xref: /freebsd/contrib/arm-optimized-routines/pl/math/logf.c (revision 911f0260390e18cf85f3dbf2c719b593efdc1e3c)
1 /*
2  * Single-precision log function.
3  *
4  * Copyright (c) 2017-2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "math_config.h"
11 
12 /*
13 LOGF_TABLE_BITS = 4
14 LOGF_POLY_ORDER = 4
15 
16 ULP error: 0.818 (nearest rounding.)
17 Relative error: 1.957 * 2^-26 (before rounding.)
18 */
19 
20 #define T __logf_data.tab
21 #define A __logf_data.poly
22 #define Ln2 __logf_data.ln2
23 #define N (1 << LOGF_TABLE_BITS)
24 #define OFF 0x3f330000
25 
26 float
27 optr_aor_log_f32 (float x)
28 {
29   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
30   double_t z, r, r2, y, y0, invc, logc;
31   uint32_t ix, iz, tmp;
32   int k, i;
33 
34   ix = asuint (x);
35 #if WANT_ROUNDING
36   /* Fix sign of zero with downward rounding when x==1.  */
37   if (unlikely (ix == 0x3f800000))
38     return 0;
39 #endif
40   if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
41     {
42       /* x < 0x1p-126 or inf or nan.  */
43       if (ix * 2 == 0)
44 	return __math_divzerof (1);
45       if (ix == 0x7f800000) /* log(inf) == inf.  */
46 	return x;
47       if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
48 	return __math_invalidf (x);
49       /* x is subnormal, normalize it.  */
50       ix = asuint (x * 0x1p23f);
51       ix -= 23 << 23;
52     }
53 
54   /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
55      The range is split into N subintervals.
56      The ith subinterval contains z and c is near its center.  */
57   tmp = ix - OFF;
58   i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
59   k = (int32_t) tmp >> 23; /* arithmetic shift */
60   iz = ix - (tmp & 0x1ff << 23);
61   invc = T[i].invc;
62   logc = T[i].logc;
63   z = (double_t) asfloat (iz);
64 
65   /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
66   r = z * invc - 1;
67   y0 = logc + (double_t) k * Ln2;
68 
69   /* Pipelined polynomial evaluation to approximate log1p(r).  */
70   r2 = r * r;
71   y = A[1] * r + A[2];
72   y = A[0] * r2 + y;
73   y = y * r2 + (y0 + r);
74   return eval_as_float (y);
75 }
76