xref: /freebsd/contrib/bearssl/src/int/i32_muladd.c (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 /*
2  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 /* see inner.h */
28 void
29 br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m)
30 {
31 	uint32_t m_bitlen;
32 	size_t u, mlen;
33 	uint32_t a0, a1, b0, hi, g, q, tb;
34 	uint32_t chf, clow, under, over;
35 	uint64_t cc;
36 
37 	/*
38 	 * We can test on the modulus bit length since we accept to
39 	 * leak that length.
40 	 */
41 	m_bitlen = m[0];
42 	if (m_bitlen == 0) {
43 		return;
44 	}
45 	if (m_bitlen <= 32) {
46 		x[1] = br_rem(x[1], z, m[1]);
47 		return;
48 	}
49 	mlen = (m_bitlen + 31) >> 5;
50 
51 	/*
52 	 * Principle: we estimate the quotient (x*2^32+z)/m by
53 	 * doing a 64/32 division with the high words.
54 	 *
55 	 * Let:
56 	 *   w = 2^32
57 	 *   a = (w*a0 + a1) * w^N + a2
58 	 *   b = b0 * w^N + b2
59 	 * such that:
60 	 *   0 <= a0 < w
61 	 *   0 <= a1 < w
62 	 *   0 <= a2 < w^N
63 	 *   w/2 <= b0 < w
64 	 *   0 <= b2 < w^N
65 	 *   a < w*b
66 	 * I.e. the two top words of a are a0:a1, the top word of b is
67 	 * b0, we ensured that b0 is "full" (high bit set), and a is
68 	 * such that the quotient q = a/b fits on one word (0 <= q < w).
69 	 *
70 	 * If a = b*q + r (with 0 <= r < q), we can estimate q by
71 	 * doing an Euclidean division on the top words:
72 	 *   a0*w+a1 = b0*u + v  (with 0 <= v < w)
73 	 * Then the following holds:
74 	 *   0 <= u <= w
75 	 *   u-2 <= q <= u
76 	 */
77 	a0 = br_i32_word(x, m_bitlen - 32);
78 	hi = x[mlen];
79 	memmove(x + 2, x + 1, (mlen - 1) * sizeof *x);
80 	x[1] = z;
81 	a1 = br_i32_word(x, m_bitlen - 32);
82 	b0 = br_i32_word(m, m_bitlen - 32);
83 
84 	/*
85 	 * We estimate a divisor q. If the quotient returned by br_div()
86 	 * is g:
87 	 * -- If a0 == b0 then g == 0; we want q = 0xFFFFFFFF.
88 	 * -- Otherwise:
89 	 *    -- if g == 0 then we set q = 0;
90 	 *    -- otherwise, we set q = g - 1.
91 	 * The properties described above then ensure that the true
92 	 * quotient is q-1, q or q+1.
93 	 */
94 	g = br_div(a0, a1, b0);
95 	q = MUX(EQ(a0, b0), 0xFFFFFFFF, MUX(EQ(g, 0), 0, g - 1));
96 
97 	/*
98 	 * We subtract q*m from x (with the extra high word of value 'hi').
99 	 * Since q may be off by 1 (in either direction), we may have to
100 	 * add or subtract m afterwards.
101 	 *
102 	 * The 'tb' flag will be true (1) at the end of the loop if the
103 	 * result is greater than or equal to the modulus (not counting
104 	 * 'hi' or the carry).
105 	 */
106 	cc = 0;
107 	tb = 1;
108 	for (u = 1; u <= mlen; u ++) {
109 		uint32_t mw, zw, xw, nxw;
110 		uint64_t zl;
111 
112 		mw = m[u];
113 		zl = MUL(mw, q) + cc;
114 		cc = (uint32_t)(zl >> 32);
115 		zw = (uint32_t)zl;
116 		xw = x[u];
117 		nxw = xw - zw;
118 		cc += (uint64_t)GT(nxw, xw);
119 		x[u] = nxw;
120 		tb = MUX(EQ(nxw, mw), tb, GT(nxw, mw));
121 	}
122 
123 	/*
124 	 * If we underestimated q, then either cc < hi (one extra bit
125 	 * beyond the top array word), or cc == hi and tb is true (no
126 	 * extra bit, but the result is not lower than the modulus). In
127 	 * these cases we must subtract m once.
128 	 *
129 	 * Otherwise, we may have overestimated, which will show as
130 	 * cc > hi (thus a negative result). Correction is adding m once.
131 	 */
132 	chf = (uint32_t)(cc >> 32);
133 	clow = (uint32_t)cc;
134 	over = chf | GT(clow, hi);
135 	under = ~over & (tb | (~chf & LT(clow, hi)));
136 	br_i32_add(x, m, over);
137 	br_i32_sub(x, m, under);
138 }
139