xref: /freebsd/contrib/bearssl/src/ec/ecdsa_i15_vrfy_raw.c (revision cab6a39d7b343596a5823e65c0f7b426551ec22d)
1 /*
2  * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 #define I15_LEN     ((BR_MAX_EC_SIZE + 29) / 15)
28 #define POINT_LEN   (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29 
30 /* see bearssl_ec.h */
31 uint32_t
32 br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl,
33 	const void *hash, size_t hash_len,
34 	const br_ec_public_key *pk,
35 	const void *sig, size_t sig_len)
36 {
37 	/*
38 	 * IMPORTANT: this code is fit only for curves with a prime
39 	 * order. This is needed so that modular reduction of the X
40 	 * coordinate of a point can be done with a simple subtraction.
41 	 */
42 	const br_ec_curve_def *cd;
43 	uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], t1[I15_LEN], t2[I15_LEN];
44 	unsigned char tx[(BR_MAX_EC_SIZE + 7) >> 3];
45 	unsigned char ty[(BR_MAX_EC_SIZE + 7) >> 3];
46 	unsigned char eU[POINT_LEN];
47 	size_t nlen, rlen, ulen;
48 	uint16_t n0i;
49 	uint32_t res;
50 
51 	/*
52 	 * If the curve is not supported, then report an error.
53 	 */
54 	if (((impl->supported_curves >> pk->curve) & 1) == 0) {
55 		return 0;
56 	}
57 
58 	/*
59 	 * Get the curve parameters (generator and order).
60 	 */
61 	switch (pk->curve) {
62 	case BR_EC_secp256r1:
63 		cd = &br_secp256r1;
64 		break;
65 	case BR_EC_secp384r1:
66 		cd = &br_secp384r1;
67 		break;
68 	case BR_EC_secp521r1:
69 		cd = &br_secp521r1;
70 		break;
71 	default:
72 		return 0;
73 	}
74 
75 	/*
76 	 * Signature length must be even.
77 	 */
78 	if (sig_len & 1) {
79 		return 0;
80 	}
81 	rlen = sig_len >> 1;
82 
83 	/*
84 	 * Public key point must have the proper size for this curve.
85 	 */
86 	if (pk->qlen != cd->generator_len) {
87 		return 0;
88 	}
89 
90 	/*
91 	 * Get modulus; then decode the r and s values. They must be
92 	 * lower than the modulus, and s must not be null.
93 	 */
94 	nlen = cd->order_len;
95 	br_i15_decode(n, cd->order, nlen);
96 	n0i = br_i15_ninv15(n[1]);
97 	if (!br_i15_decode_mod(r, sig, rlen, n)) {
98 		return 0;
99 	}
100 	if (!br_i15_decode_mod(s, (const unsigned char *)sig + rlen, rlen, n)) {
101 		return 0;
102 	}
103 	if (br_i15_iszero(s)) {
104 		return 0;
105 	}
106 
107 	/*
108 	 * Invert s. We do that with a modular exponentiation; we use
109 	 * the fact that for all the curves we support, the least
110 	 * significant byte is not 0 or 1, so we can subtract 2 without
111 	 * any carry to process.
112 	 * We also want 1/s in Montgomery representation, which can be
113 	 * done by converting _from_ Montgomery representation before
114 	 * the inversion (because (1/s)*R = 1/(s/R)).
115 	 */
116 	br_i15_from_monty(s, n, n0i);
117 	memcpy(tx, cd->order, nlen);
118 	tx[nlen - 1] -= 2;
119 	br_i15_modpow(s, tx, nlen, n, n0i, t1, t2);
120 
121 	/*
122 	 * Truncate the hash to the modulus length (in bits) and reduce
123 	 * it modulo the curve order. The modular reduction can be done
124 	 * with a subtraction since the truncation already reduced the
125 	 * value to the modulus bit length.
126 	 */
127 	br_ecdsa_i15_bits2int(t1, hash, hash_len, n[0]);
128 	br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1);
129 
130 	/*
131 	 * Multiply the (truncated, reduced) hash value with 1/s, result in
132 	 * t2, encoded in ty.
133 	 */
134 	br_i15_montymul(t2, t1, s, n, n0i);
135 	br_i15_encode(ty, nlen, t2);
136 
137 	/*
138 	 * Multiply r with 1/s, result in t1, encoded in tx.
139 	 */
140 	br_i15_montymul(t1, r, s, n, n0i);
141 	br_i15_encode(tx, nlen, t1);
142 
143 	/*
144 	 * Compute the point x*Q + y*G.
145 	 */
146 	ulen = cd->generator_len;
147 	memcpy(eU, pk->q, ulen);
148 	res = impl->muladd(eU, NULL, ulen,
149 		tx, nlen, ty, nlen, cd->curve);
150 
151 	/*
152 	 * Get the X coordinate, reduce modulo the curve order, and
153 	 * compare with the 'r' value.
154 	 *
155 	 * The modular reduction can be done with subtractions because
156 	 * we work with curves of prime order, so the curve order is
157 	 * close to the field order (Hasse's theorem).
158 	 */
159 	br_i15_zero(t1, n[0]);
160 	br_i15_decode(t1, &eU[1], ulen >> 1);
161 	t1[0] = n[0];
162 	br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1);
163 	res &= ~br_i15_sub(t1, r, 1);
164 	res &= br_i15_iszero(t1);
165 	return res;
166 }
167