1 /* 2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining 5 * a copy of this software and associated documentation files (the 6 * "Software"), to deal in the Software without restriction, including 7 * without limitation the rights to use, copy, modify, merge, publish, 8 * distribute, sublicense, and/or sell copies of the Software, and to 9 * permit persons to whom the Software is furnished to do so, subject to 10 * the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be 13 * included in all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #ifndef BR_BEARSSL_EC_H__ 26 #define BR_BEARSSL_EC_H__ 27 28 #include <stddef.h> 29 #include <stdint.h> 30 31 #include "bearssl_rand.h" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 /** \file bearssl_ec.h 38 * 39 * # Elliptic Curves 40 * 41 * This file documents the EC implementations provided with BearSSL, and 42 * ECDSA. 43 * 44 * ## Elliptic Curve API 45 * 46 * Only "named curves" are supported. Each EC implementation supports 47 * one or several named curves, identified by symbolic identifiers. 48 * These identifiers are small integers, that correspond to the values 49 * registered by the 50 * [IANA](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8). 51 * 52 * Since all currently defined elliptic curve identifiers are in the 0..31 53 * range, it is convenient to encode support of some curves in a 32-bit 54 * word, such that bit x corresponds to curve of identifier x. 55 * 56 * An EC implementation is incarnated by a `br_ec_impl` instance, that 57 * offers the following fields: 58 * 59 * - `supported_curves` 60 * 61 * A 32-bit word that documents the identifiers of the curves supported 62 * by this implementation. 63 * 64 * - `generator()` 65 * 66 * Callback method that returns a pointer to the conventional generator 67 * point for that curve. 68 * 69 * - `order()` 70 * 71 * Callback method that returns a pointer to the subgroup order for 72 * that curve. That value uses unsigned big-endian encoding. 73 * 74 * - `xoff()` 75 * 76 * Callback method that returns the offset and length of the X 77 * coordinate in an encoded point. 78 * 79 * - `mul()` 80 * 81 * Multiply a curve point with an integer. 82 * 83 * - `mulgen()` 84 * 85 * Multiply the curve generator with an integer. This may be faster 86 * than the generic `mul()`. 87 * 88 * - `muladd()` 89 * 90 * Multiply two curve points by two integers, and return the sum of 91 * the two products. 92 * 93 * All curve points are represented in uncompressed format. The `mul()` 94 * and `muladd()` methods take care to validate that the provided points 95 * are really part of the relevant curve subgroup. 96 * 97 * For all point multiplication functions, the following holds: 98 * 99 * - Functions validate that the provided points are valid members 100 * of the relevant curve subgroup. An error is reported if that is 101 * not the case. 102 * 103 * - Processing is constant-time, even if the point operands are not 104 * valid. This holds for both the source and resulting points, and 105 * the multipliers (integers). Only the byte length of the provided 106 * multiplier arrays (not their actual value length in bits) may 107 * leak through timing-based side channels. 108 * 109 * - The multipliers (integers) MUST be lower than the subgroup order. 110 * If this property is not met, then the result is indeterminate, 111 * but an error value is not necessarily returned. 112 * 113 * 114 * ## ECDSA 115 * 116 * ECDSA signatures have two standard formats, called "raw" and "asn1". 117 * Internally, such a signature is a pair of modular integers `(r,s)`. 118 * The "raw" format is the concatenation of the unsigned big-endian 119 * encodings of these two integers, possibly left-padded with zeros so 120 * that they have the same encoded length. The "asn1" format is the 121 * DER encoding of an ASN.1 structure that contains the two integer 122 * values: 123 * 124 * ECDSASignature ::= SEQUENCE { 125 * r INTEGER, 126 * s INTEGER 127 * } 128 * 129 * In general, in all of X.509 and SSL/TLS, the "asn1" format is used. 130 * BearSSL offers ECDSA implementations for both formats; conversion 131 * functions between the two formats are also provided. Conversion of a 132 * "raw" format signature into "asn1" may enlarge a signature by no more 133 * than 9 bytes for all supported curves; conversely, conversion of an 134 * "asn1" signature to "raw" may expand the signature but the "raw" 135 * length will never be more than twice the length of the "asn1" length 136 * (and usually it will be shorter). 137 * 138 * Note that for a given signature, the "raw" format is not fully 139 * deterministic, in that it does not enforce a minimal common length. 140 */ 141 142 /* 143 * Standard curve ID. These ID are equal to the assigned numerical 144 * identifiers assigned to these curves for TLS: 145 * http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 146 */ 147 148 /** \brief Identifier for named curve sect163k1. */ 149 #define BR_EC_sect163k1 1 150 151 /** \brief Identifier for named curve sect163r1. */ 152 #define BR_EC_sect163r1 2 153 154 /** \brief Identifier for named curve sect163r2. */ 155 #define BR_EC_sect163r2 3 156 157 /** \brief Identifier for named curve sect193r1. */ 158 #define BR_EC_sect193r1 4 159 160 /** \brief Identifier for named curve sect193r2. */ 161 #define BR_EC_sect193r2 5 162 163 /** \brief Identifier for named curve sect233k1. */ 164 #define BR_EC_sect233k1 6 165 166 /** \brief Identifier for named curve sect233r1. */ 167 #define BR_EC_sect233r1 7 168 169 /** \brief Identifier for named curve sect239k1. */ 170 #define BR_EC_sect239k1 8 171 172 /** \brief Identifier for named curve sect283k1. */ 173 #define BR_EC_sect283k1 9 174 175 /** \brief Identifier for named curve sect283r1. */ 176 #define BR_EC_sect283r1 10 177 178 /** \brief Identifier for named curve sect409k1. */ 179 #define BR_EC_sect409k1 11 180 181 /** \brief Identifier for named curve sect409r1. */ 182 #define BR_EC_sect409r1 12 183 184 /** \brief Identifier for named curve sect571k1. */ 185 #define BR_EC_sect571k1 13 186 187 /** \brief Identifier for named curve sect571r1. */ 188 #define BR_EC_sect571r1 14 189 190 /** \brief Identifier for named curve secp160k1. */ 191 #define BR_EC_secp160k1 15 192 193 /** \brief Identifier for named curve secp160r1. */ 194 #define BR_EC_secp160r1 16 195 196 /** \brief Identifier for named curve secp160r2. */ 197 #define BR_EC_secp160r2 17 198 199 /** \brief Identifier for named curve secp192k1. */ 200 #define BR_EC_secp192k1 18 201 202 /** \brief Identifier for named curve secp192r1. */ 203 #define BR_EC_secp192r1 19 204 205 /** \brief Identifier for named curve secp224k1. */ 206 #define BR_EC_secp224k1 20 207 208 /** \brief Identifier for named curve secp224r1. */ 209 #define BR_EC_secp224r1 21 210 211 /** \brief Identifier for named curve secp256k1. */ 212 #define BR_EC_secp256k1 22 213 214 /** \brief Identifier for named curve secp256r1. */ 215 #define BR_EC_secp256r1 23 216 217 /** \brief Identifier for named curve secp384r1. */ 218 #define BR_EC_secp384r1 24 219 220 /** \brief Identifier for named curve secp521r1. */ 221 #define BR_EC_secp521r1 25 222 223 /** \brief Identifier for named curve brainpoolP256r1. */ 224 #define BR_EC_brainpoolP256r1 26 225 226 /** \brief Identifier for named curve brainpoolP384r1. */ 227 #define BR_EC_brainpoolP384r1 27 228 229 /** \brief Identifier for named curve brainpoolP512r1. */ 230 #define BR_EC_brainpoolP512r1 28 231 232 /** \brief Identifier for named curve Curve25519. */ 233 #define BR_EC_curve25519 29 234 235 /** \brief Identifier for named curve Curve448. */ 236 #define BR_EC_curve448 30 237 238 /** 239 * \brief Structure for an EC public key. 240 */ 241 typedef struct { 242 /** \brief Identifier for the curve used by this key. */ 243 int curve; 244 /** \brief Public curve point (uncompressed format). */ 245 unsigned char *q; 246 /** \brief Length of public curve point (in bytes). */ 247 size_t qlen; 248 } br_ec_public_key; 249 250 /** 251 * \brief Structure for an EC private key. 252 * 253 * The private key is an integer modulo the curve subgroup order. The 254 * encoding below tolerates extra leading zeros. In general, it is 255 * recommended that the private key has the same length as the curve 256 * subgroup order. 257 */ 258 typedef struct { 259 /** \brief Identifier for the curve used by this key. */ 260 int curve; 261 /** \brief Private key (integer, unsigned big-endian encoding). */ 262 unsigned char *x; 263 /** \brief Private key length (in bytes). */ 264 size_t xlen; 265 } br_ec_private_key; 266 267 /** 268 * \brief Type for an EC implementation. 269 */ 270 typedef struct { 271 /** 272 * \brief Supported curves. 273 * 274 * This word is a bitfield: bit `x` is set if the curve of ID `x` 275 * is supported. E.g. an implementation supporting both NIST P-256 276 * (secp256r1, ID 23) and NIST P-384 (secp384r1, ID 24) will have 277 * value `0x01800000` in this field. 278 */ 279 uint32_t supported_curves; 280 281 /** 282 * \brief Get the conventional generator. 283 * 284 * This function returns the conventional generator (encoded 285 * curve point) for the specified curve. This function MUST NOT 286 * be called if the curve is not supported. 287 * 288 * \param curve curve identifier. 289 * \param len receiver for the encoded generator length (in bytes). 290 * \return the encoded generator. 291 */ 292 const unsigned char *(*generator)(int curve, size_t *len); 293 294 /** 295 * \brief Get the subgroup order. 296 * 297 * This function returns the order of the subgroup generated by 298 * the conventional generator, for the specified curve. Unsigned 299 * big-endian encoding is used. This function MUST NOT be called 300 * if the curve is not supported. 301 * 302 * \param curve curve identifier. 303 * \param len receiver for the encoded order length (in bytes). 304 * \return the encoded order. 305 */ 306 const unsigned char *(*order)(int curve, size_t *len); 307 308 /** 309 * \brief Get the offset and length for the X coordinate. 310 * 311 * This function returns the offset and length (in bytes) of 312 * the X coordinate in an encoded non-zero point. 313 * 314 * \param curve curve identifier. 315 * \param len receiver for the X coordinate length (in bytes). 316 * \return the offset for the X coordinate (in bytes). 317 */ 318 size_t (*xoff)(int curve, size_t *len); 319 320 /** 321 * \brief Multiply a curve point by an integer. 322 * 323 * The source point is provided in array `G` (of size `Glen` bytes); 324 * the multiplication result is written over it. The multiplier 325 * `x` (of size `xlen` bytes) uses unsigned big-endian encoding. 326 * 327 * Rules: 328 * 329 * - The specified curve MUST be supported. 330 * 331 * - The source point must be a valid point on the relevant curve 332 * subgroup (and not the "point at infinity" either). If this is 333 * not the case, then this function returns an error (0). 334 * 335 * - The multiplier integer MUST be non-zero and less than the 336 * curve subgroup order. If this property does not hold, then 337 * the result is indeterminate and an error code is not 338 * guaranteed. 339 * 340 * Returned value is 1 on success, 0 on error. On error, the 341 * contents of `G` are indeterminate. 342 * 343 * \param G point to multiply. 344 * \param Glen length of the encoded point (in bytes). 345 * \param x multiplier (unsigned big-endian). 346 * \param xlen multiplier length (in bytes). 347 * \param curve curve identifier. 348 * \return 1 on success, 0 on error. 349 */ 350 uint32_t (*mul)(unsigned char *G, size_t Glen, 351 const unsigned char *x, size_t xlen, int curve); 352 353 /** 354 * \brief Multiply the generator by an integer. 355 * 356 * The multiplier MUST be non-zero and less than the curve 357 * subgroup order. Results are indeterminate if this property 358 * does not hold. 359 * 360 * \param R output buffer for the point. 361 * \param x multiplier (unsigned big-endian). 362 * \param xlen multiplier length (in bytes). 363 * \param curve curve identifier. 364 * \return encoded result point length (in bytes). 365 */ 366 size_t (*mulgen)(unsigned char *R, 367 const unsigned char *x, size_t xlen, int curve); 368 369 /** 370 * \brief Multiply two points by two integers and add the 371 * results. 372 * 373 * The point `x*A + y*B` is computed and written back in the `A` 374 * array. 375 * 376 * Rules: 377 * 378 * - The specified curve MUST be supported. 379 * 380 * - The source points (`A` and `B`) must be valid points on 381 * the relevant curve subgroup (and not the "point at 382 * infinity" either). If this is not the case, then this 383 * function returns an error (0). 384 * 385 * - If the `B` pointer is `NULL`, then the conventional 386 * subgroup generator is used. With some implementations, 387 * this may be faster than providing a pointer to the 388 * generator. 389 * 390 * - The multiplier integers (`x` and `y`) MUST be non-zero 391 * and less than the curve subgroup order. If either integer 392 * is zero, then an error is reported, but if one of them is 393 * not lower than the subgroup order, then the result is 394 * indeterminate and an error code is not guaranteed. 395 * 396 * - If the final result is the point at infinity, then an 397 * error is returned. 398 * 399 * Returned value is 1 on success, 0 on error. On error, the 400 * contents of `A` are indeterminate. 401 * 402 * \param A first point to multiply. 403 * \param B second point to multiply (`NULL` for the generator). 404 * \param len common length of the encoded points (in bytes). 405 * \param x multiplier for `A` (unsigned big-endian). 406 * \param xlen length of multiplier for `A` (in bytes). 407 * \param y multiplier for `A` (unsigned big-endian). 408 * \param ylen length of multiplier for `A` (in bytes). 409 * \param curve curve identifier. 410 * \return 1 on success, 0 on error. 411 */ 412 uint32_t (*muladd)(unsigned char *A, const unsigned char *B, size_t len, 413 const unsigned char *x, size_t xlen, 414 const unsigned char *y, size_t ylen, int curve); 415 } br_ec_impl; 416 417 /** 418 * \brief EC implementation "i31". 419 * 420 * This implementation internally uses generic code for modular integers, 421 * with a representation as sequences of 31-bit words. It supports secp256r1, 422 * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521). 423 */ 424 extern const br_ec_impl br_ec_prime_i31; 425 426 /** 427 * \brief EC implementation "i15". 428 * 429 * This implementation internally uses generic code for modular integers, 430 * with a representation as sequences of 15-bit words. It supports secp256r1, 431 * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521). 432 */ 433 extern const br_ec_impl br_ec_prime_i15; 434 435 /** 436 * \brief EC implementation "m15" for P-256. 437 * 438 * This implementation uses specialised code for curve secp256r1 (also 439 * known as NIST P-256), with optional Karatsuba decomposition, and fast 440 * modular reduction thanks to the field modulus special format. Only 441 * 32-bit multiplications are used (with 32-bit results, not 64-bit). 442 */ 443 extern const br_ec_impl br_ec_p256_m15; 444 445 /** 446 * \brief EC implementation "m31" for P-256. 447 * 448 * This implementation uses specialised code for curve secp256r1 (also 449 * known as NIST P-256), relying on multiplications of 31-bit values 450 * (MUL31). 451 */ 452 extern const br_ec_impl br_ec_p256_m31; 453 454 /** 455 * \brief EC implementation "m62" (specialised code) for P-256. 456 * 457 * This implementation uses custom code relying on multiplication of 458 * integers up to 64 bits, with a 128-bit result. This implementation is 459 * defined only on platforms that offer the 64x64->128 multiplication 460 * support; use `br_ec_p256_m62_get()` to dynamically obtain a pointer 461 * to that implementation. 462 */ 463 extern const br_ec_impl br_ec_p256_m62; 464 465 /** 466 * \brief Get the "m62" implementation of P-256, if available. 467 * 468 * \return the implementation, or 0. 469 */ 470 const br_ec_impl *br_ec_p256_m62_get(void); 471 472 /** 473 * \brief EC implementation "m64" (specialised code) for P-256. 474 * 475 * This implementation uses custom code relying on multiplication of 476 * integers up to 64 bits, with a 128-bit result. This implementation is 477 * defined only on platforms that offer the 64x64->128 multiplication 478 * support; use `br_ec_p256_m64_get()` to dynamically obtain a pointer 479 * to that implementation. 480 */ 481 extern const br_ec_impl br_ec_p256_m64; 482 483 /** 484 * \brief Get the "m64" implementation of P-256, if available. 485 * 486 * \return the implementation, or 0. 487 */ 488 const br_ec_impl *br_ec_p256_m64_get(void); 489 490 /** 491 * \brief EC implementation "i15" (generic code) for Curve25519. 492 * 493 * This implementation uses the generic code for modular integers (with 494 * 15-bit words) to support Curve25519. Due to the specificities of the 495 * curve definition, the following applies: 496 * 497 * - `muladd()` is not implemented (the function returns 0 systematically). 498 * - `order()` returns 2^255-1, since the point multiplication algorithm 499 * accepts any 32-bit integer as input (it clears the top bit and low 500 * three bits systematically). 501 */ 502 extern const br_ec_impl br_ec_c25519_i15; 503 504 /** 505 * \brief EC implementation "i31" (generic code) for Curve25519. 506 * 507 * This implementation uses the generic code for modular integers (with 508 * 31-bit words) to support Curve25519. Due to the specificities of the 509 * curve definition, the following applies: 510 * 511 * - `muladd()` is not implemented (the function returns 0 systematically). 512 * - `order()` returns 2^255-1, since the point multiplication algorithm 513 * accepts any 32-bit integer as input (it clears the top bit and low 514 * three bits systematically). 515 */ 516 extern const br_ec_impl br_ec_c25519_i31; 517 518 /** 519 * \brief EC implementation "m15" (specialised code) for Curve25519. 520 * 521 * This implementation uses custom code relying on multiplication of 522 * integers up to 15 bits. Due to the specificities of the curve 523 * definition, the following applies: 524 * 525 * - `muladd()` is not implemented (the function returns 0 systematically). 526 * - `order()` returns 2^255-1, since the point multiplication algorithm 527 * accepts any 32-bit integer as input (it clears the top bit and low 528 * three bits systematically). 529 */ 530 extern const br_ec_impl br_ec_c25519_m15; 531 532 /** 533 * \brief EC implementation "m31" (specialised code) for Curve25519. 534 * 535 * This implementation uses custom code relying on multiplication of 536 * integers up to 31 bits. Due to the specificities of the curve 537 * definition, the following applies: 538 * 539 * - `muladd()` is not implemented (the function returns 0 systematically). 540 * - `order()` returns 2^255-1, since the point multiplication algorithm 541 * accepts any 32-bit integer as input (it clears the top bit and low 542 * three bits systematically). 543 */ 544 extern const br_ec_impl br_ec_c25519_m31; 545 546 /** 547 * \brief EC implementation "m62" (specialised code) for Curve25519. 548 * 549 * This implementation uses custom code relying on multiplication of 550 * integers up to 62 bits, with a 124-bit result. This implementation is 551 * defined only on platforms that offer the 64x64->128 multiplication 552 * support; use `br_ec_c25519_m62_get()` to dynamically obtain a pointer 553 * to that implementation. Due to the specificities of the curve 554 * definition, the following applies: 555 * 556 * - `muladd()` is not implemented (the function returns 0 systematically). 557 * - `order()` returns 2^255-1, since the point multiplication algorithm 558 * accepts any 32-bit integer as input (it clears the top bit and low 559 * three bits systematically). 560 */ 561 extern const br_ec_impl br_ec_c25519_m62; 562 563 /** 564 * \brief Get the "m62" implementation of Curve25519, if available. 565 * 566 * \return the implementation, or 0. 567 */ 568 const br_ec_impl *br_ec_c25519_m62_get(void); 569 570 /** 571 * \brief EC implementation "m64" (specialised code) for Curve25519. 572 * 573 * This implementation uses custom code relying on multiplication of 574 * integers up to 64 bits, with a 128-bit result. This implementation is 575 * defined only on platforms that offer the 64x64->128 multiplication 576 * support; use `br_ec_c25519_m64_get()` to dynamically obtain a pointer 577 * to that implementation. Due to the specificities of the curve 578 * definition, the following applies: 579 * 580 * - `muladd()` is not implemented (the function returns 0 systematically). 581 * - `order()` returns 2^255-1, since the point multiplication algorithm 582 * accepts any 32-bit integer as input (it clears the top bit and low 583 * three bits systematically). 584 */ 585 extern const br_ec_impl br_ec_c25519_m64; 586 587 /** 588 * \brief Get the "m64" implementation of Curve25519, if available. 589 * 590 * \return the implementation, or 0. 591 */ 592 const br_ec_impl *br_ec_c25519_m64_get(void); 593 594 /** 595 * \brief Aggregate EC implementation "m15". 596 * 597 * This implementation is a wrapper for: 598 * 599 * - `br_ec_c25519_m15` for Curve25519 600 * - `br_ec_p256_m15` for NIST P-256 601 * - `br_ec_prime_i15` for other curves (NIST P-384 and NIST-P512) 602 */ 603 extern const br_ec_impl br_ec_all_m15; 604 605 /** 606 * \brief Aggregate EC implementation "m31". 607 * 608 * This implementation is a wrapper for: 609 * 610 * - `br_ec_c25519_m31` for Curve25519 611 * - `br_ec_p256_m31` for NIST P-256 612 * - `br_ec_prime_i31` for other curves (NIST P-384 and NIST-P512) 613 */ 614 extern const br_ec_impl br_ec_all_m31; 615 616 /** 617 * \brief Get the "default" EC implementation for the current system. 618 * 619 * This returns a pointer to the preferred implementation on the 620 * current system. 621 * 622 * \return the default EC implementation. 623 */ 624 const br_ec_impl *br_ec_get_default(void); 625 626 /** 627 * \brief Convert a signature from "raw" to "asn1". 628 * 629 * Conversion is done "in place" and the new length is returned. 630 * Conversion may enlarge the signature, but by no more than 9 bytes at 631 * most. On error, 0 is returned (error conditions include an odd raw 632 * signature length, or an oversized integer). 633 * 634 * \param sig signature to convert. 635 * \param sig_len signature length (in bytes). 636 * \return the new signature length, or 0 on error. 637 */ 638 size_t br_ecdsa_raw_to_asn1(void *sig, size_t sig_len); 639 640 /** 641 * \brief Convert a signature from "asn1" to "raw". 642 * 643 * Conversion is done "in place" and the new length is returned. 644 * Conversion may enlarge the signature, but the new signature length 645 * will be less than twice the source length at most. On error, 0 is 646 * returned (error conditions include an invalid ASN.1 structure or an 647 * oversized integer). 648 * 649 * \param sig signature to convert. 650 * \param sig_len signature length (in bytes). 651 * \return the new signature length, or 0 on error. 652 */ 653 size_t br_ecdsa_asn1_to_raw(void *sig, size_t sig_len); 654 655 /** 656 * \brief Type for an ECDSA signer function. 657 * 658 * A pointer to the EC implementation is provided. The hash value is 659 * assumed to have the length inferred from the designated hash function 660 * class. 661 * 662 * Signature is written in the buffer pointed to by `sig`, and the length 663 * (in bytes) is returned. On error, nothing is written in the buffer, 664 * and 0 is returned. This function returns 0 if the specified curve is 665 * not supported by the provided EC implementation. 666 * 667 * The signature format is either "raw" or "asn1", depending on the 668 * implementation; maximum length is predictable from the implemented 669 * curve: 670 * 671 * | curve | raw | asn1 | 672 * | :--------- | --: | ---: | 673 * | NIST P-256 | 64 | 72 | 674 * | NIST P-384 | 96 | 104 | 675 * | NIST P-521 | 132 | 139 | 676 * 677 * \param impl EC implementation to use. 678 * \param hf hash function used to process the data. 679 * \param hash_value signed data (hashed). 680 * \param sk EC private key. 681 * \param sig destination buffer. 682 * \return the signature length (in bytes), or 0 on error. 683 */ 684 typedef size_t (*br_ecdsa_sign)(const br_ec_impl *impl, 685 const br_hash_class *hf, const void *hash_value, 686 const br_ec_private_key *sk, void *sig); 687 688 /** 689 * \brief Type for an ECDSA signature verification function. 690 * 691 * A pointer to the EC implementation is provided. The hashed value, 692 * computed over the purportedly signed data, is also provided with 693 * its length. 694 * 695 * The signature format is either "raw" or "asn1", depending on the 696 * implementation. 697 * 698 * Returned value is 1 on success (valid signature), 0 on error. This 699 * function returns 0 if the specified curve is not supported by the 700 * provided EC implementation. 701 * 702 * \param impl EC implementation to use. 703 * \param hash signed data (hashed). 704 * \param hash_len hash value length (in bytes). 705 * \param pk EC public key. 706 * \param sig signature. 707 * \param sig_len signature length (in bytes). 708 * \return 1 on success, 0 on error. 709 */ 710 typedef uint32_t (*br_ecdsa_vrfy)(const br_ec_impl *impl, 711 const void *hash, size_t hash_len, 712 const br_ec_public_key *pk, const void *sig, size_t sig_len); 713 714 /** 715 * \brief ECDSA signature generator, "i31" implementation, "asn1" format. 716 * 717 * \see br_ecdsa_sign() 718 * 719 * \param impl EC implementation to use. 720 * \param hf hash function used to process the data. 721 * \param hash_value signed data (hashed). 722 * \param sk EC private key. 723 * \param sig destination buffer. 724 * \return the signature length (in bytes), or 0 on error. 725 */ 726 size_t br_ecdsa_i31_sign_asn1(const br_ec_impl *impl, 727 const br_hash_class *hf, const void *hash_value, 728 const br_ec_private_key *sk, void *sig); 729 730 /** 731 * \brief ECDSA signature generator, "i31" implementation, "raw" format. 732 * 733 * \see br_ecdsa_sign() 734 * 735 * \param impl EC implementation to use. 736 * \param hf hash function used to process the data. 737 * \param hash_value signed data (hashed). 738 * \param sk EC private key. 739 * \param sig destination buffer. 740 * \return the signature length (in bytes), or 0 on error. 741 */ 742 size_t br_ecdsa_i31_sign_raw(const br_ec_impl *impl, 743 const br_hash_class *hf, const void *hash_value, 744 const br_ec_private_key *sk, void *sig); 745 746 /** 747 * \brief ECDSA signature verifier, "i31" implementation, "asn1" format. 748 * 749 * \see br_ecdsa_vrfy() 750 * 751 * \param impl EC implementation to use. 752 * \param hash signed data (hashed). 753 * \param hash_len hash value length (in bytes). 754 * \param pk EC public key. 755 * \param sig signature. 756 * \param sig_len signature length (in bytes). 757 * \return 1 on success, 0 on error. 758 */ 759 uint32_t br_ecdsa_i31_vrfy_asn1(const br_ec_impl *impl, 760 const void *hash, size_t hash_len, 761 const br_ec_public_key *pk, const void *sig, size_t sig_len); 762 763 /** 764 * \brief ECDSA signature verifier, "i31" implementation, "raw" format. 765 * 766 * \see br_ecdsa_vrfy() 767 * 768 * \param impl EC implementation to use. 769 * \param hash signed data (hashed). 770 * \param hash_len hash value length (in bytes). 771 * \param pk EC public key. 772 * \param sig signature. 773 * \param sig_len signature length (in bytes). 774 * \return 1 on success, 0 on error. 775 */ 776 uint32_t br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl, 777 const void *hash, size_t hash_len, 778 const br_ec_public_key *pk, const void *sig, size_t sig_len); 779 780 /** 781 * \brief ECDSA signature generator, "i15" implementation, "asn1" format. 782 * 783 * \see br_ecdsa_sign() 784 * 785 * \param impl EC implementation to use. 786 * \param hf hash function used to process the data. 787 * \param hash_value signed data (hashed). 788 * \param sk EC private key. 789 * \param sig destination buffer. 790 * \return the signature length (in bytes), or 0 on error. 791 */ 792 size_t br_ecdsa_i15_sign_asn1(const br_ec_impl *impl, 793 const br_hash_class *hf, const void *hash_value, 794 const br_ec_private_key *sk, void *sig); 795 796 /** 797 * \brief ECDSA signature generator, "i15" implementation, "raw" format. 798 * 799 * \see br_ecdsa_sign() 800 * 801 * \param impl EC implementation to use. 802 * \param hf hash function used to process the data. 803 * \param hash_value signed data (hashed). 804 * \param sk EC private key. 805 * \param sig destination buffer. 806 * \return the signature length (in bytes), or 0 on error. 807 */ 808 size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl, 809 const br_hash_class *hf, const void *hash_value, 810 const br_ec_private_key *sk, void *sig); 811 812 /** 813 * \brief ECDSA signature verifier, "i15" implementation, "asn1" format. 814 * 815 * \see br_ecdsa_vrfy() 816 * 817 * \param impl EC implementation to use. 818 * \param hash signed data (hashed). 819 * \param hash_len hash value length (in bytes). 820 * \param pk EC public key. 821 * \param sig signature. 822 * \param sig_len signature length (in bytes). 823 * \return 1 on success, 0 on error. 824 */ 825 uint32_t br_ecdsa_i15_vrfy_asn1(const br_ec_impl *impl, 826 const void *hash, size_t hash_len, 827 const br_ec_public_key *pk, const void *sig, size_t sig_len); 828 829 /** 830 * \brief ECDSA signature verifier, "i15" implementation, "raw" format. 831 * 832 * \see br_ecdsa_vrfy() 833 * 834 * \param impl EC implementation to use. 835 * \param hash signed data (hashed). 836 * \param hash_len hash value length (in bytes). 837 * \param pk EC public key. 838 * \param sig signature. 839 * \param sig_len signature length (in bytes). 840 * \return 1 on success, 0 on error. 841 */ 842 uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl, 843 const void *hash, size_t hash_len, 844 const br_ec_public_key *pk, const void *sig, size_t sig_len); 845 846 /** 847 * \brief Get "default" ECDSA implementation (signer, asn1 format). 848 * 849 * This returns the preferred implementation of ECDSA signature generation 850 * ("asn1" output format) on the current system. 851 * 852 * \return the default implementation. 853 */ 854 br_ecdsa_sign br_ecdsa_sign_asn1_get_default(void); 855 856 /** 857 * \brief Get "default" ECDSA implementation (signer, raw format). 858 * 859 * This returns the preferred implementation of ECDSA signature generation 860 * ("raw" output format) on the current system. 861 * 862 * \return the default implementation. 863 */ 864 br_ecdsa_sign br_ecdsa_sign_raw_get_default(void); 865 866 /** 867 * \brief Get "default" ECDSA implementation (verifier, asn1 format). 868 * 869 * This returns the preferred implementation of ECDSA signature verification 870 * ("asn1" output format) on the current system. 871 * 872 * \return the default implementation. 873 */ 874 br_ecdsa_vrfy br_ecdsa_vrfy_asn1_get_default(void); 875 876 /** 877 * \brief Get "default" ECDSA implementation (verifier, raw format). 878 * 879 * This returns the preferred implementation of ECDSA signature verification 880 * ("raw" output format) on the current system. 881 * 882 * \return the default implementation. 883 */ 884 br_ecdsa_vrfy br_ecdsa_vrfy_raw_get_default(void); 885 886 /** 887 * \brief Maximum size for EC private key element buffer. 888 * 889 * This is the largest number of bytes that `br_ec_keygen()` may need or 890 * ever return. 891 */ 892 #define BR_EC_KBUF_PRIV_MAX_SIZE 72 893 894 /** 895 * \brief Maximum size for EC public key element buffer. 896 * 897 * This is the largest number of bytes that `br_ec_compute_public()` may 898 * need or ever return. 899 */ 900 #define BR_EC_KBUF_PUB_MAX_SIZE 145 901 902 /** 903 * \brief Generate a new EC private key. 904 * 905 * If the specified `curve` is not supported by the elliptic curve 906 * implementation (`impl`), then this function returns zero. 907 * 908 * The `sk` structure fields are set to the new private key data. In 909 * particular, `sk.x` is made to point to the provided key buffer (`kbuf`), 910 * in which the actual private key data is written. That buffer is assumed 911 * to be large enough. The `BR_EC_KBUF_PRIV_MAX_SIZE` defines the maximum 912 * size for all supported curves. 913 * 914 * The number of bytes used in `kbuf` is returned. If `kbuf` is `NULL`, then 915 * the private key is not actually generated, and `sk` may also be `NULL`; 916 * the minimum length for `kbuf` is still computed and returned. 917 * 918 * If `sk` is `NULL` but `kbuf` is not `NULL`, then the private key is 919 * still generated and stored in `kbuf`. 920 * 921 * \param rng_ctx source PRNG context (already initialized). 922 * \param impl the elliptic curve implementation. 923 * \param sk the private key structure to fill, or `NULL`. 924 * \param kbuf the key element buffer, or `NULL`. 925 * \param curve the curve identifier. 926 * \return the key data length (in bytes), or zero. 927 */ 928 size_t br_ec_keygen(const br_prng_class **rng_ctx, 929 const br_ec_impl *impl, br_ec_private_key *sk, 930 void *kbuf, int curve); 931 932 /** 933 * \brief Compute EC public key from EC private key. 934 * 935 * This function uses the provided elliptic curve implementation (`impl`) 936 * to compute the public key corresponding to the private key held in `sk`. 937 * The public key point is written into `kbuf`, which is then linked from 938 * the `*pk` structure. The size of the public key point, i.e. the number 939 * of bytes used in `kbuf`, is returned. 940 * 941 * If `kbuf` is `NULL`, then the public key point is NOT computed, and 942 * the public key structure `*pk` is unmodified (`pk` may be `NULL` in 943 * that case). The size of the public key point is still returned. 944 * 945 * If `pk` is `NULL` but `kbuf` is not `NULL`, then the public key 946 * point is computed and stored in `kbuf`, and its size is returned. 947 * 948 * If the curve used by the private key is not supported by the curve 949 * implementation, then this function returns zero. 950 * 951 * The private key MUST be valid. An off-range private key value is not 952 * necessarily detected, and leads to unpredictable results. 953 * 954 * \param impl the elliptic curve implementation. 955 * \param pk the public key structure to fill (or `NULL`). 956 * \param kbuf the public key point buffer (or `NULL`). 957 * \param sk the source private key. 958 * \return the public key point length (in bytes), or zero. 959 */ 960 size_t br_ec_compute_pub(const br_ec_impl *impl, br_ec_public_key *pk, 961 void *kbuf, const br_ec_private_key *sk); 962 963 #ifdef __cplusplus 964 } 965 #endif 966 967 #endif 968