xref: /freebsd/contrib/bearssl/inc/bearssl_ec.h (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 /*
2  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef BR_BEARSSL_EC_H__
26 #define BR_BEARSSL_EC_H__
27 
28 #include <stddef.h>
29 #include <stdint.h>
30 
31 #include "bearssl_rand.h"
32 
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 
37 /** \file bearssl_ec.h
38  *
39  * # Elliptic Curves
40  *
41  * This file documents the EC implementations provided with BearSSL, and
42  * ECDSA.
43  *
44  * ## Elliptic Curve API
45  *
46  * Only "named curves" are supported. Each EC implementation supports
47  * one or several named curves, identified by symbolic identifiers.
48  * These identifiers are small integers, that correspond to the values
49  * registered by the
50  * [IANA](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8).
51  *
52  * Since all currently defined elliptic curve identifiers are in the 0..31
53  * range, it is convenient to encode support of some curves in a 32-bit
54  * word, such that bit x corresponds to curve of identifier x.
55  *
56  * An EC implementation is incarnated by a `br_ec_impl` instance, that
57  * offers the following fields:
58  *
59  *   - `supported_curves`
60  *
61  *      A 32-bit word that documents the identifiers of the curves supported
62  *      by this implementation.
63  *
64  *   - `generator()`
65  *
66  *      Callback method that returns a pointer to the conventional generator
67  *      point for that curve.
68  *
69  *   - `order()`
70  *
71  *      Callback method that returns a pointer to the subgroup order for
72  *      that curve. That value uses unsigned big-endian encoding.
73  *
74  *   - `xoff()`
75  *
76  *      Callback method that returns the offset and length of the X
77  *      coordinate in an encoded point.
78  *
79  *   - `mul()`
80  *
81  *      Multiply a curve point with an integer.
82  *
83  *   - `mulgen()`
84  *
85  *      Multiply the curve generator with an integer. This may be faster
86  *      than the generic `mul()`.
87  *
88  *   - `muladd()`
89  *
90  *      Multiply two curve points by two integers, and return the sum of
91  *      the two products.
92  *
93  * All curve points are represented in uncompressed format. The `mul()`
94  * and `muladd()` methods take care to validate that the provided points
95  * are really part of the relevant curve subgroup.
96  *
97  * For all point multiplication functions, the following holds:
98  *
99  *   - Functions validate that the provided points are valid members
100  *     of the relevant curve subgroup. An error is reported if that is
101  *     not the case.
102  *
103  *   - Processing is constant-time, even if the point operands are not
104  *     valid. This holds for both the source and resulting points, and
105  *     the multipliers (integers). Only the byte length of the provided
106  *     multiplier arrays (not their actual value length in bits) may
107  *     leak through timing-based side channels.
108  *
109  *   - The multipliers (integers) MUST be lower than the subgroup order.
110  *     If this property is not met, then the result is indeterminate,
111  *     but an error value is not ncessearily returned.
112  *
113  *
114  * ## ECDSA
115  *
116  * ECDSA signatures have two standard formats, called "raw" and "asn1".
117  * Internally, such a signature is a pair of modular integers `(r,s)`.
118  * The "raw" format is the concatenation of the unsigned big-endian
119  * encodings of these two integers, possibly left-padded with zeros so
120  * that they have the same encoded length. The "asn1" format is the
121  * DER encoding of an ASN.1 structure that contains the two integer
122  * values:
123  *
124  *     ECDSASignature ::= SEQUENCE {
125  *         r   INTEGER,
126  *         s   INTEGER
127  *     }
128  *
129  * In general, in all of X.509 and SSL/TLS, the "asn1" format is used.
130  * BearSSL offers ECDSA implementations for both formats; conversion
131  * functions between the two formats are also provided. Conversion of a
132  * "raw" format signature into "asn1" may enlarge a signature by no more
133  * than 9 bytes for all supported curves; conversely, conversion of an
134  * "asn1" signature to "raw" may expand the signature but the "raw"
135  * length will never be more than twice the length of the "asn1" length
136  * (and usually it will be shorter).
137  *
138  * Note that for a given signature, the "raw" format is not fully
139  * deterministic, in that it does not enforce a minimal common length.
140  */
141 
142 /*
143  * Standard curve ID. These ID are equal to the assigned numerical
144  * identifiers assigned to these curves for TLS:
145  *    http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
146  */
147 
148 /** \brief Identifier for named curve sect163k1. */
149 #define BR_EC_sect163k1           1
150 
151 /** \brief Identifier for named curve sect163r1. */
152 #define BR_EC_sect163r1           2
153 
154 /** \brief Identifier for named curve sect163r2. */
155 #define BR_EC_sect163r2           3
156 
157 /** \brief Identifier for named curve sect193r1. */
158 #define BR_EC_sect193r1           4
159 
160 /** \brief Identifier for named curve sect193r2. */
161 #define BR_EC_sect193r2           5
162 
163 /** \brief Identifier for named curve sect233k1. */
164 #define BR_EC_sect233k1           6
165 
166 /** \brief Identifier for named curve sect233r1. */
167 #define BR_EC_sect233r1           7
168 
169 /** \brief Identifier for named curve sect239k1. */
170 #define BR_EC_sect239k1           8
171 
172 /** \brief Identifier for named curve sect283k1. */
173 #define BR_EC_sect283k1           9
174 
175 /** \brief Identifier for named curve sect283r1. */
176 #define BR_EC_sect283r1          10
177 
178 /** \brief Identifier for named curve sect409k1. */
179 #define BR_EC_sect409k1          11
180 
181 /** \brief Identifier for named curve sect409r1. */
182 #define BR_EC_sect409r1          12
183 
184 /** \brief Identifier for named curve sect571k1. */
185 #define BR_EC_sect571k1          13
186 
187 /** \brief Identifier for named curve sect571r1. */
188 #define BR_EC_sect571r1          14
189 
190 /** \brief Identifier for named curve secp160k1. */
191 #define BR_EC_secp160k1          15
192 
193 /** \brief Identifier for named curve secp160r1. */
194 #define BR_EC_secp160r1          16
195 
196 /** \brief Identifier for named curve secp160r2. */
197 #define BR_EC_secp160r2          17
198 
199 /** \brief Identifier for named curve secp192k1. */
200 #define BR_EC_secp192k1          18
201 
202 /** \brief Identifier for named curve secp192r1. */
203 #define BR_EC_secp192r1          19
204 
205 /** \brief Identifier for named curve secp224k1. */
206 #define BR_EC_secp224k1          20
207 
208 /** \brief Identifier for named curve secp224r1. */
209 #define BR_EC_secp224r1          21
210 
211 /** \brief Identifier for named curve secp256k1. */
212 #define BR_EC_secp256k1          22
213 
214 /** \brief Identifier for named curve secp256r1. */
215 #define BR_EC_secp256r1          23
216 
217 /** \brief Identifier for named curve secp384r1. */
218 #define BR_EC_secp384r1          24
219 
220 /** \brief Identifier for named curve secp521r1. */
221 #define BR_EC_secp521r1          25
222 
223 /** \brief Identifier for named curve brainpoolP256r1. */
224 #define BR_EC_brainpoolP256r1    26
225 
226 /** \brief Identifier for named curve brainpoolP384r1. */
227 #define BR_EC_brainpoolP384r1    27
228 
229 /** \brief Identifier for named curve brainpoolP512r1. */
230 #define BR_EC_brainpoolP512r1    28
231 
232 /** \brief Identifier for named curve Curve25519. */
233 #define BR_EC_curve25519         29
234 
235 /** \brief Identifier for named curve Curve448. */
236 #define BR_EC_curve448           30
237 
238 /**
239  * \brief Structure for an EC public key.
240  */
241 typedef struct {
242 	/** \brief Identifier for the curve used by this key. */
243 	int curve;
244 	/** \brief Public curve point (uncompressed format). */
245 	unsigned char *q;
246 	/** \brief Length of public curve point (in bytes). */
247 	size_t qlen;
248 } br_ec_public_key;
249 
250 /**
251  * \brief Structure for an EC private key.
252  *
253  * The private key is an integer modulo the curve subgroup order. The
254  * encoding below tolerates extra leading zeros. In general, it is
255  * recommended that the private key has the same length as the curve
256  * subgroup order.
257  */
258 typedef struct {
259 	/** \brief Identifier for the curve used by this key. */
260 	int curve;
261 	/** \brief Private key (integer, unsigned big-endian encoding). */
262 	unsigned char *x;
263 	/** \brief Private key length (in bytes). */
264 	size_t xlen;
265 } br_ec_private_key;
266 
267 /**
268  * \brief Type for an EC implementation.
269  */
270 typedef struct {
271 	/**
272 	 * \brief Supported curves.
273 	 *
274 	 * This word is a bitfield: bit `x` is set if the curve of ID `x`
275 	 * is supported. E.g. an implementation supporting both NIST P-256
276 	 * (secp256r1, ID 23) and NIST P-384 (secp384r1, ID 24) will have
277 	 * value `0x01800000` in this field.
278 	 */
279 	uint32_t supported_curves;
280 
281 	/**
282 	 * \brief Get the conventional generator.
283 	 *
284 	 * This function returns the conventional generator (encoded
285 	 * curve point) for the specified curve. This function MUST NOT
286 	 * be called if the curve is not supported.
287 	 *
288 	 * \param curve   curve identifier.
289 	 * \param len     receiver for the encoded generator length (in bytes).
290 	 * \return  the encoded generator.
291 	 */
292 	const unsigned char *(*generator)(int curve, size_t *len);
293 
294 	/**
295 	 * \brief Get the subgroup order.
296 	 *
297 	 * This function returns the order of the subgroup generated by
298 	 * the conventional generator, for the specified curve. Unsigned
299 	 * big-endian encoding is used. This function MUST NOT be called
300 	 * if the curve is not supported.
301 	 *
302 	 * \param curve   curve identifier.
303 	 * \param len     receiver for the encoded order length (in bytes).
304 	 * \return  the encoded order.
305 	 */
306 	const unsigned char *(*order)(int curve, size_t *len);
307 
308 	/**
309 	 * \brief Get the offset and length for the X coordinate.
310 	 *
311 	 * This function returns the offset and length (in bytes) of
312 	 * the X coordinate in an encoded non-zero point.
313 	 *
314 	 * \param curve   curve identifier.
315 	 * \param len     receiver for the X coordinate length (in bytes).
316 	 * \return  the offset for the X coordinate (in bytes).
317 	 */
318 	size_t (*xoff)(int curve, size_t *len);
319 
320 	/**
321 	 * \brief Multiply a curve point by an integer.
322 	 *
323 	 * The source point is provided in array `G` (of size `Glen` bytes);
324 	 * the multiplication result is written over it. The multiplier
325 	 * `x` (of size `xlen` bytes) uses unsigned big-endian encoding.
326 	 *
327 	 * Rules:
328 	 *
329 	 *   - The specified curve MUST be supported.
330 	 *
331 	 *   - The source point must be a valid point on the relevant curve
332 	 *     subgroup (and not the "point at infinity" either). If this is
333 	 *     not the case, then this function returns an error (0).
334 	 *
335 	 *   - The multiplier integer MUST be non-zero and less than the
336 	 *     curve subgroup order. If this property does not hold, then
337 	 *     the result is indeterminate and an error code is not
338 	 *     guaranteed.
339 	 *
340 	 * Returned value is 1 on success, 0 on error. On error, the
341 	 * contents of `G` are indeterminate.
342 	 *
343 	 * \param G       point to multiply.
344 	 * \param Glen    length of the encoded point (in bytes).
345 	 * \param x       multiplier (unsigned big-endian).
346 	 * \param xlen    multiplier length (in bytes).
347 	 * \param curve   curve identifier.
348 	 * \return  1 on success, 0 on error.
349 	 */
350 	uint32_t (*mul)(unsigned char *G, size_t Glen,
351 		const unsigned char *x, size_t xlen, int curve);
352 
353 	/**
354 	 * \brief Multiply the generator by an integer.
355 	 *
356 	 * The multiplier MUST be non-zero and less than the curve
357 	 * subgroup order. Results are indeterminate if this property
358 	 * does not hold.
359 	 *
360 	 * \param R       output buffer for the point.
361 	 * \param x       multiplier (unsigned big-endian).
362 	 * \param xlen    multiplier length (in bytes).
363 	 * \param curve   curve identifier.
364 	 * \return  encoded result point length (in bytes).
365 	 */
366 	size_t (*mulgen)(unsigned char *R,
367 		const unsigned char *x, size_t xlen, int curve);
368 
369 	/**
370 	 * \brief Multiply two points by two integers and add the
371 	 * results.
372 	 *
373 	 * The point `x*A + y*B` is computed and written back in the `A`
374 	 * array.
375 	 *
376 	 * Rules:
377 	 *
378 	 *   - The specified curve MUST be supported.
379 	 *
380 	 *   - The source points (`A` and `B`)  must be valid points on
381 	 *     the relevant curve subgroup (and not the "point at
382 	 *     infinity" either). If this is not the case, then this
383 	 *     function returns an error (0).
384 	 *
385 	 *   - If the `B` pointer is `NULL`, then the conventional
386 	 *     subgroup generator is used. With some implementations,
387 	 *     this may be faster than providing a pointer to the
388 	 *     generator.
389 	 *
390 	 *   - The multiplier integers (`x` and `y`) MUST be non-zero
391 	 *     and less than the curve subgroup order. If either integer
392 	 *     is zero, then an error is reported, but if one of them is
393 	 *     not lower than the subgroup order, then the result is
394 	 *     indeterminate and an error code is not guaranteed.
395 	 *
396 	 *   - If the final result is the point at infinity, then an
397 	 *     error is returned.
398 	 *
399 	 * Returned value is 1 on success, 0 on error. On error, the
400 	 * contents of `A` are indeterminate.
401 	 *
402 	 * \param A       first point to multiply.
403 	 * \param B       second point to multiply (`NULL` for the generator).
404 	 * \param len     common length of the encoded points (in bytes).
405 	 * \param x       multiplier for `A` (unsigned big-endian).
406 	 * \param xlen    length of multiplier for `A` (in bytes).
407 	 * \param y       multiplier for `A` (unsigned big-endian).
408 	 * \param ylen    length of multiplier for `A` (in bytes).
409 	 * \param curve   curve identifier.
410 	 * \return  1 on success, 0 on error.
411 	 */
412 	uint32_t (*muladd)(unsigned char *A, const unsigned char *B, size_t len,
413 		const unsigned char *x, size_t xlen,
414 		const unsigned char *y, size_t ylen, int curve);
415 } br_ec_impl;
416 
417 /**
418  * \brief EC implementation "i31".
419  *
420  * This implementation internally uses generic code for modular integers,
421  * with a representation as sequences of 31-bit words. It supports secp256r1,
422  * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
423  */
424 extern const br_ec_impl br_ec_prime_i31;
425 
426 /**
427  * \brief EC implementation "i15".
428  *
429  * This implementation internally uses generic code for modular integers,
430  * with a representation as sequences of 15-bit words. It supports secp256r1,
431  * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
432  */
433 extern const br_ec_impl br_ec_prime_i15;
434 
435 /**
436  * \brief EC implementation "m15" for P-256.
437  *
438  * This implementation uses specialised code for curve secp256r1 (also
439  * known as NIST P-256), with optional Karatsuba decomposition, and fast
440  * modular reduction thanks to the field modulus special format. Only
441  * 32-bit multiplications are used (with 32-bit results, not 64-bit).
442  */
443 extern const br_ec_impl br_ec_p256_m15;
444 
445 /**
446  * \brief EC implementation "m31" for P-256.
447  *
448  * This implementation uses specialised code for curve secp256r1 (also
449  * known as NIST P-256), relying on multiplications of 31-bit values
450  * (MUL31).
451  */
452 extern const br_ec_impl br_ec_p256_m31;
453 
454 /**
455  * \brief EC implementation "m62" (specialised code) for P-256.
456  *
457  * This implementation uses custom code relying on multiplication of
458  * integers up to 64 bits, with a 128-bit result. This implementation is
459  * defined only on platforms that offer the 64x64->128 multiplication
460  * support; use `br_ec_p256_m62_get()` to dynamically obtain a pointer
461  * to that implementation.
462  */
463 extern const br_ec_impl br_ec_p256_m62;
464 
465 /**
466  * \brief Get the "m62" implementation of P-256, if available.
467  *
468  * \return  the implementation, or 0.
469  */
470 const br_ec_impl *br_ec_p256_m62_get(void);
471 
472 /**
473  * \brief EC implementation "m64" (specialised code) for P-256.
474  *
475  * This implementation uses custom code relying on multiplication of
476  * integers up to 64 bits, with a 128-bit result. This implementation is
477  * defined only on platforms that offer the 64x64->128 multiplication
478  * support; use `br_ec_p256_m64_get()` to dynamically obtain a pointer
479  * to that implementation.
480  */
481 extern const br_ec_impl br_ec_p256_m64;
482 
483 /**
484  * \brief Get the "m64" implementation of P-256, if available.
485  *
486  * \return  the implementation, or 0.
487  */
488 const br_ec_impl *br_ec_p256_m64_get(void);
489 
490 /**
491  * \brief EC implementation "i15" (generic code) for Curve25519.
492  *
493  * This implementation uses the generic code for modular integers (with
494  * 15-bit words) to support Curve25519. Due to the specificities of the
495  * curve definition, the following applies:
496  *
497  *   - `muladd()` is not implemented (the function returns 0 systematically).
498  *   - `order()` returns 2^255-1, since the point multiplication algorithm
499  *     accepts any 32-bit integer as input (it clears the top bit and low
500  *     three bits systematically).
501  */
502 extern const br_ec_impl br_ec_c25519_i15;
503 
504 /**
505  * \brief EC implementation "i31" (generic code) for Curve25519.
506  *
507  * This implementation uses the generic code for modular integers (with
508  * 31-bit words) to support Curve25519. Due to the specificities of the
509  * curve definition, the following applies:
510  *
511  *   - `muladd()` is not implemented (the function returns 0 systematically).
512  *   - `order()` returns 2^255-1, since the point multiplication algorithm
513  *     accepts any 32-bit integer as input (it clears the top bit and low
514  *     three bits systematically).
515  */
516 extern const br_ec_impl br_ec_c25519_i31;
517 
518 /**
519  * \brief EC implementation "m15" (specialised code) for Curve25519.
520  *
521  * This implementation uses custom code relying on multiplication of
522  * integers up to 15 bits. Due to the specificities of the curve
523  * definition, the following applies:
524  *
525  *   - `muladd()` is not implemented (the function returns 0 systematically).
526  *   - `order()` returns 2^255-1, since the point multiplication algorithm
527  *     accepts any 32-bit integer as input (it clears the top bit and low
528  *     three bits systematically).
529  */
530 extern const br_ec_impl br_ec_c25519_m15;
531 
532 /**
533  * \brief EC implementation "m31" (specialised code) for Curve25519.
534  *
535  * This implementation uses custom code relying on multiplication of
536  * integers up to 31 bits. Due to the specificities of the curve
537  * definition, the following applies:
538  *
539  *   - `muladd()` is not implemented (the function returns 0 systematically).
540  *   - `order()` returns 2^255-1, since the point multiplication algorithm
541  *     accepts any 32-bit integer as input (it clears the top bit and low
542  *     three bits systematically).
543  */
544 extern const br_ec_impl br_ec_c25519_m31;
545 
546 /**
547  * \brief EC implementation "m62" (specialised code) for Curve25519.
548  *
549  * This implementation uses custom code relying on multiplication of
550  * integers up to 62 bits, with a 124-bit result. This implementation is
551  * defined only on platforms that offer the 64x64->128 multiplication
552  * support; use `br_ec_c25519_m62_get()` to dynamically obtain a pointer
553  * to that implementation. Due to the specificities of the curve
554  * definition, the following applies:
555  *
556  *   - `muladd()` is not implemented (the function returns 0 systematically).
557  *   - `order()` returns 2^255-1, since the point multiplication algorithm
558  *     accepts any 32-bit integer as input (it clears the top bit and low
559  *     three bits systematically).
560  */
561 extern const br_ec_impl br_ec_c25519_m62;
562 
563 /**
564  * \brief Get the "m62" implementation of Curve25519, if available.
565  *
566  * \return  the implementation, or 0.
567  */
568 const br_ec_impl *br_ec_c25519_m62_get(void);
569 
570 /**
571  * \brief EC implementation "m64" (specialised code) for Curve25519.
572  *
573  * This implementation uses custom code relying on multiplication of
574  * integers up to 64 bits, with a 128-bit result. This implementation is
575  * defined only on platforms that offer the 64x64->128 multiplication
576  * support; use `br_ec_c25519_m64_get()` to dynamically obtain a pointer
577  * to that implementation. Due to the specificities of the curve
578  * definition, the following applies:
579  *
580  *   - `muladd()` is not implemented (the function returns 0 systematically).
581  *   - `order()` returns 2^255-1, since the point multiplication algorithm
582  *     accepts any 32-bit integer as input (it clears the top bit and low
583  *     three bits systematically).
584  */
585 extern const br_ec_impl br_ec_c25519_m64;
586 
587 /**
588  * \brief Get the "m64" implementation of Curve25519, if available.
589  *
590  * \return  the implementation, or 0.
591  */
592 const br_ec_impl *br_ec_c25519_m64_get(void);
593 
594 /**
595  * \brief Aggregate EC implementation "m15".
596  *
597  * This implementation is a wrapper for:
598  *
599  *   - `br_ec_c25519_m15` for Curve25519
600  *   - `br_ec_p256_m15` for NIST P-256
601  *   - `br_ec_prime_i15` for other curves (NIST P-384 and NIST-P512)
602  */
603 extern const br_ec_impl br_ec_all_m15;
604 
605 /**
606  * \brief Aggregate EC implementation "m31".
607  *
608  * This implementation is a wrapper for:
609  *
610  *   - `br_ec_c25519_m31` for Curve25519
611  *   - `br_ec_p256_m31` for NIST P-256
612  *   - `br_ec_prime_i31` for other curves (NIST P-384 and NIST-P512)
613  */
614 extern const br_ec_impl br_ec_all_m31;
615 
616 /**
617  * \brief Get the "default" EC implementation for the current system.
618  *
619  * This returns a pointer to the preferred implementation on the
620  * current system.
621  *
622  * \return  the default EC implementation.
623  */
624 const br_ec_impl *br_ec_get_default(void);
625 
626 /**
627  * \brief Convert a signature from "raw" to "asn1".
628  *
629  * Conversion is done "in place" and the new length is returned.
630  * Conversion may enlarge the signature, but by no more than 9 bytes at
631  * most. On error, 0 is returned (error conditions include an odd raw
632  * signature length, or an oversized integer).
633  *
634  * \param sig       signature to convert.
635  * \param sig_len   signature length (in bytes).
636  * \return  the new signature length, or 0 on error.
637  */
638 size_t br_ecdsa_raw_to_asn1(void *sig, size_t sig_len);
639 
640 /**
641  * \brief Convert a signature from "asn1" to "raw".
642  *
643  * Conversion is done "in place" and the new length is returned.
644  * Conversion may enlarge the signature, but the new signature length
645  * will be less than twice the source length at most. On error, 0 is
646  * returned (error conditions include an invalid ASN.1 structure or an
647  * oversized integer).
648  *
649  * \param sig       signature to convert.
650  * \param sig_len   signature length (in bytes).
651  * \return  the new signature length, or 0 on error.
652  */
653 size_t br_ecdsa_asn1_to_raw(void *sig, size_t sig_len);
654 
655 /**
656  * \brief Type for an ECDSA signer function.
657  *
658  * A pointer to the EC implementation is provided. The hash value is
659  * assumed to have the length inferred from the designated hash function
660  * class.
661  *
662  * Signature is written in the buffer pointed to by `sig`, and the length
663  * (in bytes) is returned. On error, nothing is written in the buffer,
664  * and 0 is returned. This function returns 0 if the specified curve is
665  * not supported by the provided EC implementation.
666  *
667  * The signature format is either "raw" or "asn1", depending on the
668  * implementation; maximum length is predictable from the implemented
669  * curve:
670  *
671  * | curve      | raw | asn1 |
672  * | :--------- | --: | ---: |
673  * | NIST P-256 |  64 |   72 |
674  * | NIST P-384 |  96 |  104 |
675  * | NIST P-521 | 132 |  139 |
676  *
677  * \param impl         EC implementation to use.
678  * \param hf           hash function used to process the data.
679  * \param hash_value   signed data (hashed).
680  * \param sk           EC private key.
681  * \param sig          destination buffer.
682  * \return  the signature length (in bytes), or 0 on error.
683  */
684 typedef size_t (*br_ecdsa_sign)(const br_ec_impl *impl,
685 	const br_hash_class *hf, const void *hash_value,
686 	const br_ec_private_key *sk, void *sig);
687 
688 /**
689  * \brief Type for an ECDSA signature verification function.
690  *
691  * A pointer to the EC implementation is provided. The hashed value,
692  * computed over the purportedly signed data, is also provided with
693  * its length.
694  *
695  * The signature format is either "raw" or "asn1", depending on the
696  * implementation.
697  *
698  * Returned value is 1 on success (valid signature), 0 on error. This
699  * function returns 0 if the specified curve is not supported by the
700  * provided EC implementation.
701  *
702  * \param impl       EC implementation to use.
703  * \param hash       signed data (hashed).
704  * \param hash_len   hash value length (in bytes).
705  * \param pk         EC public key.
706  * \param sig        signature.
707  * \param sig_len    signature length (in bytes).
708  * \return  1 on success, 0 on error.
709  */
710 typedef uint32_t (*br_ecdsa_vrfy)(const br_ec_impl *impl,
711 	const void *hash, size_t hash_len,
712 	const br_ec_public_key *pk, const void *sig, size_t sig_len);
713 
714 /**
715  * \brief ECDSA signature generator, "i31" implementation, "asn1" format.
716  *
717  * \see br_ecdsa_sign()
718  *
719  * \param impl         EC implementation to use.
720  * \param hf           hash function used to process the data.
721  * \param hash_value   signed data (hashed).
722  * \param sk           EC private key.
723  * \param sig          destination buffer.
724  * \return  the signature length (in bytes), or 0 on error.
725  */
726 size_t br_ecdsa_i31_sign_asn1(const br_ec_impl *impl,
727 	const br_hash_class *hf, const void *hash_value,
728 	const br_ec_private_key *sk, void *sig);
729 
730 /**
731  * \brief ECDSA signature generator, "i31" implementation, "raw" format.
732  *
733  * \see br_ecdsa_sign()
734  *
735  * \param impl         EC implementation to use.
736  * \param hf           hash function used to process the data.
737  * \param hash_value   signed data (hashed).
738  * \param sk           EC private key.
739  * \param sig          destination buffer.
740  * \return  the signature length (in bytes), or 0 on error.
741  */
742 size_t br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
743 	const br_hash_class *hf, const void *hash_value,
744 	const br_ec_private_key *sk, void *sig);
745 
746 /**
747  * \brief ECDSA signature verifier, "i31" implementation, "asn1" format.
748  *
749  * \see br_ecdsa_vrfy()
750  *
751  * \param impl       EC implementation to use.
752  * \param hash       signed data (hashed).
753  * \param hash_len   hash value length (in bytes).
754  * \param pk         EC public key.
755  * \param sig        signature.
756  * \param sig_len    signature length (in bytes).
757  * \return  1 on success, 0 on error.
758  */
759 uint32_t br_ecdsa_i31_vrfy_asn1(const br_ec_impl *impl,
760 	const void *hash, size_t hash_len,
761 	const br_ec_public_key *pk, const void *sig, size_t sig_len);
762 
763 /**
764  * \brief ECDSA signature verifier, "i31" implementation, "raw" format.
765  *
766  * \see br_ecdsa_vrfy()
767  *
768  * \param impl       EC implementation to use.
769  * \param hash       signed data (hashed).
770  * \param hash_len   hash value length (in bytes).
771  * \param pk         EC public key.
772  * \param sig        signature.
773  * \param sig_len    signature length (in bytes).
774  * \return  1 on success, 0 on error.
775  */
776 uint32_t br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl,
777 	const void *hash, size_t hash_len,
778 	const br_ec_public_key *pk, const void *sig, size_t sig_len);
779 
780 /**
781  * \brief ECDSA signature generator, "i15" implementation, "asn1" format.
782  *
783  * \see br_ecdsa_sign()
784  *
785  * \param impl         EC implementation to use.
786  * \param hf           hash function used to process the data.
787  * \param hash_value   signed data (hashed).
788  * \param sk           EC private key.
789  * \param sig          destination buffer.
790  * \return  the signature length (in bytes), or 0 on error.
791  */
792 size_t br_ecdsa_i15_sign_asn1(const br_ec_impl *impl,
793 	const br_hash_class *hf, const void *hash_value,
794 	const br_ec_private_key *sk, void *sig);
795 
796 /**
797  * \brief ECDSA signature generator, "i15" implementation, "raw" format.
798  *
799  * \see br_ecdsa_sign()
800  *
801  * \param impl         EC implementation to use.
802  * \param hf           hash function used to process the data.
803  * \param hash_value   signed data (hashed).
804  * \param sk           EC private key.
805  * \param sig          destination buffer.
806  * \return  the signature length (in bytes), or 0 on error.
807  */
808 size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl,
809 	const br_hash_class *hf, const void *hash_value,
810 	const br_ec_private_key *sk, void *sig);
811 
812 /**
813  * \brief ECDSA signature verifier, "i15" implementation, "asn1" format.
814  *
815  * \see br_ecdsa_vrfy()
816  *
817  * \param impl       EC implementation to use.
818  * \param hash       signed data (hashed).
819  * \param hash_len   hash value length (in bytes).
820  * \param pk         EC public key.
821  * \param sig        signature.
822  * \param sig_len    signature length (in bytes).
823  * \return  1 on success, 0 on error.
824  */
825 uint32_t br_ecdsa_i15_vrfy_asn1(const br_ec_impl *impl,
826 	const void *hash, size_t hash_len,
827 	const br_ec_public_key *pk, const void *sig, size_t sig_len);
828 
829 /**
830  * \brief ECDSA signature verifier, "i15" implementation, "raw" format.
831  *
832  * \see br_ecdsa_vrfy()
833  *
834  * \param impl       EC implementation to use.
835  * \param hash       signed data (hashed).
836  * \param hash_len   hash value length (in bytes).
837  * \param pk         EC public key.
838  * \param sig        signature.
839  * \param sig_len    signature length (in bytes).
840  * \return  1 on success, 0 on error.
841  */
842 uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl,
843 	const void *hash, size_t hash_len,
844 	const br_ec_public_key *pk, const void *sig, size_t sig_len);
845 
846 /**
847  * \brief Get "default" ECDSA implementation (signer, asn1 format).
848  *
849  * This returns the preferred implementation of ECDSA signature generation
850  * ("asn1" output format) on the current system.
851  *
852  * \return  the default implementation.
853  */
854 br_ecdsa_sign br_ecdsa_sign_asn1_get_default(void);
855 
856 /**
857  * \brief Get "default" ECDSA implementation (signer, raw format).
858  *
859  * This returns the preferred implementation of ECDSA signature generation
860  * ("raw" output format) on the current system.
861  *
862  * \return  the default implementation.
863  */
864 br_ecdsa_sign br_ecdsa_sign_raw_get_default(void);
865 
866 /**
867  * \brief Get "default" ECDSA implementation (verifier, asn1 format).
868  *
869  * This returns the preferred implementation of ECDSA signature verification
870  * ("asn1" output format) on the current system.
871  *
872  * \return  the default implementation.
873  */
874 br_ecdsa_vrfy br_ecdsa_vrfy_asn1_get_default(void);
875 
876 /**
877  * \brief Get "default" ECDSA implementation (verifier, raw format).
878  *
879  * This returns the preferred implementation of ECDSA signature verification
880  * ("raw" output format) on the current system.
881  *
882  * \return  the default implementation.
883  */
884 br_ecdsa_vrfy br_ecdsa_vrfy_raw_get_default(void);
885 
886 /**
887  * \brief Maximum size for EC private key element buffer.
888  *
889  * This is the largest number of bytes that `br_ec_keygen()` may need or
890  * ever return.
891  */
892 #define BR_EC_KBUF_PRIV_MAX_SIZE   72
893 
894 /**
895  * \brief Maximum size for EC public key element buffer.
896  *
897  * This is the largest number of bytes that `br_ec_compute_public()` may
898  * need or ever return.
899  */
900 #define BR_EC_KBUF_PUB_MAX_SIZE    145
901 
902 /**
903  * \brief Generate a new EC private key.
904  *
905  * If the specified `curve` is not supported by the elliptic curve
906  * implementation (`impl`), then this function returns zero.
907  *
908  * The `sk` structure fields are set to the new private key data. In
909  * particular, `sk.x` is made to point to the provided key buffer (`kbuf`),
910  * in which the actual private key data is written. That buffer is assumed
911  * to be large enough. The `BR_EC_KBUF_PRIV_MAX_SIZE` defines the maximum
912  * size for all supported curves.
913  *
914  * The number of bytes used in `kbuf` is returned. If `kbuf` is `NULL`, then
915  * the private key is not actually generated, and `sk` may also be `NULL`;
916  * the minimum length for `kbuf` is still computed and returned.
917  *
918  * If `sk` is `NULL` but `kbuf` is not `NULL`, then the private key is
919  * still generated and stored in `kbuf`.
920  *
921  * \param rng_ctx   source PRNG context (already initialized).
922  * \param impl      the elliptic curve implementation.
923  * \param sk        the private key structure to fill, or `NULL`.
924  * \param kbuf      the key element buffer, or `NULL`.
925  * \param curve     the curve identifier.
926  * \return  the key data length (in bytes), or zero.
927  */
928 size_t br_ec_keygen(const br_prng_class **rng_ctx,
929 	const br_ec_impl *impl, br_ec_private_key *sk,
930 	void *kbuf, int curve);
931 
932 /**
933  * \brief Compute EC public key from EC private key.
934  *
935  * This function uses the provided elliptic curve implementation (`impl`)
936  * to compute the public key corresponding to the private key held in `sk`.
937  * The public key point is written into `kbuf`, which is then linked from
938  * the `*pk` structure. The size of the public key point, i.e. the number
939  * of bytes used in `kbuf`, is returned.
940  *
941  * If `kbuf` is `NULL`, then the public key point is NOT computed, and
942  * the public key structure `*pk` is unmodified (`pk` may be `NULL` in
943  * that case). The size of the public key point is still returned.
944  *
945  * If `pk` is `NULL` but `kbuf` is not `NULL`, then the public key
946  * point is computed and stored in `kbuf`, and its size is returned.
947  *
948  * If the curve used by the private key is not supported by the curve
949  * implementation, then this function returns zero.
950  *
951  * The private key MUST be valid. An off-range private key value is not
952  * necessarily detected, and leads to unpredictable results.
953  *
954  * \param impl   the elliptic curve implementation.
955  * \param pk     the public key structure to fill (or `NULL`).
956  * \param kbuf   the public key point buffer (or `NULL`).
957  * \param sk     the source private key.
958  * \return  the public key point length (in bytes), or zero.
959  */
960 size_t br_ec_compute_pub(const br_ec_impl *impl, br_ec_public_key *pk,
961 	void *kbuf, const br_ec_private_key *sk);
962 
963 #ifdef __cplusplus
964 }
965 #endif
966 
967 #endif
968