1*072a4ba8SAndrew Turner /* 2*072a4ba8SAndrew Turner * Double-precision polynomial coefficients for scalar asinh(x) 3*072a4ba8SAndrew Turner * 4*072a4ba8SAndrew Turner * Copyright (c) 2022-2023, Arm Limited. 5*072a4ba8SAndrew Turner * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 6*072a4ba8SAndrew Turner */ 7*072a4ba8SAndrew Turner 8*072a4ba8SAndrew Turner #include "math_config.h" 9*072a4ba8SAndrew Turner 10*072a4ba8SAndrew Turner /* asinh(x) is odd, and the first term of the Taylor expansion is x, so we can 11*072a4ba8SAndrew Turner approximate the function by x + x^3 * P(x^2), where P(z) has the form: 12*072a4ba8SAndrew Turner C0 + C1 * z + C2 * z^2 + C3 * z^3 + ... 13*072a4ba8SAndrew Turner Note P is evaluated on even powers of x only. See tools/asinh.sollya for the 14*072a4ba8SAndrew Turner algorithm used to generate these coefficients. */ 15*072a4ba8SAndrew Turner const struct asinh_data __asinh_data 16*072a4ba8SAndrew Turner = {.poly 17*072a4ba8SAndrew Turner = {-0x1.55555555554a7p-3, 0x1.3333333326c7p-4, -0x1.6db6db68332e6p-5, 18*072a4ba8SAndrew Turner 0x1.f1c71b26fb40dp-6, -0x1.6e8b8b654a621p-6, 0x1.1c4daa9e67871p-6, 19*072a4ba8SAndrew Turner -0x1.c9871d10885afp-7, 0x1.7a16e8d9d2ecfp-7, -0x1.3ddca533e9f54p-7, 20*072a4ba8SAndrew Turner 0x1.0becef748dafcp-7, -0x1.b90c7099dd397p-8, 0x1.541f2bb1ffe51p-8, 21*072a4ba8SAndrew Turner -0x1.d217026a669ecp-9, 0x1.0b5c7977aaf7p-9, -0x1.e0f37daef9127p-11, 22*072a4ba8SAndrew Turner 0x1.388b5fe542a6p-12, -0x1.021a48685e287p-14, 0x1.93d4ba83d34dap-18}}; 23