1 /* 2 * ***************************************************************************** 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 2018-2023 Gavin D. Howard and contributors. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * * Redistributions of source code must retain the above copyright notice, this 12 * list of conditions and the following disclaimer. 13 * 14 * * Redistributions in binary form must reproduce the above copyright notice, 15 * this list of conditions and the following disclaimer in the documentation 16 * and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * ***************************************************************************** 31 * 32 * Code for the number type. 33 * 34 */ 35 36 #include <assert.h> 37 #include <ctype.h> 38 #include <stdbool.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <setjmp.h> 42 #include <limits.h> 43 44 #include <num.h> 45 #include <rand.h> 46 #include <vm.h> 47 #if BC_ENABLE_LIBRARY 48 #include <library.h> 49 #endif // BC_ENABLE_LIBRARY 50 51 // Before you try to understand this code, see the development manual 52 // (manuals/development.md#numbers). 53 54 static void 55 bc_num_m(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale); 56 57 /** 58 * Multiply two numbers and throw a math error if they overflow. 59 * @param a The first operand. 60 * @param b The second operand. 61 * @return The product of the two operands. 62 */ 63 static inline size_t 64 bc_num_mulOverflow(size_t a, size_t b) 65 { 66 size_t res = a * b; 67 if (BC_ERR(BC_VM_MUL_OVERFLOW(a, b, res))) bc_err(BC_ERR_MATH_OVERFLOW); 68 return res; 69 } 70 71 /** 72 * Conditionally negate @a n based on @a neg. Algorithm taken from 73 * https://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate . 74 * @param n The value to turn into a signed value and negate. 75 * @param neg The condition to negate or not. 76 */ 77 static inline ssize_t 78 bc_num_neg(size_t n, bool neg) 79 { 80 return (((ssize_t) n) ^ -((ssize_t) neg)) + neg; 81 } 82 83 /** 84 * Compare a BcNum against zero. 85 * @param n The number to compare. 86 * @return -1 if the number is less than 0, 1 if greater, and 0 if equal. 87 */ 88 ssize_t 89 bc_num_cmpZero(const BcNum* n) 90 { 91 return bc_num_neg((n)->len != 0, BC_NUM_NEG(n)); 92 } 93 94 /** 95 * Return the number of integer limbs in a BcNum. This is the opposite of rdx. 96 * @param n The number to return the amount of integer limbs for. 97 * @return The amount of integer limbs in @a n. 98 */ 99 static inline size_t 100 bc_num_int(const BcNum* n) 101 { 102 return n->len ? n->len - BC_NUM_RDX_VAL(n) : 0; 103 } 104 105 /** 106 * Expand a number's allocation capacity to at least req limbs. 107 * @param n The number to expand. 108 * @param req The number limbs to expand the allocation capacity to. 109 */ 110 static void 111 bc_num_expand(BcNum* restrict n, size_t req) 112 { 113 assert(n != NULL); 114 115 req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; 116 117 if (req > n->cap) 118 { 119 BC_SIG_LOCK; 120 121 n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req)); 122 n->cap = req; 123 124 BC_SIG_UNLOCK; 125 } 126 } 127 128 /** 129 * Set a number to 0 with the specified scale. 130 * @param n The number to set to zero. 131 * @param scale The scale to set the number to. 132 */ 133 static inline void 134 bc_num_setToZero(BcNum* restrict n, size_t scale) 135 { 136 assert(n != NULL); 137 n->scale = scale; 138 n->len = n->rdx = 0; 139 } 140 141 void 142 bc_num_zero(BcNum* restrict n) 143 { 144 bc_num_setToZero(n, 0); 145 } 146 147 void 148 bc_num_one(BcNum* restrict n) 149 { 150 bc_num_zero(n); 151 n->len = 1; 152 n->num[0] = 1; 153 } 154 155 /** 156 * "Cleans" a number, which means reducing the length if the most significant 157 * limbs are zero. 158 * @param n The number to clean. 159 */ 160 static void 161 bc_num_clean(BcNum* restrict n) 162 { 163 // Reduce the length. 164 while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) 165 { 166 n->len -= 1; 167 } 168 169 // Special cases. 170 if (BC_NUM_ZERO(n)) n->rdx = 0; 171 else 172 { 173 // len must be at least as much as rdx. 174 size_t rdx = BC_NUM_RDX_VAL(n); 175 if (n->len < rdx) n->len = rdx; 176 } 177 } 178 179 /** 180 * Returns the log base 10 of @a i. I could have done this with floating-point 181 * math, and in fact, I originally did. However, that was the only 182 * floating-point code in the entire codebase, and I decided I didn't want any. 183 * This is fast enough. Also, it might handle larger numbers better. 184 * @param i The number to return the log base 10 of. 185 * @return The log base 10 of @a i. 186 */ 187 static size_t 188 bc_num_log10(size_t i) 189 { 190 size_t len; 191 192 for (len = 1; i; i /= BC_BASE, ++len) 193 { 194 continue; 195 } 196 197 assert(len - 1 <= BC_BASE_DIGS + 1); 198 199 return len - 1; 200 } 201 202 /** 203 * Returns the number of decimal digits in a limb that are zero starting at the 204 * most significant digits. This basically returns how much of the limb is used. 205 * @param n The number. 206 * @return The number of decimal digits that are 0 starting at the most 207 * significant digits. 208 */ 209 static inline size_t 210 bc_num_zeroDigits(const BcDig* n) 211 { 212 assert(*n >= 0); 213 assert(((size_t) *n) < BC_BASE_POW); 214 return BC_BASE_DIGS - bc_num_log10((size_t) *n); 215 } 216 217 /** 218 * Return the total number of integer digits in a number. This is the opposite 219 * of scale, like bc_num_int() is the opposite of rdx. 220 * @param n The number. 221 * @return The number of integer digits in @a n. 222 */ 223 static size_t 224 bc_num_intDigits(const BcNum* n) 225 { 226 size_t digits = bc_num_int(n) * BC_BASE_DIGS; 227 if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1); 228 return digits; 229 } 230 231 /** 232 * Returns the number of limbs of a number that are non-zero starting at the 233 * most significant limbs. This expects that there are *no* integer limbs in the 234 * number because it is specifically to figure out how many zero limbs after the 235 * decimal place to ignore. If there are zero limbs after non-zero limbs, they 236 * are counted as non-zero limbs. 237 * @param n The number. 238 * @return The number of non-zero limbs after the decimal point. 239 */ 240 static size_t 241 bc_num_nonZeroLen(const BcNum* restrict n) 242 { 243 size_t i, len = n->len; 244 245 assert(len == BC_NUM_RDX_VAL(n)); 246 247 for (i = len - 1; i < len && !n->num[i]; --i) 248 { 249 continue; 250 } 251 252 assert(i + 1 > 0); 253 254 return i + 1; 255 } 256 257 /** 258 * Performs a one-limb add with a carry. 259 * @param a The first limb. 260 * @param b The second limb. 261 * @param carry An in/out parameter; the carry in from the previous add and the 262 * carry out from this add. 263 * @return The resulting limb sum. 264 */ 265 static BcDig 266 bc_num_addDigits(BcDig a, BcDig b, bool* carry) 267 { 268 assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2); 269 assert(a < BC_BASE_POW && a >= 0); 270 assert(b < BC_BASE_POW && b >= 0); 271 272 a += b + *carry; 273 *carry = (a >= BC_BASE_POW); 274 if (*carry) a -= BC_BASE_POW; 275 276 assert(a >= 0); 277 assert(a < BC_BASE_POW); 278 279 return a; 280 } 281 282 /** 283 * Performs a one-limb subtract with a carry. 284 * @param a The first limb. 285 * @param b The second limb. 286 * @param carry An in/out parameter; the carry in from the previous subtract 287 * and the carry out from this subtract. 288 * @return The resulting limb difference. 289 */ 290 static BcDig 291 bc_num_subDigits(BcDig a, BcDig b, bool* carry) 292 { 293 assert(a < BC_BASE_POW && a >= 0); 294 assert(b < BC_BASE_POW && b >= 0); 295 296 b += *carry; 297 *carry = (a < b); 298 if (*carry) a += BC_BASE_POW; 299 300 assert(a - b >= 0); 301 assert(a - b < BC_BASE_POW); 302 303 return a - b; 304 } 305 306 /** 307 * Add two BcDig arrays and store the result in the first array. 308 * @param a The first operand and out array. 309 * @param b The second operand. 310 * @param len The length of @a b. 311 */ 312 static void 313 bc_num_addArrays(BcDig* restrict a, const BcDig* restrict b, size_t len) 314 { 315 size_t i; 316 bool carry = false; 317 318 for (i = 0; i < len; ++i) 319 { 320 a[i] = bc_num_addDigits(a[i], b[i], &carry); 321 } 322 323 // Take care of the extra limbs in the bigger array. 324 for (; carry; ++i) 325 { 326 a[i] = bc_num_addDigits(a[i], 0, &carry); 327 } 328 } 329 330 /** 331 * Subtract two BcDig arrays and store the result in the first array. 332 * @param a The first operand and out array. 333 * @param b The second operand. 334 * @param len The length of @a b. 335 */ 336 static void 337 bc_num_subArrays(BcDig* restrict a, const BcDig* restrict b, size_t len) 338 { 339 size_t i; 340 bool carry = false; 341 342 for (i = 0; i < len; ++i) 343 { 344 a[i] = bc_num_subDigits(a[i], b[i], &carry); 345 } 346 347 // Take care of the extra limbs in the bigger array. 348 for (; carry; ++i) 349 { 350 a[i] = bc_num_subDigits(a[i], 0, &carry); 351 } 352 } 353 354 /** 355 * Multiply a BcNum array by a one-limb number. This is a faster version of 356 * multiplication for when we can use it. 357 * @param a The BcNum to multiply by the one-limb number. 358 * @param b The one limb of the one-limb number. 359 * @param c The return parameter. 360 */ 361 static void 362 bc_num_mulArray(const BcNum* restrict a, BcBigDig b, BcNum* restrict c) 363 { 364 size_t i; 365 BcBigDig carry = 0; 366 367 assert(b <= BC_BASE_POW); 368 369 // Make sure the return parameter is big enough. 370 if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1); 371 372 // We want the entire return parameter to be zero for cleaning later. 373 // NOLINTNEXTLINE 374 memset(c->num, 0, BC_NUM_SIZE(c->cap)); 375 376 // Actual multiplication loop. 377 for (i = 0; i < a->len; ++i) 378 { 379 BcBigDig in = ((BcBigDig) a->num[i]) * b + carry; 380 c->num[i] = in % BC_BASE_POW; 381 carry = in / BC_BASE_POW; 382 } 383 384 assert(carry < BC_BASE_POW); 385 386 // Finishing touches. 387 c->num[i] = (BcDig) carry; 388 assert(c->num[i] >= 0 && c->num[i] < BC_BASE_POW); 389 c->len = a->len; 390 c->len += (carry != 0); 391 392 bc_num_clean(c); 393 394 // Postconditions. 395 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); 396 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); 397 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); 398 } 399 400 /** 401 * Divide a BcNum array by a one-limb number. This is a faster version of divide 402 * for when we can use it. 403 * @param a The BcNum to multiply by the one-limb number. 404 * @param b The one limb of the one-limb number. 405 * @param c The return parameter for the quotient. 406 * @param rem The return parameter for the remainder. 407 */ 408 static void 409 bc_num_divArray(const BcNum* restrict a, BcBigDig b, BcNum* restrict c, 410 BcBigDig* rem) 411 { 412 size_t i; 413 BcBigDig carry = 0; 414 415 assert(c->cap >= a->len); 416 417 // Actual division loop. 418 for (i = a->len - 1; i < a->len; --i) 419 { 420 BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW; 421 assert(in / b < BC_BASE_POW); 422 c->num[i] = (BcDig) (in / b); 423 assert(c->num[i] >= 0 && c->num[i] < BC_BASE_POW); 424 carry = in % b; 425 } 426 427 // Finishing touches. 428 c->len = a->len; 429 bc_num_clean(c); 430 *rem = carry; 431 432 // Postconditions. 433 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); 434 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); 435 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); 436 } 437 438 /** 439 * Compare two BcDig arrays and return >0 if @a b is greater, <0 if @a b is 440 * less, and 0 if equal. Both @a a and @a b must have the same length. 441 * @param a The first array. 442 * @param b The second array. 443 * @param len The minimum length of the arrays. 444 */ 445 static ssize_t 446 bc_num_compare(const BcDig* restrict a, const BcDig* restrict b, size_t len) 447 { 448 size_t i; 449 BcDig c = 0; 450 for (i = len - 1; i < len && !(c = a[i] - b[i]); --i) 451 { 452 continue; 453 } 454 return bc_num_neg(i + 1, c < 0); 455 } 456 457 ssize_t 458 bc_num_cmp(const BcNum* a, const BcNum* b) 459 { 460 size_t i, min, a_int, b_int, diff, ardx, brdx; 461 BcDig* max_num; 462 BcDig* min_num; 463 bool a_max, neg = false; 464 ssize_t cmp; 465 466 assert(a != NULL && b != NULL); 467 468 // Same num? Equal. 469 if (a == b) return 0; 470 471 // Easy cases. 472 if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !BC_NUM_NEG(b)); 473 if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a); 474 if (BC_NUM_NEG(a)) 475 { 476 if (BC_NUM_NEG(b)) neg = true; 477 else return -1; 478 } 479 else if (BC_NUM_NEG(b)) return 1; 480 481 // Get the number of int limbs in each number and get the difference. 482 a_int = bc_num_int(a); 483 b_int = bc_num_int(b); 484 a_int -= b_int; 485 486 // If there's a difference, then just return the comparison. 487 if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int; 488 489 // Get the rdx's and figure out the max. 490 ardx = BC_NUM_RDX_VAL(a); 491 brdx = BC_NUM_RDX_VAL(b); 492 a_max = (ardx > brdx); 493 494 // Set variables based on the above. 495 if (a_max) 496 { 497 min = brdx; 498 diff = ardx - brdx; 499 max_num = a->num + diff; 500 min_num = b->num; 501 } 502 else 503 { 504 min = ardx; 505 diff = brdx - ardx; 506 max_num = b->num + diff; 507 min_num = a->num; 508 } 509 510 // Do a full limb-by-limb comparison. 511 cmp = bc_num_compare(max_num, min_num, b_int + min); 512 513 // If we found a difference, return it based on state. 514 if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg); 515 516 // If there was no difference, then the final step is to check which number 517 // has greater or lesser limbs beyond the other's. 518 for (max_num -= diff, i = diff - 1; i < diff; --i) 519 { 520 if (max_num[i]) return bc_num_neg(1, !a_max == !neg); 521 } 522 523 return 0; 524 } 525 526 void 527 bc_num_truncate(BcNum* restrict n, size_t places) 528 { 529 size_t nrdx, places_rdx; 530 531 if (!places) return; 532 533 // Grab these needed values; places_rdx is the rdx equivalent to places like 534 // rdx is to scale. 535 nrdx = BC_NUM_RDX_VAL(n); 536 places_rdx = nrdx ? nrdx - BC_NUM_RDX(n->scale - places) : 0; 537 538 // We cannot truncate more places than we have. 539 assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len)); 540 541 n->scale -= places; 542 BC_NUM_RDX_SET(n, nrdx - places_rdx); 543 544 // Only when the number is nonzero do we need to do the hard stuff. 545 if (BC_NUM_NONZERO(n)) 546 { 547 size_t pow; 548 549 // This calculates how many decimal digits are in the least significant 550 // limb. 551 pow = n->scale % BC_BASE_DIGS; 552 pow = pow ? BC_BASE_DIGS - pow : 0; 553 pow = bc_num_pow10[pow]; 554 555 n->len -= places_rdx; 556 557 // We have to move limbs to maintain invariants. The limbs must begin at 558 // the beginning of the BcNum array. 559 // NOLINTNEXTLINE 560 memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len)); 561 562 // Clear the lower part of the last digit. 563 if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow; 564 565 bc_num_clean(n); 566 } 567 } 568 569 void 570 bc_num_extend(BcNum* restrict n, size_t places) 571 { 572 size_t nrdx, places_rdx; 573 574 if (!places) return; 575 576 // Easy case with zero; set the scale. 577 if (BC_NUM_ZERO(n)) 578 { 579 n->scale += places; 580 return; 581 } 582 583 // Grab these needed values; places_rdx is the rdx equivalent to places like 584 // rdx is to scale. 585 nrdx = BC_NUM_RDX_VAL(n); 586 places_rdx = BC_NUM_RDX(places + n->scale) - nrdx; 587 588 // This is the hard case. We need to expand the number, move the limbs, and 589 // set the limbs that were just cleared. 590 if (places_rdx) 591 { 592 bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); 593 // NOLINTNEXTLINE 594 memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); 595 // NOLINTNEXTLINE 596 memset(n->num, 0, BC_NUM_SIZE(places_rdx)); 597 } 598 599 // Finally, set scale and rdx. 600 BC_NUM_RDX_SET(n, nrdx + places_rdx); 601 n->scale += places; 602 n->len += places_rdx; 603 604 assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale)); 605 } 606 607 /** 608 * Retires (finishes) a multiplication or division operation. 609 */ 610 static void 611 bc_num_retireMul(BcNum* restrict n, size_t scale, bool neg1, bool neg2) 612 { 613 // Make sure scale is correct. 614 if (n->scale < scale) bc_num_extend(n, scale - n->scale); 615 else bc_num_truncate(n, n->scale - scale); 616 617 bc_num_clean(n); 618 619 // We need to ensure rdx is correct. 620 if (BC_NUM_NONZERO(n)) n->rdx = BC_NUM_NEG_VAL(n, !neg1 != !neg2); 621 } 622 623 /** 624 * Splits a number into two BcNum's. This is used in Karatsuba. 625 * @param n The number to split. 626 * @param idx The index to split at. 627 * @param a An out parameter; the low part of @a n. 628 * @param b An out parameter; the high part of @a n. 629 */ 630 static void 631 bc_num_split(const BcNum* restrict n, size_t idx, BcNum* restrict a, 632 BcNum* restrict b) 633 { 634 // We want a and b to be clear. 635 assert(BC_NUM_ZERO(a)); 636 assert(BC_NUM_ZERO(b)); 637 638 // The usual case. 639 if (idx < n->len) 640 { 641 // Set the fields first. 642 b->len = n->len - idx; 643 a->len = idx; 644 a->scale = b->scale = 0; 645 BC_NUM_RDX_SET(a, 0); 646 BC_NUM_RDX_SET(b, 0); 647 648 assert(a->cap >= a->len); 649 assert(b->cap >= b->len); 650 651 // Copy the arrays. This is not necessary for safety, but it is faster, 652 // for some reason. 653 // NOLINTNEXTLINE 654 memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len)); 655 // NOLINTNEXTLINE 656 memcpy(a->num, n->num, BC_NUM_SIZE(idx)); 657 658 bc_num_clean(b); 659 } 660 // If the index is weird, just skip the split. 661 else bc_num_copy(a, n); 662 663 bc_num_clean(a); 664 } 665 666 /** 667 * Copies a number into another, but shifts the rdx so that the result number 668 * only sees the integer part of the source number. 669 * @param n The number to copy. 670 * @param r The result number with a shifted rdx, len, and num. 671 */ 672 static void 673 bc_num_shiftRdx(const BcNum* restrict n, BcNum* restrict r) 674 { 675 size_t rdx = BC_NUM_RDX_VAL(n); 676 677 r->len = n->len - rdx; 678 r->cap = n->cap - rdx; 679 r->num = n->num + rdx; 680 681 BC_NUM_RDX_SET_NEG(r, 0, BC_NUM_NEG(n)); 682 r->scale = 0; 683 } 684 685 /** 686 * Shifts a number so that all of the least significant limbs of the number are 687 * skipped. This must be undone by bc_num_unshiftZero(). 688 * @param n The number to shift. 689 */ 690 static size_t 691 bc_num_shiftZero(BcNum* restrict n) 692 { 693 // This is volatile to quiet a GCC warning about longjmp() clobbering. 694 volatile size_t i; 695 696 // If we don't have an integer, that is a problem, but it's also a bug 697 // because the caller should have set everything up right. 698 assert(!BC_NUM_RDX_VAL(n) || BC_NUM_ZERO(n)); 699 700 for (i = 0; i < n->len && !n->num[i]; ++i) 701 { 702 continue; 703 } 704 705 n->len -= i; 706 n->num += i; 707 708 return i; 709 } 710 711 /** 712 * Undo the damage done by bc_num_unshiftZero(). This must be called like all 713 * cleanup functions: after a label used by setjmp() and longjmp(). 714 * @param n The number to unshift. 715 * @param places_rdx The amount the number was originally shift. 716 */ 717 static void 718 bc_num_unshiftZero(BcNum* restrict n, size_t places_rdx) 719 { 720 n->len += places_rdx; 721 n->num -= places_rdx; 722 } 723 724 /** 725 * Shifts the digits right within a number by no more than BC_BASE_DIGS - 1. 726 * This is the final step on shifting numbers with the shift operators. It 727 * depends on the caller to shift the limbs properly because all it does is 728 * ensure that the rdx point is realigned to be between limbs. 729 * @param n The number to shift digits in. 730 * @param dig The number of places to shift right. 731 */ 732 static void 733 bc_num_shift(BcNum* restrict n, BcBigDig dig) 734 { 735 size_t i, len = n->len; 736 BcBigDig carry = 0, pow; 737 BcDig* ptr = n->num; 738 739 assert(dig < BC_BASE_DIGS); 740 741 // Figure out the parameters for division. 742 pow = bc_num_pow10[dig]; 743 dig = bc_num_pow10[BC_BASE_DIGS - dig]; 744 745 // Run a series of divisions and mods with carries across the entire number 746 // array. This effectively shifts everything over. 747 for (i = len - 1; i < len; --i) 748 { 749 BcBigDig in, temp; 750 in = ((BcBigDig) ptr[i]); 751 temp = carry * dig; 752 carry = in % pow; 753 ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp; 754 assert(ptr[i] >= 0 && ptr[i] < BC_BASE_POW); 755 } 756 757 assert(!carry); 758 } 759 760 /** 761 * Shift a number left by a certain number of places. This is the workhorse of 762 * the left shift operator. 763 * @param n The number to shift left. 764 * @param places The amount of places to shift @a n left by. 765 */ 766 static void 767 bc_num_shiftLeft(BcNum* restrict n, size_t places) 768 { 769 BcBigDig dig; 770 size_t places_rdx; 771 bool shift; 772 773 if (!places) return; 774 775 // Make sure to grow the number if necessary. 776 if (places > n->scale) 777 { 778 size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len); 779 if (size > SIZE_MAX - 1) bc_err(BC_ERR_MATH_OVERFLOW); 780 } 781 782 // If zero, we can just set the scale and bail. 783 if (BC_NUM_ZERO(n)) 784 { 785 if (n->scale >= places) n->scale -= places; 786 else n->scale = 0; 787 return; 788 } 789 790 // When I changed bc to have multiple digits per limb, this was the hardest 791 // code to change. This and shift right. Make sure you understand this 792 // before attempting anything. 793 794 // This is how many limbs we will shift. 795 dig = (BcBigDig) (places % BC_BASE_DIGS); 796 shift = (dig != 0); 797 798 // Convert places to a rdx value. 799 places_rdx = BC_NUM_RDX(places); 800 801 // If the number is not an integer, we need special care. The reason an 802 // integer doesn't is because left shift would only extend the integer, 803 // whereas a non-integer might have its fractional part eliminated or only 804 // partially eliminated. 805 if (n->scale) 806 { 807 size_t nrdx = BC_NUM_RDX_VAL(n); 808 809 // If the number's rdx is bigger, that's the hard case. 810 if (nrdx >= places_rdx) 811 { 812 size_t mod = n->scale % BC_BASE_DIGS, revdig; 813 814 // We want mod to be in the range [1, BC_BASE_DIGS], not 815 // [0, BC_BASE_DIGS). 816 mod = mod ? mod : BC_BASE_DIGS; 817 818 // We need to reverse dig to get the actual number of digits. 819 revdig = dig ? BC_BASE_DIGS - dig : 0; 820 821 // If the two overflow BC_BASE_DIGS, we need to move an extra place. 822 if (mod + revdig > BC_BASE_DIGS) places_rdx = 1; 823 else places_rdx = 0; 824 } 825 else places_rdx -= nrdx; 826 } 827 828 // If this is non-zero, we need an extra place, so expand, move, and set. 829 if (places_rdx) 830 { 831 bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); 832 // NOLINTNEXTLINE 833 memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); 834 // NOLINTNEXTLINE 835 memset(n->num, 0, BC_NUM_SIZE(places_rdx)); 836 n->len += places_rdx; 837 } 838 839 // Set the scale appropriately. 840 if (places > n->scale) 841 { 842 n->scale = 0; 843 BC_NUM_RDX_SET(n, 0); 844 } 845 else 846 { 847 n->scale -= places; 848 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); 849 } 850 851 // Finally, shift within limbs. 852 if (shift) bc_num_shift(n, BC_BASE_DIGS - dig); 853 854 bc_num_clean(n); 855 } 856 857 void 858 bc_num_shiftRight(BcNum* restrict n, size_t places) 859 { 860 BcBigDig dig; 861 size_t places_rdx, scale, scale_mod, int_len, expand; 862 bool shift; 863 864 if (!places) return; 865 866 // If zero, we can just set the scale and bail. 867 if (BC_NUM_ZERO(n)) 868 { 869 n->scale += places; 870 bc_num_expand(n, BC_NUM_RDX(n->scale)); 871 return; 872 } 873 874 // Amount within a limb we have to shift by. 875 dig = (BcBigDig) (places % BC_BASE_DIGS); 876 shift = (dig != 0); 877 878 scale = n->scale; 879 880 // Figure out how the scale is affected. 881 scale_mod = scale % BC_BASE_DIGS; 882 scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS; 883 884 // We need to know the int length and rdx for places. 885 int_len = bc_num_int(n); 886 places_rdx = BC_NUM_RDX(places); 887 888 // If we are going to shift past a limb boundary or not, set accordingly. 889 if (scale_mod + dig > BC_BASE_DIGS) 890 { 891 expand = places_rdx - 1; 892 places_rdx = 1; 893 } 894 else 895 { 896 expand = places_rdx; 897 places_rdx = 0; 898 } 899 900 // Clamp expanding. 901 if (expand > int_len) expand -= int_len; 902 else expand = 0; 903 904 // Extend, expand, and zero. 905 bc_num_extend(n, places_rdx * BC_BASE_DIGS); 906 bc_num_expand(n, bc_vm_growSize(expand, n->len)); 907 // NOLINTNEXTLINE 908 memset(n->num + n->len, 0, BC_NUM_SIZE(expand)); 909 910 // Set the fields. 911 n->len += expand; 912 n->scale = 0; 913 BC_NUM_RDX_SET(n, 0); 914 915 // Finally, shift within limbs. 916 if (shift) bc_num_shift(n, dig); 917 918 n->scale = scale + places; 919 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); 920 921 bc_num_clean(n); 922 923 assert(BC_NUM_RDX_VAL(n) <= n->len && n->len <= n->cap); 924 assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale)); 925 } 926 927 /** 928 * Tests if a number is a integer with scale or not. Returns true if the number 929 * is not an integer. If it is, its integer shifted form is copied into the 930 * result parameter for use where only integers are allowed. 931 * @param n The integer to test and shift. 932 * @param r The number to store the shifted result into. This number should 933 * *not* be allocated. 934 * @return True if the number is a non-integer, false otherwise. 935 */ 936 static bool 937 bc_num_nonInt(const BcNum* restrict n, BcNum* restrict r) 938 { 939 bool zero; 940 size_t i, rdx = BC_NUM_RDX_VAL(n); 941 942 if (!rdx) 943 { 944 // NOLINTNEXTLINE 945 memcpy(r, n, sizeof(BcNum)); 946 return false; 947 } 948 949 zero = true; 950 951 for (i = 0; zero && i < rdx; ++i) 952 { 953 zero = (n->num[i] == 0); 954 } 955 956 if (BC_ERR(!zero)) return true; 957 958 bc_num_shiftRdx(n, r); 959 960 return false; 961 } 962 963 #if BC_ENABLE_EXTRA_MATH 964 965 /** 966 * Execute common code for an operater that needs an integer for the second 967 * operand and return the integer operand as a BcBigDig. 968 * @param a The first operand. 969 * @param b The second operand. 970 * @param c The result operand. 971 * @return The second operand as a hardware integer. 972 */ 973 static BcBigDig 974 bc_num_intop(const BcNum* a, const BcNum* b, BcNum* restrict c) 975 { 976 BcNum temp; 977 978 #if BC_GCC 979 temp.len = 0; 980 temp.rdx = 0; 981 temp.num = NULL; 982 #endif // BC_GCC 983 984 if (BC_ERR(bc_num_nonInt(b, &temp))) bc_err(BC_ERR_MATH_NON_INTEGER); 985 986 bc_num_copy(c, a); 987 988 return bc_num_bigdig(&temp); 989 } 990 #endif // BC_ENABLE_EXTRA_MATH 991 992 /** 993 * This is the actual implementation of add *and* subtract. Since this function 994 * doesn't need to use scale (per the bc spec), I am hijacking it to say whether 995 * it's doing an add or a subtract. And then I convert substraction to addition 996 * of negative second operand. This is a BcNumBinOp function. 997 * @param a The first operand. 998 * @param b The second operand. 999 * @param c The return parameter. 1000 * @param sub Non-zero for a subtract, zero for an add. 1001 */ 1002 static void 1003 bc_num_as(BcNum* a, BcNum* b, BcNum* restrict c, size_t sub) 1004 { 1005 BcDig* ptr_c; 1006 BcDig* ptr_l; 1007 BcDig* ptr_r; 1008 size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int; 1009 size_t len_l, len_r, ardx, brdx; 1010 bool b_neg, do_sub, do_rev_sub, carry, c_neg; 1011 1012 if (BC_NUM_ZERO(b)) 1013 { 1014 bc_num_copy(c, a); 1015 return; 1016 } 1017 1018 if (BC_NUM_ZERO(a)) 1019 { 1020 bc_num_copy(c, b); 1021 c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(b) != sub); 1022 return; 1023 } 1024 1025 // Invert sign of b if it is to be subtracted. This operation must 1026 // precede the tests for any of the operands being zero. 1027 b_neg = (BC_NUM_NEG(b) != sub); 1028 1029 // Figure out if we will actually add the numbers if their signs are equal 1030 // or subtract. 1031 do_sub = (BC_NUM_NEG(a) != b_neg); 1032 1033 a_int = bc_num_int(a); 1034 b_int = bc_num_int(b); 1035 max_int = BC_MAX(a_int, b_int); 1036 1037 // Figure out which number will have its last limbs copied (for addition) or 1038 // subtracted (for subtraction). 1039 ardx = BC_NUM_RDX_VAL(a); 1040 brdx = BC_NUM_RDX_VAL(b); 1041 min_rdx = BC_MIN(ardx, brdx); 1042 max_rdx = BC_MAX(ardx, brdx); 1043 diff = max_rdx - min_rdx; 1044 1045 max_len = max_int + max_rdx; 1046 1047 if (do_sub) 1048 { 1049 // Check whether b has to be subtracted from a or a from b. 1050 if (a_int != b_int) do_rev_sub = (a_int < b_int); 1051 else if (ardx > brdx) 1052 { 1053 do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0); 1054 } 1055 else do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0); 1056 } 1057 else 1058 { 1059 // The result array of the addition might come out one element 1060 // longer than the bigger of the operand arrays. 1061 max_len += 1; 1062 do_rev_sub = (a_int < b_int); 1063 } 1064 1065 assert(max_len <= c->cap); 1066 1067 // Cache values for simple code later. 1068 if (do_rev_sub) 1069 { 1070 ptr_l = b->num; 1071 ptr_r = a->num; 1072 len_l = b->len; 1073 len_r = a->len; 1074 } 1075 else 1076 { 1077 ptr_l = a->num; 1078 ptr_r = b->num; 1079 len_l = a->len; 1080 len_r = b->len; 1081 } 1082 1083 ptr_c = c->num; 1084 carry = false; 1085 1086 // This is true if the numbers have a different number of limbs after the 1087 // decimal point. 1088 if (diff) 1089 { 1090 // If the rdx values of the operands do not match, the result will 1091 // have low end elements that are the positive or negative trailing 1092 // elements of the operand with higher rdx value. 1093 if ((ardx > brdx) != do_rev_sub) 1094 { 1095 // !do_rev_sub && ardx > brdx || do_rev_sub && brdx > ardx 1096 // The left operand has BcDig values that need to be copied, 1097 // either from a or from b (in case of a reversed subtraction). 1098 // NOLINTNEXTLINE 1099 memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff)); 1100 ptr_l += diff; 1101 len_l -= diff; 1102 } 1103 else 1104 { 1105 // The right operand has BcDig values that need to be copied 1106 // or subtracted from zero (in case of a subtraction). 1107 if (do_sub) 1108 { 1109 // do_sub (do_rev_sub && ardx > brdx || 1110 // !do_rev_sub && brdx > ardx) 1111 for (i = 0; i < diff; i++) 1112 { 1113 ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry); 1114 } 1115 } 1116 else 1117 { 1118 // !do_sub && brdx > ardx 1119 // NOLINTNEXTLINE 1120 memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff)); 1121 } 1122 1123 // Future code needs to ignore the limbs we just did. 1124 ptr_r += diff; 1125 len_r -= diff; 1126 } 1127 1128 // The return value pointer needs to ignore what we just did. 1129 ptr_c += diff; 1130 } 1131 1132 // This is the length that can be directly added/subtracted. 1133 min_len = BC_MIN(len_l, len_r); 1134 1135 // After dealing with possible low array elements that depend on only one 1136 // operand above, the actual add or subtract can be performed as if the rdx 1137 // of both operands was the same. 1138 // 1139 // Inlining takes care of eliminating constant zero arguments to 1140 // addDigit/subDigit (checked in disassembly of resulting bc binary 1141 // compiled with gcc and clang). 1142 if (do_sub) 1143 { 1144 // Actual subtraction. 1145 for (i = 0; i < min_len; ++i) 1146 { 1147 ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry); 1148 } 1149 1150 // Finishing the limbs beyond the direct subtraction. 1151 for (; i < len_l; ++i) 1152 { 1153 ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry); 1154 } 1155 } 1156 else 1157 { 1158 // Actual addition. 1159 for (i = 0; i < min_len; ++i) 1160 { 1161 ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry); 1162 } 1163 1164 // Finishing the limbs beyond the direct addition. 1165 for (; i < len_l; ++i) 1166 { 1167 ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry); 1168 } 1169 1170 // Addition can create an extra limb. We take care of that here. 1171 ptr_c[i] = bc_num_addDigits(0, 0, &carry); 1172 } 1173 1174 assert(carry == false); 1175 1176 // The result has the same sign as a, unless the operation was a 1177 // reverse subtraction (b - a). 1178 c_neg = BC_NUM_NEG(a) != (do_sub && do_rev_sub); 1179 BC_NUM_RDX_SET_NEG(c, max_rdx, c_neg); 1180 c->len = max_len; 1181 c->scale = BC_MAX(a->scale, b->scale); 1182 1183 bc_num_clean(c); 1184 } 1185 1186 /** 1187 * The simple multiplication that karatsuba dishes out to when the length of the 1188 * numbers gets low enough. This doesn't use scale because it treats the 1189 * operands as though they are integers. 1190 * @param a The first operand. 1191 * @param b The second operand. 1192 * @param c The return parameter. 1193 */ 1194 static void 1195 bc_num_m_simp(const BcNum* a, const BcNum* b, BcNum* restrict c) 1196 { 1197 size_t i, alen = a->len, blen = b->len, clen; 1198 BcDig* ptr_a = a->num; 1199 BcDig* ptr_b = b->num; 1200 BcDig* ptr_c; 1201 BcBigDig sum = 0, carry = 0; 1202 1203 assert(sizeof(sum) >= sizeof(BcDig) * 2); 1204 assert(!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b)); 1205 1206 // Make sure c is big enough. 1207 clen = bc_vm_growSize(alen, blen); 1208 bc_num_expand(c, bc_vm_growSize(clen, 1)); 1209 1210 // If we don't memset, then we might have uninitialized data use later. 1211 ptr_c = c->num; 1212 // NOLINTNEXTLINE 1213 memset(ptr_c, 0, BC_NUM_SIZE(c->cap)); 1214 1215 // This is the actual multiplication loop. It uses the lattice form of long 1216 // multiplication (see the explanation on the web page at 1217 // https://knilt.arcc.albany.edu/What_is_Lattice_Multiplication or the 1218 // explanation at Wikipedia). 1219 for (i = 0; i < clen; ++i) 1220 { 1221 ssize_t sidx = (ssize_t) (i - blen + 1); 1222 size_t j, k; 1223 1224 // These are the start indices. 1225 j = (size_t) BC_MAX(0, sidx); 1226 k = BC_MIN(i, blen - 1); 1227 1228 // On every iteration of this loop, a multiplication happens, then the 1229 // sum is automatically calculated. 1230 for (; j < alen && k < blen; ++j, --k) 1231 { 1232 sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]); 1233 1234 if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW) 1235 { 1236 carry += sum / BC_BASE_POW; 1237 sum %= BC_BASE_POW; 1238 } 1239 } 1240 1241 // Calculate the carry. 1242 if (sum >= BC_BASE_POW) 1243 { 1244 carry += sum / BC_BASE_POW; 1245 sum %= BC_BASE_POW; 1246 } 1247 1248 // Store and set up for next iteration. 1249 ptr_c[i] = (BcDig) sum; 1250 assert(ptr_c[i] < BC_BASE_POW); 1251 sum = carry; 1252 carry = 0; 1253 } 1254 1255 // This should always be true because there should be no carry on the last 1256 // digit; multiplication never goes above the sum of both lengths. 1257 assert(!sum); 1258 1259 c->len = clen; 1260 } 1261 1262 /** 1263 * Does a shifted add or subtract for Karatsuba below. This calls either 1264 * bc_num_addArrays() or bc_num_subArrays(). 1265 * @param n An in/out parameter; the first operand and return parameter. 1266 * @param a The second operand. 1267 * @param shift The amount to shift @a n by when adding/subtracting. 1268 * @param op The function to call, either bc_num_addArrays() or 1269 * bc_num_subArrays(). 1270 */ 1271 static void 1272 bc_num_shiftAddSub(BcNum* restrict n, const BcNum* restrict a, size_t shift, 1273 BcNumShiftAddOp op) 1274 { 1275 assert(n->len >= shift + a->len); 1276 assert(!BC_NUM_RDX_VAL(n) && !BC_NUM_RDX_VAL(a)); 1277 op(n->num + shift, a->num, a->len); 1278 } 1279 1280 /** 1281 * Implements the Karatsuba algorithm. 1282 */ 1283 static void 1284 bc_num_k(const BcNum* a, const BcNum* b, BcNum* restrict c) 1285 { 1286 size_t max, max2, total; 1287 BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp; 1288 BcDig* digs; 1289 BcDig* dig_ptr; 1290 BcNumShiftAddOp op; 1291 bool aone = BC_NUM_ONE(a); 1292 #if BC_ENABLE_LIBRARY 1293 BcVm* vm = bcl_getspecific(); 1294 #endif // BC_ENABLE_LIBRARY 1295 1296 assert(BC_NUM_ZERO(c)); 1297 1298 if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return; 1299 1300 if (aone || BC_NUM_ONE(b)) 1301 { 1302 bc_num_copy(c, aone ? b : a); 1303 if ((aone && BC_NUM_NEG(a)) || BC_NUM_NEG(b)) BC_NUM_NEG_TGL(c); 1304 return; 1305 } 1306 1307 // Shell out to the simple algorithm with certain conditions. 1308 if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) 1309 { 1310 bc_num_m_simp(a, b, c); 1311 return; 1312 } 1313 1314 // We need to calculate the max size of the numbers that can result from the 1315 // operations. 1316 max = BC_MAX(a->len, b->len); 1317 max = BC_MAX(max, BC_NUM_DEF_SIZE); 1318 max2 = (max + 1) / 2; 1319 1320 // Calculate the space needed for all of the temporary allocations. We do 1321 // this to just allocate once. 1322 total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max); 1323 1324 BC_SIG_LOCK; 1325 1326 // Allocate space for all of the temporaries. 1327 digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total)); 1328 1329 // Set up the temporaries. 1330 bc_num_setup(&l1, dig_ptr, max); 1331 dig_ptr += max; 1332 bc_num_setup(&h1, dig_ptr, max); 1333 dig_ptr += max; 1334 bc_num_setup(&l2, dig_ptr, max); 1335 dig_ptr += max; 1336 bc_num_setup(&h2, dig_ptr, max); 1337 dig_ptr += max; 1338 bc_num_setup(&m1, dig_ptr, max); 1339 dig_ptr += max; 1340 bc_num_setup(&m2, dig_ptr, max); 1341 1342 // Some temporaries need the ability to grow, so we allocate them 1343 // separately. 1344 max = bc_vm_growSize(max, 1); 1345 bc_num_init(&z0, max); 1346 bc_num_init(&z1, max); 1347 bc_num_init(&z2, max); 1348 max = bc_vm_growSize(max, max) + 1; 1349 bc_num_init(&temp, max); 1350 1351 BC_SETJMP_LOCKED(vm, err); 1352 1353 BC_SIG_UNLOCK; 1354 1355 // First, set up c. 1356 bc_num_expand(c, max); 1357 c->len = max; 1358 // NOLINTNEXTLINE 1359 memset(c->num, 0, BC_NUM_SIZE(c->len)); 1360 1361 // Split the parameters. 1362 bc_num_split(a, max2, &l1, &h1); 1363 bc_num_split(b, max2, &l2, &h2); 1364 1365 // Do the subtraction. 1366 bc_num_sub(&h1, &l1, &m1, 0); 1367 bc_num_sub(&l2, &h2, &m2, 0); 1368 1369 // The if statements below are there for efficiency reasons. The best way to 1370 // understand them is to understand the Karatsuba algorithm because now that 1371 // the ollocations and splits are done, the algorithm is pretty 1372 // straightforward. 1373 1374 if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) 1375 { 1376 assert(BC_NUM_RDX_VALID_NP(h1)); 1377 assert(BC_NUM_RDX_VALID_NP(h2)); 1378 1379 bc_num_m(&h1, &h2, &z2, 0); 1380 bc_num_clean(&z2); 1381 1382 bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays); 1383 bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays); 1384 } 1385 1386 if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) 1387 { 1388 assert(BC_NUM_RDX_VALID_NP(l1)); 1389 assert(BC_NUM_RDX_VALID_NP(l2)); 1390 1391 bc_num_m(&l1, &l2, &z0, 0); 1392 bc_num_clean(&z0); 1393 1394 bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays); 1395 bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays); 1396 } 1397 1398 if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) 1399 { 1400 assert(BC_NUM_RDX_VALID_NP(m1)); 1401 assert(BC_NUM_RDX_VALID_NP(m1)); 1402 1403 bc_num_m(&m1, &m2, &z1, 0); 1404 bc_num_clean(&z1); 1405 1406 op = (BC_NUM_NEG_NP(m1) != BC_NUM_NEG_NP(m2)) ? 1407 bc_num_subArrays : 1408 bc_num_addArrays; 1409 bc_num_shiftAddSub(c, &z1, max2, op); 1410 } 1411 1412 err: 1413 BC_SIG_MAYLOCK; 1414 free(digs); 1415 bc_num_free(&temp); 1416 bc_num_free(&z2); 1417 bc_num_free(&z1); 1418 bc_num_free(&z0); 1419 BC_LONGJMP_CONT(vm); 1420 } 1421 1422 /** 1423 * Does checks for Karatsuba. It also changes things to ensure that the 1424 * Karatsuba and simple multiplication can treat the numbers as integers. This 1425 * is a BcNumBinOp function. 1426 * @param a The first operand. 1427 * @param b The second operand. 1428 * @param c The return parameter. 1429 * @param scale The current scale. 1430 */ 1431 static void 1432 bc_num_m(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 1433 { 1434 BcNum cpa, cpb; 1435 size_t ascale, bscale, ardx, brdx, zero, len, rscale; 1436 // These are meant to quiet warnings on GCC about longjmp() clobbering. 1437 // The problem is real here. 1438 size_t scale1, scale2, realscale; 1439 // These are meant to quiet the GCC longjmp() clobbering, even though it 1440 // does not apply here. 1441 volatile size_t azero; 1442 volatile size_t bzero; 1443 #if BC_ENABLE_LIBRARY 1444 BcVm* vm = bcl_getspecific(); 1445 #endif // BC_ENABLE_LIBRARY 1446 1447 assert(BC_NUM_RDX_VALID(a)); 1448 assert(BC_NUM_RDX_VALID(b)); 1449 1450 bc_num_zero(c); 1451 1452 ascale = a->scale; 1453 bscale = b->scale; 1454 1455 // This sets the final scale according to the bc spec. 1456 scale1 = BC_MAX(scale, ascale); 1457 scale2 = BC_MAX(scale1, bscale); 1458 rscale = ascale + bscale; 1459 realscale = BC_MIN(rscale, scale2); 1460 1461 // If this condition is true, we can use bc_num_mulArray(), which would be 1462 // much faster. 1463 if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) 1464 { 1465 BcNum* operand; 1466 BcBigDig dig; 1467 1468 // Set the correct operands. 1469 if (a->len == 1) 1470 { 1471 dig = (BcBigDig) a->num[0]; 1472 operand = b; 1473 } 1474 else 1475 { 1476 dig = (BcBigDig) b->num[0]; 1477 operand = a; 1478 } 1479 1480 bc_num_mulArray(operand, dig, c); 1481 1482 // Need to make sure the sign is correct. 1483 if (BC_NUM_NONZERO(c)) 1484 { 1485 c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(a) != BC_NUM_NEG(b)); 1486 } 1487 1488 return; 1489 } 1490 1491 assert(BC_NUM_RDX_VALID(a)); 1492 assert(BC_NUM_RDX_VALID(b)); 1493 1494 BC_SIG_LOCK; 1495 1496 // We need copies because of all of the mutation needed to make Karatsuba 1497 // think the numbers are integers. 1498 bc_num_init(&cpa, a->len + BC_NUM_RDX_VAL(a)); 1499 bc_num_init(&cpb, b->len + BC_NUM_RDX_VAL(b)); 1500 1501 BC_SETJMP_LOCKED(vm, init_err); 1502 1503 BC_SIG_UNLOCK; 1504 1505 bc_num_copy(&cpa, a); 1506 bc_num_copy(&cpb, b); 1507 1508 assert(BC_NUM_RDX_VALID_NP(cpa)); 1509 assert(BC_NUM_RDX_VALID_NP(cpb)); 1510 1511 BC_NUM_NEG_CLR_NP(cpa); 1512 BC_NUM_NEG_CLR_NP(cpb); 1513 1514 assert(BC_NUM_RDX_VALID_NP(cpa)); 1515 assert(BC_NUM_RDX_VALID_NP(cpb)); 1516 1517 // These are what makes them appear like integers. 1518 ardx = BC_NUM_RDX_VAL_NP(cpa) * BC_BASE_DIGS; 1519 bc_num_shiftLeft(&cpa, ardx); 1520 1521 brdx = BC_NUM_RDX_VAL_NP(cpb) * BC_BASE_DIGS; 1522 bc_num_shiftLeft(&cpb, brdx); 1523 1524 // We need to reset the jump here because azero and bzero are used in the 1525 // cleanup, and local variables are not guaranteed to be the same after a 1526 // jump. 1527 BC_SIG_LOCK; 1528 1529 BC_UNSETJMP(vm); 1530 1531 // We want to ignore zero limbs. 1532 azero = bc_num_shiftZero(&cpa); 1533 bzero = bc_num_shiftZero(&cpb); 1534 1535 BC_SETJMP_LOCKED(vm, err); 1536 1537 BC_SIG_UNLOCK; 1538 1539 bc_num_clean(&cpa); 1540 bc_num_clean(&cpb); 1541 1542 bc_num_k(&cpa, &cpb, c); 1543 1544 // The return parameter needs to have its scale set. This is the start. It 1545 // also needs to be shifted by the same amount as a and b have limbs after 1546 // the decimal point. 1547 zero = bc_vm_growSize(azero, bzero); 1548 len = bc_vm_growSize(c->len, zero); 1549 1550 bc_num_expand(c, len); 1551 1552 // Shift c based on the limbs after the decimal point in a and b. 1553 bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS); 1554 bc_num_shiftRight(c, ardx + brdx); 1555 1556 bc_num_retireMul(c, realscale, BC_NUM_NEG(a), BC_NUM_NEG(b)); 1557 1558 err: 1559 BC_SIG_MAYLOCK; 1560 bc_num_unshiftZero(&cpb, bzero); 1561 bc_num_unshiftZero(&cpa, azero); 1562 init_err: 1563 BC_SIG_MAYLOCK; 1564 bc_num_free(&cpb); 1565 bc_num_free(&cpa); 1566 BC_LONGJMP_CONT(vm); 1567 } 1568 1569 /** 1570 * Returns true if the BcDig array has non-zero limbs, false otherwise. 1571 * @param a The array to test. 1572 * @param len The length of the array. 1573 * @return True if @a has any non-zero limbs, false otherwise. 1574 */ 1575 static bool 1576 bc_num_nonZeroDig(BcDig* restrict a, size_t len) 1577 { 1578 size_t i; 1579 1580 for (i = len - 1; i < len; --i) 1581 { 1582 if (a[i] != 0) return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 /** 1589 * Compares a BcDig array against a BcNum. This is especially suited for 1590 * division. Returns >0 if @a a is greater than @a b, <0 if it is less, and =0 1591 * if they are equal. 1592 * @param a The array. 1593 * @param b The number. 1594 * @param len The length to assume the arrays are. This is always less than the 1595 * actual length because of how this is implemented. 1596 */ 1597 static ssize_t 1598 bc_num_divCmp(const BcDig* a, const BcNum* b, size_t len) 1599 { 1600 ssize_t cmp; 1601 1602 if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1); 1603 else if (b->len <= len) 1604 { 1605 if (a[len]) cmp = 1; 1606 else cmp = bc_num_compare(a, b->num, len); 1607 } 1608 else cmp = -1; 1609 1610 return cmp; 1611 } 1612 1613 /** 1614 * Extends the two operands of a division by BC_BASE_DIGS minus the number of 1615 * digits in the divisor estimate. In other words, it is shifting the numbers in 1616 * order to force the divisor estimate to fill the limb. 1617 * @param a The first operand. 1618 * @param b The second operand. 1619 * @param divisor The divisor estimate. 1620 */ 1621 static void 1622 bc_num_divExtend(BcNum* restrict a, BcNum* restrict b, BcBigDig divisor) 1623 { 1624 size_t pow; 1625 1626 assert(divisor < BC_BASE_POW); 1627 1628 pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor); 1629 1630 bc_num_shiftLeft(a, pow); 1631 bc_num_shiftLeft(b, pow); 1632 } 1633 1634 /** 1635 * Actually does division. This is a rewrite of my original code by Stefan Esser 1636 * from FreeBSD. 1637 * @param a The first operand. 1638 * @param b The second operand. 1639 * @param c The return parameter. 1640 * @param scale The current scale. 1641 */ 1642 static void 1643 bc_num_d_long(BcNum* restrict a, BcNum* restrict b, BcNum* restrict c, 1644 size_t scale) 1645 { 1646 BcBigDig divisor; 1647 size_t i, rdx; 1648 // This is volatile and len 2 and reallen exist to quiet the GCC warning 1649 // about clobbering on longjmp(). This one is possible, I think. 1650 volatile size_t len; 1651 size_t len2, reallen; 1652 // This is volatile and realend exists to quiet the GCC warning about 1653 // clobbering on longjmp(). This one is possible, I think. 1654 volatile size_t end; 1655 size_t realend; 1656 BcNum cpb; 1657 // This is volatile and realnonzero exists to quiet the GCC warning about 1658 // clobbering on longjmp(). This one is possible, I think. 1659 volatile bool nonzero; 1660 bool realnonzero; 1661 #if BC_ENABLE_LIBRARY 1662 BcVm* vm = bcl_getspecific(); 1663 #endif // BC_ENABLE_LIBRARY 1664 1665 assert(b->len < a->len); 1666 1667 len = b->len; 1668 end = a->len - len; 1669 1670 assert(len >= 1); 1671 1672 // This is a final time to make sure c is big enough and that its array is 1673 // properly zeroed. 1674 bc_num_expand(c, a->len); 1675 // NOLINTNEXTLINE 1676 memset(c->num, 0, c->cap * sizeof(BcDig)); 1677 1678 // Setup. 1679 BC_NUM_RDX_SET(c, BC_NUM_RDX_VAL(a)); 1680 c->scale = a->scale; 1681 c->len = a->len; 1682 1683 // This is pulling the most significant limb of b in order to establish a 1684 // good "estimate" for the actual divisor. 1685 divisor = (BcBigDig) b->num[len - 1]; 1686 1687 // The entire bit of code in this if statement is to tighten the estimate of 1688 // the divisor. The condition asks if b has any other non-zero limbs. 1689 if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) 1690 { 1691 // This takes a little bit of understanding. The "10*BC_BASE_DIGS/6+1" 1692 // results in either 16 for 64-bit 9-digit limbs or 7 for 32-bit 4-digit 1693 // limbs. Then it shifts a 1 by that many, which in both cases, puts the 1694 // result above *half* of the max value a limb can store. Basically, 1695 // this quickly calculates if the divisor is greater than half the max 1696 // of a limb. 1697 nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1)); 1698 1699 // If the divisor is *not* greater than half the limb... 1700 if (!nonzero) 1701 { 1702 // Extend the parameters by the number of missing digits in the 1703 // divisor. 1704 bc_num_divExtend(a, b, divisor); 1705 1706 // Check bc_num_d(). In there, we grow a again and again. We do it 1707 // again here; we *always* want to be sure it is big enough. 1708 len2 = BC_MAX(a->len, b->len); 1709 bc_num_expand(a, len2 + 1); 1710 1711 // Make a have a zero most significant limb to match the len. 1712 if (len2 + 1 > a->len) a->len = len2 + 1; 1713 1714 // Grab the new divisor estimate, new because the shift has made it 1715 // different. 1716 reallen = b->len; 1717 realend = a->len - reallen; 1718 divisor = (BcBigDig) b->num[reallen - 1]; 1719 1720 realnonzero = bc_num_nonZeroDig(b->num, reallen - 1); 1721 } 1722 else 1723 { 1724 realend = end; 1725 realnonzero = nonzero; 1726 } 1727 } 1728 else 1729 { 1730 realend = end; 1731 realnonzero = false; 1732 } 1733 1734 // If b has other nonzero limbs, we want the divisor to be one higher, so 1735 // that it is an upper bound. 1736 divisor += realnonzero; 1737 1738 // Make sure c can fit the new length. 1739 bc_num_expand(c, a->len); 1740 // NOLINTNEXTLINE 1741 memset(c->num, 0, BC_NUM_SIZE(c->cap)); 1742 1743 assert(c->scale >= scale); 1744 rdx = BC_NUM_RDX_VAL(c) - BC_NUM_RDX(scale); 1745 1746 BC_SIG_LOCK; 1747 1748 bc_num_init(&cpb, len + 1); 1749 1750 BC_SETJMP_LOCKED(vm, err); 1751 1752 BC_SIG_UNLOCK; 1753 1754 // This is the actual division loop. 1755 for (i = realend - 1; i < realend && i >= rdx && BC_NUM_NONZERO(a); --i) 1756 { 1757 ssize_t cmp; 1758 BcDig* n; 1759 BcBigDig result; 1760 1761 n = a->num + i; 1762 assert(n >= a->num); 1763 result = 0; 1764 1765 cmp = bc_num_divCmp(n, b, len); 1766 1767 // This is true if n is greater than b, which means that division can 1768 // proceed, so this inner loop is the part that implements one instance 1769 // of the division. 1770 while (cmp >= 0) 1771 { 1772 BcBigDig n1, dividend, quotient; 1773 1774 // These should be named obviously enough. Just imagine that it's a 1775 // division of one limb. Because that's what it is. 1776 n1 = (BcBigDig) n[len]; 1777 dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1]; 1778 quotient = (dividend / divisor); 1779 1780 // If this is true, then we can just subtract. Remember: setting 1781 // quotient to 1 is not bad because we already know that n is 1782 // greater than b. 1783 if (quotient <= 1) 1784 { 1785 quotient = 1; 1786 bc_num_subArrays(n, b->num, len); 1787 } 1788 else 1789 { 1790 assert(quotient <= BC_BASE_POW); 1791 1792 // We need to multiply and subtract for a quotient above 1. 1793 bc_num_mulArray(b, (BcBigDig) quotient, &cpb); 1794 bc_num_subArrays(n, cpb.num, cpb.len); 1795 } 1796 1797 // The result is the *real* quotient, by the way, but it might take 1798 // multiple trips around this loop to get it. 1799 result += quotient; 1800 assert(result <= BC_BASE_POW); 1801 1802 // And here's why it might take multiple trips: n might *still* be 1803 // greater than b. So we have to loop again. That's what this is 1804 // setting up for: the condition of the while loop. 1805 if (realnonzero) cmp = bc_num_divCmp(n, b, len); 1806 else cmp = -1; 1807 } 1808 1809 assert(result < BC_BASE_POW); 1810 1811 // Store the actual limb quotient. 1812 c->num[i] = (BcDig) result; 1813 } 1814 1815 err: 1816 BC_SIG_MAYLOCK; 1817 bc_num_free(&cpb); 1818 BC_LONGJMP_CONT(vm); 1819 } 1820 1821 /** 1822 * Implements division. This is a BcNumBinOp function. 1823 * @param a The first operand. 1824 * @param b The second operand. 1825 * @param c The return parameter. 1826 * @param scale The current scale. 1827 */ 1828 static void 1829 bc_num_d(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 1830 { 1831 size_t len, cpardx; 1832 BcNum cpa, cpb; 1833 #if BC_ENABLE_LIBRARY 1834 BcVm* vm = bcl_getspecific(); 1835 #endif // BC_ENABLE_LIBRARY 1836 1837 if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO); 1838 1839 if (BC_NUM_ZERO(a)) 1840 { 1841 bc_num_setToZero(c, scale); 1842 return; 1843 } 1844 1845 if (BC_NUM_ONE(b)) 1846 { 1847 bc_num_copy(c, a); 1848 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); 1849 return; 1850 } 1851 1852 // If this is true, we can use bc_num_divArray(), which would be faster. 1853 if (!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale) 1854 { 1855 BcBigDig rem; 1856 bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem); 1857 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); 1858 return; 1859 } 1860 1861 len = bc_num_divReq(a, b, scale); 1862 1863 BC_SIG_LOCK; 1864 1865 // Initialize copies of the parameters. We want the length of the first 1866 // operand copy to be as big as the result because of the way the division 1867 // is implemented. 1868 bc_num_init(&cpa, len); 1869 bc_num_copy(&cpa, a); 1870 bc_num_createCopy(&cpb, b); 1871 1872 BC_SETJMP_LOCKED(vm, err); 1873 1874 BC_SIG_UNLOCK; 1875 1876 len = b->len; 1877 1878 // Like the above comment, we want the copy of the first parameter to be 1879 // larger than the second parameter. 1880 if (len > cpa.len) 1881 { 1882 bc_num_expand(&cpa, bc_vm_growSize(len, 2)); 1883 bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS); 1884 } 1885 1886 cpardx = BC_NUM_RDX_VAL_NP(cpa); 1887 cpa.scale = cpardx * BC_BASE_DIGS; 1888 1889 // This is just setting up the scale in preparation for the division. 1890 bc_num_extend(&cpa, b->scale); 1891 cpardx = BC_NUM_RDX_VAL_NP(cpa) - BC_NUM_RDX(b->scale); 1892 BC_NUM_RDX_SET_NP(cpa, cpardx); 1893 cpa.scale = cpardx * BC_BASE_DIGS; 1894 1895 // Once again, just setting things up, this time to match scale. 1896 if (scale > cpa.scale) 1897 { 1898 bc_num_extend(&cpa, scale); 1899 cpardx = BC_NUM_RDX_VAL_NP(cpa); 1900 cpa.scale = cpardx * BC_BASE_DIGS; 1901 } 1902 1903 // Grow if necessary. 1904 if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1)); 1905 1906 // We want an extra zero in front to make things simpler. 1907 cpa.num[cpa.len++] = 0; 1908 1909 // Still setting things up. Why all of these things are needed is not 1910 // something that can be easily explained, but it has to do with making the 1911 // actual algorithm easier to understand because it can assume a lot of 1912 // things. Thus, you should view all of this setup code as establishing 1913 // assumptions for bc_num_d_long(), where the actual division happens. 1914 if (cpardx == cpa.len) cpa.len = bc_num_nonZeroLen(&cpa); 1915 if (BC_NUM_RDX_VAL_NP(cpb) == cpb.len) cpb.len = bc_num_nonZeroLen(&cpb); 1916 cpb.scale = 0; 1917 BC_NUM_RDX_SET_NP(cpb, 0); 1918 1919 bc_num_d_long(&cpa, &cpb, c, scale); 1920 1921 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); 1922 1923 err: 1924 BC_SIG_MAYLOCK; 1925 bc_num_free(&cpb); 1926 bc_num_free(&cpa); 1927 BC_LONGJMP_CONT(vm); 1928 } 1929 1930 /** 1931 * Implements divmod. This is the actual modulus function; since modulus 1932 * requires a division anyway, this returns the quotient and modulus. Either can 1933 * be thrown out as desired. 1934 * @param a The first operand. 1935 * @param b The second operand. 1936 * @param c The return parameter for the quotient. 1937 * @param d The return parameter for the modulus. 1938 * @param scale The current scale. 1939 * @param ts The scale that the operation should be done to. Yes, it's not 1940 * necessarily the same as scale, per the bc spec. 1941 */ 1942 static void 1943 bc_num_r(BcNum* a, BcNum* b, BcNum* restrict c, BcNum* restrict d, size_t scale, 1944 size_t ts) 1945 { 1946 BcNum temp; 1947 // realscale is meant to quiet a warning on GCC about longjmp() clobbering. 1948 // This one is real. 1949 size_t realscale; 1950 bool neg; 1951 #if BC_ENABLE_LIBRARY 1952 BcVm* vm = bcl_getspecific(); 1953 #endif // BC_ENABLE_LIBRARY 1954 1955 if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO); 1956 1957 if (BC_NUM_ZERO(a)) 1958 { 1959 bc_num_setToZero(c, ts); 1960 bc_num_setToZero(d, ts); 1961 return; 1962 } 1963 1964 BC_SIG_LOCK; 1965 1966 bc_num_init(&temp, d->cap); 1967 1968 BC_SETJMP_LOCKED(vm, err); 1969 1970 BC_SIG_UNLOCK; 1971 1972 // Division. 1973 bc_num_d(a, b, c, scale); 1974 1975 // We want an extra digit so we can safely truncate. 1976 if (scale) realscale = ts + 1; 1977 else realscale = scale; 1978 1979 assert(BC_NUM_RDX_VALID(c)); 1980 assert(BC_NUM_RDX_VALID(b)); 1981 1982 // Implement the rest of the (a - (a / b) * b) formula. 1983 bc_num_m(c, b, &temp, realscale); 1984 bc_num_sub(a, &temp, d, realscale); 1985 1986 // Extend if necessary. 1987 if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale); 1988 1989 neg = BC_NUM_NEG(d); 1990 bc_num_retireMul(d, ts, BC_NUM_NEG(a), BC_NUM_NEG(b)); 1991 d->rdx = BC_NUM_NEG_VAL(d, BC_NUM_NONZERO(d) ? neg : false); 1992 1993 err: 1994 BC_SIG_MAYLOCK; 1995 bc_num_free(&temp); 1996 BC_LONGJMP_CONT(vm); 1997 } 1998 1999 /** 2000 * Implements modulus/remainder. (Yes, I know they are different, but not in the 2001 * context of bc.) This is a BcNumBinOp function. 2002 * @param a The first operand. 2003 * @param b The second operand. 2004 * @param c The return parameter. 2005 * @param scale The current scale. 2006 */ 2007 static void 2008 bc_num_rem(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 2009 { 2010 BcNum c1; 2011 size_t ts; 2012 #if BC_ENABLE_LIBRARY 2013 BcVm* vm = bcl_getspecific(); 2014 #endif // BC_ENABLE_LIBRARY 2015 2016 ts = bc_vm_growSize(scale, b->scale); 2017 ts = BC_MAX(ts, a->scale); 2018 2019 BC_SIG_LOCK; 2020 2021 // Need a temp for the quotient. 2022 bc_num_init(&c1, bc_num_mulReq(a, b, ts)); 2023 2024 BC_SETJMP_LOCKED(vm, err); 2025 2026 BC_SIG_UNLOCK; 2027 2028 bc_num_r(a, b, &c1, c, scale, ts); 2029 2030 err: 2031 BC_SIG_MAYLOCK; 2032 bc_num_free(&c1); 2033 BC_LONGJMP_CONT(vm); 2034 } 2035 2036 /** 2037 * Implements power (exponentiation). This is a BcNumBinOp function. 2038 * @param a The first operand. 2039 * @param b The second operand. 2040 * @param c The return parameter. 2041 * @param scale The current scale. 2042 */ 2043 static void 2044 bc_num_p(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 2045 { 2046 BcNum copy, btemp; 2047 BcBigDig exp; 2048 // realscale is meant to quiet a warning on GCC about longjmp() clobbering. 2049 // This one is real. 2050 size_t powrdx, resrdx, realscale; 2051 bool neg; 2052 #if BC_ENABLE_LIBRARY 2053 BcVm* vm = bcl_getspecific(); 2054 #endif // BC_ENABLE_LIBRARY 2055 2056 // This is here to silence a warning from GCC. 2057 #if BC_GCC 2058 btemp.len = 0; 2059 btemp.rdx = 0; 2060 btemp.num = NULL; 2061 #endif // BC_GCC 2062 2063 if (BC_ERR(bc_num_nonInt(b, &btemp))) bc_err(BC_ERR_MATH_NON_INTEGER); 2064 2065 assert(btemp.len == 0 || btemp.num != NULL); 2066 2067 if (BC_NUM_ZERO(&btemp)) 2068 { 2069 bc_num_one(c); 2070 return; 2071 } 2072 2073 if (BC_NUM_ZERO(a)) 2074 { 2075 if (BC_NUM_NEG_NP(btemp)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO); 2076 bc_num_setToZero(c, scale); 2077 return; 2078 } 2079 2080 if (BC_NUM_ONE(&btemp)) 2081 { 2082 if (!BC_NUM_NEG_NP(btemp)) bc_num_copy(c, a); 2083 else bc_num_inv(a, c, scale); 2084 return; 2085 } 2086 2087 neg = BC_NUM_NEG_NP(btemp); 2088 BC_NUM_NEG_CLR_NP(btemp); 2089 2090 exp = bc_num_bigdig(&btemp); 2091 2092 BC_SIG_LOCK; 2093 2094 bc_num_createCopy(©, a); 2095 2096 BC_SETJMP_LOCKED(vm, err); 2097 2098 BC_SIG_UNLOCK; 2099 2100 // If this is true, then we do not have to do a division, and we need to 2101 // set scale accordingly. 2102 if (!neg) 2103 { 2104 size_t max = BC_MAX(scale, a->scale), scalepow; 2105 scalepow = bc_num_mulOverflow(a->scale, exp); 2106 realscale = BC_MIN(scalepow, max); 2107 } 2108 else realscale = scale; 2109 2110 // This is only implementing the first exponentiation by squaring, until it 2111 // reaches the first time where the square is actually used. 2112 for (powrdx = a->scale; !(exp & 1); exp >>= 1) 2113 { 2114 powrdx <<= 1; 2115 assert(BC_NUM_RDX_VALID_NP(copy)); 2116 bc_num_mul(©, ©, ©, powrdx); 2117 } 2118 2119 // Make c a copy of copy for the purpose of saving the squares that should 2120 // be saved. 2121 bc_num_copy(c, ©); 2122 resrdx = powrdx; 2123 2124 // Now finish the exponentiation by squaring, this time saving the squares 2125 // as necessary. 2126 while (exp >>= 1) 2127 { 2128 powrdx <<= 1; 2129 assert(BC_NUM_RDX_VALID_NP(copy)); 2130 bc_num_mul(©, ©, ©, powrdx); 2131 2132 // If this is true, we want to save that particular square. This does 2133 // that by multiplying c with copy. 2134 if (exp & 1) 2135 { 2136 resrdx += powrdx; 2137 assert(BC_NUM_RDX_VALID(c)); 2138 assert(BC_NUM_RDX_VALID_NP(copy)); 2139 bc_num_mul(c, ©, c, resrdx); 2140 } 2141 } 2142 2143 // Invert if necessary. 2144 if (neg) bc_num_inv(c, c, realscale); 2145 2146 // Truncate if necessary. 2147 if (c->scale > realscale) bc_num_truncate(c, c->scale - realscale); 2148 2149 bc_num_clean(c); 2150 2151 err: 2152 BC_SIG_MAYLOCK; 2153 bc_num_free(©); 2154 BC_LONGJMP_CONT(vm); 2155 } 2156 2157 #if BC_ENABLE_EXTRA_MATH 2158 /** 2159 * Implements the places operator. This is a BcNumBinOp function. 2160 * @param a The first operand. 2161 * @param b The second operand. 2162 * @param c The return parameter. 2163 * @param scale The current scale. 2164 */ 2165 static void 2166 bc_num_place(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 2167 { 2168 BcBigDig val; 2169 2170 BC_UNUSED(scale); 2171 2172 val = bc_num_intop(a, b, c); 2173 2174 // Just truncate or extend as appropriate. 2175 if (val < c->scale) bc_num_truncate(c, c->scale - val); 2176 else if (val > c->scale) bc_num_extend(c, val - c->scale); 2177 } 2178 2179 /** 2180 * Implements the left shift operator. This is a BcNumBinOp function. 2181 */ 2182 static void 2183 bc_num_left(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 2184 { 2185 BcBigDig val; 2186 2187 BC_UNUSED(scale); 2188 2189 val = bc_num_intop(a, b, c); 2190 2191 bc_num_shiftLeft(c, (size_t) val); 2192 } 2193 2194 /** 2195 * Implements the right shift operator. This is a BcNumBinOp function. 2196 */ 2197 static void 2198 bc_num_right(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale) 2199 { 2200 BcBigDig val; 2201 2202 BC_UNUSED(scale); 2203 2204 val = bc_num_intop(a, b, c); 2205 2206 if (BC_NUM_ZERO(c)) return; 2207 2208 bc_num_shiftRight(c, (size_t) val); 2209 } 2210 #endif // BC_ENABLE_EXTRA_MATH 2211 2212 /** 2213 * Prepares for, and calls, a binary operator function. This is probably the 2214 * most important function in the entire file because it establishes assumptions 2215 * that make the rest of the code so easy. Those assumptions include: 2216 * 2217 * - a is not the same pointer as c. 2218 * - b is not the same pointer as c. 2219 * - there is enough room in c for the result. 2220 * 2221 * Without these, this whole function would basically have to be duplicated for 2222 * *all* binary operators. 2223 * 2224 * @param a The first operand. 2225 * @param b The second operand. 2226 * @param c The return parameter. 2227 * @param scale The current scale. 2228 * @param req The number of limbs needed to fit the result. 2229 */ 2230 static void 2231 bc_num_binary(BcNum* a, BcNum* b, BcNum* c, size_t scale, BcNumBinOp op, 2232 size_t req) 2233 { 2234 BcNum* ptr_a; 2235 BcNum* ptr_b; 2236 BcNum num2; 2237 #if BC_ENABLE_LIBRARY 2238 BcVm* vm = NULL; 2239 #endif // BC_ENABLE_LIBRARY 2240 2241 assert(a != NULL && b != NULL && c != NULL && op != NULL); 2242 2243 assert(BC_NUM_RDX_VALID(a)); 2244 assert(BC_NUM_RDX_VALID(b)); 2245 2246 BC_SIG_LOCK; 2247 2248 ptr_a = c == a ? &num2 : a; 2249 ptr_b = c == b ? &num2 : b; 2250 2251 // Actually reallocate. If we don't reallocate, we want to expand at the 2252 // very least. 2253 if (c == a || c == b) 2254 { 2255 #if BC_ENABLE_LIBRARY 2256 vm = bcl_getspecific(); 2257 #endif // BC_ENABLE_LIBRARY 2258 2259 // NOLINTNEXTLINE 2260 memcpy(&num2, c, sizeof(BcNum)); 2261 2262 bc_num_init(c, req); 2263 2264 // Must prepare for cleanup. We want this here so that locals that got 2265 // set stay set since a longjmp() is not guaranteed to preserve locals. 2266 BC_SETJMP_LOCKED(vm, err); 2267 BC_SIG_UNLOCK; 2268 } 2269 else 2270 { 2271 BC_SIG_UNLOCK; 2272 bc_num_expand(c, req); 2273 } 2274 2275 // It is okay for a and b to be the same. If a binary operator function does 2276 // need them to be different, the binary operator function is responsible 2277 // for that. 2278 2279 // Call the actual binary operator function. 2280 op(ptr_a, ptr_b, c, scale); 2281 2282 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); 2283 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); 2284 assert(BC_NUM_RDX_VALID(c)); 2285 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); 2286 2287 err: 2288 // Cleanup only needed if we initialized c to a new number. 2289 if (c == a || c == b) 2290 { 2291 BC_SIG_MAYLOCK; 2292 bc_num_free(&num2); 2293 BC_LONGJMP_CONT(vm); 2294 } 2295 } 2296 2297 /** 2298 * Tests a number string for validity. This function has a history; I originally 2299 * wrote it because I did not trust my parser. Over time, however, I came to 2300 * trust it, so I was able to relegate this function to debug builds only, and I 2301 * used it in assert()'s. But then I created the library, and well, I can't 2302 * trust users, so I reused this for yelling at users. 2303 * @param val The string to check to see if it's a valid number string. 2304 * @return True if the string is a valid number string, false otherwise. 2305 */ 2306 bool 2307 bc_num_strValid(const char* restrict val) 2308 { 2309 bool radix = false; 2310 size_t i, len = strlen(val); 2311 2312 // Notice that I don't check if there is a negative sign. That is not part 2313 // of a valid number, except in the library. The library-specific code takes 2314 // care of that part. 2315 2316 // Nothing in the string is okay. 2317 if (!len) return true; 2318 2319 // Loop through the characters. 2320 for (i = 0; i < len; ++i) 2321 { 2322 BcDig c = val[i]; 2323 2324 // If we have found a radix point... 2325 if (c == '.') 2326 { 2327 // We don't allow two radices. 2328 if (radix) return false; 2329 2330 radix = true; 2331 continue; 2332 } 2333 2334 // We only allow digits and uppercase letters. 2335 if (!(isdigit(c) || isupper(c))) return false; 2336 } 2337 2338 return true; 2339 } 2340 2341 /** 2342 * Parses one character and returns the digit that corresponds to that 2343 * character according to the base. 2344 * @param c The character to parse. 2345 * @param base The base. 2346 * @return The character as a digit. 2347 */ 2348 static BcBigDig 2349 bc_num_parseChar(char c, size_t base) 2350 { 2351 assert(isupper(c) || isdigit(c)); 2352 2353 // If a letter... 2354 if (isupper(c)) 2355 { 2356 #if BC_ENABLE_LIBRARY 2357 BcVm* vm = bcl_getspecific(); 2358 #endif // BC_ENABLE_LIBRARY 2359 2360 // This returns the digit that directly corresponds with the letter. 2361 c = BC_NUM_NUM_LETTER(c); 2362 2363 // If the digit is greater than the base, we clamp. 2364 if (BC_DIGIT_CLAMP) 2365 { 2366 c = ((size_t) c) >= base ? (char) base - 1 : c; 2367 } 2368 } 2369 // Straight convert the digit to a number. 2370 else c -= '0'; 2371 2372 return (BcBigDig) (uchar) c; 2373 } 2374 2375 /** 2376 * Parses a string as a decimal number. This is separate because it's going to 2377 * be the most used, and it can be heavily optimized for decimal only. 2378 * @param n The number to parse into and return. Must be preallocated. 2379 * @param val The string to parse. 2380 */ 2381 static void 2382 bc_num_parseDecimal(BcNum* restrict n, const char* restrict val) 2383 { 2384 size_t len, i, temp, mod; 2385 const char* ptr; 2386 bool zero = true, rdx; 2387 #if BC_ENABLE_LIBRARY 2388 BcVm* vm = bcl_getspecific(); 2389 #endif // BC_ENABLE_LIBRARY 2390 2391 // Eat leading zeroes. 2392 for (i = 0; val[i] == '0'; ++i) 2393 { 2394 continue; 2395 } 2396 2397 val += i; 2398 assert(!val[0] || isalnum(val[0]) || val[0] == '.'); 2399 2400 // All 0's. We can just return, since this procedure expects a virgin 2401 // (already 0) BcNum. 2402 if (!val[0]) return; 2403 2404 // The length of the string is the length of the number, except it might be 2405 // one bigger because of a decimal point. 2406 len = strlen(val); 2407 2408 // Find the location of the decimal point. 2409 ptr = strchr(val, '.'); 2410 rdx = (ptr != NULL); 2411 2412 // We eat leading zeroes again. These leading zeroes are different because 2413 // they will come after the decimal point if they exist, and since that's 2414 // the case, they must be preserved. 2415 for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i) 2416 { 2417 continue; 2418 } 2419 2420 // Set the scale of the number based on the location of the decimal point. 2421 // The casts to uintptr_t is to ensure that bc does not hit undefined 2422 // behavior when doing math on the values. 2423 n->scale = (size_t) (rdx * 2424 (((uintptr_t) (val + len)) - (((uintptr_t) ptr) + 1))); 2425 2426 // Set rdx. 2427 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); 2428 2429 // Calculate length. First, the length of the integer, then the number of 2430 // digits in the last limb, then the length. 2431 i = len - (ptr == val ? 0 : i) - rdx; 2432 temp = BC_NUM_ROUND_POW(i); 2433 mod = n->scale % BC_BASE_DIGS; 2434 i = mod ? BC_BASE_DIGS - mod : 0; 2435 n->len = ((temp + i) / BC_BASE_DIGS); 2436 2437 // Expand and zero. The plus extra is in case the lack of clamping causes 2438 // the number to overflow the original bounds. 2439 bc_num_expand(n, n->len + !BC_DIGIT_CLAMP); 2440 // NOLINTNEXTLINE 2441 memset(n->num, 0, BC_NUM_SIZE(n->len + !BC_DIGIT_CLAMP)); 2442 2443 if (zero) 2444 { 2445 // I think I can set rdx directly to zero here because n should be a 2446 // new number with sign set to false. 2447 n->len = n->rdx = 0; 2448 } 2449 else 2450 { 2451 // There is actually stuff to parse if we make it here. Yay... 2452 BcBigDig exp, pow; 2453 2454 assert(i <= BC_NUM_BIGDIG_MAX); 2455 2456 // The exponent and power. 2457 exp = (BcBigDig) i; 2458 pow = bc_num_pow10[exp]; 2459 2460 // Parse loop. We parse backwards because numbers are stored little 2461 // endian. 2462 for (i = len - 1; i < len; --i, ++exp) 2463 { 2464 char c = val[i]; 2465 2466 // Skip the decimal point. 2467 if (c == '.') exp -= 1; 2468 else 2469 { 2470 // The index of the limb. 2471 size_t idx = exp / BC_BASE_DIGS; 2472 BcBigDig dig; 2473 2474 if (isupper(c)) 2475 { 2476 // Clamp for the base. 2477 if (!BC_DIGIT_CLAMP) c = BC_NUM_NUM_LETTER(c); 2478 else c = 9; 2479 } 2480 else c -= '0'; 2481 2482 // Add the digit to the limb. This takes care of overflow from 2483 // lack of clamping. 2484 dig = ((BcBigDig) n->num[idx]) + ((BcBigDig) c) * pow; 2485 if (dig >= BC_BASE_POW) 2486 { 2487 // We cannot go over BC_BASE_POW with clamping. 2488 assert(!BC_DIGIT_CLAMP); 2489 2490 n->num[idx + 1] = (BcDig) (dig / BC_BASE_POW); 2491 n->num[idx] = (BcDig) (dig % BC_BASE_POW); 2492 assert(n->num[idx] >= 0 && n->num[idx] < BC_BASE_POW); 2493 assert(n->num[idx + 1] >= 0 && 2494 n->num[idx + 1] < BC_BASE_POW); 2495 } 2496 else 2497 { 2498 n->num[idx] = (BcDig) dig; 2499 assert(n->num[idx] >= 0 && n->num[idx] < BC_BASE_POW); 2500 } 2501 2502 // Adjust the power and exponent. 2503 if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1; 2504 else pow *= BC_BASE; 2505 } 2506 } 2507 } 2508 2509 // Make sure to add one to the length if needed from lack of clamping. 2510 n->len += (!BC_DIGIT_CLAMP && n->num[n->len] != 0); 2511 } 2512 2513 /** 2514 * Parse a number in any base (besides decimal). 2515 * @param n The number to parse into and return. Must be preallocated. 2516 * @param val The string to parse. 2517 * @param base The base to parse as. 2518 */ 2519 static void 2520 bc_num_parseBase(BcNum* restrict n, const char* restrict val, BcBigDig base) 2521 { 2522 BcNum temp, mult1, mult2, result1, result2; 2523 BcNum* m1; 2524 BcNum* m2; 2525 BcNum* ptr; 2526 char c = 0; 2527 bool zero = true; 2528 BcBigDig v; 2529 size_t digs, len = strlen(val); 2530 // This is volatile to quiet a warning on GCC about longjmp() clobbering. 2531 volatile size_t i; 2532 #if BC_ENABLE_LIBRARY 2533 BcVm* vm = bcl_getspecific(); 2534 #endif // BC_ENABLE_LIBRARY 2535 2536 // If zero, just return because the number should be virgin (already 0). 2537 for (i = 0; zero && i < len; ++i) 2538 { 2539 zero = (val[i] == '.' || val[i] == '0'); 2540 } 2541 if (zero) return; 2542 2543 BC_SIG_LOCK; 2544 2545 bc_num_init(&temp, BC_NUM_BIGDIG_LOG10); 2546 bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10); 2547 2548 BC_SETJMP_LOCKED(vm, int_err); 2549 2550 BC_SIG_UNLOCK; 2551 2552 // We split parsing into parsing the integer and parsing the fractional 2553 // part. 2554 2555 // Parse the integer part. This is the easy part because we just multiply 2556 // the number by the base, then add the digit. 2557 for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) 2558 { 2559 // Convert the character to a digit. 2560 v = bc_num_parseChar(c, base); 2561 2562 // Multiply the number. 2563 bc_num_mulArray(n, base, &mult1); 2564 2565 // Convert the digit to a number and add. 2566 bc_num_bigdig2num(&temp, v); 2567 bc_num_add(&mult1, &temp, n, 0); 2568 } 2569 2570 // If this condition is true, then we are done. We still need to do cleanup 2571 // though. 2572 if (i == len && !val[i]) goto int_err; 2573 2574 // If we get here, we *must* be at the radix point. 2575 assert(val[i] == '.'); 2576 2577 BC_SIG_LOCK; 2578 2579 // Unset the jump to reset in for these new initializations. 2580 BC_UNSETJMP(vm); 2581 2582 bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10); 2583 bc_num_init(&result1, BC_NUM_DEF_SIZE); 2584 bc_num_init(&result2, BC_NUM_DEF_SIZE); 2585 bc_num_one(&mult1); 2586 2587 BC_SETJMP_LOCKED(vm, err); 2588 2589 BC_SIG_UNLOCK; 2590 2591 // Pointers for easy switching. 2592 m1 = &mult1; 2593 m2 = &mult2; 2594 2595 // Parse the fractional part. This is the hard part. 2596 for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs) 2597 { 2598 size_t rdx; 2599 2600 // Convert the character to a digit. 2601 v = bc_num_parseChar(c, base); 2602 2603 // We keep growing result2 according to the base because the more digits 2604 // after the radix, the more significant the digits close to the radix 2605 // should be. 2606 bc_num_mulArray(&result1, base, &result2); 2607 2608 // Convert the digit to a number. 2609 bc_num_bigdig2num(&temp, v); 2610 2611 // Add the digit into the fraction part. 2612 bc_num_add(&result2, &temp, &result1, 0); 2613 2614 // Keep growing m1 and m2 for use after the loop. 2615 bc_num_mulArray(m1, base, m2); 2616 2617 rdx = BC_NUM_RDX_VAL(m2); 2618 2619 if (m2->len < rdx) m2->len = rdx; 2620 2621 // Switch. 2622 ptr = m1; 2623 m1 = m2; 2624 m2 = ptr; 2625 } 2626 2627 // This one cannot be a divide by 0 because mult starts out at 1, then is 2628 // multiplied by base, and base cannot be 0, so mult cannot be 0. And this 2629 // is the reason we keep growing m1 and m2; this division is what converts 2630 // the parsed fractional part from an integer to a fractional part. 2631 bc_num_div(&result1, m1, &result2, digs * 2); 2632 2633 // Pretruncate. 2634 bc_num_truncate(&result2, digs); 2635 2636 // The final add of the integer part to the fractional part. 2637 bc_num_add(n, &result2, n, digs); 2638 2639 // Basic cleanup. 2640 if (BC_NUM_NONZERO(n)) 2641 { 2642 if (n->scale < digs) bc_num_extend(n, digs - n->scale); 2643 } 2644 else bc_num_zero(n); 2645 2646 err: 2647 BC_SIG_MAYLOCK; 2648 bc_num_free(&result2); 2649 bc_num_free(&result1); 2650 bc_num_free(&mult2); 2651 int_err: 2652 BC_SIG_MAYLOCK; 2653 bc_num_free(&mult1); 2654 bc_num_free(&temp); 2655 BC_LONGJMP_CONT(vm); 2656 } 2657 2658 /** 2659 * Prints a backslash+newline combo if the number of characters needs it. This 2660 * is really a convenience function. 2661 */ 2662 static inline void 2663 bc_num_printNewline(void) 2664 { 2665 #if !BC_ENABLE_LIBRARY 2666 if (vm->nchars >= vm->line_len - 1 && vm->line_len) 2667 { 2668 bc_vm_putchar('\\', bc_flush_none); 2669 bc_vm_putchar('\n', bc_flush_err); 2670 } 2671 #endif // !BC_ENABLE_LIBRARY 2672 } 2673 2674 /** 2675 * Prints a character after a backslash+newline, if needed. 2676 * @param c The character to print. 2677 * @param bslash Whether to print a backslash+newline. 2678 */ 2679 static void 2680 bc_num_putchar(int c, bool bslash) 2681 { 2682 if (c != '\n' && bslash) bc_num_printNewline(); 2683 bc_vm_putchar(c, bc_flush_save); 2684 } 2685 2686 #if !BC_ENABLE_LIBRARY 2687 2688 /** 2689 * Prints a character for a number's digit. This is for printing for dc's P 2690 * command. This function does not need to worry about radix points. This is a 2691 * BcNumDigitOp. 2692 * @param n The "digit" to print. 2693 * @param len The "length" of the digit, or number of characters that will 2694 * need to be printed for the digit. 2695 * @param rdx True if a decimal (radix) point should be printed. 2696 * @param bslash True if a backslash+newline should be printed if the character 2697 * limit for the line is reached, false otherwise. 2698 */ 2699 static void 2700 bc_num_printChar(size_t n, size_t len, bool rdx, bool bslash) 2701 { 2702 BC_UNUSED(rdx); 2703 BC_UNUSED(len); 2704 BC_UNUSED(bslash); 2705 assert(len == 1); 2706 bc_vm_putchar((uchar) n, bc_flush_save); 2707 } 2708 2709 #endif // !BC_ENABLE_LIBRARY 2710 2711 /** 2712 * Prints a series of characters for large bases. This is for printing in bases 2713 * above hexadecimal. This is a BcNumDigitOp. 2714 * @param n The "digit" to print. 2715 * @param len The "length" of the digit, or number of characters that will 2716 * need to be printed for the digit. 2717 * @param rdx True if a decimal (radix) point should be printed. 2718 * @param bslash True if a backslash+newline should be printed if the character 2719 * limit for the line is reached, false otherwise. 2720 */ 2721 static void 2722 bc_num_printDigits(size_t n, size_t len, bool rdx, bool bslash) 2723 { 2724 size_t exp, pow; 2725 2726 // If needed, print the radix; otherwise, print a space to separate digits. 2727 bc_num_putchar(rdx ? '.' : ' ', true); 2728 2729 // Calculate the exponent and power. 2730 for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE) 2731 { 2732 continue; 2733 } 2734 2735 // Print each character individually. 2736 for (exp = 0; exp < len; pow /= BC_BASE, ++exp) 2737 { 2738 // The individual subdigit. 2739 size_t dig = n / pow; 2740 2741 // Take the subdigit away. 2742 n -= dig * pow; 2743 2744 // Print the subdigit. 2745 bc_num_putchar(((uchar) dig) + '0', bslash || exp != len - 1); 2746 } 2747 } 2748 2749 /** 2750 * Prints a character for a number's digit. This is for printing in bases for 2751 * hexadecimal and below because they always print only one character at a time. 2752 * This is a BcNumDigitOp. 2753 * @param n The "digit" to print. 2754 * @param len The "length" of the digit, or number of characters that will 2755 * need to be printed for the digit. 2756 * @param rdx True if a decimal (radix) point should be printed. 2757 * @param bslash True if a backslash+newline should be printed if the character 2758 * limit for the line is reached, false otherwise. 2759 */ 2760 static void 2761 bc_num_printHex(size_t n, size_t len, bool rdx, bool bslash) 2762 { 2763 BC_UNUSED(len); 2764 BC_UNUSED(bslash); 2765 2766 assert(len == 1); 2767 2768 if (rdx) bc_num_putchar('.', true); 2769 2770 bc_num_putchar(bc_num_hex_digits[n], bslash); 2771 } 2772 2773 /** 2774 * Prints a decimal number. This is specially written for optimization since 2775 * this will be used the most and because bc's numbers are already in decimal. 2776 * @param n The number to print. 2777 * @param newline Whether to print backslash+newlines on long enough lines. 2778 */ 2779 static void 2780 bc_num_printDecimal(const BcNum* restrict n, bool newline) 2781 { 2782 size_t i, j, rdx = BC_NUM_RDX_VAL(n); 2783 bool zero = true; 2784 size_t buffer[BC_BASE_DIGS]; 2785 2786 // Print loop. 2787 for (i = n->len - 1; i < n->len; --i) 2788 { 2789 BcDig n9 = n->num[i]; 2790 size_t temp; 2791 bool irdx = (i == rdx - 1); 2792 2793 // Calculate the number of digits in the limb. 2794 zero = (zero & !irdx); 2795 temp = n->scale % BC_BASE_DIGS; 2796 temp = i || !temp ? 0 : BC_BASE_DIGS - temp; 2797 2798 // NOLINTNEXTLINE 2799 memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t)); 2800 2801 // Fill the buffer with individual digits. 2802 for (j = 0; n9 && j < BC_BASE_DIGS; ++j) 2803 { 2804 buffer[j] = ((size_t) n9) % BC_BASE; 2805 n9 /= BC_BASE; 2806 } 2807 2808 // Print the digits in the buffer. 2809 for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) 2810 { 2811 // Figure out whether to print the decimal point. 2812 bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1)); 2813 2814 // The zero variable helps us skip leading zero digits in the limb. 2815 zero = (zero && buffer[j] == 0); 2816 2817 if (!zero) 2818 { 2819 // While the first three arguments should be self-explanatory, 2820 // the last needs explaining. I don't want to print a newline 2821 // when the last digit to be printed could take the place of the 2822 // backslash rather than being pushed, as a single character, to 2823 // the next line. That's what that last argument does for bc. 2824 bc_num_printHex(buffer[j], 1, print_rdx, 2825 !newline || (j > temp || i != 0)); 2826 } 2827 } 2828 } 2829 } 2830 2831 #if BC_ENABLE_EXTRA_MATH 2832 2833 /** 2834 * Prints a number in scientific or engineering format. When doing this, we are 2835 * always printing in decimal. 2836 * @param n The number to print. 2837 * @param eng True if we are in engineering mode. 2838 * @param newline Whether to print backslash+newlines on long enough lines. 2839 */ 2840 static void 2841 bc_num_printExponent(const BcNum* restrict n, bool eng, bool newline) 2842 { 2843 size_t places, mod, nrdx = BC_NUM_RDX_VAL(n); 2844 bool neg = (n->len <= nrdx); 2845 BcNum temp, exp; 2846 BcDig digs[BC_NUM_BIGDIG_LOG10]; 2847 #if BC_ENABLE_LIBRARY 2848 BcVm* vm = bcl_getspecific(); 2849 #endif // BC_ENABLE_LIBRARY 2850 2851 BC_SIG_LOCK; 2852 2853 bc_num_createCopy(&temp, n); 2854 2855 BC_SETJMP_LOCKED(vm, exit); 2856 2857 BC_SIG_UNLOCK; 2858 2859 // We need to calculate the exponents, and they change based on whether the 2860 // number is all fractional or not, obviously. 2861 if (neg) 2862 { 2863 // Figure out how many limbs after the decimal point is zero. 2864 size_t i, idx = bc_num_nonZeroLen(n) - 1; 2865 2866 places = 1; 2867 2868 // Figure out how much in the last limb is zero. 2869 for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) 2870 { 2871 if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1; 2872 else break; 2873 } 2874 2875 // Calculate the combination of zero limbs and zero digits in the last 2876 // limb. 2877 places += (nrdx - (idx + 1)) * BC_BASE_DIGS; 2878 mod = places % 3; 2879 2880 // Calculate places if we are in engineering mode. 2881 if (eng && mod != 0) places += 3 - mod; 2882 2883 // Shift the temp to the right place. 2884 bc_num_shiftLeft(&temp, places); 2885 } 2886 else 2887 { 2888 // This is the number of digits that we are supposed to put behind the 2889 // decimal point. 2890 places = bc_num_intDigits(n) - 1; 2891 2892 // Calculate the true number based on whether engineering mode is 2893 // activated. 2894 mod = places % 3; 2895 if (eng && mod != 0) places -= 3 - (3 - mod); 2896 2897 // Shift the temp to the right place. 2898 bc_num_shiftRight(&temp, places); 2899 } 2900 2901 // Print the shifted number. 2902 bc_num_printDecimal(&temp, newline); 2903 2904 // Print the e. 2905 bc_num_putchar('e', !newline); 2906 2907 // Need to explicitly print a zero exponent. 2908 if (!places) 2909 { 2910 bc_num_printHex(0, 1, false, !newline); 2911 goto exit; 2912 } 2913 2914 // Need to print sign for the exponent. 2915 if (neg) bc_num_putchar('-', true); 2916 2917 // Create a temporary for the exponent... 2918 bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10); 2919 bc_num_bigdig2num(&exp, (BcBigDig) places); 2920 2921 /// ..and print it. 2922 bc_num_printDecimal(&exp, newline); 2923 2924 exit: 2925 BC_SIG_MAYLOCK; 2926 bc_num_free(&temp); 2927 BC_LONGJMP_CONT(vm); 2928 } 2929 #endif // BC_ENABLE_EXTRA_MATH 2930 2931 /** 2932 * Converts a number from limbs with base BC_BASE_POW to base @a pow, where 2933 * @a pow is obase^N. 2934 * @param n The number to convert. 2935 * @param rem BC_BASE_POW - @a pow. 2936 * @param pow The power of obase we will convert the number to. 2937 * @param idx The index of the number to start converting at. Doing the 2938 * conversion is O(n^2); we have to sweep through starting at the 2939 * least significant limb 2940 */ 2941 static void 2942 bc_num_printFixup(BcNum* restrict n, BcBigDig rem, BcBigDig pow, size_t idx) 2943 { 2944 size_t i, len = n->len - idx; 2945 BcBigDig acc; 2946 BcDig* a = n->num + idx; 2947 2948 // Ignore if there's just one limb left. This is the part that requires the 2949 // extra loop after the one calling this function in bc_num_printPrepare(). 2950 if (len < 2) return; 2951 2952 // Loop through the remaining limbs and convert. We start at the second limb 2953 // because we pull the value from the previous one as well. 2954 for (i = len - 1; i > 0; --i) 2955 { 2956 // Get the limb and add it to the previous, along with multiplying by 2957 // the remainder because that's the proper overflow. "acc" means 2958 // "accumulator," by the way. 2959 acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]); 2960 2961 // Store a value in base pow in the previous limb. 2962 a[i - 1] = (BcDig) (acc % pow); 2963 2964 // Divide by the base and accumulate the remaining value in the limb. 2965 acc /= pow; 2966 acc += (BcBigDig) a[i]; 2967 2968 // If the accumulator is greater than the base... 2969 if (acc >= BC_BASE_POW) 2970 { 2971 // Do we need to grow? 2972 if (i == len - 1) 2973 { 2974 // Grow. 2975 len = bc_vm_growSize(len, 1); 2976 bc_num_expand(n, bc_vm_growSize(len, idx)); 2977 2978 // Update the pointer because it may have moved. 2979 a = n->num + idx; 2980 2981 // Zero out the last limb. 2982 a[len - 1] = 0; 2983 } 2984 2985 // Overflow into the next limb since we are over the base. 2986 a[i + 1] += acc / BC_BASE_POW; 2987 acc %= BC_BASE_POW; 2988 } 2989 2990 assert(acc < BC_BASE_POW); 2991 2992 // Set the limb. 2993 a[i] = (BcDig) acc; 2994 } 2995 2996 // We may have grown the number, so adjust the length. 2997 n->len = len + idx; 2998 } 2999 3000 /** 3001 * Prepares a number for printing in a base that is not a divisor of 3002 * BC_BASE_POW. This basically converts the number from having limbs of base 3003 * BC_BASE_POW to limbs of pow, where pow is obase^N. 3004 * @param n The number to prepare for printing. 3005 * @param rem The remainder of BC_BASE_POW when divided by a power of the base. 3006 * @param pow The power of the base. 3007 */ 3008 static void 3009 bc_num_printPrepare(BcNum* restrict n, BcBigDig rem, BcBigDig pow) 3010 { 3011 size_t i; 3012 3013 // Loop from the least significant limb to the most significant limb and 3014 // convert limbs in each pass. 3015 for (i = 0; i < n->len; ++i) 3016 { 3017 bc_num_printFixup(n, rem, pow, i); 3018 } 3019 3020 // bc_num_printFixup() does not do everything it is supposed to, so we do 3021 // the last bit of cleanup here. That cleanup is to ensure that each limb 3022 // is less than pow and to expand the number to fit new limbs as necessary. 3023 for (i = 0; i < n->len; ++i) 3024 { 3025 assert(pow == ((BcBigDig) ((BcDig) pow))); 3026 3027 // If the limb needs fixing... 3028 if (n->num[i] >= (BcDig) pow) 3029 { 3030 // Do we need to grow? 3031 if (i + 1 == n->len) 3032 { 3033 // Grow the number. 3034 n->len = bc_vm_growSize(n->len, 1); 3035 bc_num_expand(n, n->len); 3036 3037 // Without this, we might use uninitialized data. 3038 n->num[i + 1] = 0; 3039 } 3040 3041 assert(pow < BC_BASE_POW); 3042 3043 // Overflow into the next limb. 3044 n->num[i + 1] += n->num[i] / ((BcDig) pow); 3045 n->num[i] %= (BcDig) pow; 3046 } 3047 } 3048 } 3049 3050 static void 3051 bc_num_printNum(BcNum* restrict n, BcBigDig base, size_t len, 3052 BcNumDigitOp print, bool newline) 3053 { 3054 BcVec stack; 3055 BcNum intp, fracp1, fracp2, digit, flen1, flen2; 3056 BcNum* n1; 3057 BcNum* n2; 3058 BcNum* temp; 3059 BcBigDig dig = 0, acc, exp; 3060 BcBigDig* ptr; 3061 size_t i, j, nrdx, idigits; 3062 bool radix; 3063 BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1]; 3064 #if BC_ENABLE_LIBRARY 3065 BcVm* vm = bcl_getspecific(); 3066 #endif // BC_ENABLE_LIBRARY 3067 3068 assert(base > 1); 3069 3070 // Easy case. Even with scale, we just print this. 3071 if (BC_NUM_ZERO(n)) 3072 { 3073 print(0, len, false, !newline); 3074 return; 3075 } 3076 3077 // This function uses an algorithm that Stefan Esser <se@freebsd.org> came 3078 // up with to print the integer part of a number. What it does is convert 3079 // intp into a number of the specified base, but it does it directly, 3080 // instead of just doing a series of divisions and printing the remainders 3081 // in reverse order. 3082 // 3083 // Let me explain in a bit more detail: 3084 // 3085 // The algorithm takes the current least significant limb (after intp has 3086 // been converted to an integer) and the next to least significant limb, and 3087 // it converts the least significant limb into one of the specified base, 3088 // putting any overflow into the next to least significant limb. It iterates 3089 // through the whole number, from least significant to most significant, 3090 // doing this conversion. At the end of that iteration, the least 3091 // significant limb is converted, but the others are not, so it iterates 3092 // again, starting at the next to least significant limb. It keeps doing 3093 // that conversion, skipping one more limb than the last time, until all 3094 // limbs have been converted. Then it prints them in reverse order. 3095 // 3096 // That is the gist of the algorithm. It leaves out several things, such as 3097 // the fact that limbs are not always converted into the specified base, but 3098 // into something close, basically a power of the specified base. In 3099 // Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS 3100 // in the normal case and obase^N for the largest value of N that satisfies 3101 // obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base 3102 // "obase", but in base "obase^N", which happens to be printable as a number 3103 // of base "obase" without consideration for neighbouring BcDigs." This fact 3104 // is what necessitates the existence of the loop later in this function. 3105 // 3106 // The conversion happens in bc_num_printPrepare() where the outer loop 3107 // happens and bc_num_printFixup() where the inner loop, or actual 3108 // conversion, happens. In other words, bc_num_printPrepare() is where the 3109 // loop that starts at the least significant limb and goes to the most 3110 // significant limb. Then, on every iteration of its loop, it calls 3111 // bc_num_printFixup(), which has the inner loop of actually converting 3112 // the limbs it passes into limbs of base obase^N rather than base 3113 // BC_BASE_POW. 3114 3115 nrdx = BC_NUM_RDX_VAL(n); 3116 3117 BC_SIG_LOCK; 3118 3119 // The stack is what allows us to reverse the digits for printing. 3120 bc_vec_init(&stack, sizeof(BcBigDig), BC_DTOR_NONE); 3121 bc_num_init(&fracp1, nrdx); 3122 3123 // intp will be the "integer part" of the number, so copy it. 3124 bc_num_createCopy(&intp, n); 3125 3126 BC_SETJMP_LOCKED(vm, err); 3127 3128 BC_SIG_UNLOCK; 3129 3130 // Make intp an integer. 3131 bc_num_truncate(&intp, intp.scale); 3132 3133 // Get the fractional part out. 3134 bc_num_sub(n, &intp, &fracp1, 0); 3135 3136 // If the base is not the same as the last base used for printing, we need 3137 // to update the cached exponent and power. Yes, we cache the values of the 3138 // exponent and power. That is to prevent us from calculating them every 3139 // time because printing will probably happen multiple times on the same 3140 // base. 3141 if (base != vm->last_base) 3142 { 3143 vm->last_pow = 1; 3144 vm->last_exp = 0; 3145 3146 // Calculate the exponent and power. 3147 while (vm->last_pow * base <= BC_BASE_POW) 3148 { 3149 vm->last_pow *= base; 3150 vm->last_exp += 1; 3151 } 3152 3153 // Also, the remainder and base itself. 3154 vm->last_rem = BC_BASE_POW - vm->last_pow; 3155 vm->last_base = base; 3156 } 3157 3158 exp = vm->last_exp; 3159 3160 // If vm->last_rem is 0, then the base we are printing in is a divisor of 3161 // BC_BASE_POW, which is the easy case because it means that BC_BASE_POW is 3162 // a power of obase, and no conversion is needed. If it *is* 0, then we have 3163 // the hard case, and we have to prepare the number for the base. 3164 if (vm->last_rem != 0) 3165 { 3166 bc_num_printPrepare(&intp, vm->last_rem, vm->last_pow); 3167 } 3168 3169 // After the conversion comes the surprisingly easy part. From here on out, 3170 // this is basically naive code that I wrote, adjusted for the larger bases. 3171 3172 // Fill the stack of digits for the integer part. 3173 for (i = 0; i < intp.len; ++i) 3174 { 3175 // Get the limb. 3176 acc = (BcBigDig) intp.num[i]; 3177 3178 // Turn the limb into digits of base obase. 3179 for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j) 3180 { 3181 // This condition is true if we are not at the last digit. 3182 if (j != exp - 1) 3183 { 3184 dig = acc % base; 3185 acc /= base; 3186 } 3187 else 3188 { 3189 dig = acc; 3190 acc = 0; 3191 } 3192 3193 assert(dig < base); 3194 3195 // Push the digit onto the stack. 3196 bc_vec_push(&stack, &dig); 3197 } 3198 3199 assert(acc == 0); 3200 } 3201 3202 // Go through the stack backwards and print each digit. 3203 for (i = 0; i < stack.len; ++i) 3204 { 3205 ptr = bc_vec_item_rev(&stack, i); 3206 3207 assert(ptr != NULL); 3208 3209 // While the first three arguments should be self-explanatory, the last 3210 // needs explaining. I don't want to print a newline when the last digit 3211 // to be printed could take the place of the backslash rather than being 3212 // pushed, as a single character, to the next line. That's what that 3213 // last argument does for bc. 3214 print(*ptr, len, false, 3215 !newline || (n->scale != 0 || i == stack.len - 1)); 3216 } 3217 3218 // We are done if there is no fractional part. 3219 if (!n->scale) goto err; 3220 3221 BC_SIG_LOCK; 3222 3223 // Reset the jump because some locals are changing. 3224 BC_UNSETJMP(vm); 3225 3226 bc_num_init(&fracp2, nrdx); 3227 bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig)); 3228 bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10); 3229 bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10); 3230 3231 BC_SETJMP_LOCKED(vm, frac_err); 3232 3233 BC_SIG_UNLOCK; 3234 3235 bc_num_one(&flen1); 3236 3237 radix = true; 3238 3239 // Pointers for easy switching. 3240 n1 = &flen1; 3241 n2 = &flen2; 3242 3243 fracp2.scale = n->scale; 3244 BC_NUM_RDX_SET_NP(fracp2, BC_NUM_RDX(fracp2.scale)); 3245 3246 // As long as we have not reached the scale of the number, keep printing. 3247 while ((idigits = bc_num_intDigits(n1)) <= n->scale) 3248 { 3249 // These numbers will keep growing. 3250 bc_num_expand(&fracp2, fracp1.len + 1); 3251 bc_num_mulArray(&fracp1, base, &fracp2); 3252 3253 nrdx = BC_NUM_RDX_VAL_NP(fracp2); 3254 3255 // Ensure an invariant. 3256 if (fracp2.len < nrdx) fracp2.len = nrdx; 3257 3258 // fracp is guaranteed to be non-negative and small enough. 3259 dig = bc_num_bigdig2(&fracp2); 3260 3261 // Convert the digit to a number and subtract it from the number. 3262 bc_num_bigdig2num(&digit, dig); 3263 bc_num_sub(&fracp2, &digit, &fracp1, 0); 3264 3265 // While the first three arguments should be self-explanatory, the last 3266 // needs explaining. I don't want to print a newline when the last digit 3267 // to be printed could take the place of the backslash rather than being 3268 // pushed, as a single character, to the next line. That's what that 3269 // last argument does for bc. 3270 print(dig, len, radix, !newline || idigits != n->scale); 3271 3272 // Update the multipliers. 3273 bc_num_mulArray(n1, base, n2); 3274 3275 radix = false; 3276 3277 // Switch. 3278 temp = n1; 3279 n1 = n2; 3280 n2 = temp; 3281 } 3282 3283 frac_err: 3284 BC_SIG_MAYLOCK; 3285 bc_num_free(&flen2); 3286 bc_num_free(&flen1); 3287 bc_num_free(&fracp2); 3288 err: 3289 BC_SIG_MAYLOCK; 3290 bc_num_free(&fracp1); 3291 bc_num_free(&intp); 3292 bc_vec_free(&stack); 3293 BC_LONGJMP_CONT(vm); 3294 } 3295 3296 /** 3297 * Prints a number in the specified base, or rather, figures out which function 3298 * to call to print the number in the specified base and calls it. 3299 * @param n The number to print. 3300 * @param base The base to print in. 3301 * @param newline Whether to print backslash+newlines on long enough lines. 3302 */ 3303 static void 3304 bc_num_printBase(BcNum* restrict n, BcBigDig base, bool newline) 3305 { 3306 size_t width; 3307 BcNumDigitOp print; 3308 bool neg = BC_NUM_NEG(n); 3309 3310 // Clear the sign because it makes the actual printing easier when we have 3311 // to do math. 3312 BC_NUM_NEG_CLR(n); 3313 3314 // Bases at hexadecimal and below are printed as one character, larger bases 3315 // are printed as a series of digits separated by spaces. 3316 if (base <= BC_NUM_MAX_POSIX_IBASE) 3317 { 3318 width = 1; 3319 print = bc_num_printHex; 3320 } 3321 else 3322 { 3323 assert(base <= BC_BASE_POW); 3324 width = bc_num_log10(base - 1); 3325 print = bc_num_printDigits; 3326 } 3327 3328 // Print. 3329 bc_num_printNum(n, base, width, print, newline); 3330 3331 // Reset the sign. 3332 n->rdx = BC_NUM_NEG_VAL(n, neg); 3333 } 3334 3335 #if !BC_ENABLE_LIBRARY 3336 3337 void 3338 bc_num_stream(BcNum* restrict n) 3339 { 3340 bc_num_printNum(n, BC_NUM_STREAM_BASE, 1, bc_num_printChar, false); 3341 } 3342 3343 #endif // !BC_ENABLE_LIBRARY 3344 3345 void 3346 bc_num_setup(BcNum* restrict n, BcDig* restrict num, size_t cap) 3347 { 3348 assert(n != NULL); 3349 n->num = num; 3350 n->cap = cap; 3351 bc_num_zero(n); 3352 } 3353 3354 void 3355 bc_num_init(BcNum* restrict n, size_t req) 3356 { 3357 BcDig* num; 3358 3359 BC_SIG_ASSERT_LOCKED; 3360 3361 assert(n != NULL); 3362 3363 // BC_NUM_DEF_SIZE is set to be about the smallest allocation size that 3364 // malloc() returns in practice, so just use it. 3365 req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; 3366 3367 // If we can't use a temp, allocate. 3368 if (req != BC_NUM_DEF_SIZE) num = bc_vm_malloc(BC_NUM_SIZE(req)); 3369 else 3370 { 3371 num = bc_vm_getTemp() == NULL ? bc_vm_malloc(BC_NUM_SIZE(req)) : 3372 bc_vm_takeTemp(); 3373 } 3374 3375 bc_num_setup(n, num, req); 3376 } 3377 3378 void 3379 bc_num_clear(BcNum* restrict n) 3380 { 3381 n->num = NULL; 3382 n->cap = 0; 3383 } 3384 3385 void 3386 bc_num_free(void* num) 3387 { 3388 BcNum* n = (BcNum*) num; 3389 3390 BC_SIG_ASSERT_LOCKED; 3391 3392 assert(n != NULL); 3393 3394 if (n->cap == BC_NUM_DEF_SIZE) bc_vm_addTemp(n->num); 3395 else free(n->num); 3396 } 3397 3398 void 3399 bc_num_copy(BcNum* d, const BcNum* s) 3400 { 3401 assert(d != NULL && s != NULL); 3402 3403 if (d == s) return; 3404 3405 bc_num_expand(d, s->len); 3406 d->len = s->len; 3407 3408 // I can just copy directly here because the sign *and* rdx will be 3409 // properly preserved. 3410 d->rdx = s->rdx; 3411 d->scale = s->scale; 3412 // NOLINTNEXTLINE 3413 memcpy(d->num, s->num, BC_NUM_SIZE(d->len)); 3414 } 3415 3416 void 3417 bc_num_createCopy(BcNum* d, const BcNum* s) 3418 { 3419 BC_SIG_ASSERT_LOCKED; 3420 bc_num_init(d, s->len); 3421 bc_num_copy(d, s); 3422 } 3423 3424 void 3425 bc_num_createFromBigdig(BcNum* restrict n, BcBigDig val) 3426 { 3427 BC_SIG_ASSERT_LOCKED; 3428 bc_num_init(n, BC_NUM_BIGDIG_LOG10); 3429 bc_num_bigdig2num(n, val); 3430 } 3431 3432 size_t 3433 bc_num_scale(const BcNum* restrict n) 3434 { 3435 return n->scale; 3436 } 3437 3438 size_t 3439 bc_num_len(const BcNum* restrict n) 3440 { 3441 size_t len = n->len; 3442 3443 // Always return at least 1. 3444 if (BC_NUM_ZERO(n)) return n->scale ? n->scale : 1; 3445 3446 // If this is true, there is no integer portion of the number. 3447 if (BC_NUM_RDX_VAL(n) == len) 3448 { 3449 // We have to take into account the fact that some of the digits right 3450 // after the decimal could be zero. If that is the case, we need to 3451 // ignore them until we hit the first non-zero digit. 3452 3453 size_t zero, scale; 3454 3455 // The number of limbs with non-zero digits. 3456 len = bc_num_nonZeroLen(n); 3457 3458 // Get the number of digits in the last limb. 3459 scale = n->scale % BC_BASE_DIGS; 3460 scale = scale ? scale : BC_BASE_DIGS; 3461 3462 // Get the number of zero digits. 3463 zero = bc_num_zeroDigits(n->num + len - 1); 3464 3465 // Calculate the true length. 3466 len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale); 3467 } 3468 // Otherwise, count the number of int digits and return that plus the scale. 3469 else len = bc_num_intDigits(n) + n->scale; 3470 3471 return len; 3472 } 3473 3474 void 3475 bc_num_parse(BcNum* restrict n, const char* restrict val, BcBigDig base) 3476 { 3477 #ifndef NDEBUG 3478 #if BC_ENABLE_LIBRARY 3479 BcVm* vm = bcl_getspecific(); 3480 #endif // BC_ENABLE_LIBRARY 3481 #endif // NDEBUG 3482 3483 assert(n != NULL && val != NULL && base); 3484 assert(base >= BC_NUM_MIN_BASE && base <= vm->maxes[BC_PROG_GLOBALS_IBASE]); 3485 assert(bc_num_strValid(val)); 3486 3487 // A one character number is *always* parsed as though the base was the 3488 // maximum allowed ibase, per the bc spec. 3489 if (!val[1]) 3490 { 3491 BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE); 3492 bc_num_bigdig2num(n, dig); 3493 } 3494 else if (base == BC_BASE) bc_num_parseDecimal(n, val); 3495 else bc_num_parseBase(n, val, base); 3496 3497 assert(BC_NUM_RDX_VALID(n)); 3498 } 3499 3500 void 3501 bc_num_print(BcNum* restrict n, BcBigDig base, bool newline) 3502 { 3503 assert(n != NULL); 3504 assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE); 3505 3506 // We may need a newline, just to start. 3507 bc_num_printNewline(); 3508 3509 if (BC_NUM_NONZERO(n)) 3510 { 3511 #if BC_ENABLE_LIBRARY 3512 BcVm* vm = bcl_getspecific(); 3513 #endif // BC_ENABLE_LIBRARY 3514 3515 // Print the sign. 3516 if (BC_NUM_NEG(n)) bc_num_putchar('-', true); 3517 3518 // Print the leading zero if necessary. 3519 if (BC_Z && BC_NUM_RDX_VAL(n) == n->len) 3520 { 3521 bc_num_printHex(0, 1, false, !newline); 3522 } 3523 } 3524 3525 // Short-circuit 0. 3526 if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false, !newline); 3527 else if (base == BC_BASE) bc_num_printDecimal(n, newline); 3528 #if BC_ENABLE_EXTRA_MATH 3529 else if (base == 0 || base == 1) 3530 { 3531 bc_num_printExponent(n, base != 0, newline); 3532 } 3533 #endif // BC_ENABLE_EXTRA_MATH 3534 else bc_num_printBase(n, base, newline); 3535 3536 if (newline) bc_num_putchar('\n', false); 3537 } 3538 3539 BcBigDig 3540 bc_num_bigdig2(const BcNum* restrict n) 3541 { 3542 #ifndef NDEBUG 3543 #if BC_ENABLE_LIBRARY 3544 BcVm* vm = bcl_getspecific(); 3545 #endif // BC_ENABLE_LIBRARY 3546 #endif // NDEBUG 3547 3548 // This function returns no errors because it's guaranteed to succeed if 3549 // its preconditions are met. Those preconditions include both n needs to 3550 // be non-NULL, n being non-negative, and n being less than vm->max. If all 3551 // of that is true, then we can just convert without worrying about negative 3552 // errors or overflow. 3553 3554 BcBigDig r = 0; 3555 size_t nrdx = BC_NUM_RDX_VAL(n); 3556 3557 assert(n != NULL); 3558 assert(!BC_NUM_NEG(n)); 3559 assert(bc_num_cmp(n, &vm->max) < 0); 3560 assert(n->len - nrdx <= 3); 3561 3562 // There is a small speed win from unrolling the loop here, and since it 3563 // only adds 53 bytes, I decided that it was worth it. 3564 switch (n->len - nrdx) 3565 { 3566 case 3: 3567 { 3568 r = (BcBigDig) n->num[nrdx + 2]; 3569 3570 // Fallthrough. 3571 BC_FALLTHROUGH 3572 } 3573 3574 case 2: 3575 { 3576 r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx + 1]; 3577 3578 // Fallthrough. 3579 BC_FALLTHROUGH 3580 } 3581 3582 case 1: 3583 { 3584 r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx]; 3585 } 3586 } 3587 3588 return r; 3589 } 3590 3591 BcBigDig 3592 bc_num_bigdig(const BcNum* restrict n) 3593 { 3594 #if BC_ENABLE_LIBRARY 3595 BcVm* vm = bcl_getspecific(); 3596 #endif // BC_ENABLE_LIBRARY 3597 3598 assert(n != NULL); 3599 3600 // This error checking is extremely important, and if you do not have a 3601 // guarantee that converting a number will always succeed in a particular 3602 // case, you *must* call this function to get these error checks. This 3603 // includes all instances of numbers inputted by the user or calculated by 3604 // the user. Otherwise, you can call the faster bc_num_bigdig2(). 3605 if (BC_ERR(BC_NUM_NEG(n))) bc_err(BC_ERR_MATH_NEGATIVE); 3606 if (BC_ERR(bc_num_cmp(n, &vm->max) >= 0)) bc_err(BC_ERR_MATH_OVERFLOW); 3607 3608 return bc_num_bigdig2(n); 3609 } 3610 3611 void 3612 bc_num_bigdig2num(BcNum* restrict n, BcBigDig val) 3613 { 3614 BcDig* ptr; 3615 size_t i; 3616 3617 assert(n != NULL); 3618 3619 bc_num_zero(n); 3620 3621 // Already 0. 3622 if (!val) return; 3623 3624 // Expand first. This is the only way this function can fail, and it's a 3625 // fatal error. 3626 bc_num_expand(n, BC_NUM_BIGDIG_LOG10); 3627 3628 // The conversion is easy because numbers are laid out in little-endian 3629 // order. 3630 for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW) 3631 { 3632 ptr[i] = val % BC_BASE_POW; 3633 } 3634 3635 n->len = i; 3636 } 3637 3638 #if BC_ENABLE_EXTRA_MATH 3639 3640 void 3641 bc_num_rng(const BcNum* restrict n, BcRNG* rng) 3642 { 3643 BcNum temp, temp2, intn, frac; 3644 BcRand state1, state2, inc1, inc2; 3645 size_t nrdx = BC_NUM_RDX_VAL(n); 3646 #if BC_ENABLE_LIBRARY 3647 BcVm* vm = bcl_getspecific(); 3648 #endif // BC_ENABLE_LIBRARY 3649 3650 // This function holds the secret of how I interpret a seed number for the 3651 // PRNG. Well, it's actually in the development manual 3652 // (manuals/development.md#pseudo-random-number-generator), so look there 3653 // before you try to understand this. 3654 3655 BC_SIG_LOCK; 3656 3657 bc_num_init(&temp, n->len); 3658 bc_num_init(&temp2, n->len); 3659 bc_num_init(&frac, nrdx); 3660 bc_num_init(&intn, bc_num_int(n)); 3661 3662 BC_SETJMP_LOCKED(vm, err); 3663 3664 BC_SIG_UNLOCK; 3665 3666 assert(BC_NUM_RDX_VALID_NP(vm->max)); 3667 3668 // NOLINTNEXTLINE 3669 memcpy(frac.num, n->num, BC_NUM_SIZE(nrdx)); 3670 frac.len = nrdx; 3671 BC_NUM_RDX_SET_NP(frac, nrdx); 3672 frac.scale = n->scale; 3673 3674 assert(BC_NUM_RDX_VALID_NP(frac)); 3675 assert(BC_NUM_RDX_VALID_NP(vm->max2)); 3676 3677 // Multiply the fraction and truncate so that it's an integer. The 3678 // truncation is what clamps it, by the way. 3679 bc_num_mul(&frac, &vm->max2, &temp, 0); 3680 bc_num_truncate(&temp, temp.scale); 3681 bc_num_copy(&frac, &temp); 3682 3683 // Get the integer. 3684 // NOLINTNEXTLINE 3685 memcpy(intn.num, n->num + nrdx, BC_NUM_SIZE(bc_num_int(n))); 3686 intn.len = bc_num_int(n); 3687 3688 // This assert is here because it has to be true. It is also here to justify 3689 // some optimizations. 3690 assert(BC_NUM_NONZERO(&vm->max)); 3691 3692 // If there *was* a fractional part... 3693 if (BC_NUM_NONZERO(&frac)) 3694 { 3695 // This divmod splits frac into the two state parts. 3696 bc_num_divmod(&frac, &vm->max, &temp, &temp2, 0); 3697 3698 // frac is guaranteed to be smaller than vm->max * vm->max (pow). 3699 // This means that when dividing frac by vm->max, as above, the 3700 // quotient and remainder are both guaranteed to be less than vm->max, 3701 // which means we can use bc_num_bigdig2() here and not worry about 3702 // overflow. 3703 state1 = (BcRand) bc_num_bigdig2(&temp2); 3704 state2 = (BcRand) bc_num_bigdig2(&temp); 3705 } 3706 else state1 = state2 = 0; 3707 3708 // If there *was* an integer part... 3709 if (BC_NUM_NONZERO(&intn)) 3710 { 3711 // This divmod splits intn into the two inc parts. 3712 bc_num_divmod(&intn, &vm->max, &temp, &temp2, 0); 3713 3714 // Because temp2 is the mod of vm->max, from above, it is guaranteed 3715 // to be small enough to use bc_num_bigdig2(). 3716 inc1 = (BcRand) bc_num_bigdig2(&temp2); 3717 3718 // Clamp the second inc part. 3719 if (bc_num_cmp(&temp, &vm->max) >= 0) 3720 { 3721 bc_num_copy(&temp2, &temp); 3722 bc_num_mod(&temp2, &vm->max, &temp, 0); 3723 } 3724 3725 // The if statement above ensures that temp is less than vm->max, which 3726 // means that we can use bc_num_bigdig2() here. 3727 inc2 = (BcRand) bc_num_bigdig2(&temp); 3728 } 3729 else inc1 = inc2 = 0; 3730 3731 bc_rand_seed(rng, state1, state2, inc1, inc2); 3732 3733 err: 3734 BC_SIG_MAYLOCK; 3735 bc_num_free(&intn); 3736 bc_num_free(&frac); 3737 bc_num_free(&temp2); 3738 bc_num_free(&temp); 3739 BC_LONGJMP_CONT(vm); 3740 } 3741 3742 void 3743 bc_num_createFromRNG(BcNum* restrict n, BcRNG* rng) 3744 { 3745 BcRand s1, s2, i1, i2; 3746 BcNum conv, temp1, temp2, temp3; 3747 BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE]; 3748 BcDig conv_num[BC_NUM_BIGDIG_LOG10]; 3749 #if BC_ENABLE_LIBRARY 3750 BcVm* vm = bcl_getspecific(); 3751 #endif // BC_ENABLE_LIBRARY 3752 3753 BC_SIG_LOCK; 3754 3755 bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE); 3756 3757 BC_SETJMP_LOCKED(vm, err); 3758 3759 BC_SIG_UNLOCK; 3760 3761 bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig)); 3762 bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig)); 3763 bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig)); 3764 3765 // This assert is here because it has to be true. It is also here to justify 3766 // the assumption that vm->max is not zero. 3767 assert(BC_NUM_NONZERO(&vm->max)); 3768 3769 // Because this is true, we can just ignore math errors that would happen 3770 // otherwise. 3771 assert(BC_NUM_NONZERO(&vm->max2)); 3772 3773 bc_rand_getRands(rng, &s1, &s2, &i1, &i2); 3774 3775 // Put the second piece of state into a number. 3776 bc_num_bigdig2num(&conv, (BcBigDig) s2); 3777 3778 assert(BC_NUM_RDX_VALID_NP(conv)); 3779 3780 // Multiply by max to make room for the first piece of state. 3781 bc_num_mul(&conv, &vm->max, &temp1, 0); 3782 3783 // Add in the first piece of state. 3784 bc_num_bigdig2num(&conv, (BcBigDig) s1); 3785 bc_num_add(&conv, &temp1, &temp2, 0); 3786 3787 // Divide to make it an entirely fractional part. 3788 bc_num_div(&temp2, &vm->max2, &temp3, BC_RAND_STATE_BITS); 3789 3790 // Now start on the increment parts. It's the same process without the 3791 // divide, so put the second piece of increment into a number. 3792 bc_num_bigdig2num(&conv, (BcBigDig) i2); 3793 3794 assert(BC_NUM_RDX_VALID_NP(conv)); 3795 3796 // Multiply by max to make room for the first piece of increment. 3797 bc_num_mul(&conv, &vm->max, &temp1, 0); 3798 3799 // Add in the first piece of increment. 3800 bc_num_bigdig2num(&conv, (BcBigDig) i1); 3801 bc_num_add(&conv, &temp1, &temp2, 0); 3802 3803 // Now add the two together. 3804 bc_num_add(&temp2, &temp3, n, 0); 3805 3806 assert(BC_NUM_RDX_VALID(n)); 3807 3808 err: 3809 BC_SIG_MAYLOCK; 3810 bc_num_free(&temp3); 3811 BC_LONGJMP_CONT(vm); 3812 } 3813 3814 void 3815 bc_num_irand(BcNum* restrict a, BcNum* restrict b, BcRNG* restrict rng) 3816 { 3817 BcNum atemp; 3818 size_t i, len; 3819 3820 assert(a != b); 3821 3822 if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE); 3823 3824 // If either of these are true, then the numbers are integers. 3825 if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return; 3826 3827 #if BC_GCC 3828 // This is here in GCC to quiet the "maybe-uninitialized" warning. 3829 atemp.num = NULL; 3830 atemp.len = 0; 3831 #endif // BC_GCC 3832 3833 if (BC_ERR(bc_num_nonInt(a, &atemp))) bc_err(BC_ERR_MATH_NON_INTEGER); 3834 3835 assert(atemp.num != NULL); 3836 assert(atemp.len); 3837 3838 len = atemp.len - 1; 3839 3840 // Just generate a random number for each limb. 3841 for (i = 0; i < len; ++i) 3842 { 3843 b->num[i] = (BcDig) bc_rand_bounded(rng, BC_BASE_POW); 3844 } 3845 3846 // Do the last digit explicitly because the bound must be right. But only 3847 // do it if the limb does not equal 1. If it does, we have already hit the 3848 // limit. 3849 if (atemp.num[i] != 1) 3850 { 3851 b->num[i] = (BcDig) bc_rand_bounded(rng, (BcRand) atemp.num[i]); 3852 b->len = atemp.len; 3853 } 3854 // We want 1 less len in the case where we skip the last limb. 3855 else b->len = len; 3856 3857 bc_num_clean(b); 3858 3859 assert(BC_NUM_RDX_VALID(b)); 3860 } 3861 #endif // BC_ENABLE_EXTRA_MATH 3862 3863 size_t 3864 bc_num_addReq(const BcNum* a, const BcNum* b, size_t scale) 3865 { 3866 size_t aint, bint, ardx, brdx; 3867 3868 // Addition and subtraction require the max of the length of the two numbers 3869 // plus 1. 3870 3871 BC_UNUSED(scale); 3872 3873 ardx = BC_NUM_RDX_VAL(a); 3874 aint = bc_num_int(a); 3875 assert(aint <= a->len && ardx <= a->len); 3876 3877 brdx = BC_NUM_RDX_VAL(b); 3878 bint = bc_num_int(b); 3879 assert(bint <= b->len && brdx <= b->len); 3880 3881 ardx = BC_MAX(ardx, brdx); 3882 aint = BC_MAX(aint, bint); 3883 3884 return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1); 3885 } 3886 3887 size_t 3888 bc_num_mulReq(const BcNum* a, const BcNum* b, size_t scale) 3889 { 3890 size_t max, rdx; 3891 3892 // Multiplication requires the sum of the lengths of the numbers. 3893 3894 rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b)); 3895 3896 max = BC_NUM_RDX(scale); 3897 3898 max = bc_vm_growSize(BC_MAX(max, rdx), 1); 3899 rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max); 3900 3901 return rdx; 3902 } 3903 3904 size_t 3905 bc_num_divReq(const BcNum* a, const BcNum* b, size_t scale) 3906 { 3907 size_t max, rdx; 3908 3909 // Division requires the length of the dividend plus the scale. 3910 3911 rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b)); 3912 3913 max = BC_NUM_RDX(scale); 3914 3915 max = bc_vm_growSize(BC_MAX(max, rdx), 1); 3916 rdx = bc_vm_growSize(bc_num_int(a), max); 3917 3918 return rdx; 3919 } 3920 3921 size_t 3922 bc_num_powReq(const BcNum* a, const BcNum* b, size_t scale) 3923 { 3924 BC_UNUSED(scale); 3925 return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1); 3926 } 3927 3928 #if BC_ENABLE_EXTRA_MATH 3929 size_t 3930 bc_num_placesReq(const BcNum* a, const BcNum* b, size_t scale) 3931 { 3932 BC_UNUSED(scale); 3933 return a->len + b->len - BC_NUM_RDX_VAL(a) - BC_NUM_RDX_VAL(b); 3934 } 3935 #endif // BC_ENABLE_EXTRA_MATH 3936 3937 void 3938 bc_num_add(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3939 { 3940 assert(BC_NUM_RDX_VALID(a)); 3941 assert(BC_NUM_RDX_VALID(b)); 3942 bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale)); 3943 } 3944 3945 void 3946 bc_num_sub(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3947 { 3948 assert(BC_NUM_RDX_VALID(a)); 3949 assert(BC_NUM_RDX_VALID(b)); 3950 bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale)); 3951 } 3952 3953 void 3954 bc_num_mul(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3955 { 3956 assert(BC_NUM_RDX_VALID(a)); 3957 assert(BC_NUM_RDX_VALID(b)); 3958 bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale)); 3959 } 3960 3961 void 3962 bc_num_div(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3963 { 3964 assert(BC_NUM_RDX_VALID(a)); 3965 assert(BC_NUM_RDX_VALID(b)); 3966 bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale)); 3967 } 3968 3969 void 3970 bc_num_mod(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3971 { 3972 assert(BC_NUM_RDX_VALID(a)); 3973 assert(BC_NUM_RDX_VALID(b)); 3974 bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale)); 3975 } 3976 3977 void 3978 bc_num_pow(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3979 { 3980 assert(BC_NUM_RDX_VALID(a)); 3981 assert(BC_NUM_RDX_VALID(b)); 3982 bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale)); 3983 } 3984 3985 #if BC_ENABLE_EXTRA_MATH 3986 void 3987 bc_num_places(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3988 { 3989 assert(BC_NUM_RDX_VALID(a)); 3990 assert(BC_NUM_RDX_VALID(b)); 3991 bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale)); 3992 } 3993 3994 void 3995 bc_num_lshift(BcNum* a, BcNum* b, BcNum* c, size_t scale) 3996 { 3997 assert(BC_NUM_RDX_VALID(a)); 3998 assert(BC_NUM_RDX_VALID(b)); 3999 bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale)); 4000 } 4001 4002 void 4003 bc_num_rshift(BcNum* a, BcNum* b, BcNum* c, size_t scale) 4004 { 4005 assert(BC_NUM_RDX_VALID(a)); 4006 assert(BC_NUM_RDX_VALID(b)); 4007 bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale)); 4008 } 4009 #endif // BC_ENABLE_EXTRA_MATH 4010 4011 void 4012 bc_num_sqrt(BcNum* restrict a, BcNum* restrict b, size_t scale) 4013 { 4014 BcNum num1, num2, half, f, fprime; 4015 BcNum* x0; 4016 BcNum* x1; 4017 BcNum* temp; 4018 // realscale is meant to quiet a warning on GCC about longjmp() clobbering. 4019 // This one is real. 4020 size_t pow, len, rdx, req, resscale, realscale; 4021 BcDig half_digs[1]; 4022 #if BC_ENABLE_LIBRARY 4023 BcVm* vm = bcl_getspecific(); 4024 #endif // BC_ENABLE_LIBRARY 4025 4026 assert(a != NULL && b != NULL && a != b); 4027 4028 if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE); 4029 4030 // We want to calculate to a's scale if it is bigger so that the result will 4031 // truncate properly. 4032 if (a->scale > scale) realscale = a->scale; 4033 else realscale = scale; 4034 4035 // Set parameters for the result. 4036 len = bc_vm_growSize(bc_num_intDigits(a), 1); 4037 rdx = BC_NUM_RDX(realscale); 4038 4039 // Square root needs half of the length of the parameter. 4040 req = bc_vm_growSize(BC_MAX(rdx, BC_NUM_RDX_VAL(a)), len >> 1); 4041 4042 BC_SIG_LOCK; 4043 4044 // Unlike the binary operators, this function is the only single parameter 4045 // function and is expected to initialize the result. This means that it 4046 // expects that b is *NOT* preallocated. We allocate it here. 4047 bc_num_init(b, bc_vm_growSize(req, 1)); 4048 4049 BC_SIG_UNLOCK; 4050 4051 assert(a != NULL && b != NULL && a != b); 4052 assert(a->num != NULL && b->num != NULL); 4053 4054 // Easy case. 4055 if (BC_NUM_ZERO(a)) 4056 { 4057 bc_num_setToZero(b, realscale); 4058 return; 4059 } 4060 4061 // Another easy case. 4062 if (BC_NUM_ONE(a)) 4063 { 4064 bc_num_one(b); 4065 bc_num_extend(b, realscale); 4066 return; 4067 } 4068 4069 // Set the parameters again. 4070 rdx = BC_NUM_RDX(realscale); 4071 rdx = BC_MAX(rdx, BC_NUM_RDX_VAL(a)); 4072 len = bc_vm_growSize(a->len, rdx); 4073 4074 BC_SIG_LOCK; 4075 4076 bc_num_init(&num1, len); 4077 bc_num_init(&num2, len); 4078 bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig)); 4079 4080 // There is a division by two in the formula. We setup a number that's 1/2 4081 // so that we can use multiplication instead of heavy division. 4082 bc_num_one(&half); 4083 half.num[0] = BC_BASE_POW / 2; 4084 half.len = 1; 4085 BC_NUM_RDX_SET_NP(half, 1); 4086 half.scale = 1; 4087 4088 bc_num_init(&f, len); 4089 bc_num_init(&fprime, len); 4090 4091 BC_SETJMP_LOCKED(vm, err); 4092 4093 BC_SIG_UNLOCK; 4094 4095 // Pointers for easy switching. 4096 x0 = &num1; 4097 x1 = &num2; 4098 4099 // Start with 1. 4100 bc_num_one(x0); 4101 4102 // The power of the operand is needed for the estimate. 4103 pow = bc_num_intDigits(a); 4104 4105 // The code in this if statement calculates the initial estimate. First, if 4106 // a is less than 0, then 0 is a good estimate. Otherwise, we want something 4107 // in the same ballpark. That ballpark is pow. 4108 if (pow) 4109 { 4110 // An odd number is served by starting with 2^((pow-1)/2), and an even 4111 // number is served by starting with 6^((pow-2)/2). Why? Because math. 4112 if (pow & 1) x0->num[0] = 2; 4113 else x0->num[0] = 6; 4114 4115 pow -= 2 - (pow & 1); 4116 bc_num_shiftLeft(x0, pow / 2); 4117 } 4118 4119 // I can set the rdx here directly because neg should be false. 4120 x0->scale = x0->rdx = 0; 4121 resscale = (realscale + BC_BASE_DIGS) + 2; 4122 4123 // This is the calculation loop. This compare goes to 0 eventually as the 4124 // difference between the two numbers gets smaller than resscale. 4125 while (bc_num_cmp(x1, x0)) 4126 { 4127 assert(BC_NUM_NONZERO(x0)); 4128 4129 // This loop directly corresponds to the iteration in Newton's method. 4130 // If you know the formula, this loop makes sense. Go study the formula. 4131 4132 bc_num_div(a, x0, &f, resscale); 4133 bc_num_add(x0, &f, &fprime, resscale); 4134 4135 assert(BC_NUM_RDX_VALID_NP(fprime)); 4136 assert(BC_NUM_RDX_VALID_NP(half)); 4137 4138 bc_num_mul(&fprime, &half, x1, resscale); 4139 4140 // Switch. 4141 temp = x0; 4142 x0 = x1; 4143 x1 = temp; 4144 } 4145 4146 // Copy to the result and truncate. 4147 bc_num_copy(b, x0); 4148 if (b->scale > realscale) bc_num_truncate(b, b->scale - realscale); 4149 4150 assert(!BC_NUM_NEG(b) || BC_NUM_NONZERO(b)); 4151 assert(BC_NUM_RDX_VALID(b)); 4152 assert(BC_NUM_RDX_VAL(b) <= b->len || !b->len); 4153 assert(!b->len || b->num[b->len - 1] || BC_NUM_RDX_VAL(b) == b->len); 4154 4155 err: 4156 BC_SIG_MAYLOCK; 4157 bc_num_free(&fprime); 4158 bc_num_free(&f); 4159 bc_num_free(&num2); 4160 bc_num_free(&num1); 4161 BC_LONGJMP_CONT(vm); 4162 } 4163 4164 void 4165 bc_num_divmod(BcNum* a, BcNum* b, BcNum* c, BcNum* d, size_t scale) 4166 { 4167 size_t ts, len; 4168 BcNum *ptr_a, num2; 4169 // This is volatile to quiet a warning on GCC about clobbering with 4170 // longjmp(). 4171 volatile bool init = false; 4172 #if BC_ENABLE_LIBRARY 4173 BcVm* vm = bcl_getspecific(); 4174 #endif // BC_ENABLE_LIBRARY 4175 4176 // The bulk of this function is just doing what bc_num_binary() does for the 4177 // binary operators. However, it assumes that only c and a can be equal. 4178 4179 // Set up the parameters. 4180 ts = BC_MAX(scale + b->scale, a->scale); 4181 len = bc_num_mulReq(a, b, ts); 4182 4183 assert(a != NULL && b != NULL && c != NULL && d != NULL); 4184 assert(c != d && a != d && b != d && b != c); 4185 4186 // Initialize or expand as necessary. 4187 if (c == a) 4188 { 4189 // NOLINTNEXTLINE 4190 memcpy(&num2, c, sizeof(BcNum)); 4191 ptr_a = &num2; 4192 4193 BC_SIG_LOCK; 4194 4195 bc_num_init(c, len); 4196 4197 init = true; 4198 4199 BC_SETJMP_LOCKED(vm, err); 4200 4201 BC_SIG_UNLOCK; 4202 } 4203 else 4204 { 4205 ptr_a = a; 4206 bc_num_expand(c, len); 4207 } 4208 4209 // Do the quick version if possible. 4210 if (BC_NUM_NONZERO(a) && !BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && 4211 b->len == 1 && !scale) 4212 { 4213 BcBigDig rem; 4214 4215 bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem); 4216 4217 assert(rem < BC_BASE_POW); 4218 4219 d->num[0] = (BcDig) rem; 4220 d->len = (rem != 0); 4221 } 4222 // Do the slow method. 4223 else bc_num_r(ptr_a, b, c, d, scale, ts); 4224 4225 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); 4226 assert(BC_NUM_RDX_VALID(c)); 4227 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); 4228 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); 4229 assert(!BC_NUM_NEG(d) || BC_NUM_NONZERO(d)); 4230 assert(BC_NUM_RDX_VALID(d)); 4231 assert(BC_NUM_RDX_VAL(d) <= d->len || !d->len); 4232 assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len); 4233 4234 err: 4235 // Only cleanup if we initialized. 4236 if (init) 4237 { 4238 BC_SIG_MAYLOCK; 4239 bc_num_free(&num2); 4240 BC_LONGJMP_CONT(vm); 4241 } 4242 } 4243 4244 void 4245 bc_num_modexp(BcNum* a, BcNum* b, BcNum* c, BcNum* restrict d) 4246 { 4247 BcNum base, exp, two, temp, atemp, btemp, ctemp; 4248 BcDig two_digs[2]; 4249 #if BC_ENABLE_LIBRARY 4250 BcVm* vm = bcl_getspecific(); 4251 #endif // BC_ENABLE_LIBRARY 4252 4253 assert(a != NULL && b != NULL && c != NULL && d != NULL); 4254 assert(a != d && b != d && c != d); 4255 4256 if (BC_ERR(BC_NUM_ZERO(c))) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO); 4257 if (BC_ERR(BC_NUM_NEG(b))) bc_err(BC_ERR_MATH_NEGATIVE); 4258 4259 #ifndef NDEBUG 4260 // This is entirely for quieting a useless scan-build error. 4261 btemp.len = 0; 4262 ctemp.len = 0; 4263 #endif // NDEBUG 4264 4265 // Eliminate fractional parts that are zero or error if they are not zero. 4266 if (BC_ERR(bc_num_nonInt(a, &atemp) || bc_num_nonInt(b, &btemp) || 4267 bc_num_nonInt(c, &ctemp))) 4268 { 4269 bc_err(BC_ERR_MATH_NON_INTEGER); 4270 } 4271 4272 bc_num_expand(d, ctemp.len); 4273 4274 BC_SIG_LOCK; 4275 4276 bc_num_init(&base, ctemp.len); 4277 bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig)); 4278 bc_num_init(&temp, btemp.len + 1); 4279 bc_num_createCopy(&exp, &btemp); 4280 4281 BC_SETJMP_LOCKED(vm, err); 4282 4283 BC_SIG_UNLOCK; 4284 4285 bc_num_one(&two); 4286 two.num[0] = 2; 4287 bc_num_one(d); 4288 4289 // We already checked for 0. 4290 bc_num_rem(&atemp, &ctemp, &base, 0); 4291 4292 // If you know the algorithm I used, the memory-efficient method, then this 4293 // loop should be self-explanatory because it is the calculation loop. 4294 while (BC_NUM_NONZERO(&exp)) 4295 { 4296 // Num two cannot be 0, so no errors. 4297 bc_num_divmod(&exp, &two, &exp, &temp, 0); 4298 4299 if (BC_NUM_ONE(&temp) && !BC_NUM_NEG_NP(temp)) 4300 { 4301 assert(BC_NUM_RDX_VALID(d)); 4302 assert(BC_NUM_RDX_VALID_NP(base)); 4303 4304 bc_num_mul(d, &base, &temp, 0); 4305 4306 // We already checked for 0. 4307 bc_num_rem(&temp, &ctemp, d, 0); 4308 } 4309 4310 assert(BC_NUM_RDX_VALID_NP(base)); 4311 4312 bc_num_mul(&base, &base, &temp, 0); 4313 4314 // We already checked for 0. 4315 bc_num_rem(&temp, &ctemp, &base, 0); 4316 } 4317 4318 err: 4319 BC_SIG_MAYLOCK; 4320 bc_num_free(&exp); 4321 bc_num_free(&temp); 4322 bc_num_free(&base); 4323 BC_LONGJMP_CONT(vm); 4324 assert(!BC_NUM_NEG(d) || d->len); 4325 assert(BC_NUM_RDX_VALID(d)); 4326 assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len); 4327 } 4328 4329 #if BC_DEBUG_CODE 4330 void 4331 bc_num_printDebug(const BcNum* n, const char* name, bool emptyline) 4332 { 4333 bc_file_puts(&vm->fout, bc_flush_none, name); 4334 bc_file_puts(&vm->fout, bc_flush_none, ": "); 4335 bc_num_printDecimal(n, true); 4336 bc_file_putchar(&vm->fout, bc_flush_err, '\n'); 4337 if (emptyline) bc_file_putchar(&vm->fout, bc_flush_err, '\n'); 4338 vm->nchars = 0; 4339 } 4340 4341 void 4342 bc_num_printDigs(const BcDig* n, size_t len, bool emptyline) 4343 { 4344 size_t i; 4345 4346 for (i = len - 1; i < len; --i) 4347 { 4348 bc_file_printf(&vm->fout, " %lu", (unsigned long) n[i]); 4349 } 4350 4351 bc_file_putchar(&vm->fout, bc_flush_err, '\n'); 4352 if (emptyline) bc_file_putchar(&vm->fout, bc_flush_err, '\n'); 4353 vm->nchars = 0; 4354 } 4355 4356 void 4357 bc_num_printWithDigs(const BcNum* n, const char* name, bool emptyline) 4358 { 4359 bc_file_puts(&vm->fout, bc_flush_none, name); 4360 bc_file_printf(&vm->fout, " len: %zu, rdx: %zu, scale: %zu\n", name, n->len, 4361 BC_NUM_RDX_VAL(n), n->scale); 4362 bc_num_printDigs(n->num, n->len, emptyline); 4363 } 4364 4365 void 4366 bc_num_dump(const char* varname, const BcNum* n) 4367 { 4368 ulong i, scale = n->scale; 4369 4370 bc_file_printf(&vm->ferr, "\n%s = %s", varname, 4371 n->len ? (BC_NUM_NEG(n) ? "-" : "+") : "0 "); 4372 4373 for (i = n->len - 1; i < n->len; --i) 4374 { 4375 if (i + 1 == BC_NUM_RDX_VAL(n)) 4376 { 4377 bc_file_puts(&vm->ferr, bc_flush_none, ". "); 4378 } 4379 4380 if (scale / BC_BASE_DIGS != BC_NUM_RDX_VAL(n) - i - 1) 4381 { 4382 bc_file_printf(&vm->ferr, "%lu ", (unsigned long) n->num[i]); 4383 } 4384 else 4385 { 4386 int mod = scale % BC_BASE_DIGS; 4387 int d = BC_BASE_DIGS - mod; 4388 BcDig div; 4389 4390 if (mod != 0) 4391 { 4392 div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]); 4393 bc_file_printf(&vm->ferr, "%lu", (unsigned long) div); 4394 } 4395 4396 div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]); 4397 bc_file_printf(&vm->ferr, " ' %lu ", (unsigned long) div); 4398 } 4399 } 4400 4401 bc_file_printf(&vm->ferr, "(%zu | %zu.%zu / %zu) %lu\n", n->scale, n->len, 4402 BC_NUM_RDX_VAL(n), n->cap, (unsigned long) (void*) n->num); 4403 4404 bc_file_flush(&vm->ferr, bc_flush_err); 4405 } 4406 #endif // BC_DEBUG_CODE 4407