xref: /freebsd/contrib/bc/gen/lib2.bc (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1/*
2 * *****************************************************************************
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2018-2023 Gavin D. Howard and contributors.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * * Redistributions of source code must retain the above copyright notice, this
12 *   list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above copyright notice,
15 *   this list of conditions and the following disclaimer in the documentation
16 *   and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * *****************************************************************************
31 *
32 * The second bc math library.
33 *
34 */
35
36define p(x,y){
37	auto a
38	a=y$
39	if(y==a)return (x^a)@scale
40	return e(y*l(x))
41}
42define r(x,p){
43	auto t,n
44	if(x==0)return x
45	p=abs(p)$
46	n=(x<0)
47	x=abs(x)
48	t=x@p
49	if(p<scale(x)&&x-t>=5>>p+1)t+=1>>p
50	if(n)t=-t
51	return t
52}
53define ceil(x,p){
54	auto t,n
55	if(x==0)return x
56	p=abs(p)$
57	n=(x<0)
58	x=abs(x)
59	t=(x+((x@p<x)>>p))@p
60	if(n)t=-t
61	return t
62}
63define f(n){
64	auto r
65	n=abs(n)$
66	for(r=1;n>1;--n)r*=n
67	return r
68}
69define perm(n,k){
70	auto f,g,s
71	if(k>n)return 0
72	n=abs(n)$
73	k=abs(k)$
74	f=f(n)
75	g=f(n-k)
76	s=scale
77	scale=0
78	f/=g
79	scale=s
80	return f
81}
82define comb(n,r){
83	auto s,f,g,h
84	if(r>n)return 0
85	n=abs(n)$
86	r=abs(r)$
87	s=scale
88	scale=0
89	f=f(n)
90	h=f(r)
91	g=f(n-r)
92	f/=h*g
93	scale=s
94	return f
95}
96define log(x,b){
97	auto p,s
98	s=scale
99	if(scale<K)scale=K
100	if(scale(x)>scale)scale=scale(x)
101	scale*=2
102	p=l(x)/l(b)
103	scale=s
104	return p@s
105}
106define l2(x){return log(x,2)}
107define l10(x){return log(x,A)}
108define root(x,n){
109	auto s,m,r,q,p
110	if(n<0)sqrt(n)
111	n=n$
112	if(n==0)x/n
113	if(x==0||n==1)return x
114	if(n==2)return sqrt(x)
115	s=scale
116	scale=0
117	if(x<0&&n%2==0)sqrt(x)
118	scale=s+2
119	m=(x<0)
120	x=abs(x)
121	p=n-1
122	q=A^ceil((length(x$)/n)$,0)
123	while(r!=q){
124		r=q
125		q=(p*r+x/r^p)/n
126	}
127	if(m)r=-r
128	scale=s
129	return r@s
130}
131define cbrt(x){return root(x,3)}
132define gcd(a,b){
133	auto g,s
134	if(!b)return a
135	s=scale
136	scale=0
137	a=abs(a)$
138	b=abs(b)$
139	if(a<b){
140		g=a
141		a=b
142		b=g
143	}
144	while(b){
145		g=a%b
146		a=b
147		b=g
148	}
149	scale=s
150	return a
151}
152define lcm(a,b){
153	auto r,s
154	if(!a&&!b)return 0
155	s=scale
156	scale=0
157	a=abs(a)$
158	b=abs(b)$
159	r=a*b/gcd(a,b)
160	scale=s
161	return r
162}
163define pi(s){
164	auto t,v
165	if(s==0)return 3
166	s=abs(s)$
167	t=scale
168	scale=s+1
169	v=4*a(1)
170	scale=t
171	return v@s
172}
173define t(x){
174	auto s,c
175	l=scale
176	scale+=2
177	s=s(x)
178	c=c(x)
179	scale-=2
180	return s/c
181}
182define a2(y,x){
183	auto a,p
184	if(!x&&!y)y/x
185	if(x<=0){
186		p=pi(scale+2)
187		if(y<0)p=-p
188	}
189	if(x==0)a=p/2
190	else{
191		scale+=2
192		a=a(y/x)+p
193		scale-=2
194	}
195	return a@scale
196}
197define sin(x){return s(x)}
198define cos(x){return c(x)}
199define atan(x){return a(x)}
200define tan(x){return t(x)}
201define atan2(y,x){return a2(y,x)}
202define r2d(x){
203	auto r,i,s
204	s=scale
205	scale+=5
206	i=ibase
207	ibase=A
208	r=x*180/pi(scale)
209	ibase=i
210	scale=s
211	return r@s
212}
213define d2r(x){
214	auto r,i,s
215	s=scale
216	scale+=5
217	i=ibase
218	ibase=A
219	r=x*pi(scale)/180
220	ibase=i
221	scale=s
222	return r@s
223}
224define frand(p){
225	p=abs(p)$
226	return irand(A^p)>>p
227}
228define ifrand(i,p){return irand(abs(i)$)+frand(p)}
229define srand(x){
230	if(irand(2))return -x
231	return x
232}
233define brand(){return irand(2)}
234define void output(x,b){
235	auto c
236	c=obase
237	obase=b
238	x
239	obase=c
240}
241define void hex(x){output(x,G)}
242define void binary(x){output(x,2)}
243define ubytes(x){
244	auto p,i
245	x=abs(x)$
246	i=2^8
247	for(p=1;i-1<x;p*=2){i*=i}
248	return p
249}
250define sbytes(x){
251	auto p,n,z
252	z=(x<0)
253	x=abs(x)$
254	n=ubytes(x)
255	p=2^(n*8-1)
256	if(x>p||(!z&&x==p))n*=2
257	return n
258}
259define s2un(x,n){
260	auto t,u,s
261	x=x$
262	if(x<0){
263		x=abs(x)
264		s=scale
265		scale=0
266		t=n*8
267		u=2^(t-1)
268		if(x==u)return x
269		else if(x>u)x%=u
270		scale=s
271		return 2^(t)-x
272	}
273	return x
274}
275define s2u(x){return s2un(x,sbytes(x))}
276define void plz(x){
277	if(leading_zero())print x
278	else{
279		if(x>-1&&x<1&&x!=0){
280			if(x<0)print"-"
281			print 0,abs(x)
282		}
283		else print x
284	}
285}
286define void plznl(x){
287	plz(x)
288	print"\n"
289}
290define void pnlz(x){
291	auto s,i
292	if(leading_zero()){
293		if(x>-1&&x<1&&x!=0){
294			s=scale(x)
295			if(x<0)print"-"
296			print"."
297			x=abs(x)
298			for(i=0;i<s;++i){
299				x<<=1
300				print x$
301				x-=x$
302			}
303			return
304		}
305	}
306	print x
307}
308define void pnlznl(x){
309	pnlz(x)
310	print"\n"
311}
312define void output_byte(x,i){
313	auto j,p,y,b,s
314	s=scale
315	scale=0
316	x=abs(x)$
317	b=x/(2^(i*8))
318	j=2^8
319	b%=j
320	y=log(j,obase)
321	if(b>1)p=log(b,obase)+1
322	else p=b
323	for(i=y-p;i>0;--i)print 0
324	if(b)print b
325	scale=s
326}
327define void output_uint(x,n){
328	auto i
329	for(i=n-1;i>=0;--i){
330		output_byte(x,i)
331		if(i)print" "
332		else print"\n"
333	}
334}
335define void hex_uint(x,n){
336	auto o
337	o=obase
338	obase=G
339	output_uint(x,n)
340	obase=o
341}
342define void binary_uint(x,n){
343	auto o
344	o=obase
345	obase=2
346	output_uint(x,n)
347	obase=o
348}
349define void uintn(x,n){
350	if(scale(x)){
351		print"Error: ",x," is not an integer.\n"
352		return
353	}
354	if(x<0){
355		print"Error: ",x," is negative.\n"
356		return
357	}
358	if(x>=2^(n*8)){
359		print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n"
360		return
361	}
362	binary_uint(x,n)
363	hex_uint(x,n)
364}
365define void intn(x,n){
366	auto t
367	if(scale(x)){
368		print"Error: ",x," is not an integer.\n"
369		return
370	}
371	t=2^(n*8-1)
372	if(abs(x)>=t&&(x>0||x!=-t)){
373		print "Error: ",x," cannot fit into ",n," signed byte(s).\n"
374		return
375	}
376	x=s2un(x,n)
377	binary_uint(x,n)
378	hex_uint(x,n)
379}
380define void uint8(x){uintn(x,1)}
381define void int8(x){intn(x,1)}
382define void uint16(x){uintn(x,2)}
383define void int16(x){intn(x,2)}
384define void uint32(x){uintn(x,4)}
385define void int32(x){intn(x,4)}
386define void uint64(x){uintn(x,8)}
387define void int64(x){intn(x,8)}
388define void uint(x){uintn(x,ubytes(x))}
389define void int(x){intn(x,sbytes(x))}
390define bunrev(t){
391	auto a,s,m[]
392	s=scale
393	scale=0
394	t=abs(t)$
395	while(t!=1){
396		t=divmod(t,2,m[])
397		a*=2
398		a+=m[0]
399	}
400	scale=s
401	return a
402}
403define band(a,b){
404	auto s,t,m[],n[]
405	a=abs(a)$
406	b=abs(b)$
407	if(b>a){
408		t=b
409		b=a
410		a=t
411	}
412	s=scale
413	scale=0
414	t=1
415	while(b){
416		a=divmod(a,2,m[])
417		b=divmod(b,2,n[])
418		t*=2
419		t+=(m[0]&&n[0])
420	}
421	scale=s
422	return bunrev(t)
423}
424define bor(a,b){
425	auto s,t,m[],n[]
426	a=abs(a)$
427	b=abs(b)$
428	if(b>a){
429		t=b
430		b=a
431		a=t
432	}
433	s=scale
434	scale=0
435	t=1
436	while(b){
437		a=divmod(a,2,m[])
438		b=divmod(b,2,n[])
439		t*=2
440		t+=(m[0]||n[0])
441	}
442	while(a){
443		a=divmod(a,2,m[])
444		t*=2
445		t+=m[0]
446	}
447	scale=s
448	return bunrev(t)
449}
450define bxor(a,b){
451	auto s,t,m[],n[]
452	a=abs(a)$
453	b=abs(b)$
454	if(b>a){
455		t=b
456		b=a
457		a=t
458	}
459	s=scale
460	scale=0
461	t=1
462	while(b){
463		a=divmod(a,2,m[])
464		b=divmod(b,2,n[])
465		t*=2
466		t+=(m[0]+n[0]==1)
467	}
468	while(a){
469		a=divmod(a,2,m[])
470		t*=2
471		t+=m[0]
472	}
473	scale=s
474	return bunrev(t)
475}
476define bshl(a,b){return abs(a)$*2^abs(b)$}
477define bshr(a,b){return (abs(a)$/2^abs(b)$)$}
478define bnotn(x,n){
479	auto s,t,m[]
480	s=scale
481	scale=0
482	t=2^(abs(n)$*8)
483	x=abs(x)$%t+t
484	t=1
485	while(x!=1){
486		x=divmod(x,2,m[])
487		t*=2
488		t+=!m[0]
489	}
490	scale=s
491	return bunrev(t)
492}
493define bnot8(x){return bnotn(x,1)}
494define bnot16(x){return bnotn(x,2)}
495define bnot32(x){return bnotn(x,4)}
496define bnot64(x){return bnotn(x,8)}
497define bnot(x){return bnotn(x,ubytes(x))}
498define brevn(x,n){
499	auto s,t,m[]
500	s=scale
501	scale=0
502	t=2^(abs(n)$*8)
503	x=abs(x)$%t+t
504	scale=s
505	return bunrev(x)
506}
507define brev8(x){return brevn(x,1)}
508define brev16(x){return brevn(x,2)}
509define brev32(x){return brevn(x,4)}
510define brev64(x){return brevn(x,8)}
511define brev(x){return brevn(x,ubytes(x))}
512define broln(x,p,n){
513	auto s,t,m[]
514	s=scale
515	scale=0
516	n=abs(n)$*8
517	p=abs(p)$%n
518	t=2^n
519	x=abs(x)$%t
520	if(!p)return x
521	x=divmod(x,2^(n-p),m[])
522	x+=m[0]*2^p%t
523	scale=s
524	return x
525}
526define brol8(x,p){return broln(x,p,1)}
527define brol16(x,p){return broln(x,p,2)}
528define brol32(x,p){return broln(x,p,4)}
529define brol64(x,p){return broln(x,p,8)}
530define brol(x,p){return broln(x,p,ubytes(x))}
531define brorn(x,p,n){
532	auto s,t,m[]
533	s=scale
534	scale=0
535	n=abs(n)$*8
536	p=abs(p)$%n
537	t=2^n
538	x=abs(x)$%t
539	if(!p)return x
540	x=divmod(x,2^p,m[])
541	x+=m[0]*2^(n-p)%t
542	scale=s
543	return x
544}
545define bror8(x,p){return brorn(x,p,1)}
546define bror16(x,p){return brorn(x,p,2)}
547define bror32(x,p){return brorn(x,p,4)}
548define bror64(x,p){return brorn(x,p,8)}
549define brol(x,p){return brorn(x,p,ubytes(x))}
550define bmodn(x,n){
551	auto s
552	s=scale
553	scale=0
554	x=abs(x)$%2^(abs(n)$*8)
555	scale=s
556	return x
557}
558define bmod8(x){return bmodn(x,1)}
559define bmod16(x){return bmodn(x,2)}
560define bmod32(x){return bmodn(x,4)}
561define bmod64(x){return bmodn(x,8)}
562