xref: /freebsd/contrib/bc/gen/lib2.bc (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1/*
2 * *****************************************************************************
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2018-2021 Gavin D. Howard and contributors.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * * Redistributions of source code must retain the above copyright notice, this
12 *   list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above copyright notice,
15 *   this list of conditions and the following disclaimer in the documentation
16 *   and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * *****************************************************************************
31 *
32 * The second bc math library.
33 *
34 */
35
36define p(x,y){
37	auto a
38	a=y$
39	if(y==a)return (x^a)@scale
40	return e(y*l(x))
41}
42define r(x,p){
43	auto t,n
44	if(x==0)return x
45	p=abs(p)$
46	n=(x<0)
47	x=abs(x)
48	t=x@p
49	if(p<scale(x)&&x-t>=5>>p+1)t+=1>>p
50	if(n)t=-t
51	return t
52}
53define ceil(x,p){
54	auto t,n
55	if(x==0)return x
56	p=abs(p)$
57	n=(x<0)
58	x=abs(x)
59	t=(x+((x@p<x)>>p))@p
60	if(n)t=-t
61	return t
62}
63define f(n){
64	auto r
65	n=abs(n)$
66	for(r=1;n>1;--n)r*=n
67	return r
68}
69define perm(n,k){
70	auto f,g,s
71	if(k>n)return 0
72	n=abs(n)$
73	k=abs(k)$
74	f=f(n)
75	g=f(n-k)
76	s=scale
77	scale=0
78	f/=g
79	scale=s
80	return f
81}
82define comb(n,r){
83	auto s,f,g,h
84	if(r>n)return 0
85	n=abs(n)$
86	r=abs(r)$
87	s=scale
88	scale=0
89	f=f(n)
90	h=f(r)
91	g=f(n-r)
92	f/=h*g
93	scale=s
94	return f
95}
96define log(x,b){
97	auto p,s
98	s=scale
99	if(scale<K)scale=K
100	if(scale(x)>scale)scale=scale(x)
101	scale*=2
102	p=l(x)/l(b)
103	scale=s
104	return p@s
105}
106define l2(x){return log(x,2)}
107define l10(x){return log(x,A)}
108define root(x,n){
109	auto s,m,r,q,p
110	if(n<0)sqrt(n)
111	n=n$
112	if(n==0)x/n
113	if(x==0||n==1)return x
114	if(n==2)return sqrt(x)
115	s=scale
116	scale=0
117	if(x<0&&n%2==0)sqrt(x)
118	scale=s+2
119	m=(x<0)
120	x=abs(x)
121	p=n-1
122	q=A^ceil((length(x$)/n)$,0)
123	while(r!=q){
124		r=q
125		q=(p*r+x/r^p)/n
126	}
127	if(m)r=-r
128	scale=s
129	return r@s
130}
131define cbrt(x){return root(x,3)}
132define gcd(a,b){
133	auto g,s
134	if(!b)return a
135	s=scale
136	scale=0
137	a=abs(a)$
138	b=abs(b)$
139	if(a<b){
140		g=a
141		a=b
142		b=g
143	}
144	while(b){
145		g=a%b
146		a=b
147		b=g
148	}
149	scale=s
150	return a
151}
152define lcm(a,b){
153	auto r,s
154	if(!a&&!b)return 0
155	s=scale
156	scale=0
157	a=abs(a)$
158	b=abs(b)$
159	r=a*b/gcd(a,b)
160	scale=s
161	return r
162}
163define pi(s){
164	auto t,v
165	if(s==0)return 3
166	s=abs(s)$
167	t=scale
168	scale=s+1
169	v=4*a(1)
170	scale=t
171	return v@s
172}
173define t(x){
174	auto s,c
175	l=scale
176	scale+=2
177	s=s(x)
178	c=c(x)
179	scale-=2
180	return s/c
181}
182define a2(y,x){
183	auto a,p
184	if(!x&&!y)y/x
185	if(x<=0){
186		p=pi(scale+2)
187		if(y<0)p=-p
188	}
189	if(x==0)a=p/2
190	else{
191		scale+=2
192		a=a(y/x)+p
193		scale-=2
194	}
195	return a@scale
196}
197define sin(x){return s(x)}
198define cos(x){return c(x)}
199define atan(x){return a(x)}
200define tan(x){return t(x)}
201define atan2(y,x){return a2(y,x)}
202define r2d(x){
203	auto r,i,s
204	s=scale
205	scale+=5
206	i=ibase
207	ibase=A
208	r=x*180/pi(scale)
209	ibase=i
210	scale=s
211	return r@s
212}
213define d2r(x){
214	auto r,i,s
215	s=scale
216	scale+=5
217	i=ibase
218	ibase=A
219	r=x*pi(scale)/180
220	ibase=i
221	scale=s
222	return r@s
223}
224define frand(p){
225	p=abs(p)$
226	return irand(A^p)>>p
227}
228define ifrand(i,p){return irand(abs(i)$)+frand(p)}
229define srand(x){
230	if(irand(2))return -x
231	return x
232}
233define brand(){return irand(2)}
234define void output(x,b){
235	auto c
236	c=obase
237	obase=b
238	x
239	obase=c
240}
241define void hex(x){output(x,G)}
242define void binary(x){output(x,2)}
243define ubytes(x){
244	auto p,i
245	x=abs(x)$
246	i=2^8
247	for(p=1;i-1<x;p*=2){i*=i}
248	return p
249}
250define sbytes(x){
251	auto p,n,z
252	z=(x<0)
253	x=abs(x)
254	x=x$
255	n=ubytes(x)
256	p=2^(n*8-1)
257	if(x>p||(!z&&x==p))n*=2
258	return n
259}
260define s2un(x,n){
261	auto t,u,s
262	x=x$
263	if(x<0){
264		x=abs(x)
265		s=scale
266		scale=0
267		t=n*8
268		u=2^(t-1)
269		if(x==u)return x
270		else if(x>u)x%=u
271		scale=s
272		return 2^(t)-x
273	}
274	return x
275}
276define s2u(x){return s2un(x,sbytes(x))}
277define void plz(x){
278	if(leading_zero())print x
279	else{
280		if(x>-1&&x<1&&x!=0){
281			if(x<0)print"-"
282			print 0,abs(x)
283		}
284		else print x
285	}
286}
287define void plznl(x){
288	plz(x)
289	print"\n"
290}
291define void pnlz(x){
292	auto s,i
293	if(leading_zero()){
294		if(x>-1&&x<1&&x!=0){
295			s=scale(x)
296			if(x<0)print"-"
297			print"."
298			x=abs(x)
299			for(i=0;i<s;++i){
300				x<<=1
301				print x$
302				x-=x$
303			}
304			return
305		}
306	}
307	print x
308}
309define void pnlznl(x){
310	pnlz(x)
311	print"\n"
312}
313define void output_byte(x,i){
314	auto j,p,y,b
315	j=ibase
316	ibase=A
317	s=scale
318	scale=0
319	x=abs(x)$
320	b=x/(2^(i*8))
321	b%=256
322	y=log(256,obase)
323	if(b>1)p=log(b,obase)+1
324	else p=b
325	for(i=y-p;i>0;--i)print 0
326	if(b)print b
327	scale=s
328	ibase=j
329}
330define void output_uint(x,n){
331	auto i
332	for(i=n-1;i>=0;--i){
333		output_byte(x,i)
334		if(i)print" "
335		else print"\n"
336	}
337}
338define void hex_uint(x,n){
339	auto o
340	o=obase
341	obase=G
342	output_uint(x,n)
343	obase=o
344}
345define void binary_uint(x,n){
346	auto o
347	o=obase
348	obase=2
349	output_uint(x,n)
350	obase=o
351}
352define void uintn(x,n){
353	if(scale(x)){
354		print"Error: ",x," is not an integer.\n"
355		return
356	}
357	if(x<0){
358		print"Error: ",x," is negative.\n"
359		return
360	}
361	if(x>=2^(n*8)){
362		print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n"
363		return
364	}
365	binary_uint(x,n)
366	hex_uint(x,n)
367}
368define void intn(x,n){
369	auto t
370	if(scale(x)){
371		print"Error: ",x," is not an integer.\n"
372		return
373	}
374	t=2^(n*8-1)
375	if(abs(x)>=t&&(x>0||x!=-t)){
376		print "Error: ",x," cannot fit into ",n," signed byte(s).\n"
377		return
378	}
379	x=s2un(x,n)
380	binary_uint(x,n)
381	hex_uint(x,n)
382}
383define void uint8(x){uintn(x,1)}
384define void int8(x){intn(x,1)}
385define void uint16(x){uintn(x,2)}
386define void int16(x){intn(x,2)}
387define void uint32(x){uintn(x,4)}
388define void int32(x){intn(x,4)}
389define void uint64(x){uintn(x,8)}
390define void int64(x){intn(x,8)}
391define void uint(x){uintn(x,ubytes(x))}
392define void int(x){intn(x,sbytes(x))}
393define bunrev(t){
394	auto a,s,m[]
395	s=scale
396	scale=0
397	t=abs(t)$
398	while(t!=1){
399		t=divmod(t,2,m[])
400		a*=2
401		a+=m[0]
402	}
403	scale=s
404	return a
405}
406define band(a,b){
407	auto s,t,m[],n[]
408	a=abs(a)$
409	b=abs(b)$
410	if(b>a){
411		t=b
412		b=a
413		a=t
414	}
415	s=scale
416	scale=0
417	t=1
418	while(b){
419		a=divmod(a,2,m[])
420		b=divmod(b,2,n[])
421		t*=2
422		t+=(m[0]&&n[0])
423	}
424	scale=s
425	return bunrev(t)
426}
427define bor(a,b){
428	auto s,t,m[],n[]
429	a=abs(a)$
430	b=abs(b)$
431	if(b>a){
432		t=b
433		b=a
434		a=t
435	}
436	s=scale
437	scale=0
438	t=1
439	while(b){
440		a=divmod(a,2,m[])
441		b=divmod(b,2,n[])
442		t*=2
443		t+=(m[0]||n[0])
444	}
445	while(a){
446		a=divmod(a,2,m[])
447		t*=2
448		t+=m[0]
449	}
450	scale=s
451	return bunrev(t)
452}
453define bxor(a,b){
454	auto s,t,m[],n[]
455	a=abs(a)$
456	b=abs(b)$
457	if(b>a){
458		t=b
459		b=a
460		a=t
461	}
462	s=scale
463	scale=0
464	t=1
465	while(b){
466		a=divmod(a,2,m[])
467		b=divmod(b,2,n[])
468		t*=2
469		t+=(m[0]+n[0]==1)
470	}
471	while(a){
472		a=divmod(a,2,m[])
473		t*=2
474		t+=m[0]
475	}
476	scale=s
477	return bunrev(t)
478}
479define bshl(a,b){return abs(a)$*2^abs(b)$}
480define bshr(a,b){return (abs(a)$/2^abs(b)$)$}
481define bnotn(x,n){
482	auto s,t,m[]
483	s=scale
484	scale=0
485	t=2^(abs(n)$*8)
486	x=abs(x)$%t+t
487	t=1
488	while(x!=1){
489		x=divmod(x,2,m[])
490		t*=2
491		t+=!m[0]
492	}
493	scale=s
494	return bunrev(t)
495}
496define bnot8(x){return bnotn(x,1)}
497define bnot16(x){return bnotn(x,2)}
498define bnot32(x){return bnotn(x,4)}
499define bnot64(x){return bnotn(x,8)}
500define bnot(x){return bnotn(x,ubytes(x))}
501define brevn(x,n){
502	auto s,t,m[]
503	s=scale
504	scale=0
505	t=2^(abs(n)$*8)
506	x=abs(x)$%t+t
507	scale=s
508	return bunrev(x)
509}
510define brev8(x){return brevn(x,1)}
511define brev16(x){return brevn(x,2)}
512define brev32(x){return brevn(x,4)}
513define brev64(x){return brevn(x,8)}
514define brev(x){return brevn(x,ubytes(x))}
515define broln(x,p,n){
516	auto s,t,m[]
517	s=scale
518	scale=0
519	n=abs(n)$*8
520	p=abs(p)$%n
521	t=2^n
522	x=abs(x)$%t
523	if(!p)return x
524	x=divmod(x,2^(n-p),m[])
525	x+=m[0]*2^p%t
526	scale=s
527	return x
528}
529define brol8(x,p){return broln(x,p,1)}
530define brol16(x,p){return broln(x,p,2)}
531define brol32(x,p){return broln(x,p,4)}
532define brol64(x,p){return broln(x,p,8)}
533define brol(x,p){return broln(x,p,ubytes(x))}
534define brorn(x,p,n){
535	auto s,t,m[]
536	s=scale
537	scale=0
538	n=abs(n)$*8
539	p=abs(p)$%n
540	t=2^n
541	x=abs(x)$%t
542	if(!p)return x
543	x=divmod(x,2^p,m[])
544	x+=m[0]*2^(n-p)%t
545	scale=s
546	return x
547}
548define bror8(x,p){return brorn(x,p,1)}
549define bror16(x,p){return brorn(x,p,2)}
550define bror32(x,p){return brorn(x,p,4)}
551define bror64(x,p){return brorn(x,p,8)}
552define brol(x,p){return brorn(x,p,ubytes(x))}
553define bmodn(x,n){
554	auto s
555	s=scale
556	scale=0
557	x=abs(x)$%2^(abs(n)$*8)
558	scale=s
559	return x
560}
561define bmod8(x){return bmodn(x,1)}
562define bmod16(x){return bmodn(x,2)}
563define bmod32(x){return bmodn(x,4)}
564define bmod64(x){return bmodn(x,8)}
565