xref: /freebsd/contrib/bearssl/src/rsa/rsa_i15_keygen.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*
2  * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 /*
28  * Make a random integer of the provided size. The size is encoded.
29  * The header word is untouched.
30  */
31 static void
32 mkrand(const br_prng_class **rng, uint16_t *x, uint32_t esize)
33 {
34 	size_t u, len;
35 	unsigned m;
36 
37 	len = (esize + 15) >> 4;
38 	(*rng)->generate(rng, x + 1, len * sizeof(uint16_t));
39 	for (u = 1; u < len; u ++) {
40 		x[u] &= 0x7FFF;
41 	}
42 	m = esize & 15;
43 	if (m == 0) {
44 		x[len] &= 0x7FFF;
45 	} else {
46 		x[len] &= 0x7FFF >> (15 - m);
47 	}
48 }
49 
50 /*
51  * This is the big-endian unsigned representation of the product of
52  * all small primes from 13 to 1481.
53  */
54 static const unsigned char SMALL_PRIMES[] = {
55 	0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
56 	0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
57 	0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
58 	0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
59 	0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
60 	0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
61 	0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
62 	0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
63 	0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
64 	0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
65 	0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
66 	0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
67 	0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
68 	0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
69 	0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
70 	0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
71 	0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
72 	0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
73 	0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
74 	0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
75 	0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
76 	0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
77 	0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
78 	0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
79 	0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
80 	0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
81 };
82 
83 /*
84  * We need temporary values for at least 7 integers of the same size
85  * as a factor (including header word); more space helps with performance
86  * (in modular exponentiations), but we much prefer to remain under
87  * 2 kilobytes in total, to save stack space. The macro TEMPS below
88  * exceeds 1024 (which is a count in 16-bit words) when BR_MAX_RSA_SIZE
89  * is greater than 4350 (default value is 4096, so the 2-kB limit is
90  * maintained unless BR_MAX_RSA_SIZE was modified).
91  */
92 #define MAX(x, y)   ((x) > (y) ? (x) : (y))
93 #define TEMPS       MAX(1024, 7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 29) / 15))
94 
95 /*
96  * Perform trial division on a candidate prime. This computes
97  * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
98  * br_i15_moddiv() function will report an error if y is not invertible
99  * modulo x. Returned value is 1 on success (none of the small primes
100  * divides x), 0 on error (a non-trivial GCD is obtained).
101  *
102  * This function assumes that x is odd.
103  */
104 static uint32_t
105 trial_divisions(const uint16_t *x, uint16_t *t)
106 {
107 	uint16_t *y;
108 	uint16_t x0i;
109 
110 	y = t;
111 	t += 1 + ((x[0] + 15) >> 4);
112 	x0i = br_i15_ninv15(x[1]);
113 	br_i15_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
114 	return br_i15_moddiv(y, y, x, x0i, t);
115 }
116 
117 /*
118  * Perform n rounds of Miller-Rabin on the candidate prime x. This
119  * function assumes that x = 3 mod 4.
120  *
121  * Returned value is 1 on success (all rounds completed successfully),
122  * 0 otherwise.
123  */
124 static uint32_t
125 miller_rabin(const br_prng_class **rng, const uint16_t *x, int n,
126 	uint16_t *t, size_t tlen)
127 {
128 	/*
129 	 * Since x = 3 mod 4, the Miller-Rabin test is simple:
130 	 *  - get a random base a (such that 1 < a < x-1)
131 	 *  - compute z = a^((x-1)/2) mod x
132 	 *  - if z != 1 and z != x-1, the number x is composite
133 	 *
134 	 * We generate bases 'a' randomly with a size which is
135 	 * one bit less than x, which ensures that a < x-1. It
136 	 * is not useful to verify that a > 1 because the probability
137 	 * that we get a value a equal to 0 or 1 is much smaller
138 	 * than the probability of our Miller-Rabin tests not to
139 	 * detect a composite, which is already quite smaller than the
140 	 * probability of the hardware misbehaving and return a
141 	 * composite integer because of some glitch (e.g. bad RAM
142 	 * or ill-timed cosmic ray).
143 	 */
144 	unsigned char *xm1d2;
145 	size_t xlen, xm1d2_len, xm1d2_len_u16, u;
146 	uint32_t asize;
147 	unsigned cc;
148 	uint16_t x0i;
149 
150 	/*
151 	 * Compute (x-1)/2 (encoded).
152 	 */
153 	xm1d2 = (unsigned char *)t;
154 	xm1d2_len = ((x[0] - (x[0] >> 4)) + 7) >> 3;
155 	br_i15_encode(xm1d2, xm1d2_len, x);
156 	cc = 0;
157 	for (u = 0; u < xm1d2_len; u ++) {
158 		unsigned w;
159 
160 		w = xm1d2[u];
161 		xm1d2[u] = (unsigned char)((w >> 1) | cc);
162 		cc = w << 7;
163 	}
164 
165 	/*
166 	 * We used some words of the provided buffer for (x-1)/2.
167 	 */
168 	xm1d2_len_u16 = (xm1d2_len + 1) >> 1;
169 	t += xm1d2_len_u16;
170 	tlen -= xm1d2_len_u16;
171 
172 	xlen = (x[0] + 15) >> 4;
173 	asize = x[0] - 1 - EQ0(x[0] & 15);
174 	x0i = br_i15_ninv15(x[1]);
175 	while (n -- > 0) {
176 		uint16_t *a;
177 		uint32_t eq1, eqm1;
178 
179 		/*
180 		 * Generate a random base. We don't need the base to be
181 		 * really uniform modulo x, so we just get a random
182 		 * number which is one bit shorter than x.
183 		 */
184 		a = t;
185 		a[0] = x[0];
186 		a[xlen] = 0;
187 		mkrand(rng, a, asize);
188 
189 		/*
190 		 * Compute a^((x-1)/2) mod x. We assume here that the
191 		 * function will not fail (the temporary array is large
192 		 * enough).
193 		 */
194 		br_i15_modpow_opt(a, xm1d2, xm1d2_len,
195 			x, x0i, t + 1 + xlen, tlen - 1 - xlen);
196 
197 		/*
198 		 * We must obtain either 1 or x-1. Note that x is odd,
199 		 * hence x-1 differs from x only in its low word (no
200 		 * carry).
201 		 */
202 		eq1 = a[1] ^ 1;
203 		eqm1 = a[1] ^ (x[1] - 1);
204 		for (u = 2; u <= xlen; u ++) {
205 			eq1 |= a[u];
206 			eqm1 |= a[u] ^ x[u];
207 		}
208 
209 		if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
210 			return 0;
211 		}
212 	}
213 	return 1;
214 }
215 
216 /*
217  * Create a random prime of the provided size. 'size' is the _encoded_
218  * bit length. The two top bits and the two bottom bits are set to 1.
219  */
220 static void
221 mkprime(const br_prng_class **rng, uint16_t *x, uint32_t esize,
222 	uint32_t pubexp, uint16_t *t, size_t tlen)
223 {
224 	size_t len;
225 
226 	x[0] = esize;
227 	len = (esize + 15) >> 4;
228 	for (;;) {
229 		size_t u;
230 		uint32_t m3, m5, m7, m11;
231 		int rounds;
232 
233 		/*
234 		 * Generate random bits. We force the two top bits and the
235 		 * two bottom bits to 1.
236 		 */
237 		mkrand(rng, x, esize);
238 		if ((esize & 15) == 0) {
239 			x[len] |= 0x6000;
240 		} else if ((esize & 15) == 1) {
241 			x[len] |= 0x0001;
242 			x[len - 1] |= 0x4000;
243 		} else {
244 			x[len] |= 0x0003 << ((esize & 15) - 2);
245 		}
246 		x[1] |= 0x0003;
247 
248 		/*
249 		 * Trial division with low primes (3, 5, 7 and 11). We
250 		 * use the following properties:
251 		 *
252 		 *   2^2 = 1 mod 3
253 		 *   2^4 = 1 mod 5
254 		 *   2^3 = 1 mod 7
255 		 *   2^10 = 1 mod 11
256 		 */
257 		m3 = 0;
258 		m5 = 0;
259 		m7 = 0;
260 		m11 = 0;
261 		for (u = 0; u < len; u ++) {
262 			uint32_t w;
263 
264 			w = x[1 + u];
265 			m3 += w << (u & 1);
266 			m3 = (m3 & 0xFF) + (m3 >> 8);
267 			m5 += w << ((4 - u) & 3);
268 			m5 = (m5 & 0xFF) + (m5 >> 8);
269 			m7 += w;
270 			m7 = (m7 & 0x1FF) + (m7 >> 9);
271 			m11 += w << (5 & -(u & 1));
272 			m11 = (m11 & 0x3FF) + (m11 >> 10);
273 		}
274 
275 		/*
276 		 * Maximum values of m* at this point:
277 		 *  m3:   511
278 		 *  m5:   2310
279 		 *  m7:   510
280 		 *  m11:  2047
281 		 * We use the same properties to make further reductions.
282 		 */
283 
284 		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 46 */
285 		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 16 */
286 		m3 = ((m3 * 43) >> 5) & 3;
287 
288 		m5 = (m5 & 0xFF) + (m5 >> 8);      /* max: 263 */
289 		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 30 */
290 		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 15 */
291 		m5 -= 10 & -GT(m5, 9);
292 		m5 -= 5 & -GT(m5, 4);
293 
294 		m7 = (m7 & 0x3F) + (m7 >> 6);      /* max: 69 */
295 		m7 = (m7 & 7) + (m7 >> 3);         /* max: 14 */
296 		m7 = ((m7 * 147) >> 7) & 7;
297 
298 		/*
299 		 * 2^5 = 32 = -1 mod 11.
300 		 */
301 		m11 = (m11 & 0x1F) + 66 - (m11 >> 5);   /* max: 97 */
302 		m11 -= 88 & -GT(m11, 87);
303 		m11 -= 44 & -GT(m11, 43);
304 		m11 -= 22 & -GT(m11, 21);
305 		m11 -= 11 & -GT(m11, 10);
306 
307 		/*
308 		 * If any of these modulo is 0, then the candidate is
309 		 * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
310 		 * corresponding modulus is 1, then the candidate must
311 		 * be rejected, because we need e to be invertible
312 		 * modulo p-1. We can use simple comparisons here
313 		 * because they won't leak information on a candidate
314 		 * that we keep, only on one that we reject (and is thus
315 		 * not secret).
316 		 */
317 		if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
318 			continue;
319 		}
320 		if ((pubexp == 3 && m3 == 1)
321 			|| (pubexp == 5 && m5 == 5)
322 			|| (pubexp == 7 && m5 == 7)
323 			|| (pubexp == 11 && m5 == 11))
324 		{
325 			continue;
326 		}
327 
328 		/*
329 		 * More trial divisions.
330 		 */
331 		if (!trial_divisions(x, t)) {
332 			continue;
333 		}
334 
335 		/*
336 		 * Miller-Rabin algorithm. Since we selected a random
337 		 * integer, not a maliciously crafted integer, we can use
338 		 * relatively few rounds to lower the risk of a false
339 		 * positive (i.e. declaring prime a non-prime) under
340 		 * 2^(-80). It is not useful to lower the probability much
341 		 * below that, since that would be substantially below
342 		 * the probability of the hardware misbehaving. Sufficient
343 		 * numbers of rounds are extracted from the Handbook of
344 		 * Applied Cryptography, note 4.49 (page 149).
345 		 *
346 		 * Since we work on the encoded size (esize), we need to
347 		 * compare with encoded thresholds.
348 		 */
349 		if (esize < 320) {
350 			rounds = 12;
351 		} else if (esize < 480) {
352 			rounds = 9;
353 		} else if (esize < 693) {
354 			rounds = 6;
355 		} else if (esize < 906) {
356 			rounds = 4;
357 		} else if (esize < 1386) {
358 			rounds = 3;
359 		} else {
360 			rounds = 2;
361 		}
362 
363 		if (miller_rabin(rng, x, rounds, t, tlen)) {
364 			return;
365 		}
366 	}
367 }
368 
369 /*
370  * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
371  * as parameter (with announced bit length equal to that of p). This
372  * function computes d = 1/e mod p-1 (for an odd integer e). Returned
373  * value is 1 on success, 0 on error (an error is reported if e is not
374  * invertible modulo p-1).
375  *
376  * The temporary buffer (t) must have room for at least 4 integers of
377  * the size of p.
378  */
379 static uint32_t
380 invert_pubexp(uint16_t *d, const uint16_t *m, uint32_t e, uint16_t *t)
381 {
382 	uint16_t *f;
383 	uint32_t r;
384 
385 	f = t;
386 	t += 1 + ((m[0] + 15) >> 4);
387 
388 	/*
389 	 * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
390 	 */
391 	br_i15_zero(d, m[0]);
392 	d[1] = 1;
393 	br_i15_zero(f, m[0]);
394 	f[1] = e & 0x7FFF;
395 	f[2] = (e >> 15) & 0x7FFF;
396 	f[3] = e >> 30;
397 	r = br_i15_moddiv(d, f, m, br_i15_ninv15(m[1]), t);
398 
399 	/*
400 	 * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
401 	 * the result is either the d we got, or d + m.
402 	 *
403 	 * Let's write e*d = 1 + k*m, for some integer k. Integers e
404 	 * and m are odd. If d is odd, then e*d is odd, which implies
405 	 * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
406 	 * thus d is already fine. Conversely, if d is even, then k
407 	 * is odd, and we must add m to d in order to get the correct
408 	 * result.
409 	 */
410 	br_i15_add(d, m, (uint32_t)(1 - (d[1] & 1)));
411 
412 	return r;
413 }
414 
415 /*
416  * Swap two buffers in RAM. They must be disjoint.
417  */
418 static void
419 bufswap(void *b1, void *b2, size_t len)
420 {
421 	size_t u;
422 	unsigned char *buf1, *buf2;
423 
424 	buf1 = b1;
425 	buf2 = b2;
426 	for (u = 0; u < len; u ++) {
427 		unsigned w;
428 
429 		w = buf1[u];
430 		buf1[u] = buf2[u];
431 		buf2[u] = w;
432 	}
433 }
434 
435 /* see bearssl_rsa.h */
436 uint32_t
437 br_rsa_i15_keygen(const br_prng_class **rng,
438 	br_rsa_private_key *sk, void *kbuf_priv,
439 	br_rsa_public_key *pk, void *kbuf_pub,
440 	unsigned size, uint32_t pubexp)
441 {
442 	uint32_t esize_p, esize_q;
443 	size_t plen, qlen, tlen;
444 	uint16_t *p, *q, *t;
445 	uint16_t tmp[TEMPS];
446 	uint32_t r;
447 
448 	if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
449 		return 0;
450 	}
451 	if (pubexp == 0) {
452 		pubexp = 3;
453 	} else if (pubexp == 1 || (pubexp & 1) == 0) {
454 		return 0;
455 	}
456 
457 	esize_p = (size + 1) >> 1;
458 	esize_q = size - esize_p;
459 	sk->n_bitlen = size;
460 	sk->p = kbuf_priv;
461 	sk->plen = (esize_p + 7) >> 3;
462 	sk->q = sk->p + sk->plen;
463 	sk->qlen = (esize_q + 7) >> 3;
464 	sk->dp = sk->q + sk->qlen;
465 	sk->dplen = sk->plen;
466 	sk->dq = sk->dp + sk->dplen;
467 	sk->dqlen = sk->qlen;
468 	sk->iq = sk->dq + sk->dqlen;
469 	sk->iqlen = sk->plen;
470 
471 	if (pk != NULL) {
472 		pk->n = kbuf_pub;
473 		pk->nlen = (size + 7) >> 3;
474 		pk->e = pk->n + pk->nlen;
475 		pk->elen = 4;
476 		br_enc32be(pk->e, pubexp);
477 		while (*pk->e == 0) {
478 			pk->e ++;
479 			pk->elen --;
480 		}
481 	}
482 
483 	/*
484 	 * We now switch to encoded sizes.
485 	 *
486 	 * floor((x * 17477) / (2^18)) is equal to floor(x/15) for all
487 	 * integers x from 0 to 23833.
488 	 */
489 	esize_p += MUL15(esize_p, 17477) >> 18;
490 	esize_q += MUL15(esize_q, 17477) >> 18;
491 	plen = (esize_p + 15) >> 4;
492 	qlen = (esize_q + 15) >> 4;
493 	p = tmp;
494 	q = p + 1 + plen;
495 	t = q + 1 + qlen;
496 	tlen = ((sizeof tmp) / sizeof(uint16_t)) - (2 + plen + qlen);
497 
498 	/*
499 	 * When looking for primes p and q, we temporarily divide
500 	 * candidates by 2, in order to compute the inverse of the
501 	 * public exponent.
502 	 */
503 
504 	for (;;) {
505 		mkprime(rng, p, esize_p, pubexp, t, tlen);
506 		br_i15_rshift(p, 1);
507 		if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
508 			br_i15_add(p, p, 1);
509 			p[1] |= 1;
510 			br_i15_encode(sk->p, sk->plen, p);
511 			br_i15_encode(sk->dp, sk->dplen, t);
512 			break;
513 		}
514 	}
515 
516 	for (;;) {
517 		mkprime(rng, q, esize_q, pubexp, t, tlen);
518 		br_i15_rshift(q, 1);
519 		if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
520 			br_i15_add(q, q, 1);
521 			q[1] |= 1;
522 			br_i15_encode(sk->q, sk->qlen, q);
523 			br_i15_encode(sk->dq, sk->dqlen, t);
524 			break;
525 		}
526 	}
527 
528 	/*
529 	 * If p and q have the same size, then it is possible that q > p
530 	 * (when the target modulus size is odd, we generate p with a
531 	 * greater bit length than q). If q > p, we want to swap p and q
532 	 * (and also dp and dq) for two reasons:
533 	 *  - The final step below (inversion of q modulo p) is easier if
534 	 *    p > q.
535 	 *  - While BearSSL's RSA code is perfectly happy with RSA keys such
536 	 *    that p < q, some other implementations have restrictions and
537 	 *    require p > q.
538 	 *
539 	 * Note that we can do a simple non-constant-time swap here,
540 	 * because the only information we leak here is that we insist on
541 	 * returning p and q such that p > q, which is not a secret.
542 	 */
543 	if (esize_p == esize_q && br_i15_sub(p, q, 0) == 1) {
544 		bufswap(p, q, (1 + plen) * sizeof *p);
545 		bufswap(sk->p, sk->q, sk->plen);
546 		bufswap(sk->dp, sk->dq, sk->dplen);
547 	}
548 
549 	/*
550 	 * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
551 	 *
552 	 * We ensured that p >= q, so this is just a matter of updating the
553 	 * header word for q (and possibly adding an extra word).
554 	 *
555 	 * Theoretically, the call below may fail, in case we were
556 	 * extraordinarily unlucky, and p = q. Another failure case is if
557 	 * Miller-Rabin failed us _twice_, and p and q are non-prime and
558 	 * have a factor is common. We report the error mostly because it
559 	 * is cheap and we can, but in practice this never happens (or, at
560 	 * least, it happens way less often than hardware glitches).
561 	 */
562 	q[0] = p[0];
563 	if (plen > qlen) {
564 		q[plen] = 0;
565 		t ++;
566 		tlen --;
567 	}
568 	br_i15_zero(t, p[0]);
569 	t[1] = 1;
570 	r = br_i15_moddiv(t, q, p, br_i15_ninv15(p[1]), t + 1 + plen);
571 	br_i15_encode(sk->iq, sk->iqlen, t);
572 
573 	/*
574 	 * Compute the public modulus too, if required.
575 	 */
576 	if (pk != NULL) {
577 		br_i15_zero(t, p[0]);
578 		br_i15_mulacc(t, p, q);
579 		br_i15_encode(pk->n, pk->nlen, t);
580 	}
581 
582 	return r;
583 }
584