xref: /freebsd/contrib/arm-optimized-routines/math/tools/log.sollya (revision 31914882fca502069810b9e9ddea4bcd8136a4f4)
1*31914882SAlex Richardson// polynomial for approximating log(1+x)
2*31914882SAlex Richardson//
3*31914882SAlex Richardson// Copyright (c) 2019, Arm Limited.
4*31914882SAlex Richardson// SPDX-License-Identifier: MIT
5*31914882SAlex Richardson
6*31914882SAlex Richardsondeg = 12; // poly degree
7*31914882SAlex Richardson// |log(1+x)| > 0x1p-4 outside the interval
8*31914882SAlex Richardsona = -0x1p-4;
9*31914882SAlex Richardsonb =  0x1.09p-4;
10*31914882SAlex Richardson
11*31914882SAlex Richardson// find log(1+x)/x polynomial with minimal relative error
12*31914882SAlex Richardson// (minimal relative error polynomial for log(1+x) is the same * x)
13*31914882SAlex Richardsondeg = deg-1; // because of /x
14*31914882SAlex Richardson
15*31914882SAlex Richardson// f = log(1+x)/x; using taylor series
16*31914882SAlex Richardsonf = 0;
17*31914882SAlex Richardsonfor i from 0 to 60 do { f = f + (-x)^i/(i+1); };
18*31914882SAlex Richardson
19*31914882SAlex Richardson// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
20*31914882SAlex Richardsonapprox = proc(poly,d) {
21*31914882SAlex Richardson  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
22*31914882SAlex Richardson};
23*31914882SAlex Richardson
24*31914882SAlex Richardson// first coeff is fixed, iteratively find optimal double prec coeffs
25*31914882SAlex Richardsonpoly = 1;
26*31914882SAlex Richardsonfor i from 1 to deg do {
27*31914882SAlex Richardson  p = roundcoefficients(approx(poly,i), [|D ...|]);
28*31914882SAlex Richardson  poly = poly + x^i*coeff(p,0);
29*31914882SAlex Richardson};
30*31914882SAlex Richardson
31*31914882SAlex Richardsondisplay = hexadecimal;
32*31914882SAlex Richardsonprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
33*31914882SAlex Richardsonprint("in [",a,b,"]");
34*31914882SAlex Richardsonprint("coeffs:");
35*31914882SAlex Richardsonfor i from 0 to deg do coeff(poly,i);
36