xref: /freebsd/contrib/arm-optimized-routines/pl/math/erfinvl.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * Extended precision inverse error function.
3  *
4  * Copyright (c) 2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 #define _GNU_SOURCE
8 #include <math.h>
9 #include <stdbool.h>
10 #include <float.h>
11 
12 #include "math_config.h"
13 #include "poly_scalar_f64.h"
14 
15 #define SQRT_PIl 0x1.c5bf891b4ef6aa79c3b0520d5db9p0l
16 #define HF_SQRT_PIl 0x1.c5bf891b4ef6aa79c3b0520d5db9p-1l
17 
18 const static struct
19 {
20   /*  We use P_N and Q_N to refer to arrays of coefficients, where P_N is the
21       coeffs of the numerator in table N of Blair et al, and Q_N is the coeffs
22       of the denominator.  */
23   double P_17[7], Q_17[7], P_37[8], Q_37[8], P_57[9], Q_57[10];
24 } data = {
25   .P_17 = { 0x1.007ce8f01b2e8p+4, -0x1.6b23cc5c6c6d7p+6, 0x1.74e5f6ceb3548p+7,
26 	    -0x1.5200bb15cc6bbp+7, 0x1.05d193233a849p+6, -0x1.148c5474ee5e1p+3,
27 	    0x1.689181bbafd0cp-3 },
28   .Q_17 = { 0x1.d8fb0f913bd7bp+3, -0x1.6d7f25a3f1c24p+6, 0x1.a450d8e7f4cbbp+7,
29 	    -0x1.bc3480485857p+7, 0x1.ae6b0c504ee02p+6, -0x1.499dfec1a7f5fp+4,
30 	    0x1p+0 },
31   .P_37 = { -0x1.f3596123109edp-7, 0x1.60b8fe375999ep-2, -0x1.779bb9bef7c0fp+1,
32 	    0x1.786ea384470a2p+3, -0x1.6a7c1453c85d3p+4, 0x1.31f0fc5613142p+4,
33 	    -0x1.5ea6c007d4dbbp+2, 0x1.e66f265ce9e5p-3 },
34   .Q_37 = { -0x1.636b2dcf4edbep-7, 0x1.0b5411e2acf29p-2, -0x1.3413109467a0bp+1,
35 	    0x1.563e8136c554ap+3, -0x1.7b77aab1dcafbp+4, 0x1.8a3e174e05ddcp+4,
36 	    -0x1.4075c56404eecp+3, 0x1p+0 },
37   .P_57 = { 0x1.b874f9516f7f1p-14, 0x1.5921f2916c1c4p-7, 0x1.145ae7d5b8fa4p-2,
38 	    0x1.29d6dcc3b2fb7p+1, 0x1.cabe2209a7985p+2, 0x1.11859f0745c4p+3,
39 	    0x1.b7ec7bc6a2ce5p+2, 0x1.d0419e0bb42aep+1, 0x1.c5aa03eef7258p-1 },
40   .Q_57 = { 0x1.b8747e12691f1p-14, 0x1.59240d8ed1e0ap-7, 0x1.14aef2b181e2p-2,
41 	    0x1.2cd181bcea52p+1, 0x1.e6e63e0b7aa4cp+2, 0x1.65cf8da94aa3ap+3,
42 	    0x1.7e5c787b10a36p+3, 0x1.0626d68b6cea3p+3, 0x1.065c5f193abf6p+2,
43 	    0x1p+0 }
44 };
45 
46 /* Inverse error function approximation, based on rational approximation as
47    described in
48    J. M. Blair, C. A. Edwards, and J. H. Johnson,
49    "Rational Chebyshev approximations for the inverse of the error function",
50    Math. Comp. 30, pp. 827--830 (1976).
51    https://doi.org/10.1090/S0025-5718-1976-0421040-7.  */
52 static inline double
53 __erfinv (double x)
54 {
55   if (x == 1.0)
56     return __math_oflow (0);
57   if (x == -1.0)
58     return __math_oflow (1);
59 
60   double a = fabs (x);
61   if (a > 1)
62     return __math_invalid (x);
63 
64   if (a <= 0.75)
65     {
66       double t = x * x - 0.5625;
67       return x * horner_6_f64 (t, data.P_17) / horner_6_f64 (t, data.Q_17);
68     }
69 
70   if (a <= 0.9375)
71     {
72       double t = x * x - 0.87890625;
73       return x * horner_7_f64 (t, data.P_37) / horner_7_f64 (t, data.Q_37);
74     }
75 
76   double t = 1.0 / (sqrtl (-log1pl (-a)));
77   return horner_8_f64 (t, data.P_57)
78 	 / (copysign (t, x) * horner_9_f64 (t, data.Q_57));
79 }
80 
81 /* Extended-precision variant, which uses the above (or asymptotic estimate) as
82    starting point for Newton refinement. This implementation is a port to C of
83    the version in the SpecialFunctions.jl Julia package, with relaxed stopping
84    criteria for the Newton refinement.  */
85 long double
86 erfinvl (long double x)
87 {
88   if (x == 0)
89     return 0;
90 
91   double yf = __erfinv (x);
92   long double y;
93   if (isfinite (yf))
94     y = yf;
95   else
96     {
97       /* Double overflowed, use asymptotic estimate instead.  */
98       y = copysignl (sqrtl (-logl (1.0l - fabsl (x)) * SQRT_PIl), x);
99       if (!isfinite (y))
100 	return y;
101     }
102 
103   double eps = fabs (yf - nextafter (yf, 0));
104   while (true)
105     {
106       long double dy = HF_SQRT_PIl * (erfl (y) - x) * exp (y * y);
107       y -= dy;
108       /* Stopping criterion is different to Julia implementation, but is enough
109 	 to ensure result is accurate when rounded to double-precision.  */
110       if (fabsl (dy) < eps)
111 	break;
112     }
113   return y;
114 }
115