xref: /freebsd/contrib/bearssl/src/rsa/rsa_i15_privexp.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*
2  * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 /* see bearssl_rsa.h */
28 size_t
29 br_rsa_i15_compute_privexp(void *d,
30 	const br_rsa_private_key *sk, uint32_t e)
31 {
32 	/*
33 	 * We want to invert e modulo phi = (p-1)(q-1). This first
34 	 * requires computing phi, which is easy since we have the factors
35 	 * p and q in the private key structure.
36 	 *
37 	 * Since p = 3 mod 4 and q = 3 mod 4, phi/4 is an odd integer.
38 	 * We could invert e modulo phi/4 then patch the result to
39 	 * modulo phi, but this would involve assembling three modulus-wide
40 	 * values (phi/4, 1 and e) and calling moddiv, that requires
41 	 * three more temporaries, for a total of six big integers, or
42 	 * slightly more than 3 kB of stack space for RSA-4096. This
43 	 * exceeds our stack requirements.
44 	 *
45 	 * Instead, we first use one step of the extended GCD:
46 	 *
47 	 *   - We compute phi = k*e + r  (Euclidean division of phi by e).
48 	 *     If public exponent e is correct, then r != 0 (e must be
49 	 *     invertible modulo phi). We also have k != 0 since we
50 	 *     enforce non-ridiculously-small factors.
51 	 *
52 	 *   - We find small u, v such that u*e - v*r = 1  (using a
53 	 *     binary GCD; we can arrange for u < r and v < e, i.e. all
54 	 *     values fit on 32 bits).
55 	 *
56 	 *   - Solution is: d = u + v*k
57 	 *     This last computation is exact: since u < r and v < e,
58 	 *     the above implies d < r + e*((phi-r)/e) = phi
59 	 */
60 
61 	uint16_t tmp[4 * ((BR_MAX_RSA_FACTOR + 14) / 15) + 12];
62 	uint16_t *p, *q, *k, *m, *z, *phi;
63 	const unsigned char *pbuf, *qbuf;
64 	size_t plen, qlen, u, len, dlen;
65 	uint32_t r, a, b, u0, v0, u1, v1, he, hr;
66 	int i;
67 
68 	/*
69 	 * Check that e is correct.
70 	 */
71 	if (e < 3 || (e & 1) == 0) {
72 		return 0;
73 	}
74 
75 	/*
76 	 * Check lengths of p and q, and that they are both odd.
77 	 */
78 	pbuf = sk->p;
79 	plen = sk->plen;
80 	while (plen > 0 && *pbuf == 0) {
81 		pbuf ++;
82 		plen --;
83 	}
84 	if (plen < 5 || plen > (BR_MAX_RSA_FACTOR / 8)
85 		|| (pbuf[plen - 1] & 1) != 1)
86 	{
87 		return 0;
88 	}
89 	qbuf = sk->q;
90 	qlen = sk->qlen;
91 	while (qlen > 0 && *qbuf == 0) {
92 		qbuf ++;
93 		qlen --;
94 	}
95 	if (qlen < 5 || qlen > (BR_MAX_RSA_FACTOR / 8)
96 		|| (qbuf[qlen - 1] & 1) != 1)
97 	{
98 		return 0;
99 	}
100 
101 	/*
102 	 * Output length is that of the modulus.
103 	 */
104 	dlen = (sk->n_bitlen + 7) >> 3;
105 	if (d == NULL) {
106 		return dlen;
107 	}
108 
109 	p = tmp;
110 	br_i15_decode(p, pbuf, plen);
111 	plen = (p[0] + 15) >> 4;
112 	q = p + 1 + plen;
113 	br_i15_decode(q, qbuf, qlen);
114 	qlen = (q[0] + 15) >> 4;
115 
116 	/*
117 	 * Compute phi = (p-1)*(q-1), then move it over p-1 and q-1 (that
118 	 * we do not need anymore). The mulacc function sets the announced
119 	 * bit length of t to be the sum of the announced bit lengths of
120 	 * p-1 and q-1, which is usually exact but may overshoot by one 1
121 	 * bit in some cases; we readjust it to its true length.
122 	 */
123 	p[1] --;
124 	q[1] --;
125 	phi = q + 1 + qlen;
126 	br_i15_zero(phi, p[0]);
127 	br_i15_mulacc(phi, p, q);
128 	len = (phi[0] + 15) >> 4;
129 	memmove(tmp, phi, (1 + len) * sizeof *phi);
130 	phi = tmp;
131 	phi[0] = br_i15_bit_length(phi + 1, len);
132 	len = (phi[0] + 15) >> 4;
133 
134 	/*
135 	 * Divide phi by public exponent e. The final remainder r must be
136 	 * non-zero (otherwise, the key is invalid). The quotient is k,
137 	 * which we write over phi, since we don't need phi after that.
138 	 */
139 	r = 0;
140 	for (u = len; u >= 1; u --) {
141 		/*
142 		 * Upon entry, r < e, and phi[u] < 2^15; hence,
143 		 * hi:lo < e*2^15. Thus, the produced word k[u]
144 		 * must be lower than 2^15, and the new remainder r
145 		 * is lower than e.
146 		 */
147 		uint32_t hi, lo;
148 
149 		hi = r >> 17;
150 		lo = (r << 15) + phi[u];
151 		phi[u] = br_divrem(hi, lo, e, &r);
152 	}
153 	if (r == 0) {
154 		return 0;
155 	}
156 	k = phi;
157 
158 	/*
159 	 * Compute u and v such that u*e - v*r = GCD(e,r). We use
160 	 * a binary GCD algorithm, with 6 extra integers a, b,
161 	 * u0, u1, v0 and v1. Initial values are:
162 	 *   a = e    u0 = 1   v0 = 0
163 	 *   b = r    u1 = r   v1 = e-1
164 	 * The following invariants are maintained:
165 	 *   a = u0*e - v0*r
166 	 *   b = u1*e - v1*r
167 	 *   0 < a <= e
168 	 *   0 < b <= r
169 	 *   0 <= u0 <= r
170 	 *   0 <= v0 <= e
171 	 *   0 <= u1 <= r
172 	 *   0 <= v1 <= e
173 	 *
174 	 * At each iteration, we reduce either a or b by one bit, and
175 	 * adjust u0, u1, v0 and v1 to maintain the invariants:
176 	 *  - if a is even, then a <- a/2
177 	 *  - otherwise, if b is even, then b <- b/2
178 	 *  - otherwise, if a > b, then a <- (a-b)/2
179 	 *  - otherwise, if b > a, then b <- (b-a)/2
180 	 * Algorithm stops when a = b. At that point, the common value
181 	 * is the GCD of e and r; it must be 1 (otherwise, the private
182 	 * key or public exponent is not valid). The (u0,v0) or (u1,v1)
183 	 * pairs are the solution we are looking for.
184 	 *
185 	 * Since either a or b is reduced by at least 1 bit at each
186 	 * iteration, 62 iterations are enough to reach the end
187 	 * condition.
188 	 *
189 	 * To maintain the invariants, we must compute the same operations
190 	 * on the u* and v* values that we do on a and b:
191 	 *  - When a is divided by 2, u0 and v0 must be divided by 2.
192 	 *  - When b is divided by 2, u1 and v1 must be divided by 2.
193 	 *  - When b is subtracted from a, u1 and v1 are subtracted from
194 	 *    u0 and v0, respectively.
195 	 *  - When a is subtracted from b, u0 and v0 are subtracted from
196 	 *    u1 and v1, respectively.
197 	 *
198 	 * However, we want to keep the u* and v* values in their proper
199 	 * ranges. The following remarks apply:
200 	 *
201 	 *  - When a is divided by 2, then a is even. Therefore:
202 	 *
203 	 *     * If r is odd, then u0 and v0 must have the same parity;
204 	 *       if they are both odd, then adding r to u0 and e to v0
205 	 *       makes them both even, and the division by 2 brings them
206 	 *       back to the proper range.
207 	 *
208 	 *     * If r is even, then u0 must be even; if v0 is odd, then
209 	 *       adding r to u0 and e to v0 makes them both even, and the
210 	 *       division by 2 brings them back to the proper range.
211 	 *
212 	 *    Thus, all we need to do is to look at the parity of v0,
213 	 *    and add (r,e) to (u0,v0) when v0 is odd. In order to avoid
214 	 *    a 32-bit overflow, we can add ((r+1)/2,(e/2)+1) after the
215 	 *    division (r+1 does not overflow since r < e; and (e/2)+1
216 	 *    is equal to (e+1)/2 since e is odd).
217 	 *
218 	 *  - When we subtract b from a, three cases may occur:
219 	 *
220 	 *     * u1 <= u0 and v1 <= v0: just do the subtractions
221 	 *
222 	 *     * u1 > u0 and v1 > v0: compute:
223 	 *         (u0, v0) <- (u0 + r - u1, v0 + e - v1)
224 	 *
225 	 *     * u1 <= u0 and v1 > v0: compute:
226 	 *         (u0, v0) <- (u0 + r - u1, v0 + e - v1)
227 	 *
228 	 *    The fourth case (u1 > u0 and v1 <= v0) is not possible
229 	 *    because it would contradict "b < a" (which is the reason
230 	 *    why we subtract b from a).
231 	 *
232 	 *    The tricky case is the third one: from the equations, it
233 	 *    seems that u0 may go out of range. However, the invariants
234 	 *    and ranges of other values imply that, in that case, the
235 	 *    new u0 does not actually exceed the range.
236 	 *
237 	 *    We can thus handle the subtraction by adding (r,e) based
238 	 *    solely on the comparison between v0 and v1.
239 	 */
240 	a = e;
241 	b = r;
242 	u0 = 1;
243 	v0 = 0;
244 	u1 = r;
245 	v1 = e - 1;
246 	hr = (r + 1) >> 1;
247 	he = (e >> 1) + 1;
248 	for (i = 0; i < 62; i ++) {
249 		uint32_t oa, ob, agtb, bgta;
250 		uint32_t sab, sba, da, db;
251 		uint32_t ctl;
252 
253 		oa = a & 1;                  /* 1 if a is odd */
254 		ob = b & 1;                  /* 1 if b is odd */
255 		agtb = GT(a, b);             /* 1 if a > b */
256 		bgta = GT(b, a);             /* 1 if b > a */
257 
258 		sab = oa & ob & agtb;        /* 1 if a <- a-b */
259 		sba = oa & ob & bgta;        /* 1 if b <- b-a */
260 
261 		/* a <- a-b, u0 <- u0-u1, v0 <- v0-v1 */
262 		ctl = GT(v1, v0);
263 		a -= b & -sab;
264 		u0 -= (u1 - (r & -ctl)) & -sab;
265 		v0 -= (v1 - (e & -ctl)) & -sab;
266 
267 		/* b <- b-a, u1 <- u1-u0 mod r, v1 <- v1-v0 mod e */
268 		ctl = GT(v0, v1);
269 		b -= a & -sba;
270 		u1 -= (u0 - (r & -ctl)) & -sba;
271 		v1 -= (v0 - (e & -ctl)) & -sba;
272 
273 		da = NOT(oa) | sab;          /* 1 if a <- a/2 */
274 		db = (oa & NOT(ob)) | sba;   /* 1 if b <- b/2 */
275 
276 		/* a <- a/2, u0 <- u0/2, v0 <- v0/2 */
277 		ctl = v0 & 1;
278 		a ^= (a ^ (a >> 1)) & -da;
279 		u0 ^= (u0 ^ ((u0 >> 1) + (hr & -ctl))) & -da;
280 		v0 ^= (v0 ^ ((v0 >> 1) + (he & -ctl))) & -da;
281 
282 		/* b <- b/2, u1 <- u1/2 mod r, v1 <- v1/2 mod e */
283 		ctl = v1 & 1;
284 		b ^= (b ^ (b >> 1)) & -db;
285 		u1 ^= (u1 ^ ((u1 >> 1) + (hr & -ctl))) & -db;
286 		v1 ^= (v1 ^ ((v1 >> 1) + (he & -ctl))) & -db;
287 	}
288 
289 	/*
290 	 * Check that the GCD is indeed 1. If not, then the key is invalid
291 	 * (and there's no harm in leaking that piece of information).
292 	 */
293 	if (a != 1) {
294 		return 0;
295 	}
296 
297 	/*
298 	 * Now we have u0*e - v0*r = 1. Let's compute the result as:
299 	 *   d = u0 + v0*k
300 	 * We still have k in the tmp[] array, and its announced bit
301 	 * length is that of phi.
302 	 */
303 	m = k + 1 + len;
304 	m[0] = (2 << 4) + 2;  /* bit length is 32 bits, encoded */
305 	m[1] = v0 & 0x7FFF;
306 	m[2] = (v0 >> 15) & 0x7FFF;
307 	m[3] = v0 >> 30;
308 	z = m + 4;
309 	br_i15_zero(z, k[0]);
310 	z[1] = u0 & 0x7FFF;
311 	z[2] = (u0 >> 15) & 0x7FFF;
312 	z[3] = u0 >> 30;
313 	br_i15_mulacc(z, k, m);
314 
315 	/*
316 	 * Encode the result.
317 	 */
318 	br_i15_encode(d, dlen, z);
319 	return dlen;
320 }
321