux;
2644 		j = 0;
2645 		count = 0;
2646 		while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) {
2647 			vda = (Elf32_Verdaux *) (uintptr_t) buf2;
2648 			str = get_string(ed, s->link, vda->vda_name);
2649 			if (ed->flags & SOLARIS_FMT) {
2650 				if (count == 0)
2651 					PRT("%-26.26s", str);
2652 				else if (count == 1)
2653 					PRT("  %-20.20s", str);
2654 				else {
2655 					PRT("\n%40.40s", "");
2656 					PRT("%s", str);
2657 				}
2658 			} else {
2659 				PRT("\t\tvda: %d\n", j++);
2660 				PRT("\t\t\tvda_name: %s\n", str);
2661 				PRT("\t\t\tvda_next: %u\n", vda->vda_next);
2662 			}
2663 			if (vda->vda_next == 0) {
2664 				if (ed->flags & SOLARIS_FMT) {
2665 					if (vd->vd_flags & VER_FLG_BASE) {
2666 						if (count == 0)
2667 							PRT("%-20.20s", "");
2668 						PRT("%s", "[ BASE ]");
2669 					}
2670 					PRT("\n");
2671 				}
2672 				break;
2673 			}
2674 			if (ed->flags & SOLARIS_FMT)
2675 				count++;
2676 			buf2 += vda->vda_next;
2677 		}
2678 		if (vd->vd_next == 0)
2679 			break;
2680 		buf += vd->vd_next;
2681 	}
2682 }
2683 
2684 /*
2685  * Dump the content of a Version Needed(SHT_SUNW_Verneed) Section.
2686  */
2687 static void
2688 elf_print_verneed(struct elfdump *ed, struct section *s)
2689 {
2690 	Elf_Data	*data;
2691 	Elf32_Verneed	*vn;
2692 	Elf32_Vernaux	*vna;
2693 	uint8_t		*buf, *end, *buf2;
2694 	int		 i, j, elferr, first;
2695 
2696 	if (ed->flags & SOLARIS_FMT)
2697 		PRT("\nVersion Needed Section:  %s\n", s->name);
2698 	else
2699 		PRT("\nversion need section (%s):\n", s->name);
2700 	(void) elf_errno();
2701 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2702 		elferr = elf_errno();
2703 		if (elferr != 0)
2704 			warnx("elf_getdata failed: %s",
2705 			    elf_errmsg(elferr));
2706 		return;
2707 	}
2708 	buf = data->d_buf;
2709 	end = buf + data->d_size;
2710 	if (ed->flags & SOLARIS_FMT)
2711 		PRT("            file                        version\n");
2712 	i = 0;
2713 	while (buf + sizeof(Elf32_Verneed) <= end) {
2714 		vn = (Elf32_Verneed *) (uintptr_t) buf;
2715 		if (ed->flags & SOLARIS_FMT)
2716 			PRT("            %-26.26s  ",
2717 			    get_string(ed, s->link, vn->vn_file));
2718 		else {
2719 			PRT("\nentry: %d\n", i++);
2720 			PRT("\tvn_version: %u\n", vn->vn_version);
2721 			PRT("\tvn_cnt: %u\n", vn->vn_cnt);
2722 			PRT("\tvn_file: %s\n",
2723 			    get_string(ed, s->link, vn->vn_file));
2724 			PRT("\tvn_aux: %u\n", vn->vn_aux);
2725 			PRT("\tvn_next: %u\n\n", vn->vn_next);
2726 		}
2727 		buf2 = buf + vn->vn_aux;
2728 		j = 0;
2729 		first = 1;
2730 		while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) {
2731 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
2732 			if (ed->flags & SOLARIS_FMT) {
2733 				if (!first)
2734 					PRT("%40.40s", "");
2735 				else
2736 					first = 0;
2737 				PRT("%s\n", get_string(ed, s->link,
2738 				    vna->vna_name));
2739 			} else {
2740 				PRT("\t\tvna: %d\n", j++);
2741 				PRT("\t\t\tvna_hash: %u\n", vna->vna_hash);
2742 				PRT("\t\t\tvna_flags: %u\n", vna->vna_flags);
2743 				PRT("\t\t\tvna_other: %u\n", vna->vna_other);
2744 				PRT("\t\t\tvna_name: %s\n",
2745 				    get_string(ed, s->link, vna->vna_name));
2746 				PRT("\t\t\tvna_next: %u\n", vna->vna_next);
2747 			}
2748 			if (vna->vna_next == 0)
2749 				break;
2750 			buf2 += vna->vna_next;
2751 		}
2752 		if (vn->vn_next == 0)
2753 			break;
2754 		buf += vn->vn_next;
2755 	}
2756 }
2757 
2758 /*
2759  * Dump the symbol-versioning sections.
2760  */
2761 static void
2762 elf_print_symver(struct elfdump *ed)
2763 {
2764 	struct section	*s;
2765 	int		 i;
2766 
2767 	for (i = 0; (size_t)i < ed->shnum; i++) {
2768 		s = &ed->sl[i];
2769 		if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name))
2770 			continue;
2771 		if (s->type == SHT_SUNW_verdef)
2772 			elf_print_verdef(ed, s);
2773 		if (s->type == SHT_SUNW_verneed)
2774 			elf_print_verneed(ed, s);
2775 	}
2776 }
2777 
2778 /*
2779  * Dump the ELF checksum. See gelf_checksum(3) for details.
2780  */
2781 static void
2782 elf_print_checksum(struct elfdump *ed)
2783 {
2784 
2785 	if (!STAILQ_EMPTY(&ed->snl))
2786 		return;
2787 
2788 	PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf));
2789 }
2790 
2791 #define	USAGE_MESSAGE	"\
2792 Usage: %s [options] file...\n\
2793   Display information about ELF objects and ar(1) archives.\n\n\
2794   Options:\n\
2795   -a                        Show all information.\n\
2796   -c                        Show shared headers.\n\
2797   -d                        Show dynamic symbols.\n\
2798   -e                        Show the ELF header.\n\
2799   -G                        Show the GOT.\n\
2800   -H | --help               Show a usage message and exit.\n\
2801   -h                        Show hash values.\n\
2802   -i                        Show the dynamic interpreter.\n\
2803   -k                        Show the ELF checksum.\n\
2804   -n                        Show the contents of note sections.\n\
2805   -N NAME                   Show the section named \"NAME\".\n\
2806   -p                        Show the program header.\n\
2807   -r                        Show relocations.\n\
2808   -s                        Show the symbol table.\n\
2809   -S                        Use the Solaris elfdump format.\n\
2810   -v                        Show symbol-versioning information.\n\
2811   -V | --version            Print a version identifier and exit.\n\
2812   -w FILE                   Write output to \"FILE\".\n"
2813 
2814 static void
2815 usage(void)
2816 {
2817 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
2818 	exit(EXIT_FAILURE);
2819 }
2820