xref: /freebsd/contrib/elftoolchain/elfdump/elfdump.c (revision 2830819497fb2deae3dd71574592ace55f2fbdba)
1 /*-
2  * Copyright (c) 2007-2012 Kai Wang
3  * Copyright (c) 2003 David O'Brien.  All rights reserved.
4  * Copyright (c) 2001 Jake Burkholder
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/stat.h>
32 
33 #include <ar.h>
34 #include <assert.h>
35 #include <err.h>
36 #include <fcntl.h>
37 #include <gelf.h>
38 #include <getopt.h>
39 #include <libelftc.h>
40 #include <inttypes.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 
46 #ifdef USE_LIBARCHIVE_AR
47 #include <archive.h>
48 #include <archive_entry.h>
49 #endif
50 
51 #include "_elftc.h"
52 
53 ELFTC_VCSID("$Id: elfdump.c 3250 2015-10-06 13:56:15Z emaste $");
54 
55 #if defined(ELFTC_NEED_ELF_NOTE_DEFINITION)
56 #include "native-elf-format.h"
57 #if ELFTC_CLASS == ELFCLASS32
58 typedef Elf32_Nhdr	Elf_Note;
59 #else
60 typedef Elf64_Nhdr	Elf_Note;
61 #endif
62 #endif
63 
64 /* elfdump(1) options. */
65 #define	ED_DYN		(1<<0)
66 #define	ED_EHDR		(1<<1)
67 #define	ED_GOT		(1<<2)
68 #define	ED_HASH		(1<<3)
69 #define	ED_INTERP	(1<<4)
70 #define	ED_NOTE		(1<<5)
71 #define	ED_PHDR		(1<<6)
72 #define	ED_REL		(1<<7)
73 #define	ED_SHDR		(1<<8)
74 #define	ED_SYMTAB	(1<<9)
75 #define	ED_SYMVER	(1<<10)
76 #define	ED_CHECKSUM	(1<<11)
77 #define	ED_ALL		((1<<12)-1)
78 
79 /* elfdump(1) run control flags. */
80 #define	SOLARIS_FMT		(1<<0)
81 #define	PRINT_FILENAME		(1<<1)
82 #define	PRINT_ARSYM		(1<<2)
83 #define	ONLY_ARSYM		(1<<3)
84 
85 /* Convenient print macro. */
86 #define	PRT(...)	fprintf(ed->out, __VA_ARGS__)
87 
88 /* Internal data structure for sections. */
89 struct section {
90 	const char	*name;		/* section name */
91 	Elf_Scn		*scn;		/* section scn */
92 	uint64_t	 off;		/* section offset */
93 	uint64_t	 sz;		/* section size */
94 	uint64_t	 entsize;	/* section entsize */
95 	uint64_t	 align;		/* section alignment */
96 	uint64_t	 type;		/* section type */
97 	uint64_t	 flags;		/* section flags */
98 	uint64_t	 addr;		/* section virtual addr */
99 	uint32_t	 link;		/* section link ndx */
100 	uint32_t	 info;		/* section info ndx */
101 };
102 
103 struct spec_name {
104 	const char	*name;
105 	STAILQ_ENTRY(spec_name)	sn_list;
106 };
107 
108 /* Structure encapsulates the global data for readelf(1). */
109 struct elfdump {
110 	FILE		*out;		/* output redirection. */
111 	const char	*filename;	/* current processing file. */
112 	const char	*archive;	/* archive name */
113 	int		 options;	/* command line options. */
114 	int		 flags;		/* run control flags. */
115 	Elf		*elf;		/* underlying ELF descriptor. */
116 #ifndef USE_LIBARCHIVE_AR
117 	Elf		*ar;		/* ar(1) archive descriptor. */
118 #endif
119 	GElf_Ehdr	 ehdr;		/* ELF header. */
120 	int		 ec;		/* ELF class. */
121 	size_t		 shnum;		/* #sections. */
122 	struct section	*sl;		/* list of sections. */
123 	STAILQ_HEAD(, spec_name) snl;	/* list of names specified by -N. */
124 };
125 
126 /* Relocation entry. */
127 struct rel_entry {
128 	union {
129 		GElf_Rel rel;
130 		GElf_Rela rela;
131 	} u_r;
132 	const char *symn;
133 	uint32_t type;
134 };
135 
136 #if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS)
137 static __inline uint32_t
138 be32dec(const void *pp)
139 {
140 	unsigned char const *p = (unsigned char const *)pp;
141 
142 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
143 }
144 
145 static __inline uint32_t
146 le32dec(const void *pp)
147 {
148 	unsigned char const *p = (unsigned char const *)pp;
149 
150 	return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
151 }
152 #endif
153 
154 /* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */
155 static const char *
156 d_tags(uint64_t tag)
157 {
158 	switch (tag) {
159 	case 0: return "DT_NULL";
160 	case 1: return "DT_NEEDED";
161 	case 2: return "DT_PLTRELSZ";
162 	case 3: return "DT_PLTGOT";
163 	case 4: return "DT_HASH";
164 	case 5: return "DT_STRTAB";
165 	case 6: return "DT_SYMTAB";
166 	case 7: return "DT_RELA";
167 	case 8: return "DT_RELASZ";
168 	case 9: return "DT_RELAENT";
169 	case 10: return "DT_STRSZ";
170 	case 11: return "DT_SYMENT";
171 	case 12: return "DT_INIT";
172 	case 13: return "DT_FINI";
173 	case 14: return "DT_SONAME";
174 	case 15: return "DT_RPATH";
175 	case 16: return "DT_SYMBOLIC";
176 	case 17: return "DT_REL";
177 	case 18: return "DT_RELSZ";
178 	case 19: return "DT_RELENT";
179 	case 20: return "DT_PLTREL";
180 	case 21: return "DT_DEBUG";
181 	case 22: return "DT_TEXTREL";
182 	case 23: return "DT_JMPREL";
183 	case 24: return "DT_BIND_NOW";
184 	case 25: return "DT_INIT_ARRAY";
185 	case 26: return "DT_FINI_ARRAY";
186 	case 27: return "DT_INIT_ARRAYSZ";
187 	case 28: return "DT_FINI_ARRAYSZ";
188 	case 29: return "DT_RUNPATH";
189 	case 30: return "DT_FLAGS";
190 	case 32: return "DT_PREINIT_ARRAY"; /* XXX: DT_ENCODING */
191 	case 33: return "DT_PREINIT_ARRAYSZ";
192 	/* 0x6000000D - 0x6ffff000 operating system-specific semantics */
193 	case 0x6ffffdf5: return "DT_GNU_PRELINKED";
194 	case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ";
195 	case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ";
196 	case 0x6ffffdf8: return "DT_SUNW_CHECKSUM";
197 	case 0x6ffffdf9: return "DT_PLTPADSZ";
198 	case 0x6ffffdfa: return "DT_MOVEENT";
199 	case 0x6ffffdfb: return "DT_MOVESZ";
200 	case 0x6ffffdfc: return "DT_FEATURE";
201 	case 0x6ffffdfd: return "DT_POSFLAG_1";
202 	case 0x6ffffdfe: return "DT_SYMINSZ";
203 	case 0x6ffffdff: return "DT_SYMINENT (DT_VALRNGHI)";
204 	case 0x6ffffe00: return "DT_ADDRRNGLO";
205 	case 0x6ffffef5: return "DT_GNU_HASH";
206 	case 0x6ffffef8: return "DT_GNU_CONFLICT";
207 	case 0x6ffffef9: return "DT_GNU_LIBLIST";
208 	case 0x6ffffefa: return "DT_CONFIG";
209 	case 0x6ffffefb: return "DT_DEPAUDIT";
210 	case 0x6ffffefc: return "DT_AUDIT";
211 	case 0x6ffffefd: return "DT_PLTPAD";
212 	case 0x6ffffefe: return "DT_MOVETAB";
213 	case 0x6ffffeff: return "DT_SYMINFO (DT_ADDRRNGHI)";
214 	case 0x6ffffff9: return "DT_RELACOUNT";
215 	case 0x6ffffffa: return "DT_RELCOUNT";
216 	case 0x6ffffffb: return "DT_FLAGS_1";
217 	case 0x6ffffffc: return "DT_VERDEF";
218 	case 0x6ffffffd: return "DT_VERDEFNUM";
219 	case 0x6ffffffe: return "DT_VERNEED";
220 	case 0x6fffffff: return "DT_VERNEEDNUM";
221 	case 0x6ffffff0: return "DT_GNU_VERSYM";
222 	/* 0x70000000 - 0x7fffffff processor-specific semantics */
223 	case 0x70000000: return "DT_IA_64_PLT_RESERVE";
224 	case 0x7ffffffd: return "DT_SUNW_AUXILIARY";
225 	case 0x7ffffffe: return "DT_SUNW_USED";
226 	case 0x7fffffff: return "DT_SUNW_FILTER";
227 	default: return "ERROR: TAG NOT DEFINED";
228 	}
229 }
230 
231 static const char *
232 e_machines(unsigned int mach)
233 {
234 	static char machdesc[64];
235 
236 	switch (mach) {
237 	case EM_NONE:	return "EM_NONE";
238 	case EM_M32:	return "EM_M32";
239 	case EM_SPARC:	return "EM_SPARC";
240 	case EM_386:	return "EM_386";
241 	case EM_68K:	return "EM_68K";
242 	case EM_88K:	return "EM_88K";
243 	case EM_IAMCU:	return "EM_IAMCU";
244 	case EM_860:	return "EM_860";
245 	case EM_MIPS:	return "EM_MIPS";
246 	case EM_PPC:	return "EM_PPC";
247 	case EM_PPC64:	return "EM_PPC64";
248 	case EM_ARM:	return "EM_ARM";
249 	case EM_ALPHA:	return "EM_ALPHA (legacy)";
250 	case EM_SPARCV9:return "EM_SPARCV9";
251 	case EM_IA_64:	return "EM_IA_64";
252 	case EM_X86_64:	return "EM_X86_64";
253 	case EM_AARCH64:return "EM_AARCH64";
254 	case EM_RISCV:	return "EM_RISCV";
255 	}
256 	snprintf(machdesc, sizeof(machdesc),
257 	    "(unknown machine) -- type 0x%x", mach);
258 	return (machdesc);
259 }
260 
261 static const char *e_types[] = {
262 	"ET_NONE", "ET_REL", "ET_EXEC", "ET_DYN", "ET_CORE"
263 };
264 
265 static const char *ei_versions[] = {
266 	"EV_NONE", "EV_CURRENT"
267 };
268 
269 static const char *ei_classes[] = {
270 	"ELFCLASSNONE", "ELFCLASS32", "ELFCLASS64"
271 };
272 
273 static const char *ei_data[] = {
274 	"ELFDATANONE", "ELFDATA2LSB", "ELFDATA2MSB"
275 };
276 
277 static const char *ei_abis[256] = {
278 	"ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX",
279 	"ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX",
280 	"ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64",
281 	"ELFOSABI_MODESTO", "ELFOSABI_OPENBSD",
282 	[255] = "ELFOSABI_STANDALONE"
283 };
284 
285 static const char *p_types[] = {
286 	"PT_NULL", "PT_LOAD", "PT_DYNAMIC", "PT_INTERP", "PT_NOTE",
287 	"PT_SHLIB", "PT_PHDR", "PT_TLS"
288 };
289 
290 static const char *p_flags[] = {
291 	"", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R",
292 	"PF_X|PF_W|PF_R"
293 };
294 
295 static const char *
296 sh_name(struct elfdump *ed, int ndx)
297 {
298 	static char num[10];
299 
300 	switch (ndx) {
301 	case SHN_UNDEF: return "UNDEF";
302 	case SHN_ABS: return "ABS";
303 	case SHN_COMMON: return "COMMON";
304 	default:
305 		if ((uint64_t)ndx < ed->shnum)
306 			return (ed->sl[ndx].name);
307 		else {
308 			snprintf(num, sizeof(num), "%d", ndx);
309 			return (num);
310 		}
311 	}
312 }
313 
314 /* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */
315 static const char *
316 sh_types(u_int64_t sht) {
317 	switch (sht) {
318 	case 0:	return "SHT_NULL";
319 	case 1: return "SHT_PROGBITS";
320 	case 2: return "SHT_SYMTAB";
321 	case 3: return "SHT_STRTAB";
322 	case 4: return "SHT_RELA";
323 	case 5: return "SHT_HASH";
324 	case 6: return "SHT_DYNAMIC";
325 	case 7: return "SHT_NOTE";
326 	case 8: return "SHT_NOBITS";
327 	case 9: return "SHT_REL";
328 	case 10: return "SHT_SHLIB";
329 	case 11: return "SHT_DYNSYM";
330 	case 14: return "SHT_INIT_ARRAY";
331 	case 15: return "SHT_FINI_ARRAY";
332 	case 16: return "SHT_PREINIT_ARRAY";
333 	case 17: return "SHT_GROUP";
334 	case 18: return "SHT_SYMTAB_SHNDX";
335 	/* 0x60000000 - 0x6fffffff operating system-specific semantics */
336 	case 0x6ffffff0: return "XXX:VERSYM";
337 	case 0x6ffffff4: return "SHT_SUNW_dof";
338 	case 0x6ffffff6: return "SHT_GNU_HASH";
339 	case 0x6ffffff7: return "SHT_GNU_LIBLIST";
340 	case 0x6ffffffc: return "XXX:VERDEF";
341 	case 0x6ffffffd: return "SHT_SUNW(GNU)_verdef";
342 	case 0x6ffffffe: return "SHT_SUNW(GNU)_verneed";
343 	case 0x6fffffff: return "SHT_SUNW(GNU)_versym";
344 	/* 0x70000000 - 0x7fffffff processor-specific semantics */
345 	case 0x70000000: return "SHT_IA_64_EXT";
346 	case 0x70000001: return "SHT_IA_64_UNWIND";
347 	case 0x7ffffffd: return "XXX:AUXILIARY";
348 	case 0x7fffffff: return "XXX:FILTER";
349 	/* 0x80000000 - 0xffffffff application programs */
350 	default: return "ERROR: SHT NOT DEFINED";
351 	}
352 }
353 
354 /*
355  * Define known section flags. These flags are defined in the order
356  * they are to be printed out.
357  */
358 #define	DEFINE_SHFLAGS()			\
359 	DEFINE_SHF(WRITE)			\
360 	DEFINE_SHF(ALLOC)			\
361 	DEFINE_SHF(EXECINSTR)			\
362 	DEFINE_SHF(MERGE)			\
363 	DEFINE_SHF(STRINGS)			\
364 	DEFINE_SHF(INFO_LINK)			\
365 	DEFINE_SHF(LINK_ORDER)			\
366 	DEFINE_SHF(OS_NONCONFORMING)		\
367 	DEFINE_SHF(GROUP)			\
368 	DEFINE_SHF(TLS)
369 
370 #undef	DEFINE_SHF
371 #define	DEFINE_SHF(F) "SHF_" #F "|"
372 #define ALLSHFLAGS	DEFINE_SHFLAGS()
373 
374 static const char *
375 sh_flags(uint64_t shf)
376 {
377 	static char	flg[sizeof(ALLSHFLAGS)+1];
378 
379 	flg[0] = '\0';
380 
381 #undef	DEFINE_SHF
382 #define	DEFINE_SHF(N)				\
383 	if (shf & SHF_##N)			\
384 		strcat(flg, "SHF_" #N "|");	\
385 
386 	DEFINE_SHFLAGS()
387 
388 	flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */
389 
390 	return (flg);
391 }
392 
393 static const char *st_types[] = {
394 	"STT_NOTYPE", "STT_OBJECT", "STT_FUNC", "STT_SECTION", "STT_FILE",
395 	"STT_COMMON", "STT_TLS"
396 };
397 
398 static const char *st_types_S[] = {
399 	"NOTY", "OBJT", "FUNC", "SECT", "FILE"
400 };
401 
402 static const char *st_bindings[] = {
403 	"STB_LOCAL", "STB_GLOBAL", "STB_WEAK"
404 };
405 
406 static const char *st_bindings_S[] = {
407 	"LOCL", "GLOB", "WEAK"
408 };
409 
410 static unsigned char st_others[] = {
411 	'D', 'I', 'H', 'P'
412 };
413 
414 static const char *
415 r_type(unsigned int mach, unsigned int type)
416 {
417 	switch(mach) {
418 	case EM_NONE: return "";
419 	case EM_386:
420 	case EM_IAMCU:
421 		switch(type) {
422 		case 0: return "R_386_NONE";
423 		case 1: return "R_386_32";
424 		case 2: return "R_386_PC32";
425 		case 3: return "R_386_GOT32";
426 		case 4: return "R_386_PLT32";
427 		case 5: return "R_386_COPY";
428 		case 6: return "R_386_GLOB_DAT";
429 		case 7: return "R_386_JMP_SLOT";
430 		case 8: return "R_386_RELATIVE";
431 		case 9: return "R_386_GOTOFF";
432 		case 10: return "R_386_GOTPC";
433 		case 14: return "R_386_TLS_TPOFF";
434 		case 15: return "R_386_TLS_IE";
435 		case 16: return "R_386_TLS_GOTIE";
436 		case 17: return "R_386_TLS_LE";
437 		case 18: return "R_386_TLS_GD";
438 		case 19: return "R_386_TLS_LDM";
439 		case 24: return "R_386_TLS_GD_32";
440 		case 25: return "R_386_TLS_GD_PUSH";
441 		case 26: return "R_386_TLS_GD_CALL";
442 		case 27: return "R_386_TLS_GD_POP";
443 		case 28: return "R_386_TLS_LDM_32";
444 		case 29: return "R_386_TLS_LDM_PUSH";
445 		case 30: return "R_386_TLS_LDM_CALL";
446 		case 31: return "R_386_TLS_LDM_POP";
447 		case 32: return "R_386_TLS_LDO_32";
448 		case 33: return "R_386_TLS_IE_32";
449 		case 34: return "R_386_TLS_LE_32";
450 		case 35: return "R_386_TLS_DTPMOD32";
451 		case 36: return "R_386_TLS_DTPOFF32";
452 		case 37: return "R_386_TLS_TPOFF32";
453 		default: return "";
454 		}
455 	case EM_ARM:
456 		switch(type) {
457 		case 0: return "R_ARM_NONE";
458 		case 1: return "R_ARM_PC24";
459 		case 2: return "R_ARM_ABS32";
460 		case 3: return "R_ARM_REL32";
461 		case 4: return "R_ARM_PC13";
462 		case 5: return "R_ARM_ABS16";
463 		case 6: return "R_ARM_ABS12";
464 		case 7: return "R_ARM_THM_ABS5";
465 		case 8: return "R_ARM_ABS8";
466 		case 9: return "R_ARM_SBREL32";
467 		case 10: return "R_ARM_THM_PC22";
468 		case 11: return "R_ARM_THM_PC8";
469 		case 12: return "R_ARM_AMP_VCALL9";
470 		case 13: return "R_ARM_SWI24";
471 		case 14: return "R_ARM_THM_SWI8";
472 		case 15: return "R_ARM_XPC25";
473 		case 16: return "R_ARM_THM_XPC22";
474 		case 20: return "R_ARM_COPY";
475 		case 21: return "R_ARM_GLOB_DAT";
476 		case 22: return "R_ARM_JUMP_SLOT";
477 		case 23: return "R_ARM_RELATIVE";
478 		case 24: return "R_ARM_GOTOFF";
479 		case 25: return "R_ARM_GOTPC";
480 		case 26: return "R_ARM_GOT32";
481 		case 27: return "R_ARM_PLT32";
482 		case 100: return "R_ARM_GNU_VTENTRY";
483 		case 101: return "R_ARM_GNU_VTINHERIT";
484 		case 250: return "R_ARM_RSBREL32";
485 		case 251: return "R_ARM_THM_RPC22";
486 		case 252: return "R_ARM_RREL32";
487 		case 253: return "R_ARM_RABS32";
488 		case 254: return "R_ARM_RPC24";
489 		case 255: return "R_ARM_RBASE";
490 		default: return "";
491 		}
492 	case EM_IA_64:
493 		switch(type) {
494 		case 0: return "R_IA_64_NONE";
495 		case 33: return "R_IA_64_IMM14";
496 		case 34: return "R_IA_64_IMM22";
497 		case 35: return "R_IA_64_IMM64";
498 		case 36: return "R_IA_64_DIR32MSB";
499 		case 37: return "R_IA_64_DIR32LSB";
500 		case 38: return "R_IA_64_DIR64MSB";
501 		case 39: return "R_IA_64_DIR64LSB";
502 		case 42: return "R_IA_64_GPREL22";
503 		case 43: return "R_IA_64_GPREL64I";
504 		case 44: return "R_IA_64_GPREL32MSB";
505 		case 45: return "R_IA_64_GPREL32LSB";
506 		case 46: return "R_IA_64_GPREL64MSB";
507 		case 47: return "R_IA_64_GPREL64LSB";
508 		case 50: return "R_IA_64_LTOFF22";
509 		case 51: return "R_IA_64_LTOFF64I";
510 		case 58: return "R_IA_64_PLTOFF22";
511 		case 59: return "R_IA_64_PLTOFF64I";
512 		case 62: return "R_IA_64_PLTOFF64MSB";
513 		case 63: return "R_IA_64_PLTOFF64LSB";
514 		case 67: return "R_IA_64_FPTR64I";
515 		case 68: return "R_IA_64_FPTR32MSB";
516 		case 69: return "R_IA_64_FPTR32LSB";
517 		case 70: return "R_IA_64_FPTR64MSB";
518 		case 71: return "R_IA_64_FPTR64LSB";
519 		case 72: return "R_IA_64_PCREL60B";
520 		case 73: return "R_IA_64_PCREL21B";
521 		case 74: return "R_IA_64_PCREL21M";
522 		case 75: return "R_IA_64_PCREL21F";
523 		case 76: return "R_IA_64_PCREL32MSB";
524 		case 77: return "R_IA_64_PCREL32LSB";
525 		case 78: return "R_IA_64_PCREL64MSB";
526 		case 79: return "R_IA_64_PCREL64LSB";
527 		case 82: return "R_IA_64_LTOFF_FPTR22";
528 		case 83: return "R_IA_64_LTOFF_FPTR64I";
529 		case 84: return "R_IA_64_LTOFF_FPTR32MSB";
530 		case 85: return "R_IA_64_LTOFF_FPTR32LSB";
531 		case 86: return "R_IA_64_LTOFF_FPTR64MSB";
532 		case 87: return "R_IA_64_LTOFF_FPTR64LSB";
533 		case 92: return "R_IA_64_SEGREL32MSB";
534 		case 93: return "R_IA_64_SEGREL32LSB";
535 		case 94: return "R_IA_64_SEGREL64MSB";
536 		case 95: return "R_IA_64_SEGREL64LSB";
537 		case 100: return "R_IA_64_SECREL32MSB";
538 		case 101: return "R_IA_64_SECREL32LSB";
539 		case 102: return "R_IA_64_SECREL64MSB";
540 		case 103: return "R_IA_64_SECREL64LSB";
541 		case 108: return "R_IA_64_REL32MSB";
542 		case 109: return "R_IA_64_REL32LSB";
543 		case 110: return "R_IA_64_REL64MSB";
544 		case 111: return "R_IA_64_REL64LSB";
545 		case 116: return "R_IA_64_LTV32MSB";
546 		case 117: return "R_IA_64_LTV32LSB";
547 		case 118: return "R_IA_64_LTV64MSB";
548 		case 119: return "R_IA_64_LTV64LSB";
549 		case 121: return "R_IA_64_PCREL21BI";
550 		case 122: return "R_IA_64_PCREL22";
551 		case 123: return "R_IA_64_PCREL64I";
552 		case 128: return "R_IA_64_IPLTMSB";
553 		case 129: return "R_IA_64_IPLTLSB";
554 		case 133: return "R_IA_64_SUB";
555 		case 134: return "R_IA_64_LTOFF22X";
556 		case 135: return "R_IA_64_LDXMOV";
557 		case 145: return "R_IA_64_TPREL14";
558 		case 146: return "R_IA_64_TPREL22";
559 		case 147: return "R_IA_64_TPREL64I";
560 		case 150: return "R_IA_64_TPREL64MSB";
561 		case 151: return "R_IA_64_TPREL64LSB";
562 		case 154: return "R_IA_64_LTOFF_TPREL22";
563 		case 166: return "R_IA_64_DTPMOD64MSB";
564 		case 167: return "R_IA_64_DTPMOD64LSB";
565 		case 170: return "R_IA_64_LTOFF_DTPMOD22";
566 		case 177: return "R_IA_64_DTPREL14";
567 		case 178: return "R_IA_64_DTPREL22";
568 		case 179: return "R_IA_64_DTPREL64I";
569 		case 180: return "R_IA_64_DTPREL32MSB";
570 		case 181: return "R_IA_64_DTPREL32LSB";
571 		case 182: return "R_IA_64_DTPREL64MSB";
572 		case 183: return "R_IA_64_DTPREL64LSB";
573 		case 186: return "R_IA_64_LTOFF_DTPREL22";
574 		default: return "";
575 		}
576 	case EM_MIPS:
577 		switch(type) {
578 		case 0: return "R_MIPS_NONE";
579 		case 1: return "R_MIPS_16";
580 		case 2: return "R_MIPS_32";
581 		case 3: return "R_MIPS_REL32";
582 		case 4: return "R_MIPS_26";
583 		case 5: return "R_MIPS_HI16";
584 		case 6: return "R_MIPS_LO16";
585 		case 7: return "R_MIPS_GPREL16";
586 		case 8: return "R_MIPS_LITERAL";
587 		case 9: return "R_MIPS_GOT16";
588 		case 10: return "R_MIPS_PC16";
589 		case 11: return "R_MIPS_CALL16";
590 		case 12: return "R_MIPS_GPREL32";
591 		case 21: return "R_MIPS_GOTHI16";
592 		case 22: return "R_MIPS_GOTLO16";
593 		case 30: return "R_MIPS_CALLHI16";
594 		case 31: return "R_MIPS_CALLLO16";
595 		default: return "";
596 		}
597 	case EM_PPC:
598 		switch(type) {
599 		case 0: return "R_PPC_NONE";
600 		case 1: return "R_PPC_ADDR32";
601 		case 2: return "R_PPC_ADDR24";
602 		case 3: return "R_PPC_ADDR16";
603 		case 4: return "R_PPC_ADDR16_LO";
604 		case 5: return "R_PPC_ADDR16_HI";
605 		case 6: return "R_PPC_ADDR16_HA";
606 		case 7: return "R_PPC_ADDR14";
607 		case 8: return "R_PPC_ADDR14_BRTAKEN";
608 		case 9: return "R_PPC_ADDR14_BRNTAKEN";
609 		case 10: return "R_PPC_REL24";
610 		case 11: return "R_PPC_REL14";
611 		case 12: return "R_PPC_REL14_BRTAKEN";
612 		case 13: return "R_PPC_REL14_BRNTAKEN";
613 		case 14: return "R_PPC_GOT16";
614 		case 15: return "R_PPC_GOT16_LO";
615 		case 16: return "R_PPC_GOT16_HI";
616 		case 17: return "R_PPC_GOT16_HA";
617 		case 18: return "R_PPC_PLTREL24";
618 		case 19: return "R_PPC_COPY";
619 		case 20: return "R_PPC_GLOB_DAT";
620 		case 21: return "R_PPC_JMP_SLOT";
621 		case 22: return "R_PPC_RELATIVE";
622 		case 23: return "R_PPC_LOCAL24PC";
623 		case 24: return "R_PPC_UADDR32";
624 		case 25: return "R_PPC_UADDR16";
625 		case 26: return "R_PPC_REL32";
626 		case 27: return "R_PPC_PLT32";
627 		case 28: return "R_PPC_PLTREL32";
628 		case 29: return "R_PPC_PLT16_LO";
629 		case 30: return "R_PPC_PLT16_HI";
630 		case 31: return "R_PPC_PLT16_HA";
631 		case 32: return "R_PPC_SDAREL16";
632 		case 33: return "R_PPC_SECTOFF";
633 		case 34: return "R_PPC_SECTOFF_LO";
634 		case 35: return "R_PPC_SECTOFF_HI";
635 		case 36: return "R_PPC_SECTOFF_HA";
636 		case 67: return "R_PPC_TLS";
637 		case 68: return "R_PPC_DTPMOD32";
638 		case 69: return "R_PPC_TPREL16";
639 		case 70: return "R_PPC_TPREL16_LO";
640 		case 71: return "R_PPC_TPREL16_HI";
641 		case 72: return "R_PPC_TPREL16_HA";
642 		case 73: return "R_PPC_TPREL32";
643 		case 74: return "R_PPC_DTPREL16";
644 		case 75: return "R_PPC_DTPREL16_LO";
645 		case 76: return "R_PPC_DTPREL16_HI";
646 		case 77: return "R_PPC_DTPREL16_HA";
647 		case 78: return "R_PPC_DTPREL32";
648 		case 79: return "R_PPC_GOT_TLSGD16";
649 		case 80: return "R_PPC_GOT_TLSGD16_LO";
650 		case 81: return "R_PPC_GOT_TLSGD16_HI";
651 		case 82: return "R_PPC_GOT_TLSGD16_HA";
652 		case 83: return "R_PPC_GOT_TLSLD16";
653 		case 84: return "R_PPC_GOT_TLSLD16_LO";
654 		case 85: return "R_PPC_GOT_TLSLD16_HI";
655 		case 86: return "R_PPC_GOT_TLSLD16_HA";
656 		case 87: return "R_PPC_GOT_TPREL16";
657 		case 88: return "R_PPC_GOT_TPREL16_LO";
658 		case 89: return "R_PPC_GOT_TPREL16_HI";
659 		case 90: return "R_PPC_GOT_TPREL16_HA";
660 		case 101: return "R_PPC_EMB_NADDR32";
661 		case 102: return "R_PPC_EMB_NADDR16";
662 		case 103: return "R_PPC_EMB_NADDR16_LO";
663 		case 104: return "R_PPC_EMB_NADDR16_HI";
664 		case 105: return "R_PPC_EMB_NADDR16_HA";
665 		case 106: return "R_PPC_EMB_SDAI16";
666 		case 107: return "R_PPC_EMB_SDA2I16";
667 		case 108: return "R_PPC_EMB_SDA2REL";
668 		case 109: return "R_PPC_EMB_SDA21";
669 		case 110: return "R_PPC_EMB_MRKREF";
670 		case 111: return "R_PPC_EMB_RELSEC16";
671 		case 112: return "R_PPC_EMB_RELST_LO";
672 		case 113: return "R_PPC_EMB_RELST_HI";
673 		case 114: return "R_PPC_EMB_RELST_HA";
674 		case 115: return "R_PPC_EMB_BIT_FLD";
675 		case 116: return "R_PPC_EMB_RELSDA";
676 		default: return "";
677 		}
678 	case EM_SPARC:
679 	case EM_SPARCV9:
680 		switch(type) {
681 		case 0: return "R_SPARC_NONE";
682 		case 1: return "R_SPARC_8";
683 		case 2: return "R_SPARC_16";
684 		case 3: return "R_SPARC_32";
685 		case 4: return "R_SPARC_DISP8";
686 		case 5: return "R_SPARC_DISP16";
687 		case 6: return "R_SPARC_DISP32";
688 		case 7: return "R_SPARC_WDISP30";
689 		case 8: return "R_SPARC_WDISP22";
690 		case 9: return "R_SPARC_HI22";
691 		case 10: return "R_SPARC_22";
692 		case 11: return "R_SPARC_13";
693 		case 12: return "R_SPARC_LO10";
694 		case 13: return "R_SPARC_GOT10";
695 		case 14: return "R_SPARC_GOT13";
696 		case 15: return "R_SPARC_GOT22";
697 		case 16: return "R_SPARC_PC10";
698 		case 17: return "R_SPARC_PC22";
699 		case 18: return "R_SPARC_WPLT30";
700 		case 19: return "R_SPARC_COPY";
701 		case 20: return "R_SPARC_GLOB_DAT";
702 		case 21: return "R_SPARC_JMP_SLOT";
703 		case 22: return "R_SPARC_RELATIVE";
704 		case 23: return "R_SPARC_UA32";
705 		case 24: return "R_SPARC_PLT32";
706 		case 25: return "R_SPARC_HIPLT22";
707 		case 26: return "R_SPARC_LOPLT10";
708 		case 27: return "R_SPARC_PCPLT32";
709 		case 28: return "R_SPARC_PCPLT22";
710 		case 29: return "R_SPARC_PCPLT10";
711 		case 30: return "R_SPARC_10";
712 		case 31: return "R_SPARC_11";
713 		case 32: return "R_SPARC_64";
714 		case 33: return "R_SPARC_OLO10";
715 		case 34: return "R_SPARC_HH22";
716 		case 35: return "R_SPARC_HM10";
717 		case 36: return "R_SPARC_LM22";
718 		case 37: return "R_SPARC_PC_HH22";
719 		case 38: return "R_SPARC_PC_HM10";
720 		case 39: return "R_SPARC_PC_LM22";
721 		case 40: return "R_SPARC_WDISP16";
722 		case 41: return "R_SPARC_WDISP19";
723 		case 42: return "R_SPARC_GLOB_JMP";
724 		case 43: return "R_SPARC_7";
725 		case 44: return "R_SPARC_5";
726 		case 45: return "R_SPARC_6";
727 		case 46: return "R_SPARC_DISP64";
728 		case 47: return "R_SPARC_PLT64";
729 		case 48: return "R_SPARC_HIX22";
730 		case 49: return "R_SPARC_LOX10";
731 		case 50: return "R_SPARC_H44";
732 		case 51: return "R_SPARC_M44";
733 		case 52: return "R_SPARC_L44";
734 		case 53: return "R_SPARC_REGISTER";
735 		case 54: return "R_SPARC_UA64";
736 		case 55: return "R_SPARC_UA16";
737 		case 56: return "R_SPARC_TLS_GD_HI22";
738 		case 57: return "R_SPARC_TLS_GD_LO10";
739 		case 58: return "R_SPARC_TLS_GD_ADD";
740 		case 59: return "R_SPARC_TLS_GD_CALL";
741 		case 60: return "R_SPARC_TLS_LDM_HI22";
742 		case 61: return "R_SPARC_TLS_LDM_LO10";
743 		case 62: return "R_SPARC_TLS_LDM_ADD";
744 		case 63: return "R_SPARC_TLS_LDM_CALL";
745 		case 64: return "R_SPARC_TLS_LDO_HIX22";
746 		case 65: return "R_SPARC_TLS_LDO_LOX10";
747 		case 66: return "R_SPARC_TLS_LDO_ADD";
748 		case 67: return "R_SPARC_TLS_IE_HI22";
749 		case 68: return "R_SPARC_TLS_IE_LO10";
750 		case 69: return "R_SPARC_TLS_IE_LD";
751 		case 70: return "R_SPARC_TLS_IE_LDX";
752 		case 71: return "R_SPARC_TLS_IE_ADD";
753 		case 72: return "R_SPARC_TLS_LE_HIX22";
754 		case 73: return "R_SPARC_TLS_LE_LOX10";
755 		case 74: return "R_SPARC_TLS_DTPMOD32";
756 		case 75: return "R_SPARC_TLS_DTPMOD64";
757 		case 76: return "R_SPARC_TLS_DTPOFF32";
758 		case 77: return "R_SPARC_TLS_DTPOFF64";
759 		case 78: return "R_SPARC_TLS_TPOFF32";
760 		case 79: return "R_SPARC_TLS_TPOFF64";
761 		default: return "";
762 		}
763 	case EM_X86_64:
764 		switch(type) {
765 		case 0: return "R_X86_64_NONE";
766 		case 1: return "R_X86_64_64";
767 		case 2: return "R_X86_64_PC32";
768 		case 3: return "R_X86_64_GOT32";
769 		case 4: return "R_X86_64_PLT32";
770 		case 5: return "R_X86_64_COPY";
771 		case 6: return "R_X86_64_GLOB_DAT";
772 		case 7: return "R_X86_64_JMP_SLOT";
773 		case 8: return "R_X86_64_RELATIVE";
774 		case 9: return "R_X86_64_GOTPCREL";
775 		case 10: return "R_X86_64_32";
776 		case 11: return "R_X86_64_32S";
777 		case 12: return "R_X86_64_16";
778 		case 13: return "R_X86_64_PC16";
779 		case 14: return "R_X86_64_8";
780 		case 15: return "R_X86_64_PC8";
781 		case 16: return "R_X86_64_DTPMOD64";
782 		case 17: return "R_X86_64_DTPOFF64";
783 		case 18: return "R_X86_64_TPOFF64";
784 		case 19: return "R_X86_64_TLSGD";
785 		case 20: return "R_X86_64_TLSLD";
786 		case 21: return "R_X86_64_DTPOFF32";
787 		case 22: return "R_X86_64_GOTTPOFF";
788 		case 23: return "R_X86_64_TPOFF32";
789 		default: return "";
790 		}
791 	default: return "";
792 	}
793 }
794 
795 static void	add_name(struct elfdump *ed, const char *name);
796 static void	elf_print_object(struct elfdump *ed);
797 static void	elf_print_elf(struct elfdump *ed);
798 static void	elf_print_ehdr(struct elfdump *ed);
799 static void	elf_print_phdr(struct elfdump *ed);
800 static void	elf_print_shdr(struct elfdump *ed);
801 static void	elf_print_symtab(struct elfdump *ed, int i);
802 static void	elf_print_symtabs(struct elfdump *ed);
803 static void	elf_print_symver(struct elfdump *ed);
804 static void	elf_print_verdef(struct elfdump *ed, struct section *s);
805 static void	elf_print_verneed(struct elfdump *ed, struct section *s);
806 static void	elf_print_interp(struct elfdump *ed);
807 static void	elf_print_dynamic(struct elfdump *ed);
808 static void	elf_print_rel_entry(struct elfdump *ed, struct section *s,
809     int j, struct rel_entry *r);
810 static void	elf_print_rela(struct elfdump *ed, struct section *s,
811     Elf_Data *data);
812 static void	elf_print_rel(struct elfdump *ed, struct section *s,
813     Elf_Data *data);
814 static void	elf_print_reloc(struct elfdump *ed);
815 static void	elf_print_got(struct elfdump *ed);
816 static void	elf_print_got_section(struct elfdump *ed, struct section *s);
817 static void	elf_print_note(struct elfdump *ed);
818 static void	elf_print_svr4_hash(struct elfdump *ed, struct section *s);
819 static void	elf_print_svr4_hash64(struct elfdump *ed, struct section *s);
820 static void	elf_print_gnu_hash(struct elfdump *ed, struct section *s);
821 static void	elf_print_hash(struct elfdump *ed);
822 static void	elf_print_checksum(struct elfdump *ed);
823 static void	find_gotrel(struct elfdump *ed, struct section *gs,
824     struct rel_entry *got);
825 static struct spec_name	*find_name(struct elfdump *ed, const char *name);
826 static int	get_ent_count(const struct section *s, int *ent_count);
827 static const char *get_symbol_name(struct elfdump *ed, int symtab, int i);
828 static const char *get_string(struct elfdump *ed, int strtab, size_t off);
829 static void	get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs);
830 static void	load_sections(struct elfdump *ed);
831 static void	unload_sections(struct elfdump *ed);
832 static void	usage(void);
833 #ifdef	USE_LIBARCHIVE_AR
834 static int	ac_detect_ar(int fd);
835 static void	ac_print_ar(struct elfdump *ed, int fd);
836 #else
837 static void	elf_print_ar(struct elfdump *ed, int fd);
838 #endif	/* USE_LIBARCHIVE_AR */
839 
840 static struct option elfdump_longopts[] =
841 {
842 	{ "help",	no_argument,	NULL,	'H' },
843 	{ "version",	no_argument,	NULL,	'V' },
844 	{ NULL,		0,		NULL,	0   }
845 };
846 
847 int
848 main(int ac, char **av)
849 {
850 	struct elfdump		*ed, ed_storage;
851 	struct spec_name	*sn;
852 	int			 ch, i;
853 
854 	ed = &ed_storage;
855 	memset(ed, 0, sizeof(*ed));
856 	STAILQ_INIT(&ed->snl);
857 	ed->out = stdout;
858 	while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:",
859 		elfdump_longopts, NULL)) != -1)
860 		switch (ch) {
861 		case 'a':
862 			ed->options = ED_ALL;
863 			break;
864 		case 'c':
865 			ed->options |= ED_SHDR;
866 			break;
867 		case 'd':
868 			ed->options |= ED_DYN;
869 			break;
870 		case 'e':
871 			ed->options |= ED_EHDR;
872 			break;
873 		case 'i':
874 			ed->options |= ED_INTERP;
875 			break;
876 		case 'G':
877 			ed->options |= ED_GOT;
878 			break;
879 		case 'h':
880 			ed->options |= ED_HASH;
881 			break;
882 		case 'k':
883 			ed->options |= ED_CHECKSUM;
884 			break;
885 		case 'n':
886 			ed->options |= ED_NOTE;
887 			break;
888 		case 'N':
889 			add_name(ed, optarg);
890 			break;
891 		case 'p':
892 			ed->options |= ED_PHDR;
893 			break;
894 		case 'r':
895 			ed->options |= ED_REL;
896 			break;
897 		case 's':
898 			ed->options |= ED_SYMTAB;
899 			break;
900 		case 'S':
901 			ed->flags |= SOLARIS_FMT;
902 			break;
903 		case 'v':
904 			ed->options |= ED_SYMVER;
905 			break;
906 		case 'V':
907 			(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
908 			    elftc_version());
909 			exit(EXIT_SUCCESS);
910 			break;
911 		case 'w':
912 			if ((ed->out = fopen(optarg, "w")) == NULL)
913 				err(EXIT_FAILURE, "%s", optarg);
914 			break;
915 		case '?':
916 		case 'H':
917 		default:
918 			usage();
919 		}
920 
921 	ac -= optind;
922 	av += optind;
923 
924 	if (ed->options == 0)
925 		ed->options = ED_ALL;
926 	sn = NULL;
927 	if (ed->options & ED_SYMTAB &&
928 	    (STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) {
929 		ed->flags |= PRINT_ARSYM;
930 		if (sn != NULL) {
931 			STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list);
932 			if (STAILQ_EMPTY(&ed->snl))
933 				ed->flags |= ONLY_ARSYM;
934 		}
935 	}
936 	if (ac == 0)
937 		usage();
938 	if (ac > 1)
939 		ed->flags |= PRINT_FILENAME;
940 	if (elf_version(EV_CURRENT) == EV_NONE)
941 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
942 		    elf_errmsg(-1));
943 
944 	for (i = 0; i < ac; i++) {
945 		ed->filename = av[i];
946 		ed->archive = NULL;
947 		elf_print_object(ed);
948 	}
949 
950 	exit(EXIT_SUCCESS);
951 }
952 
953 #ifdef USE_LIBARCHIVE_AR
954 
955 /* Archive symbol table entry. */
956 struct arsym_entry {
957 	char *sym_name;
958 	size_t off;
959 };
960 
961 /*
962  * Convenient wrapper for general libarchive error handling.
963  */
964 #define	AC(CALL) do {							\
965 	if ((CALL)) {							\
966 		warnx("%s", archive_error_string(a));			\
967 		return;							\
968 	}								\
969 } while (0)
970 
971 /*
972  * Detect an ar(1) archive using libarchive(3).
973  */
974 static int
975 ac_detect_ar(int fd)
976 {
977 	struct archive		*a;
978 	struct archive_entry	*entry;
979 	int			 r;
980 
981 	r = -1;
982 	if ((a = archive_read_new()) == NULL)
983 		return (0);
984 	archive_read_support_format_ar(a);
985 	if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK)
986 		r = archive_read_next_header(a, &entry);
987 	archive_read_close(a);
988 	archive_read_free(a);
989 
990 	return (r == ARCHIVE_OK);
991 }
992 
993 /*
994  * Dump an ar(1) archive using libarchive(3).
995  */
996 static void
997 ac_print_ar(struct elfdump *ed, int fd)
998 {
999 	struct archive		*a;
1000 	struct archive_entry	*entry;
1001 	struct arsym_entry	*arsym;
1002 	const char		*name;
1003 	char			 idx[10], *b;
1004 	void			*buff;
1005 	size_t			 size;
1006 	uint32_t		 cnt;
1007 	int			 i, r;
1008 
1009 	if (lseek(fd, 0, SEEK_SET) == -1)
1010 		err(EXIT_FAILURE, "lseek failed");
1011 	if ((a = archive_read_new()) == NULL)
1012 		errx(EXIT_FAILURE, "%s", archive_error_string(a));
1013 	archive_read_support_format_ar(a);
1014 	AC(archive_read_open_fd(a, fd, 10240));
1015 	for(;;) {
1016 		r = archive_read_next_header(a, &entry);
1017 		if (r == ARCHIVE_FATAL)
1018 			errx(EXIT_FAILURE, "%s", archive_error_string(a));
1019 		if (r == ARCHIVE_EOF)
1020 			break;
1021 		if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY)
1022 			warnx("%s", archive_error_string(a));
1023 		if (r == ARCHIVE_RETRY)
1024 			continue;
1025 		name = archive_entry_pathname(entry);
1026 		size = archive_entry_size(entry);
1027 		if (size == 0)
1028 			continue;
1029 		if ((buff = malloc(size)) == NULL) {
1030 			warn("malloc failed");
1031 			continue;
1032 		}
1033 		if (archive_read_data(a, buff, size) != (ssize_t)size) {
1034 			warnx("%s", archive_error_string(a));
1035 			free(buff);
1036 			continue;
1037 		}
1038 
1039 		/*
1040 		 * Note that when processing arsym via libarchive, there is
1041 		 * no way to tell which member a certain symbol belongs to,
1042 		 * since we can not just "lseek" to a member offset and read
1043 		 * the member header.
1044 		 */
1045 		if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) {
1046 			b = buff;
1047 			cnt = be32dec(b);
1048 			if (cnt == 0) {
1049 				free(buff);
1050 				continue;
1051 			}
1052 			arsym = calloc(cnt, sizeof(*arsym));
1053 			if (arsym == NULL)
1054 				err(EXIT_FAILURE, "calloc failed");
1055 			b += sizeof(uint32_t);
1056 			for (i = 0; (size_t)i < cnt; i++) {
1057 				arsym[i].off = be32dec(b);
1058 				b += sizeof(uint32_t);
1059 			}
1060 			for (i = 0; (size_t)i < cnt; i++) {
1061 				arsym[i].sym_name = b;
1062 				b += strlen(b) + 1;
1063 			}
1064 			if (ed->flags & SOLARIS_FMT) {
1065 				PRT("\nSymbol Table: (archive)\n");
1066 				PRT("     index    offset    symbol\n");
1067 			} else
1068 				PRT("\nsymbol table (archive):\n");
1069 			for (i = 0; (size_t)i < cnt; i++) {
1070 				if (ed->flags & SOLARIS_FMT) {
1071 					snprintf(idx, sizeof(idx), "[%d]", i);
1072 					PRT("%10s  ", idx);
1073 					PRT("0x%8.8jx  ",
1074 					    (uintmax_t)arsym[i].off);
1075 					PRT("%s\n", arsym[i].sym_name);
1076 				} else {
1077 					PRT("\nentry: %d\n", i);
1078 					PRT("\toffset: %#jx\n",
1079 					    (uintmax_t)arsym[i].off);
1080 					PRT("\tsymbol: %s\n",
1081 					    arsym[i].sym_name);
1082 				}
1083 			}
1084 			free(arsym);
1085 			free(buff);
1086 			/* No need to continue if we only dump ARSYM. */
1087 			if (ed->flags & ONLY_ARSYM) {
1088 				AC(archive_read_close(a));
1089 				AC(archive_read_free(a));
1090 				return;
1091 			}
1092 			continue;
1093 		}
1094 		if ((ed->elf = elf_memory(buff, size)) == NULL) {
1095 			warnx("elf_memroy() failed: %s",
1096 			      elf_errmsg(-1));
1097 			free(buff);
1098 			continue;
1099 		}
1100 		/* Skip non-ELF member. */
1101 		if (elf_kind(ed->elf) == ELF_K_ELF) {
1102 			printf("\n%s(%s):\n", ed->archive, name);
1103 			elf_print_elf(ed);
1104 		}
1105 		elf_end(ed->elf);
1106 		free(buff);
1107 	}
1108 	AC(archive_read_close(a));
1109 	AC(archive_read_free(a));
1110 }
1111 
1112 #else  /* USE_LIBARCHIVE_AR */
1113 
1114 /*
1115  * Dump an ar(1) archive.
1116  */
1117 static void
1118 elf_print_ar(struct elfdump *ed, int fd)
1119 {
1120 	Elf		*e;
1121 	Elf_Arhdr	*arh;
1122 	Elf_Arsym	*arsym;
1123 	Elf_Cmd		 cmd;
1124 	char		 idx[10];
1125 	size_t		 cnt;
1126 	int		 i;
1127 
1128 	ed->ar = ed->elf;
1129 
1130 	if (ed->flags & PRINT_ARSYM) {
1131 		cnt = 0;
1132 		if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) {
1133 			warnx("elf_getarsym failed: %s", elf_errmsg(-1));
1134 			goto print_members;
1135 		}
1136 		if (cnt == 0)
1137 			goto print_members;
1138 		if (ed->flags & SOLARIS_FMT) {
1139 			PRT("\nSymbol Table: (archive)\n");
1140 			PRT("     index    offset    member name and symbol\n");
1141 		} else
1142 			PRT("\nsymbol table (archive):\n");
1143 		for (i = 0; (size_t)i < cnt - 1; i++) {
1144 			if (elf_rand(ed->ar, arsym[i].as_off) !=
1145 			    arsym[i].as_off) {
1146 				warnx("elf_rand failed: %s", elf_errmsg(-1));
1147 				break;
1148 			}
1149 			if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) {
1150 				warnx("elf_begin failed: %s", elf_errmsg(-1));
1151 				break;
1152 			}
1153 			if ((arh = elf_getarhdr(e)) == NULL) {
1154 				warnx("elf_getarhdr failed: %s",
1155 				    elf_errmsg(-1));
1156 				break;
1157 			}
1158 			if (ed->flags & SOLARIS_FMT) {
1159 				snprintf(idx, sizeof(idx), "[%d]", i);
1160 				PRT("%10s  ", idx);
1161 				PRT("0x%8.8jx  ",
1162 				    (uintmax_t)arsym[i].as_off);
1163 				PRT("(%s):%s\n", arh->ar_name,
1164 				    arsym[i].as_name);
1165 			} else {
1166 				PRT("\nentry: %d\n", i);
1167 				PRT("\toffset: %#jx\n",
1168 				    (uintmax_t)arsym[i].as_off);
1169 				PRT("\tmember: %s\n", arh->ar_name);
1170 				PRT("\tsymbol: %s\n", arsym[i].as_name);
1171 			}
1172 			elf_end(e);
1173 		}
1174 
1175 		/* No need to continue if we only dump ARSYM. */
1176 		if (ed->flags & ONLY_ARSYM)
1177 			return;
1178 	}
1179 
1180 print_members:
1181 
1182 	/* Rewind the archive. */
1183 	if (elf_rand(ed->ar, SARMAG) != SARMAG) {
1184 		warnx("elf_rand failed: %s", elf_errmsg(-1));
1185 		return;
1186 	}
1187 
1188 	/* Dump each member of the archive. */
1189 	cmd = ELF_C_READ;
1190 	while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) {
1191 		/* Skip non-ELF member. */
1192 		if (elf_kind(ed->elf) == ELF_K_ELF) {
1193 			if ((arh = elf_getarhdr(ed->elf)) == NULL) {
1194 				warnx("elf_getarhdr failed: %s",
1195 				    elf_errmsg(-1));
1196 				break;
1197 			}
1198 			printf("\n%s(%s):\n", ed->archive, arh->ar_name);
1199 			elf_print_elf(ed);
1200 		}
1201 		cmd = elf_next(ed->elf);
1202 		elf_end(ed->elf);
1203 	}
1204 }
1205 
1206 #endif	/* USE_LIBARCHIVE_AR */
1207 
1208 /*
1209  * Dump an object. (ELF object or ar(1) archive)
1210  */
1211 static void
1212 elf_print_object(struct elfdump *ed)
1213 {
1214 	int fd;
1215 
1216 	if ((fd = open(ed->filename, O_RDONLY)) == -1) {
1217 		warn("open %s failed", ed->filename);
1218 		return;
1219 	}
1220 
1221 #ifdef	USE_LIBARCHIVE_AR
1222 	if (ac_detect_ar(fd)) {
1223 		ed->archive = ed->filename;
1224 		ac_print_ar(ed, fd);
1225 		return;
1226 	}
1227 #endif	/* USE_LIBARCHIVE_AR */
1228 
1229 	if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
1230 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
1231 		return;
1232 	}
1233 
1234 	switch (elf_kind(ed->elf)) {
1235 	case ELF_K_NONE:
1236 		warnx("Not an ELF file.");
1237 		return;
1238 	case ELF_K_ELF:
1239 		if (ed->flags & PRINT_FILENAME)
1240 			printf("\n%s:\n", ed->filename);
1241 		elf_print_elf(ed);
1242 		break;
1243 	case ELF_K_AR:
1244 #ifndef	USE_LIBARCHIVE_AR
1245 		ed->archive = ed->filename;
1246 		elf_print_ar(ed, fd);
1247 #endif
1248 		break;
1249 	default:
1250 		warnx("Internal: libelf returned unknown elf kind.");
1251 		return;
1252 	}
1253 
1254 	elf_end(ed->elf);
1255 }
1256 
1257 /*
1258  * Dump an ELF object.
1259  */
1260 static void
1261 elf_print_elf(struct elfdump *ed)
1262 {
1263 
1264 	if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) {
1265 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
1266 		return;
1267 	}
1268 	if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) {
1269 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
1270 		return;
1271 	}
1272 
1273 	if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB |
1274 	    ED_SYMVER | ED_NOTE | ED_HASH))
1275 		load_sections(ed);
1276 
1277 	if (ed->options & ED_EHDR)
1278 		elf_print_ehdr(ed);
1279 	if (ed->options & ED_PHDR)
1280 		elf_print_phdr(ed);
1281 	if (ed->options & ED_INTERP)
1282 		elf_print_interp(ed);
1283 	if (ed->options & ED_SHDR)
1284 		elf_print_shdr(ed);
1285 	if (ed->options & ED_DYN)
1286 		elf_print_dynamic(ed);
1287 	if (ed->options & ED_REL)
1288 		elf_print_reloc(ed);
1289 	if (ed->options & ED_GOT)
1290 		elf_print_got(ed);
1291 	if (ed->options & ED_SYMTAB)
1292 		elf_print_symtabs(ed);
1293 	if (ed->options & ED_SYMVER)
1294 		elf_print_symver(ed);
1295 	if (ed->options & ED_NOTE)
1296 		elf_print_note(ed);
1297 	if (ed->options & ED_HASH)
1298 		elf_print_hash(ed);
1299 	if (ed->options & ED_CHECKSUM)
1300 		elf_print_checksum(ed);
1301 
1302 	unload_sections(ed);
1303 }
1304 
1305 /*
1306  * Read the section headers from ELF object and store them in the
1307  * internal cache.
1308  */
1309 static void
1310 load_sections(struct elfdump *ed)
1311 {
1312 	struct section	*s;
1313 	const char	*name;
1314 	Elf_Scn		*scn;
1315 	GElf_Shdr	 sh;
1316 	size_t		 shstrndx, ndx;
1317 	int		 elferr;
1318 
1319 	assert(ed->sl == NULL);
1320 
1321 	if (!elf_getshnum(ed->elf, &ed->shnum)) {
1322 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
1323 		return;
1324 	}
1325 	if (ed->shnum == 0)
1326 		return;
1327 	if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL)
1328 		err(EXIT_FAILURE, "calloc failed");
1329 	if (!elf_getshstrndx(ed->elf, &shstrndx)) {
1330 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
1331 		return;
1332 	}
1333 	if ((scn = elf_getscn(ed->elf, 0)) == NULL) {
1334 		warnx("elf_getscn failed: %s", elf_errmsg(-1));
1335 		return;
1336 	}
1337 	(void) elf_errno();
1338 	do {
1339 		if (gelf_getshdr(scn, &sh) == NULL) {
1340 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
1341 			(void) elf_errno();
1342 			continue;
1343 		}
1344 		if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) {
1345 			(void) elf_errno();
1346 			name = "ERROR";
1347 		}
1348 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF)
1349 			if ((elferr = elf_errno()) != 0) {
1350 				warnx("elf_ndxscn failed: %s",
1351 				    elf_errmsg(elferr));
1352 				continue;
1353 			}
1354 		if (ndx >= ed->shnum) {
1355 			warnx("section index of '%s' out of range", name);
1356 			continue;
1357 		}
1358 		s = &ed->sl[ndx];
1359 		s->name = name;
1360 		s->scn = scn;
1361 		s->off = sh.sh_offset;
1362 		s->sz = sh.sh_size;
1363 		s->entsize = sh.sh_entsize;
1364 		s->align = sh.sh_addralign;
1365 		s->type = sh.sh_type;
1366 		s->flags = sh.sh_flags;
1367 		s->addr = sh.sh_addr;
1368 		s->link = sh.sh_link;
1369 		s->info = sh.sh_info;
1370 	} while ((scn = elf_nextscn(ed->elf, scn)) != NULL);
1371 	elferr = elf_errno();
1372 	if (elferr != 0)
1373 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
1374 }
1375 
1376 /*
1377  * Release section related resources.
1378  */
1379 static void
1380 unload_sections(struct elfdump *ed)
1381 {
1382 	if (ed->sl != NULL) {
1383 		free(ed->sl);
1384 		ed->sl = NULL;
1385 	}
1386 }
1387 
1388 /*
1389  * Add a name to the '-N' name list.
1390  */
1391 static void
1392 add_name(struct elfdump *ed, const char *name)
1393 {
1394 	struct spec_name *sn;
1395 
1396 	if (find_name(ed, name))
1397 		return;
1398 	if ((sn = malloc(sizeof(*sn))) == NULL) {
1399 		warn("malloc failed");
1400 		return;
1401 	}
1402 	sn->name = name;
1403 	STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list);
1404 }
1405 
1406 /*
1407  * Lookup a name in the '-N' name list.
1408  */
1409 static struct spec_name *
1410 find_name(struct elfdump *ed, const char *name)
1411 {
1412 	struct spec_name *sn;
1413 
1414 	STAILQ_FOREACH(sn, &ed->snl, sn_list) {
1415 		if (!strcmp(sn->name, name))
1416 			return (sn);
1417 	}
1418 
1419 	return (NULL);
1420 }
1421 
1422 /*
1423  * Retrieve the name of a symbol using the section index of the symbol
1424  * table and the index of the symbol within that table.
1425  */
1426 static const char *
1427 get_symbol_name(struct elfdump *ed, int symtab, int i)
1428 {
1429 	static char	 sname[64];
1430 	struct section	*s;
1431 	const char	*name;
1432 	GElf_Sym	 sym;
1433 	Elf_Data	*data;
1434 	int		 elferr;
1435 
1436 	s = &ed->sl[symtab];
1437 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
1438 		return ("");
1439 	(void) elf_errno();
1440 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1441 		elferr = elf_errno();
1442 		if (elferr != 0)
1443 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1444 		return ("");
1445 	}
1446 	if (gelf_getsym(data, i, &sym) != &sym)
1447 		return ("");
1448 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
1449 		if (sym.st_shndx < ed->shnum) {
1450 			snprintf(sname, sizeof(sname), "%s (section)",
1451 			    ed->sl[sym.st_shndx].name);
1452 			return (sname);
1453 		} else
1454 			return ("");
1455 	}
1456 	if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL)
1457 		return ("");
1458 
1459 	return (name);
1460 }
1461 
1462 /*
1463  * Retrieve a string using string table section index and the string offset.
1464  */
1465 static const char*
1466 get_string(struct elfdump *ed, int strtab, size_t off)
1467 {
1468 	const char *name;
1469 
1470 	if ((name = elf_strptr(ed->elf, strtab, off)) == NULL)
1471 		return ("");
1472 
1473 	return (name);
1474 }
1475 
1476 /*
1477  * Dump the ELF Executable Header.
1478  */
1479 static void
1480 elf_print_ehdr(struct elfdump *ed)
1481 {
1482 
1483 	if (!STAILQ_EMPTY(&ed->snl))
1484 		return;
1485 
1486 	if (ed->flags & SOLARIS_FMT) {
1487 		PRT("\nELF Header\n");
1488 		PRT("  ei_magic:   { %#x, %c, %c, %c }\n",
1489 		    ed->ehdr.e_ident[0], ed->ehdr.e_ident[1],
1490 		    ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]);
1491 		PRT("  ei_class:   %-18s",
1492 		    ei_classes[ed->ehdr.e_ident[EI_CLASS]]);
1493 		PRT("  ei_data:      %s\n", ei_data[ed->ehdr.e_ident[EI_DATA]]);
1494 		PRT("  e_machine:  %-18s", e_machines(ed->ehdr.e_machine));
1495 		PRT("  e_version:    %s\n", ei_versions[ed->ehdr.e_version]);
1496 		PRT("  e_type:     %s\n", e_types[ed->ehdr.e_type]);
1497 		PRT("  e_flags:    %18d\n", ed->ehdr.e_flags);
1498 		PRT("  e_entry:    %#18jx", (uintmax_t)ed->ehdr.e_entry);
1499 		PRT("  e_ehsize: %6d", ed->ehdr.e_ehsize);
1500 		PRT("  e_shstrndx:%5d\n", ed->ehdr.e_shstrndx);
1501 		PRT("  e_shoff:    %#18jx", (uintmax_t)ed->ehdr.e_shoff);
1502 		PRT("  e_shentsize: %3d", ed->ehdr.e_shentsize);
1503 		PRT("  e_shnum:   %5d\n", ed->ehdr.e_shnum);
1504 		PRT("  e_phoff:    %#18jx", (uintmax_t)ed->ehdr.e_phoff);
1505 		PRT("  e_phentsize: %3d", ed->ehdr.e_phentsize);
1506 		PRT("  e_phnum:   %5d\n", ed->ehdr.e_phnum);
1507 	} else {
1508 		PRT("\nelf header:\n");
1509 		PRT("\n");
1510 		PRT("\te_ident: %s %s %s\n",
1511 		    ei_classes[ed->ehdr.e_ident[EI_CLASS]],
1512 		    ei_data[ed->ehdr.e_ident[EI_DATA]],
1513 		    ei_abis[ed->ehdr.e_ident[EI_OSABI]]);
1514 		PRT("\te_type: %s\n", e_types[ed->ehdr.e_type]);
1515 		PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine));
1516 		PRT("\te_version: %s\n", ei_versions[ed->ehdr.e_version]);
1517 		PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry);
1518 		PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff);
1519 		PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff);
1520 		PRT("\te_flags: %u\n", ed->ehdr.e_flags);
1521 		PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize);
1522 		PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize);
1523 		PRT("\te_phnum: %u\n", ed->ehdr.e_phnum);
1524 		PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize);
1525 		PRT("\te_shnum: %u\n", ed->ehdr.e_shnum);
1526 		PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx);
1527 	}
1528 }
1529 
1530 /*
1531  * Dump the ELF Program Header Table.
1532  */
1533 static void
1534 elf_print_phdr(struct elfdump *ed)
1535 {
1536 	GElf_Phdr	 ph;
1537 	size_t		 phnum;
1538 	int		 header, i;
1539 
1540 	if (elf_getphnum(ed->elf, &phnum) == 0) {
1541 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
1542 		return;
1543 	}
1544 	header = 0;
1545 	for (i = 0; (u_int64_t) i < phnum; i++) {
1546 		if (gelf_getphdr(ed->elf, i, &ph) != &ph) {
1547 			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
1548 			continue;
1549 		}
1550 		if (!STAILQ_EMPTY(&ed->snl) &&
1551 		    find_name(ed, p_types[ph.p_type & 0x7]) == NULL)
1552 			continue;
1553 		if (ed->flags & SOLARIS_FMT) {
1554 			PRT("\nProgram Header[%d]:\n", i);
1555 			PRT("    p_vaddr:      %#-14jx", (uintmax_t)ph.p_vaddr);
1556 			PRT("  p_flags:    [ %s ]\n", p_flags[ph.p_flags]);
1557 			PRT("    p_paddr:      %#-14jx", (uintmax_t)ph.p_paddr);
1558 			PRT("  p_type:     [ %s ]\n", p_types[ph.p_type & 0x7]);
1559 			PRT("    p_filesz:     %#-14jx",
1560 			    (uintmax_t)ph.p_filesz);
1561 			PRT("  p_memsz:    %#jx\n", (uintmax_t)ph.p_memsz);
1562 			PRT("    p_offset:     %#-14jx",
1563 			    (uintmax_t)ph.p_offset);
1564 			PRT("  p_align:    %#jx\n", (uintmax_t)ph.p_align);
1565 		} else {
1566 			if (!header) {
1567 				PRT("\nprogram header:\n");
1568 				header = 1;
1569 			}
1570 			PRT("\n");
1571 			PRT("entry: %d\n", i);
1572 			PRT("\tp_type: %s\n", p_types[ph.p_type & 0x7]);
1573 			PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset);
1574 			PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr);
1575 			PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr);
1576 			PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz);
1577 			PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz);
1578 			PRT("\tp_flags: %s\n", p_flags[ph.p_flags]);
1579 			PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align);
1580 		}
1581 	}
1582 }
1583 
1584 /*
1585  * Dump the ELF Section Header Table.
1586  */
1587 static void
1588 elf_print_shdr(struct elfdump *ed)
1589 {
1590 	struct section *s;
1591 	int i;
1592 
1593 	if (!STAILQ_EMPTY(&ed->snl))
1594 		return;
1595 
1596 	if ((ed->flags & SOLARIS_FMT) == 0)
1597 		PRT("\nsection header:\n");
1598 	for (i = 0; (size_t)i < ed->shnum; i++) {
1599 		s = &ed->sl[i];
1600 		if (ed->flags & SOLARIS_FMT) {
1601 			if (i == 0)
1602 				continue;
1603 			PRT("\nSection Header[%d]:", i);
1604 			PRT("  sh_name: %s\n", s->name);
1605 			PRT("    sh_addr:      %#-14jx", (uintmax_t)s->addr);
1606 			if (s->flags != 0)
1607 				PRT("  sh_flags:   [ %s ]\n", sh_flags(s->flags));
1608 			else
1609 				PRT("  sh_flags:   0\n");
1610 			PRT("    sh_size:      %#-14jx", (uintmax_t)s->sz);
1611 			PRT("  sh_type:    [ %s ]\n", sh_types(s->type));
1612 			PRT("    sh_offset:    %#-14jx", (uintmax_t)s->off);
1613 			PRT("  sh_entsize: %#jx\n", (uintmax_t)s->entsize);
1614 			PRT("    sh_link:      %-14u", s->link);
1615 			PRT("  sh_info:    %u\n", s->info);
1616 			PRT("    sh_addralign: %#jx\n", (uintmax_t)s->align);
1617 		} else {
1618 			PRT("\n");
1619 			PRT("entry: %ju\n", (uintmax_t)i);
1620 			PRT("\tsh_name: %s\n", s->name);
1621 			PRT("\tsh_type: %s\n", sh_types(s->type));
1622 			PRT("\tsh_flags: %s\n", sh_flags(s->flags));
1623 			PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr);
1624 			PRT("\tsh_offset: %ju\n", (uintmax_t)s->off);
1625 			PRT("\tsh_size: %ju\n", (uintmax_t)s->sz);
1626 			PRT("\tsh_link: %u\n", s->link);
1627 			PRT("\tsh_info: %u\n", s->info);
1628 			PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align);
1629 			PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize);
1630 		}
1631 	}
1632 }
1633 
1634 /*
1635  * Return number of entries in the given section. We'd prefer ent_count be a
1636  * size_t, but libelf APIs already use int for section indices.
1637  */
1638 static int
1639 get_ent_count(const struct section *s, int *ent_count)
1640 {
1641 	if (s->entsize == 0) {
1642 		warnx("section %s has entry size 0", s->name);
1643 		return (0);
1644 	} else if (s->sz / s->entsize > INT_MAX) {
1645 		warnx("section %s has invalid section count", s->name);
1646 		return (0);
1647 	}
1648 	*ent_count = (int)(s->sz / s->entsize);
1649 	return (1);
1650 }
1651 
1652 /*
1653  * Retrieve the content of the corresponding SHT_SUNW_versym section for
1654  * a symbol table section.
1655  */
1656 static void
1657 get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs)
1658 {
1659 	struct section	*s;
1660 	Elf_Data	*data;
1661 	int		 j, elferr;
1662 
1663 	s = NULL;
1664 	for (j = 0; (size_t)j < ed->shnum; j++) {
1665 		s = &ed->sl[j];
1666 		if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i)
1667 			break;
1668 	}
1669 	if ((size_t)j >= ed->shnum) {
1670 		*vs = NULL;
1671 		return;
1672 	}
1673 	(void) elf_errno();
1674 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1675 		elferr = elf_errno();
1676 		if (elferr != 0)
1677 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1678 		*vs = NULL;
1679 		return;
1680 	}
1681 
1682 	*vs = data->d_buf;
1683 	assert(data->d_size == s->sz);
1684 	if (!get_ent_count(s, nvs))
1685 		*nvs = 0;
1686 }
1687 
1688 /*
1689  * Dump the symbol table section.
1690  */
1691 static void
1692 elf_print_symtab(struct elfdump *ed, int i)
1693 {
1694 	struct section	*s;
1695 	const char	*name;
1696 	uint16_t	*vs;
1697 	char		 idx[10];
1698 	Elf_Data	*data;
1699 	GElf_Sym	 sym;
1700 	int		 len, j, elferr, nvs;
1701 
1702 	s = &ed->sl[i];
1703 	if (ed->flags & SOLARIS_FMT)
1704 		PRT("\nSymbol Table Section:  %s\n", s->name);
1705 	else
1706 		PRT("\nsymbol table (%s):\n", s->name);
1707 	(void) elf_errno();
1708 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1709 		elferr = elf_errno();
1710 		if (elferr != 0)
1711 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1712 		return;
1713 	}
1714 	vs = NULL;
1715 	nvs = 0;
1716 	assert(data->d_size == s->sz);
1717 	if (!get_ent_count(s, &len))
1718 		return;
1719 	if (ed->flags & SOLARIS_FMT) {
1720 		if (ed->ec == ELFCLASS32)
1721 			PRT("     index    value       ");
1722 		else
1723 			PRT("     index        value           ");
1724 		PRT("size     type bind oth ver shndx       name\n");
1725 		get_versym(ed, i, &vs, &nvs);
1726 		if (vs != NULL && nvs != len) {
1727 			warnx("#symbol not equal to #versym");
1728 			vs = NULL;
1729 		}
1730 	}
1731 	for (j = 0; j < len; j++) {
1732 		if (gelf_getsym(data, j, &sym) != &sym) {
1733 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
1734 			continue;
1735 		}
1736 		name = get_string(ed, s->link, sym.st_name);
1737 		if (ed->flags & SOLARIS_FMT) {
1738 			snprintf(idx, sizeof(idx), "[%d]", j);
1739 			if (ed->ec == ELFCLASS32)
1740 				PRT("%10s  ", idx);
1741 			else
1742 				PRT("%10s      ", idx);
1743 			PRT("0x%8.8jx ", (uintmax_t)sym.st_value);
1744 			if (ed->ec == ELFCLASS32)
1745 				PRT("0x%8.8jx  ", (uintmax_t)sym.st_size);
1746 			else
1747 				PRT("0x%12.12jx  ", (uintmax_t)sym.st_size);
1748 			PRT("%s ", st_types_S[GELF_ST_TYPE(sym.st_info)]);
1749 			PRT("%s  ", st_bindings_S[GELF_ST_BIND(sym.st_info)]);
1750 			PRT("%c  ", st_others[sym.st_other]);
1751 			PRT("%3u ", (vs == NULL ? 0 : vs[j]));
1752 			PRT("%-11.11s ", sh_name(ed, sym.st_shndx));
1753 			PRT("%s\n", name);
1754 		} else {
1755 			PRT("\nentry: %d\n", j);
1756 			PRT("\tst_name: %s\n", name);
1757 			PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value);
1758 			PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size);
1759 			PRT("\tst_info: %s %s\n",
1760 			    st_types[GELF_ST_TYPE(sym.st_info)],
1761 			    st_bindings[GELF_ST_BIND(sym.st_info)]);
1762 			PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx);
1763 		}
1764 	}
1765 }
1766 
1767 /*
1768  * Dump the symbol tables. (.dynsym and .symtab)
1769  */
1770 static void
1771 elf_print_symtabs(struct elfdump *ed)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; (size_t)i < ed->shnum; i++)
1776 		if ((ed->sl[i].type == SHT_SYMTAB ||
1777 		    ed->sl[i].type == SHT_DYNSYM) &&
1778 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name)))
1779 			elf_print_symtab(ed, i);
1780 }
1781 
1782 /*
1783  * Dump the content of .dynamic section.
1784  */
1785 static void
1786 elf_print_dynamic(struct elfdump *ed)
1787 {
1788 	struct section	*s;
1789 	const char	*name;
1790 	char		 idx[10];
1791 	Elf_Data	*data;
1792 	GElf_Dyn	 dyn;
1793 	int		 elferr, i, len;
1794 
1795 	s = NULL;
1796 	for (i = 0; (size_t)i < ed->shnum; i++) {
1797 		s = &ed->sl[i];
1798 		if (s->type == SHT_DYNAMIC &&
1799 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
1800 			break;
1801 	}
1802 	if ((size_t)i >= ed->shnum)
1803 		return;
1804 
1805 	if (ed->flags & SOLARIS_FMT) {
1806 		PRT("Dynamic Section:  %s\n", s->name);
1807 		PRT("     index  tag               value\n");
1808 	} else
1809 		PRT("\ndynamic:\n");
1810 	(void) elf_errno();
1811 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1812 		elferr = elf_errno();
1813 		if (elferr != 0)
1814 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1815 		return;
1816 	}
1817 	assert(data->d_size == s->sz);
1818 	if (!get_ent_count(s, &len))
1819 		return;
1820 	for (i = 0; i < len; i++) {
1821 		if (gelf_getdyn(data, i, &dyn) != &dyn) {
1822 			warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
1823 			continue;
1824 		}
1825 
1826 		if (ed->flags & SOLARIS_FMT) {
1827 			snprintf(idx, sizeof(idx), "[%d]", i);
1828 			PRT("%10s  %-16s ", idx, d_tags(dyn.d_tag));
1829 		} else {
1830 			PRT("\n");
1831 			PRT("entry: %d\n", i);
1832 			PRT("\td_tag: %s\n", d_tags(dyn.d_tag));
1833 		}
1834 		switch(dyn.d_tag) {
1835 		case DT_NEEDED:
1836 		case DT_SONAME:
1837 		case DT_RPATH:
1838 			if ((name = elf_strptr(ed->elf, s->link,
1839 				    dyn.d_un.d_val)) == NULL)
1840 				name = "";
1841 			if (ed->flags & SOLARIS_FMT)
1842 				PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val,
1843 				    name);
1844 			else
1845 				PRT("\td_val: %s\n", name);
1846 			break;
1847 		case DT_PLTRELSZ:
1848 		case DT_RELA:
1849 		case DT_RELASZ:
1850 		case DT_RELAENT:
1851 		case DT_RELACOUNT:
1852 		case DT_STRSZ:
1853 		case DT_SYMENT:
1854 		case DT_RELSZ:
1855 		case DT_RELENT:
1856 		case DT_PLTREL:
1857 		case DT_VERDEF:
1858 		case DT_VERDEFNUM:
1859 		case DT_VERNEED:
1860 		case DT_VERNEEDNUM:
1861 		case DT_VERSYM:
1862 			if (ed->flags & SOLARIS_FMT)
1863 				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val);
1864 			else
1865 				PRT("\td_val: %ju\n",
1866 				    (uintmax_t)dyn.d_un.d_val);
1867 			break;
1868 		case DT_PLTGOT:
1869 		case DT_HASH:
1870 		case DT_GNU_HASH:
1871 		case DT_STRTAB:
1872 		case DT_SYMTAB:
1873 		case DT_INIT:
1874 		case DT_FINI:
1875 		case DT_REL:
1876 		case DT_JMPREL:
1877 		case DT_DEBUG:
1878 			if (ed->flags & SOLARIS_FMT)
1879 				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr);
1880 			else
1881 				PRT("\td_ptr: %#jx\n",
1882 				    (uintmax_t)dyn.d_un.d_ptr);
1883 			break;
1884 		case DT_NULL:
1885 		case DT_SYMBOLIC:
1886 		case DT_TEXTREL:
1887 		default:
1888 			if (ed->flags & SOLARIS_FMT)
1889 				PRT("\n");
1890 			break;
1891 		}
1892 	}
1893 }
1894 
1895 /*
1896  * Dump a .rel/.rela section entry.
1897  */
1898 static void
1899 elf_print_rel_entry(struct elfdump *ed, struct section *s, int j,
1900     struct rel_entry *r)
1901 {
1902 
1903 	if (ed->flags & SOLARIS_FMT) {
1904 		PRT("        %-23s ", r_type(ed->ehdr.e_machine,
1905 			GELF_R_TYPE(r->u_r.rel.r_info)));
1906 		PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset);
1907 		if (r->type == SHT_RELA)
1908 			PRT("%10jd  ", (intmax_t)r->u_r.rela.r_addend);
1909 		else
1910 			PRT("    ");
1911 		PRT("%-14s ", s->name);
1912 		PRT("%s\n", r->symn);
1913 	} else {
1914 		PRT("\n");
1915 		PRT("entry: %d\n", j);
1916 		PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset);
1917 		if (ed->ec == ELFCLASS32)
1918 			PRT("\tr_info: %#jx\n", (uintmax_t)
1919 			    ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info),
1920 			    ELF64_R_TYPE(r->u_r.rel.r_info)));
1921 		else
1922 			PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info);
1923 		if (r->type == SHT_RELA)
1924 			PRT("\tr_addend: %jd\n",
1925 			    (intmax_t)r->u_r.rela.r_addend);
1926 	}
1927 }
1928 
1929 /*
1930  * Dump a relocation section of type SHT_RELA.
1931  */
1932 static void
1933 elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data)
1934 {
1935 	struct rel_entry	r;
1936 	int			j, len;
1937 
1938 	if (ed->flags & SOLARIS_FMT) {
1939 		PRT("\nRelocation Section:  %s\n", s->name);
1940 		PRT("        type                          offset     "
1941 		    "addend  section        with respect to\n");
1942 	} else
1943 		PRT("\nrelocation with addend (%s):\n", s->name);
1944 	r.type = SHT_RELA;
1945 	assert(data->d_size == s->sz);
1946 	if (!get_ent_count(s, &len))
1947 		return;
1948 	for (j = 0; j < len; j++) {
1949 		if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) {
1950 			warnx("gelf_getrela failed: %s",
1951 			    elf_errmsg(-1));
1952 			continue;
1953 		}
1954 		r.symn = get_symbol_name(ed, s->link,
1955 		    GELF_R_SYM(r.u_r.rela.r_info));
1956 		elf_print_rel_entry(ed, s, j, &r);
1957 	}
1958 }
1959 
1960 /*
1961  * Dump a relocation section of type SHT_REL.
1962  */
1963 static void
1964 elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data)
1965 {
1966 	struct rel_entry	r;
1967 	int			j, len;
1968 
1969 	if (ed->flags & SOLARIS_FMT) {
1970 		PRT("\nRelocation Section:  %s\n", s->name);
1971 		PRT("        type                          offset     "
1972 		    "section        with respect to\n");
1973 	} else
1974 		PRT("\nrelocation (%s):\n", s->name);
1975 	r.type = SHT_REL;
1976 	assert(data->d_size == s->sz);
1977 	if (!get_ent_count(s, &len))
1978 		return;
1979 	for (j = 0; j < len; j++) {
1980 		if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) {
1981 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
1982 			continue;
1983 		}
1984 		r.symn = get_symbol_name(ed, s->link,
1985 		    GELF_R_SYM(r.u_r.rel.r_info));
1986 		elf_print_rel_entry(ed, s, j, &r);
1987 	}
1988 }
1989 
1990 /*
1991  * Dump relocation sections.
1992  */
1993 static void
1994 elf_print_reloc(struct elfdump *ed)
1995 {
1996 	struct section	*s;
1997 	Elf_Data	*data;
1998 	int		 i, elferr;
1999 
2000 	for (i = 0; (size_t)i < ed->shnum; i++) {
2001 		s = &ed->sl[i];
2002 		if ((s->type == SHT_REL || s->type == SHT_RELA) &&
2003 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2004 			(void) elf_errno();
2005 			if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2006 				elferr = elf_errno();
2007 				if (elferr != 0)
2008 					warnx("elf_getdata failed: %s",
2009 					    elf_errmsg(elferr));
2010 				continue;
2011 			}
2012 			if (s->type == SHT_REL)
2013 				elf_print_rel(ed, s, data);
2014 			else
2015 				elf_print_rela(ed, s, data);
2016 		}
2017 	}
2018 }
2019 
2020 /*
2021  * Dump the content of PT_INTERP segment.
2022  */
2023 static void
2024 elf_print_interp(struct elfdump *ed)
2025 {
2026 	const char *s;
2027 	GElf_Phdr phdr;
2028 	size_t phnum;
2029 	int i;
2030 
2031 	if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL)
2032 		return;
2033 
2034 	if ((s = elf_rawfile(ed->elf, NULL)) == NULL) {
2035 		warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2036 		return;
2037 	}
2038 	if (!elf_getphnum(ed->elf, &phnum)) {
2039 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2040 		return;
2041 	}
2042 	for (i = 0; (size_t)i < phnum; i++) {
2043 		if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) {
2044 			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
2045 			continue;
2046 		}
2047 		if (phdr.p_type == PT_INTERP) {
2048 			PRT("\ninterp:\n");
2049 			PRT("\t%s\n", s + phdr.p_offset);
2050 		}
2051 	}
2052 }
2053 
2054 /*
2055  * Search the relocation sections for entries refering to the .got section.
2056  */
2057 static void
2058 find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got)
2059 {
2060 	struct section		*s;
2061 	struct rel_entry	 r;
2062 	Elf_Data		*data;
2063 	int			 elferr, i, j, k, len;
2064 
2065 	for(i = 0; (size_t)i < ed->shnum; i++) {
2066 		s = &ed->sl[i];
2067 		if (s->type != SHT_REL && s->type != SHT_RELA)
2068 			continue;
2069 		(void) elf_errno();
2070 		if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2071 			elferr = elf_errno();
2072 			if (elferr != 0)
2073 				warnx("elf_getdata failed: %s",
2074 				    elf_errmsg(elferr));
2075 			return;
2076 		}
2077 		memset(&r, 0, sizeof(struct rel_entry));
2078 		r.type = s->type;
2079 		assert(data->d_size == s->sz);
2080 		if (!get_ent_count(s, &len))
2081 			return;
2082 		for (j = 0; j < len; j++) {
2083 			if (s->type == SHT_REL) {
2084 				if (gelf_getrel(data, j, &r.u_r.rel) !=
2085 				    &r.u_r.rel) {
2086 					warnx("gelf_getrel failed: %s",
2087 					    elf_errmsg(-1));
2088 					continue;
2089 				}
2090 			} else {
2091 				if (gelf_getrela(data, j, &r.u_r.rela) !=
2092 				    &r.u_r.rela) {
2093 					warnx("gelf_getrel failed: %s",
2094 					    elf_errmsg(-1));
2095 					continue;
2096 				}
2097 			}
2098 			if (r.u_r.rel.r_offset >= gs->addr &&
2099 			    r.u_r.rel.r_offset < gs->addr + gs->sz) {
2100 				r.symn = get_symbol_name(ed, s->link,
2101 				    GELF_R_SYM(r.u_r.rel.r_info));
2102 				k = (r.u_r.rel.r_offset - gs->addr) /
2103 				    gs->entsize;
2104 				memcpy(&got[k], &r, sizeof(struct rel_entry));
2105 			}
2106 		}
2107 	}
2108 }
2109 
2110 static void
2111 elf_print_got_section(struct elfdump *ed, struct section *s)
2112 {
2113 	struct rel_entry	*got;
2114 	Elf_Data		*data, dst;
2115 	int			 elferr, i, len;
2116 
2117 	if (s->entsize == 0) {
2118 		/* XXX IA64 GOT section generated by gcc has entry size 0. */
2119 		if (s->align != 0)
2120 			s->entsize = s->align;
2121 		else
2122 			return;
2123 	}
2124 
2125 	if (!get_ent_count(s, &len))
2126 		return;
2127 	if (ed->flags & SOLARIS_FMT)
2128 		PRT("\nGlobal Offset Table Section:  %s  (%d entries)\n",
2129 		    s->name, len);
2130 	else
2131 		PRT("\nglobal offset table: %s\n", s->name);
2132 	(void) elf_errno();
2133 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2134 		elferr = elf_errno();
2135 		if (elferr != 0)
2136 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2137 		return;
2138 	}
2139 
2140 	/*
2141 	 * GOT section has section type SHT_PROGBITS, thus libelf treats it as
2142 	 * byte stream and will not perfrom any translation on it. As a result,
2143 	 * an exlicit call to gelf_xlatetom is needed here. Depends on arch,
2144 	 * GOT section should be translated to either WORD or XWORD.
2145 	 */
2146 	if (ed->ec == ELFCLASS32)
2147 		data->d_type = ELF_T_WORD;
2148 	else
2149 		data->d_type = ELF_T_XWORD;
2150 	memcpy(&dst, data, sizeof(Elf_Data));
2151 	if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) !=
2152 	    &dst) {
2153 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2154 		return;
2155 	}
2156 	assert(dst.d_size == s->sz);
2157 	if (ed->flags & SOLARIS_FMT) {
2158 		/*
2159 		 * In verbose/Solaris mode, we search the relocation sections
2160 		 * and try to find the corresponding reloc entry for each GOT
2161 		 * section entry.
2162 		 */
2163 		if ((got = calloc(len, sizeof(struct rel_entry))) == NULL)
2164 			err(EXIT_FAILURE, "calloc failed");
2165 		find_gotrel(ed, s, got);
2166 		if (ed->ec == ELFCLASS32) {
2167 			PRT(" ndx     addr      value    reloc              ");
2168 			PRT("addend   symbol\n");
2169 		} else {
2170 			PRT(" ndx     addr              value             ");
2171 			PRT("reloc              addend       symbol\n");
2172 		}
2173 		for(i = 0; i < len; i++) {
2174 			PRT("[%5.5d]  ", i);
2175 			if (ed->ec == ELFCLASS32) {
2176 				PRT("%-8.8jx  ", s->addr + i * s->entsize);
2177 				PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i));
2178 			} else {
2179 				PRT("%-16.16jx  ", s->addr + i * s->entsize);
2180 				PRT("%-16.16jx  ", *((uint64_t *)dst.d_buf + i));
2181 			}
2182 			PRT("%-18s ", r_type(ed->ehdr.e_machine,
2183 				GELF_R_TYPE(got[i].u_r.rel.r_info)));
2184 			if (ed->ec == ELFCLASS32)
2185 				PRT("%-8.8jd ",
2186 				    (intmax_t)got[i].u_r.rela.r_addend);
2187 			else
2188 				PRT("%-12.12jd ",
2189 				    (intmax_t)got[i].u_r.rela.r_addend);
2190 			if (got[i].symn == NULL)
2191 				got[i].symn = "";
2192 			PRT("%s\n", got[i].symn);
2193 		}
2194 		free(got);
2195 	} else {
2196 		for(i = 0; i < len; i++) {
2197 			PRT("\nentry: %d\n", i);
2198 			if (ed->ec == ELFCLASS32)
2199 				PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i));
2200 			else
2201 				PRT("\t%#jx\n", *((uint64_t *)dst.d_buf + i));
2202 		}
2203 	}
2204 }
2205 
2206 /*
2207  * Dump the content of Global Offset Table section.
2208  */
2209 static void
2210 elf_print_got(struct elfdump *ed)
2211 {
2212 	struct section	*s;
2213 	int		 i;
2214 
2215 	if (!STAILQ_EMPTY(&ed->snl))
2216 		return;
2217 
2218 	s = NULL;
2219 	for (i = 0; (size_t)i < ed->shnum; i++) {
2220 		s = &ed->sl[i];
2221 		if (s->name && !strncmp(s->name, ".got", 4) &&
2222 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2223 			elf_print_got_section(ed, s);
2224 	}
2225 }
2226 
2227 /*
2228  * Dump the content of .note.ABI-tag section.
2229  */
2230 static void
2231 elf_print_note(struct elfdump *ed)
2232 {
2233 	struct section	*s;
2234 	Elf_Data        *data;
2235 	Elf_Note	*en;
2236 	uint32_t	 namesz;
2237 	uint32_t	 descsz;
2238 	uint32_t	 desc;
2239 	size_t		 count;
2240 	int		 elferr, i;
2241 	char		*src, idx[10];
2242 
2243 	s = NULL;
2244 	for (i = 0; (size_t)i < ed->shnum; i++) {
2245 		s = &ed->sl[i];
2246 		if (s->type == SHT_NOTE && s->name &&
2247 		    !strcmp(s->name, ".note.ABI-tag") &&
2248 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2249 			break;
2250 	}
2251 	if ((size_t)i >= ed->shnum)
2252 		return;
2253 	if (ed->flags & SOLARIS_FMT)
2254 		PRT("\nNote Section:  %s\n", s->name);
2255 	else
2256 		PRT("\nnote (%s):\n", s->name);
2257 	(void) elf_errno();
2258 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2259 		elferr = elf_errno();
2260 		if (elferr != 0)
2261 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2262 		return;
2263 	}
2264 	src = data->d_buf;
2265 	count = data->d_size;
2266 	while (count > sizeof(Elf_Note)) {
2267 		en = (Elf_Note *) (uintptr_t) src;
2268 		namesz = en->n_namesz;
2269 		descsz = en->n_descsz;
2270 		src += sizeof(Elf_Note);
2271 		count -= sizeof(Elf_Note);
2272 		if (ed->flags & SOLARIS_FMT) {
2273 			PRT("\n    type   %#x\n", en->n_type);
2274 			PRT("    namesz %#x:\n", en->n_namesz);
2275 			PRT("%s\n", src);
2276 		} else
2277 			PRT("\t%s ", src);
2278 		src += roundup2(namesz, 4);
2279 		count -= roundup2(namesz, 4);
2280 
2281 		/*
2282 		 * Note that we dump the whole desc part if we're in
2283 		 * "Solaris mode", while in the normal mode, we only look
2284 		 * at the first 4 bytes (a 32bit word) of the desc, i.e,
2285 		 * we assume that it's always a FreeBSD version number.
2286 		 */
2287 		if (ed->flags & SOLARIS_FMT) {
2288 			PRT("    descsz %#x:", en->n_descsz);
2289 			for (i = 0; (uint32_t)i < descsz; i++) {
2290 				if ((i & 0xF) == 0) {
2291 					snprintf(idx, sizeof(idx), "desc[%d]",
2292 					    i);
2293 					PRT("\n      %-9s", idx);
2294 				} else if ((i & 0x3) == 0)
2295 					PRT("  ");
2296 				PRT(" %2.2x", src[i]);
2297 			}
2298 			PRT("\n");
2299 		} else {
2300 			if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
2301 				desc = be32dec(src);
2302 			else
2303 				desc = le32dec(src);
2304 			PRT("%d\n", desc);
2305 		}
2306 		src += roundup2(descsz, 4);
2307 		count -= roundup2(descsz, 4);
2308 	}
2309 }
2310 
2311 /*
2312  * Dump a hash table.
2313  */
2314 static void
2315 elf_print_svr4_hash(struct elfdump *ed, struct section *s)
2316 {
2317 	Elf_Data	*data;
2318 	uint32_t	*buf;
2319 	uint32_t	*bucket, *chain;
2320 	uint32_t	 nbucket, nchain;
2321 	uint32_t	*bl, *c, maxl, total;
2322 	int		 i, j, first, elferr;
2323 	char		 idx[10];
2324 
2325 	if (ed->flags & SOLARIS_FMT)
2326 		PRT("\nHash Section:  %s\n", s->name);
2327 	else
2328 		PRT("\nhash table (%s):\n", s->name);
2329 	(void) elf_errno();
2330 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2331 		elferr = elf_errno();
2332 		if (elferr != 0)
2333 			warnx("elf_getdata failed: %s",
2334 			    elf_errmsg(elferr));
2335 		return;
2336 	}
2337 	if (data->d_size < 2 * sizeof(uint32_t)) {
2338 		warnx(".hash section too small");
2339 		return;
2340 	}
2341 	buf = data->d_buf;
2342 	nbucket = buf[0];
2343 	nchain = buf[1];
2344 	if (nbucket <= 0 || nchain <= 0) {
2345 		warnx("Malformed .hash section");
2346 		return;
2347 	}
2348 	if (data->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
2349 		warnx("Malformed .hash section");
2350 		return;
2351 	}
2352 	bucket = &buf[2];
2353 	chain = &buf[2 + nbucket];
2354 
2355 	if (ed->flags & SOLARIS_FMT) {
2356 		maxl = 0;
2357 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2358 			err(EXIT_FAILURE, "calloc failed");
2359 		for (i = 0; (uint32_t)i < nbucket; i++)
2360 			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2361 			     j = chain[j])
2362 				if (++bl[i] > maxl)
2363 					maxl = bl[i];
2364 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2365 			err(EXIT_FAILURE, "calloc failed");
2366 		for (i = 0; (uint32_t)i < nbucket; i++)
2367 			c[bl[i]]++;
2368 		PRT("    bucket    symndx    name\n");
2369 		for (i = 0; (uint32_t)i < nbucket; i++) {
2370 			first = 1;
2371 			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2372 			     j = chain[j]) {
2373 				if (first) {
2374 					PRT("%10d  ", i);
2375 					first = 0;
2376 				} else
2377 					PRT("            ");
2378 				snprintf(idx, sizeof(idx), "[%d]", j);
2379 				PRT("%-10s  ", idx);
2380 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2381 			}
2382 		}
2383 		PRT("\n");
2384 		total = 0;
2385 		for (i = 0; (uint32_t)i <= maxl; i++) {
2386 			total += c[i] * i;
2387 			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2388 		}
2389 		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2390 		    total);
2391 	} else {
2392 		PRT("\nnbucket: %u\n", nbucket);
2393 		PRT("nchain: %u\n\n", nchain);
2394 		for (i = 0; (uint32_t)i < nbucket; i++)
2395 			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2396 		for (i = 0; (uint32_t)i < nchain; i++)
2397 			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2398 	}
2399 }
2400 
2401 /*
2402  * Dump a 64bit hash table.
2403  */
2404 static void
2405 elf_print_svr4_hash64(struct elfdump *ed, struct section *s)
2406 {
2407 	Elf_Data	*data, dst;
2408 	uint64_t	*buf;
2409 	uint64_t	*bucket, *chain;
2410 	uint64_t	 nbucket, nchain;
2411 	uint64_t	*bl, *c, maxl, total;
2412 	int		 i, j, elferr, first;
2413 	char		 idx[10];
2414 
2415 	if (ed->flags & SOLARIS_FMT)
2416 		PRT("\nHash Section:  %s\n", s->name);
2417 	else
2418 		PRT("\nhash table (%s):\n", s->name);
2419 
2420 	/*
2421 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
2422 	 * .hash section contains only 32-bit entry, an explicit
2423 	 * gelf_xlatetom is needed here.
2424 	 */
2425 	(void) elf_errno();
2426 	if ((data = elf_rawdata(s->scn, NULL)) == NULL) {
2427 		elferr = elf_errno();
2428 		if (elferr != 0)
2429 			warnx("elf_rawdata failed: %s",
2430 			    elf_errmsg(elferr));
2431 		return;
2432 	}
2433 	data->d_type = ELF_T_XWORD;
2434 	memcpy(&dst, data, sizeof(Elf_Data));
2435 	if (gelf_xlatetom(ed->elf, &dst, data,
2436 		ed->ehdr.e_ident[EI_DATA]) != &dst) {
2437 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2438 		return;
2439 	}
2440 	if (dst.d_size < 2 * sizeof(uint64_t)) {
2441 		warnx(".hash section too small");
2442 		return;
2443 	}
2444 	buf = dst.d_buf;
2445 	nbucket = buf[0];
2446 	nchain = buf[1];
2447 	if (nbucket <= 0 || nchain <= 0) {
2448 		warnx("Malformed .hash section");
2449 		return;
2450 	}
2451 	if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) {
2452 		warnx("Malformed .hash section");
2453 		return;
2454 	}
2455 	bucket = &buf[2];
2456 	chain = &buf[2 + nbucket];
2457 
2458 	if (ed->flags & SOLARIS_FMT) {
2459 		maxl = 0;
2460 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2461 			err(EXIT_FAILURE, "calloc failed");
2462 		for (i = 0; (uint64_t)i < nbucket; i++)
2463 			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2464 			     j = chain[j])
2465 				if (++bl[i] > maxl)
2466 					maxl = bl[i];
2467 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2468 			err(EXIT_FAILURE, "calloc failed");
2469 		for (i = 0; (uint64_t)i < nbucket; i++)
2470 			c[bl[i]]++;
2471 		PRT("    bucket    symndx    name\n");
2472 		for (i = 0; (uint64_t)i < nbucket; i++) {
2473 			first = 1;
2474 			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2475 			     j = chain[j]) {
2476 				if (first) {
2477 					PRT("%10d  ", i);
2478 					first = 0;
2479 				} else
2480 					PRT("            ");
2481 				snprintf(idx, sizeof(idx), "[%d]", j);
2482 				PRT("%-10s  ", idx);
2483 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2484 			}
2485 		}
2486 		PRT("\n");
2487 		total = 0;
2488 		for (i = 0; (uint64_t)i <= maxl; i++) {
2489 			total += c[i] * i;
2490 			PRT("%10ju  buckets contain %8d symbols\n",
2491 			    (uintmax_t)c[i], i);
2492 		}
2493 		PRT("%10ju  buckets         %8ju symbols (globals)\n",
2494 		    (uintmax_t)nbucket, (uintmax_t)total);
2495 	} else {
2496 		PRT("\nnbucket: %ju\n", (uintmax_t)nbucket);
2497 		PRT("nchain: %ju\n\n", (uintmax_t)nchain);
2498 		for (i = 0; (uint64_t)i < nbucket; i++)
2499 			PRT("bucket[%d]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]);
2500 		for (i = 0; (uint64_t)i < nchain; i++)
2501 			PRT("chain[%d]:\n\t%ju\n\n", i, (uintmax_t)chain[i]);
2502 	}
2503 
2504 }
2505 
2506 /*
2507  * Dump a GNU hash table.
2508  */
2509 static void
2510 elf_print_gnu_hash(struct elfdump *ed, struct section *s)
2511 {
2512 	struct section	*ds;
2513 	Elf_Data	*data;
2514 	uint32_t	*buf;
2515 	uint32_t	*bucket, *chain;
2516 	uint32_t	 nbucket, nchain, symndx, maskwords, shift2;
2517 	uint32_t	*bl, *c, maxl, total;
2518 	int		 i, j, first, elferr, dynsymcount;
2519 	char		 idx[10];
2520 
2521 	if (ed->flags & SOLARIS_FMT)
2522 		PRT("\nGNU Hash Section:  %s\n", s->name);
2523 	else
2524 		PRT("\ngnu hash table (%s):\n", s->name);
2525 	(void) elf_errno();
2526 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2527 		elferr = elf_errno();
2528 		if (elferr != 0)
2529 			warnx("elf_getdata failed: %s",
2530 			    elf_errmsg(elferr));
2531 		return;
2532 	}
2533 	if (data->d_size < 4 * sizeof(uint32_t)) {
2534 		warnx(".gnu.hash section too small");
2535 		return;
2536 	}
2537 	buf = data->d_buf;
2538 	nbucket = buf[0];
2539 	symndx = buf[1];
2540 	maskwords = buf[2];
2541 	shift2 = buf[3];
2542 	buf += 4;
2543 	ds = &ed->sl[s->link];
2544 	if (!get_ent_count(ds, &dynsymcount))
2545 		return;
2546 	nchain = dynsymcount - symndx;
2547 	if (data->d_size != 4 * sizeof(uint32_t) + maskwords *
2548 	    (ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
2549 	    (nbucket + nchain) * sizeof(uint32_t)) {
2550 		warnx("Malformed .gnu.hash section");
2551 		return;
2552 	}
2553 	bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2);
2554 	chain = bucket + nbucket;
2555 
2556 	if (ed->flags & SOLARIS_FMT) {
2557 		maxl = 0;
2558 		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2559 			err(EXIT_FAILURE, "calloc failed");
2560 		for (i = 0; (uint32_t)i < nbucket; i++)
2561 			for (j = bucket[i];
2562 			     j > 0 && (uint32_t)j - symndx < nchain;
2563 			     j++) {
2564 				if (++bl[i] > maxl)
2565 					maxl = bl[i];
2566 				if (chain[j - symndx] & 1)
2567 					break;
2568 			}
2569 		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2570 			err(EXIT_FAILURE, "calloc failed");
2571 		for (i = 0; (uint32_t)i < nbucket; i++)
2572 			c[bl[i]]++;
2573 		PRT("    bucket    symndx    name\n");
2574 		for (i = 0; (uint32_t)i < nbucket; i++) {
2575 			first = 1;
2576 			for (j = bucket[i];
2577 			     j > 0 && (uint32_t)j - symndx < nchain;
2578 			     j++) {
2579 				if (first) {
2580 					PRT("%10d  ", i);
2581 					first = 0;
2582 				} else
2583 					PRT("            ");
2584 				snprintf(idx, sizeof(idx), "[%d]", j );
2585 				PRT("%-10s  ", idx);
2586 				PRT("%s\n", get_symbol_name(ed, s->link, j));
2587 				if (chain[j - symndx] & 1)
2588 					break;
2589 			}
2590 		}
2591 		PRT("\n");
2592 		total = 0;
2593 		for (i = 0; (uint32_t)i <= maxl; i++) {
2594 			total += c[i] * i;
2595 			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2596 		}
2597 		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2598 		    total);
2599 	} else {
2600 		PRT("\nnbucket: %u\n", nbucket);
2601 		PRT("symndx: %u\n", symndx);
2602 		PRT("maskwords: %u\n", maskwords);
2603 		PRT("shift2: %u\n", shift2);
2604 		PRT("nchain: %u\n\n", nchain);
2605 		for (i = 0; (uint32_t)i < nbucket; i++)
2606 			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2607 		for (i = 0; (uint32_t)i < nchain; i++)
2608 			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2609 	}
2610 }
2611 
2612 /*
2613  * Dump hash tables.
2614  */
2615 static void
2616 elf_print_hash(struct elfdump *ed)
2617 {
2618 	struct section	*s;
2619 	int		 i;
2620 
2621 	for (i = 0; (size_t)i < ed->shnum; i++) {
2622 		s = &ed->sl[i];
2623 		if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) &&
2624 		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2625 			if (s->type == SHT_GNU_HASH)
2626 				elf_print_gnu_hash(ed, s);
2627 			else if (ed->ehdr.e_machine == EM_ALPHA &&
2628 			    s->entsize == 8)
2629 				elf_print_svr4_hash64(ed, s);
2630 			else
2631 				elf_print_svr4_hash(ed, s);
2632 		}
2633 	}
2634 }
2635 
2636 /*
2637  * Dump the content of a Version Definition(SHT_SUNW_Verdef) Section.
2638  */
2639 static void
2640 elf_print_verdef(struct elfdump *ed, struct section *s)
2641 {
2642 	Elf_Data	*data;
2643 	Elf32_Verdef	*vd;
2644 	Elf32_Verdaux	*vda;
2645 	const char 	*str;
2646 	char		 idx[10];
2647 	uint8_t		*buf, *end, *buf2;
2648 	int		 i, j, elferr, count;
2649 
2650 	if (ed->flags & SOLARIS_FMT)
2651 		PRT("Version Definition Section:  %s\n", s->name);
2652 	else
2653 		PRT("\nversion definition section (%s):\n", s->name);
2654 	(void) elf_errno();
2655 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2656 		elferr = elf_errno();
2657 		if (elferr != 0)
2658 			warnx("elf_getdata failed: %s",
2659 			    elf_errmsg(elferr));
2660 		return;
2661 	}
2662 	buf = data->d_buf;
2663 	end = buf + data->d_size;
2664 	i = 0;
2665 	if (ed->flags & SOLARIS_FMT)
2666 		PRT("     index  version                     dependency\n");
2667 	while (buf + sizeof(Elf32_Verdef) <= end) {
2668 		vd = (Elf32_Verdef *) (uintptr_t) buf;
2669 		if (ed->flags & SOLARIS_FMT) {
2670 			snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx);
2671 			PRT("%10s  ", idx);
2672 		} else {
2673 			PRT("\nentry: %d\n", i++);
2674 			PRT("\tvd_version: %u\n", vd->vd_version);
2675 			PRT("\tvd_flags: %u\n", vd->vd_flags);
2676 			PRT("\tvd_ndx: %u\n", vd->vd_ndx);
2677 			PRT("\tvd_cnt: %u\n", vd->vd_cnt);
2678 			PRT("\tvd_hash: %u\n", vd->vd_hash);
2679 			PRT("\tvd_aux: %u\n", vd->vd_aux);
2680 			PRT("\tvd_next: %u\n\n", vd->vd_next);
2681 		}
2682 		buf2 = buf + vd->vd_aux;
2683 		j = 0;
2684 		count = 0;
2685 		while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) {
2686 			vda = (Elf32_Verdaux *) (uintptr_t) buf2;
2687 			str = get_string(ed, s->link, vda->vda_name);
2688 			if (ed->flags & SOLARIS_FMT) {
2689 				if (count == 0)
2690 					PRT("%-26.26s", str);
2691 				else if (count == 1)
2692 					PRT("  %-20.20s", str);
2693 				else {
2694 					PRT("\n%40.40s", "");
2695 					PRT("%s", str);
2696 				}
2697 			} else {
2698 				PRT("\t\tvda: %d\n", j++);
2699 				PRT("\t\t\tvda_name: %s\n", str);
2700 				PRT("\t\t\tvda_next: %u\n", vda->vda_next);
2701 			}
2702 			if (vda->vda_next == 0) {
2703 				if (ed->flags & SOLARIS_FMT) {
2704 					if (vd->vd_flags & VER_FLG_BASE) {
2705 						if (count == 0)
2706 							PRT("%-20.20s", "");
2707 						PRT("%s", "[ BASE ]");
2708 					}
2709 					PRT("\n");
2710 				}
2711 				break;
2712 			}
2713 			if (ed->flags & SOLARIS_FMT)
2714 				count++;
2715 			buf2 += vda->vda_next;
2716 		}
2717 		if (vd->vd_next == 0)
2718 			break;
2719 		buf += vd->vd_next;
2720 	}
2721 }
2722 
2723 /*
2724  * Dump the content of a Version Needed(SHT_SUNW_Verneed) Section.
2725  */
2726 static void
2727 elf_print_verneed(struct elfdump *ed, struct section *s)
2728 {
2729 	Elf_Data	*data;
2730 	Elf32_Verneed	*vn;
2731 	Elf32_Vernaux	*vna;
2732 	uint8_t		*buf, *end, *buf2;
2733 	int		 i, j, elferr, first;
2734 
2735 	if (ed->flags & SOLARIS_FMT)
2736 		PRT("\nVersion Needed Section:  %s\n", s->name);
2737 	else
2738 		PRT("\nversion need section (%s):\n", s->name);
2739 	(void) elf_errno();
2740 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2741 		elferr = elf_errno();
2742 		if (elferr != 0)
2743 			warnx("elf_getdata failed: %s",
2744 			    elf_errmsg(elferr));
2745 		return;
2746 	}
2747 	buf = data->d_buf;
2748 	end = buf + data->d_size;
2749 	if (ed->flags & SOLARIS_FMT)
2750 		PRT("            file                        version\n");
2751 	i = 0;
2752 	while (buf + sizeof(Elf32_Verneed) <= end) {
2753 		vn = (Elf32_Verneed *) (uintptr_t) buf;
2754 		if (ed->flags & SOLARIS_FMT)
2755 			PRT("            %-26.26s  ",
2756 			    get_string(ed, s->link, vn->vn_file));
2757 		else {
2758 			PRT("\nentry: %d\n", i++);
2759 			PRT("\tvn_version: %u\n", vn->vn_version);
2760 			PRT("\tvn_cnt: %u\n", vn->vn_cnt);
2761 			PRT("\tvn_file: %s\n",
2762 			    get_string(ed, s->link, vn->vn_file));
2763 			PRT("\tvn_aux: %u\n", vn->vn_aux);
2764 			PRT("\tvn_next: %u\n\n", vn->vn_next);
2765 		}
2766 		buf2 = buf + vn->vn_aux;
2767 		j = 0;
2768 		first = 1;
2769 		while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) {
2770 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
2771 			if (ed->flags & SOLARIS_FMT) {
2772 				if (!first)
2773 					PRT("%40.40s", "");
2774 				else
2775 					first = 0;
2776 				PRT("%s\n", get_string(ed, s->link,
2777 				    vna->vna_name));
2778 			} else {
2779 				PRT("\t\tvna: %d\n", j++);
2780 				PRT("\t\t\tvna_hash: %u\n", vna->vna_hash);
2781 				PRT("\t\t\tvna_flags: %u\n", vna->vna_flags);
2782 				PRT("\t\t\tvna_other: %u\n", vna->vna_other);
2783 				PRT("\t\t\tvna_name: %s\n",
2784 				    get_string(ed, s->link, vna->vna_name));
2785 				PRT("\t\t\tvna_next: %u\n", vna->vna_next);
2786 			}
2787 			if (vna->vna_next == 0)
2788 				break;
2789 			buf2 += vna->vna_next;
2790 		}
2791 		if (vn->vn_next == 0)
2792 			break;
2793 		buf += vn->vn_next;
2794 	}
2795 }
2796 
2797 /*
2798  * Dump the symbol-versioning sections.
2799  */
2800 static void
2801 elf_print_symver(struct elfdump *ed)
2802 {
2803 	struct section	*s;
2804 	int		 i;
2805 
2806 	for (i = 0; (size_t)i < ed->shnum; i++) {
2807 		s = &ed->sl[i];
2808 		if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name))
2809 			continue;
2810 		if (s->type == SHT_SUNW_verdef)
2811 			elf_print_verdef(ed, s);
2812 		if (s->type == SHT_SUNW_verneed)
2813 			elf_print_verneed(ed, s);
2814 	}
2815 }
2816 
2817 /*
2818  * Dump the ELF checksum. See gelf_checksum(3) for details.
2819  */
2820 static void
2821 elf_print_checksum(struct elfdump *ed)
2822 {
2823 
2824 	if (!STAILQ_EMPTY(&ed->snl))
2825 		return;
2826 
2827 	PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf));
2828 }
2829 
2830 #define	USAGE_MESSAGE	"\
2831 Usage: %s [options] file...\n\
2832   Display information about ELF objects and ar(1) archives.\n\n\
2833   Options:\n\
2834   -a                        Show all information.\n\
2835   -c                        Show shared headers.\n\
2836   -d                        Show dynamic symbols.\n\
2837   -e                        Show the ELF header.\n\
2838   -G                        Show the GOT.\n\
2839   -H | --help               Show a usage message and exit.\n\
2840   -h                        Show hash values.\n\
2841   -i                        Show the dynamic interpreter.\n\
2842   -k                        Show the ELF checksum.\n\
2843   -n                        Show the contents of note sections.\n\
2844   -N NAME                   Show the section named \"NAME\".\n\
2845   -p                        Show the program header.\n\
2846   -r                        Show relocations.\n\
2847   -s                        Show the symbol table.\n\
2848   -S                        Use the Solaris elfdump format.\n\
2849   -v                        Show symbol-versioning information.\n\
2850   -V | --version            Print a version identifier and exit.\n\
2851   -w FILE                   Write output to \"FILE\".\n"
2852 
2853 static void
2854 usage(void)
2855 {
2856 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
2857 	exit(EXIT_FAILURE);
2858 }
2859