xref: /freebsd/contrib/arm-optimized-routines/pl/math/sv_expm1_2u5.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * Double-precision vector exp(x) - 1 function.
3  *
4  * Copyright (c) 2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "sv_math.h"
9 #include "poly_sve_f64.h"
10 #include "pl_sig.h"
11 #include "pl_test.h"
12 
13 #define SpecialBound 0x1.62b7d369a5aa9p+9
14 #define ExponentBias 0x3ff0000000000000
15 
16 static const struct data
17 {
18   double poly[11];
19   double shift, inv_ln2, special_bound;
20   /* To be loaded in one quad-word.  */
21   double ln2_hi, ln2_lo;
22 } data = {
23   /* Generated using fpminimax.  */
24   .poly = { 0x1p-1, 0x1.5555555555559p-3, 0x1.555555555554bp-5,
25             0x1.111111110f663p-7, 0x1.6c16c16c1b5f3p-10, 0x1.a01a01affa35dp-13,
26             0x1.a01a018b4ecbbp-16, 0x1.71ddf82db5bb4p-19, 0x1.27e517fc0d54bp-22,
27             0x1.af5eedae67435p-26, 0x1.1f143d060a28ap-29, },
28 
29   .special_bound = SpecialBound,
30   .inv_ln2 = 0x1.71547652b82fep0,
31   .ln2_hi = 0x1.62e42fefa39efp-1,
32   .ln2_lo = 0x1.abc9e3b39803fp-56,
33   .shift = 0x1.8p52,
34 };
35 
36 static svfloat64_t NOINLINE
37 special_case (svfloat64_t x, svfloat64_t y, svbool_t pg)
38 {
39   return sv_call_f64 (expm1, x, y, pg);
40 }
41 
42 /* Double-precision vector exp(x) - 1 function.
43    The maximum error observed error is 2.18 ULP:
44    _ZGVsMxv_expm1(0x1.634ba0c237d7bp-2) got 0x1.a8b9ea8d66e22p-2
45 				       want 0x1.a8b9ea8d66e2p-2.  */
46 svfloat64_t SV_NAME_D1 (expm1) (svfloat64_t x, svbool_t pg)
47 {
48   const struct data *d = ptr_barrier (&data);
49 
50   /* Large, Nan/Inf.  */
51   svbool_t special = svnot_z (pg, svaclt (pg, x, d->special_bound));
52 
53   /* Reduce argument to smaller range:
54      Let i = round(x / ln2)
55      and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
56      exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
57      where 2^i is exact because i is an integer.  */
58   svfloat64_t shift = sv_f64 (d->shift);
59   svfloat64_t n = svsub_x (pg, svmla_x (pg, shift, x, d->inv_ln2), shift);
60   svint64_t i = svcvt_s64_x (pg, n);
61   svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi);
62   svfloat64_t f = svmls_lane (x, n, ln2, 0);
63   f = svmls_lane (f, n, ln2, 1);
64 
65   /* Approximate expm1(f) using polynomial.
66      Taylor expansion for expm1(x) has the form:
67 	 x + ax^2 + bx^3 + cx^4 ....
68      So we calculate the polynomial P(f) = a + bf + cf^2 + ...
69      and assemble the approximation expm1(f) ~= f + f^2 * P(f).  */
70   svfloat64_t f2 = svmul_x (pg, f, f);
71   svfloat64_t f4 = svmul_x (pg, f2, f2);
72   svfloat64_t f8 = svmul_x (pg, f4, f4);
73   svfloat64_t p
74       = svmla_x (pg, f, f2, sv_estrin_10_f64_x (pg, f, f2, f4, f8, d->poly));
75 
76   /* Assemble the result.
77    expm1(x) ~= 2^i * (p + 1) - 1
78    Let t = 2^i.  */
79   svint64_t u = svadd_x (pg, svlsl_x (pg, i, 52), ExponentBias);
80   svfloat64_t t = svreinterpret_f64 (u);
81 
82   /* expm1(x) ~= p * t + (t - 1).  */
83   svfloat64_t y = svmla_x (pg, svsub_x (pg, t, 1), p, t);
84 
85   if (unlikely (svptest_any (pg, special)))
86     return special_case (x, y, special);
87 
88   return y;
89 }
90 
91 PL_SIG (SV, D, 1, expm1, -9.9, 9.9)
92 PL_TEST_ULP (SV_NAME_D1 (expm1), 1.68)
93 PL_TEST_SYM_INTERVAL (SV_NAME_D1 (expm1), 0, 0x1p-23, 1000)
94 PL_TEST_SYM_INTERVAL (SV_NAME_D1 (expm1), 0x1p-23, SpecialBound, 200000)
95 PL_TEST_SYM_INTERVAL (SV_NAME_D1 (expm1), SpecialBound, inf, 1000)
96