xref: /freebsd/contrib/arm-optimized-routines/math/tools/exp.sollya (revision bc5304a006238115291e7568583632889dffbab9)
1// polynomial for approximating e^x
2//
3// Copyright (c) 2019, Arm Limited.
4// SPDX-License-Identifier: MIT
5
6deg = 5; // poly degree
7N = 128; // table entries
8b = log(2)/(2*N);  // interval
9b = b + b*0x1p-16; // increase interval for non-nearest rounding (TOINT_NARROW)
10a = -b;
11
12// find polynomial with minimal abs error
13
14// return p that minimizes |exp(x) - poly(x) - x^d*p(x)|
15approx = proc(poly,d) {
16  return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
17};
18
19// first 2 coeffs are fixed, iteratively find optimal double prec coeffs
20poly = 1 + x;
21for i from 2 to deg do {
22  p = roundcoefficients(approx(poly,i), [|D ...|]);
23  poly = poly + x^i*coeff(p,0);
24};
25
26display = hexadecimal;
27print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30));
28print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30));
29print("in [",a,b,"]");
30// double interval error for non-nearest rounding
31print("rel2 error:", accurateinfnorm(1-poly(x)/exp(x), [2*a;2*b], 30));
32print("abs2 error:", accurateinfnorm(exp(x)-poly(x), [2*a;2*b], 30));
33print("in [",2*a,2*b,"]");
34print("coeffs:");
35for i from 0 to deg do coeff(poly,i);
36