1 2 /*-------------------------------------------------------------*/ 3 /*--- Decompression machinery ---*/ 4 /*--- decompress.c ---*/ 5 /*-------------------------------------------------------------*/ 6 7 /*-- 8 This file is a part of bzip2 and/or libbzip2, a program and 9 library for lossless, block-sorting data compression. 10 11 Copyright (C) 1996-2005 Julian R Seward. All rights reserved. 12 13 Redistribution and use in source and binary forms, with or without 14 modification, are permitted provided that the following conditions 15 are met: 16 17 1. Redistributions of source code must retain the above copyright 18 notice, this list of conditions and the following disclaimer. 19 20 2. The origin of this software must not be misrepresented; you must 21 not claim that you wrote the original software. If you use this 22 software in a product, an acknowledgment in the product 23 documentation would be appreciated but is not required. 24 25 3. Altered source versions must be plainly marked as such, and must 26 not be misrepresented as being the original software. 27 28 4. The name of the author may not be used to endorse or promote 29 products derived from this software without specific prior written 30 permission. 31 32 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 33 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 34 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 36 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 38 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 39 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 40 WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 41 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 42 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 43 44 Julian Seward, Cambridge, UK. 45 jseward@bzip.org 46 bzip2/libbzip2 version 1.0 of 21 March 2000 47 48 This program is based on (at least) the work of: 49 Mike Burrows 50 David Wheeler 51 Peter Fenwick 52 Alistair Moffat 53 Radford Neal 54 Ian H. Witten 55 Robert Sedgewick 56 Jon L. Bentley 57 58 For more information on these sources, see the manual. 59 --*/ 60 61 62 #include "bzlib_private.h" 63 64 65 /*---------------------------------------------------*/ 66 static 67 void makeMaps_d ( DState* s ) 68 { 69 Int32 i; 70 s->nInUse = 0; 71 for (i = 0; i < 256; i++) 72 if (s->inUse[i]) { 73 s->seqToUnseq[s->nInUse] = i; 74 s->nInUse++; 75 } 76 } 77 78 79 /*---------------------------------------------------*/ 80 #define RETURN(rrr) \ 81 { retVal = rrr; goto save_state_and_return; }; 82 83 #define GET_BITS(lll,vvv,nnn) \ 84 case lll: s->state = lll; \ 85 while (True) { \ 86 if (s->bsLive >= nnn) { \ 87 UInt32 v; \ 88 v = (s->bsBuff >> \ 89 (s->bsLive-nnn)) & ((1 << nnn)-1); \ 90 s->bsLive -= nnn; \ 91 vvv = v; \ 92 break; \ 93 } \ 94 if (s->strm->avail_in == 0) RETURN(BZ_OK); \ 95 s->bsBuff \ 96 = (s->bsBuff << 8) | \ 97 ((UInt32) \ 98 (*((UChar*)(s->strm->next_in)))); \ 99 s->bsLive += 8; \ 100 s->strm->next_in++; \ 101 s->strm->avail_in--; \ 102 s->strm->total_in_lo32++; \ 103 if (s->strm->total_in_lo32 == 0) \ 104 s->strm->total_in_hi32++; \ 105 } 106 107 #define GET_UCHAR(lll,uuu) \ 108 GET_BITS(lll,uuu,8) 109 110 #define GET_BIT(lll,uuu) \ 111 GET_BITS(lll,uuu,1) 112 113 /*---------------------------------------------------*/ 114 #define GET_MTF_VAL(label1,label2,lval) \ 115 { \ 116 if (groupPos == 0) { \ 117 groupNo++; \ 118 if (groupNo >= nSelectors) \ 119 RETURN(BZ_DATA_ERROR); \ 120 groupPos = BZ_G_SIZE; \ 121 gSel = s->selector[groupNo]; \ 122 gMinlen = s->minLens[gSel]; \ 123 gLimit = &(s->limit[gSel][0]); \ 124 gPerm = &(s->perm[gSel][0]); \ 125 gBase = &(s->base[gSel][0]); \ 126 } \ 127 groupPos--; \ 128 zn = gMinlen; \ 129 GET_BITS(label1, zvec, zn); \ 130 while (1) { \ 131 if (zn > 20 /* the longest code */) \ 132 RETURN(BZ_DATA_ERROR); \ 133 if (zvec <= gLimit[zn]) break; \ 134 zn++; \ 135 GET_BIT(label2, zj); \ 136 zvec = (zvec << 1) | zj; \ 137 }; \ 138 if (zvec - gBase[zn] < 0 \ 139 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \ 140 RETURN(BZ_DATA_ERROR); \ 141 lval = gPerm[zvec - gBase[zn]]; \ 142 } 143 144 145 /*---------------------------------------------------*/ 146 Int32 BZ2_decompress ( DState* s ) 147 { 148 UChar uc; 149 Int32 retVal; 150 Int32 minLen, maxLen; 151 bz_stream* strm = s->strm; 152 153 /* stuff that needs to be saved/restored */ 154 Int32 i; 155 Int32 j; 156 Int32 t; 157 Int32 alphaSize; 158 Int32 nGroups; 159 Int32 nSelectors; 160 Int32 EOB; 161 Int32 groupNo; 162 Int32 groupPos; 163 Int32 nextSym; 164 Int32 nblockMAX; 165 Int32 nblock; 166 Int32 es; 167 Int32 N; 168 Int32 curr; 169 Int32 zt; 170 Int32 zn; 171 Int32 zvec; 172 Int32 zj; 173 Int32 gSel; 174 Int32 gMinlen; 175 Int32* gLimit; 176 Int32* gBase; 177 Int32* gPerm; 178 179 if (s->state == BZ_X_MAGIC_1) { 180 /*initialise the save area*/ 181 s->save_i = 0; 182 s->save_j = 0; 183 s->save_t = 0; 184 s->save_alphaSize = 0; 185 s->save_nGroups = 0; 186 s->save_nSelectors = 0; 187 s->save_EOB = 0; 188 s->save_groupNo = 0; 189 s->save_groupPos = 0; 190 s->save_nextSym = 0; 191 s->save_nblockMAX = 0; 192 s->save_nblock = 0; 193 s->save_es = 0; 194 s->save_N = 0; 195 s->save_curr = 0; 196 s->save_zt = 0; 197 s->save_zn = 0; 198 s->save_zvec = 0; 199 s->save_zj = 0; 200 s->save_gSel = 0; 201 s->save_gMinlen = 0; 202 s->save_gLimit = NULL; 203 s->save_gBase = NULL; 204 s->save_gPerm = NULL; 205 } 206 207 /*restore from the save area*/ 208 i = s->save_i; 209 j = s->save_j; 210 t = s->save_t; 211 alphaSize = s->save_alphaSize; 212 nGroups = s->save_nGroups; 213 nSelectors = s->save_nSelectors; 214 EOB = s->save_EOB; 215 groupNo = s->save_groupNo; 216 groupPos = s->save_groupPos; 217 nextSym = s->save_nextSym; 218 nblockMAX = s->save_nblockMAX; 219 nblock = s->save_nblock; 220 es = s->save_es; 221 N = s->save_N; 222 curr = s->save_curr; 223 zt = s->save_zt; 224 zn = s->save_zn; 225 zvec = s->save_zvec; 226 zj = s->save_zj; 227 gSel = s->save_gSel; 228 gMinlen = s->save_gMinlen; 229 gLimit = s->save_gLimit; 230 gBase = s->save_gBase; 231 gPerm = s->save_gPerm; 232 233 retVal = BZ_OK; 234 235 switch (s->state) { 236 237 GET_UCHAR(BZ_X_MAGIC_1, uc); 238 if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC); 239 240 GET_UCHAR(BZ_X_MAGIC_2, uc); 241 if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC); 242 243 GET_UCHAR(BZ_X_MAGIC_3, uc) 244 if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC); 245 246 GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8) 247 if (s->blockSize100k < (BZ_HDR_0 + 1) || 248 s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC); 249 s->blockSize100k -= BZ_HDR_0; 250 251 if (s->smallDecompress) { 252 s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) ); 253 s->ll4 = BZALLOC( 254 ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) 255 ); 256 if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR); 257 } else { 258 s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) ); 259 if (s->tt == NULL) RETURN(BZ_MEM_ERROR); 260 } 261 262 GET_UCHAR(BZ_X_BLKHDR_1, uc); 263 264 if (uc == 0x17) goto endhdr_2; 265 if (uc != 0x31) RETURN(BZ_DATA_ERROR); 266 GET_UCHAR(BZ_X_BLKHDR_2, uc); 267 if (uc != 0x41) RETURN(BZ_DATA_ERROR); 268 GET_UCHAR(BZ_X_BLKHDR_3, uc); 269 if (uc != 0x59) RETURN(BZ_DATA_ERROR); 270 GET_UCHAR(BZ_X_BLKHDR_4, uc); 271 if (uc != 0x26) RETURN(BZ_DATA_ERROR); 272 GET_UCHAR(BZ_X_BLKHDR_5, uc); 273 if (uc != 0x53) RETURN(BZ_DATA_ERROR); 274 GET_UCHAR(BZ_X_BLKHDR_6, uc); 275 if (uc != 0x59) RETURN(BZ_DATA_ERROR); 276 277 s->currBlockNo++; 278 if (s->verbosity >= 2) 279 VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo ); 280 281 s->storedBlockCRC = 0; 282 GET_UCHAR(BZ_X_BCRC_1, uc); 283 s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 284 GET_UCHAR(BZ_X_BCRC_2, uc); 285 s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 286 GET_UCHAR(BZ_X_BCRC_3, uc); 287 s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 288 GET_UCHAR(BZ_X_BCRC_4, uc); 289 s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 290 291 GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1); 292 293 s->origPtr = 0; 294 GET_UCHAR(BZ_X_ORIGPTR_1, uc); 295 s->origPtr = (s->origPtr << 8) | ((Int32)uc); 296 GET_UCHAR(BZ_X_ORIGPTR_2, uc); 297 s->origPtr = (s->origPtr << 8) | ((Int32)uc); 298 GET_UCHAR(BZ_X_ORIGPTR_3, uc); 299 s->origPtr = (s->origPtr << 8) | ((Int32)uc); 300 301 if (s->origPtr < 0) 302 RETURN(BZ_DATA_ERROR); 303 if (s->origPtr > 10 + 100000*s->blockSize100k) 304 RETURN(BZ_DATA_ERROR); 305 306 /*--- Receive the mapping table ---*/ 307 for (i = 0; i < 16; i++) { 308 GET_BIT(BZ_X_MAPPING_1, uc); 309 if (uc == 1) 310 s->inUse16[i] = True; else 311 s->inUse16[i] = False; 312 } 313 314 for (i = 0; i < 256; i++) s->inUse[i] = False; 315 316 for (i = 0; i < 16; i++) 317 if (s->inUse16[i]) 318 for (j = 0; j < 16; j++) { 319 GET_BIT(BZ_X_MAPPING_2, uc); 320 if (uc == 1) s->inUse[i * 16 + j] = True; 321 } 322 makeMaps_d ( s ); 323 if (s->nInUse == 0) RETURN(BZ_DATA_ERROR); 324 alphaSize = s->nInUse+2; 325 326 /*--- Now the selectors ---*/ 327 GET_BITS(BZ_X_SELECTOR_1, nGroups, 3); 328 if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR); 329 GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15); 330 if (nSelectors < 1) RETURN(BZ_DATA_ERROR); 331 for (i = 0; i < nSelectors; i++) { 332 j = 0; 333 while (True) { 334 GET_BIT(BZ_X_SELECTOR_3, uc); 335 if (uc == 0) break; 336 j++; 337 if (j >= nGroups) RETURN(BZ_DATA_ERROR); 338 } 339 s->selectorMtf[i] = j; 340 } 341 342 /*--- Undo the MTF values for the selectors. ---*/ 343 { 344 UChar pos[BZ_N_GROUPS], tmp, v; 345 for (v = 0; v < nGroups; v++) pos[v] = v; 346 347 for (i = 0; i < nSelectors; i++) { 348 v = s->selectorMtf[i]; 349 tmp = pos[v]; 350 while (v > 0) { pos[v] = pos[v-1]; v--; } 351 pos[0] = tmp; 352 s->selector[i] = tmp; 353 } 354 } 355 356 /*--- Now the coding tables ---*/ 357 for (t = 0; t < nGroups; t++) { 358 GET_BITS(BZ_X_CODING_1, curr, 5); 359 for (i = 0; i < alphaSize; i++) { 360 while (True) { 361 if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR); 362 GET_BIT(BZ_X_CODING_2, uc); 363 if (uc == 0) break; 364 GET_BIT(BZ_X_CODING_3, uc); 365 if (uc == 0) curr++; else curr--; 366 } 367 s->len[t][i] = curr; 368 } 369 } 370 371 /*--- Create the Huffman decoding tables ---*/ 372 for (t = 0; t < nGroups; t++) { 373 minLen = 32; 374 maxLen = 0; 375 for (i = 0; i < alphaSize; i++) { 376 if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; 377 if (s->len[t][i] < minLen) minLen = s->len[t][i]; 378 } 379 BZ2_hbCreateDecodeTables ( 380 &(s->limit[t][0]), 381 &(s->base[t][0]), 382 &(s->perm[t][0]), 383 &(s->len[t][0]), 384 minLen, maxLen, alphaSize 385 ); 386 s->minLens[t] = minLen; 387 } 388 389 /*--- Now the MTF values ---*/ 390 391 EOB = s->nInUse+1; 392 nblockMAX = 100000 * s->blockSize100k; 393 groupNo = -1; 394 groupPos = 0; 395 396 for (i = 0; i <= 255; i++) s->unzftab[i] = 0; 397 398 /*-- MTF init --*/ 399 { 400 Int32 ii, jj, kk; 401 kk = MTFA_SIZE-1; 402 for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) { 403 for (jj = MTFL_SIZE-1; jj >= 0; jj--) { 404 s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj); 405 kk--; 406 } 407 s->mtfbase[ii] = kk + 1; 408 } 409 } 410 /*-- end MTF init --*/ 411 412 nblock = 0; 413 GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym); 414 415 while (True) { 416 417 if (nextSym == EOB) break; 418 419 if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) { 420 421 es = -1; 422 N = 1; 423 do { 424 if (nextSym == BZ_RUNA) es = es + (0+1) * N; else 425 if (nextSym == BZ_RUNB) es = es + (1+1) * N; 426 N = N * 2; 427 GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym); 428 } 429 while (nextSym == BZ_RUNA || nextSym == BZ_RUNB); 430 431 es++; 432 uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ]; 433 s->unzftab[uc] += es; 434 435 if (s->smallDecompress) 436 while (es > 0) { 437 if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 438 s->ll16[nblock] = (UInt16)uc; 439 nblock++; 440 es--; 441 } 442 else 443 while (es > 0) { 444 if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 445 s->tt[nblock] = (UInt32)uc; 446 nblock++; 447 es--; 448 }; 449 450 continue; 451 452 } else { 453 454 if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 455 456 /*-- uc = MTF ( nextSym-1 ) --*/ 457 { 458 Int32 ii, jj, kk, pp, lno, off; 459 UInt32 nn; 460 nn = (UInt32)(nextSym - 1); 461 462 if (nn < MTFL_SIZE) { 463 /* avoid general-case expense */ 464 pp = s->mtfbase[0]; 465 uc = s->mtfa[pp+nn]; 466 while (nn > 3) { 467 Int32 z = pp+nn; 468 s->mtfa[(z) ] = s->mtfa[(z)-1]; 469 s->mtfa[(z)-1] = s->mtfa[(z)-2]; 470 s->mtfa[(z)-2] = s->mtfa[(z)-3]; 471 s->mtfa[(z)-3] = s->mtfa[(z)-4]; 472 nn -= 4; 473 } 474 while (nn > 0) { 475 s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; 476 }; 477 s->mtfa[pp] = uc; 478 } else { 479 /* general case */ 480 lno = nn / MTFL_SIZE; 481 off = nn % MTFL_SIZE; 482 pp = s->mtfbase[lno] + off; 483 uc = s->mtfa[pp]; 484 while (pp > s->mtfbase[lno]) { 485 s->mtfa[pp] = s->mtfa[pp-1]; pp--; 486 }; 487 s->mtfbase[lno]++; 488 while (lno > 0) { 489 s->mtfbase[lno]--; 490 s->mtfa[s->mtfbase[lno]] 491 = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1]; 492 lno--; 493 } 494 s->mtfbase[0]--; 495 s->mtfa[s->mtfbase[0]] = uc; 496 if (s->mtfbase[0] == 0) { 497 kk = MTFA_SIZE-1; 498 for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) { 499 for (jj = MTFL_SIZE-1; jj >= 0; jj--) { 500 s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj]; 501 kk--; 502 } 503 s->mtfbase[ii] = kk + 1; 504 } 505 } 506 } 507 } 508 /*-- end uc = MTF ( nextSym-1 ) --*/ 509 510 s->unzftab[s->seqToUnseq[uc]]++; 511 if (s->smallDecompress) 512 s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else 513 s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]); 514 nblock++; 515 516 GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym); 517 continue; 518 } 519 } 520 521 /* Now we know what nblock is, we can do a better sanity 522 check on s->origPtr. 523 */ 524 if (s->origPtr < 0 || s->origPtr >= nblock) 525 RETURN(BZ_DATA_ERROR); 526 527 /*-- Set up cftab to facilitate generation of T^(-1) --*/ 528 s->cftab[0] = 0; 529 for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1]; 530 for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1]; 531 for (i = 0; i <= 256; i++) { 532 if (s->cftab[i] < 0 || s->cftab[i] > nblock) { 533 /* s->cftab[i] can legitimately be == nblock */ 534 RETURN(BZ_DATA_ERROR); 535 } 536 } 537 538 s->state_out_len = 0; 539 s->state_out_ch = 0; 540 BZ_INITIALISE_CRC ( s->calculatedBlockCRC ); 541 s->state = BZ_X_OUTPUT; 542 if (s->verbosity >= 2) VPrintf0 ( "rt+rld" ); 543 544 if (s->smallDecompress) { 545 546 /*-- Make a copy of cftab, used in generation of T --*/ 547 for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i]; 548 549 /*-- compute the T vector --*/ 550 for (i = 0; i < nblock; i++) { 551 uc = (UChar)(s->ll16[i]); 552 SET_LL(i, s->cftabCopy[uc]); 553 s->cftabCopy[uc]++; 554 } 555 556 /*-- Compute T^(-1) by pointer reversal on T --*/ 557 i = s->origPtr; 558 j = GET_LL(i); 559 do { 560 Int32 tmp = GET_LL(j); 561 SET_LL(j, i); 562 i = j; 563 j = tmp; 564 } 565 while (i != s->origPtr); 566 567 s->tPos = s->origPtr; 568 s->nblock_used = 0; 569 if (s->blockRandomised) { 570 BZ_RAND_INIT_MASK; 571 BZ_GET_SMALL(s->k0); s->nblock_used++; 572 BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 573 } else { 574 BZ_GET_SMALL(s->k0); s->nblock_used++; 575 } 576 577 } else { 578 579 /*-- compute the T^(-1) vector --*/ 580 for (i = 0; i < nblock; i++) { 581 uc = (UChar)(s->tt[i] & 0xff); 582 s->tt[s->cftab[uc]] |= (i << 8); 583 s->cftab[uc]++; 584 } 585 586 s->tPos = s->tt[s->origPtr] >> 8; 587 s->nblock_used = 0; 588 if (s->blockRandomised) { 589 BZ_RAND_INIT_MASK; 590 BZ_GET_FAST(s->k0); s->nblock_used++; 591 BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; 592 } else { 593 BZ_GET_FAST(s->k0); s->nblock_used++; 594 } 595 596 } 597 598 RETURN(BZ_OK); 599 600 601 602 endhdr_2: 603 604 GET_UCHAR(BZ_X_ENDHDR_2, uc); 605 if (uc != 0x72) RETURN(BZ_DATA_ERROR); 606 GET_UCHAR(BZ_X_ENDHDR_3, uc); 607 if (uc != 0x45) RETURN(BZ_DATA_ERROR); 608 GET_UCHAR(BZ_X_ENDHDR_4, uc); 609 if (uc != 0x38) RETURN(BZ_DATA_ERROR); 610 GET_UCHAR(BZ_X_ENDHDR_5, uc); 611 if (uc != 0x50) RETURN(BZ_DATA_ERROR); 612 GET_UCHAR(BZ_X_ENDHDR_6, uc); 613 if (uc != 0x90) RETURN(BZ_DATA_ERROR); 614 615 s->storedCombinedCRC = 0; 616 GET_UCHAR(BZ_X_CCRC_1, uc); 617 s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 618 GET_UCHAR(BZ_X_CCRC_2, uc); 619 s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 620 GET_UCHAR(BZ_X_CCRC_3, uc); 621 s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 622 GET_UCHAR(BZ_X_CCRC_4, uc); 623 s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 624 625 s->state = BZ_X_IDLE; 626 RETURN(BZ_STREAM_END); 627 628 default: AssertH ( False, 4001 ); 629 } 630 631 AssertH ( False, 4002 ); 632 633 save_state_and_return: 634 635 s->save_i = i; 636 s->save_j = j; 637 s->save_t = t; 638 s->save_alphaSize = alphaSize; 639 s->save_nGroups = nGroups; 640 s->save_nSelectors = nSelectors; 641 s->save_EOB = EOB; 642 s->save_groupNo = groupNo; 643 s->save_groupPos = groupPos; 644 s->save_nextSym = nextSym; 645 s->save_nblockMAX = nblockMAX; 646 s->save_nblock = nblock; 647 s->save_es = es; 648 s->save_N = N; 649 s->save_curr = curr; 650 s->save_zt = zt; 651 s->save_zn = zn; 652 s->save_zvec = zvec; 653 s->save_zj = zj; 654 s->save_gSel = gSel; 655 s->save_gMinlen = gMinlen; 656 s->save_gLimit = gLimit; 657 s->save_gBase = gBase; 658 s->save_gPerm = gPerm; 659 660 return retVal; 661 } 662 663 664 /*-------------------------------------------------------------*/ 665 /*--- end decompress.c ---*/ 666 /*-------------------------------------------------------------*/ 667