1 /*- 2 * Copyright (c) 2007-2012 Kai Wang 3 * Copyright (c) 2003 David O'Brien. All rights reserved. 4 * Copyright (c) 2001 Jake Burkholder 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/queue.h> 31 #include <sys/stat.h> 32 33 #include <ar.h> 34 #include <assert.h> 35 #include <err.h> 36 #include <fcntl.h> 37 #include <gelf.h> 38 #include <getopt.h> 39 #include <libelftc.h> 40 #include <inttypes.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <unistd.h> 45 46 #ifdef USE_LIBARCHIVE_AR 47 #include <archive.h> 48 #include <archive_entry.h> 49 #endif 50 51 #include "_elftc.h" 52 53 ELFTC_VCSID("$Id: elfdump.c 3391 2016-02-05 19:43:01Z emaste $"); 54 55 #if defined(ELFTC_NEED_ELF_NOTE_DEFINITION) 56 #include "native-elf-format.h" 57 #if ELFTC_CLASS == ELFCLASS32 58 typedef Elf32_Nhdr Elf_Note; 59 #else 60 typedef Elf64_Nhdr Elf_Note; 61 #endif 62 #endif 63 64 /* elfdump(1) options. */ 65 #define ED_DYN (1<<0) 66 #define ED_EHDR (1<<1) 67 #define ED_GOT (1<<2) 68 #define ED_HASH (1<<3) 69 #define ED_INTERP (1<<4) 70 #define ED_NOTE (1<<5) 71 #define ED_PHDR (1<<6) 72 #define ED_REL (1<<7) 73 #define ED_SHDR (1<<8) 74 #define ED_SYMTAB (1<<9) 75 #define ED_SYMVER (1<<10) 76 #define ED_CHECKSUM (1<<11) 77 #define ED_ALL ((1<<12)-1) 78 79 /* elfdump(1) run control flags. */ 80 #define SOLARIS_FMT (1<<0) 81 #define PRINT_FILENAME (1<<1) 82 #define PRINT_ARSYM (1<<2) 83 #define ONLY_ARSYM (1<<3) 84 85 /* Convenient print macro. */ 86 #define PRT(...) fprintf(ed->out, __VA_ARGS__) 87 88 /* Internal data structure for sections. */ 89 struct section { 90 const char *name; /* section name */ 91 Elf_Scn *scn; /* section scn */ 92 uint64_t off; /* section offset */ 93 uint64_t sz; /* section size */ 94 uint64_t entsize; /* section entsize */ 95 uint64_t align; /* section alignment */ 96 uint64_t type; /* section type */ 97 uint64_t flags; /* section flags */ 98 uint64_t addr; /* section virtual addr */ 99 uint32_t link; /* section link ndx */ 100 uint32_t info; /* section info ndx */ 101 }; 102 103 struct spec_name { 104 const char *name; 105 STAILQ_ENTRY(spec_name) sn_list; 106 }; 107 108 /* Structure encapsulates the global data for readelf(1). */ 109 struct elfdump { 110 FILE *out; /* output redirection. */ 111 const char *filename; /* current processing file. */ 112 const char *archive; /* archive name */ 113 int options; /* command line options. */ 114 int flags; /* run control flags. */ 115 Elf *elf; /* underlying ELF descriptor. */ 116 #ifndef USE_LIBARCHIVE_AR 117 Elf *ar; /* ar(1) archive descriptor. */ 118 #endif 119 GElf_Ehdr ehdr; /* ELF header. */ 120 int ec; /* ELF class. */ 121 size_t shnum; /* #sections. */ 122 struct section *sl; /* list of sections. */ 123 STAILQ_HEAD(, spec_name) snl; /* list of names specified by -N. */ 124 }; 125 126 /* Relocation entry. */ 127 struct rel_entry { 128 union { 129 GElf_Rel rel; 130 GElf_Rela rela; 131 } u_r; 132 const char *symn; 133 uint32_t type; 134 }; 135 136 #if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS) 137 static __inline uint32_t 138 be32dec(const void *pp) 139 { 140 unsigned char const *p = (unsigned char const *)pp; 141 142 return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); 143 } 144 145 static __inline uint32_t 146 le32dec(const void *pp) 147 { 148 unsigned char const *p = (unsigned char const *)pp; 149 150 return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]); 151 } 152 #endif 153 154 /* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */ 155 static const char * 156 d_tags(uint64_t tag) 157 { 158 static char unknown_buf[64]; 159 160 switch (tag) { 161 case DT_NULL: return "DT_NULL"; 162 case DT_NEEDED: return "DT_NEEDED"; 163 case DT_PLTRELSZ: return "DT_PLTRELSZ"; 164 case DT_PLTGOT: return "DT_PLTGOT"; 165 case DT_HASH: return "DT_HASH"; 166 case DT_STRTAB: return "DT_STRTAB"; 167 case DT_SYMTAB: return "DT_SYMTAB"; 168 case DT_RELA: return "DT_RELA"; 169 case DT_RELASZ: return "DT_RELASZ"; 170 case DT_RELAENT: return "DT_RELAENT"; 171 case DT_STRSZ: return "DT_STRSZ"; 172 case DT_SYMENT: return "DT_SYMENT"; 173 case DT_INIT: return "DT_INIT"; 174 case DT_FINI: return "DT_FINI"; 175 case DT_SONAME: return "DT_SONAME"; 176 case DT_RPATH: return "DT_RPATH"; 177 case DT_SYMBOLIC: return "DT_SYMBOLIC"; 178 case DT_REL: return "DT_REL"; 179 case DT_RELSZ: return "DT_RELSZ"; 180 case DT_RELENT: return "DT_RELENT"; 181 case DT_PLTREL: return "DT_PLTREL"; 182 case DT_DEBUG: return "DT_DEBUG"; 183 case DT_TEXTREL: return "DT_TEXTREL"; 184 case DT_JMPREL: return "DT_JMPREL"; 185 case DT_BIND_NOW: return "DT_BIND_NOW"; 186 case DT_INIT_ARRAY: return "DT_INIT_ARRAY"; 187 case DT_FINI_ARRAY: return "DT_FINI_ARRAY"; 188 case DT_INIT_ARRAYSZ: return "DT_INIT_ARRAYSZ"; 189 case DT_FINI_ARRAYSZ: return "DT_FINI_ARRAYSZ"; 190 case DT_RUNPATH: return "DT_RUNPATH"; 191 case DT_FLAGS: return "DT_FLAGS"; 192 case DT_PREINIT_ARRAY: return "DT_PREINIT_ARRAY"; /* XXX DT_ENCODING */ 193 case DT_PREINIT_ARRAYSZ:return "DT_PREINIT_ARRAYSZ"; 194 /* 0x6000000D - 0x6ffff000 operating system-specific semantics */ 195 case 0x6ffffdf5: return "DT_GNU_PRELINKED"; 196 case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ"; 197 case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ"; 198 case 0x6ffffdf8: return "DT_SUNW_CHECKSUM"; 199 case DT_PLTPADSZ: return "DT_PLTPADSZ"; 200 case DT_MOVEENT: return "DT_MOVEENT"; 201 case DT_MOVESZ: return "DT_MOVESZ"; 202 case 0x6ffffdfc: return "DT_FEATURE"; 203 case DT_POSFLAG_1: return "DT_POSFLAG_1"; 204 case DT_SYMINSZ: return "DT_SYMINSZ"; 205 case DT_SYMINENT: return "DT_SYMINENT (DT_VALRNGHI)"; 206 case DT_ADDRRNGLO: return "DT_ADDRRNGLO"; 207 case DT_GNU_HASH: return "DT_GNU_HASH"; 208 case 0x6ffffef8: return "DT_GNU_CONFLICT"; 209 case 0x6ffffef9: return "DT_GNU_LIBLIST"; 210 case 0x6ffffefa: return "DT_CONFIG"; 211 case 0x6ffffefb: return "DT_DEPAUDIT"; 212 case 0x6ffffefc: return "DT_AUDIT"; 213 case 0x6ffffefd: return "DT_PLTPAD"; 214 case 0x6ffffefe: return "DT_MOVETAB"; 215 case DT_SYMINFO: return "DT_SYMINFO (DT_ADDRRNGHI)"; 216 case DT_RELACOUNT: return "DT_RELACOUNT"; 217 case DT_RELCOUNT: return "DT_RELCOUNT"; 218 case DT_FLAGS_1: return "DT_FLAGS_1"; 219 case DT_VERDEF: return "DT_VERDEF"; 220 case DT_VERDEFNUM: return "DT_VERDEFNUM"; 221 case DT_VERNEED: return "DT_VERNEED"; 222 case DT_VERNEEDNUM: return "DT_VERNEEDNUM"; 223 case 0x6ffffff0: return "DT_GNU_VERSYM"; 224 /* 0x70000000 - 0x7fffffff processor-specific semantics */ 225 case 0x70000000: return "DT_IA_64_PLT_RESERVE"; 226 case 0x7ffffffd: return "DT_SUNW_AUXILIARY"; 227 case 0x7ffffffe: return "DT_SUNW_USED"; 228 case 0x7fffffff: return "DT_SUNW_FILTER"; 229 } 230 231 snprintf(unknown_buf, sizeof(unknown_buf), 232 "<unknown: %#llx>", (unsigned long long)tag); 233 return (unknown_buf); 234 } 235 236 static const char * 237 e_machines(unsigned int mach) 238 { 239 static char machdesc[64]; 240 241 switch (mach) { 242 case EM_NONE: return "EM_NONE"; 243 case EM_M32: return "EM_M32"; 244 case EM_SPARC: return "EM_SPARC"; 245 case EM_386: return "EM_386"; 246 case EM_68K: return "EM_68K"; 247 case EM_88K: return "EM_88K"; 248 case EM_IAMCU: return "EM_IAMCU"; 249 case EM_860: return "EM_860"; 250 case EM_MIPS: return "EM_MIPS"; 251 case EM_PPC: return "EM_PPC"; 252 case EM_PPC64: return "EM_PPC64"; 253 case EM_ARM: return "EM_ARM"; 254 case EM_ALPHA: return "EM_ALPHA (legacy)"; 255 case EM_SPARCV9:return "EM_SPARCV9"; 256 case EM_IA_64: return "EM_IA_64"; 257 case EM_X86_64: return "EM_X86_64"; 258 case EM_AARCH64:return "EM_AARCH64"; 259 case EM_RISCV: return "EM_RISCV"; 260 } 261 snprintf(machdesc, sizeof(machdesc), 262 "(unknown machine) -- type 0x%x", mach); 263 return (machdesc); 264 } 265 266 static const char *e_types[] = { 267 "ET_NONE", "ET_REL", "ET_EXEC", "ET_DYN", "ET_CORE" 268 }; 269 270 static const char *ei_versions[] = { 271 "EV_NONE", "EV_CURRENT" 272 }; 273 274 static const char *ei_classes[] = { 275 "ELFCLASSNONE", "ELFCLASS32", "ELFCLASS64" 276 }; 277 278 static const char *ei_data[] = { 279 "ELFDATANONE", "ELFDATA2LSB", "ELFDATA2MSB" 280 }; 281 282 static const char *ei_abis[256] = { 283 "ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX", 284 "ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX", 285 "ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64", 286 "ELFOSABI_MODESTO", "ELFOSABI_OPENBSD", 287 [255] = "ELFOSABI_STANDALONE" 288 }; 289 290 static const char *p_types[] = { 291 "PT_NULL", "PT_LOAD", "PT_DYNAMIC", "PT_INTERP", "PT_NOTE", 292 "PT_SHLIB", "PT_PHDR", "PT_TLS" 293 }; 294 295 static const char *p_flags[] = { 296 "", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R", 297 "PF_X|PF_W|PF_R" 298 }; 299 300 static const char * 301 sh_name(struct elfdump *ed, int ndx) 302 { 303 static char num[10]; 304 305 switch (ndx) { 306 case SHN_UNDEF: return "UNDEF"; 307 case SHN_ABS: return "ABS"; 308 case SHN_COMMON: return "COMMON"; 309 default: 310 if ((uint64_t)ndx < ed->shnum) 311 return (ed->sl[ndx].name); 312 else { 313 snprintf(num, sizeof(num), "%d", ndx); 314 return (num); 315 } 316 } 317 } 318 319 /* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */ 320 static const char * 321 sh_types(uint64_t mach, uint64_t sht) { 322 static char unknown_buf[64]; 323 324 if (sht < 0x60000000) { 325 switch (sht) { 326 case SHT_NULL: return "SHT_NULL"; 327 case SHT_PROGBITS: return "SHT_PROGBITS"; 328 case SHT_SYMTAB: return "SHT_SYMTAB"; 329 case SHT_STRTAB: return "SHT_STRTAB"; 330 case SHT_RELA: return "SHT_RELA"; 331 case SHT_HASH: return "SHT_HASH"; 332 case SHT_DYNAMIC: return "SHT_DYNAMIC"; 333 case SHT_NOTE: return "SHT_NOTE"; 334 case SHT_NOBITS: return "SHT_NOBITS"; 335 case SHT_REL: return "SHT_REL"; 336 case SHT_SHLIB: return "SHT_SHLIB"; 337 case SHT_DYNSYM: return "SHT_DYNSYM"; 338 case SHT_INIT_ARRAY: return "SHT_INIT_ARRAY"; 339 case SHT_FINI_ARRAY: return "SHT_FINI_ARRAY"; 340 case SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY"; 341 case SHT_GROUP: return "SHT_GROUP"; 342 case SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX"; 343 } 344 } else if (sht < 0x70000000) { 345 /* 0x60000000-0x6fffffff operating system-specific semantics */ 346 switch (sht) { 347 case 0x6ffffff0: return "XXX:VERSYM"; 348 case SHT_SUNW_dof: return "SHT_SUNW_dof"; 349 case SHT_GNU_HASH: return "SHT_GNU_HASH"; 350 case 0x6ffffff7: return "SHT_GNU_LIBLIST"; 351 case 0x6ffffffc: return "XXX:VERDEF"; 352 case SHT_SUNW_verdef: return "SHT_SUNW(GNU)_verdef"; 353 case SHT_SUNW_verneed: return "SHT_SUNW(GNU)_verneed"; 354 case SHT_SUNW_versym: return "SHT_SUNW(GNU)_versym"; 355 } 356 } else if (sht < 0x80000000) { 357 /* 0x70000000 - 0x7fffffff processor-specific semantics */ 358 switch (mach) { 359 case EM_ARM: 360 switch (sht) { 361 case SHT_ARM_EXIDX: return "SHT_ARM_EXIDX"; 362 case SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP"; 363 case SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES"; 364 case SHT_ARM_DEBUGOVERLAY: 365 return "SHT_ARM_DEBUGOVERLAY"; 366 case SHT_ARM_OVERLAYSECTION: 367 return "SHT_ARM_OVERLAYSECTION"; 368 } 369 break; 370 case EM_IA_64: 371 switch (sht) { 372 case 0x70000000: return "SHT_IA_64_EXT"; 373 case 0x70000001: return "SHT_IA_64_UNWIND"; 374 } 375 break; 376 case EM_MIPS: 377 switch (sht) { 378 case SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO"; 379 case SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS"; 380 case SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS"; 381 } 382 break; 383 } 384 switch (sht) { 385 case 0x7ffffffd: return "XXX:AUXILIARY"; 386 case 0x7fffffff: return "XXX:FILTER"; 387 } 388 } 389 /* 0x80000000 - 0xffffffff application programs */ 390 391 snprintf(unknown_buf, sizeof(unknown_buf), 392 "<unknown: %#llx>", (unsigned long long)sht); 393 return (unknown_buf); 394 } 395 396 /* 397 * Define known section flags. These flags are defined in the order 398 * they are to be printed out. 399 */ 400 #define DEFINE_SHFLAGS() \ 401 DEFINE_SHF(WRITE) \ 402 DEFINE_SHF(ALLOC) \ 403 DEFINE_SHF(EXECINSTR) \ 404 DEFINE_SHF(MERGE) \ 405 DEFINE_SHF(STRINGS) \ 406 DEFINE_SHF(INFO_LINK) \ 407 DEFINE_SHF(LINK_ORDER) \ 408 DEFINE_SHF(OS_NONCONFORMING) \ 409 DEFINE_SHF(GROUP) \ 410 DEFINE_SHF(TLS) 411 412 #undef DEFINE_SHF 413 #define DEFINE_SHF(F) "SHF_" #F "|" 414 #define ALLSHFLAGS DEFINE_SHFLAGS() 415 416 static const char * 417 sh_flags(uint64_t shf) 418 { 419 static char flg[sizeof(ALLSHFLAGS)+1]; 420 421 flg[0] = '\0'; 422 423 #undef DEFINE_SHF 424 #define DEFINE_SHF(N) \ 425 if (shf & SHF_##N) \ 426 strcat(flg, "SHF_" #N "|"); \ 427 428 DEFINE_SHFLAGS() 429 430 flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */ 431 432 return (flg); 433 } 434 435 static const char * 436 st_type(unsigned int mach, unsigned int type) 437 { 438 static char s_type[32]; 439 440 switch (type) { 441 case STT_NOTYPE: return "STT_NOTYPE"; 442 case STT_OBJECT: return "STT_OBJECT"; 443 case STT_FUNC: return "STT_FUNC"; 444 case STT_SECTION: return "STT_SECTION"; 445 case STT_FILE: return "STT_FILE"; 446 case STT_COMMON: return "STT_COMMON"; 447 case STT_TLS: return "STT_TLS"; 448 case 13: 449 if (mach == EM_SPARCV9) 450 return "STT_SPARC_REGISTER"; 451 break; 452 } 453 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type); 454 return (s_type); 455 } 456 457 static const char * 458 st_type_S(unsigned int type) 459 { 460 static char s_type[32]; 461 462 switch (type) { 463 case STT_NOTYPE: return "NOTY"; 464 case STT_OBJECT: return "OBJT"; 465 case STT_FUNC: return "FUNC"; 466 case STT_SECTION: return "SECT"; 467 case STT_FILE: return "FILE"; 468 } 469 snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type); 470 return (s_type); 471 } 472 473 static const char * 474 st_bindings(unsigned int sbind) 475 { 476 static char s_sbind[32]; 477 478 switch (sbind) { 479 case STB_LOCAL: return "STB_LOCAL"; 480 case STB_GLOBAL: return "STB_GLOBAL"; 481 case STB_WEAK: return "STB_WEAK"; 482 case STB_GNU_UNIQUE: return "STB_GNU_UNIQUE"; 483 default: 484 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 485 return "OS"; 486 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 487 return "PROC"; 488 else 489 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", 490 sbind); 491 return (s_sbind); 492 } 493 } 494 495 static const char * 496 st_bindings_S(unsigned int sbind) 497 { 498 static char s_sbind[32]; 499 500 switch (sbind) { 501 case STB_LOCAL: return "LOCL"; 502 case STB_GLOBAL: return "GLOB"; 503 case STB_WEAK: return "WEAK"; 504 case STB_GNU_UNIQUE: return "UNIQ"; 505 default: 506 if (sbind >= STB_LOOS && sbind <= STB_HIOS) 507 return "OS"; 508 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) 509 return "PROC"; 510 else 511 snprintf(s_sbind, sizeof(s_sbind), "<%#x>", 512 sbind); 513 return (s_sbind); 514 } 515 } 516 517 static unsigned char st_others[] = { 518 'D', 'I', 'H', 'P' 519 }; 520 521 static const char * 522 r_type(unsigned int mach, unsigned int type) 523 { 524 switch(mach) { 525 case EM_NONE: return ""; 526 case EM_386: 527 case EM_IAMCU: 528 switch(type) { 529 case 0: return "R_386_NONE"; 530 case 1: return "R_386_32"; 531 case 2: return "R_386_PC32"; 532 case 3: return "R_386_GOT32"; 533 case 4: return "R_386_PLT32"; 534 case 5: return "R_386_COPY"; 535 case 6: return "R_386_GLOB_DAT"; 536 case 7: return "R_386_JUMP_SLOT"; 537 case 8: return "R_386_RELATIVE"; 538 case 9: return "R_386_GOTOFF"; 539 case 10: return "R_386_GOTPC"; 540 case 14: return "R_386_TLS_TPOFF"; 541 case 15: return "R_386_TLS_IE"; 542 case 16: return "R_386_TLS_GOTIE"; 543 case 17: return "R_386_TLS_LE"; 544 case 18: return "R_386_TLS_GD"; 545 case 19: return "R_386_TLS_LDM"; 546 case 24: return "R_386_TLS_GD_32"; 547 case 25: return "R_386_TLS_GD_PUSH"; 548 case 26: return "R_386_TLS_GD_CALL"; 549 case 27: return "R_386_TLS_GD_POP"; 550 case 28: return "R_386_TLS_LDM_32"; 551 case 29: return "R_386_TLS_LDM_PUSH"; 552 case 30: return "R_386_TLS_LDM_CALL"; 553 case 31: return "R_386_TLS_LDM_POP"; 554 case 32: return "R_386_TLS_LDO_32"; 555 case 33: return "R_386_TLS_IE_32"; 556 case 34: return "R_386_TLS_LE_32"; 557 case 35: return "R_386_TLS_DTPMOD32"; 558 case 36: return "R_386_TLS_DTPOFF32"; 559 case 37: return "R_386_TLS_TPOFF32"; 560 default: return ""; 561 } 562 case EM_ARM: 563 switch(type) { 564 case 0: return "R_ARM_NONE"; 565 case 1: return "R_ARM_PC24"; 566 case 2: return "R_ARM_ABS32"; 567 case 3: return "R_ARM_REL32"; 568 case 4: return "R_ARM_PC13"; 569 case 5: return "R_ARM_ABS16"; 570 case 6: return "R_ARM_ABS12"; 571 case 7: return "R_ARM_THM_ABS5"; 572 case 8: return "R_ARM_ABS8"; 573 case 9: return "R_ARM_SBREL32"; 574 case 10: return "R_ARM_THM_PC22"; 575 case 11: return "R_ARM_THM_PC8"; 576 case 12: return "R_ARM_AMP_VCALL9"; 577 case 13: return "R_ARM_SWI24"; 578 case 14: return "R_ARM_THM_SWI8"; 579 case 15: return "R_ARM_XPC25"; 580 case 16: return "R_ARM_THM_XPC22"; 581 case 20: return "R_ARM_COPY"; 582 case 21: return "R_ARM_GLOB_DAT"; 583 case 22: return "R_ARM_JUMP_SLOT"; 584 case 23: return "R_ARM_RELATIVE"; 585 case 24: return "R_ARM_GOTOFF"; 586 case 25: return "R_ARM_GOTPC"; 587 case 26: return "R_ARM_GOT32"; 588 case 27: return "R_ARM_PLT32"; 589 case 100: return "R_ARM_GNU_VTENTRY"; 590 case 101: return "R_ARM_GNU_VTINHERIT"; 591 case 250: return "R_ARM_RSBREL32"; 592 case 251: return "R_ARM_THM_RPC22"; 593 case 252: return "R_ARM_RREL32"; 594 case 253: return "R_ARM_RABS32"; 595 case 254: return "R_ARM_RPC24"; 596 case 255: return "R_ARM_RBASE"; 597 default: return ""; 598 } 599 case EM_IA_64: 600 switch(type) { 601 case 0: return "R_IA_64_NONE"; 602 case 33: return "R_IA_64_IMM14"; 603 case 34: return "R_IA_64_IMM22"; 604 case 35: return "R_IA_64_IMM64"; 605 case 36: return "R_IA_64_DIR32MSB"; 606 case 37: return "R_IA_64_DIR32LSB"; 607 case 38: return "R_IA_64_DIR64MSB"; 608 case 39: return "R_IA_64_DIR64LSB"; 609 case 42: return "R_IA_64_GPREL22"; 610 case 43: return "R_IA_64_GPREL64I"; 611 case 44: return "R_IA_64_GPREL32MSB"; 612 case 45: return "R_IA_64_GPREL32LSB"; 613 case 46: return "R_IA_64_GPREL64MSB"; 614 case 47: return "R_IA_64_GPREL64LSB"; 615 case 50: return "R_IA_64_LTOFF22"; 616 case 51: return "R_IA_64_LTOFF64I"; 617 case 58: return "R_IA_64_PLTOFF22"; 618 case 59: return "R_IA_64_PLTOFF64I"; 619 case 62: return "R_IA_64_PLTOFF64MSB"; 620 case 63: return "R_IA_64_PLTOFF64LSB"; 621 case 67: return "R_IA_64_FPTR64I"; 622 case 68: return "R_IA_64_FPTR32MSB"; 623 case 69: return "R_IA_64_FPTR32LSB"; 624 case 70: return "R_IA_64_FPTR64MSB"; 625 case 71: return "R_IA_64_FPTR64LSB"; 626 case 72: return "R_IA_64_PCREL60B"; 627 case 73: return "R_IA_64_PCREL21B"; 628 case 74: return "R_IA_64_PCREL21M"; 629 case 75: return "R_IA_64_PCREL21F"; 630 case 76: return "R_IA_64_PCREL32MSB"; 631 case 77: return "R_IA_64_PCREL32LSB"; 632 case 78: return "R_IA_64_PCREL64MSB"; 633 case 79: return "R_IA_64_PCREL64LSB"; 634 case 82: return "R_IA_64_LTOFF_FPTR22"; 635 case 83: return "R_IA_64_LTOFF_FPTR64I"; 636 case 84: return "R_IA_64_LTOFF_FPTR32MSB"; 637 case 85: return "R_IA_64_LTOFF_FPTR32LSB"; 638 case 86: return "R_IA_64_LTOFF_FPTR64MSB"; 639 case 87: return "R_IA_64_LTOFF_FPTR64LSB"; 640 case 92: return "R_IA_64_SEGREL32MSB"; 641 case 93: return "R_IA_64_SEGREL32LSB"; 642 case 94: return "R_IA_64_SEGREL64MSB"; 643 case 95: return "R_IA_64_SEGREL64LSB"; 644 case 100: return "R_IA_64_SECREL32MSB"; 645 case 101: return "R_IA_64_SECREL32LSB"; 646 case 102: return "R_IA_64_SECREL64MSB"; 647 case 103: return "R_IA_64_SECREL64LSB"; 648 case 108: return "R_IA_64_REL32MSB"; 649 case 109: return "R_IA_64_REL32LSB"; 650 case 110: return "R_IA_64_REL64MSB"; 651 case 111: return "R_IA_64_REL64LSB"; 652 case 116: return "R_IA_64_LTV32MSB"; 653 case 117: return "R_IA_64_LTV32LSB"; 654 case 118: return "R_IA_64_LTV64MSB"; 655 case 119: return "R_IA_64_LTV64LSB"; 656 case 121: return "R_IA_64_PCREL21BI"; 657 case 122: return "R_IA_64_PCREL22"; 658 case 123: return "R_IA_64_PCREL64I"; 659 case 128: return "R_IA_64_IPLTMSB"; 660 case 129: return "R_IA_64_IPLTLSB"; 661 case 133: return "R_IA_64_SUB"; 662 case 134: return "R_IA_64_LTOFF22X"; 663 case 135: return "R_IA_64_LDXMOV"; 664 case 145: return "R_IA_64_TPREL14"; 665 case 146: return "R_IA_64_TPREL22"; 666 case 147: return "R_IA_64_TPREL64I"; 667 case 150: return "R_IA_64_TPREL64MSB"; 668 case 151: return "R_IA_64_TPREL64LSB"; 669 case 154: return "R_IA_64_LTOFF_TPREL22"; 670 case 166: return "R_IA_64_DTPMOD64MSB"; 671 case 167: return "R_IA_64_DTPMOD64LSB"; 672 case 170: return "R_IA_64_LTOFF_DTPMOD22"; 673 case 177: return "R_IA_64_DTPREL14"; 674 case 178: return "R_IA_64_DTPREL22"; 675 case 179: return "R_IA_64_DTPREL64I"; 676 case 180: return "R_IA_64_DTPREL32MSB"; 677 case 181: return "R_IA_64_DTPREL32LSB"; 678 case 182: return "R_IA_64_DTPREL64MSB"; 679 case 183: return "R_IA_64_DTPREL64LSB"; 680 case 186: return "R_IA_64_LTOFF_DTPREL22"; 681 default: return ""; 682 } 683 case EM_MIPS: 684 switch(type) { 685 case 0: return "R_MIPS_NONE"; 686 case 1: return "R_MIPS_16"; 687 case 2: return "R_MIPS_32"; 688 case 3: return "R_MIPS_REL32"; 689 case 4: return "R_MIPS_26"; 690 case 5: return "R_MIPS_HI16"; 691 case 6: return "R_MIPS_LO16"; 692 case 7: return "R_MIPS_GPREL16"; 693 case 8: return "R_MIPS_LITERAL"; 694 case 9: return "R_MIPS_GOT16"; 695 case 10: return "R_MIPS_PC16"; 696 case 11: return "R_MIPS_CALL16"; 697 case 12: return "R_MIPS_GPREL32"; 698 case 21: return "R_MIPS_GOTHI16"; 699 case 22: return "R_MIPS_GOTLO16"; 700 case 30: return "R_MIPS_CALLHI16"; 701 case 31: return "R_MIPS_CALLLO16"; 702 default: return ""; 703 } 704 case EM_PPC: 705 switch(type) { 706 case 0: return "R_PPC_NONE"; 707 case 1: return "R_PPC_ADDR32"; 708 case 2: return "R_PPC_ADDR24"; 709 case 3: return "R_PPC_ADDR16"; 710 case 4: return "R_PPC_ADDR16_LO"; 711 case 5: return "R_PPC_ADDR16_HI"; 712 case 6: return "R_PPC_ADDR16_HA"; 713 case 7: return "R_PPC_ADDR14"; 714 case 8: return "R_PPC_ADDR14_BRTAKEN"; 715 case 9: return "R_PPC_ADDR14_BRNTAKEN"; 716 case 10: return "R_PPC_REL24"; 717 case 11: return "R_PPC_REL14"; 718 case 12: return "R_PPC_REL14_BRTAKEN"; 719 case 13: return "R_PPC_REL14_BRNTAKEN"; 720 case 14: return "R_PPC_GOT16"; 721 case 15: return "R_PPC_GOT16_LO"; 722 case 16: return "R_PPC_GOT16_HI"; 723 case 17: return "R_PPC_GOT16_HA"; 724 case 18: return "R_PPC_PLTREL24"; 725 case 19: return "R_PPC_COPY"; 726 case 20: return "R_PPC_GLOB_DAT"; 727 case 21: return "R_PPC_JMP_SLOT"; 728 case 22: return "R_PPC_RELATIVE"; 729 case 23: return "R_PPC_LOCAL24PC"; 730 case 24: return "R_PPC_UADDR32"; 731 case 25: return "R_PPC_UADDR16"; 732 case 26: return "R_PPC_REL32"; 733 case 27: return "R_PPC_PLT32"; 734 case 28: return "R_PPC_PLTREL32"; 735 case 29: return "R_PPC_PLT16_LO"; 736 case 30: return "R_PPC_PLT16_HI"; 737 case 31: return "R_PPC_PLT16_HA"; 738 case 32: return "R_PPC_SDAREL16"; 739 case 33: return "R_PPC_SECTOFF"; 740 case 34: return "R_PPC_SECTOFF_LO"; 741 case 35: return "R_PPC_SECTOFF_HI"; 742 case 36: return "R_PPC_SECTOFF_HA"; 743 case 67: return "R_PPC_TLS"; 744 case 68: return "R_PPC_DTPMOD32"; 745 case 69: return "R_PPC_TPREL16"; 746 case 70: return "R_PPC_TPREL16_LO"; 747 case 71: return "R_PPC_TPREL16_HI"; 748 case 72: return "R_PPC_TPREL16_HA"; 749 case 73: return "R_PPC_TPREL32"; 750 case 74: return "R_PPC_DTPREL16"; 751 case 75: return "R_PPC_DTPREL16_LO"; 752 case 76: return "R_PPC_DTPREL16_HI"; 753 case 77: return "R_PPC_DTPREL16_HA"; 754 case 78: return "R_PPC_DTPREL32"; 755 case 79: return "R_PPC_GOT_TLSGD16"; 756 case 80: return "R_PPC_GOT_TLSGD16_LO"; 757 case 81: return "R_PPC_GOT_TLSGD16_HI"; 758 case 82: return "R_PPC_GOT_TLSGD16_HA"; 759 case 83: return "R_PPC_GOT_TLSLD16"; 760 case 84: return "R_PPC_GOT_TLSLD16_LO"; 761 case 85: return "R_PPC_GOT_TLSLD16_HI"; 762 case 86: return "R_PPC_GOT_TLSLD16_HA"; 763 case 87: return "R_PPC_GOT_TPREL16"; 764 case 88: return "R_PPC_GOT_TPREL16_LO"; 765 case 89: return "R_PPC_GOT_TPREL16_HI"; 766 case 90: return "R_PPC_GOT_TPREL16_HA"; 767 case 101: return "R_PPC_EMB_NADDR32"; 768 case 102: return "R_PPC_EMB_NADDR16"; 769 case 103: return "R_PPC_EMB_NADDR16_LO"; 770 case 104: return "R_PPC_EMB_NADDR16_HI"; 771 case 105: return "R_PPC_EMB_NADDR16_HA"; 772 case 106: return "R_PPC_EMB_SDAI16"; 773 case 107: return "R_PPC_EMB_SDA2I16"; 774 case 108: return "R_PPC_EMB_SDA2REL"; 775 case 109: return "R_PPC_EMB_SDA21"; 776 case 110: return "R_PPC_EMB_MRKREF"; 777 case 111: return "R_PPC_EMB_RELSEC16"; 778 case 112: return "R_PPC_EMB_RELST_LO"; 779 case 113: return "R_PPC_EMB_RELST_HI"; 780 case 114: return "R_PPC_EMB_RELST_HA"; 781 case 115: return "R_PPC_EMB_BIT_FLD"; 782 case 116: return "R_PPC_EMB_RELSDA"; 783 default: return ""; 784 } 785 case EM_SPARC: 786 case EM_SPARCV9: 787 switch(type) { 788 case 0: return "R_SPARC_NONE"; 789 case 1: return "R_SPARC_8"; 790 case 2: return "R_SPARC_16"; 791 case 3: return "R_SPARC_32"; 792 case 4: return "R_SPARC_DISP8"; 793 case 5: return "R_SPARC_DISP16"; 794 case 6: return "R_SPARC_DISP32"; 795 case 7: return "R_SPARC_WDISP30"; 796 case 8: return "R_SPARC_WDISP22"; 797 case 9: return "R_SPARC_HI22"; 798 case 10: return "R_SPARC_22"; 799 case 11: return "R_SPARC_13"; 800 case 12: return "R_SPARC_LO10"; 801 case 13: return "R_SPARC_GOT10"; 802 case 14: return "R_SPARC_GOT13"; 803 case 15: return "R_SPARC_GOT22"; 804 case 16: return "R_SPARC_PC10"; 805 case 17: return "R_SPARC_PC22"; 806 case 18: return "R_SPARC_WPLT30"; 807 case 19: return "R_SPARC_COPY"; 808 case 20: return "R_SPARC_GLOB_DAT"; 809 case 21: return "R_SPARC_JMP_SLOT"; 810 case 22: return "R_SPARC_RELATIVE"; 811 case 23: return "R_SPARC_UA32"; 812 case 24: return "R_SPARC_PLT32"; 813 case 25: return "R_SPARC_HIPLT22"; 814 case 26: return "R_SPARC_LOPLT10"; 815 case 27: return "R_SPARC_PCPLT32"; 816 case 28: return "R_SPARC_PCPLT22"; 817 case 29: return "R_SPARC_PCPLT10"; 818 case 30: return "R_SPARC_10"; 819 case 31: return "R_SPARC_11"; 820 case 32: return "R_SPARC_64"; 821 case 33: return "R_SPARC_OLO10"; 822 case 34: return "R_SPARC_HH22"; 823 case 35: return "R_SPARC_HM10"; 824 case 36: return "R_SPARC_LM22"; 825 case 37: return "R_SPARC_PC_HH22"; 826 case 38: return "R_SPARC_PC_HM10"; 827 case 39: return "R_SPARC_PC_LM22"; 828 case 40: return "R_SPARC_WDISP16"; 829 case 41: return "R_SPARC_WDISP19"; 830 case 42: return "R_SPARC_GLOB_JMP"; 831 case 43: return "R_SPARC_7"; 832 case 44: return "R_SPARC_5"; 833 case 45: return "R_SPARC_6"; 834 case 46: return "R_SPARC_DISP64"; 835 case 47: return "R_SPARC_PLT64"; 836 case 48: return "R_SPARC_HIX22"; 837 case 49: return "R_SPARC_LOX10"; 838 case 50: return "R_SPARC_H44"; 839 case 51: return "R_SPARC_M44"; 840 case 52: return "R_SPARC_L44"; 841 case 53: return "R_SPARC_REGISTER"; 842 case 54: return "R_SPARC_UA64"; 843 case 55: return "R_SPARC_UA16"; 844 case 56: return "R_SPARC_TLS_GD_HI22"; 845 case 57: return "R_SPARC_TLS_GD_LO10"; 846 case 58: return "R_SPARC_TLS_GD_ADD"; 847 case 59: return "R_SPARC_TLS_GD_CALL"; 848 case 60: return "R_SPARC_TLS_LDM_HI22"; 849 case 61: return "R_SPARC_TLS_LDM_LO10"; 850 case 62: return "R_SPARC_TLS_LDM_ADD"; 851 case 63: return "R_SPARC_TLS_LDM_CALL"; 852 case 64: return "R_SPARC_TLS_LDO_HIX22"; 853 case 65: return "R_SPARC_TLS_LDO_LOX10"; 854 case 66: return "R_SPARC_TLS_LDO_ADD"; 855 case 67: return "R_SPARC_TLS_IE_HI22"; 856 case 68: return "R_SPARC_TLS_IE_LO10"; 857 case 69: return "R_SPARC_TLS_IE_LD"; 858 case 70: return "R_SPARC_TLS_IE_LDX"; 859 case 71: return "R_SPARC_TLS_IE_ADD"; 860 case 72: return "R_SPARC_TLS_LE_HIX22"; 861 case 73: return "R_SPARC_TLS_LE_LOX10"; 862 case 74: return "R_SPARC_TLS_DTPMOD32"; 863 case 75: return "R_SPARC_TLS_DTPMOD64"; 864 case 76: return "R_SPARC_TLS_DTPOFF32"; 865 case 77: return "R_SPARC_TLS_DTPOFF64"; 866 case 78: return "R_SPARC_TLS_TPOFF32"; 867 case 79: return "R_SPARC_TLS_TPOFF64"; 868 default: return ""; 869 } 870 case EM_X86_64: 871 switch(type) { 872 case 0: return "R_X86_64_NONE"; 873 case 1: return "R_X86_64_64"; 874 case 2: return "R_X86_64_PC32"; 875 case 3: return "R_X86_64_GOT32"; 876 case 4: return "R_X86_64_PLT32"; 877 case 5: return "R_X86_64_COPY"; 878 case 6: return "R_X86_64_GLOB_DAT"; 879 case 7: return "R_X86_64_JUMP_SLOT"; 880 case 8: return "R_X86_64_RELATIVE"; 881 case 9: return "R_X86_64_GOTPCREL"; 882 case 10: return "R_X86_64_32"; 883 case 11: return "R_X86_64_32S"; 884 case 12: return "R_X86_64_16"; 885 case 13: return "R_X86_64_PC16"; 886 case 14: return "R_X86_64_8"; 887 case 15: return "R_X86_64_PC8"; 888 case 16: return "R_X86_64_DTPMOD64"; 889 case 17: return "R_X86_64_DTPOFF64"; 890 case 18: return "R_X86_64_TPOFF64"; 891 case 19: return "R_X86_64_TLSGD"; 892 case 20: return "R_X86_64_TLSLD"; 893 case 21: return "R_X86_64_DTPOFF32"; 894 case 22: return "R_X86_64_GOTTPOFF"; 895 case 23: return "R_X86_64_TPOFF32"; 896 default: return ""; 897 } 898 default: return ""; 899 } 900 } 901 902 static void add_name(struct elfdump *ed, const char *name); 903 static void elf_print_object(struct elfdump *ed); 904 static void elf_print_elf(struct elfdump *ed); 905 static void elf_print_ehdr(struct elfdump *ed); 906 static void elf_print_phdr(struct elfdump *ed); 907 static void elf_print_shdr(struct elfdump *ed); 908 static void elf_print_symtab(struct elfdump *ed, int i); 909 static void elf_print_symtabs(struct elfdump *ed); 910 static void elf_print_symver(struct elfdump *ed); 911 static void elf_print_verdef(struct elfdump *ed, struct section *s); 912 static void elf_print_verneed(struct elfdump *ed, struct section *s); 913 static void elf_print_interp(struct elfdump *ed); 914 static void elf_print_dynamic(struct elfdump *ed); 915 static void elf_print_rel_entry(struct elfdump *ed, struct section *s, 916 int j, struct rel_entry *r); 917 static void elf_print_rela(struct elfdump *ed, struct section *s, 918 Elf_Data *data); 919 static void elf_print_rel(struct elfdump *ed, struct section *s, 920 Elf_Data *data); 921 static void elf_print_reloc(struct elfdump *ed); 922 static void elf_print_got(struct elfdump *ed); 923 static void elf_print_got_section(struct elfdump *ed, struct section *s); 924 static void elf_print_note(struct elfdump *ed); 925 static void elf_print_svr4_hash(struct elfdump *ed, struct section *s); 926 static void elf_print_svr4_hash64(struct elfdump *ed, struct section *s); 927 static void elf_print_gnu_hash(struct elfdump *ed, struct section *s); 928 static void elf_print_hash(struct elfdump *ed); 929 static void elf_print_checksum(struct elfdump *ed); 930 static void find_gotrel(struct elfdump *ed, struct section *gs, 931 struct rel_entry *got); 932 static struct spec_name *find_name(struct elfdump *ed, const char *name); 933 static int get_ent_count(const struct section *s, int *ent_count); 934 static const char *get_symbol_name(struct elfdump *ed, int symtab, int i); 935 static const char *get_string(struct elfdump *ed, int strtab, size_t off); 936 static void get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs); 937 static void load_sections(struct elfdump *ed); 938 static void unload_sections(struct elfdump *ed); 939 static void usage(void); 940 #ifdef USE_LIBARCHIVE_AR 941 static int ac_detect_ar(int fd); 942 static void ac_print_ar(struct elfdump *ed, int fd); 943 #else 944 static void elf_print_ar(struct elfdump *ed, int fd); 945 #endif /* USE_LIBARCHIVE_AR */ 946 947 static struct option elfdump_longopts[] = 948 { 949 { "help", no_argument, NULL, 'H' }, 950 { "version", no_argument, NULL, 'V' }, 951 { NULL, 0, NULL, 0 } 952 }; 953 954 int 955 main(int ac, char **av) 956 { 957 struct elfdump *ed, ed_storage; 958 struct spec_name *sn; 959 int ch, i; 960 961 ed = &ed_storage; 962 memset(ed, 0, sizeof(*ed)); 963 STAILQ_INIT(&ed->snl); 964 ed->out = stdout; 965 while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:", 966 elfdump_longopts, NULL)) != -1) 967 switch (ch) { 968 case 'a': 969 ed->options = ED_ALL; 970 break; 971 case 'c': 972 ed->options |= ED_SHDR; 973 break; 974 case 'd': 975 ed->options |= ED_DYN; 976 break; 977 case 'e': 978 ed->options |= ED_EHDR; 979 break; 980 case 'i': 981 ed->options |= ED_INTERP; 982 break; 983 case 'G': 984 ed->options |= ED_GOT; 985 break; 986 case 'h': 987 ed->options |= ED_HASH; 988 break; 989 case 'k': 990 ed->options |= ED_CHECKSUM; 991 break; 992 case 'n': 993 ed->options |= ED_NOTE; 994 break; 995 case 'N': 996 add_name(ed, optarg); 997 break; 998 case 'p': 999 ed->options |= ED_PHDR; 1000 break; 1001 case 'r': 1002 ed->options |= ED_REL; 1003 break; 1004 case 's': 1005 ed->options |= ED_SYMTAB; 1006 break; 1007 case 'S': 1008 ed->flags |= SOLARIS_FMT; 1009 break; 1010 case 'v': 1011 ed->options |= ED_SYMVER; 1012 break; 1013 case 'V': 1014 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), 1015 elftc_version()); 1016 exit(EXIT_SUCCESS); 1017 break; 1018 case 'w': 1019 if ((ed->out = fopen(optarg, "w")) == NULL) 1020 err(EXIT_FAILURE, "%s", optarg); 1021 break; 1022 case '?': 1023 case 'H': 1024 default: 1025 usage(); 1026 } 1027 1028 ac -= optind; 1029 av += optind; 1030 1031 if (ed->options == 0) 1032 ed->options = ED_ALL; 1033 sn = NULL; 1034 if (ed->options & ED_SYMTAB && 1035 (STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) { 1036 ed->flags |= PRINT_ARSYM; 1037 if (sn != NULL) { 1038 STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list); 1039 if (STAILQ_EMPTY(&ed->snl)) 1040 ed->flags |= ONLY_ARSYM; 1041 } 1042 } 1043 if (ac == 0) 1044 usage(); 1045 if (ac > 1) 1046 ed->flags |= PRINT_FILENAME; 1047 if (elf_version(EV_CURRENT) == EV_NONE) 1048 errx(EXIT_FAILURE, "ELF library initialization failed: %s", 1049 elf_errmsg(-1)); 1050 1051 for (i = 0; i < ac; i++) { 1052 ed->filename = av[i]; 1053 ed->archive = NULL; 1054 elf_print_object(ed); 1055 } 1056 1057 exit(EXIT_SUCCESS); 1058 } 1059 1060 #ifdef USE_LIBARCHIVE_AR 1061 1062 /* Archive symbol table entry. */ 1063 struct arsym_entry { 1064 char *sym_name; 1065 size_t off; 1066 }; 1067 1068 /* 1069 * Convenient wrapper for general libarchive error handling. 1070 */ 1071 #define AC(CALL) do { \ 1072 if ((CALL)) { \ 1073 warnx("%s", archive_error_string(a)); \ 1074 return; \ 1075 } \ 1076 } while (0) 1077 1078 /* 1079 * Detect an ar(1) archive using libarchive(3). 1080 */ 1081 static int 1082 ac_detect_ar(int fd) 1083 { 1084 struct archive *a; 1085 struct archive_entry *entry; 1086 int r; 1087 1088 r = -1; 1089 if ((a = archive_read_new()) == NULL) 1090 return (0); 1091 archive_read_support_format_ar(a); 1092 if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK) 1093 r = archive_read_next_header(a, &entry); 1094 archive_read_close(a); 1095 archive_read_free(a); 1096 1097 return (r == ARCHIVE_OK); 1098 } 1099 1100 /* 1101 * Dump an ar(1) archive using libarchive(3). 1102 */ 1103 static void 1104 ac_print_ar(struct elfdump *ed, int fd) 1105 { 1106 struct archive *a; 1107 struct archive_entry *entry; 1108 struct arsym_entry *arsym; 1109 const char *name; 1110 char idx[10], *b; 1111 void *buff; 1112 size_t size; 1113 uint32_t cnt; 1114 int i, r; 1115 1116 if (lseek(fd, 0, SEEK_SET) == -1) 1117 err(EXIT_FAILURE, "lseek failed"); 1118 if ((a = archive_read_new()) == NULL) 1119 errx(EXIT_FAILURE, "%s", archive_error_string(a)); 1120 archive_read_support_format_ar(a); 1121 AC(archive_read_open_fd(a, fd, 10240)); 1122 for(;;) { 1123 r = archive_read_next_header(a, &entry); 1124 if (r == ARCHIVE_FATAL) 1125 errx(EXIT_FAILURE, "%s", archive_error_string(a)); 1126 if (r == ARCHIVE_EOF) 1127 break; 1128 if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY) 1129 warnx("%s", archive_error_string(a)); 1130 if (r == ARCHIVE_RETRY) 1131 continue; 1132 name = archive_entry_pathname(entry); 1133 size = archive_entry_size(entry); 1134 if (size == 0) 1135 continue; 1136 if ((buff = malloc(size)) == NULL) { 1137 warn("malloc failed"); 1138 continue; 1139 } 1140 if (archive_read_data(a, buff, size) != (ssize_t)size) { 1141 warnx("%s", archive_error_string(a)); 1142 free(buff); 1143 continue; 1144 } 1145 1146 /* 1147 * Note that when processing arsym via libarchive, there is 1148 * no way to tell which member a certain symbol belongs to, 1149 * since we can not just "lseek" to a member offset and read 1150 * the member header. 1151 */ 1152 if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) { 1153 b = buff; 1154 cnt = be32dec(b); 1155 if (cnt == 0) { 1156 free(buff); 1157 continue; 1158 } 1159 arsym = calloc(cnt, sizeof(*arsym)); 1160 if (arsym == NULL) 1161 err(EXIT_FAILURE, "calloc failed"); 1162 b += sizeof(uint32_t); 1163 for (i = 0; (size_t)i < cnt; i++) { 1164 arsym[i].off = be32dec(b); 1165 b += sizeof(uint32_t); 1166 } 1167 for (i = 0; (size_t)i < cnt; i++) { 1168 arsym[i].sym_name = b; 1169 b += strlen(b) + 1; 1170 } 1171 if (ed->flags & SOLARIS_FMT) { 1172 PRT("\nSymbol Table: (archive)\n"); 1173 PRT(" index offset symbol\n"); 1174 } else 1175 PRT("\nsymbol table (archive):\n"); 1176 for (i = 0; (size_t)i < cnt; i++) { 1177 if (ed->flags & SOLARIS_FMT) { 1178 snprintf(idx, sizeof(idx), "[%d]", i); 1179 PRT("%10s ", idx); 1180 PRT("0x%8.8jx ", 1181 (uintmax_t)arsym[i].off); 1182 PRT("%s\n", arsym[i].sym_name); 1183 } else { 1184 PRT("\nentry: %d\n", i); 1185 PRT("\toffset: %#jx\n", 1186 (uintmax_t)arsym[i].off); 1187 PRT("\tsymbol: %s\n", 1188 arsym[i].sym_name); 1189 } 1190 } 1191 free(arsym); 1192 free(buff); 1193 /* No need to continue if we only dump ARSYM. */ 1194 if (ed->flags & ONLY_ARSYM) { 1195 AC(archive_read_close(a)); 1196 AC(archive_read_free(a)); 1197 return; 1198 } 1199 continue; 1200 } 1201 if ((ed->elf = elf_memory(buff, size)) == NULL) { 1202 warnx("elf_memroy() failed: %s", 1203 elf_errmsg(-1)); 1204 free(buff); 1205 continue; 1206 } 1207 /* Skip non-ELF member. */ 1208 if (elf_kind(ed->elf) == ELF_K_ELF) { 1209 printf("\n%s(%s):\n", ed->archive, name); 1210 elf_print_elf(ed); 1211 } 1212 elf_end(ed->elf); 1213 free(buff); 1214 } 1215 AC(archive_read_close(a)); 1216 AC(archive_read_free(a)); 1217 } 1218 1219 #else /* USE_LIBARCHIVE_AR */ 1220 1221 /* 1222 * Dump an ar(1) archive. 1223 */ 1224 static void 1225 elf_print_ar(struct elfdump *ed, int fd) 1226 { 1227 Elf *e; 1228 Elf_Arhdr *arh; 1229 Elf_Arsym *arsym; 1230 Elf_Cmd cmd; 1231 char idx[10]; 1232 size_t cnt; 1233 int i; 1234 1235 ed->ar = ed->elf; 1236 1237 if (ed->flags & PRINT_ARSYM) { 1238 cnt = 0; 1239 if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) { 1240 warnx("elf_getarsym failed: %s", elf_errmsg(-1)); 1241 goto print_members; 1242 } 1243 if (cnt == 0) 1244 goto print_members; 1245 if (ed->flags & SOLARIS_FMT) { 1246 PRT("\nSymbol Table: (archive)\n"); 1247 PRT(" index offset member name and symbol\n"); 1248 } else 1249 PRT("\nsymbol table (archive):\n"); 1250 for (i = 0; (size_t)i < cnt - 1; i++) { 1251 if (elf_rand(ed->ar, arsym[i].as_off) != 1252 arsym[i].as_off) { 1253 warnx("elf_rand failed: %s", elf_errmsg(-1)); 1254 break; 1255 } 1256 if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) { 1257 warnx("elf_begin failed: %s", elf_errmsg(-1)); 1258 break; 1259 } 1260 if ((arh = elf_getarhdr(e)) == NULL) { 1261 warnx("elf_getarhdr failed: %s", 1262 elf_errmsg(-1)); 1263 break; 1264 } 1265 if (ed->flags & SOLARIS_FMT) { 1266 snprintf(idx, sizeof(idx), "[%d]", i); 1267 PRT("%10s ", idx); 1268 PRT("0x%8.8jx ", 1269 (uintmax_t)arsym[i].as_off); 1270 PRT("(%s):%s\n", arh->ar_name, 1271 arsym[i].as_name); 1272 } else { 1273 PRT("\nentry: %d\n", i); 1274 PRT("\toffset: %#jx\n", 1275 (uintmax_t)arsym[i].as_off); 1276 PRT("\tmember: %s\n", arh->ar_name); 1277 PRT("\tsymbol: %s\n", arsym[i].as_name); 1278 } 1279 elf_end(e); 1280 } 1281 1282 /* No need to continue if we only dump ARSYM. */ 1283 if (ed->flags & ONLY_ARSYM) 1284 return; 1285 } 1286 1287 print_members: 1288 1289 /* Rewind the archive. */ 1290 if (elf_rand(ed->ar, SARMAG) != SARMAG) { 1291 warnx("elf_rand failed: %s", elf_errmsg(-1)); 1292 return; 1293 } 1294 1295 /* Dump each member of the archive. */ 1296 cmd = ELF_C_READ; 1297 while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) { 1298 /* Skip non-ELF member. */ 1299 if (elf_kind(ed->elf) == ELF_K_ELF) { 1300 if ((arh = elf_getarhdr(ed->elf)) == NULL) { 1301 warnx("elf_getarhdr failed: %s", 1302 elf_errmsg(-1)); 1303 break; 1304 } 1305 printf("\n%s(%s):\n", ed->archive, arh->ar_name); 1306 elf_print_elf(ed); 1307 } 1308 cmd = elf_next(ed->elf); 1309 elf_end(ed->elf); 1310 } 1311 } 1312 1313 #endif /* USE_LIBARCHIVE_AR */ 1314 1315 /* 1316 * Dump an object. (ELF object or ar(1) archive) 1317 */ 1318 static void 1319 elf_print_object(struct elfdump *ed) 1320 { 1321 int fd; 1322 1323 if ((fd = open(ed->filename, O_RDONLY)) == -1) { 1324 warn("open %s failed", ed->filename); 1325 return; 1326 } 1327 1328 #ifdef USE_LIBARCHIVE_AR 1329 if (ac_detect_ar(fd)) { 1330 ed->archive = ed->filename; 1331 ac_print_ar(ed, fd); 1332 return; 1333 } 1334 #endif /* USE_LIBARCHIVE_AR */ 1335 1336 if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { 1337 warnx("elf_begin() failed: %s", elf_errmsg(-1)); 1338 return; 1339 } 1340 1341 switch (elf_kind(ed->elf)) { 1342 case ELF_K_NONE: 1343 warnx("Not an ELF file."); 1344 return; 1345 case ELF_K_ELF: 1346 if (ed->flags & PRINT_FILENAME) 1347 printf("\n%s:\n", ed->filename); 1348 elf_print_elf(ed); 1349 break; 1350 case ELF_K_AR: 1351 #ifndef USE_LIBARCHIVE_AR 1352 ed->archive = ed->filename; 1353 elf_print_ar(ed, fd); 1354 #endif 1355 break; 1356 default: 1357 warnx("Internal: libelf returned unknown elf kind."); 1358 return; 1359 } 1360 1361 elf_end(ed->elf); 1362 } 1363 1364 /* 1365 * Dump an ELF object. 1366 */ 1367 static void 1368 elf_print_elf(struct elfdump *ed) 1369 { 1370 1371 if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) { 1372 warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); 1373 return; 1374 } 1375 if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) { 1376 warnx("gelf_getclass failed: %s", elf_errmsg(-1)); 1377 return; 1378 } 1379 1380 if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB | 1381 ED_SYMVER | ED_NOTE | ED_HASH)) 1382 load_sections(ed); 1383 1384 if (ed->options & ED_EHDR) 1385 elf_print_ehdr(ed); 1386 if (ed->options & ED_PHDR) 1387 elf_print_phdr(ed); 1388 if (ed->options & ED_INTERP) 1389 elf_print_interp(ed); 1390 if (ed->options & ED_SHDR) 1391 elf_print_shdr(ed); 1392 if (ed->options & ED_DYN) 1393 elf_print_dynamic(ed); 1394 if (ed->options & ED_REL) 1395 elf_print_reloc(ed); 1396 if (ed->options & ED_GOT) 1397 elf_print_got(ed); 1398 if (ed->options & ED_SYMTAB) 1399 elf_print_symtabs(ed); 1400 if (ed->options & ED_SYMVER) 1401 elf_print_symver(ed); 1402 if (ed->options & ED_NOTE) 1403 elf_print_note(ed); 1404 if (ed->options & ED_HASH) 1405 elf_print_hash(ed); 1406 if (ed->options & ED_CHECKSUM) 1407 elf_print_checksum(ed); 1408 1409 unload_sections(ed); 1410 } 1411 1412 /* 1413 * Read the section headers from ELF object and store them in the 1414 * internal cache. 1415 */ 1416 static void 1417 load_sections(struct elfdump *ed) 1418 { 1419 struct section *s; 1420 const char *name; 1421 Elf_Scn *scn; 1422 GElf_Shdr sh; 1423 size_t shstrndx, ndx; 1424 int elferr; 1425 1426 assert(ed->sl == NULL); 1427 1428 if (!elf_getshnum(ed->elf, &ed->shnum)) { 1429 warnx("elf_getshnum failed: %s", elf_errmsg(-1)); 1430 return; 1431 } 1432 if (ed->shnum == 0) 1433 return; 1434 if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL) 1435 err(EXIT_FAILURE, "calloc failed"); 1436 if (!elf_getshstrndx(ed->elf, &shstrndx)) { 1437 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); 1438 return; 1439 } 1440 if ((scn = elf_getscn(ed->elf, 0)) == NULL) { 1441 warnx("elf_getscn failed: %s", elf_errmsg(-1)); 1442 return; 1443 } 1444 (void) elf_errno(); 1445 do { 1446 if (gelf_getshdr(scn, &sh) == NULL) { 1447 warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); 1448 (void) elf_errno(); 1449 continue; 1450 } 1451 if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) { 1452 (void) elf_errno(); 1453 name = "ERROR"; 1454 } 1455 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) 1456 if ((elferr = elf_errno()) != 0) { 1457 warnx("elf_ndxscn failed: %s", 1458 elf_errmsg(elferr)); 1459 continue; 1460 } 1461 if (ndx >= ed->shnum) { 1462 warnx("section index of '%s' out of range", name); 1463 continue; 1464 } 1465 s = &ed->sl[ndx]; 1466 s->name = name; 1467 s->scn = scn; 1468 s->off = sh.sh_offset; 1469 s->sz = sh.sh_size; 1470 s->entsize = sh.sh_entsize; 1471 s->align = sh.sh_addralign; 1472 s->type = sh.sh_type; 1473 s->flags = sh.sh_flags; 1474 s->addr = sh.sh_addr; 1475 s->link = sh.sh_link; 1476 s->info = sh.sh_info; 1477 } while ((scn = elf_nextscn(ed->elf, scn)) != NULL); 1478 elferr = elf_errno(); 1479 if (elferr != 0) 1480 warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); 1481 } 1482 1483 /* 1484 * Release section related resources. 1485 */ 1486 static void 1487 unload_sections(struct elfdump *ed) 1488 { 1489 if (ed->sl != NULL) { 1490 free(ed->sl); 1491 ed->sl = NULL; 1492 } 1493 } 1494 1495 /* 1496 * Add a name to the '-N' name list. 1497 */ 1498 static void 1499 add_name(struct elfdump *ed, const char *name) 1500 { 1501 struct spec_name *sn; 1502 1503 if (find_name(ed, name)) 1504 return; 1505 if ((sn = malloc(sizeof(*sn))) == NULL) { 1506 warn("malloc failed"); 1507 return; 1508 } 1509 sn->name = name; 1510 STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list); 1511 } 1512 1513 /* 1514 * Lookup a name in the '-N' name list. 1515 */ 1516 static struct spec_name * 1517 find_name(struct elfdump *ed, const char *name) 1518 { 1519 struct spec_name *sn; 1520 1521 STAILQ_FOREACH(sn, &ed->snl, sn_list) { 1522 if (!strcmp(sn->name, name)) 1523 return (sn); 1524 } 1525 1526 return (NULL); 1527 } 1528 1529 /* 1530 * Retrieve the name of a symbol using the section index of the symbol 1531 * table and the index of the symbol within that table. 1532 */ 1533 static const char * 1534 get_symbol_name(struct elfdump *ed, int symtab, int i) 1535 { 1536 static char sname[64]; 1537 struct section *s; 1538 const char *name; 1539 GElf_Sym sym; 1540 Elf_Data *data; 1541 int elferr; 1542 1543 s = &ed->sl[symtab]; 1544 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) 1545 return (""); 1546 (void) elf_errno(); 1547 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 1548 elferr = elf_errno(); 1549 if (elferr != 0) 1550 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 1551 return (""); 1552 } 1553 if (gelf_getsym(data, i, &sym) != &sym) 1554 return (""); 1555 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { 1556 if (sym.st_shndx < ed->shnum) { 1557 snprintf(sname, sizeof(sname), "%s (section)", 1558 ed->sl[sym.st_shndx].name); 1559 return (sname); 1560 } else 1561 return (""); 1562 } 1563 if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL) 1564 return (""); 1565 1566 return (name); 1567 } 1568 1569 /* 1570 * Retrieve a string using string table section index and the string offset. 1571 */ 1572 static const char* 1573 get_string(struct elfdump *ed, int strtab, size_t off) 1574 { 1575 const char *name; 1576 1577 if ((name = elf_strptr(ed->elf, strtab, off)) == NULL) 1578 return (""); 1579 1580 return (name); 1581 } 1582 1583 /* 1584 * Dump the ELF Executable Header. 1585 */ 1586 static void 1587 elf_print_ehdr(struct elfdump *ed) 1588 { 1589 1590 if (!STAILQ_EMPTY(&ed->snl)) 1591 return; 1592 1593 if (ed->flags & SOLARIS_FMT) { 1594 PRT("\nELF Header\n"); 1595 PRT(" ei_magic: { %#x, %c, %c, %c }\n", 1596 ed->ehdr.e_ident[0], ed->ehdr.e_ident[1], 1597 ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]); 1598 PRT(" ei_class: %-18s", 1599 ei_classes[ed->ehdr.e_ident[EI_CLASS]]); 1600 PRT(" ei_data: %s\n", ei_data[ed->ehdr.e_ident[EI_DATA]]); 1601 PRT(" e_machine: %-18s", e_machines(ed->ehdr.e_machine)); 1602 PRT(" e_version: %s\n", ei_versions[ed->ehdr.e_version]); 1603 PRT(" e_type: %s\n", e_types[ed->ehdr.e_type]); 1604 PRT(" e_flags: %18d\n", ed->ehdr.e_flags); 1605 PRT(" e_entry: %#18jx", (uintmax_t)ed->ehdr.e_entry); 1606 PRT(" e_ehsize: %6d", ed->ehdr.e_ehsize); 1607 PRT(" e_shstrndx:%5d\n", ed->ehdr.e_shstrndx); 1608 PRT(" e_shoff: %#18jx", (uintmax_t)ed->ehdr.e_shoff); 1609 PRT(" e_shentsize: %3d", ed->ehdr.e_shentsize); 1610 PRT(" e_shnum: %5d\n", ed->ehdr.e_shnum); 1611 PRT(" e_phoff: %#18jx", (uintmax_t)ed->ehdr.e_phoff); 1612 PRT(" e_phentsize: %3d", ed->ehdr.e_phentsize); 1613 PRT(" e_phnum: %5d\n", ed->ehdr.e_phnum); 1614 } else { 1615 PRT("\nelf header:\n"); 1616 PRT("\n"); 1617 PRT("\te_ident: %s %s %s\n", 1618 ei_classes[ed->ehdr.e_ident[EI_CLASS]], 1619 ei_data[ed->ehdr.e_ident[EI_DATA]], 1620 ei_abis[ed->ehdr.e_ident[EI_OSABI]]); 1621 PRT("\te_type: %s\n", e_types[ed->ehdr.e_type]); 1622 PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine)); 1623 PRT("\te_version: %s\n", ei_versions[ed->ehdr.e_version]); 1624 PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry); 1625 PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff); 1626 PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff); 1627 PRT("\te_flags: %u\n", ed->ehdr.e_flags); 1628 PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize); 1629 PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize); 1630 PRT("\te_phnum: %u\n", ed->ehdr.e_phnum); 1631 PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize); 1632 PRT("\te_shnum: %u\n", ed->ehdr.e_shnum); 1633 PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx); 1634 } 1635 } 1636 1637 /* 1638 * Dump the ELF Program Header Table. 1639 */ 1640 static void 1641 elf_print_phdr(struct elfdump *ed) 1642 { 1643 GElf_Phdr ph; 1644 size_t phnum; 1645 int header, i; 1646 1647 if (elf_getphnum(ed->elf, &phnum) == 0) { 1648 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 1649 return; 1650 } 1651 header = 0; 1652 for (i = 0; (u_int64_t) i < phnum; i++) { 1653 if (gelf_getphdr(ed->elf, i, &ph) != &ph) { 1654 warnx("elf_getphdr failed: %s", elf_errmsg(-1)); 1655 continue; 1656 } 1657 if (!STAILQ_EMPTY(&ed->snl) && 1658 find_name(ed, p_types[ph.p_type & 0x7]) == NULL) 1659 continue; 1660 if (ed->flags & SOLARIS_FMT) { 1661 PRT("\nProgram Header[%d]:\n", i); 1662 PRT(" p_vaddr: %#-14jx", (uintmax_t)ph.p_vaddr); 1663 PRT(" p_flags: [ %s ]\n", p_flags[ph.p_flags]); 1664 PRT(" p_paddr: %#-14jx", (uintmax_t)ph.p_paddr); 1665 PRT(" p_type: [ %s ]\n", p_types[ph.p_type & 0x7]); 1666 PRT(" p_filesz: %#-14jx", 1667 (uintmax_t)ph.p_filesz); 1668 PRT(" p_memsz: %#jx\n", (uintmax_t)ph.p_memsz); 1669 PRT(" p_offset: %#-14jx", 1670 (uintmax_t)ph.p_offset); 1671 PRT(" p_align: %#jx\n", (uintmax_t)ph.p_align); 1672 } else { 1673 if (!header) { 1674 PRT("\nprogram header:\n"); 1675 header = 1; 1676 } 1677 PRT("\n"); 1678 PRT("entry: %d\n", i); 1679 PRT("\tp_type: %s\n", p_types[ph.p_type & 0x7]); 1680 PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset); 1681 PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr); 1682 PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr); 1683 PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz); 1684 PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz); 1685 PRT("\tp_flags: %s\n", p_flags[ph.p_flags]); 1686 PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align); 1687 } 1688 } 1689 } 1690 1691 /* 1692 * Dump the ELF Section Header Table. 1693 */ 1694 static void 1695 elf_print_shdr(struct elfdump *ed) 1696 { 1697 struct section *s; 1698 int i; 1699 1700 if (!STAILQ_EMPTY(&ed->snl)) 1701 return; 1702 1703 if ((ed->flags & SOLARIS_FMT) == 0) 1704 PRT("\nsection header:\n"); 1705 for (i = 0; (size_t)i < ed->shnum; i++) { 1706 s = &ed->sl[i]; 1707 if (ed->flags & SOLARIS_FMT) { 1708 if (i == 0) 1709 continue; 1710 PRT("\nSection Header[%d]:", i); 1711 PRT(" sh_name: %s\n", s->name); 1712 PRT(" sh_addr: %#-14jx", (uintmax_t)s->addr); 1713 if (s->flags != 0) 1714 PRT(" sh_flags: [ %s ]\n", sh_flags(s->flags)); 1715 else 1716 PRT(" sh_flags: 0\n"); 1717 PRT(" sh_size: %#-14jx", (uintmax_t)s->sz); 1718 PRT(" sh_type: [ %s ]\n", 1719 sh_types(ed->ehdr.e_machine, s->type)); 1720 PRT(" sh_offset: %#-14jx", (uintmax_t)s->off); 1721 PRT(" sh_entsize: %#jx\n", (uintmax_t)s->entsize); 1722 PRT(" sh_link: %-14u", s->link); 1723 PRT(" sh_info: %u\n", s->info); 1724 PRT(" sh_addralign: %#jx\n", (uintmax_t)s->align); 1725 } else { 1726 PRT("\n"); 1727 PRT("entry: %ju\n", (uintmax_t)i); 1728 PRT("\tsh_name: %s\n", s->name); 1729 PRT("\tsh_type: %s\n", 1730 sh_types(ed->ehdr.e_machine, s->type)); 1731 PRT("\tsh_flags: %s\n", sh_flags(s->flags)); 1732 PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr); 1733 PRT("\tsh_offset: %ju\n", (uintmax_t)s->off); 1734 PRT("\tsh_size: %ju\n", (uintmax_t)s->sz); 1735 PRT("\tsh_link: %u\n", s->link); 1736 PRT("\tsh_info: %u\n", s->info); 1737 PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align); 1738 PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize); 1739 } 1740 } 1741 } 1742 1743 /* 1744 * Return number of entries in the given section. We'd prefer ent_count be a 1745 * size_t, but libelf APIs already use int for section indices. 1746 */ 1747 static int 1748 get_ent_count(const struct section *s, int *ent_count) 1749 { 1750 if (s->entsize == 0) { 1751 warnx("section %s has entry size 0", s->name); 1752 return (0); 1753 } else if (s->sz / s->entsize > INT_MAX) { 1754 warnx("section %s has invalid section count", s->name); 1755 return (0); 1756 } 1757 *ent_count = (int)(s->sz / s->entsize); 1758 return (1); 1759 } 1760 1761 /* 1762 * Retrieve the content of the corresponding SHT_SUNW_versym section for 1763 * a symbol table section. 1764 */ 1765 static void 1766 get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs) 1767 { 1768 struct section *s; 1769 Elf_Data *data; 1770 int j, elferr; 1771 1772 s = NULL; 1773 for (j = 0; (size_t)j < ed->shnum; j++) { 1774 s = &ed->sl[j]; 1775 if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i) 1776 break; 1777 } 1778 if ((size_t)j >= ed->shnum) { 1779 *vs = NULL; 1780 return; 1781 } 1782 (void) elf_errno(); 1783 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 1784 elferr = elf_errno(); 1785 if (elferr != 0) 1786 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 1787 *vs = NULL; 1788 return; 1789 } 1790 1791 *vs = data->d_buf; 1792 assert(data->d_size == s->sz); 1793 if (!get_ent_count(s, nvs)) 1794 *nvs = 0; 1795 } 1796 1797 /* 1798 * Dump the symbol table section. 1799 */ 1800 static void 1801 elf_print_symtab(struct elfdump *ed, int i) 1802 { 1803 struct section *s; 1804 const char *name; 1805 uint16_t *vs; 1806 char idx[10]; 1807 Elf_Data *data; 1808 GElf_Sym sym; 1809 int len, j, elferr, nvs; 1810 1811 s = &ed->sl[i]; 1812 if (ed->flags & SOLARIS_FMT) 1813 PRT("\nSymbol Table Section: %s\n", s->name); 1814 else 1815 PRT("\nsymbol table (%s):\n", s->name); 1816 (void) elf_errno(); 1817 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 1818 elferr = elf_errno(); 1819 if (elferr != 0) 1820 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 1821 return; 1822 } 1823 vs = NULL; 1824 nvs = 0; 1825 assert(data->d_size == s->sz); 1826 if (!get_ent_count(s, &len)) 1827 return; 1828 if (ed->flags & SOLARIS_FMT) { 1829 if (ed->ec == ELFCLASS32) 1830 PRT(" index value "); 1831 else 1832 PRT(" index value "); 1833 PRT("size type bind oth ver shndx name\n"); 1834 get_versym(ed, i, &vs, &nvs); 1835 if (vs != NULL && nvs != len) { 1836 warnx("#symbol not equal to #versym"); 1837 vs = NULL; 1838 } 1839 } 1840 for (j = 0; j < len; j++) { 1841 if (gelf_getsym(data, j, &sym) != &sym) { 1842 warnx("gelf_getsym failed: %s", elf_errmsg(-1)); 1843 continue; 1844 } 1845 name = get_string(ed, s->link, sym.st_name); 1846 if (ed->flags & SOLARIS_FMT) { 1847 snprintf(idx, sizeof(idx), "[%d]", j); 1848 if (ed->ec == ELFCLASS32) 1849 PRT("%10s ", idx); 1850 else 1851 PRT("%10s ", idx); 1852 PRT("0x%8.8jx ", (uintmax_t)sym.st_value); 1853 if (ed->ec == ELFCLASS32) 1854 PRT("0x%8.8jx ", (uintmax_t)sym.st_size); 1855 else 1856 PRT("0x%12.12jx ", (uintmax_t)sym.st_size); 1857 PRT("%s ", st_type_S(GELF_ST_TYPE(sym.st_info))); 1858 PRT("%s ", st_bindings_S(GELF_ST_BIND(sym.st_info))); 1859 PRT("%c ", st_others[sym.st_other]); 1860 PRT("%3u ", (vs == NULL ? 0 : vs[j])); 1861 PRT("%-11.11s ", sh_name(ed, sym.st_shndx)); 1862 PRT("%s\n", name); 1863 } else { 1864 PRT("\nentry: %d\n", j); 1865 PRT("\tst_name: %s\n", name); 1866 PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value); 1867 PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size); 1868 PRT("\tst_info: %s %s\n", 1869 st_type(ed->ehdr.e_machine, 1870 GELF_ST_TYPE(sym.st_info)), 1871 st_bindings(GELF_ST_BIND(sym.st_info))); 1872 PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx); 1873 } 1874 } 1875 } 1876 1877 /* 1878 * Dump the symbol tables. (.dynsym and .symtab) 1879 */ 1880 static void 1881 elf_print_symtabs(struct elfdump *ed) 1882 { 1883 int i; 1884 1885 for (i = 0; (size_t)i < ed->shnum; i++) 1886 if ((ed->sl[i].type == SHT_SYMTAB || 1887 ed->sl[i].type == SHT_DYNSYM) && 1888 (STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name))) 1889 elf_print_symtab(ed, i); 1890 } 1891 1892 /* 1893 * Dump the content of .dynamic section. 1894 */ 1895 static void 1896 elf_print_dynamic(struct elfdump *ed) 1897 { 1898 struct section *s; 1899 const char *name; 1900 char idx[10]; 1901 Elf_Data *data; 1902 GElf_Dyn dyn; 1903 int elferr, i, len; 1904 1905 s = NULL; 1906 for (i = 0; (size_t)i < ed->shnum; i++) { 1907 s = &ed->sl[i]; 1908 if (s->type == SHT_DYNAMIC && 1909 (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) 1910 break; 1911 } 1912 if ((size_t)i >= ed->shnum) 1913 return; 1914 1915 if (ed->flags & SOLARIS_FMT) { 1916 PRT("Dynamic Section: %s\n", s->name); 1917 PRT(" index tag value\n"); 1918 } else 1919 PRT("\ndynamic:\n"); 1920 (void) elf_errno(); 1921 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 1922 elferr = elf_errno(); 1923 if (elferr != 0) 1924 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 1925 return; 1926 } 1927 assert(data->d_size == s->sz); 1928 if (!get_ent_count(s, &len)) 1929 return; 1930 for (i = 0; i < len; i++) { 1931 if (gelf_getdyn(data, i, &dyn) != &dyn) { 1932 warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); 1933 continue; 1934 } 1935 1936 if (ed->flags & SOLARIS_FMT) { 1937 snprintf(idx, sizeof(idx), "[%d]", i); 1938 PRT("%10s %-16s ", idx, d_tags(dyn.d_tag)); 1939 } else { 1940 PRT("\n"); 1941 PRT("entry: %d\n", i); 1942 PRT("\td_tag: %s\n", d_tags(dyn.d_tag)); 1943 } 1944 switch(dyn.d_tag) { 1945 case DT_NEEDED: 1946 case DT_SONAME: 1947 case DT_RPATH: 1948 if ((name = elf_strptr(ed->elf, s->link, 1949 dyn.d_un.d_val)) == NULL) 1950 name = ""; 1951 if (ed->flags & SOLARIS_FMT) 1952 PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val, 1953 name); 1954 else 1955 PRT("\td_val: %s\n", name); 1956 break; 1957 case DT_PLTRELSZ: 1958 case DT_RELA: 1959 case DT_RELASZ: 1960 case DT_RELAENT: 1961 case DT_RELACOUNT: 1962 case DT_STRSZ: 1963 case DT_SYMENT: 1964 case DT_RELSZ: 1965 case DT_RELENT: 1966 case DT_PLTREL: 1967 case DT_VERDEF: 1968 case DT_VERDEFNUM: 1969 case DT_VERNEED: 1970 case DT_VERNEEDNUM: 1971 case DT_VERSYM: 1972 if (ed->flags & SOLARIS_FMT) 1973 PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val); 1974 else 1975 PRT("\td_val: %ju\n", 1976 (uintmax_t)dyn.d_un.d_val); 1977 break; 1978 case DT_PLTGOT: 1979 case DT_HASH: 1980 case DT_GNU_HASH: 1981 case DT_STRTAB: 1982 case DT_SYMTAB: 1983 case DT_INIT: 1984 case DT_FINI: 1985 case DT_REL: 1986 case DT_JMPREL: 1987 case DT_DEBUG: 1988 if (ed->flags & SOLARIS_FMT) 1989 PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr); 1990 else 1991 PRT("\td_ptr: %#jx\n", 1992 (uintmax_t)dyn.d_un.d_ptr); 1993 break; 1994 case DT_NULL: 1995 case DT_SYMBOLIC: 1996 case DT_TEXTREL: 1997 default: 1998 if (ed->flags & SOLARIS_FMT) 1999 PRT("\n"); 2000 break; 2001 } 2002 } 2003 } 2004 2005 /* 2006 * Dump a .rel/.rela section entry. 2007 */ 2008 static void 2009 elf_print_rel_entry(struct elfdump *ed, struct section *s, int j, 2010 struct rel_entry *r) 2011 { 2012 2013 if (ed->flags & SOLARIS_FMT) { 2014 PRT(" %-23s ", r_type(ed->ehdr.e_machine, 2015 GELF_R_TYPE(r->u_r.rel.r_info))); 2016 PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset); 2017 if (r->type == SHT_RELA) 2018 PRT("%10jd ", (intmax_t)r->u_r.rela.r_addend); 2019 else 2020 PRT(" "); 2021 PRT("%-14s ", s->name); 2022 PRT("%s\n", r->symn); 2023 } else { 2024 PRT("\n"); 2025 PRT("entry: %d\n", j); 2026 PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset); 2027 if (ed->ec == ELFCLASS32) 2028 PRT("\tr_info: %#jx\n", (uintmax_t) 2029 ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info), 2030 ELF64_R_TYPE(r->u_r.rel.r_info))); 2031 else 2032 PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info); 2033 if (r->type == SHT_RELA) 2034 PRT("\tr_addend: %jd\n", 2035 (intmax_t)r->u_r.rela.r_addend); 2036 } 2037 } 2038 2039 /* 2040 * Dump a relocation section of type SHT_RELA. 2041 */ 2042 static void 2043 elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data) 2044 { 2045 struct rel_entry r; 2046 int j, len; 2047 2048 if (ed->flags & SOLARIS_FMT) { 2049 PRT("\nRelocation Section: %s\n", s->name); 2050 PRT(" type offset " 2051 "addend section with respect to\n"); 2052 } else 2053 PRT("\nrelocation with addend (%s):\n", s->name); 2054 r.type = SHT_RELA; 2055 assert(data->d_size == s->sz); 2056 if (!get_ent_count(s, &len)) 2057 return; 2058 for (j = 0; j < len; j++) { 2059 if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) { 2060 warnx("gelf_getrela failed: %s", 2061 elf_errmsg(-1)); 2062 continue; 2063 } 2064 r.symn = get_symbol_name(ed, s->link, 2065 GELF_R_SYM(r.u_r.rela.r_info)); 2066 elf_print_rel_entry(ed, s, j, &r); 2067 } 2068 } 2069 2070 /* 2071 * Dump a relocation section of type SHT_REL. 2072 */ 2073 static void 2074 elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data) 2075 { 2076 struct rel_entry r; 2077 int j, len; 2078 2079 if (ed->flags & SOLARIS_FMT) { 2080 PRT("\nRelocation Section: %s\n", s->name); 2081 PRT(" type offset " 2082 "section with respect to\n"); 2083 } else 2084 PRT("\nrelocation (%s):\n", s->name); 2085 r.type = SHT_REL; 2086 assert(data->d_size == s->sz); 2087 if (!get_ent_count(s, &len)) 2088 return; 2089 for (j = 0; j < len; j++) { 2090 if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) { 2091 warnx("gelf_getrel failed: %s", elf_errmsg(-1)); 2092 continue; 2093 } 2094 r.symn = get_symbol_name(ed, s->link, 2095 GELF_R_SYM(r.u_r.rel.r_info)); 2096 elf_print_rel_entry(ed, s, j, &r); 2097 } 2098 } 2099 2100 /* 2101 * Dump relocation sections. 2102 */ 2103 static void 2104 elf_print_reloc(struct elfdump *ed) 2105 { 2106 struct section *s; 2107 Elf_Data *data; 2108 int i, elferr; 2109 2110 for (i = 0; (size_t)i < ed->shnum; i++) { 2111 s = &ed->sl[i]; 2112 if ((s->type == SHT_REL || s->type == SHT_RELA) && 2113 (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) { 2114 (void) elf_errno(); 2115 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2116 elferr = elf_errno(); 2117 if (elferr != 0) 2118 warnx("elf_getdata failed: %s", 2119 elf_errmsg(elferr)); 2120 continue; 2121 } 2122 if (s->type == SHT_REL) 2123 elf_print_rel(ed, s, data); 2124 else 2125 elf_print_rela(ed, s, data); 2126 } 2127 } 2128 } 2129 2130 /* 2131 * Dump the content of PT_INTERP segment. 2132 */ 2133 static void 2134 elf_print_interp(struct elfdump *ed) 2135 { 2136 const char *s; 2137 GElf_Phdr phdr; 2138 size_t phnum; 2139 int i; 2140 2141 if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL) 2142 return; 2143 2144 if ((s = elf_rawfile(ed->elf, NULL)) == NULL) { 2145 warnx("elf_rawfile failed: %s", elf_errmsg(-1)); 2146 return; 2147 } 2148 if (!elf_getphnum(ed->elf, &phnum)) { 2149 warnx("elf_getphnum failed: %s", elf_errmsg(-1)); 2150 return; 2151 } 2152 for (i = 0; (size_t)i < phnum; i++) { 2153 if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) { 2154 warnx("elf_getphdr failed: %s", elf_errmsg(-1)); 2155 continue; 2156 } 2157 if (phdr.p_type == PT_INTERP) { 2158 PRT("\ninterp:\n"); 2159 PRT("\t%s\n", s + phdr.p_offset); 2160 } 2161 } 2162 } 2163 2164 /* 2165 * Search the relocation sections for entries refering to the .got section. 2166 */ 2167 static void 2168 find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got) 2169 { 2170 struct section *s; 2171 struct rel_entry r; 2172 Elf_Data *data; 2173 int elferr, i, j, k, len; 2174 2175 for(i = 0; (size_t)i < ed->shnum; i++) { 2176 s = &ed->sl[i]; 2177 if (s->type != SHT_REL && s->type != SHT_RELA) 2178 continue; 2179 (void) elf_errno(); 2180 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2181 elferr = elf_errno(); 2182 if (elferr != 0) 2183 warnx("elf_getdata failed: %s", 2184 elf_errmsg(elferr)); 2185 return; 2186 } 2187 memset(&r, 0, sizeof(struct rel_entry)); 2188 r.type = s->type; 2189 assert(data->d_size == s->sz); 2190 if (!get_ent_count(s, &len)) 2191 return; 2192 for (j = 0; j < len; j++) { 2193 if (s->type == SHT_REL) { 2194 if (gelf_getrel(data, j, &r.u_r.rel) != 2195 &r.u_r.rel) { 2196 warnx("gelf_getrel failed: %s", 2197 elf_errmsg(-1)); 2198 continue; 2199 } 2200 } else { 2201 if (gelf_getrela(data, j, &r.u_r.rela) != 2202 &r.u_r.rela) { 2203 warnx("gelf_getrel failed: %s", 2204 elf_errmsg(-1)); 2205 continue; 2206 } 2207 } 2208 if (r.u_r.rel.r_offset >= gs->addr && 2209 r.u_r.rel.r_offset < gs->addr + gs->sz) { 2210 r.symn = get_symbol_name(ed, s->link, 2211 GELF_R_SYM(r.u_r.rel.r_info)); 2212 k = (r.u_r.rel.r_offset - gs->addr) / 2213 gs->entsize; 2214 memcpy(&got[k], &r, sizeof(struct rel_entry)); 2215 } 2216 } 2217 } 2218 } 2219 2220 static void 2221 elf_print_got_section(struct elfdump *ed, struct section *s) 2222 { 2223 struct rel_entry *got; 2224 Elf_Data *data, dst; 2225 int elferr, i, len; 2226 2227 if (s->entsize == 0) { 2228 /* XXX IA64 GOT section generated by gcc has entry size 0. */ 2229 if (s->align != 0) 2230 s->entsize = s->align; 2231 else 2232 return; 2233 } 2234 2235 if (!get_ent_count(s, &len)) 2236 return; 2237 if (ed->flags & SOLARIS_FMT) 2238 PRT("\nGlobal Offset Table Section: %s (%d entries)\n", 2239 s->name, len); 2240 else 2241 PRT("\nglobal offset table: %s\n", s->name); 2242 (void) elf_errno(); 2243 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2244 elferr = elf_errno(); 2245 if (elferr != 0) 2246 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 2247 return; 2248 } 2249 2250 /* 2251 * GOT section has section type SHT_PROGBITS, thus libelf treats it as 2252 * byte stream and will not perfrom any translation on it. As a result, 2253 * an exlicit call to gelf_xlatetom is needed here. Depends on arch, 2254 * GOT section should be translated to either WORD or XWORD. 2255 */ 2256 if (ed->ec == ELFCLASS32) 2257 data->d_type = ELF_T_WORD; 2258 else 2259 data->d_type = ELF_T_XWORD; 2260 memcpy(&dst, data, sizeof(Elf_Data)); 2261 if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) != 2262 &dst) { 2263 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 2264 return; 2265 } 2266 assert(dst.d_size == s->sz); 2267 if (ed->flags & SOLARIS_FMT) { 2268 /* 2269 * In verbose/Solaris mode, we search the relocation sections 2270 * and try to find the corresponding reloc entry for each GOT 2271 * section entry. 2272 */ 2273 if ((got = calloc(len, sizeof(struct rel_entry))) == NULL) 2274 err(EXIT_FAILURE, "calloc failed"); 2275 find_gotrel(ed, s, got); 2276 if (ed->ec == ELFCLASS32) { 2277 PRT(" ndx addr value reloc "); 2278 PRT("addend symbol\n"); 2279 } else { 2280 PRT(" ndx addr value "); 2281 PRT("reloc addend symbol\n"); 2282 } 2283 for(i = 0; i < len; i++) { 2284 PRT("[%5.5d] ", i); 2285 if (ed->ec == ELFCLASS32) { 2286 PRT("%-8.8jx ", 2287 (uintmax_t) (s->addr + i * s->entsize)); 2288 PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i)); 2289 } else { 2290 PRT("%-16.16jx ", 2291 (uintmax_t) (s->addr + i * s->entsize)); 2292 PRT("%-16.16jx ", 2293 (uintmax_t) *((uint64_t *)dst.d_buf + i)); 2294 } 2295 PRT("%-18s ", r_type(ed->ehdr.e_machine, 2296 GELF_R_TYPE(got[i].u_r.rel.r_info))); 2297 if (ed->ec == ELFCLASS32) 2298 PRT("%-8.8jd ", 2299 (intmax_t)got[i].u_r.rela.r_addend); 2300 else 2301 PRT("%-12.12jd ", 2302 (intmax_t)got[i].u_r.rela.r_addend); 2303 if (got[i].symn == NULL) 2304 got[i].symn = ""; 2305 PRT("%s\n", got[i].symn); 2306 } 2307 free(got); 2308 } else { 2309 for(i = 0; i < len; i++) { 2310 PRT("\nentry: %d\n", i); 2311 if (ed->ec == ELFCLASS32) 2312 PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i)); 2313 else 2314 PRT("\t%#jx\n", 2315 (uintmax_t) *((uint64_t *)dst.d_buf + i)); 2316 } 2317 } 2318 } 2319 2320 /* 2321 * Dump the content of Global Offset Table section. 2322 */ 2323 static void 2324 elf_print_got(struct elfdump *ed) 2325 { 2326 struct section *s; 2327 int i; 2328 2329 if (!STAILQ_EMPTY(&ed->snl)) 2330 return; 2331 2332 s = NULL; 2333 for (i = 0; (size_t)i < ed->shnum; i++) { 2334 s = &ed->sl[i]; 2335 if (s->name && !strncmp(s->name, ".got", 4) && 2336 (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) 2337 elf_print_got_section(ed, s); 2338 } 2339 } 2340 2341 /* 2342 * Dump the content of .note.ABI-tag section. 2343 */ 2344 static void 2345 elf_print_note(struct elfdump *ed) 2346 { 2347 struct section *s; 2348 Elf_Data *data; 2349 Elf_Note *en; 2350 uint32_t namesz; 2351 uint32_t descsz; 2352 uint32_t desc; 2353 size_t count; 2354 int elferr, i; 2355 char *src, idx[10]; 2356 2357 s = NULL; 2358 for (i = 0; (size_t)i < ed->shnum; i++) { 2359 s = &ed->sl[i]; 2360 if (s->type == SHT_NOTE && s->name && 2361 !strcmp(s->name, ".note.ABI-tag") && 2362 (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) 2363 break; 2364 } 2365 if ((size_t)i >= ed->shnum) 2366 return; 2367 if (ed->flags & SOLARIS_FMT) 2368 PRT("\nNote Section: %s\n", s->name); 2369 else 2370 PRT("\nnote (%s):\n", s->name); 2371 (void) elf_errno(); 2372 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2373 elferr = elf_errno(); 2374 if (elferr != 0) 2375 warnx("elf_getdata failed: %s", elf_errmsg(elferr)); 2376 return; 2377 } 2378 src = data->d_buf; 2379 count = data->d_size; 2380 while (count > sizeof(Elf_Note)) { 2381 en = (Elf_Note *) (uintptr_t) src; 2382 namesz = en->n_namesz; 2383 descsz = en->n_descsz; 2384 src += sizeof(Elf_Note); 2385 count -= sizeof(Elf_Note); 2386 if (ed->flags & SOLARIS_FMT) { 2387 PRT("\n type %#x\n", en->n_type); 2388 PRT(" namesz %#x:\n", en->n_namesz); 2389 PRT("%s\n", src); 2390 } else 2391 PRT("\t%s ", src); 2392 src += roundup2(namesz, 4); 2393 count -= roundup2(namesz, 4); 2394 2395 /* 2396 * Note that we dump the whole desc part if we're in 2397 * "Solaris mode", while in the normal mode, we only look 2398 * at the first 4 bytes (a 32bit word) of the desc, i.e, 2399 * we assume that it's always a FreeBSD version number. 2400 */ 2401 if (ed->flags & SOLARIS_FMT) { 2402 PRT(" descsz %#x:", en->n_descsz); 2403 for (i = 0; (uint32_t)i < descsz; i++) { 2404 if ((i & 0xF) == 0) { 2405 snprintf(idx, sizeof(idx), "desc[%d]", 2406 i); 2407 PRT("\n %-9s", idx); 2408 } else if ((i & 0x3) == 0) 2409 PRT(" "); 2410 PRT(" %2.2x", src[i]); 2411 } 2412 PRT("\n"); 2413 } else { 2414 if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 2415 desc = be32dec(src); 2416 else 2417 desc = le32dec(src); 2418 PRT("%d\n", desc); 2419 } 2420 src += roundup2(descsz, 4); 2421 count -= roundup2(descsz, 4); 2422 } 2423 } 2424 2425 /* 2426 * Dump a hash table. 2427 */ 2428 static void 2429 elf_print_svr4_hash(struct elfdump *ed, struct section *s) 2430 { 2431 Elf_Data *data; 2432 uint32_t *buf; 2433 uint32_t *bucket, *chain; 2434 uint32_t nbucket, nchain; 2435 uint32_t *bl, *c, maxl, total; 2436 int i, j, first, elferr; 2437 char idx[10]; 2438 2439 if (ed->flags & SOLARIS_FMT) 2440 PRT("\nHash Section: %s\n", s->name); 2441 else 2442 PRT("\nhash table (%s):\n", s->name); 2443 (void) elf_errno(); 2444 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2445 elferr = elf_errno(); 2446 if (elferr != 0) 2447 warnx("elf_getdata failed: %s", 2448 elf_errmsg(elferr)); 2449 return; 2450 } 2451 if (data->d_size < 2 * sizeof(uint32_t)) { 2452 warnx(".hash section too small"); 2453 return; 2454 } 2455 buf = data->d_buf; 2456 nbucket = buf[0]; 2457 nchain = buf[1]; 2458 if (nbucket <= 0 || nchain <= 0) { 2459 warnx("Malformed .hash section"); 2460 return; 2461 } 2462 if (data->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { 2463 warnx("Malformed .hash section"); 2464 return; 2465 } 2466 bucket = &buf[2]; 2467 chain = &buf[2 + nbucket]; 2468 2469 if (ed->flags & SOLARIS_FMT) { 2470 maxl = 0; 2471 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 2472 err(EXIT_FAILURE, "calloc failed"); 2473 for (i = 0; (uint32_t)i < nbucket; i++) 2474 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; 2475 j = chain[j]) 2476 if (++bl[i] > maxl) 2477 maxl = bl[i]; 2478 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 2479 err(EXIT_FAILURE, "calloc failed"); 2480 for (i = 0; (uint32_t)i < nbucket; i++) 2481 c[bl[i]]++; 2482 PRT(" bucket symndx name\n"); 2483 for (i = 0; (uint32_t)i < nbucket; i++) { 2484 first = 1; 2485 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; 2486 j = chain[j]) { 2487 if (first) { 2488 PRT("%10d ", i); 2489 first = 0; 2490 } else 2491 PRT(" "); 2492 snprintf(idx, sizeof(idx), "[%d]", j); 2493 PRT("%-10s ", idx); 2494 PRT("%s\n", get_symbol_name(ed, s->link, j)); 2495 } 2496 } 2497 PRT("\n"); 2498 total = 0; 2499 for (i = 0; (uint32_t)i <= maxl; i++) { 2500 total += c[i] * i; 2501 PRT("%10u buckets contain %8d symbols\n", c[i], i); 2502 } 2503 PRT("%10u buckets %8u symbols (globals)\n", nbucket, 2504 total); 2505 } else { 2506 PRT("\nnbucket: %u\n", nbucket); 2507 PRT("nchain: %u\n\n", nchain); 2508 for (i = 0; (uint32_t)i < nbucket; i++) 2509 PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]); 2510 for (i = 0; (uint32_t)i < nchain; i++) 2511 PRT("chain[%d]:\n\t%u\n\n", i, chain[i]); 2512 } 2513 } 2514 2515 /* 2516 * Dump a 64bit hash table. 2517 */ 2518 static void 2519 elf_print_svr4_hash64(struct elfdump *ed, struct section *s) 2520 { 2521 Elf_Data *data, dst; 2522 uint64_t *buf; 2523 uint64_t *bucket, *chain; 2524 uint64_t nbucket, nchain; 2525 uint64_t *bl, *c, maxl, total; 2526 int i, j, elferr, first; 2527 char idx[10]; 2528 2529 if (ed->flags & SOLARIS_FMT) 2530 PRT("\nHash Section: %s\n", s->name); 2531 else 2532 PRT("\nhash table (%s):\n", s->name); 2533 2534 /* 2535 * ALPHA uses 64-bit hash entries. Since libelf assumes that 2536 * .hash section contains only 32-bit entry, an explicit 2537 * gelf_xlatetom is needed here. 2538 */ 2539 (void) elf_errno(); 2540 if ((data = elf_rawdata(s->scn, NULL)) == NULL) { 2541 elferr = elf_errno(); 2542 if (elferr != 0) 2543 warnx("elf_rawdata failed: %s", 2544 elf_errmsg(elferr)); 2545 return; 2546 } 2547 data->d_type = ELF_T_XWORD; 2548 memcpy(&dst, data, sizeof(Elf_Data)); 2549 if (gelf_xlatetom(ed->elf, &dst, data, 2550 ed->ehdr.e_ident[EI_DATA]) != &dst) { 2551 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); 2552 return; 2553 } 2554 if (dst.d_size < 2 * sizeof(uint64_t)) { 2555 warnx(".hash section too small"); 2556 return; 2557 } 2558 buf = dst.d_buf; 2559 nbucket = buf[0]; 2560 nchain = buf[1]; 2561 if (nbucket <= 0 || nchain <= 0) { 2562 warnx("Malformed .hash section"); 2563 return; 2564 } 2565 if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) { 2566 warnx("Malformed .hash section"); 2567 return; 2568 } 2569 bucket = &buf[2]; 2570 chain = &buf[2 + nbucket]; 2571 2572 if (ed->flags & SOLARIS_FMT) { 2573 maxl = 0; 2574 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 2575 err(EXIT_FAILURE, "calloc failed"); 2576 for (i = 0; (uint64_t)i < nbucket; i++) 2577 for (j = bucket[i]; j > 0 && (uint64_t)j < nchain; 2578 j = chain[j]) 2579 if (++bl[i] > maxl) 2580 maxl = bl[i]; 2581 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 2582 err(EXIT_FAILURE, "calloc failed"); 2583 for (i = 0; (uint64_t)i < nbucket; i++) 2584 c[bl[i]]++; 2585 PRT(" bucket symndx name\n"); 2586 for (i = 0; (uint64_t)i < nbucket; i++) { 2587 first = 1; 2588 for (j = bucket[i]; j > 0 && (uint64_t)j < nchain; 2589 j = chain[j]) { 2590 if (first) { 2591 PRT("%10d ", i); 2592 first = 0; 2593 } else 2594 PRT(" "); 2595 snprintf(idx, sizeof(idx), "[%d]", j); 2596 PRT("%-10s ", idx); 2597 PRT("%s\n", get_symbol_name(ed, s->link, j)); 2598 } 2599 } 2600 PRT("\n"); 2601 total = 0; 2602 for (i = 0; (uint64_t)i <= maxl; i++) { 2603 total += c[i] * i; 2604 PRT("%10ju buckets contain %8d symbols\n", 2605 (uintmax_t)c[i], i); 2606 } 2607 PRT("%10ju buckets %8ju symbols (globals)\n", 2608 (uintmax_t)nbucket, (uintmax_t)total); 2609 } else { 2610 PRT("\nnbucket: %ju\n", (uintmax_t)nbucket); 2611 PRT("nchain: %ju\n\n", (uintmax_t)nchain); 2612 for (i = 0; (uint64_t)i < nbucket; i++) 2613 PRT("bucket[%d]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]); 2614 for (i = 0; (uint64_t)i < nchain; i++) 2615 PRT("chain[%d]:\n\t%ju\n\n", i, (uintmax_t)chain[i]); 2616 } 2617 2618 } 2619 2620 /* 2621 * Dump a GNU hash table. 2622 */ 2623 static void 2624 elf_print_gnu_hash(struct elfdump *ed, struct section *s) 2625 { 2626 struct section *ds; 2627 Elf_Data *data; 2628 uint32_t *buf; 2629 uint32_t *bucket, *chain; 2630 uint32_t nbucket, nchain, symndx, maskwords, shift2; 2631 uint32_t *bl, *c, maxl, total; 2632 int i, j, first, elferr, dynsymcount; 2633 char idx[10]; 2634 2635 if (ed->flags & SOLARIS_FMT) 2636 PRT("\nGNU Hash Section: %s\n", s->name); 2637 else 2638 PRT("\ngnu hash table (%s):\n", s->name); 2639 (void) elf_errno(); 2640 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2641 elferr = elf_errno(); 2642 if (elferr != 0) 2643 warnx("elf_getdata failed: %s", 2644 elf_errmsg(elferr)); 2645 return; 2646 } 2647 if (data->d_size < 4 * sizeof(uint32_t)) { 2648 warnx(".gnu.hash section too small"); 2649 return; 2650 } 2651 buf = data->d_buf; 2652 nbucket = buf[0]; 2653 symndx = buf[1]; 2654 maskwords = buf[2]; 2655 shift2 = buf[3]; 2656 buf += 4; 2657 ds = &ed->sl[s->link]; 2658 if (!get_ent_count(ds, &dynsymcount)) 2659 return; 2660 nchain = dynsymcount - symndx; 2661 if (data->d_size != 4 * sizeof(uint32_t) + maskwords * 2662 (ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + 2663 (nbucket + nchain) * sizeof(uint32_t)) { 2664 warnx("Malformed .gnu.hash section"); 2665 return; 2666 } 2667 bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2); 2668 chain = bucket + nbucket; 2669 2670 if (ed->flags & SOLARIS_FMT) { 2671 maxl = 0; 2672 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) 2673 err(EXIT_FAILURE, "calloc failed"); 2674 for (i = 0; (uint32_t)i < nbucket; i++) 2675 for (j = bucket[i]; 2676 j > 0 && (uint32_t)j - symndx < nchain; 2677 j++) { 2678 if (++bl[i] > maxl) 2679 maxl = bl[i]; 2680 if (chain[j - symndx] & 1) 2681 break; 2682 } 2683 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) 2684 err(EXIT_FAILURE, "calloc failed"); 2685 for (i = 0; (uint32_t)i < nbucket; i++) 2686 c[bl[i]]++; 2687 PRT(" bucket symndx name\n"); 2688 for (i = 0; (uint32_t)i < nbucket; i++) { 2689 first = 1; 2690 for (j = bucket[i]; 2691 j > 0 && (uint32_t)j - symndx < nchain; 2692 j++) { 2693 if (first) { 2694 PRT("%10d ", i); 2695 first = 0; 2696 } else 2697 PRT(" "); 2698 snprintf(idx, sizeof(idx), "[%d]", j ); 2699 PRT("%-10s ", idx); 2700 PRT("%s\n", get_symbol_name(ed, s->link, j)); 2701 if (chain[j - symndx] & 1) 2702 break; 2703 } 2704 } 2705 PRT("\n"); 2706 total = 0; 2707 for (i = 0; (uint32_t)i <= maxl; i++) { 2708 total += c[i] * i; 2709 PRT("%10u buckets contain %8d symbols\n", c[i], i); 2710 } 2711 PRT("%10u buckets %8u symbols (globals)\n", nbucket, 2712 total); 2713 } else { 2714 PRT("\nnbucket: %u\n", nbucket); 2715 PRT("symndx: %u\n", symndx); 2716 PRT("maskwords: %u\n", maskwords); 2717 PRT("shift2: %u\n", shift2); 2718 PRT("nchain: %u\n\n", nchain); 2719 for (i = 0; (uint32_t)i < nbucket; i++) 2720 PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]); 2721 for (i = 0; (uint32_t)i < nchain; i++) 2722 PRT("chain[%d]:\n\t%u\n\n", i, chain[i]); 2723 } 2724 } 2725 2726 /* 2727 * Dump hash tables. 2728 */ 2729 static void 2730 elf_print_hash(struct elfdump *ed) 2731 { 2732 struct section *s; 2733 int i; 2734 2735 for (i = 0; (size_t)i < ed->shnum; i++) { 2736 s = &ed->sl[i]; 2737 if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) && 2738 (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) { 2739 if (s->type == SHT_GNU_HASH) 2740 elf_print_gnu_hash(ed, s); 2741 else if (ed->ehdr.e_machine == EM_ALPHA && 2742 s->entsize == 8) 2743 elf_print_svr4_hash64(ed, s); 2744 else 2745 elf_print_svr4_hash(ed, s); 2746 } 2747 } 2748 } 2749 2750 /* 2751 * Dump the content of a Version Definition(SHT_SUNW_Verdef) Section. 2752 */ 2753 static void 2754 elf_print_verdef(struct elfdump *ed, struct section *s) 2755 { 2756 Elf_Data *data; 2757 Elf32_Verdef *vd; 2758 Elf32_Verdaux *vda; 2759 const char *str; 2760 char idx[10]; 2761 uint8_t *buf, *end, *buf2; 2762 int i, j, elferr, count; 2763 2764 if (ed->flags & SOLARIS_FMT) 2765 PRT("Version Definition Section: %s\n", s->name); 2766 else 2767 PRT("\nversion definition section (%s):\n", s->name); 2768 (void) elf_errno(); 2769 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2770 elferr = elf_errno(); 2771 if (elferr != 0) 2772 warnx("elf_getdata failed: %s", 2773 elf_errmsg(elferr)); 2774 return; 2775 } 2776 buf = data->d_buf; 2777 end = buf + data->d_size; 2778 i = 0; 2779 if (ed->flags & SOLARIS_FMT) 2780 PRT(" index version dependency\n"); 2781 while (buf + sizeof(Elf32_Verdef) <= end) { 2782 vd = (Elf32_Verdef *) (uintptr_t) buf; 2783 if (ed->flags & SOLARIS_FMT) { 2784 snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx); 2785 PRT("%10s ", idx); 2786 } else { 2787 PRT("\nentry: %d\n", i++); 2788 PRT("\tvd_version: %u\n", vd->vd_version); 2789 PRT("\tvd_flags: %u\n", vd->vd_flags); 2790 PRT("\tvd_ndx: %u\n", vd->vd_ndx); 2791 PRT("\tvd_cnt: %u\n", vd->vd_cnt); 2792 PRT("\tvd_hash: %u\n", vd->vd_hash); 2793 PRT("\tvd_aux: %u\n", vd->vd_aux); 2794 PRT("\tvd_next: %u\n\n", vd->vd_next); 2795 } 2796 buf2 = buf + vd->vd_aux; 2797 j = 0; 2798 count = 0; 2799 while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) { 2800 vda = (Elf32_Verdaux *) (uintptr_t) buf2; 2801 str = get_string(ed, s->link, vda->vda_name); 2802 if (ed->flags & SOLARIS_FMT) { 2803 if (count == 0) 2804 PRT("%-26.26s", str); 2805 else if (count == 1) 2806 PRT(" %-20.20s", str); 2807 else { 2808 PRT("\n%40.40s", ""); 2809 PRT("%s", str); 2810 } 2811 } else { 2812 PRT("\t\tvda: %d\n", j++); 2813 PRT("\t\t\tvda_name: %s\n", str); 2814 PRT("\t\t\tvda_next: %u\n", vda->vda_next); 2815 } 2816 if (vda->vda_next == 0) { 2817 if (ed->flags & SOLARIS_FMT) { 2818 if (vd->vd_flags & VER_FLG_BASE) { 2819 if (count == 0) 2820 PRT("%-20.20s", ""); 2821 PRT("%s", "[ BASE ]"); 2822 } 2823 PRT("\n"); 2824 } 2825 break; 2826 } 2827 if (ed->flags & SOLARIS_FMT) 2828 count++; 2829 buf2 += vda->vda_next; 2830 } 2831 if (vd->vd_next == 0) 2832 break; 2833 buf += vd->vd_next; 2834 } 2835 } 2836 2837 /* 2838 * Dump the content of a Version Needed(SHT_SUNW_Verneed) Section. 2839 */ 2840 static void 2841 elf_print_verneed(struct elfdump *ed, struct section *s) 2842 { 2843 Elf_Data *data; 2844 Elf32_Verneed *vn; 2845 Elf32_Vernaux *vna; 2846 uint8_t *buf, *end, *buf2; 2847 int i, j, elferr, first; 2848 2849 if (ed->flags & SOLARIS_FMT) 2850 PRT("\nVersion Needed Section: %s\n", s->name); 2851 else 2852 PRT("\nversion need section (%s):\n", s->name); 2853 (void) elf_errno(); 2854 if ((data = elf_getdata(s->scn, NULL)) == NULL) { 2855 elferr = elf_errno(); 2856 if (elferr != 0) 2857 warnx("elf_getdata failed: %s", 2858 elf_errmsg(elferr)); 2859 return; 2860 } 2861 buf = data->d_buf; 2862 end = buf + data->d_size; 2863 if (ed->flags & SOLARIS_FMT) 2864 PRT(" file version\n"); 2865 i = 0; 2866 while (buf + sizeof(Elf32_Verneed) <= end) { 2867 vn = (Elf32_Verneed *) (uintptr_t) buf; 2868 if (ed->flags & SOLARIS_FMT) 2869 PRT(" %-26.26s ", 2870 get_string(ed, s->link, vn->vn_file)); 2871 else { 2872 PRT("\nentry: %d\n", i++); 2873 PRT("\tvn_version: %u\n", vn->vn_version); 2874 PRT("\tvn_cnt: %u\n", vn->vn_cnt); 2875 PRT("\tvn_file: %s\n", 2876 get_string(ed, s->link, vn->vn_file)); 2877 PRT("\tvn_aux: %u\n", vn->vn_aux); 2878 PRT("\tvn_next: %u\n\n", vn->vn_next); 2879 } 2880 buf2 = buf + vn->vn_aux; 2881 j = 0; 2882 first = 1; 2883 while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) { 2884 vna = (Elf32_Vernaux *) (uintptr_t) buf2; 2885 if (ed->flags & SOLARIS_FMT) { 2886 if (!first) 2887 PRT("%40.40s", ""); 2888 else 2889 first = 0; 2890 PRT("%s\n", get_string(ed, s->link, 2891 vna->vna_name)); 2892 } else { 2893 PRT("\t\tvna: %d\n", j++); 2894 PRT("\t\t\tvna_hash: %u\n", vna->vna_hash); 2895 PRT("\t\t\tvna_flags: %u\n", vna->vna_flags); 2896 PRT("\t\t\tvna_other: %u\n", vna->vna_other); 2897 PRT("\t\t\tvna_name: %s\n", 2898 get_string(ed, s->link, vna->vna_name)); 2899 PRT("\t\t\tvna_next: %u\n", vna->vna_next); 2900 } 2901 if (vna->vna_next == 0) 2902 break; 2903 buf2 += vna->vna_next; 2904 } 2905 if (vn->vn_next == 0) 2906 break; 2907 buf += vn->vn_next; 2908 } 2909 } 2910 2911 /* 2912 * Dump the symbol-versioning sections. 2913 */ 2914 static void 2915 elf_print_symver(struct elfdump *ed) 2916 { 2917 struct section *s; 2918 int i; 2919 2920 for (i = 0; (size_t)i < ed->shnum; i++) { 2921 s = &ed->sl[i]; 2922 if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name)) 2923 continue; 2924 if (s->type == SHT_SUNW_verdef) 2925 elf_print_verdef(ed, s); 2926 if (s->type == SHT_SUNW_verneed) 2927 elf_print_verneed(ed, s); 2928 } 2929 } 2930 2931 /* 2932 * Dump the ELF checksum. See gelf_checksum(3) for details. 2933 */ 2934 static void 2935 elf_print_checksum(struct elfdump *ed) 2936 { 2937 2938 if (!STAILQ_EMPTY(&ed->snl)) 2939 return; 2940 2941 PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf)); 2942 } 2943 2944 #define USAGE_MESSAGE "\ 2945 Usage: %s [options] file...\n\ 2946 Display information about ELF objects and ar(1) archives.\n\n\ 2947 Options:\n\ 2948 -a Show all information.\n\ 2949 -c Show shared headers.\n\ 2950 -d Show dynamic symbols.\n\ 2951 -e Show the ELF header.\n\ 2952 -G Show the GOT.\n\ 2953 -H | --help Show a usage message and exit.\n\ 2954 -h Show hash values.\n\ 2955 -i Show the dynamic interpreter.\n\ 2956 -k Show the ELF checksum.\n\ 2957 -n Show the contents of note sections.\n\ 2958 -N NAME Show the section named \"NAME\".\n\ 2959 -p Show the program header.\n\ 2960 -r Show relocations.\n\ 2961 -s Show the symbol table.\n\ 2962 -S Use the Solaris elfdump format.\n\ 2963 -v Show symbol-versioning information.\n\ 2964 -V | --version Print a version identifier and exit.\n\ 2965 -w FILE Write output to \"FILE\".\n" 2966 2967 static void 2968 usage(void) 2969 { 2970 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); 2971 exit(EXIT_FAILURE); 2972 } 2973