xref: /freebsd/contrib/bearssl/src/ec/ecdsa_i15_sign_raw.c (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 /*
2  * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 #define I15_LEN     ((BR_MAX_EC_SIZE + 29) / 15)
28 #define POINT_LEN   (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29 #define ORDER_LEN   ((BR_MAX_EC_SIZE + 7) >> 3)
30 
31 /* see bearssl_ec.h */
32 size_t
33 br_ecdsa_i15_sign_raw(const br_ec_impl *impl,
34 	const br_hash_class *hf, const void *hash_value,
35 	const br_ec_private_key *sk, void *sig)
36 {
37 	/*
38 	 * IMPORTANT: this code is fit only for curves with a prime
39 	 * order. This is needed so that modular reduction of the X
40 	 * coordinate of a point can be done with a simple subtraction.
41 	 * We also rely on the last byte of the curve order to be distinct
42 	 * from 0 and 1.
43 	 */
44 	const br_ec_curve_def *cd;
45 	uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], x[I15_LEN];
46 	uint16_t m[I15_LEN], k[I15_LEN], t1[I15_LEN], t2[I15_LEN];
47 	unsigned char tt[ORDER_LEN << 1];
48 	unsigned char eU[POINT_LEN];
49 	size_t hash_len, nlen, ulen;
50 	uint16_t n0i;
51 	uint32_t ctl;
52 	br_hmac_drbg_context drbg;
53 
54 	/*
55 	 * If the curve is not supported, then exit with an error.
56 	 */
57 	if (((impl->supported_curves >> sk->curve) & 1) == 0) {
58 		return 0;
59 	}
60 
61 	/*
62 	 * Get the curve parameters (generator and order).
63 	 */
64 	switch (sk->curve) {
65 	case BR_EC_secp256r1:
66 		cd = &br_secp256r1;
67 		break;
68 	case BR_EC_secp384r1:
69 		cd = &br_secp384r1;
70 		break;
71 	case BR_EC_secp521r1:
72 		cd = &br_secp521r1;
73 		break;
74 	default:
75 		return 0;
76 	}
77 
78 	/*
79 	 * Get modulus.
80 	 */
81 	nlen = cd->order_len;
82 	br_i15_decode(n, cd->order, nlen);
83 	n0i = br_i15_ninv15(n[1]);
84 
85 	/*
86 	 * Get private key as an i15 integer. This also checks that the
87 	 * private key is well-defined (not zero, and less than the
88 	 * curve order).
89 	 */
90 	if (!br_i15_decode_mod(x, sk->x, sk->xlen, n)) {
91 		return 0;
92 	}
93 	if (br_i15_iszero(x)) {
94 		return 0;
95 	}
96 
97 	/*
98 	 * Get hash length.
99 	 */
100 	hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
101 
102 	/*
103 	 * Truncate and reduce the hash value modulo the curve order.
104 	 */
105 	br_ecdsa_i15_bits2int(m, hash_value, hash_len, n[0]);
106 	br_i15_sub(m, n, br_i15_sub(m, n, 0) ^ 1);
107 
108 	/*
109 	 * RFC 6979 generation of the "k" value.
110 	 *
111 	 * The process uses HMAC_DRBG (with the hash function used to
112 	 * process the message that is to be signed). The seed is the
113 	 * concatenation of the encodings of the private key and
114 	 * the hash value (after truncation and modular reduction).
115 	 */
116 	br_i15_encode(tt, nlen, x);
117 	br_i15_encode(tt + nlen, nlen, m);
118 	br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
119 	for (;;) {
120 		br_hmac_drbg_generate(&drbg, tt, nlen);
121 		br_ecdsa_i15_bits2int(k, tt, nlen, n[0]);
122 		if (br_i15_iszero(k)) {
123 			continue;
124 		}
125 		if (br_i15_sub(k, n, 0)) {
126 			break;
127 		}
128 	}
129 
130 	/*
131 	 * Compute k*G and extract the X coordinate, then reduce it
132 	 * modulo the curve order. Since we support only curves with
133 	 * prime order, that reduction is only a matter of computing
134 	 * a subtraction.
135 	 */
136 	br_i15_encode(tt, nlen, k);
137 	ulen = impl->mulgen(eU, tt, nlen, sk->curve);
138 	br_i15_zero(r, n[0]);
139 	br_i15_decode(r, &eU[1], ulen >> 1);
140 	r[0] = n[0];
141 	br_i15_sub(r, n, br_i15_sub(r, n, 0) ^ 1);
142 
143 	/*
144 	 * Compute 1/k in double-Montgomery representation. We do so by
145 	 * first converting _from_ Montgomery representation (twice),
146 	 * then using a modular exponentiation.
147 	 */
148 	br_i15_from_monty(k, n, n0i);
149 	br_i15_from_monty(k, n, n0i);
150 	memcpy(tt, cd->order, nlen);
151 	tt[nlen - 1] -= 2;
152 	br_i15_modpow(k, tt, nlen, n, n0i, t1, t2);
153 
154 	/*
155 	 * Compute s = (m+xr)/k (mod n).
156 	 * The k[] array contains R^2/k (double-Montgomery representation);
157 	 * we thus can use direct Montgomery multiplications and conversions
158 	 * from Montgomery, avoiding any call to br_i15_to_monty() (which
159 	 * is slower).
160 	 */
161 	br_i15_from_monty(m, n, n0i);
162 	br_i15_montymul(t1, x, r, n, n0i);
163 	ctl = br_i15_add(t1, m, 1);
164 	ctl |= br_i15_sub(t1, n, 0) ^ 1;
165 	br_i15_sub(t1, n, ctl);
166 	br_i15_montymul(s, t1, k, n, n0i);
167 
168 	/*
169 	 * Encode r and s in the signature.
170 	 */
171 	br_i15_encode(sig, nlen, r);
172 	br_i15_encode((unsigned char *)sig + nlen, nlen, s);
173 	return nlen << 1;
174 }
175