1 /* 2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining 5 * a copy of this software and associated documentation files (the 6 * "Software"), to deal in the Software without restriction, including 7 * without limitation the rights to use, copy, modify, merge, publish, 8 * distribute, sublicense, and/or sell copies of the Software, and to 9 * permit persons to whom the Software is furnished to do so, subject to 10 * the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be 13 * included in all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #ifndef BR_BEARSSL_HASH_H__ 26 #define BR_BEARSSL_HASH_H__ 27 28 #include <stddef.h> 29 #include <stdint.h> 30 #include <string.h> 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /** \file bearssl_hash.h 37 * 38 * # Hash Functions 39 * 40 * This file documents the API for hash functions. 41 * 42 * 43 * ## Procedural API 44 * 45 * For each implemented hash function, of name "`xxx`", the following 46 * elements are defined: 47 * 48 * - `br_xxx_vtable` 49 * 50 * An externally defined instance of `br_hash_class`. 51 * 52 * - `br_xxx_SIZE` 53 * 54 * A macro that evaluates to the output size (in bytes) of the 55 * hash function. 56 * 57 * - `br_xxx_ID` 58 * 59 * A macro that evaluates to a symbolic identifier for the hash 60 * function. Such identifiers are used with HMAC and signature 61 * algorithm implementations. 62 * 63 * NOTE: for the "standard" hash functions defined in [the TLS 64 * standard](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1), 65 * the symbolic identifiers match the constants used in TLS, i.e. 66 * 1 to 6 for MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512, 67 * respectively. 68 * 69 * - `br_xxx_context` 70 * 71 * Context for an ongoing computation. It is allocated by the 72 * caller, and a pointer to it is passed to all functions. A 73 * context contains no interior pointer, so it can be moved around 74 * and cloned (with a simple `memcpy()` or equivalent) in order to 75 * capture the function state at some point. Computations that use 76 * distinct context structures are independent of each other. The 77 * first field of `br_xxx_context` is always a pointer to the 78 * `br_xxx_vtable` structure; `br_xxx_init()` sets that pointer. 79 * 80 * - `br_xxx_init(br_xxx_context *ctx)` 81 * 82 * Initialise the provided context. Previous contents of the structure 83 * are ignored. This calls resets the context to the start of a new 84 * hash computation; it also sets the first field of the context 85 * structure (called `vtable`) to a pointer to the statically 86 * allocated constant `br_xxx_vtable` structure. 87 * 88 * - `br_xxx_update(br_xxx_context *ctx, const void *data, size_t len)` 89 * 90 * Add some more bytes to the hash computation represented by the 91 * provided context. 92 * 93 * - `br_xxx_out(const br_xxx_context *ctx, void *out)` 94 * 95 * Complete the hash computation and write the result in the provided 96 * buffer. The output buffer MUST be large enough to accommodate the 97 * result. The context is NOT modified by this operation, so this 98 * function can be used to get a "partial hash" while still keeping 99 * the possibility of adding more bytes to the input. 100 * 101 * - `br_xxx_state(const br_xxx_context *ctx, void *out)` 102 * 103 * Get a copy of the "current state" for the computation so far. For 104 * MD functions (MD5, SHA-1, SHA-2 family), this is the running state 105 * resulting from the processing of the last complete input block. 106 * Returned value is the current input length (in bytes). 107 * 108 * - `br_xxx_set_state(br_xxx_context *ctx, const void *stb, uint64_t count)` 109 * 110 * Set the internal state to the provided values. The 'stb' and 111 * 'count' values shall match that which was obtained from 112 * `br_xxx_state()`. This restores the hash state only if the state 113 * values were at an appropriate block boundary. This does NOT set 114 * the `vtable` pointer in the context. 115 * 116 * Context structures can be discarded without any explicit deallocation. 117 * Hash function implementations are purely software and don't reserve 118 * any resources outside of the context structure itself. 119 * 120 * 121 * ## Object-Oriented API 122 * 123 * For each hash function that follows the procedural API described 124 * above, an object-oriented API is also provided. In that API, function 125 * pointers from the vtable (`br_xxx_vtable`) are used. The vtable 126 * incarnates object-oriented programming. An introduction on the OOP 127 * concept used here can be read on the BearSSL Web site:<br /> 128 * [https://www.bearssl.org/oop.html](https://www.bearssl.org/oop.html) 129 * 130 * The vtable offers functions called `init()`, `update()`, `out()`, 131 * `set()` and `set_state()`, which are in fact the functions from 132 * the procedural API. That vtable also contains two informative fields: 133 * 134 * - `context_size` 135 * 136 * The size of the context structure (`br_xxx_context`), in bytes. 137 * This can be used by generic implementations to perform dynamic 138 * context allocation. 139 * 140 * - `desc` 141 * 142 * A "descriptor" field that encodes some information on the hash 143 * function: symbolic identifier, output size, state size, 144 * internal block size, details on the padding. 145 * 146 * Users of this object-oriented API (in particular generic HMAC 147 * implementations) may make the following assumptions: 148 * 149 * - Hash output size is no more than 64 bytes. 150 * - Hash internal state size is no more than 64 bytes. 151 * - Internal block size is a power of two, no less than 16 and no more 152 * than 256. 153 * 154 * 155 * ## Implemented Hash Functions 156 * 157 * Implemented hash functions are: 158 * 159 * | Function | Name | Output length | State length | 160 * | :-------- | :------ | :-----------: | :----------: | 161 * | MD5 | md5 | 16 | 16 | 162 * | SHA-1 | sha1 | 20 | 20 | 163 * | SHA-224 | sha224 | 28 | 32 | 164 * | SHA-256 | sha256 | 32 | 32 | 165 * | SHA-384 | sha384 | 48 | 64 | 166 * | SHA-512 | sha512 | 64 | 64 | 167 * | MD5+SHA-1 | md5sha1 | 36 | 36 | 168 * 169 * (MD5+SHA-1 is the concatenation of MD5 and SHA-1 computed over the 170 * same input; in the implementation, the internal data buffer is 171 * shared, thus making it more memory-efficient than separate MD5 and 172 * SHA-1. It can be useful in implementing SSL 3.0, TLS 1.0 and TLS 173 * 1.1.) 174 * 175 * 176 * ## Multi-Hasher 177 * 178 * An aggregate hasher is provided, that can compute several standard 179 * hash functions in parallel. It uses `br_multihash_context` and a 180 * procedural API. It is configured with the implementations (the vtables) 181 * that it should use; it will then compute all these hash functions in 182 * parallel, on the same input. It is meant to be used in cases when the 183 * hash of an object will be used, but the exact hash function is not 184 * known yet (typically, streamed processing on X.509 certificates). 185 * 186 * Only the standard hash functions (MD5, SHA-1, SHA-224, SHA-256, SHA-384 187 * and SHA-512) are supported by the multi-hasher. 188 * 189 * 190 * ## GHASH 191 * 192 * GHASH is not a generic hash function; it is a _universal_ hash function, 193 * which, as the name does not say, means that it CANNOT be used in most 194 * places where a hash function is needed. GHASH is used within the GCM 195 * encryption mode, to provide the checked integrity functionality. 196 * 197 * A GHASH implementation is basically a function that uses the type defined 198 * in this file under the name `br_ghash`: 199 * 200 * typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len); 201 * 202 * The `y` pointer refers to a 16-byte value which is used as input, and 203 * receives the output of the GHASH invocation. `h` is a 16-byte secret 204 * value (that serves as key). `data` and `len` define the input data. 205 * 206 * Three GHASH implementations are provided, all constant-time, based on 207 * the use of integer multiplications with appropriate masking to cancel 208 * carry propagation. 209 */ 210 211 /** 212 * \brief Class type for hash function implementations. 213 * 214 * A `br_hash_class` instance references the methods implementing a hash 215 * function. Constant instances of this structure are defined for each 216 * implemented hash function. Such instances are also called "vtables". 217 * 218 * Vtables are used to support object-oriented programming, as 219 * described on [the BearSSL Web site](https://www.bearssl.org/oop.html). 220 */ 221 typedef struct br_hash_class_ br_hash_class; 222 struct br_hash_class_ { 223 /** 224 * \brief Size (in bytes) of the context structure appropriate for 225 * computing this hash function. 226 */ 227 size_t context_size; 228 229 /** 230 * \brief Descriptor word that contains information about the hash 231 * function. 232 * 233 * For each word `xxx` described below, use `BR_HASHDESC_xxx_OFF` 234 * and `BR_HASHDESC_xxx_MASK` to access the specific value, as 235 * follows: 236 * 237 * (hf->desc >> BR_HASHDESC_xxx_OFF) & BR_HASHDESC_xxx_MASK 238 * 239 * The defined elements are: 240 * 241 * - `ID`: the symbolic identifier for the function, as defined 242 * in [TLS](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1) 243 * (MD5 = 1, SHA-1 = 2,...). 244 * 245 * - `OUT`: hash output size, in bytes. 246 * 247 * - `STATE`: internal running state size, in bytes. 248 * 249 * - `LBLEN`: base-2 logarithm for the internal block size, as 250 * defined for HMAC processing (this is 6 for MD5, SHA-1, SHA-224 251 * and SHA-256, since these functions use 64-byte blocks; for 252 * SHA-384 and SHA-512, this is 7, corresponding to their 253 * 128-byte blocks). 254 * 255 * The descriptor may contain a few other flags. 256 */ 257 uint32_t desc; 258 259 /** 260 * \brief Initialisation method. 261 * 262 * This method takes as parameter a pointer to a context area, 263 * that it initialises. The first field of the context is set 264 * to this vtable; other elements are initialised for a new hash 265 * computation. 266 * 267 * \param ctx pointer to (the first field of) the context. 268 */ 269 void (*init)(const br_hash_class **ctx); 270 271 /** 272 * \brief Data injection method. 273 * 274 * The `len` bytes starting at address `data` are injected into 275 * the running hash computation incarnated by the specified 276 * context. The context is updated accordingly. It is allowed 277 * to have `len == 0`, in which case `data` is ignored (and could 278 * be `NULL`), and nothing happens. 279 * on the input data. 280 * 281 * \param ctx pointer to (the first field of) the context. 282 * \param data pointer to the first data byte to inject. 283 * \param len number of bytes to inject. 284 */ 285 void (*update)(const br_hash_class **ctx, const void *data, size_t len); 286 287 /** 288 * \brief Produce hash output. 289 * 290 * The hash output corresponding to all data bytes injected in the 291 * context since the last `init()` call is computed, and written 292 * in the buffer pointed to by `dst`. The hash output size depends 293 * on the implemented hash function (e.g. 16 bytes for MD5). 294 * The context is _not_ modified by this call, so further bytes 295 * may be afterwards injected to continue the current computation. 296 * 297 * \param ctx pointer to (the first field of) the context. 298 * \param dst destination buffer for the hash output. 299 */ 300 void (*out)(const br_hash_class *const *ctx, void *dst); 301 302 /** 303 * \brief Get running state. 304 * 305 * This method saves the current running state into the `dst` 306 * buffer. What constitutes the "running state" depends on the 307 * hash function; for Merkle-Damgård hash functions (like 308 * MD5 or SHA-1), this is the output obtained after processing 309 * each block. The number of bytes injected so far is returned. 310 * The context is not modified by this call. 311 * 312 * \param ctx pointer to (the first field of) the context. 313 * \param dst destination buffer for the state. 314 * \return the injected total byte length. 315 */ 316 uint64_t (*state)(const br_hash_class *const *ctx, void *dst); 317 318 /** 319 * \brief Set running state. 320 * 321 * This methods replaces the running state for the function. 322 * 323 * \param ctx pointer to (the first field of) the context. 324 * \param stb source buffer for the state. 325 * \param count injected total byte length. 326 */ 327 void (*set_state)(const br_hash_class **ctx, 328 const void *stb, uint64_t count); 329 }; 330 331 #ifndef BR_DOXYGEN_IGNORE 332 #define BR_HASHDESC_ID(id) ((uint32_t)(id) << BR_HASHDESC_ID_OFF) 333 #define BR_HASHDESC_ID_OFF 0 334 #define BR_HASHDESC_ID_MASK 0xFF 335 336 #define BR_HASHDESC_OUT(size) ((uint32_t)(size) << BR_HASHDESC_OUT_OFF) 337 #define BR_HASHDESC_OUT_OFF 8 338 #define BR_HASHDESC_OUT_MASK 0x7F 339 340 #define BR_HASHDESC_STATE(size) ((uint32_t)(size) << BR_HASHDESC_STATE_OFF) 341 #define BR_HASHDESC_STATE_OFF 15 342 #define BR_HASHDESC_STATE_MASK 0xFF 343 344 #define BR_HASHDESC_LBLEN(ls) ((uint32_t)(ls) << BR_HASHDESC_LBLEN_OFF) 345 #define BR_HASHDESC_LBLEN_OFF 23 346 #define BR_HASHDESC_LBLEN_MASK 0x0F 347 348 #define BR_HASHDESC_MD_PADDING ((uint32_t)1 << 28) 349 #define BR_HASHDESC_MD_PADDING_128 ((uint32_t)1 << 29) 350 #define BR_HASHDESC_MD_PADDING_BE ((uint32_t)1 << 30) 351 #endif 352 353 /* 354 * Specific hash functions. 355 * 356 * Rules for contexts: 357 * -- No interior pointer. 358 * -- No pointer to external dynamically allocated resources. 359 * -- First field is called 'vtable' and is a pointer to a 360 * const-qualified br_hash_class instance (pointer is set by init()). 361 * -- SHA-224 and SHA-256 contexts are identical. 362 * -- SHA-384 and SHA-512 contexts are identical. 363 * 364 * Thus, contexts can be moved and cloned to capture the hash function 365 * current state; and there is no need for any explicit "release" function. 366 */ 367 368 /** 369 * \brief Symbolic identifier for MD5. 370 */ 371 #define br_md5_ID 1 372 373 /** 374 * \brief MD5 output size (in bytes). 375 */ 376 #define br_md5_SIZE 16 377 378 /** 379 * \brief Constant vtable for MD5. 380 */ 381 extern const br_hash_class br_md5_vtable; 382 383 /** 384 * \brief MD5 context. 385 * 386 * First field is a pointer to the vtable; it is set by the initialisation 387 * function. Other fields are not supposed to be accessed by user code. 388 */ 389 typedef struct { 390 /** 391 * \brief Pointer to vtable for this context. 392 */ 393 const br_hash_class *vtable; 394 #ifndef BR_DOXYGEN_IGNORE 395 unsigned char buf[64]; 396 uint64_t count; 397 uint32_t val[4]; 398 #endif 399 } br_md5_context; 400 401 /** 402 * \brief MD5 context initialisation. 403 * 404 * This function initialises or resets a context for a new MD5 405 * computation. It also sets the vtable pointer. 406 * 407 * \param ctx pointer to the context structure. 408 */ 409 void br_md5_init(br_md5_context *ctx); 410 411 /** 412 * \brief Inject some data bytes in a running MD5 computation. 413 * 414 * The provided context is updated with some data bytes. If the number 415 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 416 * and may be `NULL`, and this function does nothing. 417 * 418 * \param ctx pointer to the context structure. 419 * \param data pointer to the injected data. 420 * \param len injected data length (in bytes). 421 */ 422 void br_md5_update(br_md5_context *ctx, const void *data, size_t len); 423 424 /** 425 * \brief Compute MD5 output. 426 * 427 * The MD5 output for the concatenation of all bytes injected in the 428 * provided context since the last initialisation or reset call, is 429 * computed and written in the buffer pointed to by `out`. The context 430 * itself is not modified, so extra bytes may be injected afterwards 431 * to continue that computation. 432 * 433 * \param ctx pointer to the context structure. 434 * \param out destination buffer for the hash output. 435 */ 436 void br_md5_out(const br_md5_context *ctx, void *out); 437 438 /** 439 * \brief Save MD5 running state. 440 * 441 * The running state for MD5 (output of the last internal block 442 * processing) is written in the buffer pointed to by `out`. The 443 * number of bytes injected since the last initialisation or reset 444 * call is returned. The context is not modified. 445 * 446 * \param ctx pointer to the context structure. 447 * \param out destination buffer for the running state. 448 * \return the injected total byte length. 449 */ 450 uint64_t br_md5_state(const br_md5_context *ctx, void *out); 451 452 /** 453 * \brief Restore MD5 running state. 454 * 455 * The running state for MD5 is set to the provided values. 456 * 457 * \param ctx pointer to the context structure. 458 * \param stb source buffer for the running state. 459 * \param count the injected total byte length. 460 */ 461 void br_md5_set_state(br_md5_context *ctx, const void *stb, uint64_t count); 462 463 /** 464 * \brief Symbolic identifier for SHA-1. 465 */ 466 #define br_sha1_ID 2 467 468 /** 469 * \brief SHA-1 output size (in bytes). 470 */ 471 #define br_sha1_SIZE 20 472 473 /** 474 * \brief Constant vtable for SHA-1. 475 */ 476 extern const br_hash_class br_sha1_vtable; 477 478 /** 479 * \brief SHA-1 context. 480 * 481 * First field is a pointer to the vtable; it is set by the initialisation 482 * function. Other fields are not supposed to be accessed by user code. 483 */ 484 typedef struct { 485 /** 486 * \brief Pointer to vtable for this context. 487 */ 488 const br_hash_class *vtable; 489 #ifndef BR_DOXYGEN_IGNORE 490 unsigned char buf[64]; 491 uint64_t count; 492 uint32_t val[5]; 493 #endif 494 } br_sha1_context; 495 496 /** 497 * \brief SHA-1 context initialisation. 498 * 499 * This function initialises or resets a context for a new SHA-1 500 * computation. It also sets the vtable pointer. 501 * 502 * \param ctx pointer to the context structure. 503 */ 504 void br_sha1_init(br_sha1_context *ctx); 505 506 /** 507 * \brief Inject some data bytes in a running SHA-1 computation. 508 * 509 * The provided context is updated with some data bytes. If the number 510 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 511 * and may be `NULL`, and this function does nothing. 512 * 513 * \param ctx pointer to the context structure. 514 * \param data pointer to the injected data. 515 * \param len injected data length (in bytes). 516 */ 517 void br_sha1_update(br_sha1_context *ctx, const void *data, size_t len); 518 519 /** 520 * \brief Compute SHA-1 output. 521 * 522 * The SHA-1 output for the concatenation of all bytes injected in the 523 * provided context since the last initialisation or reset call, is 524 * computed and written in the buffer pointed to by `out`. The context 525 * itself is not modified, so extra bytes may be injected afterwards 526 * to continue that computation. 527 * 528 * \param ctx pointer to the context structure. 529 * \param out destination buffer for the hash output. 530 */ 531 void br_sha1_out(const br_sha1_context *ctx, void *out); 532 533 /** 534 * \brief Save SHA-1 running state. 535 * 536 * The running state for SHA-1 (output of the last internal block 537 * processing) is written in the buffer pointed to by `out`. The 538 * number of bytes injected since the last initialisation or reset 539 * call is returned. The context is not modified. 540 * 541 * \param ctx pointer to the context structure. 542 * \param out destination buffer for the running state. 543 * \return the injected total byte length. 544 */ 545 uint64_t br_sha1_state(const br_sha1_context *ctx, void *out); 546 547 /** 548 * \brief Restore SHA-1 running state. 549 * 550 * The running state for SHA-1 is set to the provided values. 551 * 552 * \param ctx pointer to the context structure. 553 * \param stb source buffer for the running state. 554 * \param count the injected total byte length. 555 */ 556 void br_sha1_set_state(br_sha1_context *ctx, const void *stb, uint64_t count); 557 558 /** 559 * \brief Symbolic identifier for SHA-224. 560 */ 561 #define br_sha224_ID 3 562 563 /** 564 * \brief SHA-224 output size (in bytes). 565 */ 566 #define br_sha224_SIZE 28 567 568 /** 569 * \brief Constant vtable for SHA-224. 570 */ 571 extern const br_hash_class br_sha224_vtable; 572 573 /** 574 * \brief SHA-224 context. 575 * 576 * First field is a pointer to the vtable; it is set by the initialisation 577 * function. Other fields are not supposed to be accessed by user code. 578 */ 579 typedef struct { 580 /** 581 * \brief Pointer to vtable for this context. 582 */ 583 const br_hash_class *vtable; 584 #ifndef BR_DOXYGEN_IGNORE 585 unsigned char buf[64]; 586 uint64_t count; 587 uint32_t val[8]; 588 #endif 589 } br_sha224_context; 590 591 /** 592 * \brief SHA-224 context initialisation. 593 * 594 * This function initialises or resets a context for a new SHA-224 595 * computation. It also sets the vtable pointer. 596 * 597 * \param ctx pointer to the context structure. 598 */ 599 void br_sha224_init(br_sha224_context *ctx); 600 601 /** 602 * \brief Inject some data bytes in a running SHA-224 computation. 603 * 604 * The provided context is updated with some data bytes. If the number 605 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 606 * and may be `NULL`, and this function does nothing. 607 * 608 * \param ctx pointer to the context structure. 609 * \param data pointer to the injected data. 610 * \param len injected data length (in bytes). 611 */ 612 void br_sha224_update(br_sha224_context *ctx, const void *data, size_t len); 613 614 /** 615 * \brief Compute SHA-224 output. 616 * 617 * The SHA-224 output for the concatenation of all bytes injected in the 618 * provided context since the last initialisation or reset call, is 619 * computed and written in the buffer pointed to by `out`. The context 620 * itself is not modified, so extra bytes may be injected afterwards 621 * to continue that computation. 622 * 623 * \param ctx pointer to the context structure. 624 * \param out destination buffer for the hash output. 625 */ 626 void br_sha224_out(const br_sha224_context *ctx, void *out); 627 628 /** 629 * \brief Save SHA-224 running state. 630 * 631 * The running state for SHA-224 (output of the last internal block 632 * processing) is written in the buffer pointed to by `out`. The 633 * number of bytes injected since the last initialisation or reset 634 * call is returned. The context is not modified. 635 * 636 * \param ctx pointer to the context structure. 637 * \param out destination buffer for the running state. 638 * \return the injected total byte length. 639 */ 640 uint64_t br_sha224_state(const br_sha224_context *ctx, void *out); 641 642 /** 643 * \brief Restore SHA-224 running state. 644 * 645 * The running state for SHA-224 is set to the provided values. 646 * 647 * \param ctx pointer to the context structure. 648 * \param stb source buffer for the running state. 649 * \param count the injected total byte length. 650 */ 651 void br_sha224_set_state(br_sha224_context *ctx, 652 const void *stb, uint64_t count); 653 654 /** 655 * \brief Symbolic identifier for SHA-256. 656 */ 657 #define br_sha256_ID 4 658 659 /** 660 * \brief SHA-256 output size (in bytes). 661 */ 662 #define br_sha256_SIZE 32 663 664 /** 665 * \brief Constant vtable for SHA-256. 666 */ 667 extern const br_hash_class br_sha256_vtable; 668 669 #ifdef BR_DOXYGEN_IGNORE 670 /** 671 * \brief SHA-256 context. 672 * 673 * First field is a pointer to the vtable; it is set by the initialisation 674 * function. Other fields are not supposed to be accessed by user code. 675 */ 676 typedef struct { 677 /** 678 * \brief Pointer to vtable for this context. 679 */ 680 const br_hash_class *vtable; 681 } br_sha256_context; 682 #else 683 typedef br_sha224_context br_sha256_context; 684 #endif 685 686 /** 687 * \brief SHA-256 context initialisation. 688 * 689 * This function initialises or resets a context for a new SHA-256 690 * computation. It also sets the vtable pointer. 691 * 692 * \param ctx pointer to the context structure. 693 */ 694 void br_sha256_init(br_sha256_context *ctx); 695 696 #ifdef BR_DOXYGEN_IGNORE 697 /** 698 * \brief Inject some data bytes in a running SHA-256 computation. 699 * 700 * The provided context is updated with some data bytes. If the number 701 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 702 * and may be `NULL`, and this function does nothing. 703 * 704 * \param ctx pointer to the context structure. 705 * \param data pointer to the injected data. 706 * \param len injected data length (in bytes). 707 */ 708 void br_sha256_update(br_sha256_context *ctx, const void *data, size_t len); 709 #else 710 #define br_sha256_update br_sha224_update 711 #endif 712 713 /** 714 * \brief Compute SHA-256 output. 715 * 716 * The SHA-256 output for the concatenation of all bytes injected in the 717 * provided context since the last initialisation or reset call, is 718 * computed and written in the buffer pointed to by `out`. The context 719 * itself is not modified, so extra bytes may be injected afterwards 720 * to continue that computation. 721 * 722 * \param ctx pointer to the context structure. 723 * \param out destination buffer for the hash output. 724 */ 725 void br_sha256_out(const br_sha256_context *ctx, void *out); 726 727 #if BR_DOXYGEN_IGNORE 728 /** 729 * \brief Save SHA-256 running state. 730 * 731 * The running state for SHA-256 (output of the last internal block 732 * processing) is written in the buffer pointed to by `out`. The 733 * number of bytes injected since the last initialisation or reset 734 * call is returned. The context is not modified. 735 * 736 * \param ctx pointer to the context structure. 737 * \param out destination buffer for the running state. 738 * \return the injected total byte length. 739 */ 740 uint64_t br_sha256_state(const br_sha256_context *ctx, void *out); 741 #else 742 #define br_sha256_state br_sha224_state 743 #endif 744 745 #if BR_DOXYGEN_IGNORE 746 /** 747 * \brief Restore SHA-256 running state. 748 * 749 * The running state for SHA-256 is set to the provided values. 750 * 751 * \param ctx pointer to the context structure. 752 * \param stb source buffer for the running state. 753 * \param count the injected total byte length. 754 */ 755 void br_sha256_set_state(br_sha256_context *ctx, 756 const void *stb, uint64_t count); 757 #else 758 #define br_sha256_set_state br_sha224_set_state 759 #endif 760 761 /** 762 * \brief Symbolic identifier for SHA-384. 763 */ 764 #define br_sha384_ID 5 765 766 /** 767 * \brief SHA-384 output size (in bytes). 768 */ 769 #define br_sha384_SIZE 48 770 771 /** 772 * \brief Constant vtable for SHA-384. 773 */ 774 extern const br_hash_class br_sha384_vtable; 775 776 /** 777 * \brief SHA-384 context. 778 * 779 * First field is a pointer to the vtable; it is set by the initialisation 780 * function. Other fields are not supposed to be accessed by user code. 781 */ 782 typedef struct { 783 /** 784 * \brief Pointer to vtable for this context. 785 */ 786 const br_hash_class *vtable; 787 #ifndef BR_DOXYGEN_IGNORE 788 unsigned char buf[128]; 789 uint64_t count; 790 uint64_t val[8]; 791 #endif 792 } br_sha384_context; 793 794 /** 795 * \brief SHA-384 context initialisation. 796 * 797 * This function initialises or resets a context for a new SHA-384 798 * computation. It also sets the vtable pointer. 799 * 800 * \param ctx pointer to the context structure. 801 */ 802 void br_sha384_init(br_sha384_context *ctx); 803 804 /** 805 * \brief Inject some data bytes in a running SHA-384 computation. 806 * 807 * The provided context is updated with some data bytes. If the number 808 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 809 * and may be `NULL`, and this function does nothing. 810 * 811 * \param ctx pointer to the context structure. 812 * \param data pointer to the injected data. 813 * \param len injected data length (in bytes). 814 */ 815 void br_sha384_update(br_sha384_context *ctx, const void *data, size_t len); 816 817 /** 818 * \brief Compute SHA-384 output. 819 * 820 * The SHA-384 output for the concatenation of all bytes injected in the 821 * provided context since the last initialisation or reset call, is 822 * computed and written in the buffer pointed to by `out`. The context 823 * itself is not modified, so extra bytes may be injected afterwards 824 * to continue that computation. 825 * 826 * \param ctx pointer to the context structure. 827 * \param out destination buffer for the hash output. 828 */ 829 void br_sha384_out(const br_sha384_context *ctx, void *out); 830 831 /** 832 * \brief Save SHA-384 running state. 833 * 834 * The running state for SHA-384 (output of the last internal block 835 * processing) is written in the buffer pointed to by `out`. The 836 * number of bytes injected since the last initialisation or reset 837 * call is returned. The context is not modified. 838 * 839 * \param ctx pointer to the context structure. 840 * \param out destination buffer for the running state. 841 * \return the injected total byte length. 842 */ 843 uint64_t br_sha384_state(const br_sha384_context *ctx, void *out); 844 845 /** 846 * \brief Restore SHA-384 running state. 847 * 848 * The running state for SHA-384 is set to the provided values. 849 * 850 * \param ctx pointer to the context structure. 851 * \param stb source buffer for the running state. 852 * \param count the injected total byte length. 853 */ 854 void br_sha384_set_state(br_sha384_context *ctx, 855 const void *stb, uint64_t count); 856 857 /** 858 * \brief Symbolic identifier for SHA-512. 859 */ 860 #define br_sha512_ID 6 861 862 /** 863 * \brief SHA-512 output size (in bytes). 864 */ 865 #define br_sha512_SIZE 64 866 867 /** 868 * \brief Constant vtable for SHA-512. 869 */ 870 extern const br_hash_class br_sha512_vtable; 871 872 #ifdef BR_DOXYGEN_IGNORE 873 /** 874 * \brief SHA-512 context. 875 * 876 * First field is a pointer to the vtable; it is set by the initialisation 877 * function. Other fields are not supposed to be accessed by user code. 878 */ 879 typedef struct { 880 /** 881 * \brief Pointer to vtable for this context. 882 */ 883 const br_hash_class *vtable; 884 } br_sha512_context; 885 #else 886 typedef br_sha384_context br_sha512_context; 887 #endif 888 889 /** 890 * \brief SHA-512 context initialisation. 891 * 892 * This function initialises or resets a context for a new SHA-512 893 * computation. It also sets the vtable pointer. 894 * 895 * \param ctx pointer to the context structure. 896 */ 897 void br_sha512_init(br_sha512_context *ctx); 898 899 #ifdef BR_DOXYGEN_IGNORE 900 /** 901 * \brief Inject some data bytes in a running SHA-512 computation. 902 * 903 * The provided context is updated with some data bytes. If the number 904 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 905 * and may be `NULL`, and this function does nothing. 906 * 907 * \param ctx pointer to the context structure. 908 * \param data pointer to the injected data. 909 * \param len injected data length (in bytes). 910 */ 911 void br_sha512_update(br_sha512_context *ctx, const void *data, size_t len); 912 #else 913 #define br_sha512_update br_sha384_update 914 #endif 915 916 /** 917 * \brief Compute SHA-512 output. 918 * 919 * The SHA-512 output for the concatenation of all bytes injected in the 920 * provided context since the last initialisation or reset call, is 921 * computed and written in the buffer pointed to by `out`. The context 922 * itself is not modified, so extra bytes may be injected afterwards 923 * to continue that computation. 924 * 925 * \param ctx pointer to the context structure. 926 * \param out destination buffer for the hash output. 927 */ 928 void br_sha512_out(const br_sha512_context *ctx, void *out); 929 930 #ifdef BR_DOXYGEN_IGNORE 931 /** 932 * \brief Save SHA-512 running state. 933 * 934 * The running state for SHA-512 (output of the last internal block 935 * processing) is written in the buffer pointed to by `out`. The 936 * number of bytes injected since the last initialisation or reset 937 * call is returned. The context is not modified. 938 * 939 * \param ctx pointer to the context structure. 940 * \param out destination buffer for the running state. 941 * \return the injected total byte length. 942 */ 943 uint64_t br_sha512_state(const br_sha512_context *ctx, void *out); 944 #else 945 #define br_sha512_state br_sha384_state 946 #endif 947 948 #ifdef BR_DOXYGEN_IGNORE 949 /** 950 * \brief Restore SHA-512 running state. 951 * 952 * The running state for SHA-512 is set to the provided values. 953 * 954 * \param ctx pointer to the context structure. 955 * \param stb source buffer for the running state. 956 * \param count the injected total byte length. 957 */ 958 void br_sha512_set_state(br_sha512_context *ctx, 959 const void *stb, uint64_t count); 960 #else 961 #define br_sha512_set_state br_sha384_set_state 962 #endif 963 964 /* 965 * "md5sha1" is a special hash function that computes both MD5 and SHA-1 966 * on the same input, and produces a 36-byte output (MD5 and SHA-1 967 * concatenation, in that order). State size is also 36 bytes. 968 */ 969 970 /** 971 * \brief Symbolic identifier for MD5+SHA-1. 972 * 973 * MD5+SHA-1 is the concatenation of MD5 and SHA-1, computed over the 974 * same input. It is not one of the functions identified in TLS, so 975 * we give it a symbolic identifier of value 0. 976 */ 977 #define br_md5sha1_ID 0 978 979 /** 980 * \brief MD5+SHA-1 output size (in bytes). 981 */ 982 #define br_md5sha1_SIZE 36 983 984 /** 985 * \brief Constant vtable for MD5+SHA-1. 986 */ 987 extern const br_hash_class br_md5sha1_vtable; 988 989 /** 990 * \brief MD5+SHA-1 context. 991 * 992 * First field is a pointer to the vtable; it is set by the initialisation 993 * function. Other fields are not supposed to be accessed by user code. 994 */ 995 typedef struct { 996 /** 997 * \brief Pointer to vtable for this context. 998 */ 999 const br_hash_class *vtable; 1000 #ifndef BR_DOXYGEN_IGNORE 1001 unsigned char buf[64]; 1002 uint64_t count; 1003 uint32_t val_md5[4]; 1004 uint32_t val_sha1[5]; 1005 #endif 1006 } br_md5sha1_context; 1007 1008 /** 1009 * \brief MD5+SHA-1 context initialisation. 1010 * 1011 * This function initialises or resets a context for a new SHA-512 1012 * computation. It also sets the vtable pointer. 1013 * 1014 * \param ctx pointer to the context structure. 1015 */ 1016 void br_md5sha1_init(br_md5sha1_context *ctx); 1017 1018 /** 1019 * \brief Inject some data bytes in a running MD5+SHA-1 computation. 1020 * 1021 * The provided context is updated with some data bytes. If the number 1022 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 1023 * and may be `NULL`, and this function does nothing. 1024 * 1025 * \param ctx pointer to the context structure. 1026 * \param data pointer to the injected data. 1027 * \param len injected data length (in bytes). 1028 */ 1029 void br_md5sha1_update(br_md5sha1_context *ctx, const void *data, size_t len); 1030 1031 /** 1032 * \brief Compute MD5+SHA-1 output. 1033 * 1034 * The MD5+SHA-1 output for the concatenation of all bytes injected in the 1035 * provided context since the last initialisation or reset call, is 1036 * computed and written in the buffer pointed to by `out`. The context 1037 * itself is not modified, so extra bytes may be injected afterwards 1038 * to continue that computation. 1039 * 1040 * \param ctx pointer to the context structure. 1041 * \param out destination buffer for the hash output. 1042 */ 1043 void br_md5sha1_out(const br_md5sha1_context *ctx, void *out); 1044 1045 /** 1046 * \brief Save MD5+SHA-1 running state. 1047 * 1048 * The running state for MD5+SHA-1 (output of the last internal block 1049 * processing) is written in the buffer pointed to by `out`. The 1050 * number of bytes injected since the last initialisation or reset 1051 * call is returned. The context is not modified. 1052 * 1053 * \param ctx pointer to the context structure. 1054 * \param out destination buffer for the running state. 1055 * \return the injected total byte length. 1056 */ 1057 uint64_t br_md5sha1_state(const br_md5sha1_context *ctx, void *out); 1058 1059 /** 1060 * \brief Restore MD5+SHA-1 running state. 1061 * 1062 * The running state for MD5+SHA-1 is set to the provided values. 1063 * 1064 * \param ctx pointer to the context structure. 1065 * \param stb source buffer for the running state. 1066 * \param count the injected total byte length. 1067 */ 1068 void br_md5sha1_set_state(br_md5sha1_context *ctx, 1069 const void *stb, uint64_t count); 1070 1071 /** 1072 * \brief Aggregate context for configurable hash function support. 1073 * 1074 * The `br_hash_compat_context` type is a type which is large enough to 1075 * serve as context for all standard hash functions defined above. 1076 */ 1077 typedef union { 1078 const br_hash_class *vtable; 1079 br_md5_context md5; 1080 br_sha1_context sha1; 1081 br_sha224_context sha224; 1082 br_sha256_context sha256; 1083 br_sha384_context sha384; 1084 br_sha512_context sha512; 1085 br_md5sha1_context md5sha1; 1086 } br_hash_compat_context; 1087 1088 /* 1089 * The multi-hasher is a construct that handles hashing of the same input 1090 * data with several hash functions, with a single shared input buffer. 1091 * It can handle MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 1092 * simultaneously, though which functions are activated depends on 1093 * the set implementation pointers. 1094 */ 1095 1096 /** 1097 * \brief Multi-hasher context structure. 1098 * 1099 * The multi-hasher runs up to six hash functions in the standard TLS list 1100 * (MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512) in parallel, over 1101 * the same input. 1102 * 1103 * The multi-hasher does _not_ follow the OOP structure with a vtable. 1104 * Instead, it is configured with the vtables of the hash functions it 1105 * should run. Structure fields are not supposed to be accessed directly. 1106 */ 1107 typedef struct { 1108 #ifndef BR_DOXYGEN_IGNORE 1109 unsigned char buf[128]; 1110 uint64_t count; 1111 uint32_t val_32[25]; 1112 uint64_t val_64[16]; 1113 const br_hash_class *impl[6]; 1114 #endif 1115 } br_multihash_context; 1116 1117 /** 1118 * \brief Clear a multi-hasher context. 1119 * 1120 * This should always be called once on a given context, _before_ setting 1121 * the implementation pointers. 1122 * 1123 * \param ctx the multi-hasher context. 1124 */ 1125 void br_multihash_zero(br_multihash_context *ctx); 1126 1127 /** 1128 * \brief Set a hash function implementation. 1129 * 1130 * Implementations shall be set _after_ clearing the context (with 1131 * `br_multihash_zero()`) but _before_ initialising the computation 1132 * (with `br_multihash_init()`). The hash function implementation 1133 * MUST be one of the standard hash functions (MD5, SHA-1, SHA-224, 1134 * SHA-256, SHA-384 or SHA-512); it may also be `NULL` to remove 1135 * an implementation from the multi-hasher. 1136 * 1137 * \param ctx the multi-hasher context. 1138 * \param id the hash function symbolic identifier. 1139 * \param impl the hash function vtable, or `NULL`. 1140 */ 1141 static inline void 1142 br_multihash_setimpl(br_multihash_context *ctx, 1143 int id, const br_hash_class *impl) 1144 { 1145 /* 1146 * This code relies on hash functions ID being values 1 to 6, 1147 * in the MD5 to SHA-512 order. 1148 */ 1149 ctx->impl[id - 1] = impl; 1150 } 1151 1152 /** 1153 * \brief Get a hash function implementation. 1154 * 1155 * This function returns the currently configured vtable for a given 1156 * hash function (by symbolic ID). If no such function was configured in 1157 * the provided multi-hasher context, then this function returns `NULL`. 1158 * 1159 * \param ctx the multi-hasher context. 1160 * \param id the hash function symbolic identifier. 1161 * \return the hash function vtable, or `NULL`. 1162 */ 1163 static inline const br_hash_class * 1164 br_multihash_getimpl(const br_multihash_context *ctx, int id) 1165 { 1166 return ctx->impl[id - 1]; 1167 } 1168 1169 /** 1170 * \brief Reset a multi-hasher context. 1171 * 1172 * This function prepares the context for a new hashing computation, 1173 * for all implementations configured at that point. 1174 * 1175 * \param ctx the multi-hasher context. 1176 */ 1177 void br_multihash_init(br_multihash_context *ctx); 1178 1179 /** 1180 * \brief Inject some data bytes in a running multi-hashing computation. 1181 * 1182 * The provided context is updated with some data bytes. If the number 1183 * of bytes (`len`) is zero, then the data pointer (`data`) is ignored 1184 * and may be `NULL`, and this function does nothing. 1185 * 1186 * \param ctx pointer to the context structure. 1187 * \param data pointer to the injected data. 1188 * \param len injected data length (in bytes). 1189 */ 1190 void br_multihash_update(br_multihash_context *ctx, 1191 const void *data, size_t len); 1192 1193 /** 1194 * \brief Compute a hash output from a multi-hasher. 1195 * 1196 * The hash output for the concatenation of all bytes injected in the 1197 * provided context since the last initialisation or reset call, is 1198 * computed and written in the buffer pointed to by `dst`. The hash 1199 * function to use is identified by `id` and must be one of the standard 1200 * hash functions. If that hash function was indeed configured in the 1201 * multi-hasher context, the corresponding hash value is written in 1202 * `dst` and its length (in bytes) is returned. If the hash function 1203 * was _not_ configured, then nothing is written in `dst` and 0 is 1204 * returned. 1205 * 1206 * The context itself is not modified, so extra bytes may be injected 1207 * afterwards to continue the hash computations. 1208 * 1209 * \param ctx pointer to the context structure. 1210 * \param id the hash function symbolic identifier. 1211 * \param dst destination buffer for the hash output. 1212 * \return the hash output length (in bytes), or 0. 1213 */ 1214 size_t br_multihash_out(const br_multihash_context *ctx, int id, void *dst); 1215 1216 /** 1217 * \brief Type for a GHASH implementation. 1218 * 1219 * GHASH is a sort of keyed hash meant to be used to implement GCM in 1220 * combination with a block cipher (with 16-byte blocks). 1221 * 1222 * The `y` array has length 16 bytes and is used for input and output; in 1223 * a complete GHASH run, it starts with an all-zero value. `h` is a 16-byte 1224 * value that serves as key (it is derived from the encryption key in GCM, 1225 * using the block cipher). The data length (`len`) is expressed in bytes. 1226 * The `y` array is updated. 1227 * 1228 * If the data length is not a multiple of 16, then the data is implicitly 1229 * padded with zeros up to the next multiple of 16. Thus, when using GHASH 1230 * in GCM, this method may be called twice, for the associated data and 1231 * for the ciphertext, respectively; the zero-padding implements exactly 1232 * the GCM rules. 1233 * 1234 * \param y the array to update. 1235 * \param h the GHASH key. 1236 * \param data the input data (may be `NULL` if `len` is zero). 1237 * \param len the input data length (in bytes). 1238 */ 1239 typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len); 1240 1241 /** 1242 * \brief GHASH implementation using multiplications (mixed 32-bit). 1243 * 1244 * This implementation uses multiplications of 32-bit values, with a 1245 * 64-bit result. It is constant-time (if multiplications are 1246 * constant-time). 1247 * 1248 * \param y the array to update. 1249 * \param h the GHASH key. 1250 * \param data the input data (may be `NULL` if `len` is zero). 1251 * \param len the input data length (in bytes). 1252 */ 1253 void br_ghash_ctmul(void *y, const void *h, const void *data, size_t len); 1254 1255 /** 1256 * \brief GHASH implementation using multiplications (strict 32-bit). 1257 * 1258 * This implementation uses multiplications of 32-bit values, with a 1259 * 32-bit result. It is usually somewhat slower than `br_ghash_ctmul()`, 1260 * but it is expected to be faster on architectures for which the 1261 * 32-bit multiplication opcode does not yield the upper 32 bits of the 1262 * product. It is constant-time (if multiplications are constant-time). 1263 * 1264 * \param y the array to update. 1265 * \param h the GHASH key. 1266 * \param data the input data (may be `NULL` if `len` is zero). 1267 * \param len the input data length (in bytes). 1268 */ 1269 void br_ghash_ctmul32(void *y, const void *h, const void *data, size_t len); 1270 1271 /** 1272 * \brief GHASH implementation using multiplications (64-bit). 1273 * 1274 * This implementation uses multiplications of 64-bit values, with a 1275 * 64-bit result. It is constant-time (if multiplications are 1276 * constant-time). It is substantially faster than `br_ghash_ctmul()` 1277 * and `br_ghash_ctmul32()` on most 64-bit architectures. 1278 * 1279 * \param y the array to update. 1280 * \param h the GHASH key. 1281 * \param data the input data (may be `NULL` if `len` is zero). 1282 * \param len the input data length (in bytes). 1283 */ 1284 void br_ghash_ctmul64(void *y, const void *h, const void *data, size_t len); 1285 1286 /** 1287 * \brief GHASH implementation using the `pclmulqdq` opcode (part of the 1288 * AES-NI instructions). 1289 * 1290 * This implementation is available only on x86 platforms where the 1291 * compiler supports the relevant intrinsic functions. Even if the 1292 * compiler supports these functions, the local CPU might not support 1293 * the `pclmulqdq` opcode, meaning that a call will fail with an 1294 * illegal instruction exception. To safely obtain a pointer to this 1295 * function when supported (or 0 otherwise), use `br_ghash_pclmul_get()`. 1296 * 1297 * \param y the array to update. 1298 * \param h the GHASH key. 1299 * \param data the input data (may be `NULL` if `len` is zero). 1300 * \param len the input data length (in bytes). 1301 */ 1302 void br_ghash_pclmul(void *y, const void *h, const void *data, size_t len); 1303 1304 /** 1305 * \brief Obtain the `pclmul` GHASH implementation, if available. 1306 * 1307 * If the `pclmul` implementation was compiled in the library (depending 1308 * on the compiler abilities) _and_ the local CPU appears to support the 1309 * opcode, then this function will return a pointer to the 1310 * `br_ghash_pclmul()` function. Otherwise, it will return `0`. 1311 * 1312 * \return the `pclmul` GHASH implementation, or `0`. 1313 */ 1314 br_ghash br_ghash_pclmul_get(void); 1315 1316 /** 1317 * \brief GHASH implementation using the POWER8 opcodes. 1318 * 1319 * This implementation is available only on POWER8 platforms (and later). 1320 * To safely obtain a pointer to this function when supported (or 0 1321 * otherwise), use `br_ghash_pwr8_get()`. 1322 * 1323 * \param y the array to update. 1324 * \param h the GHASH key. 1325 * \param data the input data (may be `NULL` if `len` is zero). 1326 * \param len the input data length (in bytes). 1327 */ 1328 void br_ghash_pwr8(void *y, const void *h, const void *data, size_t len); 1329 1330 /** 1331 * \brief Obtain the `pwr8` GHASH implementation, if available. 1332 * 1333 * If the `pwr8` implementation was compiled in the library (depending 1334 * on the compiler abilities) _and_ the local CPU appears to support the 1335 * opcode, then this function will return a pointer to the 1336 * `br_ghash_pwr8()` function. Otherwise, it will return `0`. 1337 * 1338 * \return the `pwr8` GHASH implementation, or `0`. 1339 */ 1340 br_ghash br_ghash_pwr8_get(void); 1341 1342 #ifdef __cplusplus 1343 } 1344 #endif 1345 1346 #endif 1347