xref: /freebsd/contrib/arm-optimized-routines/string/bench/memcpy.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * memcpy benchmark.
3  *
4  * Copyright (c) 2020, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #define _GNU_SOURCE
9 #include <stdint.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <assert.h>
13 #include "stringlib.h"
14 #include "benchlib.h"
15 
16 #define ITERS 5000
17 #define ITERS2 20000000
18 #define ITERS3 500000
19 #define MAX_COPIES 8192
20 #define SIZE (256*1024)
21 
22 static uint8_t a[SIZE + 4096] __attribute__((__aligned__(64)));
23 static uint8_t b[SIZE + 4096] __attribute__((__aligned__(64)));
24 
25 #define F(x) {#x, x},
26 
27 static const struct fun
28 {
29   const char *name;
30   void *(*fun)(void *, const void *, size_t);
31 } funtab[] =
32 {
33   F(memcpy)
34 #if __aarch64__
35   F(__memcpy_aarch64)
36 # if __ARM_NEON
37   F(__memcpy_aarch64_simd)
38 # endif
39 #elif __arm__
40   F(__memcpy_arm)
41 #endif
42 #undef F
43   {0, 0}
44 };
45 
46 typedef struct { uint16_t size; uint16_t freq; } freq_data_t;
47 typedef struct { uint8_t align; uint16_t freq; } align_data_t;
48 
49 #define SIZE_NUM 65536
50 #define SIZE_MASK (SIZE_NUM-1)
51 static uint8_t size_arr[SIZE_NUM];
52 
53 /* Frequency data for memcpy of less than 4096 bytes based on SPEC2017.  */
54 static freq_data_t size_freq[] =
55 {
56 {32,22320}, { 16,9554}, {  8,8915}, {152,5327}, {  4,2159}, {292,2035},
57 { 12,1608}, { 24,1343}, {1152,895}, {144, 813}, {884, 733}, {284, 721},
58 {120, 661}, {  2, 649}, {882, 550}, {  5, 475}, {  7, 461}, {108, 460},
59 { 10, 361}, {  9, 361}, {  6, 334}, {  3, 326}, {464, 308}, {2048,303},
60 {  1, 298}, { 64, 250}, { 11, 197}, {296, 194}, { 68, 187}, { 15, 185},
61 {192, 184}, {1764,183}, { 13, 173}, {560, 126}, {160, 115}, {288,  96},
62 {104,  96}, {1144, 83}, { 18,  80}, { 23,  78}, { 40,  77}, { 19,  68},
63 { 48,  63}, { 17,  57}, { 72,  54}, {1280, 51}, { 20,  49}, { 28,  47},
64 { 22,  46}, {640,  45}, { 25,  41}, { 14,  40}, { 56,  37}, { 27,  35},
65 { 35,  33}, {384,  33}, { 29,  32}, { 80,  30}, {4095, 22}, {232,  22},
66 { 36,  19}, {184,  17}, { 21,  17}, {256,  16}, { 44,  15}, { 26,  15},
67 { 31,  14}, { 88,  14}, {176,  13}, { 33,  12}, {1024, 12}, {208,  11},
68 { 62,  11}, {128,  10}, {704,  10}, {324,  10}, { 96,  10}, { 60,   9},
69 {136,   9}, {124,   9}, { 34,   8}, { 30,   8}, {480,   8}, {1344,  8},
70 {273,   7}, {520,   7}, {112,   6}, { 52,   6}, {344,   6}, {336,   6},
71 {504,   5}, {168,   5}, {424,   5}, {  0,   4}, { 76,   3}, {200,   3},
72 {512,   3}, {312,   3}, {240,   3}, {960,   3}, {264,   2}, {672,   2},
73 { 38,   2}, {328,   2}, { 84,   2}, { 39,   2}, {216,   2}, { 42,   2},
74 { 37,   2}, {1608,  2}, { 70,   2}, { 46,   2}, {536,   2}, {280,   1},
75 {248,   1}, { 47,   1}, {1088,  1}, {1288,  1}, {224,   1}, { 41,   1},
76 { 50,   1}, { 49,   1}, {808,   1}, {360,   1}, {440,   1}, { 43,   1},
77 { 45,   1}, { 78,   1}, {968,   1}, {392,   1}, { 54,   1}, { 53,   1},
78 { 59,   1}, {376,   1}, {664,   1}, { 58,   1}, {272,   1}, { 66,   1},
79 {2688,  1}, {472,   1}, {568,   1}, {720,   1}, { 51,   1}, { 63,   1},
80 { 86,   1}, {496,   1}, {776,   1}, { 57,   1}, {680,   1}, {792,   1},
81 {122,   1}, {760,   1}, {824,   1}, {552,   1}, { 67,   1}, {456,   1},
82 {984,   1}, { 74,   1}, {408,   1}, { 75,   1}, { 92,   1}, {576,   1},
83 {116,   1}, { 65,   1}, {117,   1}, { 82,   1}, {352,   1}, { 55,   1},
84 {100,   1}, { 90,   1}, {696,   1}, {111,   1}, {880,   1}, { 79,   1},
85 {488,   1}, { 61,   1}, {114,   1}, { 94,   1}, {1032,  1}, { 98,   1},
86 { 87,   1}, {584,   1}, { 85,   1}, {648,   1}, {0, 0}
87 };
88 
89 #define ALIGN_NUM 1024
90 #define ALIGN_MASK (ALIGN_NUM-1)
91 static uint8_t src_align_arr[ALIGN_NUM];
92 static uint8_t dst_align_arr[ALIGN_NUM];
93 
94 /* Source alignment frequency for memcpy based on SPEC2017.  */
95 static align_data_t src_align_freq[] =
96 {
97   {8, 300}, {16, 292}, {32, 168}, {64, 153}, {4, 79}, {2, 14}, {1, 18}, {0, 0}
98 };
99 
100 static align_data_t dst_align_freq[] =
101 {
102   {8, 265}, {16, 263}, {64, 209}, {32, 174}, {4, 90}, {2, 10}, {1, 13}, {0, 0}
103 };
104 
105 typedef struct
106 {
107   uint64_t src : 24;
108   uint64_t dst : 24;
109   uint64_t len : 16;
110 } copy_t;
111 
112 static copy_t copy[MAX_COPIES];
113 
114 typedef char *(*proto_t) (char *, const char *, size_t);
115 
116 static void
117 init_copy_distribution (void)
118 {
119   int i, j, freq, size, n;
120 
121   for (n = i = 0; (freq = size_freq[i].freq) != 0; i++)
122     for (j = 0, size = size_freq[i].size; j < freq; j++)
123       size_arr[n++] = size;
124   assert (n == SIZE_NUM);
125 
126   for (n = i = 0; (freq = src_align_freq[i].freq) != 0; i++)
127     for (j = 0, size = src_align_freq[i].align; j < freq; j++)
128       src_align_arr[n++] = size - 1;
129   assert (n == ALIGN_NUM);
130 
131   for (n = i = 0; (freq = dst_align_freq[i].freq) != 0; i++)
132     for (j = 0, size = dst_align_freq[i].align; j < freq; j++)
133       dst_align_arr[n++] = size - 1;
134   assert (n == ALIGN_NUM);
135 }
136 
137 static size_t
138 init_copies (size_t max_size)
139 {
140   size_t total = 0;
141   /* Create a random set of copies with the given size and alignment
142      distributions.  */
143   for (int i = 0; i < MAX_COPIES; i++)
144     {
145       copy[i].dst = (rand32 (0) & (max_size - 1));
146       copy[i].dst &= ~dst_align_arr[rand32 (0) & ALIGN_MASK];
147       copy[i].src = (rand32 (0) & (max_size - 1));
148       copy[i].src &= ~src_align_arr[rand32 (0) & ALIGN_MASK];
149       copy[i].len = size_arr[rand32 (0) & SIZE_MASK];
150       total += copy[i].len;
151     }
152 
153   return total;
154 }
155 
156 int main (void)
157 {
158   init_copy_distribution ();
159 
160   memset (a, 1, sizeof (a));
161   memset (b, 2, sizeof (b));
162 
163   printf("Random memcpy:\n");
164   for (int f = 0; funtab[f].name != 0; f++)
165     {
166       size_t total = 0;
167       uint64_t tsum = 0;
168       printf ("%22s (B/ns) ", funtab[f].name);
169       rand32 (0x12345678);
170 
171       for (int size = 16384; size <= SIZE; size *= 2)
172 	{
173 	  size_t copy_size = init_copies (size) * ITERS;
174 
175 	  for (int c = 0; c < MAX_COPIES; c++)
176 	    funtab[f].fun (b + copy[c].dst, a + copy[c].src, copy[c].len);
177 
178 	  uint64_t t = clock_get_ns ();
179 	  for (int i = 0; i < ITERS; i++)
180 	    for (int c = 0; c < MAX_COPIES; c++)
181 	      funtab[f].fun (b + copy[c].dst, a + copy[c].src, copy[c].len);
182 	  t = clock_get_ns () - t;
183 	  total += copy_size;
184 	  tsum += t;
185 	  printf ("%dK: %.2f ", size / 1024, (double)copy_size / t);
186 	}
187       printf( "avg %.2f\n", (double)total / tsum);
188     }
189 
190   printf ("\nMedium memcpy:\n");
191   for (int f = 0; funtab[f].name != 0; f++)
192     {
193       printf ("%22s (B/ns) ", funtab[f].name);
194 
195       for (int size = 16; size <= 512; size *= 2)
196 	{
197 	  uint64_t t = clock_get_ns ();
198 	  for (int i = 0; i < ITERS2; i++)
199 	    funtab[f].fun (b, a, size);
200 	  t = clock_get_ns () - t;
201 	  printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024,
202 		  size < 1024 ? 'B' : 'K', (double)size * ITERS2 / t);
203 	}
204       printf ("\n");
205     }
206 
207   printf ("\nLarge memcpy:\n");
208   for (int f = 0; funtab[f].name != 0; f++)
209     {
210       printf ("%22s (B/ns) ", funtab[f].name);
211 
212       for (int size = 1024; size <= 32768; size *= 2)
213 	{
214 	  uint64_t t = clock_get_ns ();
215 	  for (int i = 0; i < ITERS3; i++)
216 	    funtab[f].fun (b, a, size);
217 	  t = clock_get_ns () - t;
218 	  printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024,
219 		  size < 1024 ? 'B' : 'K', (double)size * ITERS3 / t);
220 	}
221       printf ("\n");
222     }
223 
224   printf ("\nUnaligned forwards memmove:\n");
225   for (int f = 0; funtab[f].name != 0; f++)
226     {
227       printf ("%22s (B/ns) ", funtab[f].name);
228 
229       for (int size = 1024; size <= 32768; size *= 2)
230 	{
231 	  uint64_t t = clock_get_ns ();
232 	  for (int i = 0; i < ITERS3; i++)
233 	    funtab[f].fun (a, a + 256 + (i & 31), size);
234 	  t = clock_get_ns () - t;
235 	  printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024,
236 		  size < 1024 ? 'B' : 'K', (double)size * ITERS3 / t);
237 	}
238       printf ("\n");
239     }
240 
241 
242   printf ("\nUnaligned backwards memmove:\n");
243   for (int f = 0; funtab[f].name != 0; f++)
244     {
245       printf ("%22s (B/ns) ", funtab[f].name);
246 
247       for (int size = 1024; size <= 32768; size *= 2)
248 	{
249 	  uint64_t t = clock_get_ns ();
250 	  for (int i = 0; i < ITERS3; i++)
251 	    funtab[f].fun (a + 256 + (i & 31), a, size);
252 	  t = clock_get_ns () - t;
253 	  printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024,
254 		  size < 1024 ? 'B' : 'K', (double)size * ITERS3 / t);
255 	}
256       printf ("\n");
257     }
258 
259   return 0;
260 }
261