1 /* 2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining 5 * a copy of this software and associated documentation files (the 6 * "Software"), to deal in the Software without restriction, including 7 * without limitation the rights to use, copy, modify, merge, publish, 8 * distribute, sublicense, and/or sell copies of the Software, and to 9 * permit persons to whom the Software is furnished to do so, subject to 10 * the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be 13 * included in all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #include "inner.h" 26 27 #if BR_INT128 || BR_UMUL128 28 29 #if BR_UMUL128 30 #include <intrin.h> 31 #endif 32 33 static const unsigned char P256_G[] = { 34 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 35 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 36 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 37 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 38 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B, 39 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 40 0x68, 0x37, 0xBF, 0x51, 0xF5 41 }; 42 43 static const unsigned char P256_N[] = { 44 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 45 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 46 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 47 0x25, 0x51 48 }; 49 50 static const unsigned char * 51 api_generator(int curve, size_t *len) 52 { 53 (void)curve; 54 *len = sizeof P256_G; 55 return P256_G; 56 } 57 58 static const unsigned char * 59 api_order(int curve, size_t *len) 60 { 61 (void)curve; 62 *len = sizeof P256_N; 63 return P256_N; 64 } 65 66 static size_t 67 api_xoff(int curve, size_t *len) 68 { 69 (void)curve; 70 *len = 32; 71 return 1; 72 } 73 74 /* 75 * A field element is encoded as four 64-bit integers, in basis 2^64. 76 * Values may reach up to 2^256-1. Montgomery multiplication is used. 77 */ 78 79 /* R = 2^256 mod p */ 80 static const uint64_t F256_R[] = { 81 0x0000000000000001, 0xFFFFFFFF00000000, 82 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE 83 }; 84 85 /* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p 86 (Montgomery representation of B). */ 87 static const uint64_t P256_B_MONTY[] = { 88 0xD89CDF6229C4BDDF, 0xACF005CD78843090, 89 0xE5A220ABF7212ED6, 0xDC30061D04874834 90 }; 91 92 /* 93 * Addition in the field. 94 */ 95 static inline void 96 f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b) 97 { 98 #if BR_INT128 99 unsigned __int128 w; 100 uint64_t t; 101 102 /* 103 * Do the addition, with an extra carry in t. 104 */ 105 w = (unsigned __int128)a[0] + b[0]; 106 d[0] = (uint64_t)w; 107 w = (unsigned __int128)a[1] + b[1] + (w >> 64); 108 d[1] = (uint64_t)w; 109 w = (unsigned __int128)a[2] + b[2] + (w >> 64); 110 d[2] = (uint64_t)w; 111 w = (unsigned __int128)a[3] + b[3] + (w >> 64); 112 d[3] = (uint64_t)w; 113 t = (uint64_t)(w >> 64); 114 115 /* 116 * Fold carry t, using: 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p. 117 */ 118 w = (unsigned __int128)d[0] + t; 119 d[0] = (uint64_t)w; 120 w = (unsigned __int128)d[1] + (w >> 64) - (t << 32); 121 d[1] = (uint64_t)w; 122 /* Here, carry "w >> 64" can only be 0 or -1 */ 123 w = (unsigned __int128)d[2] - ((w >> 64) & 1); 124 d[2] = (uint64_t)w; 125 /* Again, carry is 0 or -1. But there can be carry only if t = 1, 126 in which case the addition of (t << 32) - t is positive. */ 127 w = (unsigned __int128)d[3] - ((w >> 64) & 1) + (t << 32) - t; 128 d[3] = (uint64_t)w; 129 t = (uint64_t)(w >> 64); 130 131 /* 132 * There can be an extra carry here, which we must fold again. 133 */ 134 w = (unsigned __int128)d[0] + t; 135 d[0] = (uint64_t)w; 136 w = (unsigned __int128)d[1] + (w >> 64) - (t << 32); 137 d[1] = (uint64_t)w; 138 w = (unsigned __int128)d[2] - ((w >> 64) & 1); 139 d[2] = (uint64_t)w; 140 d[3] += (t << 32) - t - (uint64_t)((w >> 64) & 1); 141 142 #elif BR_UMUL128 143 144 unsigned char cc; 145 uint64_t t; 146 147 cc = _addcarry_u64(0, a[0], b[0], &d[0]); 148 cc = _addcarry_u64(cc, a[1], b[1], &d[1]); 149 cc = _addcarry_u64(cc, a[2], b[2], &d[2]); 150 cc = _addcarry_u64(cc, a[3], b[3], &d[3]); 151 152 /* 153 * If there is a carry, then we want to subtract p, which we 154 * do by adding 2^256 - p. 155 */ 156 t = cc; 157 cc = _addcarry_u64(cc, d[0], 0, &d[0]); 158 cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]); 159 cc = _addcarry_u64(cc, d[2], -t, &d[2]); 160 cc = _addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]); 161 162 /* 163 * We have to do it again if there still is a carry. 164 */ 165 t = cc; 166 cc = _addcarry_u64(cc, d[0], 0, &d[0]); 167 cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]); 168 cc = _addcarry_u64(cc, d[2], -t, &d[2]); 169 (void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]); 170 171 #endif 172 } 173 174 /* 175 * Subtraction in the field. 176 */ 177 static inline void 178 f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b) 179 { 180 #if BR_INT128 181 182 unsigned __int128 w; 183 uint64_t t; 184 185 w = (unsigned __int128)a[0] - b[0]; 186 d[0] = (uint64_t)w; 187 w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1); 188 d[1] = (uint64_t)w; 189 w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1); 190 d[2] = (uint64_t)w; 191 w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1); 192 d[3] = (uint64_t)w; 193 t = (uint64_t)(w >> 64) & 1; 194 195 /* 196 * If there is a borrow (t = 1), then we must add the modulus 197 * p = 2^256 - 2^224 + 2^192 + 2^96 - 1. 198 */ 199 w = (unsigned __int128)d[0] - t; 200 d[0] = (uint64_t)w; 201 w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1); 202 d[1] = (uint64_t)w; 203 /* Here, carry "w >> 64" can only be 0 or +1 */ 204 w = (unsigned __int128)d[2] + (w >> 64); 205 d[2] = (uint64_t)w; 206 /* Again, carry is 0 or +1 */ 207 w = (unsigned __int128)d[3] + (w >> 64) - (t << 32) + t; 208 d[3] = (uint64_t)w; 209 t = (uint64_t)(w >> 64) & 1; 210 211 /* 212 * There may be again a borrow, in which case we must add the 213 * modulus again. 214 */ 215 w = (unsigned __int128)d[0] - t; 216 d[0] = (uint64_t)w; 217 w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1); 218 d[1] = (uint64_t)w; 219 w = (unsigned __int128)d[2] + (w >> 64); 220 d[2] = (uint64_t)w; 221 d[3] += (uint64_t)(w >> 64) - (t << 32) + t; 222 223 #elif BR_UMUL128 224 225 unsigned char cc; 226 uint64_t t; 227 228 cc = _subborrow_u64(0, a[0], b[0], &d[0]); 229 cc = _subborrow_u64(cc, a[1], b[1], &d[1]); 230 cc = _subborrow_u64(cc, a[2], b[2], &d[2]); 231 cc = _subborrow_u64(cc, a[3], b[3], &d[3]); 232 233 /* 234 * If there is a borrow, then we need to add p. We (virtually) 235 * add 2^256, then subtract 2^256 - p. 236 */ 237 t = cc; 238 cc = _subborrow_u64(0, d[0], t, &d[0]); 239 cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]); 240 cc = _subborrow_u64(cc, d[2], -t, &d[2]); 241 cc = _subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]); 242 243 /* 244 * If there still is a borrow, then we need to add p again. 245 */ 246 t = cc; 247 cc = _subborrow_u64(0, d[0], t, &d[0]); 248 cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]); 249 cc = _subborrow_u64(cc, d[2], -t, &d[2]); 250 (void)_subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]); 251 252 #endif 253 } 254 255 /* 256 * Montgomery multiplication in the field. 257 */ 258 static void 259 f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b) 260 { 261 #if BR_INT128 262 263 uint64_t x, f, t0, t1, t2, t3, t4; 264 unsigned __int128 z, ff; 265 int i; 266 267 /* 268 * When computing d <- d + a[u]*b, we also add f*p such 269 * that d + a[u]*b + f*p is a multiple of 2^64. Since 270 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64. 271 */ 272 273 /* 274 * Step 1: t <- (a[0]*b + f*p) / 2^64 275 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this 276 * ensures that (a[0]*b + f*p) is a multiple of 2^64. 277 * 278 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f. 279 */ 280 x = a[0]; 281 z = (unsigned __int128)b[0] * x; 282 f = (uint64_t)z; 283 z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32); 284 t0 = (uint64_t)z; 285 z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32); 286 t1 = (uint64_t)z; 287 z = (unsigned __int128)b[3] * x + (z >> 64) + f; 288 t2 = (uint64_t)z; 289 t3 = (uint64_t)(z >> 64); 290 ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32); 291 z = (unsigned __int128)t2 + (uint64_t)ff; 292 t2 = (uint64_t)z; 293 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64); 294 t3 = (uint64_t)z; 295 t4 = (uint64_t)(z >> 64); 296 297 /* 298 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64 299 */ 300 for (i = 1; i < 4; i ++) { 301 x = a[i]; 302 303 /* t <- (t + x*b - f) / 2^64 */ 304 z = (unsigned __int128)b[0] * x + t0; 305 f = (uint64_t)z; 306 z = (unsigned __int128)b[1] * x + t1 + (z >> 64); 307 t0 = (uint64_t)z; 308 z = (unsigned __int128)b[2] * x + t2 + (z >> 64); 309 t1 = (uint64_t)z; 310 z = (unsigned __int128)b[3] * x + t3 + (z >> 64); 311 t2 = (uint64_t)z; 312 z = t4 + (z >> 64); 313 t3 = (uint64_t)z; 314 t4 = (uint64_t)(z >> 64); 315 316 /* t <- t + f*2^32, carry in the upper half of z */ 317 z = (unsigned __int128)t0 + (uint64_t)(f << 32); 318 t0 = (uint64_t)z; 319 z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32); 320 t1 = (uint64_t)z; 321 322 /* t <- t + f*2^192 - f*2^160 + f*2^128 */ 323 ff = ((unsigned __int128)f << 64) 324 - ((unsigned __int128)f << 32) + f; 325 z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff; 326 t2 = (uint64_t)z; 327 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64); 328 t3 = (uint64_t)z; 329 t4 += (uint64_t)(z >> 64); 330 } 331 332 /* 333 * At that point, we have computed t = (a*b + F*p) / 2^256, where 334 * F is a 256-bit integer whose limbs are the "f" coefficients 335 * in the steps above. We have: 336 * a <= 2^256-1 337 * b <= 2^256-1 338 * F <= 2^256-1 339 * Hence: 340 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1) 341 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p 342 * Therefore: 343 * t < 2^256 + p - 2 344 * Since p < 2^256, it follows that: 345 * t4 can be only 0 or 1 346 * t - p < 2^256 347 * We can therefore subtract p from t, conditionally on t4, to 348 * get a nonnegative result that fits on 256 bits. 349 */ 350 z = (unsigned __int128)t0 + t4; 351 t0 = (uint64_t)z; 352 z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64); 353 t1 = (uint64_t)z; 354 z = (unsigned __int128)t2 - (z >> 127); 355 t2 = (uint64_t)z; 356 t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32); 357 358 d[0] = t0; 359 d[1] = t1; 360 d[2] = t2; 361 d[3] = t3; 362 363 #elif BR_UMUL128 364 365 uint64_t x, f, t0, t1, t2, t3, t4; 366 uint64_t zl, zh, ffl, ffh; 367 unsigned char k, m; 368 int i; 369 370 /* 371 * When computing d <- d + a[u]*b, we also add f*p such 372 * that d + a[u]*b + f*p is a multiple of 2^64. Since 373 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64. 374 */ 375 376 /* 377 * Step 1: t <- (a[0]*b + f*p) / 2^64 378 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this 379 * ensures that (a[0]*b + f*p) is a multiple of 2^64. 380 * 381 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f. 382 */ 383 x = a[0]; 384 385 zl = _umul128(b[0], x, &zh); 386 f = zl; 387 t0 = zh; 388 389 zl = _umul128(b[1], x, &zh); 390 k = _addcarry_u64(0, zl, t0, &zl); 391 (void)_addcarry_u64(k, zh, 0, &zh); 392 k = _addcarry_u64(0, zl, f << 32, &zl); 393 (void)_addcarry_u64(k, zh, 0, &zh); 394 t0 = zl; 395 t1 = zh; 396 397 zl = _umul128(b[2], x, &zh); 398 k = _addcarry_u64(0, zl, t1, &zl); 399 (void)_addcarry_u64(k, zh, 0, &zh); 400 k = _addcarry_u64(0, zl, f >> 32, &zl); 401 (void)_addcarry_u64(k, zh, 0, &zh); 402 t1 = zl; 403 t2 = zh; 404 405 zl = _umul128(b[3], x, &zh); 406 k = _addcarry_u64(0, zl, t2, &zl); 407 (void)_addcarry_u64(k, zh, 0, &zh); 408 k = _addcarry_u64(0, zl, f, &zl); 409 (void)_addcarry_u64(k, zh, 0, &zh); 410 t2 = zl; 411 t3 = zh; 412 413 t4 = _addcarry_u64(0, t3, f, &t3); 414 k = _subborrow_u64(0, t2, f << 32, &t2); 415 k = _subborrow_u64(k, t3, f >> 32, &t3); 416 (void)_subborrow_u64(k, t4, 0, &t4); 417 418 /* 419 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64 420 */ 421 for (i = 1; i < 4; i ++) { 422 x = a[i]; 423 /* f = t0 + x * b[0]; -- computed below */ 424 425 /* t <- (t + x*b - f) / 2^64 */ 426 zl = _umul128(b[0], x, &zh); 427 k = _addcarry_u64(0, zl, t0, &f); 428 (void)_addcarry_u64(k, zh, 0, &t0); 429 430 zl = _umul128(b[1], x, &zh); 431 k = _addcarry_u64(0, zl, t0, &zl); 432 (void)_addcarry_u64(k, zh, 0, &zh); 433 k = _addcarry_u64(0, zl, t1, &t0); 434 (void)_addcarry_u64(k, zh, 0, &t1); 435 436 zl = _umul128(b[2], x, &zh); 437 k = _addcarry_u64(0, zl, t1, &zl); 438 (void)_addcarry_u64(k, zh, 0, &zh); 439 k = _addcarry_u64(0, zl, t2, &t1); 440 (void)_addcarry_u64(k, zh, 0, &t2); 441 442 zl = _umul128(b[3], x, &zh); 443 k = _addcarry_u64(0, zl, t2, &zl); 444 (void)_addcarry_u64(k, zh, 0, &zh); 445 k = _addcarry_u64(0, zl, t3, &t2); 446 (void)_addcarry_u64(k, zh, 0, &t3); 447 448 t4 = _addcarry_u64(0, t3, t4, &t3); 449 450 /* t <- t + f*2^32, carry in k */ 451 k = _addcarry_u64(0, t0, f << 32, &t0); 452 k = _addcarry_u64(k, t1, f >> 32, &t1); 453 454 /* t <- t + f*2^192 - f*2^160 + f*2^128 */ 455 m = _subborrow_u64(0, f, f << 32, &ffl); 456 (void)_subborrow_u64(m, f, f >> 32, &ffh); 457 k = _addcarry_u64(k, t2, ffl, &t2); 458 k = _addcarry_u64(k, t3, ffh, &t3); 459 (void)_addcarry_u64(k, t4, 0, &t4); 460 } 461 462 /* 463 * At that point, we have computed t = (a*b + F*p) / 2^256, where 464 * F is a 256-bit integer whose limbs are the "f" coefficients 465 * in the steps above. We have: 466 * a <= 2^256-1 467 * b <= 2^256-1 468 * F <= 2^256-1 469 * Hence: 470 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1) 471 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p 472 * Therefore: 473 * t < 2^256 + p - 2 474 * Since p < 2^256, it follows that: 475 * t4 can be only 0 or 1 476 * t - p < 2^256 477 * We can therefore subtract p from t, conditionally on t4, to 478 * get a nonnegative result that fits on 256 bits. 479 */ 480 k = _addcarry_u64(0, t0, t4, &t0); 481 k = _addcarry_u64(k, t1, -(t4 << 32), &t1); 482 k = _addcarry_u64(k, t2, -t4, &t2); 483 (void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3); 484 485 d[0] = t0; 486 d[1] = t1; 487 d[2] = t2; 488 d[3] = t3; 489 490 #endif 491 } 492 493 /* 494 * Montgomery squaring in the field; currently a basic wrapper around 495 * multiplication (inline, should be optimized away). 496 * TODO: see if some extra speed can be gained here. 497 */ 498 static inline void 499 f256_montysquare(uint64_t *d, const uint64_t *a) 500 { 501 f256_montymul(d, a, a); 502 } 503 504 /* 505 * Convert to Montgomery representation. 506 */ 507 static void 508 f256_tomonty(uint64_t *d, const uint64_t *a) 509 { 510 /* 511 * R2 = 2^512 mod p. 512 * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery 513 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the 514 * conversion to Montgomery representation. 515 */ 516 static const uint64_t R2[] = { 517 0x0000000000000003, 518 0xFFFFFFFBFFFFFFFF, 519 0xFFFFFFFFFFFFFFFE, 520 0x00000004FFFFFFFD 521 }; 522 523 f256_montymul(d, a, R2); 524 } 525 526 /* 527 * Convert from Montgomery representation. 528 */ 529 static void 530 f256_frommonty(uint64_t *d, const uint64_t *a) 531 { 532 /* 533 * Montgomery multiplication by 1 is division by 2^256 modulo p. 534 */ 535 static const uint64_t one[] = { 1, 0, 0, 0 }; 536 537 f256_montymul(d, a, one); 538 } 539 540 /* 541 * Inversion in the field. If the source value is 0 modulo p, then this 542 * returns 0 or p. This function uses Montgomery representation. 543 */ 544 static void 545 f256_invert(uint64_t *d, const uint64_t *a) 546 { 547 /* 548 * We compute a^(p-2) mod p. The exponent pattern (from high to 549 * low) is: 550 * - 32 bits of value 1 551 * - 31 bits of value 0 552 * - 1 bit of value 1 553 * - 96 bits of value 0 554 * - 94 bits of value 1 555 * - 1 bit of value 0 556 * - 1 bit of value 1 557 * To speed up the square-and-multiply algorithm, we precompute 558 * a^(2^31-1). 559 */ 560 561 uint64_t r[4], t[4]; 562 int i; 563 564 memcpy(t, a, sizeof t); 565 for (i = 0; i < 30; i ++) { 566 f256_montysquare(t, t); 567 f256_montymul(t, t, a); 568 } 569 570 memcpy(r, t, sizeof t); 571 for (i = 224; i >= 0; i --) { 572 f256_montysquare(r, r); 573 switch (i) { 574 case 0: 575 case 2: 576 case 192: 577 case 224: 578 f256_montymul(r, r, a); 579 break; 580 case 3: 581 case 34: 582 case 65: 583 f256_montymul(r, r, t); 584 break; 585 } 586 } 587 memcpy(d, r, sizeof r); 588 } 589 590 /* 591 * Finalize reduction. 592 * Input value fits on 256 bits. This function subtracts p if and only 593 * if the input is greater than or equal to p. 594 */ 595 static inline void 596 f256_final_reduce(uint64_t *a) 597 { 598 #if BR_INT128 599 600 uint64_t t0, t1, t2, t3, cc; 601 unsigned __int128 z; 602 603 /* 604 * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry, 605 * then a < p; otherwise, the addition result we computed is 606 * the value we must return. 607 */ 608 z = (unsigned __int128)a[0] + 1; 609 t0 = (uint64_t)z; 610 z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32); 611 t1 = (uint64_t)z; 612 z = (unsigned __int128)a[2] - (z >> 127); 613 t2 = (uint64_t)z; 614 z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF; 615 t3 = (uint64_t)z; 616 cc = -(uint64_t)(z >> 64); 617 618 a[0] ^= cc & (a[0] ^ t0); 619 a[1] ^= cc & (a[1] ^ t1); 620 a[2] ^= cc & (a[2] ^ t2); 621 a[3] ^= cc & (a[3] ^ t3); 622 623 #elif BR_UMUL128 624 625 uint64_t t0, t1, t2, t3, m; 626 unsigned char k; 627 628 k = _addcarry_u64(0, a[0], (uint64_t)1, &t0); 629 k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1); 630 k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2); 631 k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3); 632 m = -(uint64_t)k; 633 634 a[0] ^= m & (a[0] ^ t0); 635 a[1] ^= m & (a[1] ^ t1); 636 a[2] ^= m & (a[2] ^ t2); 637 a[3] ^= m & (a[3] ^ t3); 638 639 #endif 640 } 641 642 /* 643 * Points in affine and Jacobian coordinates. 644 * 645 * - In affine coordinates, the point-at-infinity cannot be encoded. 646 * - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3); 647 * if Z = 0 then this is the point-at-infinity. 648 */ 649 typedef struct { 650 uint64_t x[4]; 651 uint64_t y[4]; 652 } p256_affine; 653 654 typedef struct { 655 uint64_t x[4]; 656 uint64_t y[4]; 657 uint64_t z[4]; 658 } p256_jacobian; 659 660 /* 661 * Decode a point. The returned point is in Jacobian coordinates, but 662 * with z = 1. If the encoding is invalid, or encodes a point which is 663 * not on the curve, or encodes the point at infinity, then this function 664 * returns 0. Otherwise, 1 is returned. 665 * 666 * The buffer is assumed to have length exactly 65 bytes. 667 */ 668 static uint32_t 669 point_decode(p256_jacobian *P, const unsigned char *buf) 670 { 671 uint64_t x[4], y[4], t[4], x3[4], tt; 672 uint32_t r; 673 674 /* 675 * Header byte shall be 0x04. 676 */ 677 r = EQ(buf[0], 0x04); 678 679 /* 680 * Decode X and Y coordinates, and convert them into 681 * Montgomery representation. 682 */ 683 x[3] = br_dec64be(buf + 1); 684 x[2] = br_dec64be(buf + 9); 685 x[1] = br_dec64be(buf + 17); 686 x[0] = br_dec64be(buf + 25); 687 y[3] = br_dec64be(buf + 33); 688 y[2] = br_dec64be(buf + 41); 689 y[1] = br_dec64be(buf + 49); 690 y[0] = br_dec64be(buf + 57); 691 f256_tomonty(x, x); 692 f256_tomonty(y, y); 693 694 /* 695 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3. 696 * Note that the Montgomery representation of 0 is 0. We must 697 * take care to apply the final reduction to make sure we have 698 * 0 and not p. 699 */ 700 f256_montysquare(t, y); 701 f256_montysquare(x3, x); 702 f256_montymul(x3, x3, x); 703 f256_sub(t, t, x3); 704 f256_add(t, t, x); 705 f256_add(t, t, x); 706 f256_add(t, t, x); 707 f256_sub(t, t, P256_B_MONTY); 708 f256_final_reduce(t); 709 tt = t[0] | t[1] | t[2] | t[3]; 710 r &= EQ((uint32_t)(tt | (tt >> 32)), 0); 711 712 /* 713 * Return the point in Jacobian coordinates (and Montgomery 714 * representation). 715 */ 716 memcpy(P->x, x, sizeof x); 717 memcpy(P->y, y, sizeof y); 718 memcpy(P->z, F256_R, sizeof F256_R); 719 return r; 720 } 721 722 /* 723 * Final conversion for a point: 724 * - The point is converted back to affine coordinates. 725 * - Final reduction is performed. 726 * - The point is encoded into the provided buffer. 727 * 728 * If the point is the point-at-infinity, all operations are performed, 729 * but the buffer contents are indeterminate, and 0 is returned. Otherwise, 730 * the encoded point is written in the buffer, and 1 is returned. 731 */ 732 static uint32_t 733 point_encode(unsigned char *buf, const p256_jacobian *P) 734 { 735 uint64_t t1[4], t2[4], z; 736 737 /* Set t1 = 1/z^2 and t2 = 1/z^3. */ 738 f256_invert(t2, P->z); 739 f256_montysquare(t1, t2); 740 f256_montymul(t2, t2, t1); 741 742 /* Compute affine coordinates x (in t1) and y (in t2). */ 743 f256_montymul(t1, P->x, t1); 744 f256_montymul(t2, P->y, t2); 745 746 /* Convert back from Montgomery representation, and finalize 747 reductions. */ 748 f256_frommonty(t1, t1); 749 f256_frommonty(t2, t2); 750 f256_final_reduce(t1); 751 f256_final_reduce(t2); 752 753 /* Encode. */ 754 buf[0] = 0x04; 755 br_enc64be(buf + 1, t1[3]); 756 br_enc64be(buf + 9, t1[2]); 757 br_enc64be(buf + 17, t1[1]); 758 br_enc64be(buf + 25, t1[0]); 759 br_enc64be(buf + 33, t2[3]); 760 br_enc64be(buf + 41, t2[2]); 761 br_enc64be(buf + 49, t2[1]); 762 br_enc64be(buf + 57, t2[0]); 763 764 /* Return success if and only if P->z != 0. */ 765 z = P->z[0] | P->z[1] | P->z[2] | P->z[3]; 766 return NEQ((uint32_t)(z | z >> 32), 0); 767 } 768 769 /* 770 * Point doubling in Jacobian coordinates: point P is doubled. 771 * Note: if the source point is the point-at-infinity, then the result is 772 * still the point-at-infinity, which is correct. Moreover, if the three 773 * coordinates were zero, then they still are zero in the returned value. 774 * 775 * (Note: this is true even without the final reduction: if the three 776 * coordinates are encoded as four words of value zero each, then the 777 * result will also have all-zero coordinate encodings, not the alternate 778 * encoding as the integer p.) 779 */ 780 static void 781 p256_double(p256_jacobian *P) 782 { 783 /* 784 * Doubling formulas are: 785 * 786 * s = 4*x*y^2 787 * m = 3*(x + z^2)*(x - z^2) 788 * x' = m^2 - 2*s 789 * y' = m*(s - x') - 8*y^4 790 * z' = 2*y*z 791 * 792 * These formulas work for all points, including points of order 2 793 * and points at infinity: 794 * - If y = 0 then z' = 0. But there is no such point in P-256 795 * anyway. 796 * - If z = 0 then z' = 0. 797 */ 798 uint64_t t1[4], t2[4], t3[4], t4[4]; 799 800 /* 801 * Compute z^2 in t1. 802 */ 803 f256_montysquare(t1, P->z); 804 805 /* 806 * Compute x-z^2 in t2 and x+z^2 in t1. 807 */ 808 f256_add(t2, P->x, t1); 809 f256_sub(t1, P->x, t1); 810 811 /* 812 * Compute 3*(x+z^2)*(x-z^2) in t1. 813 */ 814 f256_montymul(t3, t1, t2); 815 f256_add(t1, t3, t3); 816 f256_add(t1, t3, t1); 817 818 /* 819 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3). 820 */ 821 f256_montysquare(t3, P->y); 822 f256_add(t3, t3, t3); 823 f256_montymul(t2, P->x, t3); 824 f256_add(t2, t2, t2); 825 826 /* 827 * Compute x' = m^2 - 2*s. 828 */ 829 f256_montysquare(P->x, t1); 830 f256_sub(P->x, P->x, t2); 831 f256_sub(P->x, P->x, t2); 832 833 /* 834 * Compute z' = 2*y*z. 835 */ 836 f256_montymul(t4, P->y, P->z); 837 f256_add(P->z, t4, t4); 838 839 /* 840 * Compute y' = m*(s - x') - 8*y^4. Note that we already have 841 * 2*y^2 in t3. 842 */ 843 f256_sub(t2, t2, P->x); 844 f256_montymul(P->y, t1, t2); 845 f256_montysquare(t4, t3); 846 f256_add(t4, t4, t4); 847 f256_sub(P->y, P->y, t4); 848 } 849 850 /* 851 * Point addition (Jacobian coordinates): P1 is replaced with P1+P2. 852 * This function computes the wrong result in the following cases: 853 * 854 * - If P1 == 0 but P2 != 0 855 * - If P1 != 0 but P2 == 0 856 * - If P1 == P2 857 * 858 * In all three cases, P1 is set to the point at infinity. 859 * 860 * Returned value is 0 if one of the following occurs: 861 * 862 * - P1 and P2 have the same Y coordinate. 863 * - P1 == 0 and P2 == 0. 864 * - The Y coordinate of one of the points is 0 and the other point is 865 * the point at infinity. 866 * 867 * The third case cannot actually happen with valid points, since a point 868 * with Y == 0 is a point of order 2, and there is no point of order 2 on 869 * curve P-256. 870 * 871 * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller 872 * can apply the following: 873 * 874 * - If the result is not the point at infinity, then it is correct. 875 * - Otherwise, if the returned value is 1, then this is a case of 876 * P1+P2 == 0, so the result is indeed the point at infinity. 877 * - Otherwise, P1 == P2, so a "double" operation should have been 878 * performed. 879 * 880 * Note that you can get a returned value of 0 with a correct result, 881 * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates. 882 */ 883 static uint32_t 884 p256_add(p256_jacobian *P1, const p256_jacobian *P2) 885 { 886 /* 887 * Addtions formulas are: 888 * 889 * u1 = x1 * z2^2 890 * u2 = x2 * z1^2 891 * s1 = y1 * z2^3 892 * s2 = y2 * z1^3 893 * h = u2 - u1 894 * r = s2 - s1 895 * x3 = r^2 - h^3 - 2 * u1 * h^2 896 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 897 * z3 = h * z1 * z2 898 */ 899 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt; 900 uint32_t ret; 901 902 /* 903 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3). 904 */ 905 f256_montysquare(t3, P2->z); 906 f256_montymul(t1, P1->x, t3); 907 f256_montymul(t4, P2->z, t3); 908 f256_montymul(t3, P1->y, t4); 909 910 /* 911 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 912 */ 913 f256_montysquare(t4, P1->z); 914 f256_montymul(t2, P2->x, t4); 915 f256_montymul(t5, P1->z, t4); 916 f256_montymul(t4, P2->y, t5); 917 918 /* 919 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 920 * We need to test whether r is zero, so we will do some extra 921 * reduce. 922 */ 923 f256_sub(t2, t2, t1); 924 f256_sub(t4, t4, t3); 925 f256_final_reduce(t4); 926 tt = t4[0] | t4[1] | t4[2] | t4[3]; 927 ret = (uint32_t)(tt | (tt >> 32)); 928 ret = (ret | -ret) >> 31; 929 930 /* 931 * Compute u1*h^2 (in t6) and h^3 (in t5); 932 */ 933 f256_montysquare(t7, t2); 934 f256_montymul(t6, t1, t7); 935 f256_montymul(t5, t7, t2); 936 937 /* 938 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 939 */ 940 f256_montysquare(P1->x, t4); 941 f256_sub(P1->x, P1->x, t5); 942 f256_sub(P1->x, P1->x, t6); 943 f256_sub(P1->x, P1->x, t6); 944 945 /* 946 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 947 */ 948 f256_sub(t6, t6, P1->x); 949 f256_montymul(P1->y, t4, t6); 950 f256_montymul(t1, t5, t3); 951 f256_sub(P1->y, P1->y, t1); 952 953 /* 954 * Compute z3 = h*z1*z2. 955 */ 956 f256_montymul(t1, P1->z, P2->z); 957 f256_montymul(P1->z, t1, t2); 958 959 return ret; 960 } 961 962 /* 963 * Point addition (mixed coordinates): P1 is replaced with P1+P2. 964 * This is a specialised function for the case when P2 is a non-zero point 965 * in affine coordinates. 966 * 967 * This function computes the wrong result in the following cases: 968 * 969 * - If P1 == 0 970 * - If P1 == P2 971 * 972 * In both cases, P1 is set to the point at infinity. 973 * 974 * Returned value is 0 if one of the following occurs: 975 * 976 * - P1 and P2 have the same Y (affine) coordinate. 977 * - The Y coordinate of P2 is 0 and P1 is the point at infinity. 978 * 979 * The second case cannot actually happen with valid points, since a point 980 * with Y == 0 is a point of order 2, and there is no point of order 2 on 981 * curve P-256. 982 * 983 * Therefore, assuming that P1 != 0 on input, then the caller 984 * can apply the following: 985 * 986 * - If the result is not the point at infinity, then it is correct. 987 * - Otherwise, if the returned value is 1, then this is a case of 988 * P1+P2 == 0, so the result is indeed the point at infinity. 989 * - Otherwise, P1 == P2, so a "double" operation should have been 990 * performed. 991 * 992 * Again, a value of 0 may be returned in some cases where the addition 993 * result is correct. 994 */ 995 static uint32_t 996 p256_add_mixed(p256_jacobian *P1, const p256_affine *P2) 997 { 998 /* 999 * Addtions formulas are: 1000 * 1001 * u1 = x1 1002 * u2 = x2 * z1^2 1003 * s1 = y1 1004 * s2 = y2 * z1^3 1005 * h = u2 - u1 1006 * r = s2 - s1 1007 * x3 = r^2 - h^3 - 2 * u1 * h^2 1008 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 1009 * z3 = h * z1 1010 */ 1011 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt; 1012 uint32_t ret; 1013 1014 /* 1015 * Compute u1 = x1 (in t1) and s1 = y1 (in t3). 1016 */ 1017 memcpy(t1, P1->x, sizeof t1); 1018 memcpy(t3, P1->y, sizeof t3); 1019 1020 /* 1021 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 1022 */ 1023 f256_montysquare(t4, P1->z); 1024 f256_montymul(t2, P2->x, t4); 1025 f256_montymul(t5, P1->z, t4); 1026 f256_montymul(t4, P2->y, t5); 1027 1028 /* 1029 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 1030 * We need to test whether r is zero, so we will do some extra 1031 * reduce. 1032 */ 1033 f256_sub(t2, t2, t1); 1034 f256_sub(t4, t4, t3); 1035 f256_final_reduce(t4); 1036 tt = t4[0] | t4[1] | t4[2] | t4[3]; 1037 ret = (uint32_t)(tt | (tt >> 32)); 1038 ret = (ret | -ret) >> 31; 1039 1040 /* 1041 * Compute u1*h^2 (in t6) and h^3 (in t5); 1042 */ 1043 f256_montysquare(t7, t2); 1044 f256_montymul(t6, t1, t7); 1045 f256_montymul(t5, t7, t2); 1046 1047 /* 1048 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 1049 */ 1050 f256_montysquare(P1->x, t4); 1051 f256_sub(P1->x, P1->x, t5); 1052 f256_sub(P1->x, P1->x, t6); 1053 f256_sub(P1->x, P1->x, t6); 1054 1055 /* 1056 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 1057 */ 1058 f256_sub(t6, t6, P1->x); 1059 f256_montymul(P1->y, t4, t6); 1060 f256_montymul(t1, t5, t3); 1061 f256_sub(P1->y, P1->y, t1); 1062 1063 /* 1064 * Compute z3 = h*z1*z2. 1065 */ 1066 f256_montymul(P1->z, P1->z, t2); 1067 1068 return ret; 1069 } 1070 1071 #if 0 1072 /* unused */ 1073 /* 1074 * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2. 1075 * This is a specialised function for the case when P2 is a non-zero point 1076 * in affine coordinates. 1077 * 1078 * This function returns the correct result in all cases. 1079 */ 1080 static uint32_t 1081 p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2) 1082 { 1083 /* 1084 * Addtions formulas, in the general case, are: 1085 * 1086 * u1 = x1 1087 * u2 = x2 * z1^2 1088 * s1 = y1 1089 * s2 = y2 * z1^3 1090 * h = u2 - u1 1091 * r = s2 - s1 1092 * x3 = r^2 - h^3 - 2 * u1 * h^2 1093 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 1094 * z3 = h * z1 1095 * 1096 * These formulas mishandle the two following cases: 1097 * 1098 * - If P1 is the point-at-infinity (z1 = 0), then z3 is 1099 * incorrectly set to 0. 1100 * 1101 * - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3 1102 * are all set to 0. 1103 * 1104 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then 1105 * we correctly get z3 = 0 (the point-at-infinity). 1106 * 1107 * To fix the case P1 = 0, we perform at the end a copy of P2 1108 * over P1, conditional to z1 = 0. 1109 * 1110 * For P1 = P2: in that case, both h and r are set to 0, and 1111 * we get x3, y3 and z3 equal to 0. We can test for that 1112 * occurrence to make a mask which will be all-one if P1 = P2, 1113 * or all-zero otherwise; then we can compute the double of P2 1114 * and add it, combined with the mask, to (x3,y3,z3). 1115 * 1116 * Using the doubling formulas in p256_double() on (x2,y2), 1117 * simplifying since P2 is affine (i.e. z2 = 1, implicitly), 1118 * we get: 1119 * s = 4*x2*y2^2 1120 * m = 3*(x2 + 1)*(x2 - 1) 1121 * x' = m^2 - 2*s 1122 * y' = m*(s - x') - 8*y2^4 1123 * z' = 2*y2 1124 * which requires only 6 multiplications. Added to the 11 1125 * multiplications of the normal mixed addition in Jacobian 1126 * coordinates, we get a cost of 17 multiplications in total. 1127 */ 1128 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz; 1129 int i; 1130 1131 /* 1132 * Set zz to -1 if P1 is the point at infinity, 0 otherwise. 1133 */ 1134 zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3]; 1135 zz = ((zz | -zz) >> 63) - (uint64_t)1; 1136 1137 /* 1138 * Compute u1 = x1 (in t1) and s1 = y1 (in t3). 1139 */ 1140 memcpy(t1, P1->x, sizeof t1); 1141 memcpy(t3, P1->y, sizeof t3); 1142 1143 /* 1144 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 1145 */ 1146 f256_montysquare(t4, P1->z); 1147 f256_montymul(t2, P2->x, t4); 1148 f256_montymul(t5, P1->z, t4); 1149 f256_montymul(t4, P2->y, t5); 1150 1151 /* 1152 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 1153 * reduce. 1154 */ 1155 f256_sub(t2, t2, t1); 1156 f256_sub(t4, t4, t3); 1157 1158 /* 1159 * If both h = 0 and r = 0, then P1 = P2, and we want to set 1160 * the mask tt to -1; otherwise, the mask will be 0. 1161 */ 1162 f256_final_reduce(t2); 1163 f256_final_reduce(t4); 1164 tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3]; 1165 tt = ((tt | -tt) >> 63) - (uint64_t)1; 1166 1167 /* 1168 * Compute u1*h^2 (in t6) and h^3 (in t5); 1169 */ 1170 f256_montysquare(t7, t2); 1171 f256_montymul(t6, t1, t7); 1172 f256_montymul(t5, t7, t2); 1173 1174 /* 1175 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 1176 */ 1177 f256_montysquare(P1->x, t4); 1178 f256_sub(P1->x, P1->x, t5); 1179 f256_sub(P1->x, P1->x, t6); 1180 f256_sub(P1->x, P1->x, t6); 1181 1182 /* 1183 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 1184 */ 1185 f256_sub(t6, t6, P1->x); 1186 f256_montymul(P1->y, t4, t6); 1187 f256_montymul(t1, t5, t3); 1188 f256_sub(P1->y, P1->y, t1); 1189 1190 /* 1191 * Compute z3 = h*z1. 1192 */ 1193 f256_montymul(P1->z, P1->z, t2); 1194 1195 /* 1196 * The "double" result, in case P1 = P2. 1197 */ 1198 1199 /* 1200 * Compute z' = 2*y2 (in t1). 1201 */ 1202 f256_add(t1, P2->y, P2->y); 1203 1204 /* 1205 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3). 1206 */ 1207 f256_montysquare(t2, P2->y); 1208 f256_add(t2, t2, t2); 1209 f256_add(t3, t2, t2); 1210 f256_montymul(t3, P2->x, t3); 1211 1212 /* 1213 * Compute m = 3*(x2^2 - 1) (in t4). 1214 */ 1215 f256_montysquare(t4, P2->x); 1216 f256_sub(t4, t4, F256_R); 1217 f256_add(t5, t4, t4); 1218 f256_add(t4, t4, t5); 1219 1220 /* 1221 * Compute x' = m^2 - 2*s (in t5). 1222 */ 1223 f256_montysquare(t5, t4); 1224 f256_sub(t5, t3); 1225 f256_sub(t5, t3); 1226 1227 /* 1228 * Compute y' = m*(s - x') - 8*y2^4 (in t6). 1229 */ 1230 f256_sub(t6, t3, t5); 1231 f256_montymul(t6, t6, t4); 1232 f256_montysquare(t7, t2); 1233 f256_sub(t6, t6, t7); 1234 f256_sub(t6, t6, t7); 1235 1236 /* 1237 * We now have the alternate (doubling) coordinates in (t5,t6,t1). 1238 * We combine them with (x3,y3,z3). 1239 */ 1240 for (i = 0; i < 4; i ++) { 1241 P1->x[i] |= tt & t5[i]; 1242 P1->y[i] |= tt & t6[i]; 1243 P1->z[i] |= tt & t1[i]; 1244 } 1245 1246 /* 1247 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0, 1248 * then we want to replace the result with a copy of P2. The 1249 * test on z1 was done at the start, in the zz mask. 1250 */ 1251 for (i = 0; i < 4; i ++) { 1252 P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]); 1253 P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]); 1254 P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]); 1255 } 1256 } 1257 #endif 1258 1259 /* 1260 * Inner function for computing a point multiplication. A window is 1261 * provided, with points 1*P to 15*P in affine coordinates. 1262 * 1263 * Assumptions: 1264 * - All provided points are valid points on the curve. 1265 * - Multiplier is non-zero, and smaller than the curve order. 1266 * - Everything is in Montgomery representation. 1267 */ 1268 static void 1269 point_mul_inner(p256_jacobian *R, const p256_affine *W, 1270 const unsigned char *k, size_t klen) 1271 { 1272 p256_jacobian Q; 1273 uint32_t qz; 1274 1275 memset(&Q, 0, sizeof Q); 1276 qz = 1; 1277 while (klen -- > 0) { 1278 int i; 1279 unsigned bk; 1280 1281 bk = *k ++; 1282 for (i = 0; i < 2; i ++) { 1283 uint32_t bits; 1284 uint32_t bnz; 1285 p256_affine T; 1286 p256_jacobian U; 1287 uint32_t n; 1288 int j; 1289 uint64_t m; 1290 1291 p256_double(&Q); 1292 p256_double(&Q); 1293 p256_double(&Q); 1294 p256_double(&Q); 1295 bits = (bk >> 4) & 0x0F; 1296 bnz = NEQ(bits, 0); 1297 1298 /* 1299 * Lookup point in window. If the bits are 0, 1300 * we get something invalid, which is not a 1301 * problem because we will use it only if the 1302 * bits are non-zero. 1303 */ 1304 memset(&T, 0, sizeof T); 1305 for (n = 0; n < 15; n ++) { 1306 m = -(uint64_t)EQ(bits, n + 1); 1307 T.x[0] |= m & W[n].x[0]; 1308 T.x[1] |= m & W[n].x[1]; 1309 T.x[2] |= m & W[n].x[2]; 1310 T.x[3] |= m & W[n].x[3]; 1311 T.y[0] |= m & W[n].y[0]; 1312 T.y[1] |= m & W[n].y[1]; 1313 T.y[2] |= m & W[n].y[2]; 1314 T.y[3] |= m & W[n].y[3]; 1315 } 1316 1317 U = Q; 1318 p256_add_mixed(&U, &T); 1319 1320 /* 1321 * If qz is still 1, then Q was all-zeros, and this 1322 * is conserved through p256_double(). 1323 */ 1324 m = -(uint64_t)(bnz & qz); 1325 for (j = 0; j < 4; j ++) { 1326 Q.x[j] |= m & T.x[j]; 1327 Q.y[j] |= m & T.y[j]; 1328 Q.z[j] |= m & F256_R[j]; 1329 } 1330 CCOPY(bnz & ~qz, &Q, &U, sizeof Q); 1331 qz &= ~bnz; 1332 bk <<= 4; 1333 } 1334 } 1335 *R = Q; 1336 } 1337 1338 /* 1339 * Convert a window from Jacobian to affine coordinates. A single 1340 * field inversion is used. This function works for windows up to 1341 * 32 elements. 1342 * 1343 * The destination array (aff[]) and the source array (jac[]) may 1344 * overlap, provided that the start of aff[] is not after the start of 1345 * jac[]. Even if the arrays do _not_ overlap, the source array is 1346 * modified. 1347 */ 1348 static void 1349 window_to_affine(p256_affine *aff, p256_jacobian *jac, int num) 1350 { 1351 /* 1352 * Convert the window points to affine coordinates. We use the 1353 * following trick to mutualize the inversion computation: if 1354 * we have z1, z2, z3, and z4, and want to inverse all of them, 1355 * we compute u = 1/(z1*z2*z3*z4), and then we have: 1356 * 1/z1 = u*z2*z3*z4 1357 * 1/z2 = u*z1*z3*z4 1358 * 1/z3 = u*z1*z2*z4 1359 * 1/z4 = u*z1*z2*z3 1360 * 1361 * The partial products are computed recursively: 1362 * 1363 * - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2 1364 * - on input (z_1,z_2,... z_n): 1365 * recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1 1366 * recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2 1367 * multiply elements of r1 by m2 -> s1 1368 * multiply elements of r2 by m1 -> s2 1369 * return r1||r2 and m1*m2 1370 * 1371 * In the example below, we suppose that we have 14 elements. 1372 * Let z1, z2,... zE be the 14 values to invert (index noted in 1373 * hexadecimal, starting at 1). 1374 * 1375 * - Depth 1: 1376 * swap(z1, z2); z12 = z1*z2 1377 * swap(z3, z4); z34 = z3*z4 1378 * swap(z5, z6); z56 = z5*z6 1379 * swap(z7, z8); z78 = z7*z8 1380 * swap(z9, zA); z9A = z9*zA 1381 * swap(zB, zC); zBC = zB*zC 1382 * swap(zD, zE); zDE = zD*zE 1383 * 1384 * - Depth 2: 1385 * z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12 1386 * z1234 = z12*z34 1387 * z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56 1388 * z5678 = z56*z78 1389 * z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A 1390 * z9ABC = z9A*zBC 1391 * 1392 * - Depth 3: 1393 * z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678 1394 * z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234 1395 * z12345678 = z1234*z5678 1396 * z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE 1397 * zD <- zD*z9ABC, zE*z9ABC 1398 * z9ABCDE = z9ABC*zDE 1399 * 1400 * - Depth 4: 1401 * multiply z1..z8 by z9ABCDE 1402 * multiply z9..zE by z12345678 1403 * final z = z12345678*z9ABCDE 1404 */ 1405 1406 uint64_t z[16][4]; 1407 int i, k, s; 1408 #define zt (z[15]) 1409 #define zu (z[14]) 1410 #define zv (z[13]) 1411 1412 /* 1413 * First recursion step (pairwise swapping and multiplication). 1414 * If there is an odd number of elements, then we "invent" an 1415 * extra one with coordinate Z = 1 (in Montgomery representation). 1416 */ 1417 for (i = 0; (i + 1) < num; i += 2) { 1418 memcpy(zt, jac[i].z, sizeof zt); 1419 memcpy(jac[i].z, jac[i + 1].z, sizeof zt); 1420 memcpy(jac[i + 1].z, zt, sizeof zt); 1421 f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z); 1422 } 1423 if ((num & 1) != 0) { 1424 memcpy(z[num >> 1], jac[num - 1].z, sizeof zt); 1425 memcpy(jac[num - 1].z, F256_R, sizeof F256_R); 1426 } 1427 1428 /* 1429 * Perform further recursion steps. At the entry of each step, 1430 * the process has been done for groups of 's' points. The 1431 * integer k is the log2 of s. 1432 */ 1433 for (k = 1, s = 2; s < num; k ++, s <<= 1) { 1434 int n; 1435 1436 for (i = 0; i < num; i ++) { 1437 f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]); 1438 } 1439 n = (num + s - 1) >> k; 1440 for (i = 0; i < (n >> 1); i ++) { 1441 f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]); 1442 } 1443 if ((n & 1) != 0) { 1444 memmove(z[n >> 1], z[n], sizeof zt); 1445 } 1446 } 1447 1448 /* 1449 * Invert the final result, and convert all points. 1450 */ 1451 f256_invert(zt, z[0]); 1452 for (i = 0; i < num; i ++) { 1453 f256_montymul(zv, jac[i].z, zt); 1454 f256_montysquare(zu, zv); 1455 f256_montymul(zv, zv, zu); 1456 f256_montymul(aff[i].x, jac[i].x, zu); 1457 f256_montymul(aff[i].y, jac[i].y, zv); 1458 } 1459 } 1460 1461 /* 1462 * Multiply the provided point by an integer. 1463 * Assumptions: 1464 * - Source point is a valid curve point. 1465 * - Source point is not the point-at-infinity. 1466 * - Integer is not 0, and is lower than the curve order. 1467 * If these conditions are not met, then the result is indeterminate 1468 * (but the process is still constant-time). 1469 */ 1470 static void 1471 p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen) 1472 { 1473 union { 1474 p256_affine aff[15]; 1475 p256_jacobian jac[15]; 1476 } window; 1477 int i; 1478 1479 /* 1480 * Compute window, in Jacobian coordinates. 1481 */ 1482 window.jac[0] = *P; 1483 for (i = 2; i < 16; i ++) { 1484 window.jac[i - 1] = window.jac[(i >> 1) - 1]; 1485 if ((i & 1) == 0) { 1486 p256_double(&window.jac[i - 1]); 1487 } else { 1488 p256_add(&window.jac[i - 1], &window.jac[i >> 1]); 1489 } 1490 } 1491 1492 /* 1493 * Convert the window points to affine coordinates. Point 1494 * window[0] is the source point, already in affine coordinates. 1495 */ 1496 window_to_affine(window.aff, window.jac, 15); 1497 1498 /* 1499 * Perform point multiplication. 1500 */ 1501 point_mul_inner(P, window.aff, k, klen); 1502 } 1503 1504 /* 1505 * Precomputed window for the conventional generator: P256_Gwin[n] 1506 * contains (n+1)*G (affine coordinates, in Montgomery representation). 1507 */ 1508 static const p256_affine P256_Gwin[] = { 1509 { 1510 { 0x79E730D418A9143C, 0x75BA95FC5FEDB601, 1511 0x79FB732B77622510, 0x18905F76A53755C6 }, 1512 { 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C, 1513 0xD2E88688DD21F325, 0x8571FF1825885D85 } 1514 }, 1515 { 1516 { 0x850046D410DDD64D, 0xAA6AE3C1A433827D, 1517 0x732205038D1490D9, 0xF6BB32E43DCF3A3B }, 1518 { 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8, 1519 0x19A8FB0E92042DBE, 0x78C577510A5B8A3B } 1520 }, 1521 { 1522 { 0xFFAC3F904EEBC127, 0xB027F84A087D81FB, 1523 0x66AD77DD87CBBC98, 0x26936A3FB6FF747E }, 1524 { 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A, 1525 0x788208311A2EE98E, 0xD5F06A29E587CC07 } 1526 }, 1527 { 1528 { 0x74B0B50D46918DCC, 0x4650A6EDC623C173, 1529 0x0CDAACACE8100AF2, 0x577362F541B0176B }, 1530 { 0x2D96F24CE4CBABA6, 0x17628471FAD6F447, 1531 0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 } 1532 }, 1533 { 1534 { 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D, 1535 0x941CB5AAD076C20C, 0xC9079605890523C8 }, 1536 { 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B, 1537 0x3540A9877E7A1F68, 0x73A076BB2DD1E916 } 1538 }, 1539 { 1540 { 0x403947373E77664A, 0x55AE744F346CEE3E, 1541 0xD50A961A5B17A3AD, 0x13074B5954213673 }, 1542 { 0x93D36220D377E44B, 0x299C2B53ADFF14B5, 1543 0xF424D44CEF639F11, 0xA4C9916D4A07F75F } 1544 }, 1545 { 1546 { 0x0746354EA0173B4F, 0x2BD20213D23C00F7, 1547 0xF43EAAB50C23BB08, 0x13BA5119C3123E03 }, 1548 { 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD, 1549 0xEF933BDC77C94195, 0xEAEDD9156E240867 } 1550 }, 1551 { 1552 { 0x27F14CD19499A78F, 0x462AB5C56F9B3455, 1553 0x8F90F02AF02CFC6B, 0xB763891EB265230D }, 1554 { 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15, 1555 0x123C7B84BE60BBF0, 0x56EC12F27706DF76 } 1556 }, 1557 { 1558 { 0x75C96E8F264E20E8, 0xABE6BFED59A7A841, 1559 0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B }, 1560 { 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3, 1561 0x2B6E019A88B12F1A, 0x086659CDFD835F9B } 1562 }, 1563 { 1564 { 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139, 1565 0x737D2CD648250B49, 0xCC61C94724B3428F }, 1566 { 0x0C2B407880DD9E76, 0xC43A8991383FBE08, 1567 0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 } 1568 }, 1569 { 1570 { 0xEA7D260A6245E404, 0x9DE407956E7FDFE0, 1571 0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 }, 1572 { 0x1A7685612B944E88, 0x250F939EE57F61C8, 1573 0x0C0DAA891EAD643D, 0x68930023E125B88E } 1574 }, 1575 { 1576 { 0x04B71AA7D2697768, 0xABDEDEF5CA345A33, 1577 0x2409D29DEE37385E, 0x4EE1DF77CB83E156 }, 1578 { 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637, 1579 0x28228CFA8ADE6D66, 0x7FF57C9553238ACA } 1580 }, 1581 { 1582 { 0xCCC425634B2ED709, 0x0E356769856FD30D, 1583 0xBCBCD43F559E9811, 0x738477AC5395B759 }, 1584 { 0x35752B90C00EE17F, 0x68748390742ED2E3, 1585 0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 } 1586 }, 1587 { 1588 { 0xA242A35BB0CF664A, 0x126E48F77F9707E3, 1589 0x1717BF54C6832660, 0xFAAE7332FD12C72E }, 1590 { 0x27B52DB7995D586B, 0xBE29569E832237C2, 1591 0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB } 1592 }, 1593 { 1594 { 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B, 1595 0xEE337424E4819370, 0xE2AA0E430AD3DA09 }, 1596 { 0x40B8524F6383C45D, 0xD766355442A41B25, 1597 0x64EFA6DE778A4797, 0x2042170A7079ADF4 } 1598 } 1599 }; 1600 1601 /* 1602 * Multiply the conventional generator of the curve by the provided 1603 * integer. Return is written in *P. 1604 * 1605 * Assumptions: 1606 * - Integer is not 0, and is lower than the curve order. 1607 * If this conditions is not met, then the result is indeterminate 1608 * (but the process is still constant-time). 1609 */ 1610 static void 1611 p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen) 1612 { 1613 point_mul_inner(P, P256_Gwin, k, klen); 1614 } 1615 1616 /* 1617 * Return 1 if all of the following hold: 1618 * - klen <= 32 1619 * - k != 0 1620 * - k is lower than the curve order 1621 * Otherwise, return 0. 1622 * 1623 * Constant-time behaviour: only klen may be observable. 1624 */ 1625 static uint32_t 1626 check_scalar(const unsigned char *k, size_t klen) 1627 { 1628 uint32_t z; 1629 int32_t c; 1630 size_t u; 1631 1632 if (klen > 32) { 1633 return 0; 1634 } 1635 z = 0; 1636 for (u = 0; u < klen; u ++) { 1637 z |= k[u]; 1638 } 1639 if (klen == 32) { 1640 c = 0; 1641 for (u = 0; u < klen; u ++) { 1642 c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]); 1643 } 1644 } else { 1645 c = -1; 1646 } 1647 return NEQ(z, 0) & LT0(c); 1648 } 1649 1650 static uint32_t 1651 api_mul(unsigned char *G, size_t Glen, 1652 const unsigned char *k, size_t klen, int curve) 1653 { 1654 uint32_t r; 1655 p256_jacobian P; 1656 1657 (void)curve; 1658 if (Glen != 65) { 1659 return 0; 1660 } 1661 r = check_scalar(k, klen); 1662 r &= point_decode(&P, G); 1663 p256_mul(&P, k, klen); 1664 r &= point_encode(G, &P); 1665 return r; 1666 } 1667 1668 static size_t 1669 api_mulgen(unsigned char *R, 1670 const unsigned char *k, size_t klen, int curve) 1671 { 1672 p256_jacobian P; 1673 1674 (void)curve; 1675 p256_mulgen(&P, k, klen); 1676 point_encode(R, &P); 1677 return 65; 1678 } 1679 1680 static uint32_t 1681 api_muladd(unsigned char *A, const unsigned char *B, size_t len, 1682 const unsigned char *x, size_t xlen, 1683 const unsigned char *y, size_t ylen, int curve) 1684 { 1685 /* 1686 * We might want to use Shamir's trick here: make a composite 1687 * window of u*P+v*Q points, to merge the two doubling-ladders 1688 * into one. This, however, has some complications: 1689 * 1690 * - During the computation, we may hit the point-at-infinity. 1691 * Thus, we would need p256_add_complete_mixed() (complete 1692 * formulas for point addition), with a higher cost (17 muls 1693 * instead of 11). 1694 * 1695 * - A 4-bit window would be too large, since it would involve 1696 * 16*16-1 = 255 points. For the same window size as in the 1697 * p256_mul() case, we would need to reduce the window size 1698 * to 2 bits, and thus perform twice as many non-doubling 1699 * point additions. 1700 * 1701 * - The window may itself contain the point-at-infinity, and 1702 * thus cannot be in all generality be made of affine points. 1703 * Instead, we would need to make it a window of points in 1704 * Jacobian coordinates. Even p256_add_complete_mixed() would 1705 * be inappropriate. 1706 * 1707 * For these reasons, the code below performs two separate 1708 * point multiplications, then computes the final point addition 1709 * (which is both a "normal" addition, and a doubling, to handle 1710 * all cases). 1711 */ 1712 1713 p256_jacobian P, Q; 1714 uint32_t r, t, s; 1715 uint64_t z; 1716 1717 (void)curve; 1718 if (len != 65) { 1719 return 0; 1720 } 1721 r = point_decode(&P, A); 1722 p256_mul(&P, x, xlen); 1723 if (B == NULL) { 1724 p256_mulgen(&Q, y, ylen); 1725 } else { 1726 r &= point_decode(&Q, B); 1727 p256_mul(&Q, y, ylen); 1728 } 1729 1730 /* 1731 * The final addition may fail in case both points are equal. 1732 */ 1733 t = p256_add(&P, &Q); 1734 f256_final_reduce(P.z); 1735 z = P.z[0] | P.z[1] | P.z[2] | P.z[3]; 1736 s = EQ((uint32_t)(z | (z >> 32)), 0); 1737 p256_double(&Q); 1738 1739 /* 1740 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we 1741 * have the following: 1742 * 1743 * s = 0, t = 0 return P (normal addition) 1744 * s = 0, t = 1 return P (normal addition) 1745 * s = 1, t = 0 return Q (a 'double' case) 1746 * s = 1, t = 1 report an error (P+Q = 0) 1747 */ 1748 CCOPY(s & ~t, &P, &Q, sizeof Q); 1749 point_encode(A, &P); 1750 r &= ~(s & t); 1751 return r; 1752 } 1753 1754 /* see bearssl_ec.h */ 1755 const br_ec_impl br_ec_p256_m64 = { 1756 (uint32_t)0x00800000, 1757 &api_generator, 1758 &api_order, 1759 &api_xoff, 1760 &api_mul, 1761 &api_mulgen, 1762 &api_muladd 1763 }; 1764 1765 /* see bearssl_ec.h */ 1766 const br_ec_impl * 1767 br_ec_p256_m64_get(void) 1768 { 1769 return &br_ec_p256_m64; 1770 } 1771 1772 #else 1773 1774 /* see bearssl_ec.h */ 1775 const br_ec_impl * 1776 br_ec_p256_m64_get(void) 1777 { 1778 return 0; 1779 } 1780 1781 #endif 1782