1 /* 2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining 5 * a copy of this software and associated documentation files (the 6 * "Software"), to deal in the Software without restriction, including 7 * without limitation the rights to use, copy, modify, merge, publish, 8 * distribute, sublicense, and/or sell copies of the Software, and to 9 * permit persons to whom the Software is furnished to do so, subject to 10 * the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be 13 * included in all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #include "inner.h" 26 27 #if BR_INT128 || BR_UMUL128 28 29 #if BR_UMUL128 30 #include <intrin.h> 31 #endif 32 33 static const unsigned char P256_G[] = { 34 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 35 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 36 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 37 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 38 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B, 39 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 40 0x68, 0x37, 0xBF, 0x51, 0xF5 41 }; 42 43 static const unsigned char P256_N[] = { 44 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 45 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 46 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 47 0x25, 0x51 48 }; 49 50 static const unsigned char * 51 api_generator(int curve, size_t *len) 52 { 53 (void)curve; 54 *len = sizeof P256_G; 55 return P256_G; 56 } 57 58 static const unsigned char * 59 api_order(int curve, size_t *len) 60 { 61 (void)curve; 62 *len = sizeof P256_N; 63 return P256_N; 64 } 65 66 static size_t 67 api_xoff(int curve, size_t *len) 68 { 69 (void)curve; 70 *len = 32; 71 return 1; 72 } 73 74 /* 75 * A field element is encoded as four 64-bit integers, in basis 2^64. 76 * Values may reach up to 2^256-1. Montgomery multiplication is used. 77 */ 78 79 /* R = 2^256 mod p */ 80 static const uint64_t F256_R[] = { 81 0x0000000000000001, 0xFFFFFFFF00000000, 82 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE 83 }; 84 85 /* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p 86 (Montgomery representation of B). */ 87 static const uint64_t P256_B_MONTY[] = { 88 0xD89CDF6229C4BDDF, 0xACF005CD78843090, 89 0xE5A220ABF7212ED6, 0xDC30061D04874834 90 }; 91 92 /* 93 * Addition in the field. 94 */ 95 static inline void 96 f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b) 97 { 98 #if BR_INT128 99 unsigned __int128 w; 100 uint64_t t; 101 102 w = (unsigned __int128)a[0] + b[0]; 103 d[0] = (uint64_t)w; 104 w = (unsigned __int128)a[1] + b[1] + (w >> 64); 105 d[1] = (uint64_t)w; 106 w = (unsigned __int128)a[2] + b[2] + (w >> 64); 107 d[2] = (uint64_t)w; 108 w = (unsigned __int128)a[3] + b[3] + (w >> 64); 109 d[3] = (uint64_t)w; 110 t = (uint64_t)(w >> 64); 111 112 /* 113 * 2^256 = 2^224 - 2^192 - 2^96 + 1 in the field. 114 */ 115 w = (unsigned __int128)d[0] + t; 116 d[0] = (uint64_t)w; 117 w = (unsigned __int128)d[1] + (w >> 64) - (t << 32); 118 d[1] = (uint64_t)w; 119 /* Here, carry "w >> 64" can only be 0 or -1 */ 120 w = (unsigned __int128)d[2] - ((w >> 64) & 1); 121 d[2] = (uint64_t)w; 122 /* Again, carry is 0 or -1 */ 123 d[3] += (uint64_t)(w >> 64) + (t << 32) - t; 124 125 #elif BR_UMUL128 126 127 unsigned char cc; 128 uint64_t t; 129 130 cc = _addcarry_u64(0, a[0], b[0], &d[0]); 131 cc = _addcarry_u64(cc, a[1], b[1], &d[1]); 132 cc = _addcarry_u64(cc, a[2], b[2], &d[2]); 133 cc = _addcarry_u64(cc, a[3], b[3], &d[3]); 134 135 /* 136 * If there is a carry, then we want to subtract p, which we 137 * do by adding 2^256 - p. 138 */ 139 t = cc; 140 cc = _addcarry_u64(cc, d[0], 0, &d[0]); 141 cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]); 142 cc = _addcarry_u64(cc, d[2], -t, &d[2]); 143 (void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]); 144 145 #endif 146 } 147 148 /* 149 * Subtraction in the field. 150 */ 151 static inline void 152 f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b) 153 { 154 #if BR_INT128 155 156 unsigned __int128 w; 157 uint64_t t; 158 159 w = (unsigned __int128)a[0] - b[0]; 160 d[0] = (uint64_t)w; 161 w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1); 162 d[1] = (uint64_t)w; 163 w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1); 164 d[2] = (uint64_t)w; 165 w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1); 166 d[3] = (uint64_t)w; 167 t = (uint64_t)(w >> 64) & 1; 168 169 /* 170 * p = 2^256 - 2^224 + 2^192 + 2^96 - 1. 171 */ 172 w = (unsigned __int128)d[0] - t; 173 d[0] = (uint64_t)w; 174 w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1); 175 d[1] = (uint64_t)w; 176 /* Here, carry "w >> 64" can only be 0 or +1 */ 177 w = (unsigned __int128)d[2] + (w >> 64); 178 d[2] = (uint64_t)w; 179 /* Again, carry is 0 or +1 */ 180 d[3] += (uint64_t)(w >> 64) - (t << 32) + t; 181 182 #elif BR_UMUL128 183 184 unsigned char cc; 185 uint64_t t; 186 187 cc = _subborrow_u64(0, a[0], b[0], &d[0]); 188 cc = _subborrow_u64(cc, a[1], b[1], &d[1]); 189 cc = _subborrow_u64(cc, a[2], b[2], &d[2]); 190 cc = _subborrow_u64(cc, a[3], b[3], &d[3]); 191 192 /* 193 * If there is a carry, then we need to add p. 194 */ 195 t = cc; 196 cc = _addcarry_u64(0, d[0], -t, &d[0]); 197 cc = _addcarry_u64(cc, d[1], (-t) >> 32, &d[1]); 198 cc = _addcarry_u64(cc, d[2], 0, &d[2]); 199 (void)_addcarry_u64(cc, d[3], t - (t << 32), &d[3]); 200 201 #endif 202 } 203 204 /* 205 * Montgomery multiplication in the field. 206 */ 207 static void 208 f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b) 209 { 210 #if BR_INT128 211 212 uint64_t x, f, t0, t1, t2, t3, t4; 213 unsigned __int128 z, ff; 214 int i; 215 216 /* 217 * When computing d <- d + a[u]*b, we also add f*p such 218 * that d + a[u]*b + f*p is a multiple of 2^64. Since 219 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64. 220 */ 221 222 /* 223 * Step 1: t <- (a[0]*b + f*p) / 2^64 224 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this 225 * ensures that (a[0]*b + f*p) is a multiple of 2^64. 226 * 227 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f. 228 */ 229 x = a[0]; 230 z = (unsigned __int128)b[0] * x; 231 f = (uint64_t)z; 232 z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32); 233 t0 = (uint64_t)z; 234 z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32); 235 t1 = (uint64_t)z; 236 z = (unsigned __int128)b[3] * x + (z >> 64) + f; 237 t2 = (uint64_t)z; 238 t3 = (uint64_t)(z >> 64); 239 ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32); 240 z = (unsigned __int128)t2 + (uint64_t)ff; 241 t2 = (uint64_t)z; 242 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64); 243 t3 = (uint64_t)z; 244 t4 = (uint64_t)(z >> 64); 245 246 /* 247 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64 248 */ 249 for (i = 1; i < 4; i ++) { 250 x = a[i]; 251 252 /* t <- (t + x*b - f) / 2^64 */ 253 z = (unsigned __int128)b[0] * x + t0; 254 f = (uint64_t)z; 255 z = (unsigned __int128)b[1] * x + t1 + (z >> 64); 256 t0 = (uint64_t)z; 257 z = (unsigned __int128)b[2] * x + t2 + (z >> 64); 258 t1 = (uint64_t)z; 259 z = (unsigned __int128)b[3] * x + t3 + (z >> 64); 260 t2 = (uint64_t)z; 261 z = t4 + (z >> 64); 262 t3 = (uint64_t)z; 263 t4 = (uint64_t)(z >> 64); 264 265 /* t <- t + f*2^32, carry in the upper half of z */ 266 z = (unsigned __int128)t0 + (uint64_t)(f << 32); 267 t0 = (uint64_t)z; 268 z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32); 269 t1 = (uint64_t)z; 270 271 /* t <- t + f*2^192 - f*2^160 + f*2^128 */ 272 ff = ((unsigned __int128)f << 64) 273 - ((unsigned __int128)f << 32) + f; 274 z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff; 275 t2 = (uint64_t)z; 276 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64); 277 t3 = (uint64_t)z; 278 t4 += (uint64_t)(z >> 64); 279 } 280 281 /* 282 * At that point, we have computed t = (a*b + F*p) / 2^256, where 283 * F is a 256-bit integer whose limbs are the "f" coefficients 284 * in the steps above. We have: 285 * a <= 2^256-1 286 * b <= 2^256-1 287 * F <= 2^256-1 288 * Hence: 289 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1) 290 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p 291 * Therefore: 292 * t < 2^256 + p - 2 293 * Since p < 2^256, it follows that: 294 * t4 can be only 0 or 1 295 * t - p < 2^256 296 * We can therefore subtract p from t, conditionally on t4, to 297 * get a nonnegative result that fits on 256 bits. 298 */ 299 z = (unsigned __int128)t0 + t4; 300 t0 = (uint64_t)z; 301 z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64); 302 t1 = (uint64_t)z; 303 z = (unsigned __int128)t2 - (z >> 127); 304 t2 = (uint64_t)z; 305 t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32); 306 307 d[0] = t0; 308 d[1] = t1; 309 d[2] = t2; 310 d[3] = t3; 311 312 #elif BR_UMUL128 313 314 uint64_t x, f, t0, t1, t2, t3, t4; 315 uint64_t zl, zh, ffl, ffh; 316 unsigned char k, m; 317 int i; 318 319 /* 320 * When computing d <- d + a[u]*b, we also add f*p such 321 * that d + a[u]*b + f*p is a multiple of 2^64. Since 322 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64. 323 */ 324 325 /* 326 * Step 1: t <- (a[0]*b + f*p) / 2^64 327 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this 328 * ensures that (a[0]*b + f*p) is a multiple of 2^64. 329 * 330 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f. 331 */ 332 x = a[0]; 333 334 zl = _umul128(b[0], x, &zh); 335 f = zl; 336 t0 = zh; 337 338 zl = _umul128(b[1], x, &zh); 339 k = _addcarry_u64(0, zl, t0, &zl); 340 (void)_addcarry_u64(k, zh, 0, &zh); 341 k = _addcarry_u64(0, zl, f << 32, &zl); 342 (void)_addcarry_u64(k, zh, 0, &zh); 343 t0 = zl; 344 t1 = zh; 345 346 zl = _umul128(b[2], x, &zh); 347 k = _addcarry_u64(0, zl, t1, &zl); 348 (void)_addcarry_u64(k, zh, 0, &zh); 349 k = _addcarry_u64(0, zl, f >> 32, &zl); 350 (void)_addcarry_u64(k, zh, 0, &zh); 351 t1 = zl; 352 t2 = zh; 353 354 zl = _umul128(b[3], x, &zh); 355 k = _addcarry_u64(0, zl, t2, &zl); 356 (void)_addcarry_u64(k, zh, 0, &zh); 357 k = _addcarry_u64(0, zl, f, &zl); 358 (void)_addcarry_u64(k, zh, 0, &zh); 359 t2 = zl; 360 t3 = zh; 361 362 t4 = _addcarry_u64(0, t3, f, &t3); 363 k = _subborrow_u64(0, t2, f << 32, &t2); 364 k = _subborrow_u64(k, t3, f >> 32, &t3); 365 (void)_subborrow_u64(k, t4, 0, &t4); 366 367 /* 368 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64 369 */ 370 for (i = 1; i < 4; i ++) { 371 x = a[i]; 372 /* f = t0 + x * b[0]; -- computed below */ 373 374 /* t <- (t + x*b - f) / 2^64 */ 375 zl = _umul128(b[0], x, &zh); 376 k = _addcarry_u64(0, zl, t0, &f); 377 (void)_addcarry_u64(k, zh, 0, &t0); 378 379 zl = _umul128(b[1], x, &zh); 380 k = _addcarry_u64(0, zl, t0, &zl); 381 (void)_addcarry_u64(k, zh, 0, &zh); 382 k = _addcarry_u64(0, zl, t1, &t0); 383 (void)_addcarry_u64(k, zh, 0, &t1); 384 385 zl = _umul128(b[2], x, &zh); 386 k = _addcarry_u64(0, zl, t1, &zl); 387 (void)_addcarry_u64(k, zh, 0, &zh); 388 k = _addcarry_u64(0, zl, t2, &t1); 389 (void)_addcarry_u64(k, zh, 0, &t2); 390 391 zl = _umul128(b[3], x, &zh); 392 k = _addcarry_u64(0, zl, t2, &zl); 393 (void)_addcarry_u64(k, zh, 0, &zh); 394 k = _addcarry_u64(0, zl, t3, &t2); 395 (void)_addcarry_u64(k, zh, 0, &t3); 396 397 t4 = _addcarry_u64(0, t3, t4, &t3); 398 399 /* t <- t + f*2^32, carry in k */ 400 k = _addcarry_u64(0, t0, f << 32, &t0); 401 k = _addcarry_u64(k, t1, f >> 32, &t1); 402 403 /* t <- t + f*2^192 - f*2^160 + f*2^128 */ 404 m = _subborrow_u64(0, f, f << 32, &ffl); 405 (void)_subborrow_u64(m, f, f >> 32, &ffh); 406 k = _addcarry_u64(k, t2, ffl, &t2); 407 k = _addcarry_u64(k, t3, ffh, &t3); 408 (void)_addcarry_u64(k, t4, 0, &t4); 409 } 410 411 /* 412 * At that point, we have computed t = (a*b + F*p) / 2^256, where 413 * F is a 256-bit integer whose limbs are the "f" coefficients 414 * in the steps above. We have: 415 * a <= 2^256-1 416 * b <= 2^256-1 417 * F <= 2^256-1 418 * Hence: 419 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1) 420 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p 421 * Therefore: 422 * t < 2^256 + p - 2 423 * Since p < 2^256, it follows that: 424 * t4 can be only 0 or 1 425 * t - p < 2^256 426 * We can therefore subtract p from t, conditionally on t4, to 427 * get a nonnegative result that fits on 256 bits. 428 */ 429 k = _addcarry_u64(0, t0, t4, &t0); 430 k = _addcarry_u64(k, t1, -(t4 << 32), &t1); 431 k = _addcarry_u64(k, t2, -t4, &t2); 432 (void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3); 433 434 d[0] = t0; 435 d[1] = t1; 436 d[2] = t2; 437 d[3] = t3; 438 439 #endif 440 } 441 442 /* 443 * Montgomery squaring in the field; currently a basic wrapper around 444 * multiplication (inline, should be optimized away). 445 * TODO: see if some extra speed can be gained here. 446 */ 447 static inline void 448 f256_montysquare(uint64_t *d, const uint64_t *a) 449 { 450 f256_montymul(d, a, a); 451 } 452 453 /* 454 * Convert to Montgomery representation. 455 */ 456 static void 457 f256_tomonty(uint64_t *d, const uint64_t *a) 458 { 459 /* 460 * R2 = 2^512 mod p. 461 * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery 462 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the 463 * conversion to Montgomery representation. 464 */ 465 static const uint64_t R2[] = { 466 0x0000000000000003, 467 0xFFFFFFFBFFFFFFFF, 468 0xFFFFFFFFFFFFFFFE, 469 0x00000004FFFFFFFD 470 }; 471 472 f256_montymul(d, a, R2); 473 } 474 475 /* 476 * Convert from Montgomery representation. 477 */ 478 static void 479 f256_frommonty(uint64_t *d, const uint64_t *a) 480 { 481 /* 482 * Montgomery multiplication by 1 is division by 2^256 modulo p. 483 */ 484 static const uint64_t one[] = { 1, 0, 0, 0 }; 485 486 f256_montymul(d, a, one); 487 } 488 489 /* 490 * Inversion in the field. If the source value is 0 modulo p, then this 491 * returns 0 or p. This function uses Montgomery representation. 492 */ 493 static void 494 f256_invert(uint64_t *d, const uint64_t *a) 495 { 496 /* 497 * We compute a^(p-2) mod p. The exponent pattern (from high to 498 * low) is: 499 * - 32 bits of value 1 500 * - 31 bits of value 0 501 * - 1 bit of value 1 502 * - 96 bits of value 0 503 * - 94 bits of value 1 504 * - 1 bit of value 0 505 * - 1 bit of value 1 506 * To speed up the square-and-multiply algorithm, we precompute 507 * a^(2^31-1). 508 */ 509 510 uint64_t r[4], t[4]; 511 int i; 512 513 memcpy(t, a, sizeof t); 514 for (i = 0; i < 30; i ++) { 515 f256_montysquare(t, t); 516 f256_montymul(t, t, a); 517 } 518 519 memcpy(r, t, sizeof t); 520 for (i = 224; i >= 0; i --) { 521 f256_montysquare(r, r); 522 switch (i) { 523 case 0: 524 case 2: 525 case 192: 526 case 224: 527 f256_montymul(r, r, a); 528 break; 529 case 3: 530 case 34: 531 case 65: 532 f256_montymul(r, r, t); 533 break; 534 } 535 } 536 memcpy(d, r, sizeof r); 537 } 538 539 /* 540 * Finalize reduction. 541 * Input value fits on 256 bits. This function subtracts p if and only 542 * if the input is greater than or equal to p. 543 */ 544 static inline void 545 f256_final_reduce(uint64_t *a) 546 { 547 #if BR_INT128 548 549 uint64_t t0, t1, t2, t3, cc; 550 unsigned __int128 z; 551 552 /* 553 * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry, 554 * then a < p; otherwise, the addition result we computed is 555 * the value we must return. 556 */ 557 z = (unsigned __int128)a[0] + 1; 558 t0 = (uint64_t)z; 559 z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32); 560 t1 = (uint64_t)z; 561 z = (unsigned __int128)a[2] - (z >> 127); 562 t2 = (uint64_t)z; 563 z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF; 564 t3 = (uint64_t)z; 565 cc = -(uint64_t)(z >> 64); 566 567 a[0] ^= cc & (a[0] ^ t0); 568 a[1] ^= cc & (a[1] ^ t1); 569 a[2] ^= cc & (a[2] ^ t2); 570 a[3] ^= cc & (a[3] ^ t3); 571 572 #elif BR_UMUL128 573 574 uint64_t t0, t1, t2, t3, m; 575 unsigned char k; 576 577 k = _addcarry_u64(0, a[0], (uint64_t)1, &t0); 578 k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1); 579 k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2); 580 k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3); 581 m = -(uint64_t)k; 582 583 a[0] ^= m & (a[0] ^ t0); 584 a[1] ^= m & (a[1] ^ t1); 585 a[2] ^= m & (a[2] ^ t2); 586 a[3] ^= m & (a[3] ^ t3); 587 588 #endif 589 } 590 591 /* 592 * Points in affine and Jacobian coordinates. 593 * 594 * - In affine coordinates, the point-at-infinity cannot be encoded. 595 * - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3); 596 * if Z = 0 then this is the point-at-infinity. 597 */ 598 typedef struct { 599 uint64_t x[4]; 600 uint64_t y[4]; 601 } p256_affine; 602 603 typedef struct { 604 uint64_t x[4]; 605 uint64_t y[4]; 606 uint64_t z[4]; 607 } p256_jacobian; 608 609 /* 610 * Decode a point. The returned point is in Jacobian coordinates, but 611 * with z = 1. If the encoding is invalid, or encodes a point which is 612 * not on the curve, or encodes the point at infinity, then this function 613 * returns 0. Otherwise, 1 is returned. 614 * 615 * The buffer is assumed to have length exactly 65 bytes. 616 */ 617 static uint32_t 618 point_decode(p256_jacobian *P, const unsigned char *buf) 619 { 620 uint64_t x[4], y[4], t[4], x3[4], tt; 621 uint32_t r; 622 623 /* 624 * Header byte shall be 0x04. 625 */ 626 r = EQ(buf[0], 0x04); 627 628 /* 629 * Decode X and Y coordinates, and convert them into 630 * Montgomery representation. 631 */ 632 x[3] = br_dec64be(buf + 1); 633 x[2] = br_dec64be(buf + 9); 634 x[1] = br_dec64be(buf + 17); 635 x[0] = br_dec64be(buf + 25); 636 y[3] = br_dec64be(buf + 33); 637 y[2] = br_dec64be(buf + 41); 638 y[1] = br_dec64be(buf + 49); 639 y[0] = br_dec64be(buf + 57); 640 f256_tomonty(x, x); 641 f256_tomonty(y, y); 642 643 /* 644 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3. 645 * Note that the Montgomery representation of 0 is 0. We must 646 * take care to apply the final reduction to make sure we have 647 * 0 and not p. 648 */ 649 f256_montysquare(t, y); 650 f256_montysquare(x3, x); 651 f256_montymul(x3, x3, x); 652 f256_sub(t, t, x3); 653 f256_add(t, t, x); 654 f256_add(t, t, x); 655 f256_add(t, t, x); 656 f256_sub(t, t, P256_B_MONTY); 657 f256_final_reduce(t); 658 tt = t[0] | t[1] | t[2] | t[3]; 659 r &= EQ((uint32_t)(tt | (tt >> 32)), 0); 660 661 /* 662 * Return the point in Jacobian coordinates (and Montgomery 663 * representation). 664 */ 665 memcpy(P->x, x, sizeof x); 666 memcpy(P->y, y, sizeof y); 667 memcpy(P->z, F256_R, sizeof F256_R); 668 return r; 669 } 670 671 /* 672 * Final conversion for a point: 673 * - The point is converted back to affine coordinates. 674 * - Final reduction is performed. 675 * - The point is encoded into the provided buffer. 676 * 677 * If the point is the point-at-infinity, all operations are performed, 678 * but the buffer contents are indeterminate, and 0 is returned. Otherwise, 679 * the encoded point is written in the buffer, and 1 is returned. 680 */ 681 static uint32_t 682 point_encode(unsigned char *buf, const p256_jacobian *P) 683 { 684 uint64_t t1[4], t2[4], z; 685 686 /* Set t1 = 1/z^2 and t2 = 1/z^3. */ 687 f256_invert(t2, P->z); 688 f256_montysquare(t1, t2); 689 f256_montymul(t2, t2, t1); 690 691 /* Compute affine coordinates x (in t1) and y (in t2). */ 692 f256_montymul(t1, P->x, t1); 693 f256_montymul(t2, P->y, t2); 694 695 /* Convert back from Montgomery representation, and finalize 696 reductions. */ 697 f256_frommonty(t1, t1); 698 f256_frommonty(t2, t2); 699 f256_final_reduce(t1); 700 f256_final_reduce(t2); 701 702 /* Encode. */ 703 buf[0] = 0x04; 704 br_enc64be(buf + 1, t1[3]); 705 br_enc64be(buf + 9, t1[2]); 706 br_enc64be(buf + 17, t1[1]); 707 br_enc64be(buf + 25, t1[0]); 708 br_enc64be(buf + 33, t2[3]); 709 br_enc64be(buf + 41, t2[2]); 710 br_enc64be(buf + 49, t2[1]); 711 br_enc64be(buf + 57, t2[0]); 712 713 /* Return success if and only if P->z != 0. */ 714 z = P->z[0] | P->z[1] | P->z[2] | P->z[3]; 715 return NEQ((uint32_t)(z | z >> 32), 0); 716 } 717 718 /* 719 * Point doubling in Jacobian coordinates: point P is doubled. 720 * Note: if the source point is the point-at-infinity, then the result is 721 * still the point-at-infinity, which is correct. Moreover, if the three 722 * coordinates were zero, then they still are zero in the returned value. 723 * 724 * (Note: this is true even without the final reduction: if the three 725 * coordinates are encoded as four words of value zero each, then the 726 * result will also have all-zero coordinate encodings, not the alternate 727 * encoding as the integer p.) 728 */ 729 static void 730 p256_double(p256_jacobian *P) 731 { 732 /* 733 * Doubling formulas are: 734 * 735 * s = 4*x*y^2 736 * m = 3*(x + z^2)*(x - z^2) 737 * x' = m^2 - 2*s 738 * y' = m*(s - x') - 8*y^4 739 * z' = 2*y*z 740 * 741 * These formulas work for all points, including points of order 2 742 * and points at infinity: 743 * - If y = 0 then z' = 0. But there is no such point in P-256 744 * anyway. 745 * - If z = 0 then z' = 0. 746 */ 747 uint64_t t1[4], t2[4], t3[4], t4[4]; 748 749 /* 750 * Compute z^2 in t1. 751 */ 752 f256_montysquare(t1, P->z); 753 754 /* 755 * Compute x-z^2 in t2 and x+z^2 in t1. 756 */ 757 f256_add(t2, P->x, t1); 758 f256_sub(t1, P->x, t1); 759 760 /* 761 * Compute 3*(x+z^2)*(x-z^2) in t1. 762 */ 763 f256_montymul(t3, t1, t2); 764 f256_add(t1, t3, t3); 765 f256_add(t1, t3, t1); 766 767 /* 768 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3). 769 */ 770 f256_montysquare(t3, P->y); 771 f256_add(t3, t3, t3); 772 f256_montymul(t2, P->x, t3); 773 f256_add(t2, t2, t2); 774 775 /* 776 * Compute x' = m^2 - 2*s. 777 */ 778 f256_montysquare(P->x, t1); 779 f256_sub(P->x, P->x, t2); 780 f256_sub(P->x, P->x, t2); 781 782 /* 783 * Compute z' = 2*y*z. 784 */ 785 f256_montymul(t4, P->y, P->z); 786 f256_add(P->z, t4, t4); 787 788 /* 789 * Compute y' = m*(s - x') - 8*y^4. Note that we already have 790 * 2*y^2 in t3. 791 */ 792 f256_sub(t2, t2, P->x); 793 f256_montymul(P->y, t1, t2); 794 f256_montysquare(t4, t3); 795 f256_add(t4, t4, t4); 796 f256_sub(P->y, P->y, t4); 797 } 798 799 /* 800 * Point addition (Jacobian coordinates): P1 is replaced with P1+P2. 801 * This function computes the wrong result in the following cases: 802 * 803 * - If P1 == 0 but P2 != 0 804 * - If P1 != 0 but P2 == 0 805 * - If P1 == P2 806 * 807 * In all three cases, P1 is set to the point at infinity. 808 * 809 * Returned value is 0 if one of the following occurs: 810 * 811 * - P1 and P2 have the same Y coordinate. 812 * - P1 == 0 and P2 == 0. 813 * - The Y coordinate of one of the points is 0 and the other point is 814 * the point at infinity. 815 * 816 * The third case cannot actually happen with valid points, since a point 817 * with Y == 0 is a point of order 2, and there is no point of order 2 on 818 * curve P-256. 819 * 820 * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller 821 * can apply the following: 822 * 823 * - If the result is not the point at infinity, then it is correct. 824 * - Otherwise, if the returned value is 1, then this is a case of 825 * P1+P2 == 0, so the result is indeed the point at infinity. 826 * - Otherwise, P1 == P2, so a "double" operation should have been 827 * performed. 828 * 829 * Note that you can get a returned value of 0 with a correct result, 830 * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates. 831 */ 832 static uint32_t 833 p256_add(p256_jacobian *P1, const p256_jacobian *P2) 834 { 835 /* 836 * Addtions formulas are: 837 * 838 * u1 = x1 * z2^2 839 * u2 = x2 * z1^2 840 * s1 = y1 * z2^3 841 * s2 = y2 * z1^3 842 * h = u2 - u1 843 * r = s2 - s1 844 * x3 = r^2 - h^3 - 2 * u1 * h^2 845 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 846 * z3 = h * z1 * z2 847 */ 848 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt; 849 uint32_t ret; 850 851 /* 852 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3). 853 */ 854 f256_montysquare(t3, P2->z); 855 f256_montymul(t1, P1->x, t3); 856 f256_montymul(t4, P2->z, t3); 857 f256_montymul(t3, P1->y, t4); 858 859 /* 860 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 861 */ 862 f256_montysquare(t4, P1->z); 863 f256_montymul(t2, P2->x, t4); 864 f256_montymul(t5, P1->z, t4); 865 f256_montymul(t4, P2->y, t5); 866 867 /* 868 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 869 * We need to test whether r is zero, so we will do some extra 870 * reduce. 871 */ 872 f256_sub(t2, t2, t1); 873 f256_sub(t4, t4, t3); 874 f256_final_reduce(t4); 875 tt = t4[0] | t4[1] | t4[2] | t4[3]; 876 ret = (uint32_t)(tt | (tt >> 32)); 877 ret = (ret | -ret) >> 31; 878 879 /* 880 * Compute u1*h^2 (in t6) and h^3 (in t5); 881 */ 882 f256_montysquare(t7, t2); 883 f256_montymul(t6, t1, t7); 884 f256_montymul(t5, t7, t2); 885 886 /* 887 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 888 */ 889 f256_montysquare(P1->x, t4); 890 f256_sub(P1->x, P1->x, t5); 891 f256_sub(P1->x, P1->x, t6); 892 f256_sub(P1->x, P1->x, t6); 893 894 /* 895 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 896 */ 897 f256_sub(t6, t6, P1->x); 898 f256_montymul(P1->y, t4, t6); 899 f256_montymul(t1, t5, t3); 900 f256_sub(P1->y, P1->y, t1); 901 902 /* 903 * Compute z3 = h*z1*z2. 904 */ 905 f256_montymul(t1, P1->z, P2->z); 906 f256_montymul(P1->z, t1, t2); 907 908 return ret; 909 } 910 911 /* 912 * Point addition (mixed coordinates): P1 is replaced with P1+P2. 913 * This is a specialised function for the case when P2 is a non-zero point 914 * in affine coordinates. 915 * 916 * This function computes the wrong result in the following cases: 917 * 918 * - If P1 == 0 919 * - If P1 == P2 920 * 921 * In both cases, P1 is set to the point at infinity. 922 * 923 * Returned value is 0 if one of the following occurs: 924 * 925 * - P1 and P2 have the same Y (affine) coordinate. 926 * - The Y coordinate of P2 is 0 and P1 is the point at infinity. 927 * 928 * The second case cannot actually happen with valid points, since a point 929 * with Y == 0 is a point of order 2, and there is no point of order 2 on 930 * curve P-256. 931 * 932 * Therefore, assuming that P1 != 0 on input, then the caller 933 * can apply the following: 934 * 935 * - If the result is not the point at infinity, then it is correct. 936 * - Otherwise, if the returned value is 1, then this is a case of 937 * P1+P2 == 0, so the result is indeed the point at infinity. 938 * - Otherwise, P1 == P2, so a "double" operation should have been 939 * performed. 940 * 941 * Again, a value of 0 may be returned in some cases where the addition 942 * result is correct. 943 */ 944 static uint32_t 945 p256_add_mixed(p256_jacobian *P1, const p256_affine *P2) 946 { 947 /* 948 * Addtions formulas are: 949 * 950 * u1 = x1 951 * u2 = x2 * z1^2 952 * s1 = y1 953 * s2 = y2 * z1^3 954 * h = u2 - u1 955 * r = s2 - s1 956 * x3 = r^2 - h^3 - 2 * u1 * h^2 957 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 958 * z3 = h * z1 959 */ 960 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt; 961 uint32_t ret; 962 963 /* 964 * Compute u1 = x1 (in t1) and s1 = y1 (in t3). 965 */ 966 memcpy(t1, P1->x, sizeof t1); 967 memcpy(t3, P1->y, sizeof t3); 968 969 /* 970 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 971 */ 972 f256_montysquare(t4, P1->z); 973 f256_montymul(t2, P2->x, t4); 974 f256_montymul(t5, P1->z, t4); 975 f256_montymul(t4, P2->y, t5); 976 977 /* 978 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 979 * We need to test whether r is zero, so we will do some extra 980 * reduce. 981 */ 982 f256_sub(t2, t2, t1); 983 f256_sub(t4, t4, t3); 984 f256_final_reduce(t4); 985 tt = t4[0] | t4[1] | t4[2] | t4[3]; 986 ret = (uint32_t)(tt | (tt >> 32)); 987 ret = (ret | -ret) >> 31; 988 989 /* 990 * Compute u1*h^2 (in t6) and h^3 (in t5); 991 */ 992 f256_montysquare(t7, t2); 993 f256_montymul(t6, t1, t7); 994 f256_montymul(t5, t7, t2); 995 996 /* 997 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 998 */ 999 f256_montysquare(P1->x, t4); 1000 f256_sub(P1->x, P1->x, t5); 1001 f256_sub(P1->x, P1->x, t6); 1002 f256_sub(P1->x, P1->x, t6); 1003 1004 /* 1005 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 1006 */ 1007 f256_sub(t6, t6, P1->x); 1008 f256_montymul(P1->y, t4, t6); 1009 f256_montymul(t1, t5, t3); 1010 f256_sub(P1->y, P1->y, t1); 1011 1012 /* 1013 * Compute z3 = h*z1*z2. 1014 */ 1015 f256_montymul(P1->z, P1->z, t2); 1016 1017 return ret; 1018 } 1019 1020 #if 0 1021 /* unused */ 1022 /* 1023 * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2. 1024 * This is a specialised function for the case when P2 is a non-zero point 1025 * in affine coordinates. 1026 * 1027 * This function returns the correct result in all cases. 1028 */ 1029 static uint32_t 1030 p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2) 1031 { 1032 /* 1033 * Addtions formulas, in the general case, are: 1034 * 1035 * u1 = x1 1036 * u2 = x2 * z1^2 1037 * s1 = y1 1038 * s2 = y2 * z1^3 1039 * h = u2 - u1 1040 * r = s2 - s1 1041 * x3 = r^2 - h^3 - 2 * u1 * h^2 1042 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 1043 * z3 = h * z1 1044 * 1045 * These formulas mishandle the two following cases: 1046 * 1047 * - If P1 is the point-at-infinity (z1 = 0), then z3 is 1048 * incorrectly set to 0. 1049 * 1050 * - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3 1051 * are all set to 0. 1052 * 1053 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then 1054 * we correctly get z3 = 0 (the point-at-infinity). 1055 * 1056 * To fix the case P1 = 0, we perform at the end a copy of P2 1057 * over P1, conditional to z1 = 0. 1058 * 1059 * For P1 = P2: in that case, both h and r are set to 0, and 1060 * we get x3, y3 and z3 equal to 0. We can test for that 1061 * occurrence to make a mask which will be all-one if P1 = P2, 1062 * or all-zero otherwise; then we can compute the double of P2 1063 * and add it, combined with the mask, to (x3,y3,z3). 1064 * 1065 * Using the doubling formulas in p256_double() on (x2,y2), 1066 * simplifying since P2 is affine (i.e. z2 = 1, implicitly), 1067 * we get: 1068 * s = 4*x2*y2^2 1069 * m = 3*(x2 + 1)*(x2 - 1) 1070 * x' = m^2 - 2*s 1071 * y' = m*(s - x') - 8*y2^4 1072 * z' = 2*y2 1073 * which requires only 6 multiplications. Added to the 11 1074 * multiplications of the normal mixed addition in Jacobian 1075 * coordinates, we get a cost of 17 multiplications in total. 1076 */ 1077 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz; 1078 int i; 1079 1080 /* 1081 * Set zz to -1 if P1 is the point at infinity, 0 otherwise. 1082 */ 1083 zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3]; 1084 zz = ((zz | -zz) >> 63) - (uint64_t)1; 1085 1086 /* 1087 * Compute u1 = x1 (in t1) and s1 = y1 (in t3). 1088 */ 1089 memcpy(t1, P1->x, sizeof t1); 1090 memcpy(t3, P1->y, sizeof t3); 1091 1092 /* 1093 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). 1094 */ 1095 f256_montysquare(t4, P1->z); 1096 f256_montymul(t2, P2->x, t4); 1097 f256_montymul(t5, P1->z, t4); 1098 f256_montymul(t4, P2->y, t5); 1099 1100 /* 1101 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). 1102 * reduce. 1103 */ 1104 f256_sub(t2, t2, t1); 1105 f256_sub(t4, t4, t3); 1106 1107 /* 1108 * If both h = 0 and r = 0, then P1 = P2, and we want to set 1109 * the mask tt to -1; otherwise, the mask will be 0. 1110 */ 1111 f256_final_reduce(t2); 1112 f256_final_reduce(t4); 1113 tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3]; 1114 tt = ((tt | -tt) >> 63) - (uint64_t)1; 1115 1116 /* 1117 * Compute u1*h^2 (in t6) and h^3 (in t5); 1118 */ 1119 f256_montysquare(t7, t2); 1120 f256_montymul(t6, t1, t7); 1121 f256_montymul(t5, t7, t2); 1122 1123 /* 1124 * Compute x3 = r^2 - h^3 - 2*u1*h^2. 1125 */ 1126 f256_montysquare(P1->x, t4); 1127 f256_sub(P1->x, P1->x, t5); 1128 f256_sub(P1->x, P1->x, t6); 1129 f256_sub(P1->x, P1->x, t6); 1130 1131 /* 1132 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. 1133 */ 1134 f256_sub(t6, t6, P1->x); 1135 f256_montymul(P1->y, t4, t6); 1136 f256_montymul(t1, t5, t3); 1137 f256_sub(P1->y, P1->y, t1); 1138 1139 /* 1140 * Compute z3 = h*z1. 1141 */ 1142 f256_montymul(P1->z, P1->z, t2); 1143 1144 /* 1145 * The "double" result, in case P1 = P2. 1146 */ 1147 1148 /* 1149 * Compute z' = 2*y2 (in t1). 1150 */ 1151 f256_add(t1, P2->y, P2->y); 1152 1153 /* 1154 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3). 1155 */ 1156 f256_montysquare(t2, P2->y); 1157 f256_add(t2, t2, t2); 1158 f256_add(t3, t2, t2); 1159 f256_montymul(t3, P2->x, t3); 1160 1161 /* 1162 * Compute m = 3*(x2^2 - 1) (in t4). 1163 */ 1164 f256_montysquare(t4, P2->x); 1165 f256_sub(t4, t4, F256_R); 1166 f256_add(t5, t4, t4); 1167 f256_add(t4, t4, t5); 1168 1169 /* 1170 * Compute x' = m^2 - 2*s (in t5). 1171 */ 1172 f256_montysquare(t5, t4); 1173 f256_sub(t5, t3); 1174 f256_sub(t5, t3); 1175 1176 /* 1177 * Compute y' = m*(s - x') - 8*y2^4 (in t6). 1178 */ 1179 f256_sub(t6, t3, t5); 1180 f256_montymul(t6, t6, t4); 1181 f256_montysquare(t7, t2); 1182 f256_sub(t6, t6, t7); 1183 f256_sub(t6, t6, t7); 1184 1185 /* 1186 * We now have the alternate (doubling) coordinates in (t5,t6,t1). 1187 * We combine them with (x3,y3,z3). 1188 */ 1189 for (i = 0; i < 4; i ++) { 1190 P1->x[i] |= tt & t5[i]; 1191 P1->y[i] |= tt & t6[i]; 1192 P1->z[i] |= tt & t1[i]; 1193 } 1194 1195 /* 1196 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0, 1197 * then we want to replace the result with a copy of P2. The 1198 * test on z1 was done at the start, in the zz mask. 1199 */ 1200 for (i = 0; i < 4; i ++) { 1201 P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]); 1202 P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]); 1203 P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]); 1204 } 1205 } 1206 #endif 1207 1208 /* 1209 * Inner function for computing a point multiplication. A window is 1210 * provided, with points 1*P to 15*P in affine coordinates. 1211 * 1212 * Assumptions: 1213 * - All provided points are valid points on the curve. 1214 * - Multiplier is non-zero, and smaller than the curve order. 1215 * - Everything is in Montgomery representation. 1216 */ 1217 static void 1218 point_mul_inner(p256_jacobian *R, const p256_affine *W, 1219 const unsigned char *k, size_t klen) 1220 { 1221 p256_jacobian Q; 1222 uint32_t qz; 1223 1224 memset(&Q, 0, sizeof Q); 1225 qz = 1; 1226 while (klen -- > 0) { 1227 int i; 1228 unsigned bk; 1229 1230 bk = *k ++; 1231 for (i = 0; i < 2; i ++) { 1232 uint32_t bits; 1233 uint32_t bnz; 1234 p256_affine T; 1235 p256_jacobian U; 1236 uint32_t n; 1237 int j; 1238 uint64_t m; 1239 1240 p256_double(&Q); 1241 p256_double(&Q); 1242 p256_double(&Q); 1243 p256_double(&Q); 1244 bits = (bk >> 4) & 0x0F; 1245 bnz = NEQ(bits, 0); 1246 1247 /* 1248 * Lookup point in window. If the bits are 0, 1249 * we get something invalid, which is not a 1250 * problem because we will use it only if the 1251 * bits are non-zero. 1252 */ 1253 memset(&T, 0, sizeof T); 1254 for (n = 0; n < 15; n ++) { 1255 m = -(uint64_t)EQ(bits, n + 1); 1256 T.x[0] |= m & W[n].x[0]; 1257 T.x[1] |= m & W[n].x[1]; 1258 T.x[2] |= m & W[n].x[2]; 1259 T.x[3] |= m & W[n].x[3]; 1260 T.y[0] |= m & W[n].y[0]; 1261 T.y[1] |= m & W[n].y[1]; 1262 T.y[2] |= m & W[n].y[2]; 1263 T.y[3] |= m & W[n].y[3]; 1264 } 1265 1266 U = Q; 1267 p256_add_mixed(&U, &T); 1268 1269 /* 1270 * If qz is still 1, then Q was all-zeros, and this 1271 * is conserved through p256_double(). 1272 */ 1273 m = -(uint64_t)(bnz & qz); 1274 for (j = 0; j < 4; j ++) { 1275 Q.x[j] |= m & T.x[j]; 1276 Q.y[j] |= m & T.y[j]; 1277 Q.z[j] |= m & F256_R[j]; 1278 } 1279 CCOPY(bnz & ~qz, &Q, &U, sizeof Q); 1280 qz &= ~bnz; 1281 bk <<= 4; 1282 } 1283 } 1284 *R = Q; 1285 } 1286 1287 /* 1288 * Convert a window from Jacobian to affine coordinates. A single 1289 * field inversion is used. This function works for windows up to 1290 * 32 elements. 1291 * 1292 * The destination array (aff[]) and the source array (jac[]) may 1293 * overlap, provided that the start of aff[] is not after the start of 1294 * jac[]. Even if the arrays do _not_ overlap, the source array is 1295 * modified. 1296 */ 1297 static void 1298 window_to_affine(p256_affine *aff, p256_jacobian *jac, int num) 1299 { 1300 /* 1301 * Convert the window points to affine coordinates. We use the 1302 * following trick to mutualize the inversion computation: if 1303 * we have z1, z2, z3, and z4, and want to inverse all of them, 1304 * we compute u = 1/(z1*z2*z3*z4), and then we have: 1305 * 1/z1 = u*z2*z3*z4 1306 * 1/z2 = u*z1*z3*z4 1307 * 1/z3 = u*z1*z2*z4 1308 * 1/z4 = u*z1*z2*z3 1309 * 1310 * The partial products are computed recursively: 1311 * 1312 * - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2 1313 * - on input (z_1,z_2,... z_n): 1314 * recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1 1315 * recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2 1316 * multiply elements of r1 by m2 -> s1 1317 * multiply elements of r2 by m1 -> s2 1318 * return r1||r2 and m1*m2 1319 * 1320 * In the example below, we suppose that we have 14 elements. 1321 * Let z1, z2,... zE be the 14 values to invert (index noted in 1322 * hexadecimal, starting at 1). 1323 * 1324 * - Depth 1: 1325 * swap(z1, z2); z12 = z1*z2 1326 * swap(z3, z4); z34 = z3*z4 1327 * swap(z5, z6); z56 = z5*z6 1328 * swap(z7, z8); z78 = z7*z8 1329 * swap(z9, zA); z9A = z9*zA 1330 * swap(zB, zC); zBC = zB*zC 1331 * swap(zD, zE); zDE = zD*zE 1332 * 1333 * - Depth 2: 1334 * z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12 1335 * z1234 = z12*z34 1336 * z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56 1337 * z5678 = z56*z78 1338 * z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A 1339 * z9ABC = z9A*zBC 1340 * 1341 * - Depth 3: 1342 * z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678 1343 * z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234 1344 * z12345678 = z1234*z5678 1345 * z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE 1346 * zD <- zD*z9ABC, zE*z9ABC 1347 * z9ABCDE = z9ABC*zDE 1348 * 1349 * - Depth 4: 1350 * multiply z1..z8 by z9ABCDE 1351 * multiply z9..zE by z12345678 1352 * final z = z12345678*z9ABCDE 1353 */ 1354 1355 uint64_t z[16][4]; 1356 int i, k, s; 1357 #define zt (z[15]) 1358 #define zu (z[14]) 1359 #define zv (z[13]) 1360 1361 /* 1362 * First recursion step (pairwise swapping and multiplication). 1363 * If there is an odd number of elements, then we "invent" an 1364 * extra one with coordinate Z = 1 (in Montgomery representation). 1365 */ 1366 for (i = 0; (i + 1) < num; i += 2) { 1367 memcpy(zt, jac[i].z, sizeof zt); 1368 memcpy(jac[i].z, jac[i + 1].z, sizeof zt); 1369 memcpy(jac[i + 1].z, zt, sizeof zt); 1370 f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z); 1371 } 1372 if ((num & 1) != 0) { 1373 memcpy(z[num >> 1], jac[num - 1].z, sizeof zt); 1374 memcpy(jac[num - 1].z, F256_R, sizeof F256_R); 1375 } 1376 1377 /* 1378 * Perform further recursion steps. At the entry of each step, 1379 * the process has been done for groups of 's' points. The 1380 * integer k is the log2 of s. 1381 */ 1382 for (k = 1, s = 2; s < num; k ++, s <<= 1) { 1383 int n; 1384 1385 for (i = 0; i < num; i ++) { 1386 f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]); 1387 } 1388 n = (num + s - 1) >> k; 1389 for (i = 0; i < (n >> 1); i ++) { 1390 f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]); 1391 } 1392 if ((n & 1) != 0) { 1393 memmove(z[n >> 1], z[n], sizeof zt); 1394 } 1395 } 1396 1397 /* 1398 * Invert the final result, and convert all points. 1399 */ 1400 f256_invert(zt, z[0]); 1401 for (i = 0; i < num; i ++) { 1402 f256_montymul(zv, jac[i].z, zt); 1403 f256_montysquare(zu, zv); 1404 f256_montymul(zv, zv, zu); 1405 f256_montymul(aff[i].x, jac[i].x, zu); 1406 f256_montymul(aff[i].y, jac[i].y, zv); 1407 } 1408 } 1409 1410 /* 1411 * Multiply the provided point by an integer. 1412 * Assumptions: 1413 * - Source point is a valid curve point. 1414 * - Source point is not the point-at-infinity. 1415 * - Integer is not 0, and is lower than the curve order. 1416 * If these conditions are not met, then the result is indeterminate 1417 * (but the process is still constant-time). 1418 */ 1419 static void 1420 p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen) 1421 { 1422 union { 1423 p256_affine aff[15]; 1424 p256_jacobian jac[15]; 1425 } window; 1426 int i; 1427 1428 /* 1429 * Compute window, in Jacobian coordinates. 1430 */ 1431 window.jac[0] = *P; 1432 for (i = 2; i < 16; i ++) { 1433 window.jac[i - 1] = window.jac[(i >> 1) - 1]; 1434 if ((i & 1) == 0) { 1435 p256_double(&window.jac[i - 1]); 1436 } else { 1437 p256_add(&window.jac[i - 1], &window.jac[i >> 1]); 1438 } 1439 } 1440 1441 /* 1442 * Convert the window points to affine coordinates. Point 1443 * window[0] is the source point, already in affine coordinates. 1444 */ 1445 window_to_affine(window.aff, window.jac, 15); 1446 1447 /* 1448 * Perform point multiplication. 1449 */ 1450 point_mul_inner(P, window.aff, k, klen); 1451 } 1452 1453 /* 1454 * Precomputed window for the conventional generator: P256_Gwin[n] 1455 * contains (n+1)*G (affine coordinates, in Montgomery representation). 1456 */ 1457 static const p256_affine P256_Gwin[] = { 1458 { 1459 { 0x79E730D418A9143C, 0x75BA95FC5FEDB601, 1460 0x79FB732B77622510, 0x18905F76A53755C6 }, 1461 { 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C, 1462 0xD2E88688DD21F325, 0x8571FF1825885D85 } 1463 }, 1464 { 1465 { 0x850046D410DDD64D, 0xAA6AE3C1A433827D, 1466 0x732205038D1490D9, 0xF6BB32E43DCF3A3B }, 1467 { 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8, 1468 0x19A8FB0E92042DBE, 0x78C577510A5B8A3B } 1469 }, 1470 { 1471 { 0xFFAC3F904EEBC127, 0xB027F84A087D81FB, 1472 0x66AD77DD87CBBC98, 0x26936A3FB6FF747E }, 1473 { 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A, 1474 0x788208311A2EE98E, 0xD5F06A29E587CC07 } 1475 }, 1476 { 1477 { 0x74B0B50D46918DCC, 0x4650A6EDC623C173, 1478 0x0CDAACACE8100AF2, 0x577362F541B0176B }, 1479 { 0x2D96F24CE4CBABA6, 0x17628471FAD6F447, 1480 0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 } 1481 }, 1482 { 1483 { 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D, 1484 0x941CB5AAD076C20C, 0xC9079605890523C8 }, 1485 { 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B, 1486 0x3540A9877E7A1F68, 0x73A076BB2DD1E916 } 1487 }, 1488 { 1489 { 0x403947373E77664A, 0x55AE744F346CEE3E, 1490 0xD50A961A5B17A3AD, 0x13074B5954213673 }, 1491 { 0x93D36220D377E44B, 0x299C2B53ADFF14B5, 1492 0xF424D44CEF639F11, 0xA4C9916D4A07F75F } 1493 }, 1494 { 1495 { 0x0746354EA0173B4F, 0x2BD20213D23C00F7, 1496 0xF43EAAB50C23BB08, 0x13BA5119C3123E03 }, 1497 { 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD, 1498 0xEF933BDC77C94195, 0xEAEDD9156E240867 } 1499 }, 1500 { 1501 { 0x27F14CD19499A78F, 0x462AB5C56F9B3455, 1502 0x8F90F02AF02CFC6B, 0xB763891EB265230D }, 1503 { 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15, 1504 0x123C7B84BE60BBF0, 0x56EC12F27706DF76 } 1505 }, 1506 { 1507 { 0x75C96E8F264E20E8, 0xABE6BFED59A7A841, 1508 0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B }, 1509 { 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3, 1510 0x2B6E019A88B12F1A, 0x086659CDFD835F9B } 1511 }, 1512 { 1513 { 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139, 1514 0x737D2CD648250B49, 0xCC61C94724B3428F }, 1515 { 0x0C2B407880DD9E76, 0xC43A8991383FBE08, 1516 0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 } 1517 }, 1518 { 1519 { 0xEA7D260A6245E404, 0x9DE407956E7FDFE0, 1520 0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 }, 1521 { 0x1A7685612B944E88, 0x250F939EE57F61C8, 1522 0x0C0DAA891EAD643D, 0x68930023E125B88E } 1523 }, 1524 { 1525 { 0x04B71AA7D2697768, 0xABDEDEF5CA345A33, 1526 0x2409D29DEE37385E, 0x4EE1DF77CB83E156 }, 1527 { 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637, 1528 0x28228CFA8ADE6D66, 0x7FF57C9553238ACA } 1529 }, 1530 { 1531 { 0xCCC425634B2ED709, 0x0E356769856FD30D, 1532 0xBCBCD43F559E9811, 0x738477AC5395B759 }, 1533 { 0x35752B90C00EE17F, 0x68748390742ED2E3, 1534 0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 } 1535 }, 1536 { 1537 { 0xA242A35BB0CF664A, 0x126E48F77F9707E3, 1538 0x1717BF54C6832660, 0xFAAE7332FD12C72E }, 1539 { 0x27B52DB7995D586B, 0xBE29569E832237C2, 1540 0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB } 1541 }, 1542 { 1543 { 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B, 1544 0xEE337424E4819370, 0xE2AA0E430AD3DA09 }, 1545 { 0x40B8524F6383C45D, 0xD766355442A41B25, 1546 0x64EFA6DE778A4797, 0x2042170A7079ADF4 } 1547 } 1548 }; 1549 1550 /* 1551 * Multiply the conventional generator of the curve by the provided 1552 * integer. Return is written in *P. 1553 * 1554 * Assumptions: 1555 * - Integer is not 0, and is lower than the curve order. 1556 * If this conditions is not met, then the result is indeterminate 1557 * (but the process is still constant-time). 1558 */ 1559 static void 1560 p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen) 1561 { 1562 point_mul_inner(P, P256_Gwin, k, klen); 1563 } 1564 1565 /* 1566 * Return 1 if all of the following hold: 1567 * - klen <= 32 1568 * - k != 0 1569 * - k is lower than the curve order 1570 * Otherwise, return 0. 1571 * 1572 * Constant-time behaviour: only klen may be observable. 1573 */ 1574 static uint32_t 1575 check_scalar(const unsigned char *k, size_t klen) 1576 { 1577 uint32_t z; 1578 int32_t c; 1579 size_t u; 1580 1581 if (klen > 32) { 1582 return 0; 1583 } 1584 z = 0; 1585 for (u = 0; u < klen; u ++) { 1586 z |= k[u]; 1587 } 1588 if (klen == 32) { 1589 c = 0; 1590 for (u = 0; u < klen; u ++) { 1591 c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]); 1592 } 1593 } else { 1594 c = -1; 1595 } 1596 return NEQ(z, 0) & LT0(c); 1597 } 1598 1599 static uint32_t 1600 api_mul(unsigned char *G, size_t Glen, 1601 const unsigned char *k, size_t klen, int curve) 1602 { 1603 uint32_t r; 1604 p256_jacobian P; 1605 1606 (void)curve; 1607 if (Glen != 65) { 1608 return 0; 1609 } 1610 r = check_scalar(k, klen); 1611 r &= point_decode(&P, G); 1612 p256_mul(&P, k, klen); 1613 r &= point_encode(G, &P); 1614 return r; 1615 } 1616 1617 static size_t 1618 api_mulgen(unsigned char *R, 1619 const unsigned char *k, size_t klen, int curve) 1620 { 1621 p256_jacobian P; 1622 1623 (void)curve; 1624 p256_mulgen(&P, k, klen); 1625 point_encode(R, &P); 1626 return 65; 1627 } 1628 1629 static uint32_t 1630 api_muladd(unsigned char *A, const unsigned char *B, size_t len, 1631 const unsigned char *x, size_t xlen, 1632 const unsigned char *y, size_t ylen, int curve) 1633 { 1634 /* 1635 * We might want to use Shamir's trick here: make a composite 1636 * window of u*P+v*Q points, to merge the two doubling-ladders 1637 * into one. This, however, has some complications: 1638 * 1639 * - During the computation, we may hit the point-at-infinity. 1640 * Thus, we would need p256_add_complete_mixed() (complete 1641 * formulas for point addition), with a higher cost (17 muls 1642 * instead of 11). 1643 * 1644 * - A 4-bit window would be too large, since it would involve 1645 * 16*16-1 = 255 points. For the same window size as in the 1646 * p256_mul() case, we would need to reduce the window size 1647 * to 2 bits, and thus perform twice as many non-doubling 1648 * point additions. 1649 * 1650 * - The window may itself contain the point-at-infinity, and 1651 * thus cannot be in all generality be made of affine points. 1652 * Instead, we would need to make it a window of points in 1653 * Jacobian coordinates. Even p256_add_complete_mixed() would 1654 * be inappropriate. 1655 * 1656 * For these reasons, the code below performs two separate 1657 * point multiplications, then computes the final point addition 1658 * (which is both a "normal" addition, and a doubling, to handle 1659 * all cases). 1660 */ 1661 1662 p256_jacobian P, Q; 1663 uint32_t r, t, s; 1664 uint64_t z; 1665 1666 (void)curve; 1667 if (len != 65) { 1668 return 0; 1669 } 1670 r = point_decode(&P, A); 1671 p256_mul(&P, x, xlen); 1672 if (B == NULL) { 1673 p256_mulgen(&Q, y, ylen); 1674 } else { 1675 r &= point_decode(&Q, B); 1676 p256_mul(&Q, y, ylen); 1677 } 1678 1679 /* 1680 * The final addition may fail in case both points are equal. 1681 */ 1682 t = p256_add(&P, &Q); 1683 f256_final_reduce(P.z); 1684 z = P.z[0] | P.z[1] | P.z[2] | P.z[3]; 1685 s = EQ((uint32_t)(z | (z >> 32)), 0); 1686 p256_double(&Q); 1687 1688 /* 1689 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we 1690 * have the following: 1691 * 1692 * s = 0, t = 0 return P (normal addition) 1693 * s = 0, t = 1 return P (normal addition) 1694 * s = 1, t = 0 return Q (a 'double' case) 1695 * s = 1, t = 1 report an error (P+Q = 0) 1696 */ 1697 CCOPY(s & ~t, &P, &Q, sizeof Q); 1698 point_encode(A, &P); 1699 r &= ~(s & t); 1700 return r; 1701 } 1702 1703 /* see bearssl_ec.h */ 1704 const br_ec_impl br_ec_p256_m64 = { 1705 (uint32_t)0x00800000, 1706 &api_generator, 1707 &api_order, 1708 &api_xoff, 1709 &api_mul, 1710 &api_mulgen, 1711 &api_muladd 1712 }; 1713 1714 /* see bearssl_ec.h */ 1715 const br_ec_impl * 1716 br_ec_p256_m64_get(void) 1717 { 1718 return &br_ec_p256_m64; 1719 } 1720 1721 #else 1722 1723 /* see bearssl_ec.h */ 1724 const br_ec_impl * 1725 br_ec_p256_m64_get(void) 1726 { 1727 return 0; 1728 } 1729 1730 #endif 1731