xref: /freebsd/contrib/bearssl/src/ec/ecdsa_i31_sign_raw.c (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 /*
2  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 #define I31_LEN     ((BR_MAX_EC_SIZE + 61) / 31)
28 #define POINT_LEN   (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29 #define ORDER_LEN   ((BR_MAX_EC_SIZE + 7) >> 3)
30 
31 /* see bearssl_ec.h */
32 size_t
33 br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
34 	const br_hash_class *hf, const void *hash_value,
35 	const br_ec_private_key *sk, void *sig)
36 {
37 	/*
38 	 * IMPORTANT: this code is fit only for curves with a prime
39 	 * order. This is needed so that modular reduction of the X
40 	 * coordinate of a point can be done with a simple subtraction.
41 	 * We also rely on the last byte of the curve order to be distinct
42 	 * from 0 and 1.
43 	 */
44 	const br_ec_curve_def *cd;
45 	uint32_t n[I31_LEN], r[I31_LEN], s[I31_LEN], x[I31_LEN];
46 	uint32_t m[I31_LEN], k[I31_LEN], t1[I31_LEN], t2[I31_LEN];
47 	unsigned char tt[ORDER_LEN << 1];
48 	unsigned char eU[POINT_LEN];
49 	size_t hash_len, nlen, ulen;
50 	uint32_t n0i, ctl;
51 	br_hmac_drbg_context drbg;
52 
53 	/*
54 	 * If the curve is not supported, then exit with an error.
55 	 */
56 	if (((impl->supported_curves >> sk->curve) & 1) == 0) {
57 		return 0;
58 	}
59 
60 	/*
61 	 * Get the curve parameters (generator and order).
62 	 */
63 	switch (sk->curve) {
64 	case BR_EC_secp256r1:
65 		cd = &br_secp256r1;
66 		break;
67 	case BR_EC_secp384r1:
68 		cd = &br_secp384r1;
69 		break;
70 	case BR_EC_secp521r1:
71 		cd = &br_secp521r1;
72 		break;
73 	default:
74 		return 0;
75 	}
76 
77 	/*
78 	 * Get modulus.
79 	 */
80 	nlen = cd->order_len;
81 	br_i31_decode(n, cd->order, nlen);
82 	n0i = br_i31_ninv31(n[1]);
83 
84 	/*
85 	 * Get private key as an i31 integer. This also checks that the
86 	 * private key is well-defined (not zero, and less than the
87 	 * curve order).
88 	 */
89 	if (!br_i31_decode_mod(x, sk->x, sk->xlen, n)) {
90 		return 0;
91 	}
92 	if (br_i31_iszero(x)) {
93 		return 0;
94 	}
95 
96 	/*
97 	 * Get hash length.
98 	 */
99 	hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
100 
101 	/*
102 	 * Truncate and reduce the hash value modulo the curve order.
103 	 */
104 	br_ecdsa_i31_bits2int(m, hash_value, hash_len, n[0]);
105 	br_i31_sub(m, n, br_i31_sub(m, n, 0) ^ 1);
106 
107 	/*
108 	 * RFC 6979 generation of the "k" value.
109 	 *
110 	 * The process uses HMAC_DRBG (with the hash function used to
111 	 * process the message that is to be signed). The seed is the
112 	 * concatenation of the encodings of the private key and
113 	 * the hash value (after truncation and modular reduction).
114 	 */
115 	br_i31_encode(tt, nlen, x);
116 	br_i31_encode(tt + nlen, nlen, m);
117 	br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
118 	for (;;) {
119 		br_hmac_drbg_generate(&drbg, tt, nlen);
120 		br_ecdsa_i31_bits2int(k, tt, nlen, n[0]);
121 		if (br_i31_iszero(k)) {
122 			continue;
123 		}
124 		if (br_i31_sub(k, n, 0)) {
125 			break;
126 		}
127 	}
128 
129 	/*
130 	 * Compute k*G and extract the X coordinate, then reduce it
131 	 * modulo the curve order. Since we support only curves with
132 	 * prime order, that reduction is only a matter of computing
133 	 * a subtraction.
134 	 */
135 	br_i31_encode(tt, nlen, k);
136 	ulen = impl->mulgen(eU, tt, nlen, sk->curve);
137 	br_i31_zero(r, n[0]);
138 	br_i31_decode(r, &eU[1], ulen >> 1);
139 	r[0] = n[0];
140 	br_i31_sub(r, n, br_i31_sub(r, n, 0) ^ 1);
141 
142 	/*
143 	 * Compute 1/k in double-Montgomery representation. We do so by
144 	 * first converting _from_ Montgomery representation (twice),
145 	 * then using a modular exponentiation.
146 	 */
147 	br_i31_from_monty(k, n, n0i);
148 	br_i31_from_monty(k, n, n0i);
149 	memcpy(tt, cd->order, nlen);
150 	tt[nlen - 1] -= 2;
151 	br_i31_modpow(k, tt, nlen, n, n0i, t1, t2);
152 
153 	/*
154 	 * Compute s = (m+xr)/k (mod n).
155 	 * The k[] array contains R^2/k (double-Montgomery representation);
156 	 * we thus can use direct Montgomery multiplications and conversions
157 	 * from Montgomery, avoiding any call to br_i31_to_monty() (which
158 	 * is slower).
159 	 */
160 	br_i31_from_monty(m, n, n0i);
161 	br_i31_montymul(t1, x, r, n, n0i);
162 	ctl = br_i31_add(t1, m, 1);
163 	ctl |= br_i31_sub(t1, n, 0) ^ 1;
164 	br_i31_sub(t1, n, ctl);
165 	br_i31_montymul(s, t1, k, n, n0i);
166 
167 	/*
168 	 * Encode r and s in the signature.
169 	 */
170 	br_i31_encode(sig, nlen, r);
171 	br_i31_encode((unsigned char *)sig + nlen, nlen, s);
172 	return nlen << 1;
173 }
174