xref: /freebsd/contrib/arm-optimized-routines/pl/math/sv_sinf_1u9.c (revision 5a02ffc32e777041dd2dad4e651ed2a0865a0a5d)
1 /*
2  * Single-precision SVE sin(x) function.
3  *
4  * Copyright (c) 2019-2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "sv_math.h"
9 #include "pl_sig.h"
10 #include "pl_test.h"
11 
12 static const struct data
13 {
14   float poly[4];
15   /* Pi-related values to be loaded as one quad-word and used with
16      svmla_lane.  */
17   float negpi1, negpi2, negpi3, invpi;
18   float shift;
19 } data = {
20   .poly = {
21     /* Non-zero coefficients from the degree 9 Taylor series expansion of
22        sin.  */
23     -0x1.555548p-3f, 0x1.110df4p-7f, -0x1.9f42eap-13f, 0x1.5b2e76p-19f
24   },
25   .negpi1 = -0x1.921fb6p+1f,
26   .negpi2 = 0x1.777a5cp-24f,
27   .negpi3 = 0x1.ee59dap-49f,
28   .invpi = 0x1.45f306p-2f,
29   .shift = 0x1.8p+23f
30 };
31 
32 #define RangeVal 0x49800000 /* asuint32 (0x1p20f).  */
33 #define C(i) sv_f32 (d->poly[i])
34 
35 static svfloat32_t NOINLINE
special_case(svfloat32_t x,svfloat32_t y,svbool_t cmp)36 special_case (svfloat32_t x, svfloat32_t y, svbool_t cmp)
37 {
38   return sv_call_f32 (sinf, x, y, cmp);
39 }
40 
41 /* A fast SVE implementation of sinf.
42    Maximum error: 1.89 ULPs.
43    This maximum error is achieved at multiple values in [-2^18, 2^18]
44    but one example is:
45    SV_NAME_F1 (sin)(0x1.9247a4p+0) got 0x1.fffff6p-1 want 0x1.fffffap-1.  */
SV_NAME_F1(sin)46 svfloat32_t SV_NAME_F1 (sin) (svfloat32_t x, const svbool_t pg)
47 {
48   const struct data *d = ptr_barrier (&data);
49 
50   svfloat32_t ax = svabs_x (pg, x);
51   svuint32_t sign
52       = sveor_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (ax));
53   svbool_t cmp = svcmpge (pg, svreinterpret_u32 (ax), RangeVal);
54 
55   /* pi_vals are a quad-word of helper values - the first 3 elements contain
56      -pi in extended precision, the last contains 1 / pi.  */
57   svfloat32_t pi_vals = svld1rq (svptrue_b32 (), &d->negpi1);
58 
59   /* n = rint(|x|/pi).  */
60   svfloat32_t n = svmla_lane (sv_f32 (d->shift), ax, pi_vals, 3);
61   svuint32_t odd = svlsl_x (pg, svreinterpret_u32 (n), 31);
62   n = svsub_x (pg, n, d->shift);
63 
64   /* r = |x| - n*pi  (range reduction into -pi/2 .. pi/2).  */
65   svfloat32_t r;
66   r = svmla_lane (ax, n, pi_vals, 0);
67   r = svmla_lane (r, n, pi_vals, 1);
68   r = svmla_lane (r, n, pi_vals, 2);
69 
70   /* sin(r) approx using a degree 9 polynomial from the Taylor series
71      expansion. Note that only the odd terms of this are non-zero.  */
72   svfloat32_t r2 = svmul_x (pg, r, r);
73   svfloat32_t y;
74   y = svmla_x (pg, C (2), r2, C (3));
75   y = svmla_x (pg, C (1), r2, y);
76   y = svmla_x (pg, C (0), r2, y);
77   y = svmla_x (pg, r, r, svmul_x (pg, y, r2));
78 
79   /* sign = y^sign^odd.  */
80   sign = sveor_x (pg, sign, odd);
81 
82   if (unlikely (svptest_any (pg, cmp)))
83     return special_case (x,
84 			 svreinterpret_f32 (sveor_x (
85 			     svnot_z (pg, cmp), svreinterpret_u32 (y), sign)),
86 			 cmp);
87   return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
88 }
89 
90 PL_SIG (SV, F, 1, sin, -3.1, 3.1)
91 PL_TEST_ULP (SV_NAME_F1 (sin), 1.40)
92 PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sin), 0, 0x1p23, 1000000)
93 PL_TEST_SYM_INTERVAL (SV_NAME_F1 (sin), 0x1p23, inf, 10000)
94