xref: /freebsd/contrib/bc/src/num.c (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 /*
2  * *****************************************************************************
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2018-2023 Gavin D. Howard and contributors.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * * Redistributions of source code must retain the above copyright notice, this
12  *   list of conditions and the following disclaimer.
13  *
14  * * Redistributions in binary form must reproduce the above copyright notice,
15  *   this list of conditions and the following disclaimer in the documentation
16  *   and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * *****************************************************************************
31  *
32  * Code for the number type.
33  *
34  */
35 
36 #include <assert.h>
37 #include <ctype.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <limits.h>
43 
44 #include <num.h>
45 #include <rand.h>
46 #include <vm.h>
47 #if BC_ENABLE_LIBRARY
48 #include <library.h>
49 #endif // BC_ENABLE_LIBRARY
50 
51 // Before you try to understand this code, see the development manual
52 // (manuals/development.md#numbers).
53 
54 static void
55 bc_num_m(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale);
56 
57 /**
58  * Multiply two numbers and throw a math error if they overflow.
59  * @param a  The first operand.
60  * @param b  The second operand.
61  * @return   The product of the two operands.
62  */
63 static inline size_t
64 bc_num_mulOverflow(size_t a, size_t b)
65 {
66 	size_t res = a * b;
67 	if (BC_ERR(BC_VM_MUL_OVERFLOW(a, b, res))) bc_err(BC_ERR_MATH_OVERFLOW);
68 	return res;
69 }
70 
71 /**
72  * Conditionally negate @a n based on @a neg. Algorithm taken from
73  * https://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate .
74  * @param n    The value to turn into a signed value and negate.
75  * @param neg  The condition to negate or not.
76  */
77 static inline ssize_t
78 bc_num_neg(size_t n, bool neg)
79 {
80 	return (((ssize_t) n) ^ -((ssize_t) neg)) + neg;
81 }
82 
83 /**
84  * Compare a BcNum against zero.
85  * @param n  The number to compare.
86  * @return   -1 if the number is less than 0, 1 if greater, and 0 if equal.
87  */
88 ssize_t
89 bc_num_cmpZero(const BcNum* n)
90 {
91 	return bc_num_neg((n)->len != 0, BC_NUM_NEG(n));
92 }
93 
94 /**
95  * Return the number of integer limbs in a BcNum. This is the opposite of rdx.
96  * @param n  The number to return the amount of integer limbs for.
97  * @return   The amount of integer limbs in @a n.
98  */
99 static inline size_t
100 bc_num_int(const BcNum* n)
101 {
102 	return n->len ? n->len - BC_NUM_RDX_VAL(n) : 0;
103 }
104 
105 /**
106  * Expand a number's allocation capacity to at least req limbs.
107  * @param n    The number to expand.
108  * @param req  The number limbs to expand the allocation capacity to.
109  */
110 static void
111 bc_num_expand(BcNum* restrict n, size_t req)
112 {
113 	assert(n != NULL);
114 
115 	req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
116 
117 	if (req > n->cap)
118 	{
119 		BC_SIG_LOCK;
120 
121 		n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req));
122 		n->cap = req;
123 
124 		BC_SIG_UNLOCK;
125 	}
126 }
127 
128 /**
129  * Set a number to 0 with the specified scale.
130  * @param n      The number to set to zero.
131  * @param scale  The scale to set the number to.
132  */
133 static inline void
134 bc_num_setToZero(BcNum* restrict n, size_t scale)
135 {
136 	assert(n != NULL);
137 	n->scale = scale;
138 	n->len = n->rdx = 0;
139 }
140 
141 void
142 bc_num_zero(BcNum* restrict n)
143 {
144 	bc_num_setToZero(n, 0);
145 }
146 
147 void
148 bc_num_one(BcNum* restrict n)
149 {
150 	bc_num_zero(n);
151 	n->len = 1;
152 	n->num[0] = 1;
153 }
154 
155 /**
156  * "Cleans" a number, which means reducing the length if the most significant
157  * limbs are zero.
158  * @param n  The number to clean.
159  */
160 static void
161 bc_num_clean(BcNum* restrict n)
162 {
163 	// Reduce the length.
164 	while (BC_NUM_NONZERO(n) && !n->num[n->len - 1])
165 	{
166 		n->len -= 1;
167 	}
168 
169 	// Special cases.
170 	if (BC_NUM_ZERO(n)) n->rdx = 0;
171 	else
172 	{
173 		// len must be at least as much as rdx.
174 		size_t rdx = BC_NUM_RDX_VAL(n);
175 		if (n->len < rdx) n->len = rdx;
176 	}
177 }
178 
179 /**
180  * Returns the log base 10 of @a i. I could have done this with floating-point
181  * math, and in fact, I originally did. However, that was the only
182  * floating-point code in the entire codebase, and I decided I didn't want any.
183  * This is fast enough. Also, it might handle larger numbers better.
184  * @param i  The number to return the log base 10 of.
185  * @return   The log base 10 of @a i.
186  */
187 static size_t
188 bc_num_log10(size_t i)
189 {
190 	size_t len;
191 
192 	for (len = 1; i; i /= BC_BASE, ++len)
193 	{
194 		continue;
195 	}
196 
197 	assert(len - 1 <= BC_BASE_DIGS + 1);
198 
199 	return len - 1;
200 }
201 
202 /**
203  * Returns the number of decimal digits in a limb that are zero starting at the
204  * most significant digits. This basically returns how much of the limb is used.
205  * @param n  The number.
206  * @return   The number of decimal digits that are 0 starting at the most
207  *           significant digits.
208  */
209 static inline size_t
210 bc_num_zeroDigits(const BcDig* n)
211 {
212 	assert(*n >= 0);
213 	assert(((size_t) *n) < BC_BASE_POW);
214 	return BC_BASE_DIGS - bc_num_log10((size_t) *n);
215 }
216 
217 /**
218  * Return the total number of integer digits in a number. This is the opposite
219  * of scale, like bc_num_int() is the opposite of rdx.
220  * @param n  The number.
221  * @return   The number of integer digits in @a n.
222  */
223 static size_t
224 bc_num_intDigits(const BcNum* n)
225 {
226 	size_t digits = bc_num_int(n) * BC_BASE_DIGS;
227 	if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1);
228 	return digits;
229 }
230 
231 /**
232  * Returns the number of limbs of a number that are non-zero starting at the
233  * most significant limbs. This expects that there are *no* integer limbs in the
234  * number because it is specifically to figure out how many zero limbs after the
235  * decimal place to ignore. If there are zero limbs after non-zero limbs, they
236  * are counted as non-zero limbs.
237  * @param n  The number.
238  * @return   The number of non-zero limbs after the decimal point.
239  */
240 static size_t
241 bc_num_nonZeroLen(const BcNum* restrict n)
242 {
243 	size_t i, len = n->len;
244 
245 	assert(len == BC_NUM_RDX_VAL(n));
246 
247 	for (i = len - 1; i < len && !n->num[i]; --i)
248 	{
249 		continue;
250 	}
251 
252 	assert(i + 1 > 0);
253 
254 	return i + 1;
255 }
256 
257 /**
258  * Performs a one-limb add with a carry.
259  * @param a      The first limb.
260  * @param b      The second limb.
261  * @param carry  An in/out parameter; the carry in from the previous add and the
262  *               carry out from this add.
263  * @return       The resulting limb sum.
264  */
265 static BcDig
266 bc_num_addDigits(BcDig a, BcDig b, bool* carry)
267 {
268 	assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2);
269 	assert(a < BC_BASE_POW && a >= 0);
270 	assert(b < BC_BASE_POW && b >= 0);
271 
272 	a += b + *carry;
273 	*carry = (a >= BC_BASE_POW);
274 	if (*carry) a -= BC_BASE_POW;
275 
276 	assert(a >= 0);
277 	assert(a < BC_BASE_POW);
278 
279 	return a;
280 }
281 
282 /**
283  * Performs a one-limb subtract with a carry.
284  * @param a      The first limb.
285  * @param b      The second limb.
286  * @param carry  An in/out parameter; the carry in from the previous subtract
287  *               and the carry out from this subtract.
288  * @return       The resulting limb difference.
289  */
290 static BcDig
291 bc_num_subDigits(BcDig a, BcDig b, bool* carry)
292 {
293 	assert(a < BC_BASE_POW && a >= 0);
294 	assert(b < BC_BASE_POW && b >= 0);
295 
296 	b += *carry;
297 	*carry = (a < b);
298 	if (*carry) a += BC_BASE_POW;
299 
300 	assert(a - b >= 0);
301 	assert(a - b < BC_BASE_POW);
302 
303 	return a - b;
304 }
305 
306 /**
307  * Add two BcDig arrays and store the result in the first array.
308  * @param a    The first operand and out array.
309  * @param b    The second operand.
310  * @param len  The length of @a b.
311  */
312 static void
313 bc_num_addArrays(BcDig* restrict a, const BcDig* restrict b, size_t len)
314 {
315 	size_t i;
316 	bool carry = false;
317 
318 	for (i = 0; i < len; ++i)
319 	{
320 		a[i] = bc_num_addDigits(a[i], b[i], &carry);
321 	}
322 
323 	// Take care of the extra limbs in the bigger array.
324 	for (; carry; ++i)
325 	{
326 		a[i] = bc_num_addDigits(a[i], 0, &carry);
327 	}
328 }
329 
330 /**
331  * Subtract two BcDig arrays and store the result in the first array.
332  * @param a    The first operand and out array.
333  * @param b    The second operand.
334  * @param len  The length of @a b.
335  */
336 static void
337 bc_num_subArrays(BcDig* restrict a, const BcDig* restrict b, size_t len)
338 {
339 	size_t i;
340 	bool carry = false;
341 
342 	for (i = 0; i < len; ++i)
343 	{
344 		a[i] = bc_num_subDigits(a[i], b[i], &carry);
345 	}
346 
347 	// Take care of the extra limbs in the bigger array.
348 	for (; carry; ++i)
349 	{
350 		a[i] = bc_num_subDigits(a[i], 0, &carry);
351 	}
352 }
353 
354 /**
355  * Multiply a BcNum array by a one-limb number. This is a faster version of
356  * multiplication for when we can use it.
357  * @param a  The BcNum to multiply by the one-limb number.
358  * @param b  The one limb of the one-limb number.
359  * @param c  The return parameter.
360  */
361 static void
362 bc_num_mulArray(const BcNum* restrict a, BcBigDig b, BcNum* restrict c)
363 {
364 	size_t i;
365 	BcBigDig carry = 0;
366 
367 	assert(b <= BC_BASE_POW);
368 
369 	// Make sure the return parameter is big enough.
370 	if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1);
371 
372 	// We want the entire return parameter to be zero for cleaning later.
373 	// NOLINTNEXTLINE
374 	memset(c->num, 0, BC_NUM_SIZE(c->cap));
375 
376 	// Actual multiplication loop.
377 	for (i = 0; i < a->len; ++i)
378 	{
379 		BcBigDig in = ((BcBigDig) a->num[i]) * b + carry;
380 		c->num[i] = in % BC_BASE_POW;
381 		carry = in / BC_BASE_POW;
382 	}
383 
384 	assert(carry < BC_BASE_POW);
385 
386 	// Finishing touches.
387 	c->num[i] = (BcDig) carry;
388 	assert(c->num[i] >= 0 && c->num[i] < BC_BASE_POW);
389 	c->len = a->len;
390 	c->len += (carry != 0);
391 
392 	bc_num_clean(c);
393 
394 	// Postconditions.
395 	assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
396 	assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
397 	assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
398 }
399 
400 /**
401  * Divide a BcNum array by a one-limb number. This is a faster version of divide
402  * for when we can use it.
403  * @param a    The BcNum to multiply by the one-limb number.
404  * @param b    The one limb of the one-limb number.
405  * @param c    The return parameter for the quotient.
406  * @param rem  The return parameter for the remainder.
407  */
408 static void
409 bc_num_divArray(const BcNum* restrict a, BcBigDig b, BcNum* restrict c,
410                 BcBigDig* rem)
411 {
412 	size_t i;
413 	BcBigDig carry = 0;
414 
415 	assert(c->cap >= a->len);
416 
417 	// Actual division loop.
418 	for (i = a->len - 1; i < a->len; --i)
419 	{
420 		BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW;
421 		assert(in / b < BC_BASE_POW);
422 		c->num[i] = (BcDig) (in / b);
423 		assert(c->num[i] >= 0 && c->num[i] < BC_BASE_POW);
424 		carry = in % b;
425 	}
426 
427 	// Finishing touches.
428 	c->len = a->len;
429 	bc_num_clean(c);
430 	*rem = carry;
431 
432 	// Postconditions.
433 	assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
434 	assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
435 	assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
436 }
437 
438 /**
439  * Compare two BcDig arrays and return >0 if @a b is greater, <0 if @a b is
440  * less, and 0 if equal. Both @a a and @a b must have the same length.
441  * @param a    The first array.
442  * @param b    The second array.
443  * @param len  The minimum length of the arrays.
444  */
445 static ssize_t
446 bc_num_compare(const BcDig* restrict a, const BcDig* restrict b, size_t len)
447 {
448 	size_t i;
449 	BcDig c = 0;
450 	for (i = len - 1; i < len && !(c = a[i] - b[i]); --i)
451 	{
452 		continue;
453 	}
454 	return bc_num_neg(i + 1, c < 0);
455 }
456 
457 ssize_t
458 bc_num_cmp(const BcNum* a, const BcNum* b)
459 {
460 	size_t i, min, a_int, b_int, diff, ardx, brdx;
461 	BcDig* max_num;
462 	BcDig* min_num;
463 	bool a_max, neg = false;
464 	ssize_t cmp;
465 
466 	assert(a != NULL && b != NULL);
467 
468 	// Same num? Equal.
469 	if (a == b) return 0;
470 
471 	// Easy cases.
472 	if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !BC_NUM_NEG(b));
473 	if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a);
474 	if (BC_NUM_NEG(a))
475 	{
476 		if (BC_NUM_NEG(b)) neg = true;
477 		else return -1;
478 	}
479 	else if (BC_NUM_NEG(b)) return 1;
480 
481 	// Get the number of int limbs in each number and get the difference.
482 	a_int = bc_num_int(a);
483 	b_int = bc_num_int(b);
484 	a_int -= b_int;
485 
486 	// If there's a difference, then just return the comparison.
487 	if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int;
488 
489 	// Get the rdx's and figure out the max.
490 	ardx = BC_NUM_RDX_VAL(a);
491 	brdx = BC_NUM_RDX_VAL(b);
492 	a_max = (ardx > brdx);
493 
494 	// Set variables based on the above.
495 	if (a_max)
496 	{
497 		min = brdx;
498 		diff = ardx - brdx;
499 		max_num = a->num + diff;
500 		min_num = b->num;
501 	}
502 	else
503 	{
504 		min = ardx;
505 		diff = brdx - ardx;
506 		max_num = b->num + diff;
507 		min_num = a->num;
508 	}
509 
510 	// Do a full limb-by-limb comparison.
511 	cmp = bc_num_compare(max_num, min_num, b_int + min);
512 
513 	// If we found a difference, return it based on state.
514 	if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg);
515 
516 	// If there was no difference, then the final step is to check which number
517 	// has greater or lesser limbs beyond the other's.
518 	for (max_num -= diff, i = diff - 1; i < diff; --i)
519 	{
520 		if (max_num[i]) return bc_num_neg(1, !a_max == !neg);
521 	}
522 
523 	return 0;
524 }
525 
526 void
527 bc_num_truncate(BcNum* restrict n, size_t places)
528 {
529 	size_t nrdx, places_rdx;
530 
531 	if (!places) return;
532 
533 	// Grab these needed values; places_rdx is the rdx equivalent to places like
534 	// rdx is to scale.
535 	nrdx = BC_NUM_RDX_VAL(n);
536 	places_rdx = nrdx ? nrdx - BC_NUM_RDX(n->scale - places) : 0;
537 
538 	// We cannot truncate more places than we have.
539 	assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len));
540 
541 	n->scale -= places;
542 	BC_NUM_RDX_SET(n, nrdx - places_rdx);
543 
544 	// Only when the number is nonzero do we need to do the hard stuff.
545 	if (BC_NUM_NONZERO(n))
546 	{
547 		size_t pow;
548 
549 		// This calculates how many decimal digits are in the least significant
550 		// limb.
551 		pow = n->scale % BC_BASE_DIGS;
552 		pow = pow ? BC_BASE_DIGS - pow : 0;
553 		pow = bc_num_pow10[pow];
554 
555 		n->len -= places_rdx;
556 
557 		// We have to move limbs to maintain invariants. The limbs must begin at
558 		// the beginning of the BcNum array.
559 		// NOLINTNEXTLINE
560 		memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len));
561 
562 		// Clear the lower part of the last digit.
563 		if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow;
564 
565 		bc_num_clean(n);
566 	}
567 }
568 
569 void
570 bc_num_extend(BcNum* restrict n, size_t places)
571 {
572 	size_t nrdx, places_rdx;
573 
574 	if (!places) return;
575 
576 	// Easy case with zero; set the scale.
577 	if (BC_NUM_ZERO(n))
578 	{
579 		n->scale += places;
580 		return;
581 	}
582 
583 	// Grab these needed values; places_rdx is the rdx equivalent to places like
584 	// rdx is to scale.
585 	nrdx = BC_NUM_RDX_VAL(n);
586 	places_rdx = BC_NUM_RDX(places + n->scale) - nrdx;
587 
588 	// This is the hard case. We need to expand the number, move the limbs, and
589 	// set the limbs that were just cleared.
590 	if (places_rdx)
591 	{
592 		bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
593 		// NOLINTNEXTLINE
594 		memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
595 		// NOLINTNEXTLINE
596 		memset(n->num, 0, BC_NUM_SIZE(places_rdx));
597 	}
598 
599 	// Finally, set scale and rdx.
600 	BC_NUM_RDX_SET(n, nrdx + places_rdx);
601 	n->scale += places;
602 	n->len += places_rdx;
603 
604 	assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
605 }
606 
607 /**
608  * Retires (finishes) a multiplication or division operation.
609  */
610 static void
611 bc_num_retireMul(BcNum* restrict n, size_t scale, bool neg1, bool neg2)
612 {
613 	// Make sure scale is correct.
614 	if (n->scale < scale) bc_num_extend(n, scale - n->scale);
615 	else bc_num_truncate(n, n->scale - scale);
616 
617 	bc_num_clean(n);
618 
619 	// We need to ensure rdx is correct.
620 	if (BC_NUM_NONZERO(n)) n->rdx = BC_NUM_NEG_VAL(n, !neg1 != !neg2);
621 }
622 
623 /**
624  * Splits a number into two BcNum's. This is used in Karatsuba.
625  * @param n    The number to split.
626  * @param idx  The index to split at.
627  * @param a    An out parameter; the low part of @a n.
628  * @param b    An out parameter; the high part of @a n.
629  */
630 static void
631 bc_num_split(const BcNum* restrict n, size_t idx, BcNum* restrict a,
632              BcNum* restrict b)
633 {
634 	// We want a and b to be clear.
635 	assert(BC_NUM_ZERO(a));
636 	assert(BC_NUM_ZERO(b));
637 
638 	// The usual case.
639 	if (idx < n->len)
640 	{
641 		// Set the fields first.
642 		b->len = n->len - idx;
643 		a->len = idx;
644 		a->scale = b->scale = 0;
645 		BC_NUM_RDX_SET(a, 0);
646 		BC_NUM_RDX_SET(b, 0);
647 
648 		assert(a->cap >= a->len);
649 		assert(b->cap >= b->len);
650 
651 		// Copy the arrays. This is not necessary for safety, but it is faster,
652 		// for some reason.
653 		// NOLINTNEXTLINE
654 		memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len));
655 		// NOLINTNEXTLINE
656 		memcpy(a->num, n->num, BC_NUM_SIZE(idx));
657 
658 		bc_num_clean(b);
659 	}
660 	// If the index is weird, just skip the split.
661 	else bc_num_copy(a, n);
662 
663 	bc_num_clean(a);
664 }
665 
666 /**
667  * Copies a number into another, but shifts the rdx so that the result number
668  * only sees the integer part of the source number.
669  * @param n  The number to copy.
670  * @param r  The result number with a shifted rdx, len, and num.
671  */
672 static void
673 bc_num_shiftRdx(const BcNum* restrict n, BcNum* restrict r)
674 {
675 	size_t rdx = BC_NUM_RDX_VAL(n);
676 
677 	r->len = n->len - rdx;
678 	r->cap = n->cap - rdx;
679 	r->num = n->num + rdx;
680 
681 	BC_NUM_RDX_SET_NEG(r, 0, BC_NUM_NEG(n));
682 	r->scale = 0;
683 }
684 
685 /**
686  * Shifts a number so that all of the least significant limbs of the number are
687  * skipped. This must be undone by bc_num_unshiftZero().
688  * @param n  The number to shift.
689  */
690 static size_t
691 bc_num_shiftZero(BcNum* restrict n)
692 {
693 	// This is volatile to quiet a GCC warning about longjmp() clobbering.
694 	volatile size_t i;
695 
696 	// If we don't have an integer, that is a problem, but it's also a bug
697 	// because the caller should have set everything up right.
698 	assert(!BC_NUM_RDX_VAL(n) || BC_NUM_ZERO(n));
699 
700 	for (i = 0; i < n->len && !n->num[i]; ++i)
701 	{
702 		continue;
703 	}
704 
705 	n->len -= i;
706 	n->num += i;
707 
708 	return i;
709 }
710 
711 /**
712  * Undo the damage done by bc_num_unshiftZero(). This must be called like all
713  * cleanup functions: after a label used by setjmp() and longjmp().
714  * @param n           The number to unshift.
715  * @param places_rdx  The amount the number was originally shift.
716  */
717 static void
718 bc_num_unshiftZero(BcNum* restrict n, size_t places_rdx)
719 {
720 	n->len += places_rdx;
721 	n->num -= places_rdx;
722 }
723 
724 /**
725  * Shifts the digits right within a number by no more than BC_BASE_DIGS - 1.
726  * This is the final step on shifting numbers with the shift operators. It
727  * depends on the caller to shift the limbs properly because all it does is
728  * ensure that the rdx point is realigned to be between limbs.
729  * @param n    The number to shift digits in.
730  * @param dig  The number of places to shift right.
731  */
732 static void
733 bc_num_shift(BcNum* restrict n, BcBigDig dig)
734 {
735 	size_t i, len = n->len;
736 	BcBigDig carry = 0, pow;
737 	BcDig* ptr = n->num;
738 
739 	assert(dig < BC_BASE_DIGS);
740 
741 	// Figure out the parameters for division.
742 	pow = bc_num_pow10[dig];
743 	dig = bc_num_pow10[BC_BASE_DIGS - dig];
744 
745 	// Run a series of divisions and mods with carries across the entire number
746 	// array. This effectively shifts everything over.
747 	for (i = len - 1; i < len; --i)
748 	{
749 		BcBigDig in, temp;
750 		in = ((BcBigDig) ptr[i]);
751 		temp = carry * dig;
752 		carry = in % pow;
753 		ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp;
754 		assert(ptr[i] >= 0 && ptr[i] < BC_BASE_POW);
755 	}
756 
757 	assert(!carry);
758 }
759 
760 /**
761  * Shift a number left by a certain number of places. This is the workhorse of
762  * the left shift operator.
763  * @param n       The number to shift left.
764  * @param places  The amount of places to shift @a n left by.
765  */
766 static void
767 bc_num_shiftLeft(BcNum* restrict n, size_t places)
768 {
769 	BcBigDig dig;
770 	size_t places_rdx;
771 	bool shift;
772 
773 	if (!places) return;
774 
775 	// Make sure to grow the number if necessary.
776 	if (places > n->scale)
777 	{
778 		size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len);
779 		if (size > SIZE_MAX - 1) bc_err(BC_ERR_MATH_OVERFLOW);
780 	}
781 
782 	// If zero, we can just set the scale and bail.
783 	if (BC_NUM_ZERO(n))
784 	{
785 		if (n->scale >= places) n->scale -= places;
786 		else n->scale = 0;
787 		return;
788 	}
789 
790 	// When I changed bc to have multiple digits per limb, this was the hardest
791 	// code to change. This and shift right. Make sure you understand this
792 	// before attempting anything.
793 
794 	// This is how many limbs we will shift.
795 	dig = (BcBigDig) (places % BC_BASE_DIGS);
796 	shift = (dig != 0);
797 
798 	// Convert places to a rdx value.
799 	places_rdx = BC_NUM_RDX(places);
800 
801 	// If the number is not an integer, we need special care. The reason an
802 	// integer doesn't is because left shift would only extend the integer,
803 	// whereas a non-integer might have its fractional part eliminated or only
804 	// partially eliminated.
805 	if (n->scale)
806 	{
807 		size_t nrdx = BC_NUM_RDX_VAL(n);
808 
809 		// If the number's rdx is bigger, that's the hard case.
810 		if (nrdx >= places_rdx)
811 		{
812 			size_t mod = n->scale % BC_BASE_DIGS, revdig;
813 
814 			// We want mod to be in the range [1, BC_BASE_DIGS], not
815 			// [0, BC_BASE_DIGS).
816 			mod = mod ? mod : BC_BASE_DIGS;
817 
818 			// We need to reverse dig to get the actual number of digits.
819 			revdig = dig ? BC_BASE_DIGS - dig : 0;
820 
821 			// If the two overflow BC_BASE_DIGS, we need to move an extra place.
822 			if (mod + revdig > BC_BASE_DIGS) places_rdx = 1;
823 			else places_rdx = 0;
824 		}
825 		else places_rdx -= nrdx;
826 	}
827 
828 	// If this is non-zero, we need an extra place, so expand, move, and set.
829 	if (places_rdx)
830 	{
831 		bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
832 		// NOLINTNEXTLINE
833 		memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
834 		// NOLINTNEXTLINE
835 		memset(n->num, 0, BC_NUM_SIZE(places_rdx));
836 		n->len += places_rdx;
837 	}
838 
839 	// Set the scale appropriately.
840 	if (places > n->scale)
841 	{
842 		n->scale = 0;
843 		BC_NUM_RDX_SET(n, 0);
844 	}
845 	else
846 	{
847 		n->scale -= places;
848 		BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
849 	}
850 
851 	// Finally, shift within limbs.
852 	if (shift) bc_num_shift(n, BC_BASE_DIGS - dig);
853 
854 	bc_num_clean(n);
855 }
856 
857 void
858 bc_num_shiftRight(BcNum* restrict n, size_t places)
859 {
860 	BcBigDig dig;
861 	size_t places_rdx, scale, scale_mod, int_len, expand;
862 	bool shift;
863 
864 	if (!places) return;
865 
866 	// If zero, we can just set the scale and bail.
867 	if (BC_NUM_ZERO(n))
868 	{
869 		n->scale += places;
870 		bc_num_expand(n, BC_NUM_RDX(n->scale));
871 		return;
872 	}
873 
874 	// Amount within a limb we have to shift by.
875 	dig = (BcBigDig) (places % BC_BASE_DIGS);
876 	shift = (dig != 0);
877 
878 	scale = n->scale;
879 
880 	// Figure out how the scale is affected.
881 	scale_mod = scale % BC_BASE_DIGS;
882 	scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS;
883 
884 	// We need to know the int length and rdx for places.
885 	int_len = bc_num_int(n);
886 	places_rdx = BC_NUM_RDX(places);
887 
888 	// If we are going to shift past a limb boundary or not, set accordingly.
889 	if (scale_mod + dig > BC_BASE_DIGS)
890 	{
891 		expand = places_rdx - 1;
892 		places_rdx = 1;
893 	}
894 	else
895 	{
896 		expand = places_rdx;
897 		places_rdx = 0;
898 	}
899 
900 	// Clamp expanding.
901 	if (expand > int_len) expand -= int_len;
902 	else expand = 0;
903 
904 	// Extend, expand, and zero.
905 	bc_num_extend(n, places_rdx * BC_BASE_DIGS);
906 	bc_num_expand(n, bc_vm_growSize(expand, n->len));
907 	// NOLINTNEXTLINE
908 	memset(n->num + n->len, 0, BC_NUM_SIZE(expand));
909 
910 	// Set the fields.
911 	n->len += expand;
912 	n->scale = 0;
913 	BC_NUM_RDX_SET(n, 0);
914 
915 	// Finally, shift within limbs.
916 	if (shift) bc_num_shift(n, dig);
917 
918 	n->scale = scale + places;
919 	BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
920 
921 	bc_num_clean(n);
922 
923 	assert(BC_NUM_RDX_VAL(n) <= n->len && n->len <= n->cap);
924 	assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
925 }
926 
927 /**
928  * Tests if a number is a integer with scale or not. Returns true if the number
929  * is not an integer. If it is, its integer shifted form is copied into the
930  * result parameter for use where only integers are allowed.
931  * @param n  The integer to test and shift.
932  * @param r  The number to store the shifted result into. This number should
933  *           *not* be allocated.
934  * @return   True if the number is a non-integer, false otherwise.
935  */
936 static bool
937 bc_num_nonInt(const BcNum* restrict n, BcNum* restrict r)
938 {
939 	bool zero;
940 	size_t i, rdx = BC_NUM_RDX_VAL(n);
941 
942 	if (!rdx)
943 	{
944 		// NOLINTNEXTLINE
945 		memcpy(r, n, sizeof(BcNum));
946 		return false;
947 	}
948 
949 	zero = true;
950 
951 	for (i = 0; zero && i < rdx; ++i)
952 	{
953 		zero = (n->num[i] == 0);
954 	}
955 
956 	if (BC_ERR(!zero)) return true;
957 
958 	bc_num_shiftRdx(n, r);
959 
960 	return false;
961 }
962 
963 #if BC_ENABLE_EXTRA_MATH
964 
965 /**
966  * Execute common code for an operater that needs an integer for the second
967  * operand and return the integer operand as a BcBigDig.
968  * @param a  The first operand.
969  * @param b  The second operand.
970  * @param c  The result operand.
971  * @return   The second operand as a hardware integer.
972  */
973 static BcBigDig
974 bc_num_intop(const BcNum* a, const BcNum* b, BcNum* restrict c)
975 {
976 	BcNum temp;
977 
978 #if BC_GCC
979 	temp.len = 0;
980 	temp.rdx = 0;
981 	temp.num = NULL;
982 #endif // BC_GCC
983 
984 	if (BC_ERR(bc_num_nonInt(b, &temp))) bc_err(BC_ERR_MATH_NON_INTEGER);
985 
986 	bc_num_copy(c, a);
987 
988 	return bc_num_bigdig(&temp);
989 }
990 #endif // BC_ENABLE_EXTRA_MATH
991 
992 /**
993  * This is the actual implementation of add *and* subtract. Since this function
994  * doesn't need to use scale (per the bc spec), I am hijacking it to say whether
995  * it's doing an add or a subtract. And then I convert substraction to addition
996  * of negative second operand. This is a BcNumBinOp function.
997  * @param a    The first operand.
998  * @param b    The second operand.
999  * @param c    The return parameter.
1000  * @param sub  Non-zero for a subtract, zero for an add.
1001  */
1002 static void
1003 bc_num_as(BcNum* a, BcNum* b, BcNum* restrict c, size_t sub)
1004 {
1005 	BcDig* ptr_c;
1006 	BcDig* ptr_l;
1007 	BcDig* ptr_r;
1008 	size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int;
1009 	size_t len_l, len_r, ardx, brdx;
1010 	bool b_neg, do_sub, do_rev_sub, carry, c_neg;
1011 
1012 	if (BC_NUM_ZERO(b))
1013 	{
1014 		bc_num_copy(c, a);
1015 		return;
1016 	}
1017 
1018 	if (BC_NUM_ZERO(a))
1019 	{
1020 		bc_num_copy(c, b);
1021 		c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(b) != sub);
1022 		return;
1023 	}
1024 
1025 	// Invert sign of b if it is to be subtracted. This operation must
1026 	// precede the tests for any of the operands being zero.
1027 	b_neg = (BC_NUM_NEG(b) != sub);
1028 
1029 	// Figure out if we will actually add the numbers if their signs are equal
1030 	// or subtract.
1031 	do_sub = (BC_NUM_NEG(a) != b_neg);
1032 
1033 	a_int = bc_num_int(a);
1034 	b_int = bc_num_int(b);
1035 	max_int = BC_MAX(a_int, b_int);
1036 
1037 	// Figure out which number will have its last limbs copied (for addition) or
1038 	// subtracted (for subtraction).
1039 	ardx = BC_NUM_RDX_VAL(a);
1040 	brdx = BC_NUM_RDX_VAL(b);
1041 	min_rdx = BC_MIN(ardx, brdx);
1042 	max_rdx = BC_MAX(ardx, brdx);
1043 	diff = max_rdx - min_rdx;
1044 
1045 	max_len = max_int + max_rdx;
1046 
1047 	if (do_sub)
1048 	{
1049 		// Check whether b has to be subtracted from a or a from b.
1050 		if (a_int != b_int) do_rev_sub = (a_int < b_int);
1051 		else if (ardx > brdx)
1052 		{
1053 			do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0);
1054 		}
1055 		else do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0);
1056 	}
1057 	else
1058 	{
1059 		// The result array of the addition might come out one element
1060 		// longer than the bigger of the operand arrays.
1061 		max_len += 1;
1062 		do_rev_sub = (a_int < b_int);
1063 	}
1064 
1065 	assert(max_len <= c->cap);
1066 
1067 	// Cache values for simple code later.
1068 	if (do_rev_sub)
1069 	{
1070 		ptr_l = b->num;
1071 		ptr_r = a->num;
1072 		len_l = b->len;
1073 		len_r = a->len;
1074 	}
1075 	else
1076 	{
1077 		ptr_l = a->num;
1078 		ptr_r = b->num;
1079 		len_l = a->len;
1080 		len_r = b->len;
1081 	}
1082 
1083 	ptr_c = c->num;
1084 	carry = false;
1085 
1086 	// This is true if the numbers have a different number of limbs after the
1087 	// decimal point.
1088 	if (diff)
1089 	{
1090 		// If the rdx values of the operands do not match, the result will
1091 		// have low end elements that are the positive or negative trailing
1092 		// elements of the operand with higher rdx value.
1093 		if ((ardx > brdx) != do_rev_sub)
1094 		{
1095 			// !do_rev_sub && ardx > brdx || do_rev_sub && brdx > ardx
1096 			// The left operand has BcDig values that need to be copied,
1097 			// either from a or from b (in case of a reversed subtraction).
1098 			// NOLINTNEXTLINE
1099 			memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff));
1100 			ptr_l += diff;
1101 			len_l -= diff;
1102 		}
1103 		else
1104 		{
1105 			// The right operand has BcDig values that need to be copied
1106 			// or subtracted from zero (in case of a subtraction).
1107 			if (do_sub)
1108 			{
1109 				// do_sub (do_rev_sub && ardx > brdx ||
1110 				// !do_rev_sub && brdx > ardx)
1111 				for (i = 0; i < diff; i++)
1112 				{
1113 					ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry);
1114 				}
1115 			}
1116 			else
1117 			{
1118 				// !do_sub && brdx > ardx
1119 				// NOLINTNEXTLINE
1120 				memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff));
1121 			}
1122 
1123 			// Future code needs to ignore the limbs we just did.
1124 			ptr_r += diff;
1125 			len_r -= diff;
1126 		}
1127 
1128 		// The return value pointer needs to ignore what we just did.
1129 		ptr_c += diff;
1130 	}
1131 
1132 	// This is the length that can be directly added/subtracted.
1133 	min_len = BC_MIN(len_l, len_r);
1134 
1135 	// After dealing with possible low array elements that depend on only one
1136 	// operand above, the actual add or subtract can be performed as if the rdx
1137 	// of both operands was the same.
1138 	//
1139 	// Inlining takes care of eliminating constant zero arguments to
1140 	// addDigit/subDigit (checked in disassembly of resulting bc binary
1141 	// compiled with gcc and clang).
1142 	if (do_sub)
1143 	{
1144 		// Actual subtraction.
1145 		for (i = 0; i < min_len; ++i)
1146 		{
1147 			ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry);
1148 		}
1149 
1150 		// Finishing the limbs beyond the direct subtraction.
1151 		for (; i < len_l; ++i)
1152 		{
1153 			ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry);
1154 		}
1155 	}
1156 	else
1157 	{
1158 		// Actual addition.
1159 		for (i = 0; i < min_len; ++i)
1160 		{
1161 			ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry);
1162 		}
1163 
1164 		// Finishing the limbs beyond the direct addition.
1165 		for (; i < len_l; ++i)
1166 		{
1167 			ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry);
1168 		}
1169 
1170 		// Addition can create an extra limb. We take care of that here.
1171 		ptr_c[i] = bc_num_addDigits(0, 0, &carry);
1172 	}
1173 
1174 	assert(carry == false);
1175 
1176 	// The result has the same sign as a, unless the operation was a
1177 	// reverse subtraction (b - a).
1178 	c_neg = BC_NUM_NEG(a) != (do_sub && do_rev_sub);
1179 	BC_NUM_RDX_SET_NEG(c, max_rdx, c_neg);
1180 	c->len = max_len;
1181 	c->scale = BC_MAX(a->scale, b->scale);
1182 
1183 	bc_num_clean(c);
1184 }
1185 
1186 /**
1187  * The simple multiplication that karatsuba dishes out to when the length of the
1188  * numbers gets low enough. This doesn't use scale because it treats the
1189  * operands as though they are integers.
1190  * @param a  The first operand.
1191  * @param b  The second operand.
1192  * @param c  The return parameter.
1193  */
1194 static void
1195 bc_num_m_simp(const BcNum* a, const BcNum* b, BcNum* restrict c)
1196 {
1197 	size_t i, alen = a->len, blen = b->len, clen;
1198 	BcDig* ptr_a = a->num;
1199 	BcDig* ptr_b = b->num;
1200 	BcDig* ptr_c;
1201 	BcBigDig sum = 0, carry = 0;
1202 
1203 	assert(sizeof(sum) >= sizeof(BcDig) * 2);
1204 	assert(!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b));
1205 
1206 	// Make sure c is big enough.
1207 	clen = bc_vm_growSize(alen, blen);
1208 	bc_num_expand(c, bc_vm_growSize(clen, 1));
1209 
1210 	// If we don't memset, then we might have uninitialized data use later.
1211 	ptr_c = c->num;
1212 	// NOLINTNEXTLINE
1213 	memset(ptr_c, 0, BC_NUM_SIZE(c->cap));
1214 
1215 	// This is the actual multiplication loop. It uses the lattice form of long
1216 	// multiplication (see the explanation on the web page at
1217 	// https://knilt.arcc.albany.edu/What_is_Lattice_Multiplication or the
1218 	// explanation at Wikipedia).
1219 	for (i = 0; i < clen; ++i)
1220 	{
1221 		ssize_t sidx = (ssize_t) (i - blen + 1);
1222 		size_t j, k;
1223 
1224 		// These are the start indices.
1225 		j = (size_t) BC_MAX(0, sidx);
1226 		k = BC_MIN(i, blen - 1);
1227 
1228 		// On every iteration of this loop, a multiplication happens, then the
1229 		// sum is automatically calculated.
1230 		for (; j < alen && k < blen; ++j, --k)
1231 		{
1232 			sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]);
1233 
1234 			if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW)
1235 			{
1236 				carry += sum / BC_BASE_POW;
1237 				sum %= BC_BASE_POW;
1238 			}
1239 		}
1240 
1241 		// Calculate the carry.
1242 		if (sum >= BC_BASE_POW)
1243 		{
1244 			carry += sum / BC_BASE_POW;
1245 			sum %= BC_BASE_POW;
1246 		}
1247 
1248 		// Store and set up for next iteration.
1249 		ptr_c[i] = (BcDig) sum;
1250 		assert(ptr_c[i] < BC_BASE_POW);
1251 		sum = carry;
1252 		carry = 0;
1253 	}
1254 
1255 	// This should always be true because there should be no carry on the last
1256 	// digit; multiplication never goes above the sum of both lengths.
1257 	assert(!sum);
1258 
1259 	c->len = clen;
1260 }
1261 
1262 /**
1263  * Does a shifted add or subtract for Karatsuba below. This calls either
1264  * bc_num_addArrays() or bc_num_subArrays().
1265  * @param n      An in/out parameter; the first operand and return parameter.
1266  * @param a      The second operand.
1267  * @param shift  The amount to shift @a n by when adding/subtracting.
1268  * @param op     The function to call, either bc_num_addArrays() or
1269  *               bc_num_subArrays().
1270  */
1271 static void
1272 bc_num_shiftAddSub(BcNum* restrict n, const BcNum* restrict a, size_t shift,
1273                    BcNumShiftAddOp op)
1274 {
1275 	assert(n->len >= shift + a->len);
1276 	assert(!BC_NUM_RDX_VAL(n) && !BC_NUM_RDX_VAL(a));
1277 	op(n->num + shift, a->num, a->len);
1278 }
1279 
1280 /**
1281  * Implements the Karatsuba algorithm.
1282  */
1283 static void
1284 bc_num_k(const BcNum* a, const BcNum* b, BcNum* restrict c)
1285 {
1286 	size_t max, max2, total;
1287 	BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
1288 	BcDig* digs;
1289 	BcDig* dig_ptr;
1290 	BcNumShiftAddOp op;
1291 	bool aone = BC_NUM_ONE(a);
1292 #if BC_ENABLE_LIBRARY
1293 	BcVm* vm = bcl_getspecific();
1294 #endif // BC_ENABLE_LIBRARY
1295 
1296 	assert(BC_NUM_ZERO(c));
1297 
1298 	if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return;
1299 
1300 	if (aone || BC_NUM_ONE(b))
1301 	{
1302 		bc_num_copy(c, aone ? b : a);
1303 		if ((aone && BC_NUM_NEG(a)) || BC_NUM_NEG(b)) BC_NUM_NEG_TGL(c);
1304 		return;
1305 	}
1306 
1307 	// Shell out to the simple algorithm with certain conditions.
1308 	if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN)
1309 	{
1310 		bc_num_m_simp(a, b, c);
1311 		return;
1312 	}
1313 
1314 	// We need to calculate the max size of the numbers that can result from the
1315 	// operations.
1316 	max = BC_MAX(a->len, b->len);
1317 	max = BC_MAX(max, BC_NUM_DEF_SIZE);
1318 	max2 = (max + 1) / 2;
1319 
1320 	// Calculate the space needed for all of the temporary allocations. We do
1321 	// this to just allocate once.
1322 	total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max);
1323 
1324 	BC_SIG_LOCK;
1325 
1326 	// Allocate space for all of the temporaries.
1327 	digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total));
1328 
1329 	// Set up the temporaries.
1330 	bc_num_setup(&l1, dig_ptr, max);
1331 	dig_ptr += max;
1332 	bc_num_setup(&h1, dig_ptr, max);
1333 	dig_ptr += max;
1334 	bc_num_setup(&l2, dig_ptr, max);
1335 	dig_ptr += max;
1336 	bc_num_setup(&h2, dig_ptr, max);
1337 	dig_ptr += max;
1338 	bc_num_setup(&m1, dig_ptr, max);
1339 	dig_ptr += max;
1340 	bc_num_setup(&m2, dig_ptr, max);
1341 
1342 	// Some temporaries need the ability to grow, so we allocate them
1343 	// separately.
1344 	max = bc_vm_growSize(max, 1);
1345 	bc_num_init(&z0, max);
1346 	bc_num_init(&z1, max);
1347 	bc_num_init(&z2, max);
1348 	max = bc_vm_growSize(max, max) + 1;
1349 	bc_num_init(&temp, max);
1350 
1351 	BC_SETJMP_LOCKED(vm, err);
1352 
1353 	BC_SIG_UNLOCK;
1354 
1355 	// First, set up c.
1356 	bc_num_expand(c, max);
1357 	c->len = max;
1358 	// NOLINTNEXTLINE
1359 	memset(c->num, 0, BC_NUM_SIZE(c->len));
1360 
1361 	// Split the parameters.
1362 	bc_num_split(a, max2, &l1, &h1);
1363 	bc_num_split(b, max2, &l2, &h2);
1364 
1365 	// Do the subtraction.
1366 	bc_num_sub(&h1, &l1, &m1, 0);
1367 	bc_num_sub(&l2, &h2, &m2, 0);
1368 
1369 	// The if statements below are there for efficiency reasons. The best way to
1370 	// understand them is to understand the Karatsuba algorithm because now that
1371 	// the ollocations and splits are done, the algorithm is pretty
1372 	// straightforward.
1373 
1374 	if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2))
1375 	{
1376 		assert(BC_NUM_RDX_VALID_NP(h1));
1377 		assert(BC_NUM_RDX_VALID_NP(h2));
1378 
1379 		bc_num_m(&h1, &h2, &z2, 0);
1380 		bc_num_clean(&z2);
1381 
1382 		bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays);
1383 		bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays);
1384 	}
1385 
1386 	if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2))
1387 	{
1388 		assert(BC_NUM_RDX_VALID_NP(l1));
1389 		assert(BC_NUM_RDX_VALID_NP(l2));
1390 
1391 		bc_num_m(&l1, &l2, &z0, 0);
1392 		bc_num_clean(&z0);
1393 
1394 		bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays);
1395 		bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays);
1396 	}
1397 
1398 	if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2))
1399 	{
1400 		assert(BC_NUM_RDX_VALID_NP(m1));
1401 		assert(BC_NUM_RDX_VALID_NP(m1));
1402 
1403 		bc_num_m(&m1, &m2, &z1, 0);
1404 		bc_num_clean(&z1);
1405 
1406 		op = (BC_NUM_NEG_NP(m1) != BC_NUM_NEG_NP(m2)) ?
1407 		         bc_num_subArrays :
1408 		         bc_num_addArrays;
1409 		bc_num_shiftAddSub(c, &z1, max2, op);
1410 	}
1411 
1412 err:
1413 	BC_SIG_MAYLOCK;
1414 	free(digs);
1415 	bc_num_free(&temp);
1416 	bc_num_free(&z2);
1417 	bc_num_free(&z1);
1418 	bc_num_free(&z0);
1419 	BC_LONGJMP_CONT(vm);
1420 }
1421 
1422 /**
1423  * Does checks for Karatsuba. It also changes things to ensure that the
1424  * Karatsuba and simple multiplication can treat the numbers as integers. This
1425  * is a BcNumBinOp function.
1426  * @param a      The first operand.
1427  * @param b      The second operand.
1428  * @param c      The return parameter.
1429  * @param scale  The current scale.
1430  */
1431 static void
1432 bc_num_m(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
1433 {
1434 	BcNum cpa, cpb;
1435 	size_t ascale, bscale, ardx, brdx, zero, len, rscale;
1436 	// These are meant to quiet warnings on GCC about longjmp() clobbering.
1437 	// The problem is real here.
1438 	size_t scale1, scale2, realscale;
1439 	// These are meant to quiet the GCC longjmp() clobbering, even though it
1440 	// does not apply here.
1441 	volatile size_t azero;
1442 	volatile size_t bzero;
1443 #if BC_ENABLE_LIBRARY
1444 	BcVm* vm = bcl_getspecific();
1445 #endif // BC_ENABLE_LIBRARY
1446 
1447 	assert(BC_NUM_RDX_VALID(a));
1448 	assert(BC_NUM_RDX_VALID(b));
1449 
1450 	bc_num_zero(c);
1451 
1452 	ascale = a->scale;
1453 	bscale = b->scale;
1454 
1455 	// This sets the final scale according to the bc spec.
1456 	scale1 = BC_MAX(scale, ascale);
1457 	scale2 = BC_MAX(scale1, bscale);
1458 	rscale = ascale + bscale;
1459 	realscale = BC_MIN(rscale, scale2);
1460 
1461 	// If this condition is true, we can use bc_num_mulArray(), which would be
1462 	// much faster.
1463 	if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx)
1464 	{
1465 		BcNum* operand;
1466 		BcBigDig dig;
1467 
1468 		// Set the correct operands.
1469 		if (a->len == 1)
1470 		{
1471 			dig = (BcBigDig) a->num[0];
1472 			operand = b;
1473 		}
1474 		else
1475 		{
1476 			dig = (BcBigDig) b->num[0];
1477 			operand = a;
1478 		}
1479 
1480 		bc_num_mulArray(operand, dig, c);
1481 
1482 		// Need to make sure the sign is correct.
1483 		if (BC_NUM_NONZERO(c))
1484 		{
1485 			c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(a) != BC_NUM_NEG(b));
1486 		}
1487 
1488 		return;
1489 	}
1490 
1491 	assert(BC_NUM_RDX_VALID(a));
1492 	assert(BC_NUM_RDX_VALID(b));
1493 
1494 	BC_SIG_LOCK;
1495 
1496 	// We need copies because of all of the mutation needed to make Karatsuba
1497 	// think the numbers are integers.
1498 	bc_num_init(&cpa, a->len + BC_NUM_RDX_VAL(a));
1499 	bc_num_init(&cpb, b->len + BC_NUM_RDX_VAL(b));
1500 
1501 	BC_SETJMP_LOCKED(vm, init_err);
1502 
1503 	BC_SIG_UNLOCK;
1504 
1505 	bc_num_copy(&cpa, a);
1506 	bc_num_copy(&cpb, b);
1507 
1508 	assert(BC_NUM_RDX_VALID_NP(cpa));
1509 	assert(BC_NUM_RDX_VALID_NP(cpb));
1510 
1511 	BC_NUM_NEG_CLR_NP(cpa);
1512 	BC_NUM_NEG_CLR_NP(cpb);
1513 
1514 	assert(BC_NUM_RDX_VALID_NP(cpa));
1515 	assert(BC_NUM_RDX_VALID_NP(cpb));
1516 
1517 	// These are what makes them appear like integers.
1518 	ardx = BC_NUM_RDX_VAL_NP(cpa) * BC_BASE_DIGS;
1519 	bc_num_shiftLeft(&cpa, ardx);
1520 
1521 	brdx = BC_NUM_RDX_VAL_NP(cpb) * BC_BASE_DIGS;
1522 	bc_num_shiftLeft(&cpb, brdx);
1523 
1524 	// We need to reset the jump here because azero and bzero are used in the
1525 	// cleanup, and local variables are not guaranteed to be the same after a
1526 	// jump.
1527 	BC_SIG_LOCK;
1528 
1529 	BC_UNSETJMP(vm);
1530 
1531 	// We want to ignore zero limbs.
1532 	azero = bc_num_shiftZero(&cpa);
1533 	bzero = bc_num_shiftZero(&cpb);
1534 
1535 	BC_SETJMP_LOCKED(vm, err);
1536 
1537 	BC_SIG_UNLOCK;
1538 
1539 	bc_num_clean(&cpa);
1540 	bc_num_clean(&cpb);
1541 
1542 	bc_num_k(&cpa, &cpb, c);
1543 
1544 	// The return parameter needs to have its scale set. This is the start. It
1545 	// also needs to be shifted by the same amount as a and b have limbs after
1546 	// the decimal point.
1547 	zero = bc_vm_growSize(azero, bzero);
1548 	len = bc_vm_growSize(c->len, zero);
1549 
1550 	bc_num_expand(c, len);
1551 
1552 	// Shift c based on the limbs after the decimal point in a and b.
1553 	bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS);
1554 	bc_num_shiftRight(c, ardx + brdx);
1555 
1556 	bc_num_retireMul(c, realscale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1557 
1558 err:
1559 	BC_SIG_MAYLOCK;
1560 	bc_num_unshiftZero(&cpb, bzero);
1561 	bc_num_unshiftZero(&cpa, azero);
1562 init_err:
1563 	BC_SIG_MAYLOCK;
1564 	bc_num_free(&cpb);
1565 	bc_num_free(&cpa);
1566 	BC_LONGJMP_CONT(vm);
1567 }
1568 
1569 /**
1570  * Returns true if the BcDig array has non-zero limbs, false otherwise.
1571  * @param a    The array to test.
1572  * @param len  The length of the array.
1573  * @return     True if @a has any non-zero limbs, false otherwise.
1574  */
1575 static bool
1576 bc_num_nonZeroDig(BcDig* restrict a, size_t len)
1577 {
1578 	size_t i;
1579 
1580 	for (i = len - 1; i < len; --i)
1581 	{
1582 		if (a[i] != 0) return true;
1583 	}
1584 
1585 	return false;
1586 }
1587 
1588 /**
1589  * Compares a BcDig array against a BcNum. This is especially suited for
1590  * division. Returns >0 if @a a is greater than @a b, <0 if it is less, and =0
1591  * if they are equal.
1592  * @param a    The array.
1593  * @param b    The number.
1594  * @param len  The length to assume the arrays are. This is always less than the
1595  *             actual length because of how this is implemented.
1596  */
1597 static ssize_t
1598 bc_num_divCmp(const BcDig* a, const BcNum* b, size_t len)
1599 {
1600 	ssize_t cmp;
1601 
1602 	if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1);
1603 	else if (b->len <= len)
1604 	{
1605 		if (a[len]) cmp = 1;
1606 		else cmp = bc_num_compare(a, b->num, len);
1607 	}
1608 	else cmp = -1;
1609 
1610 	return cmp;
1611 }
1612 
1613 /**
1614  * Extends the two operands of a division by BC_BASE_DIGS minus the number of
1615  * digits in the divisor estimate. In other words, it is shifting the numbers in
1616  * order to force the divisor estimate to fill the limb.
1617  * @param a        The first operand.
1618  * @param b        The second operand.
1619  * @param divisor  The divisor estimate.
1620  */
1621 static void
1622 bc_num_divExtend(BcNum* restrict a, BcNum* restrict b, BcBigDig divisor)
1623 {
1624 	size_t pow;
1625 
1626 	assert(divisor < BC_BASE_POW);
1627 
1628 	pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor);
1629 
1630 	bc_num_shiftLeft(a, pow);
1631 	bc_num_shiftLeft(b, pow);
1632 }
1633 
1634 /**
1635  * Actually does division. This is a rewrite of my original code by Stefan Esser
1636  * from FreeBSD.
1637  * @param a      The first operand.
1638  * @param b      The second operand.
1639  * @param c      The return parameter.
1640  * @param scale  The current scale.
1641  */
1642 static void
1643 bc_num_d_long(BcNum* restrict a, BcNum* restrict b, BcNum* restrict c,
1644               size_t scale)
1645 {
1646 	BcBigDig divisor;
1647 	size_t i, rdx;
1648 	// This is volatile and len 2 and reallen exist to quiet the GCC warning
1649 	// about clobbering on longjmp(). This one is possible, I think.
1650 	volatile size_t len;
1651 	size_t len2, reallen;
1652 	// This is volatile and realend exists to quiet the GCC warning about
1653 	// clobbering on longjmp(). This one is possible, I think.
1654 	volatile size_t end;
1655 	size_t realend;
1656 	BcNum cpb;
1657 	// This is volatile and realnonzero exists to quiet the GCC warning about
1658 	// clobbering on longjmp(). This one is possible, I think.
1659 	volatile bool nonzero;
1660 	bool realnonzero;
1661 #if BC_ENABLE_LIBRARY
1662 	BcVm* vm = bcl_getspecific();
1663 #endif // BC_ENABLE_LIBRARY
1664 
1665 	assert(b->len < a->len);
1666 
1667 	len = b->len;
1668 	end = a->len - len;
1669 
1670 	assert(len >= 1);
1671 
1672 	// This is a final time to make sure c is big enough and that its array is
1673 	// properly zeroed.
1674 	bc_num_expand(c, a->len);
1675 	// NOLINTNEXTLINE
1676 	memset(c->num, 0, c->cap * sizeof(BcDig));
1677 
1678 	// Setup.
1679 	BC_NUM_RDX_SET(c, BC_NUM_RDX_VAL(a));
1680 	c->scale = a->scale;
1681 	c->len = a->len;
1682 
1683 	// This is pulling the most significant limb of b in order to establish a
1684 	// good "estimate" for the actual divisor.
1685 	divisor = (BcBigDig) b->num[len - 1];
1686 
1687 	// The entire bit of code in this if statement is to tighten the estimate of
1688 	// the divisor. The condition asks if b has any other non-zero limbs.
1689 	if (len > 1 && bc_num_nonZeroDig(b->num, len - 1))
1690 	{
1691 		// This takes a little bit of understanding. The "10*BC_BASE_DIGS/6+1"
1692 		// results in either 16 for 64-bit 9-digit limbs or 7 for 32-bit 4-digit
1693 		// limbs. Then it shifts a 1 by that many, which in both cases, puts the
1694 		// result above *half* of the max value a limb can store. Basically,
1695 		// this quickly calculates if the divisor is greater than half the max
1696 		// of a limb.
1697 		nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1));
1698 
1699 		// If the divisor is *not* greater than half the limb...
1700 		if (!nonzero)
1701 		{
1702 			// Extend the parameters by the number of missing digits in the
1703 			// divisor.
1704 			bc_num_divExtend(a, b, divisor);
1705 
1706 			// Check bc_num_d(). In there, we grow a again and again. We do it
1707 			// again here; we *always* want to be sure it is big enough.
1708 			len2 = BC_MAX(a->len, b->len);
1709 			bc_num_expand(a, len2 + 1);
1710 
1711 			// Make a have a zero most significant limb to match the len.
1712 			if (len2 + 1 > a->len) a->len = len2 + 1;
1713 
1714 			// Grab the new divisor estimate, new because the shift has made it
1715 			// different.
1716 			reallen = b->len;
1717 			realend = a->len - reallen;
1718 			divisor = (BcBigDig) b->num[reallen - 1];
1719 
1720 			realnonzero = bc_num_nonZeroDig(b->num, reallen - 1);
1721 		}
1722 		else
1723 		{
1724 			realend = end;
1725 			realnonzero = nonzero;
1726 		}
1727 	}
1728 	else
1729 	{
1730 		realend = end;
1731 		realnonzero = false;
1732 	}
1733 
1734 	// If b has other nonzero limbs, we want the divisor to be one higher, so
1735 	// that it is an upper bound.
1736 	divisor += realnonzero;
1737 
1738 	// Make sure c can fit the new length.
1739 	bc_num_expand(c, a->len);
1740 	// NOLINTNEXTLINE
1741 	memset(c->num, 0, BC_NUM_SIZE(c->cap));
1742 
1743 	assert(c->scale >= scale);
1744 	rdx = BC_NUM_RDX_VAL(c) - BC_NUM_RDX(scale);
1745 
1746 	BC_SIG_LOCK;
1747 
1748 	bc_num_init(&cpb, len + 1);
1749 
1750 	BC_SETJMP_LOCKED(vm, err);
1751 
1752 	BC_SIG_UNLOCK;
1753 
1754 	// This is the actual division loop.
1755 	for (i = realend - 1; i < realend && i >= rdx && BC_NUM_NONZERO(a); --i)
1756 	{
1757 		ssize_t cmp;
1758 		BcDig* n;
1759 		BcBigDig result;
1760 
1761 		n = a->num + i;
1762 		assert(n >= a->num);
1763 		result = 0;
1764 
1765 		cmp = bc_num_divCmp(n, b, len);
1766 
1767 		// This is true if n is greater than b, which means that division can
1768 		// proceed, so this inner loop is the part that implements one instance
1769 		// of the division.
1770 		while (cmp >= 0)
1771 		{
1772 			BcBigDig n1, dividend, quotient;
1773 
1774 			// These should be named obviously enough. Just imagine that it's a
1775 			// division of one limb. Because that's what it is.
1776 			n1 = (BcBigDig) n[len];
1777 			dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1];
1778 			quotient = (dividend / divisor);
1779 
1780 			// If this is true, then we can just subtract. Remember: setting
1781 			// quotient to 1 is not bad because we already know that n is
1782 			// greater than b.
1783 			if (quotient <= 1)
1784 			{
1785 				quotient = 1;
1786 				bc_num_subArrays(n, b->num, len);
1787 			}
1788 			else
1789 			{
1790 				assert(quotient <= BC_BASE_POW);
1791 
1792 				// We need to multiply and subtract for a quotient above 1.
1793 				bc_num_mulArray(b, (BcBigDig) quotient, &cpb);
1794 				bc_num_subArrays(n, cpb.num, cpb.len);
1795 			}
1796 
1797 			// The result is the *real* quotient, by the way, but it might take
1798 			// multiple trips around this loop to get it.
1799 			result += quotient;
1800 			assert(result <= BC_BASE_POW);
1801 
1802 			// And here's why it might take multiple trips: n might *still* be
1803 			// greater than b. So we have to loop again. That's what this is
1804 			// setting up for: the condition of the while loop.
1805 			if (realnonzero) cmp = bc_num_divCmp(n, b, len);
1806 			else cmp = -1;
1807 		}
1808 
1809 		assert(result < BC_BASE_POW);
1810 
1811 		// Store the actual limb quotient.
1812 		c->num[i] = (BcDig) result;
1813 	}
1814 
1815 err:
1816 	BC_SIG_MAYLOCK;
1817 	bc_num_free(&cpb);
1818 	BC_LONGJMP_CONT(vm);
1819 }
1820 
1821 /**
1822  * Implements division. This is a BcNumBinOp function.
1823  * @param a      The first operand.
1824  * @param b      The second operand.
1825  * @param c      The return parameter.
1826  * @param scale  The current scale.
1827  */
1828 static void
1829 bc_num_d(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
1830 {
1831 	size_t len, cpardx;
1832 	BcNum cpa, cpb;
1833 #if BC_ENABLE_LIBRARY
1834 	BcVm* vm = bcl_getspecific();
1835 #endif // BC_ENABLE_LIBRARY
1836 
1837 	if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
1838 
1839 	if (BC_NUM_ZERO(a))
1840 	{
1841 		bc_num_setToZero(c, scale);
1842 		return;
1843 	}
1844 
1845 	if (BC_NUM_ONE(b))
1846 	{
1847 		bc_num_copy(c, a);
1848 		bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1849 		return;
1850 	}
1851 
1852 	// If this is true, we can use bc_num_divArray(), which would be faster.
1853 	if (!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale)
1854 	{
1855 		BcBigDig rem;
1856 		bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem);
1857 		bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1858 		return;
1859 	}
1860 
1861 	len = bc_num_divReq(a, b, scale);
1862 
1863 	BC_SIG_LOCK;
1864 
1865 	// Initialize copies of the parameters. We want the length of the first
1866 	// operand copy to be as big as the result because of the way the division
1867 	// is implemented.
1868 	bc_num_init(&cpa, len);
1869 	bc_num_copy(&cpa, a);
1870 	bc_num_createCopy(&cpb, b);
1871 
1872 	BC_SETJMP_LOCKED(vm, err);
1873 
1874 	BC_SIG_UNLOCK;
1875 
1876 	len = b->len;
1877 
1878 	// Like the above comment, we want the copy of the first parameter to be
1879 	// larger than the second parameter.
1880 	if (len > cpa.len)
1881 	{
1882 		bc_num_expand(&cpa, bc_vm_growSize(len, 2));
1883 		bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS);
1884 	}
1885 
1886 	cpardx = BC_NUM_RDX_VAL_NP(cpa);
1887 	cpa.scale = cpardx * BC_BASE_DIGS;
1888 
1889 	// This is just setting up the scale in preparation for the division.
1890 	bc_num_extend(&cpa, b->scale);
1891 	cpardx = BC_NUM_RDX_VAL_NP(cpa) - BC_NUM_RDX(b->scale);
1892 	BC_NUM_RDX_SET_NP(cpa, cpardx);
1893 	cpa.scale = cpardx * BC_BASE_DIGS;
1894 
1895 	// Once again, just setting things up, this time to match scale.
1896 	if (scale > cpa.scale)
1897 	{
1898 		bc_num_extend(&cpa, scale);
1899 		cpardx = BC_NUM_RDX_VAL_NP(cpa);
1900 		cpa.scale = cpardx * BC_BASE_DIGS;
1901 	}
1902 
1903 	// Grow if necessary.
1904 	if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1));
1905 
1906 	// We want an extra zero in front to make things simpler.
1907 	cpa.num[cpa.len++] = 0;
1908 
1909 	// Still setting things up. Why all of these things are needed is not
1910 	// something that can be easily explained, but it has to do with making the
1911 	// actual algorithm easier to understand because it can assume a lot of
1912 	// things. Thus, you should view all of this setup code as establishing
1913 	// assumptions for bc_num_d_long(), where the actual division happens.
1914 	if (cpardx == cpa.len) cpa.len = bc_num_nonZeroLen(&cpa);
1915 	if (BC_NUM_RDX_VAL_NP(cpb) == cpb.len) cpb.len = bc_num_nonZeroLen(&cpb);
1916 	cpb.scale = 0;
1917 	BC_NUM_RDX_SET_NP(cpb, 0);
1918 
1919 	bc_num_d_long(&cpa, &cpb, c, scale);
1920 
1921 	bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1922 
1923 err:
1924 	BC_SIG_MAYLOCK;
1925 	bc_num_free(&cpb);
1926 	bc_num_free(&cpa);
1927 	BC_LONGJMP_CONT(vm);
1928 }
1929 
1930 /**
1931  * Implements divmod. This is the actual modulus function; since modulus
1932  * requires a division anyway, this returns the quotient and modulus. Either can
1933  * be thrown out as desired.
1934  * @param a      The first operand.
1935  * @param b      The second operand.
1936  * @param c      The return parameter for the quotient.
1937  * @param d      The return parameter for the modulus.
1938  * @param scale  The current scale.
1939  * @param ts     The scale that the operation should be done to. Yes, it's not
1940  *               necessarily the same as scale, per the bc spec.
1941  */
1942 static void
1943 bc_num_r(BcNum* a, BcNum* b, BcNum* restrict c, BcNum* restrict d, size_t scale,
1944          size_t ts)
1945 {
1946 	BcNum temp;
1947 	// realscale is meant to quiet a warning on GCC about longjmp() clobbering.
1948 	// This one is real.
1949 	size_t realscale;
1950 	bool neg;
1951 #if BC_ENABLE_LIBRARY
1952 	BcVm* vm = bcl_getspecific();
1953 #endif // BC_ENABLE_LIBRARY
1954 
1955 	if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
1956 
1957 	if (BC_NUM_ZERO(a))
1958 	{
1959 		bc_num_setToZero(c, ts);
1960 		bc_num_setToZero(d, ts);
1961 		return;
1962 	}
1963 
1964 	BC_SIG_LOCK;
1965 
1966 	bc_num_init(&temp, d->cap);
1967 
1968 	BC_SETJMP_LOCKED(vm, err);
1969 
1970 	BC_SIG_UNLOCK;
1971 
1972 	// Division.
1973 	bc_num_d(a, b, c, scale);
1974 
1975 	// We want an extra digit so we can safely truncate.
1976 	if (scale) realscale = ts + 1;
1977 	else realscale = scale;
1978 
1979 	assert(BC_NUM_RDX_VALID(c));
1980 	assert(BC_NUM_RDX_VALID(b));
1981 
1982 	// Implement the rest of the (a - (a / b) * b) formula.
1983 	bc_num_m(c, b, &temp, realscale);
1984 	bc_num_sub(a, &temp, d, realscale);
1985 
1986 	// Extend if necessary.
1987 	if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale);
1988 
1989 	neg = BC_NUM_NEG(d);
1990 	bc_num_retireMul(d, ts, BC_NUM_NEG(a), BC_NUM_NEG(b));
1991 	d->rdx = BC_NUM_NEG_VAL(d, BC_NUM_NONZERO(d) ? neg : false);
1992 
1993 err:
1994 	BC_SIG_MAYLOCK;
1995 	bc_num_free(&temp);
1996 	BC_LONGJMP_CONT(vm);
1997 }
1998 
1999 /**
2000  * Implements modulus/remainder. (Yes, I know they are different, but not in the
2001  * context of bc.) This is a BcNumBinOp function.
2002  * @param a      The first operand.
2003  * @param b      The second operand.
2004  * @param c      The return parameter.
2005  * @param scale  The current scale.
2006  */
2007 static void
2008 bc_num_rem(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
2009 {
2010 	BcNum c1;
2011 	size_t ts;
2012 #if BC_ENABLE_LIBRARY
2013 	BcVm* vm = bcl_getspecific();
2014 #endif // BC_ENABLE_LIBRARY
2015 
2016 	ts = bc_vm_growSize(scale, b->scale);
2017 	ts = BC_MAX(ts, a->scale);
2018 
2019 	BC_SIG_LOCK;
2020 
2021 	// Need a temp for the quotient.
2022 	bc_num_init(&c1, bc_num_mulReq(a, b, ts));
2023 
2024 	BC_SETJMP_LOCKED(vm, err);
2025 
2026 	BC_SIG_UNLOCK;
2027 
2028 	bc_num_r(a, b, &c1, c, scale, ts);
2029 
2030 err:
2031 	BC_SIG_MAYLOCK;
2032 	bc_num_free(&c1);
2033 	BC_LONGJMP_CONT(vm);
2034 }
2035 
2036 /**
2037  * Implements power (exponentiation). This is a BcNumBinOp function.
2038  * @param a      The first operand.
2039  * @param b      The second operand.
2040  * @param c      The return parameter.
2041  * @param scale  The current scale.
2042  */
2043 static void
2044 bc_num_p(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
2045 {
2046 	BcNum copy, btemp;
2047 	BcBigDig exp;
2048 	// realscale is meant to quiet a warning on GCC about longjmp() clobbering.
2049 	// This one is real.
2050 	size_t powrdx, resrdx, realscale;
2051 	bool neg;
2052 #if BC_ENABLE_LIBRARY
2053 	BcVm* vm = bcl_getspecific();
2054 #endif // BC_ENABLE_LIBRARY
2055 
2056 	// This is here to silence a warning from GCC.
2057 #if BC_GCC
2058 	btemp.len = 0;
2059 	btemp.rdx = 0;
2060 	btemp.num = NULL;
2061 #endif // BC_GCC
2062 
2063 	if (BC_ERR(bc_num_nonInt(b, &btemp))) bc_err(BC_ERR_MATH_NON_INTEGER);
2064 
2065 	assert(btemp.len == 0 || btemp.num != NULL);
2066 
2067 	if (BC_NUM_ZERO(&btemp))
2068 	{
2069 		bc_num_one(c);
2070 		return;
2071 	}
2072 
2073 	if (BC_NUM_ZERO(a))
2074 	{
2075 		if (BC_NUM_NEG_NP(btemp)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
2076 		bc_num_setToZero(c, scale);
2077 		return;
2078 	}
2079 
2080 	if (BC_NUM_ONE(&btemp))
2081 	{
2082 		if (!BC_NUM_NEG_NP(btemp)) bc_num_copy(c, a);
2083 		else bc_num_inv(a, c, scale);
2084 		return;
2085 	}
2086 
2087 	neg = BC_NUM_NEG_NP(btemp);
2088 	BC_NUM_NEG_CLR_NP(btemp);
2089 
2090 	exp = bc_num_bigdig(&btemp);
2091 
2092 	BC_SIG_LOCK;
2093 
2094 	bc_num_createCopy(&copy, a);
2095 
2096 	BC_SETJMP_LOCKED(vm, err);
2097 
2098 	BC_SIG_UNLOCK;
2099 
2100 	// If this is true, then we do not have to do a division, and we need to
2101 	// set scale accordingly.
2102 	if (!neg)
2103 	{
2104 		size_t max = BC_MAX(scale, a->scale), scalepow;
2105 		scalepow = bc_num_mulOverflow(a->scale, exp);
2106 		realscale = BC_MIN(scalepow, max);
2107 	}
2108 	else realscale = scale;
2109 
2110 	// This is only implementing the first exponentiation by squaring, until it
2111 	// reaches the first time where the square is actually used.
2112 	for (powrdx = a->scale; !(exp & 1); exp >>= 1)
2113 	{
2114 		powrdx <<= 1;
2115 		assert(BC_NUM_RDX_VALID_NP(copy));
2116 		bc_num_mul(&copy, &copy, &copy, powrdx);
2117 	}
2118 
2119 	// Make c a copy of copy for the purpose of saving the squares that should
2120 	// be saved.
2121 	bc_num_copy(c, &copy);
2122 	resrdx = powrdx;
2123 
2124 	// Now finish the exponentiation by squaring, this time saving the squares
2125 	// as necessary.
2126 	while (exp >>= 1)
2127 	{
2128 		powrdx <<= 1;
2129 		assert(BC_NUM_RDX_VALID_NP(copy));
2130 		bc_num_mul(&copy, &copy, &copy, powrdx);
2131 
2132 		// If this is true, we want to save that particular square. This does
2133 		// that by multiplying c with copy.
2134 		if (exp & 1)
2135 		{
2136 			resrdx += powrdx;
2137 			assert(BC_NUM_RDX_VALID(c));
2138 			assert(BC_NUM_RDX_VALID_NP(copy));
2139 			bc_num_mul(c, &copy, c, resrdx);
2140 		}
2141 	}
2142 
2143 	// Invert if necessary.
2144 	if (neg) bc_num_inv(c, c, realscale);
2145 
2146 	// Truncate if necessary.
2147 	if (c->scale > realscale) bc_num_truncate(c, c->scale - realscale);
2148 
2149 	bc_num_clean(c);
2150 
2151 err:
2152 	BC_SIG_MAYLOCK;
2153 	bc_num_free(&copy);
2154 	BC_LONGJMP_CONT(vm);
2155 }
2156 
2157 #if BC_ENABLE_EXTRA_MATH
2158 /**
2159  * Implements the places operator. This is a BcNumBinOp function.
2160  * @param a      The first operand.
2161  * @param b      The second operand.
2162  * @param c      The return parameter.
2163  * @param scale  The current scale.
2164  */
2165 static void
2166 bc_num_place(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
2167 {
2168 	BcBigDig val;
2169 
2170 	BC_UNUSED(scale);
2171 
2172 	val = bc_num_intop(a, b, c);
2173 
2174 	// Just truncate or extend as appropriate.
2175 	if (val < c->scale) bc_num_truncate(c, c->scale - val);
2176 	else if (val > c->scale) bc_num_extend(c, val - c->scale);
2177 }
2178 
2179 /**
2180  * Implements the left shift operator. This is a BcNumBinOp function.
2181  */
2182 static void
2183 bc_num_left(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
2184 {
2185 	BcBigDig val;
2186 
2187 	BC_UNUSED(scale);
2188 
2189 	val = bc_num_intop(a, b, c);
2190 
2191 	bc_num_shiftLeft(c, (size_t) val);
2192 }
2193 
2194 /**
2195  * Implements the right shift operator. This is a BcNumBinOp function.
2196  */
2197 static void
2198 bc_num_right(BcNum* a, BcNum* b, BcNum* restrict c, size_t scale)
2199 {
2200 	BcBigDig val;
2201 
2202 	BC_UNUSED(scale);
2203 
2204 	val = bc_num_intop(a, b, c);
2205 
2206 	if (BC_NUM_ZERO(c)) return;
2207 
2208 	bc_num_shiftRight(c, (size_t) val);
2209 }
2210 #endif // BC_ENABLE_EXTRA_MATH
2211 
2212 /**
2213  * Prepares for, and calls, a binary operator function. This is probably the
2214  * most important function in the entire file because it establishes assumptions
2215  * that make the rest of the code so easy. Those assumptions include:
2216  *
2217  * - a is not the same pointer as c.
2218  * - b is not the same pointer as c.
2219  * - there is enough room in c for the result.
2220  *
2221  * Without these, this whole function would basically have to be duplicated for
2222  * *all* binary operators.
2223  *
2224  * @param a      The first operand.
2225  * @param b      The second operand.
2226  * @param c      The return parameter.
2227  * @param scale  The current scale.
2228  * @param req    The number of limbs needed to fit the result.
2229  */
2230 static void
2231 bc_num_binary(BcNum* a, BcNum* b, BcNum* c, size_t scale, BcNumBinOp op,
2232               size_t req)
2233 {
2234 	BcNum* ptr_a;
2235 	BcNum* ptr_b;
2236 	BcNum num2;
2237 #if BC_ENABLE_LIBRARY
2238 	BcVm* vm = NULL;
2239 #endif // BC_ENABLE_LIBRARY
2240 
2241 	assert(a != NULL && b != NULL && c != NULL && op != NULL);
2242 
2243 	assert(BC_NUM_RDX_VALID(a));
2244 	assert(BC_NUM_RDX_VALID(b));
2245 
2246 	BC_SIG_LOCK;
2247 
2248 	ptr_a = c == a ? &num2 : a;
2249 	ptr_b = c == b ? &num2 : b;
2250 
2251 	// Actually reallocate. If we don't reallocate, we want to expand at the
2252 	// very least.
2253 	if (c == a || c == b)
2254 	{
2255 #if BC_ENABLE_LIBRARY
2256 		vm = bcl_getspecific();
2257 #endif // BC_ENABLE_LIBRARY
2258 
2259 		// NOLINTNEXTLINE
2260 		memcpy(&num2, c, sizeof(BcNum));
2261 
2262 		bc_num_init(c, req);
2263 
2264 		// Must prepare for cleanup. We want this here so that locals that got
2265 		// set stay set since a longjmp() is not guaranteed to preserve locals.
2266 		BC_SETJMP_LOCKED(vm, err);
2267 		BC_SIG_UNLOCK;
2268 	}
2269 	else
2270 	{
2271 		BC_SIG_UNLOCK;
2272 		bc_num_expand(c, req);
2273 	}
2274 
2275 	// It is okay for a and b to be the same. If a binary operator function does
2276 	// need them to be different, the binary operator function is responsible
2277 	// for that.
2278 
2279 	// Call the actual binary operator function.
2280 	op(ptr_a, ptr_b, c, scale);
2281 
2282 	assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
2283 	assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
2284 	assert(BC_NUM_RDX_VALID(c));
2285 	assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
2286 
2287 err:
2288 	// Cleanup only needed if we initialized c to a new number.
2289 	if (c == a || c == b)
2290 	{
2291 		BC_SIG_MAYLOCK;
2292 		bc_num_free(&num2);
2293 		BC_LONGJMP_CONT(vm);
2294 	}
2295 }
2296 
2297 /**
2298  * Tests a number string for validity. This function has a history; I originally
2299  * wrote it because I did not trust my parser. Over time, however, I came to
2300  * trust it, so I was able to relegate this function to debug builds only, and I
2301  * used it in assert()'s. But then I created the library, and well, I can't
2302  * trust users, so I reused this for yelling at users.
2303  * @param val  The string to check to see if it's a valid number string.
2304  * @return     True if the string is a valid number string, false otherwise.
2305  */
2306 bool
2307 bc_num_strValid(const char* restrict val)
2308 {
2309 	bool radix = false;
2310 	size_t i, len = strlen(val);
2311 
2312 	// Notice that I don't check if there is a negative sign. That is not part
2313 	// of a valid number, except in the library. The library-specific code takes
2314 	// care of that part.
2315 
2316 	// Nothing in the string is okay.
2317 	if (!len) return true;
2318 
2319 	// Loop through the characters.
2320 	for (i = 0; i < len; ++i)
2321 	{
2322 		BcDig c = val[i];
2323 
2324 		// If we have found a radix point...
2325 		if (c == '.')
2326 		{
2327 			// We don't allow two radices.
2328 			if (radix) return false;
2329 
2330 			radix = true;
2331 			continue;
2332 		}
2333 
2334 		// We only allow digits and uppercase letters.
2335 		if (!(isdigit(c) || isupper(c))) return false;
2336 	}
2337 
2338 	return true;
2339 }
2340 
2341 /**
2342  * Parses one character and returns the digit that corresponds to that
2343  * character according to the base.
2344  * @param c     The character to parse.
2345  * @param base  The base.
2346  * @return      The character as a digit.
2347  */
2348 static BcBigDig
2349 bc_num_parseChar(char c, size_t base)
2350 {
2351 	assert(isupper(c) || isdigit(c));
2352 
2353 	// If a letter...
2354 	if (isupper(c))
2355 	{
2356 #if BC_ENABLE_LIBRARY
2357 		BcVm* vm = bcl_getspecific();
2358 #endif // BC_ENABLE_LIBRARY
2359 
2360 		// This returns the digit that directly corresponds with the letter.
2361 		c = BC_NUM_NUM_LETTER(c);
2362 
2363 		// If the digit is greater than the base, we clamp.
2364 		if (BC_DIGIT_CLAMP)
2365 		{
2366 			c = ((size_t) c) >= base ? (char) base - 1 : c;
2367 		}
2368 	}
2369 	// Straight convert the digit to a number.
2370 	else c -= '0';
2371 
2372 	return (BcBigDig) (uchar) c;
2373 }
2374 
2375 /**
2376  * Parses a string as a decimal number. This is separate because it's going to
2377  * be the most used, and it can be heavily optimized for decimal only.
2378  * @param n    The number to parse into and return. Must be preallocated.
2379  * @param val  The string to parse.
2380  */
2381 static void
2382 bc_num_parseDecimal(BcNum* restrict n, const char* restrict val)
2383 {
2384 	size_t len, i, temp, mod;
2385 	const char* ptr;
2386 	bool zero = true, rdx;
2387 #if BC_ENABLE_LIBRARY
2388 	BcVm* vm = bcl_getspecific();
2389 #endif // BC_ENABLE_LIBRARY
2390 
2391 	// Eat leading zeroes.
2392 	for (i = 0; val[i] == '0'; ++i)
2393 	{
2394 		continue;
2395 	}
2396 
2397 	val += i;
2398 	assert(!val[0] || isalnum(val[0]) || val[0] == '.');
2399 
2400 	// All 0's. We can just return, since this procedure expects a virgin
2401 	// (already 0) BcNum.
2402 	if (!val[0]) return;
2403 
2404 	// The length of the string is the length of the number, except it might be
2405 	// one bigger because of a decimal point.
2406 	len = strlen(val);
2407 
2408 	// Find the location of the decimal point.
2409 	ptr = strchr(val, '.');
2410 	rdx = (ptr != NULL);
2411 
2412 	// We eat leading zeroes again. These leading zeroes are different because
2413 	// they will come after the decimal point if they exist, and since that's
2414 	// the case, they must be preserved.
2415 	for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i)
2416 	{
2417 		continue;
2418 	}
2419 
2420 	// Set the scale of the number based on the location of the decimal point.
2421 	// The casts to uintptr_t is to ensure that bc does not hit undefined
2422 	// behavior when doing math on the values.
2423 	n->scale = (size_t) (rdx *
2424 	                     (((uintptr_t) (val + len)) - (((uintptr_t) ptr) + 1)));
2425 
2426 	// Set rdx.
2427 	BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
2428 
2429 	// Calculate length. First, the length of the integer, then the number of
2430 	// digits in the last limb, then the length.
2431 	i = len - (ptr == val ? 0 : i) - rdx;
2432 	temp = BC_NUM_ROUND_POW(i);
2433 	mod = n->scale % BC_BASE_DIGS;
2434 	i = mod ? BC_BASE_DIGS - mod : 0;
2435 	n->len = ((temp + i) / BC_BASE_DIGS);
2436 
2437 	// Expand and zero. The plus extra is in case the lack of clamping causes
2438 	// the number to overflow the original bounds.
2439 	bc_num_expand(n, n->len + !BC_DIGIT_CLAMP);
2440 	// NOLINTNEXTLINE
2441 	memset(n->num, 0, BC_NUM_SIZE(n->len + !BC_DIGIT_CLAMP));
2442 
2443 	if (zero)
2444 	{
2445 		// I think I can set rdx directly to zero here because n should be a
2446 		// new number with sign set to false.
2447 		n->len = n->rdx = 0;
2448 	}
2449 	else
2450 	{
2451 		// There is actually stuff to parse if we make it here. Yay...
2452 		BcBigDig exp, pow;
2453 
2454 		assert(i <= BC_NUM_BIGDIG_MAX);
2455 
2456 		// The exponent and power.
2457 		exp = (BcBigDig) i;
2458 		pow = bc_num_pow10[exp];
2459 
2460 		// Parse loop. We parse backwards because numbers are stored little
2461 		// endian.
2462 		for (i = len - 1; i < len; --i, ++exp)
2463 		{
2464 			char c = val[i];
2465 
2466 			// Skip the decimal point.
2467 			if (c == '.') exp -= 1;
2468 			else
2469 			{
2470 				// The index of the limb.
2471 				size_t idx = exp / BC_BASE_DIGS;
2472 				BcBigDig dig;
2473 
2474 				if (isupper(c))
2475 				{
2476 					// Clamp for the base.
2477 					if (!BC_DIGIT_CLAMP) c = BC_NUM_NUM_LETTER(c);
2478 					else c = 9;
2479 				}
2480 				else c -= '0';
2481 
2482 				// Add the digit to the limb. This takes care of overflow from
2483 				// lack of clamping.
2484 				dig = ((BcBigDig) n->num[idx]) + ((BcBigDig) c) * pow;
2485 				if (dig >= BC_BASE_POW)
2486 				{
2487 					// We cannot go over BC_BASE_POW with clamping.
2488 					assert(!BC_DIGIT_CLAMP);
2489 
2490 					n->num[idx + 1] = (BcDig) (dig / BC_BASE_POW);
2491 					n->num[idx] = (BcDig) (dig % BC_BASE_POW);
2492 					assert(n->num[idx] >= 0 && n->num[idx] < BC_BASE_POW);
2493 					assert(n->num[idx + 1] >= 0 &&
2494 					       n->num[idx + 1] < BC_BASE_POW);
2495 				}
2496 				else
2497 				{
2498 					n->num[idx] = (BcDig) dig;
2499 					assert(n->num[idx] >= 0 && n->num[idx] < BC_BASE_POW);
2500 				}
2501 
2502 				// Adjust the power and exponent.
2503 				if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1;
2504 				else pow *= BC_BASE;
2505 			}
2506 		}
2507 	}
2508 
2509 	// Make sure to add one to the length if needed from lack of clamping.
2510 	n->len += (!BC_DIGIT_CLAMP && n->num[n->len] != 0);
2511 }
2512 
2513 /**
2514  * Parse a number in any base (besides decimal).
2515  * @param n     The number to parse into and return. Must be preallocated.
2516  * @param val   The string to parse.
2517  * @param base  The base to parse as.
2518  */
2519 static void
2520 bc_num_parseBase(BcNum* restrict n, const char* restrict val, BcBigDig base)
2521 {
2522 	BcNum temp, mult1, mult2, result1, result2;
2523 	BcNum* m1;
2524 	BcNum* m2;
2525 	BcNum* ptr;
2526 	char c = 0;
2527 	bool zero = true;
2528 	BcBigDig v;
2529 	size_t digs, len = strlen(val);
2530 	// This is volatile to quiet a warning on GCC about longjmp() clobbering.
2531 	volatile size_t i;
2532 #if BC_ENABLE_LIBRARY
2533 	BcVm* vm = bcl_getspecific();
2534 #endif // BC_ENABLE_LIBRARY
2535 
2536 	// If zero, just return because the number should be virgin (already 0).
2537 	for (i = 0; zero && i < len; ++i)
2538 	{
2539 		zero = (val[i] == '.' || val[i] == '0');
2540 	}
2541 	if (zero) return;
2542 
2543 	BC_SIG_LOCK;
2544 
2545 	bc_num_init(&temp, BC_NUM_BIGDIG_LOG10);
2546 	bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10);
2547 
2548 	BC_SETJMP_LOCKED(vm, int_err);
2549 
2550 	BC_SIG_UNLOCK;
2551 
2552 	// We split parsing into parsing the integer and parsing the fractional
2553 	// part.
2554 
2555 	// Parse the integer part. This is the easy part because we just multiply
2556 	// the number by the base, then add the digit.
2557 	for (i = 0; i < len && (c = val[i]) && c != '.'; ++i)
2558 	{
2559 		// Convert the character to a digit.
2560 		v = bc_num_parseChar(c, base);
2561 
2562 		// Multiply the number.
2563 		bc_num_mulArray(n, base, &mult1);
2564 
2565 		// Convert the digit to a number and add.
2566 		bc_num_bigdig2num(&temp, v);
2567 		bc_num_add(&mult1, &temp, n, 0);
2568 	}
2569 
2570 	// If this condition is true, then we are done. We still need to do cleanup
2571 	// though.
2572 	if (i == len && !val[i]) goto int_err;
2573 
2574 	// If we get here, we *must* be at the radix point.
2575 	assert(val[i] == '.');
2576 
2577 	BC_SIG_LOCK;
2578 
2579 	// Unset the jump to reset in for these new initializations.
2580 	BC_UNSETJMP(vm);
2581 
2582 	bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10);
2583 	bc_num_init(&result1, BC_NUM_DEF_SIZE);
2584 	bc_num_init(&result2, BC_NUM_DEF_SIZE);
2585 	bc_num_one(&mult1);
2586 
2587 	BC_SETJMP_LOCKED(vm, err);
2588 
2589 	BC_SIG_UNLOCK;
2590 
2591 	// Pointers for easy switching.
2592 	m1 = &mult1;
2593 	m2 = &mult2;
2594 
2595 	// Parse the fractional part. This is the hard part.
2596 	for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs)
2597 	{
2598 		size_t rdx;
2599 
2600 		// Convert the character to a digit.
2601 		v = bc_num_parseChar(c, base);
2602 
2603 		// We keep growing result2 according to the base because the more digits
2604 		// after the radix, the more significant the digits close to the radix
2605 		// should be.
2606 		bc_num_mulArray(&result1, base, &result2);
2607 
2608 		// Convert the digit to a number.
2609 		bc_num_bigdig2num(&temp, v);
2610 
2611 		// Add the digit into the fraction part.
2612 		bc_num_add(&result2, &temp, &result1, 0);
2613 
2614 		// Keep growing m1 and m2 for use after the loop.
2615 		bc_num_mulArray(m1, base, m2);
2616 
2617 		rdx = BC_NUM_RDX_VAL(m2);
2618 
2619 		if (m2->len < rdx) m2->len = rdx;
2620 
2621 		// Switch.
2622 		ptr = m1;
2623 		m1 = m2;
2624 		m2 = ptr;
2625 	}
2626 
2627 	// This one cannot be a divide by 0 because mult starts out at 1, then is
2628 	// multiplied by base, and base cannot be 0, so mult cannot be 0. And this
2629 	// is the reason we keep growing m1 and m2; this division is what converts
2630 	// the parsed fractional part from an integer to a fractional part.
2631 	bc_num_div(&result1, m1, &result2, digs * 2);
2632 
2633 	// Pretruncate.
2634 	bc_num_truncate(&result2, digs);
2635 
2636 	// The final add of the integer part to the fractional part.
2637 	bc_num_add(n, &result2, n, digs);
2638 
2639 	// Basic cleanup.
2640 	if (BC_NUM_NONZERO(n))
2641 	{
2642 		if (n->scale < digs) bc_num_extend(n, digs - n->scale);
2643 	}
2644 	else bc_num_zero(n);
2645 
2646 err:
2647 	BC_SIG_MAYLOCK;
2648 	bc_num_free(&result2);
2649 	bc_num_free(&result1);
2650 	bc_num_free(&mult2);
2651 int_err:
2652 	BC_SIG_MAYLOCK;
2653 	bc_num_free(&mult1);
2654 	bc_num_free(&temp);
2655 	BC_LONGJMP_CONT(vm);
2656 }
2657 
2658 /**
2659  * Prints a backslash+newline combo if the number of characters needs it. This
2660  * is really a convenience function.
2661  */
2662 static inline void
2663 bc_num_printNewline(void)
2664 {
2665 #if !BC_ENABLE_LIBRARY
2666 	if (vm->nchars >= vm->line_len - 1 && vm->line_len)
2667 	{
2668 		bc_vm_putchar('\\', bc_flush_none);
2669 		bc_vm_putchar('\n', bc_flush_err);
2670 	}
2671 #endif // !BC_ENABLE_LIBRARY
2672 }
2673 
2674 /**
2675  * Prints a character after a backslash+newline, if needed.
2676  * @param c       The character to print.
2677  * @param bslash  Whether to print a backslash+newline.
2678  */
2679 static void
2680 bc_num_putchar(int c, bool bslash)
2681 {
2682 	if (c != '\n' && bslash) bc_num_printNewline();
2683 	bc_vm_putchar(c, bc_flush_save);
2684 }
2685 
2686 #if !BC_ENABLE_LIBRARY
2687 
2688 /**
2689  * Prints a character for a number's digit. This is for printing for dc's P
2690  * command. This function does not need to worry about radix points. This is a
2691  * BcNumDigitOp.
2692  * @param n       The "digit" to print.
2693  * @param len     The "length" of the digit, or number of characters that will
2694  *                need to be printed for the digit.
2695  * @param rdx     True if a decimal (radix) point should be printed.
2696  * @param bslash  True if a backslash+newline should be printed if the character
2697  *                limit for the line is reached, false otherwise.
2698  */
2699 static void
2700 bc_num_printChar(size_t n, size_t len, bool rdx, bool bslash)
2701 {
2702 	BC_UNUSED(rdx);
2703 	BC_UNUSED(len);
2704 	BC_UNUSED(bslash);
2705 	assert(len == 1);
2706 	bc_vm_putchar((uchar) n, bc_flush_save);
2707 }
2708 
2709 #endif // !BC_ENABLE_LIBRARY
2710 
2711 /**
2712  * Prints a series of characters for large bases. This is for printing in bases
2713  * above hexadecimal. This is a BcNumDigitOp.
2714  * @param n       The "digit" to print.
2715  * @param len     The "length" of the digit, or number of characters that will
2716  *                need to be printed for the digit.
2717  * @param rdx     True if a decimal (radix) point should be printed.
2718  * @param bslash  True if a backslash+newline should be printed if the character
2719  *                limit for the line is reached, false otherwise.
2720  */
2721 static void
2722 bc_num_printDigits(size_t n, size_t len, bool rdx, bool bslash)
2723 {
2724 	size_t exp, pow;
2725 
2726 	// If needed, print the radix; otherwise, print a space to separate digits.
2727 	bc_num_putchar(rdx ? '.' : ' ', true);
2728 
2729 	// Calculate the exponent and power.
2730 	for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE)
2731 	{
2732 		continue;
2733 	}
2734 
2735 	// Print each character individually.
2736 	for (exp = 0; exp < len; pow /= BC_BASE, ++exp)
2737 	{
2738 		// The individual subdigit.
2739 		size_t dig = n / pow;
2740 
2741 		// Take the subdigit away.
2742 		n -= dig * pow;
2743 
2744 		// Print the subdigit.
2745 		bc_num_putchar(((uchar) dig) + '0', bslash || exp != len - 1);
2746 	}
2747 }
2748 
2749 /**
2750  * Prints a character for a number's digit. This is for printing in bases for
2751  * hexadecimal and below because they always print only one character at a time.
2752  * This is a BcNumDigitOp.
2753  * @param n       The "digit" to print.
2754  * @param len     The "length" of the digit, or number of characters that will
2755  *                need to be printed for the digit.
2756  * @param rdx     True if a decimal (radix) point should be printed.
2757  * @param bslash  True if a backslash+newline should be printed if the character
2758  *                limit for the line is reached, false otherwise.
2759  */
2760 static void
2761 bc_num_printHex(size_t n, size_t len, bool rdx, bool bslash)
2762 {
2763 	BC_UNUSED(len);
2764 	BC_UNUSED(bslash);
2765 
2766 	assert(len == 1);
2767 
2768 	if (rdx) bc_num_putchar('.', true);
2769 
2770 	bc_num_putchar(bc_num_hex_digits[n], bslash);
2771 }
2772 
2773 /**
2774  * Prints a decimal number. This is specially written for optimization since
2775  * this will be used the most and because bc's numbers are already in decimal.
2776  * @param n        The number to print.
2777  * @param newline  Whether to print backslash+newlines on long enough lines.
2778  */
2779 static void
2780 bc_num_printDecimal(const BcNum* restrict n, bool newline)
2781 {
2782 	size_t i, j, rdx = BC_NUM_RDX_VAL(n);
2783 	bool zero = true;
2784 	size_t buffer[BC_BASE_DIGS];
2785 
2786 	// Print loop.
2787 	for (i = n->len - 1; i < n->len; --i)
2788 	{
2789 		BcDig n9 = n->num[i];
2790 		size_t temp;
2791 		bool irdx = (i == rdx - 1);
2792 
2793 		// Calculate the number of digits in the limb.
2794 		zero = (zero & !irdx);
2795 		temp = n->scale % BC_BASE_DIGS;
2796 		temp = i || !temp ? 0 : BC_BASE_DIGS - temp;
2797 
2798 		// NOLINTNEXTLINE
2799 		memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t));
2800 
2801 		// Fill the buffer with individual digits.
2802 		for (j = 0; n9 && j < BC_BASE_DIGS; ++j)
2803 		{
2804 			buffer[j] = ((size_t) n9) % BC_BASE;
2805 			n9 /= BC_BASE;
2806 		}
2807 
2808 		// Print the digits in the buffer.
2809 		for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j)
2810 		{
2811 			// Figure out whether to print the decimal point.
2812 			bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1));
2813 
2814 			// The zero variable helps us skip leading zero digits in the limb.
2815 			zero = (zero && buffer[j] == 0);
2816 
2817 			if (!zero)
2818 			{
2819 				// While the first three arguments should be self-explanatory,
2820 				// the last needs explaining. I don't want to print a newline
2821 				// when the last digit to be printed could take the place of the
2822 				// backslash rather than being pushed, as a single character, to
2823 				// the next line. That's what that last argument does for bc.
2824 				bc_num_printHex(buffer[j], 1, print_rdx,
2825 				                !newline || (j > temp || i != 0));
2826 			}
2827 		}
2828 	}
2829 }
2830 
2831 #if BC_ENABLE_EXTRA_MATH
2832 
2833 /**
2834  * Prints a number in scientific or engineering format. When doing this, we are
2835  * always printing in decimal.
2836  * @param n        The number to print.
2837  * @param eng      True if we are in engineering mode.
2838  * @param newline  Whether to print backslash+newlines on long enough lines.
2839  */
2840 static void
2841 bc_num_printExponent(const BcNum* restrict n, bool eng, bool newline)
2842 {
2843 	size_t places, mod, nrdx = BC_NUM_RDX_VAL(n);
2844 	bool neg = (n->len <= nrdx);
2845 	BcNum temp, exp;
2846 	BcDig digs[BC_NUM_BIGDIG_LOG10];
2847 #if BC_ENABLE_LIBRARY
2848 	BcVm* vm = bcl_getspecific();
2849 #endif // BC_ENABLE_LIBRARY
2850 
2851 	BC_SIG_LOCK;
2852 
2853 	bc_num_createCopy(&temp, n);
2854 
2855 	BC_SETJMP_LOCKED(vm, exit);
2856 
2857 	BC_SIG_UNLOCK;
2858 
2859 	// We need to calculate the exponents, and they change based on whether the
2860 	// number is all fractional or not, obviously.
2861 	if (neg)
2862 	{
2863 		// Figure out how many limbs after the decimal point is zero.
2864 		size_t i, idx = bc_num_nonZeroLen(n) - 1;
2865 
2866 		places = 1;
2867 
2868 		// Figure out how much in the last limb is zero.
2869 		for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i)
2870 		{
2871 			if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1;
2872 			else break;
2873 		}
2874 
2875 		// Calculate the combination of zero limbs and zero digits in the last
2876 		// limb.
2877 		places += (nrdx - (idx + 1)) * BC_BASE_DIGS;
2878 		mod = places % 3;
2879 
2880 		// Calculate places if we are in engineering mode.
2881 		if (eng && mod != 0) places += 3 - mod;
2882 
2883 		// Shift the temp to the right place.
2884 		bc_num_shiftLeft(&temp, places);
2885 	}
2886 	else
2887 	{
2888 		// This is the number of digits that we are supposed to put behind the
2889 		// decimal point.
2890 		places = bc_num_intDigits(n) - 1;
2891 
2892 		// Calculate the true number based on whether engineering mode is
2893 		// activated.
2894 		mod = places % 3;
2895 		if (eng && mod != 0) places -= 3 - (3 - mod);
2896 
2897 		// Shift the temp to the right place.
2898 		bc_num_shiftRight(&temp, places);
2899 	}
2900 
2901 	// Print the shifted number.
2902 	bc_num_printDecimal(&temp, newline);
2903 
2904 	// Print the e.
2905 	bc_num_putchar('e', !newline);
2906 
2907 	// Need to explicitly print a zero exponent.
2908 	if (!places)
2909 	{
2910 		bc_num_printHex(0, 1, false, !newline);
2911 		goto exit;
2912 	}
2913 
2914 	// Need to print sign for the exponent.
2915 	if (neg) bc_num_putchar('-', true);
2916 
2917 	// Create a temporary for the exponent...
2918 	bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10);
2919 	bc_num_bigdig2num(&exp, (BcBigDig) places);
2920 
2921 	/// ..and print it.
2922 	bc_num_printDecimal(&exp, newline);
2923 
2924 exit:
2925 	BC_SIG_MAYLOCK;
2926 	bc_num_free(&temp);
2927 	BC_LONGJMP_CONT(vm);
2928 }
2929 #endif // BC_ENABLE_EXTRA_MATH
2930 
2931 /**
2932  * Converts a number from limbs with base BC_BASE_POW to base @a pow, where
2933  * @a pow is obase^N.
2934  * @param n    The number to convert.
2935  * @param rem  BC_BASE_POW - @a pow.
2936  * @param pow  The power of obase we will convert the number to.
2937  * @param idx  The index of the number to start converting at. Doing the
2938  *             conversion is O(n^2); we have to sweep through starting at the
2939  *             least significant limb
2940  */
2941 static void
2942 bc_num_printFixup(BcNum* restrict n, BcBigDig rem, BcBigDig pow, size_t idx)
2943 {
2944 	size_t i, len = n->len - idx;
2945 	BcBigDig acc;
2946 	BcDig* a = n->num + idx;
2947 
2948 	// Ignore if there's just one limb left. This is the part that requires the
2949 	// extra loop after the one calling this function in bc_num_printPrepare().
2950 	if (len < 2) return;
2951 
2952 	// Loop through the remaining limbs and convert. We start at the second limb
2953 	// because we pull the value from the previous one as well.
2954 	for (i = len - 1; i > 0; --i)
2955 	{
2956 		// Get the limb and add it to the previous, along with multiplying by
2957 		// the remainder because that's the proper overflow. "acc" means
2958 		// "accumulator," by the way.
2959 		acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]);
2960 
2961 		// Store a value in base pow in the previous limb.
2962 		a[i - 1] = (BcDig) (acc % pow);
2963 
2964 		// Divide by the base and accumulate the remaining value in the limb.
2965 		acc /= pow;
2966 		acc += (BcBigDig) a[i];
2967 
2968 		// If the accumulator is greater than the base...
2969 		if (acc >= BC_BASE_POW)
2970 		{
2971 			// Do we need to grow?
2972 			if (i == len - 1)
2973 			{
2974 				// Grow.
2975 				len = bc_vm_growSize(len, 1);
2976 				bc_num_expand(n, bc_vm_growSize(len, idx));
2977 
2978 				// Update the pointer because it may have moved.
2979 				a = n->num + idx;
2980 
2981 				// Zero out the last limb.
2982 				a[len - 1] = 0;
2983 			}
2984 
2985 			// Overflow into the next limb since we are over the base.
2986 			a[i + 1] += acc / BC_BASE_POW;
2987 			acc %= BC_BASE_POW;
2988 		}
2989 
2990 		assert(acc < BC_BASE_POW);
2991 
2992 		// Set the limb.
2993 		a[i] = (BcDig) acc;
2994 	}
2995 
2996 	// We may have grown the number, so adjust the length.
2997 	n->len = len + idx;
2998 }
2999 
3000 /**
3001  * Prepares a number for printing in a base that is not a divisor of
3002  * BC_BASE_POW. This basically converts the number from having limbs of base
3003  * BC_BASE_POW to limbs of pow, where pow is obase^N.
3004  * @param n    The number to prepare for printing.
3005  * @param rem  The remainder of BC_BASE_POW when divided by a power of the base.
3006  * @param pow  The power of the base.
3007  */
3008 static void
3009 bc_num_printPrepare(BcNum* restrict n, BcBigDig rem, BcBigDig pow)
3010 {
3011 	size_t i;
3012 
3013 	// Loop from the least significant limb to the most significant limb and
3014 	// convert limbs in each pass.
3015 	for (i = 0; i < n->len; ++i)
3016 	{
3017 		bc_num_printFixup(n, rem, pow, i);
3018 	}
3019 
3020 	// bc_num_printFixup() does not do everything it is supposed to, so we do
3021 	// the last bit of cleanup here. That cleanup is to ensure that each limb
3022 	// is less than pow and to expand the number to fit new limbs as necessary.
3023 	for (i = 0; i < n->len; ++i)
3024 	{
3025 		assert(pow == ((BcBigDig) ((BcDig) pow)));
3026 
3027 		// If the limb needs fixing...
3028 		if (n->num[i] >= (BcDig) pow)
3029 		{
3030 			// Do we need to grow?
3031 			if (i + 1 == n->len)
3032 			{
3033 				// Grow the number.
3034 				n->len = bc_vm_growSize(n->len, 1);
3035 				bc_num_expand(n, n->len);
3036 
3037 				// Without this, we might use uninitialized data.
3038 				n->num[i + 1] = 0;
3039 			}
3040 
3041 			assert(pow < BC_BASE_POW);
3042 
3043 			// Overflow into the next limb.
3044 			n->num[i + 1] += n->num[i] / ((BcDig) pow);
3045 			n->num[i] %= (BcDig) pow;
3046 		}
3047 	}
3048 }
3049 
3050 static void
3051 bc_num_printNum(BcNum* restrict n, BcBigDig base, size_t len,
3052                 BcNumDigitOp print, bool newline)
3053 {
3054 	BcVec stack;
3055 	BcNum intp, fracp1, fracp2, digit, flen1, flen2;
3056 	BcNum* n1;
3057 	BcNum* n2;
3058 	BcNum* temp;
3059 	BcBigDig dig = 0, acc, exp;
3060 	BcBigDig* ptr;
3061 	size_t i, j, nrdx, idigits;
3062 	bool radix;
3063 	BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1];
3064 #if BC_ENABLE_LIBRARY
3065 	BcVm* vm = bcl_getspecific();
3066 #endif // BC_ENABLE_LIBRARY
3067 
3068 	assert(base > 1);
3069 
3070 	// Easy case. Even with scale, we just print this.
3071 	if (BC_NUM_ZERO(n))
3072 	{
3073 		print(0, len, false, !newline);
3074 		return;
3075 	}
3076 
3077 	// This function uses an algorithm that Stefan Esser <se@freebsd.org> came
3078 	// up with to print the integer part of a number. What it does is convert
3079 	// intp into a number of the specified base, but it does it directly,
3080 	// instead of just doing a series of divisions and printing the remainders
3081 	// in reverse order.
3082 	//
3083 	// Let me explain in a bit more detail:
3084 	//
3085 	// The algorithm takes the current least significant limb (after intp has
3086 	// been converted to an integer) and the next to least significant limb, and
3087 	// it converts the least significant limb into one of the specified base,
3088 	// putting any overflow into the next to least significant limb. It iterates
3089 	// through the whole number, from least significant to most significant,
3090 	// doing this conversion. At the end of that iteration, the least
3091 	// significant limb is converted, but the others are not, so it iterates
3092 	// again, starting at the next to least significant limb. It keeps doing
3093 	// that conversion, skipping one more limb than the last time, until all
3094 	// limbs have been converted. Then it prints them in reverse order.
3095 	//
3096 	// That is the gist of the algorithm. It leaves out several things, such as
3097 	// the fact that limbs are not always converted into the specified base, but
3098 	// into something close, basically a power of the specified base. In
3099 	// Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS
3100 	// in the normal case and obase^N for the largest value of N that satisfies
3101 	// obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base
3102 	// "obase", but in base "obase^N", which happens to be printable as a number
3103 	// of base "obase" without consideration for neighbouring BcDigs." This fact
3104 	// is what necessitates the existence of the loop later in this function.
3105 	//
3106 	// The conversion happens in bc_num_printPrepare() where the outer loop
3107 	// happens and bc_num_printFixup() where the inner loop, or actual
3108 	// conversion, happens. In other words, bc_num_printPrepare() is where the
3109 	// loop that starts at the least significant limb and goes to the most
3110 	// significant limb. Then, on every iteration of its loop, it calls
3111 	// bc_num_printFixup(), which has the inner loop of actually converting
3112 	// the limbs it passes into limbs of base obase^N rather than base
3113 	// BC_BASE_POW.
3114 
3115 	nrdx = BC_NUM_RDX_VAL(n);
3116 
3117 	BC_SIG_LOCK;
3118 
3119 	// The stack is what allows us to reverse the digits for printing.
3120 	bc_vec_init(&stack, sizeof(BcBigDig), BC_DTOR_NONE);
3121 	bc_num_init(&fracp1, nrdx);
3122 
3123 	// intp will be the "integer part" of the number, so copy it.
3124 	bc_num_createCopy(&intp, n);
3125 
3126 	BC_SETJMP_LOCKED(vm, err);
3127 
3128 	BC_SIG_UNLOCK;
3129 
3130 	// Make intp an integer.
3131 	bc_num_truncate(&intp, intp.scale);
3132 
3133 	// Get the fractional part out.
3134 	bc_num_sub(n, &intp, &fracp1, 0);
3135 
3136 	// If the base is not the same as the last base used for printing, we need
3137 	// to update the cached exponent and power. Yes, we cache the values of the
3138 	// exponent and power. That is to prevent us from calculating them every
3139 	// time because printing will probably happen multiple times on the same
3140 	// base.
3141 	if (base != vm->last_base)
3142 	{
3143 		vm->last_pow = 1;
3144 		vm->last_exp = 0;
3145 
3146 		// Calculate the exponent and power.
3147 		while (vm->last_pow * base <= BC_BASE_POW)
3148 		{
3149 			vm->last_pow *= base;
3150 			vm->last_exp += 1;
3151 		}
3152 
3153 		// Also, the remainder and base itself.
3154 		vm->last_rem = BC_BASE_POW - vm->last_pow;
3155 		vm->last_base = base;
3156 	}
3157 
3158 	exp = vm->last_exp;
3159 
3160 	// If vm->last_rem is 0, then the base we are printing in is a divisor of
3161 	// BC_BASE_POW, which is the easy case because it means that BC_BASE_POW is
3162 	// a power of obase, and no conversion is needed. If it *is* 0, then we have
3163 	// the hard case, and we have to prepare the number for the base.
3164 	if (vm->last_rem != 0)
3165 	{
3166 		bc_num_printPrepare(&intp, vm->last_rem, vm->last_pow);
3167 	}
3168 
3169 	// After the conversion comes the surprisingly easy part. From here on out,
3170 	// this is basically naive code that I wrote, adjusted for the larger bases.
3171 
3172 	// Fill the stack of digits for the integer part.
3173 	for (i = 0; i < intp.len; ++i)
3174 	{
3175 		// Get the limb.
3176 		acc = (BcBigDig) intp.num[i];
3177 
3178 		// Turn the limb into digits of base obase.
3179 		for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j)
3180 		{
3181 			// This condition is true if we are not at the last digit.
3182 			if (j != exp - 1)
3183 			{
3184 				dig = acc % base;
3185 				acc /= base;
3186 			}
3187 			else
3188 			{
3189 				dig = acc;
3190 				acc = 0;
3191 			}
3192 
3193 			assert(dig < base);
3194 
3195 			// Push the digit onto the stack.
3196 			bc_vec_push(&stack, &dig);
3197 		}
3198 
3199 		assert(acc == 0);
3200 	}
3201 
3202 	// Go through the stack backwards and print each digit.
3203 	for (i = 0; i < stack.len; ++i)
3204 	{
3205 		ptr = bc_vec_item_rev(&stack, i);
3206 
3207 		assert(ptr != NULL);
3208 
3209 		// While the first three arguments should be self-explanatory, the last
3210 		// needs explaining. I don't want to print a newline when the last digit
3211 		// to be printed could take the place of the backslash rather than being
3212 		// pushed, as a single character, to the next line. That's what that
3213 		// last argument does for bc.
3214 		print(*ptr, len, false,
3215 		      !newline || (n->scale != 0 || i == stack.len - 1));
3216 	}
3217 
3218 	// We are done if there is no fractional part.
3219 	if (!n->scale) goto err;
3220 
3221 	BC_SIG_LOCK;
3222 
3223 	// Reset the jump because some locals are changing.
3224 	BC_UNSETJMP(vm);
3225 
3226 	bc_num_init(&fracp2, nrdx);
3227 	bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig));
3228 	bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10);
3229 	bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10);
3230 
3231 	BC_SETJMP_LOCKED(vm, frac_err);
3232 
3233 	BC_SIG_UNLOCK;
3234 
3235 	bc_num_one(&flen1);
3236 
3237 	radix = true;
3238 
3239 	// Pointers for easy switching.
3240 	n1 = &flen1;
3241 	n2 = &flen2;
3242 
3243 	fracp2.scale = n->scale;
3244 	BC_NUM_RDX_SET_NP(fracp2, BC_NUM_RDX(fracp2.scale));
3245 
3246 	// As long as we have not reached the scale of the number, keep printing.
3247 	while ((idigits = bc_num_intDigits(n1)) <= n->scale)
3248 	{
3249 		// These numbers will keep growing.
3250 		bc_num_expand(&fracp2, fracp1.len + 1);
3251 		bc_num_mulArray(&fracp1, base, &fracp2);
3252 
3253 		nrdx = BC_NUM_RDX_VAL_NP(fracp2);
3254 
3255 		// Ensure an invariant.
3256 		if (fracp2.len < nrdx) fracp2.len = nrdx;
3257 
3258 		// fracp is guaranteed to be non-negative and small enough.
3259 		dig = bc_num_bigdig2(&fracp2);
3260 
3261 		// Convert the digit to a number and subtract it from the number.
3262 		bc_num_bigdig2num(&digit, dig);
3263 		bc_num_sub(&fracp2, &digit, &fracp1, 0);
3264 
3265 		// While the first three arguments should be self-explanatory, the last
3266 		// needs explaining. I don't want to print a newline when the last digit
3267 		// to be printed could take the place of the backslash rather than being
3268 		// pushed, as a single character, to the next line. That's what that
3269 		// last argument does for bc.
3270 		print(dig, len, radix, !newline || idigits != n->scale);
3271 
3272 		// Update the multipliers.
3273 		bc_num_mulArray(n1, base, n2);
3274 
3275 		radix = false;
3276 
3277 		// Switch.
3278 		temp = n1;
3279 		n1 = n2;
3280 		n2 = temp;
3281 	}
3282 
3283 frac_err:
3284 	BC_SIG_MAYLOCK;
3285 	bc_num_free(&flen2);
3286 	bc_num_free(&flen1);
3287 	bc_num_free(&fracp2);
3288 err:
3289 	BC_SIG_MAYLOCK;
3290 	bc_num_free(&fracp1);
3291 	bc_num_free(&intp);
3292 	bc_vec_free(&stack);
3293 	BC_LONGJMP_CONT(vm);
3294 }
3295 
3296 /**
3297  * Prints a number in the specified base, or rather, figures out which function
3298  * to call to print the number in the specified base and calls it.
3299  * @param n        The number to print.
3300  * @param base     The base to print in.
3301  * @param newline  Whether to print backslash+newlines on long enough lines.
3302  */
3303 static void
3304 bc_num_printBase(BcNum* restrict n, BcBigDig base, bool newline)
3305 {
3306 	size_t width;
3307 	BcNumDigitOp print;
3308 	bool neg = BC_NUM_NEG(n);
3309 
3310 	// Clear the sign because it makes the actual printing easier when we have
3311 	// to do math.
3312 	BC_NUM_NEG_CLR(n);
3313 
3314 	// Bases at hexadecimal and below are printed as one character, larger bases
3315 	// are printed as a series of digits separated by spaces.
3316 	if (base <= BC_NUM_MAX_POSIX_IBASE)
3317 	{
3318 		width = 1;
3319 		print = bc_num_printHex;
3320 	}
3321 	else
3322 	{
3323 		assert(base <= BC_BASE_POW);
3324 		width = bc_num_log10(base - 1);
3325 		print = bc_num_printDigits;
3326 	}
3327 
3328 	// Print.
3329 	bc_num_printNum(n, base, width, print, newline);
3330 
3331 	// Reset the sign.
3332 	n->rdx = BC_NUM_NEG_VAL(n, neg);
3333 }
3334 
3335 #if !BC_ENABLE_LIBRARY
3336 
3337 void
3338 bc_num_stream(BcNum* restrict n)
3339 {
3340 	bc_num_printNum(n, BC_NUM_STREAM_BASE, 1, bc_num_printChar, false);
3341 }
3342 
3343 #endif // !BC_ENABLE_LIBRARY
3344 
3345 void
3346 bc_num_setup(BcNum* restrict n, BcDig* restrict num, size_t cap)
3347 {
3348 	assert(n != NULL);
3349 	n->num = num;
3350 	n->cap = cap;
3351 	bc_num_zero(n);
3352 }
3353 
3354 void
3355 bc_num_init(BcNum* restrict n, size_t req)
3356 {
3357 	BcDig* num;
3358 
3359 	BC_SIG_ASSERT_LOCKED;
3360 
3361 	assert(n != NULL);
3362 
3363 	// BC_NUM_DEF_SIZE is set to be about the smallest allocation size that
3364 	// malloc() returns in practice, so just use it.
3365 	req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
3366 
3367 	// If we can't use a temp, allocate.
3368 	if (req != BC_NUM_DEF_SIZE) num = bc_vm_malloc(BC_NUM_SIZE(req));
3369 	else
3370 	{
3371 		num = bc_vm_getTemp() == NULL ? bc_vm_malloc(BC_NUM_SIZE(req)) :
3372 		                                bc_vm_takeTemp();
3373 	}
3374 
3375 	bc_num_setup(n, num, req);
3376 }
3377 
3378 void
3379 bc_num_clear(BcNum* restrict n)
3380 {
3381 	n->num = NULL;
3382 	n->cap = 0;
3383 }
3384 
3385 void
3386 bc_num_free(void* num)
3387 {
3388 	BcNum* n = (BcNum*) num;
3389 
3390 	BC_SIG_ASSERT_LOCKED;
3391 
3392 	assert(n != NULL);
3393 
3394 	if (n->cap == BC_NUM_DEF_SIZE) bc_vm_addTemp(n->num);
3395 	else free(n->num);
3396 }
3397 
3398 void
3399 bc_num_copy(BcNum* d, const BcNum* s)
3400 {
3401 	assert(d != NULL && s != NULL);
3402 
3403 	if (d == s) return;
3404 
3405 	bc_num_expand(d, s->len);
3406 	d->len = s->len;
3407 
3408 	// I can just copy directly here because the sign *and* rdx will be
3409 	// properly preserved.
3410 	d->rdx = s->rdx;
3411 	d->scale = s->scale;
3412 	// NOLINTNEXTLINE
3413 	memcpy(d->num, s->num, BC_NUM_SIZE(d->len));
3414 }
3415 
3416 void
3417 bc_num_createCopy(BcNum* d, const BcNum* s)
3418 {
3419 	BC_SIG_ASSERT_LOCKED;
3420 	bc_num_init(d, s->len);
3421 	bc_num_copy(d, s);
3422 }
3423 
3424 void
3425 bc_num_createFromBigdig(BcNum* restrict n, BcBigDig val)
3426 {
3427 	BC_SIG_ASSERT_LOCKED;
3428 	bc_num_init(n, BC_NUM_BIGDIG_LOG10);
3429 	bc_num_bigdig2num(n, val);
3430 }
3431 
3432 size_t
3433 bc_num_scale(const BcNum* restrict n)
3434 {
3435 	return n->scale;
3436 }
3437 
3438 size_t
3439 bc_num_len(const BcNum* restrict n)
3440 {
3441 	size_t len = n->len;
3442 
3443 	// Always return at least 1.
3444 	if (BC_NUM_ZERO(n)) return n->scale ? n->scale : 1;
3445 
3446 	// If this is true, there is no integer portion of the number.
3447 	if (BC_NUM_RDX_VAL(n) == len)
3448 	{
3449 		// We have to take into account the fact that some of the digits right
3450 		// after the decimal could be zero. If that is the case, we need to
3451 		// ignore them until we hit the first non-zero digit.
3452 
3453 		size_t zero, scale;
3454 
3455 		// The number of limbs with non-zero digits.
3456 		len = bc_num_nonZeroLen(n);
3457 
3458 		// Get the number of digits in the last limb.
3459 		scale = n->scale % BC_BASE_DIGS;
3460 		scale = scale ? scale : BC_BASE_DIGS;
3461 
3462 		// Get the number of zero digits.
3463 		zero = bc_num_zeroDigits(n->num + len - 1);
3464 
3465 		// Calculate the true length.
3466 		len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale);
3467 	}
3468 	// Otherwise, count the number of int digits and return that plus the scale.
3469 	else len = bc_num_intDigits(n) + n->scale;
3470 
3471 	return len;
3472 }
3473 
3474 void
3475 bc_num_parse(BcNum* restrict n, const char* restrict val, BcBigDig base)
3476 {
3477 #ifndef NDEBUG
3478 #if BC_ENABLE_LIBRARY
3479 	BcVm* vm = bcl_getspecific();
3480 #endif // BC_ENABLE_LIBRARY
3481 #endif // NDEBUG
3482 
3483 	assert(n != NULL && val != NULL && base);
3484 	assert(base >= BC_NUM_MIN_BASE && base <= vm->maxes[BC_PROG_GLOBALS_IBASE]);
3485 	assert(bc_num_strValid(val));
3486 
3487 	// A one character number is *always* parsed as though the base was the
3488 	// maximum allowed ibase, per the bc spec.
3489 	if (!val[1])
3490 	{
3491 		BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE);
3492 		bc_num_bigdig2num(n, dig);
3493 	}
3494 	else if (base == BC_BASE) bc_num_parseDecimal(n, val);
3495 	else bc_num_parseBase(n, val, base);
3496 
3497 	assert(BC_NUM_RDX_VALID(n));
3498 }
3499 
3500 void
3501 bc_num_print(BcNum* restrict n, BcBigDig base, bool newline)
3502 {
3503 	assert(n != NULL);
3504 	assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE);
3505 
3506 	// We may need a newline, just to start.
3507 	bc_num_printNewline();
3508 
3509 	if (BC_NUM_NONZERO(n))
3510 	{
3511 #if BC_ENABLE_LIBRARY
3512 		BcVm* vm = bcl_getspecific();
3513 #endif // BC_ENABLE_LIBRARY
3514 
3515 		// Print the sign.
3516 		if (BC_NUM_NEG(n)) bc_num_putchar('-', true);
3517 
3518 		// Print the leading zero if necessary.
3519 		if (BC_Z && BC_NUM_RDX_VAL(n) == n->len)
3520 		{
3521 			bc_num_printHex(0, 1, false, !newline);
3522 		}
3523 	}
3524 
3525 	// Short-circuit 0.
3526 	if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false, !newline);
3527 	else if (base == BC_BASE) bc_num_printDecimal(n, newline);
3528 #if BC_ENABLE_EXTRA_MATH
3529 	else if (base == 0 || base == 1)
3530 	{
3531 		bc_num_printExponent(n, base != 0, newline);
3532 	}
3533 #endif // BC_ENABLE_EXTRA_MATH
3534 	else bc_num_printBase(n, base, newline);
3535 
3536 	if (newline) bc_num_putchar('\n', false);
3537 }
3538 
3539 BcBigDig
3540 bc_num_bigdig2(const BcNum* restrict n)
3541 {
3542 #ifndef NDEBUG
3543 #if BC_ENABLE_LIBRARY
3544 	BcVm* vm = bcl_getspecific();
3545 #endif // BC_ENABLE_LIBRARY
3546 #endif // NDEBUG
3547 
3548 	// This function returns no errors because it's guaranteed to succeed if
3549 	// its preconditions are met. Those preconditions include both n needs to
3550 	// be non-NULL, n being non-negative, and n being less than vm->max. If all
3551 	// of that is true, then we can just convert without worrying about negative
3552 	// errors or overflow.
3553 
3554 	BcBigDig r = 0;
3555 	size_t nrdx = BC_NUM_RDX_VAL(n);
3556 
3557 	assert(n != NULL);
3558 	assert(!BC_NUM_NEG(n));
3559 	assert(bc_num_cmp(n, &vm->max) < 0);
3560 	assert(n->len - nrdx <= 3);
3561 
3562 	// There is a small speed win from unrolling the loop here, and since it
3563 	// only adds 53 bytes, I decided that it was worth it.
3564 	switch (n->len - nrdx)
3565 	{
3566 		case 3:
3567 		{
3568 			r = (BcBigDig) n->num[nrdx + 2];
3569 
3570 			// Fallthrough.
3571 			BC_FALLTHROUGH
3572 		}
3573 
3574 		case 2:
3575 		{
3576 			r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx + 1];
3577 
3578 			// Fallthrough.
3579 			BC_FALLTHROUGH
3580 		}
3581 
3582 		case 1:
3583 		{
3584 			r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx];
3585 		}
3586 	}
3587 
3588 	return r;
3589 }
3590 
3591 BcBigDig
3592 bc_num_bigdig(const BcNum* restrict n)
3593 {
3594 #if BC_ENABLE_LIBRARY
3595 	BcVm* vm = bcl_getspecific();
3596 #endif // BC_ENABLE_LIBRARY
3597 
3598 	assert(n != NULL);
3599 
3600 	// This error checking is extremely important, and if you do not have a
3601 	// guarantee that converting a number will always succeed in a particular
3602 	// case, you *must* call this function to get these error checks. This
3603 	// includes all instances of numbers inputted by the user or calculated by
3604 	// the user. Otherwise, you can call the faster bc_num_bigdig2().
3605 	if (BC_ERR(BC_NUM_NEG(n))) bc_err(BC_ERR_MATH_NEGATIVE);
3606 	if (BC_ERR(bc_num_cmp(n, &vm->max) >= 0)) bc_err(BC_ERR_MATH_OVERFLOW);
3607 
3608 	return bc_num_bigdig2(n);
3609 }
3610 
3611 void
3612 bc_num_bigdig2num(BcNum* restrict n, BcBigDig val)
3613 {
3614 	BcDig* ptr;
3615 	size_t i;
3616 
3617 	assert(n != NULL);
3618 
3619 	bc_num_zero(n);
3620 
3621 	// Already 0.
3622 	if (!val) return;
3623 
3624 	// Expand first. This is the only way this function can fail, and it's a
3625 	// fatal error.
3626 	bc_num_expand(n, BC_NUM_BIGDIG_LOG10);
3627 
3628 	// The conversion is easy because numbers are laid out in little-endian
3629 	// order.
3630 	for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW)
3631 	{
3632 		ptr[i] = val % BC_BASE_POW;
3633 	}
3634 
3635 	n->len = i;
3636 }
3637 
3638 #if BC_ENABLE_EXTRA_MATH
3639 
3640 void
3641 bc_num_rng(const BcNum* restrict n, BcRNG* rng)
3642 {
3643 	BcNum temp, temp2, intn, frac;
3644 	BcRand state1, state2, inc1, inc2;
3645 	size_t nrdx = BC_NUM_RDX_VAL(n);
3646 #if BC_ENABLE_LIBRARY
3647 	BcVm* vm = bcl_getspecific();
3648 #endif // BC_ENABLE_LIBRARY
3649 
3650 	// This function holds the secret of how I interpret a seed number for the
3651 	// PRNG. Well, it's actually in the development manual
3652 	// (manuals/development.md#pseudo-random-number-generator), so look there
3653 	// before you try to understand this.
3654 
3655 	BC_SIG_LOCK;
3656 
3657 	bc_num_init(&temp, n->len);
3658 	bc_num_init(&temp2, n->len);
3659 	bc_num_init(&frac, nrdx);
3660 	bc_num_init(&intn, bc_num_int(n));
3661 
3662 	BC_SETJMP_LOCKED(vm, err);
3663 
3664 	BC_SIG_UNLOCK;
3665 
3666 	assert(BC_NUM_RDX_VALID_NP(vm->max));
3667 
3668 	// NOLINTNEXTLINE
3669 	memcpy(frac.num, n->num, BC_NUM_SIZE(nrdx));
3670 	frac.len = nrdx;
3671 	BC_NUM_RDX_SET_NP(frac, nrdx);
3672 	frac.scale = n->scale;
3673 
3674 	assert(BC_NUM_RDX_VALID_NP(frac));
3675 	assert(BC_NUM_RDX_VALID_NP(vm->max2));
3676 
3677 	// Multiply the fraction and truncate so that it's an integer. The
3678 	// truncation is what clamps it, by the way.
3679 	bc_num_mul(&frac, &vm->max2, &temp, 0);
3680 	bc_num_truncate(&temp, temp.scale);
3681 	bc_num_copy(&frac, &temp);
3682 
3683 	// Get the integer.
3684 	// NOLINTNEXTLINE
3685 	memcpy(intn.num, n->num + nrdx, BC_NUM_SIZE(bc_num_int(n)));
3686 	intn.len = bc_num_int(n);
3687 
3688 	// This assert is here because it has to be true. It is also here to justify
3689 	// some optimizations.
3690 	assert(BC_NUM_NONZERO(&vm->max));
3691 
3692 	// If there *was* a fractional part...
3693 	if (BC_NUM_NONZERO(&frac))
3694 	{
3695 		// This divmod splits frac into the two state parts.
3696 		bc_num_divmod(&frac, &vm->max, &temp, &temp2, 0);
3697 
3698 		// frac is guaranteed to be smaller than vm->max * vm->max (pow).
3699 		// This means that when dividing frac by vm->max, as above, the
3700 		// quotient and remainder are both guaranteed to be less than vm->max,
3701 		// which means we can use bc_num_bigdig2() here and not worry about
3702 		// overflow.
3703 		state1 = (BcRand) bc_num_bigdig2(&temp2);
3704 		state2 = (BcRand) bc_num_bigdig2(&temp);
3705 	}
3706 	else state1 = state2 = 0;
3707 
3708 	// If there *was* an integer part...
3709 	if (BC_NUM_NONZERO(&intn))
3710 	{
3711 		// This divmod splits intn into the two inc parts.
3712 		bc_num_divmod(&intn, &vm->max, &temp, &temp2, 0);
3713 
3714 		// Because temp2 is the mod of vm->max, from above, it is guaranteed
3715 		// to be small enough to use bc_num_bigdig2().
3716 		inc1 = (BcRand) bc_num_bigdig2(&temp2);
3717 
3718 		// Clamp the second inc part.
3719 		if (bc_num_cmp(&temp, &vm->max) >= 0)
3720 		{
3721 			bc_num_copy(&temp2, &temp);
3722 			bc_num_mod(&temp2, &vm->max, &temp, 0);
3723 		}
3724 
3725 		// The if statement above ensures that temp is less than vm->max, which
3726 		// means that we can use bc_num_bigdig2() here.
3727 		inc2 = (BcRand) bc_num_bigdig2(&temp);
3728 	}
3729 	else inc1 = inc2 = 0;
3730 
3731 	bc_rand_seed(rng, state1, state2, inc1, inc2);
3732 
3733 err:
3734 	BC_SIG_MAYLOCK;
3735 	bc_num_free(&intn);
3736 	bc_num_free(&frac);
3737 	bc_num_free(&temp2);
3738 	bc_num_free(&temp);
3739 	BC_LONGJMP_CONT(vm);
3740 }
3741 
3742 void
3743 bc_num_createFromRNG(BcNum* restrict n, BcRNG* rng)
3744 {
3745 	BcRand s1, s2, i1, i2;
3746 	BcNum conv, temp1, temp2, temp3;
3747 	BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE];
3748 	BcDig conv_num[BC_NUM_BIGDIG_LOG10];
3749 #if BC_ENABLE_LIBRARY
3750 	BcVm* vm = bcl_getspecific();
3751 #endif // BC_ENABLE_LIBRARY
3752 
3753 	BC_SIG_LOCK;
3754 
3755 	bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE);
3756 
3757 	BC_SETJMP_LOCKED(vm, err);
3758 
3759 	BC_SIG_UNLOCK;
3760 
3761 	bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig));
3762 	bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig));
3763 	bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig));
3764 
3765 	// This assert is here because it has to be true. It is also here to justify
3766 	// the assumption that vm->max is not zero.
3767 	assert(BC_NUM_NONZERO(&vm->max));
3768 
3769 	// Because this is true, we can just ignore math errors that would happen
3770 	// otherwise.
3771 	assert(BC_NUM_NONZERO(&vm->max2));
3772 
3773 	bc_rand_getRands(rng, &s1, &s2, &i1, &i2);
3774 
3775 	// Put the second piece of state into a number.
3776 	bc_num_bigdig2num(&conv, (BcBigDig) s2);
3777 
3778 	assert(BC_NUM_RDX_VALID_NP(conv));
3779 
3780 	// Multiply by max to make room for the first piece of state.
3781 	bc_num_mul(&conv, &vm->max, &temp1, 0);
3782 
3783 	// Add in the first piece of state.
3784 	bc_num_bigdig2num(&conv, (BcBigDig) s1);
3785 	bc_num_add(&conv, &temp1, &temp2, 0);
3786 
3787 	// Divide to make it an entirely fractional part.
3788 	bc_num_div(&temp2, &vm->max2, &temp3, BC_RAND_STATE_BITS);
3789 
3790 	// Now start on the increment parts. It's the same process without the
3791 	// divide, so put the second piece of increment into a number.
3792 	bc_num_bigdig2num(&conv, (BcBigDig) i2);
3793 
3794 	assert(BC_NUM_RDX_VALID_NP(conv));
3795 
3796 	// Multiply by max to make room for the first piece of increment.
3797 	bc_num_mul(&conv, &vm->max, &temp1, 0);
3798 
3799 	// Add in the first piece of increment.
3800 	bc_num_bigdig2num(&conv, (BcBigDig) i1);
3801 	bc_num_add(&conv, &temp1, &temp2, 0);
3802 
3803 	// Now add the two together.
3804 	bc_num_add(&temp2, &temp3, n, 0);
3805 
3806 	assert(BC_NUM_RDX_VALID(n));
3807 
3808 err:
3809 	BC_SIG_MAYLOCK;
3810 	bc_num_free(&temp3);
3811 	BC_LONGJMP_CONT(vm);
3812 }
3813 
3814 void
3815 bc_num_irand(BcNum* restrict a, BcNum* restrict b, BcRNG* restrict rng)
3816 {
3817 	BcNum atemp;
3818 	size_t i, len;
3819 
3820 	assert(a != b);
3821 
3822 	if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE);
3823 
3824 	// If either of these are true, then the numbers are integers.
3825 	if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return;
3826 
3827 #if BC_GCC
3828 	// This is here in GCC to quiet the "maybe-uninitialized" warning.
3829 	atemp.num = NULL;
3830 	atemp.len = 0;
3831 #endif // BC_GCC
3832 
3833 	if (BC_ERR(bc_num_nonInt(a, &atemp))) bc_err(BC_ERR_MATH_NON_INTEGER);
3834 
3835 	assert(atemp.num != NULL);
3836 	assert(atemp.len);
3837 
3838 	len = atemp.len - 1;
3839 
3840 	// Just generate a random number for each limb.
3841 	for (i = 0; i < len; ++i)
3842 	{
3843 		b->num[i] = (BcDig) bc_rand_bounded(rng, BC_BASE_POW);
3844 	}
3845 
3846 	// Do the last digit explicitly because the bound must be right. But only
3847 	// do it if the limb does not equal 1. If it does, we have already hit the
3848 	// limit.
3849 	if (atemp.num[i] != 1)
3850 	{
3851 		b->num[i] = (BcDig) bc_rand_bounded(rng, (BcRand) atemp.num[i]);
3852 		b->len = atemp.len;
3853 	}
3854 	// We want 1 less len in the case where we skip the last limb.
3855 	else b->len = len;
3856 
3857 	bc_num_clean(b);
3858 
3859 	assert(BC_NUM_RDX_VALID(b));
3860 }
3861 #endif // BC_ENABLE_EXTRA_MATH
3862 
3863 size_t
3864 bc_num_addReq(const BcNum* a, const BcNum* b, size_t scale)
3865 {
3866 	size_t aint, bint, ardx, brdx;
3867 
3868 	// Addition and subtraction require the max of the length of the two numbers
3869 	// plus 1.
3870 
3871 	BC_UNUSED(scale);
3872 
3873 	ardx = BC_NUM_RDX_VAL(a);
3874 	aint = bc_num_int(a);
3875 	assert(aint <= a->len && ardx <= a->len);
3876 
3877 	brdx = BC_NUM_RDX_VAL(b);
3878 	bint = bc_num_int(b);
3879 	assert(bint <= b->len && brdx <= b->len);
3880 
3881 	ardx = BC_MAX(ardx, brdx);
3882 	aint = BC_MAX(aint, bint);
3883 
3884 	return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1);
3885 }
3886 
3887 size_t
3888 bc_num_mulReq(const BcNum* a, const BcNum* b, size_t scale)
3889 {
3890 	size_t max, rdx;
3891 
3892 	// Multiplication requires the sum of the lengths of the numbers.
3893 
3894 	rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
3895 
3896 	max = BC_NUM_RDX(scale);
3897 
3898 	max = bc_vm_growSize(BC_MAX(max, rdx), 1);
3899 	rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max);
3900 
3901 	return rdx;
3902 }
3903 
3904 size_t
3905 bc_num_divReq(const BcNum* a, const BcNum* b, size_t scale)
3906 {
3907 	size_t max, rdx;
3908 
3909 	// Division requires the length of the dividend plus the scale.
3910 
3911 	rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
3912 
3913 	max = BC_NUM_RDX(scale);
3914 
3915 	max = bc_vm_growSize(BC_MAX(max, rdx), 1);
3916 	rdx = bc_vm_growSize(bc_num_int(a), max);
3917 
3918 	return rdx;
3919 }
3920 
3921 size_t
3922 bc_num_powReq(const BcNum* a, const BcNum* b, size_t scale)
3923 {
3924 	BC_UNUSED(scale);
3925 	return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1);
3926 }
3927 
3928 #if BC_ENABLE_EXTRA_MATH
3929 size_t
3930 bc_num_placesReq(const BcNum* a, const BcNum* b, size_t scale)
3931 {
3932 	BC_UNUSED(scale);
3933 	return a->len + b->len - BC_NUM_RDX_VAL(a) - BC_NUM_RDX_VAL(b);
3934 }
3935 #endif // BC_ENABLE_EXTRA_MATH
3936 
3937 void
3938 bc_num_add(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3939 {
3940 	assert(BC_NUM_RDX_VALID(a));
3941 	assert(BC_NUM_RDX_VALID(b));
3942 	bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale));
3943 }
3944 
3945 void
3946 bc_num_sub(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3947 {
3948 	assert(BC_NUM_RDX_VALID(a));
3949 	assert(BC_NUM_RDX_VALID(b));
3950 	bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale));
3951 }
3952 
3953 void
3954 bc_num_mul(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3955 {
3956 	assert(BC_NUM_RDX_VALID(a));
3957 	assert(BC_NUM_RDX_VALID(b));
3958 	bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale));
3959 }
3960 
3961 void
3962 bc_num_div(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3963 {
3964 	assert(BC_NUM_RDX_VALID(a));
3965 	assert(BC_NUM_RDX_VALID(b));
3966 	bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale));
3967 }
3968 
3969 void
3970 bc_num_mod(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3971 {
3972 	assert(BC_NUM_RDX_VALID(a));
3973 	assert(BC_NUM_RDX_VALID(b));
3974 	bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale));
3975 }
3976 
3977 void
3978 bc_num_pow(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3979 {
3980 	assert(BC_NUM_RDX_VALID(a));
3981 	assert(BC_NUM_RDX_VALID(b));
3982 	bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale));
3983 }
3984 
3985 #if BC_ENABLE_EXTRA_MATH
3986 void
3987 bc_num_places(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3988 {
3989 	assert(BC_NUM_RDX_VALID(a));
3990 	assert(BC_NUM_RDX_VALID(b));
3991 	bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale));
3992 }
3993 
3994 void
3995 bc_num_lshift(BcNum* a, BcNum* b, BcNum* c, size_t scale)
3996 {
3997 	assert(BC_NUM_RDX_VALID(a));
3998 	assert(BC_NUM_RDX_VALID(b));
3999 	bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale));
4000 }
4001 
4002 void
4003 bc_num_rshift(BcNum* a, BcNum* b, BcNum* c, size_t scale)
4004 {
4005 	assert(BC_NUM_RDX_VALID(a));
4006 	assert(BC_NUM_RDX_VALID(b));
4007 	bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale));
4008 }
4009 #endif // BC_ENABLE_EXTRA_MATH
4010 
4011 void
4012 bc_num_sqrt(BcNum* restrict a, BcNum* restrict b, size_t scale)
4013 {
4014 	BcNum num1, num2, half, f, fprime;
4015 	BcNum* x0;
4016 	BcNum* x1;
4017 	BcNum* temp;
4018 	// realscale is meant to quiet a warning on GCC about longjmp() clobbering.
4019 	// This one is real.
4020 	size_t pow, len, rdx, req, resscale, realscale;
4021 	BcDig half_digs[1];
4022 #if BC_ENABLE_LIBRARY
4023 	BcVm* vm = bcl_getspecific();
4024 #endif // BC_ENABLE_LIBRARY
4025 
4026 	assert(a != NULL && b != NULL && a != b);
4027 
4028 	if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE);
4029 
4030 	// We want to calculate to a's scale if it is bigger so that the result will
4031 	// truncate properly.
4032 	if (a->scale > scale) realscale = a->scale;
4033 	else realscale = scale;
4034 
4035 	// Set parameters for the result.
4036 	len = bc_vm_growSize(bc_num_intDigits(a), 1);
4037 	rdx = BC_NUM_RDX(realscale);
4038 
4039 	// Square root needs half of the length of the parameter.
4040 	req = bc_vm_growSize(BC_MAX(rdx, BC_NUM_RDX_VAL(a)), len >> 1);
4041 
4042 	BC_SIG_LOCK;
4043 
4044 	// Unlike the binary operators, this function is the only single parameter
4045 	// function and is expected to initialize the result. This means that it
4046 	// expects that b is *NOT* preallocated. We allocate it here.
4047 	bc_num_init(b, bc_vm_growSize(req, 1));
4048 
4049 	BC_SIG_UNLOCK;
4050 
4051 	assert(a != NULL && b != NULL && a != b);
4052 	assert(a->num != NULL && b->num != NULL);
4053 
4054 	// Easy case.
4055 	if (BC_NUM_ZERO(a))
4056 	{
4057 		bc_num_setToZero(b, realscale);
4058 		return;
4059 	}
4060 
4061 	// Another easy case.
4062 	if (BC_NUM_ONE(a))
4063 	{
4064 		bc_num_one(b);
4065 		bc_num_extend(b, realscale);
4066 		return;
4067 	}
4068 
4069 	// Set the parameters again.
4070 	rdx = BC_NUM_RDX(realscale);
4071 	rdx = BC_MAX(rdx, BC_NUM_RDX_VAL(a));
4072 	len = bc_vm_growSize(a->len, rdx);
4073 
4074 	BC_SIG_LOCK;
4075 
4076 	bc_num_init(&num1, len);
4077 	bc_num_init(&num2, len);
4078 	bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig));
4079 
4080 	// There is a division by two in the formula. We setup a number that's 1/2
4081 	// so that we can use multiplication instead of heavy division.
4082 	bc_num_one(&half);
4083 	half.num[0] = BC_BASE_POW / 2;
4084 	half.len = 1;
4085 	BC_NUM_RDX_SET_NP(half, 1);
4086 	half.scale = 1;
4087 
4088 	bc_num_init(&f, len);
4089 	bc_num_init(&fprime, len);
4090 
4091 	BC_SETJMP_LOCKED(vm, err);
4092 
4093 	BC_SIG_UNLOCK;
4094 
4095 	// Pointers for easy switching.
4096 	x0 = &num1;
4097 	x1 = &num2;
4098 
4099 	// Start with 1.
4100 	bc_num_one(x0);
4101 
4102 	// The power of the operand is needed for the estimate.
4103 	pow = bc_num_intDigits(a);
4104 
4105 	// The code in this if statement calculates the initial estimate. First, if
4106 	// a is less than 0, then 0 is a good estimate. Otherwise, we want something
4107 	// in the same ballpark. That ballpark is pow.
4108 	if (pow)
4109 	{
4110 		// An odd number is served by starting with 2^((pow-1)/2), and an even
4111 		// number is served by starting with 6^((pow-2)/2). Why? Because math.
4112 		if (pow & 1) x0->num[0] = 2;
4113 		else x0->num[0] = 6;
4114 
4115 		pow -= 2 - (pow & 1);
4116 		bc_num_shiftLeft(x0, pow / 2);
4117 	}
4118 
4119 	// I can set the rdx here directly because neg should be false.
4120 	x0->scale = x0->rdx = 0;
4121 	resscale = (realscale + BC_BASE_DIGS) + 2;
4122 
4123 	// This is the calculation loop. This compare goes to 0 eventually as the
4124 	// difference between the two numbers gets smaller than resscale.
4125 	while (bc_num_cmp(x1, x0))
4126 	{
4127 		assert(BC_NUM_NONZERO(x0));
4128 
4129 		// This loop directly corresponds to the iteration in Newton's method.
4130 		// If you know the formula, this loop makes sense. Go study the formula.
4131 
4132 		bc_num_div(a, x0, &f, resscale);
4133 		bc_num_add(x0, &f, &fprime, resscale);
4134 
4135 		assert(BC_NUM_RDX_VALID_NP(fprime));
4136 		assert(BC_NUM_RDX_VALID_NP(half));
4137 
4138 		bc_num_mul(&fprime, &half, x1, resscale);
4139 
4140 		// Switch.
4141 		temp = x0;
4142 		x0 = x1;
4143 		x1 = temp;
4144 	}
4145 
4146 	// Copy to the result and truncate.
4147 	bc_num_copy(b, x0);
4148 	if (b->scale > realscale) bc_num_truncate(b, b->scale - realscale);
4149 
4150 	assert(!BC_NUM_NEG(b) || BC_NUM_NONZERO(b));
4151 	assert(BC_NUM_RDX_VALID(b));
4152 	assert(BC_NUM_RDX_VAL(b) <= b->len || !b->len);
4153 	assert(!b->len || b->num[b->len - 1] || BC_NUM_RDX_VAL(b) == b->len);
4154 
4155 err:
4156 	BC_SIG_MAYLOCK;
4157 	bc_num_free(&fprime);
4158 	bc_num_free(&f);
4159 	bc_num_free(&num2);
4160 	bc_num_free(&num1);
4161 	BC_LONGJMP_CONT(vm);
4162 }
4163 
4164 void
4165 bc_num_divmod(BcNum* a, BcNum* b, BcNum* c, BcNum* d, size_t scale)
4166 {
4167 	size_t ts, len;
4168 	BcNum *ptr_a, num2;
4169 	// This is volatile to quiet a warning on GCC about clobbering with
4170 	// longjmp().
4171 	volatile bool init = false;
4172 #if BC_ENABLE_LIBRARY
4173 	BcVm* vm = bcl_getspecific();
4174 #endif // BC_ENABLE_LIBRARY
4175 
4176 	// The bulk of this function is just doing what bc_num_binary() does for the
4177 	// binary operators. However, it assumes that only c and a can be equal.
4178 
4179 	// Set up the parameters.
4180 	ts = BC_MAX(scale + b->scale, a->scale);
4181 	len = bc_num_mulReq(a, b, ts);
4182 
4183 	assert(a != NULL && b != NULL && c != NULL && d != NULL);
4184 	assert(c != d && a != d && b != d && b != c);
4185 
4186 	// Initialize or expand as necessary.
4187 	if (c == a)
4188 	{
4189 		// NOLINTNEXTLINE
4190 		memcpy(&num2, c, sizeof(BcNum));
4191 		ptr_a = &num2;
4192 
4193 		BC_SIG_LOCK;
4194 
4195 		bc_num_init(c, len);
4196 
4197 		init = true;
4198 
4199 		BC_SETJMP_LOCKED(vm, err);
4200 
4201 		BC_SIG_UNLOCK;
4202 	}
4203 	else
4204 	{
4205 		ptr_a = a;
4206 		bc_num_expand(c, len);
4207 	}
4208 
4209 	// Do the quick version if possible.
4210 	if (BC_NUM_NONZERO(a) && !BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) &&
4211 	    b->len == 1 && !scale)
4212 	{
4213 		BcBigDig rem;
4214 
4215 		bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem);
4216 
4217 		assert(rem < BC_BASE_POW);
4218 
4219 		d->num[0] = (BcDig) rem;
4220 		d->len = (rem != 0);
4221 	}
4222 	// Do the slow method.
4223 	else bc_num_r(ptr_a, b, c, d, scale, ts);
4224 
4225 	assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
4226 	assert(BC_NUM_RDX_VALID(c));
4227 	assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
4228 	assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
4229 	assert(!BC_NUM_NEG(d) || BC_NUM_NONZERO(d));
4230 	assert(BC_NUM_RDX_VALID(d));
4231 	assert(BC_NUM_RDX_VAL(d) <= d->len || !d->len);
4232 	assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
4233 
4234 err:
4235 	// Only cleanup if we initialized.
4236 	if (init)
4237 	{
4238 		BC_SIG_MAYLOCK;
4239 		bc_num_free(&num2);
4240 		BC_LONGJMP_CONT(vm);
4241 	}
4242 }
4243 
4244 void
4245 bc_num_modexp(BcNum* a, BcNum* b, BcNum* c, BcNum* restrict d)
4246 {
4247 	BcNum base, exp, two, temp, atemp, btemp, ctemp;
4248 	BcDig two_digs[2];
4249 #if BC_ENABLE_LIBRARY
4250 	BcVm* vm = bcl_getspecific();
4251 #endif // BC_ENABLE_LIBRARY
4252 
4253 	assert(a != NULL && b != NULL && c != NULL && d != NULL);
4254 	assert(a != d && b != d && c != d);
4255 
4256 	if (BC_ERR(BC_NUM_ZERO(c))) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
4257 	if (BC_ERR(BC_NUM_NEG(b))) bc_err(BC_ERR_MATH_NEGATIVE);
4258 
4259 #ifndef NDEBUG
4260 	// This is entirely for quieting a useless scan-build error.
4261 	btemp.len = 0;
4262 	ctemp.len = 0;
4263 #endif // NDEBUG
4264 
4265 	// Eliminate fractional parts that are zero or error if they are not zero.
4266 	if (BC_ERR(bc_num_nonInt(a, &atemp) || bc_num_nonInt(b, &btemp) ||
4267 	           bc_num_nonInt(c, &ctemp)))
4268 	{
4269 		bc_err(BC_ERR_MATH_NON_INTEGER);
4270 	}
4271 
4272 	bc_num_expand(d, ctemp.len);
4273 
4274 	BC_SIG_LOCK;
4275 
4276 	bc_num_init(&base, ctemp.len);
4277 	bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
4278 	bc_num_init(&temp, btemp.len + 1);
4279 	bc_num_createCopy(&exp, &btemp);
4280 
4281 	BC_SETJMP_LOCKED(vm, err);
4282 
4283 	BC_SIG_UNLOCK;
4284 
4285 	bc_num_one(&two);
4286 	two.num[0] = 2;
4287 	bc_num_one(d);
4288 
4289 	// We already checked for 0.
4290 	bc_num_rem(&atemp, &ctemp, &base, 0);
4291 
4292 	// If you know the algorithm I used, the memory-efficient method, then this
4293 	// loop should be self-explanatory because it is the calculation loop.
4294 	while (BC_NUM_NONZERO(&exp))
4295 	{
4296 		// Num two cannot be 0, so no errors.
4297 		bc_num_divmod(&exp, &two, &exp, &temp, 0);
4298 
4299 		if (BC_NUM_ONE(&temp) && !BC_NUM_NEG_NP(temp))
4300 		{
4301 			assert(BC_NUM_RDX_VALID(d));
4302 			assert(BC_NUM_RDX_VALID_NP(base));
4303 
4304 			bc_num_mul(d, &base, &temp, 0);
4305 
4306 			// We already checked for 0.
4307 			bc_num_rem(&temp, &ctemp, d, 0);
4308 		}
4309 
4310 		assert(BC_NUM_RDX_VALID_NP(base));
4311 
4312 		bc_num_mul(&base, &base, &temp, 0);
4313 
4314 		// We already checked for 0.
4315 		bc_num_rem(&temp, &ctemp, &base, 0);
4316 	}
4317 
4318 err:
4319 	BC_SIG_MAYLOCK;
4320 	bc_num_free(&exp);
4321 	bc_num_free(&temp);
4322 	bc_num_free(&base);
4323 	BC_LONGJMP_CONT(vm);
4324 	assert(!BC_NUM_NEG(d) || d->len);
4325 	assert(BC_NUM_RDX_VALID(d));
4326 	assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
4327 }
4328 
4329 #if BC_DEBUG_CODE
4330 void
4331 bc_num_printDebug(const BcNum* n, const char* name, bool emptyline)
4332 {
4333 	bc_file_puts(&vm->fout, bc_flush_none, name);
4334 	bc_file_puts(&vm->fout, bc_flush_none, ": ");
4335 	bc_num_printDecimal(n, true);
4336 	bc_file_putchar(&vm->fout, bc_flush_err, '\n');
4337 	if (emptyline) bc_file_putchar(&vm->fout, bc_flush_err, '\n');
4338 	vm->nchars = 0;
4339 }
4340 
4341 void
4342 bc_num_printDigs(const BcDig* n, size_t len, bool emptyline)
4343 {
4344 	size_t i;
4345 
4346 	for (i = len - 1; i < len; --i)
4347 	{
4348 		bc_file_printf(&vm->fout, " %lu", (unsigned long) n[i]);
4349 	}
4350 
4351 	bc_file_putchar(&vm->fout, bc_flush_err, '\n');
4352 	if (emptyline) bc_file_putchar(&vm->fout, bc_flush_err, '\n');
4353 	vm->nchars = 0;
4354 }
4355 
4356 void
4357 bc_num_printWithDigs(const BcNum* n, const char* name, bool emptyline)
4358 {
4359 	bc_file_puts(&vm->fout, bc_flush_none, name);
4360 	bc_file_printf(&vm->fout, " len: %zu, rdx: %zu, scale: %zu\n", name, n->len,
4361 	               BC_NUM_RDX_VAL(n), n->scale);
4362 	bc_num_printDigs(n->num, n->len, emptyline);
4363 }
4364 
4365 void
4366 bc_num_dump(const char* varname, const BcNum* n)
4367 {
4368 	ulong i, scale = n->scale;
4369 
4370 	bc_file_printf(&vm->ferr, "\n%s = %s", varname,
4371 	               n->len ? (BC_NUM_NEG(n) ? "-" : "+") : "0 ");
4372 
4373 	for (i = n->len - 1; i < n->len; --i)
4374 	{
4375 		if (i + 1 == BC_NUM_RDX_VAL(n))
4376 		{
4377 			bc_file_puts(&vm->ferr, bc_flush_none, ". ");
4378 		}
4379 
4380 		if (scale / BC_BASE_DIGS != BC_NUM_RDX_VAL(n) - i - 1)
4381 		{
4382 			bc_file_printf(&vm->ferr, "%lu ", (unsigned long) n->num[i]);
4383 		}
4384 		else
4385 		{
4386 			int mod = scale % BC_BASE_DIGS;
4387 			int d = BC_BASE_DIGS - mod;
4388 			BcDig div;
4389 
4390 			if (mod != 0)
4391 			{
4392 				div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]);
4393 				bc_file_printf(&vm->ferr, "%lu", (unsigned long) div);
4394 			}
4395 
4396 			div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]);
4397 			bc_file_printf(&vm->ferr, " ' %lu ", (unsigned long) div);
4398 		}
4399 	}
4400 
4401 	bc_file_printf(&vm->ferr, "(%zu | %zu.%zu / %zu) %lu\n", n->scale, n->len,
4402 	               BC_NUM_RDX_VAL(n), n->cap, (unsigned long) (void*) n->num);
4403 
4404 	bc_file_flush(&vm->ferr, bc_flush_err);
4405 }
4406 #endif // BC_DEBUG_CODE
4407