xref: /freebsd/contrib/arm-optimized-routines/pl/math/sv_asin_3u.c (revision 725a9f47324d42037db93c27ceb40d4956872f3e)
1 /*
2  * Double-precision SVE asin(x) function.
3  *
4  * Copyright (c) 2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "sv_math.h"
9 #include "poly_sve_f64.h"
10 #include "pl_sig.h"
11 #include "pl_test.h"
12 
13 static const struct data
14 {
15   float64_t poly[12];
16   float64_t pi_over_2f;
17 } data = {
18   /* Polynomial approximation of  (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
19      on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57.  */
20   .poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4,
21 	    0x1.6db6db67f6d9fp-5, 0x1.f1c71fbd29fbbp-6,
22 	    0x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6,
23 	    0x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7,
24 	    0x1.fd1151acb6bedp-8, 0x1.087182f799c1dp-6,
25 	    -0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, },
26   .pi_over_2f = 0x1.921fb54442d18p+0,
27 };
28 
29 #define P(i) sv_f64 (d->poly[i])
30 
31 /* Double-precision SVE implementation of vector asin(x).
32 
33    For |x| in [0, 0.5], use an order 11 polynomial P such that the final
34    approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
35 
36    The largest observed error in this region is 0.52 ulps,
37    _ZGVsMxv_asin(0x1.d95ae04998b6cp-2) got 0x1.ec13757305f27p-2
38 				      want 0x1.ec13757305f26p-2.
39 
40    For |x| in [0.5, 1.0], use same approximation with a change of variable
41 
42      asin(x) = pi/2 - (y + y * z * P(z)), with  z = (1-x)/2 and y = sqrt(z).
43 
44    The largest observed error in this region is 2.69 ulps,
45    _ZGVsMxv_asin(0x1.044ac9819f573p-1) got 0x1.110d7e85fdd5p-1
46 				      want 0x1.110d7e85fdd53p-1.  */
47 svfloat64_t SV_NAME_D1 (asin) (svfloat64_t x, const svbool_t pg)
48 {
49   const struct data *d = ptr_barrier (&data);
50 
51   svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
52   svfloat64_t ax = svabs_x (pg, x);
53   svbool_t a_ge_half = svacge (pg, x, 0.5);
54 
55   /* Evaluate polynomial Q(x) = y + y * z * P(z) with
56      z = x ^ 2 and y = |x|            , if |x| < 0.5
57      z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5.  */
58   svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),
59 			  svmul_x (pg, x, x));
60   svfloat64_t z = svsqrt_m (ax, a_ge_half, z2);
61 
62   /* Use a single polynomial approximation P for both intervals.  */
63   svfloat64_t z4 = svmul_x (pg, z2, z2);
64   svfloat64_t z8 = svmul_x (pg, z4, z4);
65   svfloat64_t z16 = svmul_x (pg, z8, z8);
66   svfloat64_t p = sv_estrin_11_f64_x (pg, z2, z4, z8, z16, d->poly);
67   /* Finalize polynomial: z + z * z2 * P(z2).  */
68   p = svmla_x (pg, z, svmul_x (pg, z, z2), p);
69 
70   /* asin(|x|) = Q(|x|)         , for |x| < 0.5
71 	       = pi/2 - 2 Q(|x|), for |x| >= 0.5.  */
72   svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (-2.0), d->pi_over_2f);
73 
74   /* Copy sign.  */
75   return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign));
76 }
77 
78 PL_SIG (SV, D, 1, asin, -1.0, 1.0)
79 PL_TEST_ULP (SV_NAME_D1 (asin), 2.19)
80 PL_TEST_INTERVAL (SV_NAME_D1 (asin), 0, 0.5, 50000)
81 PL_TEST_INTERVAL (SV_NAME_D1 (asin), 0.5, 1.0, 50000)
82 PL_TEST_INTERVAL (SV_NAME_D1 (asin), 1.0, 0x1p11, 50000)
83 PL_TEST_INTERVAL (SV_NAME_D1 (asin), 0x1p11, inf, 20000)
84 PL_TEST_INTERVAL (SV_NAME_D1 (asin), -0, -inf, 20000)
85