xref: /freebsd/contrib/arm-optimized-routines/math/test/rtest/dotest.c (revision 95eb4b873b6a8b527c5bd78d7191975dfca38998)
1 /*
2  * dotest.c - actually generate mathlib test cases
3  *
4  * Copyright (c) 1999-2019, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdlib.h>
11 #include <stdint.h>
12 #include <assert.h>
13 #include <limits.h>
14 
15 #include "semi.h"
16 #include "intern.h"
17 #include "random.h"
18 
19 #define MPFR_PREC 96 /* good enough for float or double + a few extra bits */
20 
21 extern int lib_fo, lib_no_arith, ntests;
22 
23 /*
24  * Prototypes.
25  */
26 static void cases_biased(uint32 *, uint32, uint32);
27 static void cases_biased_positive(uint32 *, uint32, uint32);
28 static void cases_biased_float(uint32 *, uint32, uint32);
29 static void cases_uniform(uint32 *, uint32, uint32);
30 static void cases_uniform_positive(uint32 *, uint32, uint32);
31 static void cases_uniform_float(uint32 *, uint32, uint32);
32 static void cases_uniform_float_positive(uint32 *, uint32, uint32);
33 static void log_cases(uint32 *, uint32, uint32);
34 static void log_cases_float(uint32 *, uint32, uint32);
35 static void log1p_cases(uint32 *, uint32, uint32);
36 static void log1p_cases_float(uint32 *, uint32, uint32);
37 static void minmax_cases(uint32 *, uint32, uint32);
38 static void minmax_cases_float(uint32 *, uint32, uint32);
39 static void atan2_cases(uint32 *, uint32, uint32);
40 static void atan2_cases_float(uint32 *, uint32, uint32);
41 static void pow_cases(uint32 *, uint32, uint32);
42 static void pow_cases_float(uint32 *, uint32, uint32);
43 static void rred_cases(uint32 *, uint32, uint32);
44 static void rred_cases_float(uint32 *, uint32, uint32);
45 static void cases_semi1(uint32 *, uint32, uint32);
46 static void cases_semi1_float(uint32 *, uint32, uint32);
47 static void cases_semi2(uint32 *, uint32, uint32);
48 static void cases_semi2_float(uint32 *, uint32, uint32);
49 static void cases_ldexp(uint32 *, uint32, uint32);
50 static void cases_ldexp_float(uint32 *, uint32, uint32);
51 
52 static void complex_cases_uniform(uint32 *, uint32, uint32);
53 static void complex_cases_uniform_float(uint32 *, uint32, uint32);
54 static void complex_cases_biased(uint32 *, uint32, uint32);
55 static void complex_cases_biased_float(uint32 *, uint32, uint32);
56 static void complex_log_cases(uint32 *, uint32, uint32);
57 static void complex_log_cases_float(uint32 *, uint32, uint32);
58 static void complex_pow_cases(uint32 *, uint32, uint32);
59 static void complex_pow_cases_float(uint32 *, uint32, uint32);
60 static void complex_arithmetic_cases(uint32 *, uint32, uint32);
61 static void complex_arithmetic_cases_float(uint32 *, uint32, uint32);
62 
63 static uint32 doubletop(int x, int scale);
64 static uint32 floatval(int x, int scale);
65 
66 /*
67  * Convert back and forth between IEEE bit patterns and the
68  * mpfr_t/mpc_t types.
69  */
70 static void set_mpfr_d(mpfr_t x, uint32 h, uint32 l)
71 {
72     uint64_t hl = ((uint64_t)h << 32) | l;
73     uint32 exp = (hl >> 52) & 0x7ff;
74     int64_t mantissa = hl & (((uint64_t)1 << 52) - 1);
75     int sign = (hl >> 63) ? -1 : +1;
76     if (exp == 0x7ff) {
77         if (mantissa == 0)
78             mpfr_set_inf(x, sign);
79         else
80             mpfr_set_nan(x);
81     } else if (exp == 0 && mantissa == 0) {
82         mpfr_set_ui(x, 0, GMP_RNDN);
83         mpfr_setsign(x, x, sign < 0, GMP_RNDN);
84     } else {
85         if (exp != 0)
86             mantissa |= ((uint64_t)1 << 52);
87         else
88             exp++;
89         mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x3ff - 52, GMP_RNDN);
90     }
91 }
92 static void set_mpfr_f(mpfr_t x, uint32 f)
93 {
94     uint32 exp = (f >> 23) & 0xff;
95     int32 mantissa = f & ((1 << 23) - 1);
96     int sign = (f >> 31) ? -1 : +1;
97     if (exp == 0xff) {
98         if (mantissa == 0)
99             mpfr_set_inf(x, sign);
100         else
101             mpfr_set_nan(x);
102     } else if (exp == 0 && mantissa == 0) {
103         mpfr_set_ui(x, 0, GMP_RNDN);
104         mpfr_setsign(x, x, sign < 0, GMP_RNDN);
105     } else {
106         if (exp != 0)
107             mantissa |= (1 << 23);
108         else
109             exp++;
110         mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x7f - 23, GMP_RNDN);
111     }
112 }
113 static void set_mpc_d(mpc_t z, uint32 rh, uint32 rl, uint32 ih, uint32 il)
114 {
115     mpfr_t x, y;
116     mpfr_init2(x, MPFR_PREC);
117     mpfr_init2(y, MPFR_PREC);
118     set_mpfr_d(x, rh, rl);
119     set_mpfr_d(y, ih, il);
120     mpc_set_fr_fr(z, x, y, MPC_RNDNN);
121     mpfr_clear(x);
122     mpfr_clear(y);
123 }
124 static void set_mpc_f(mpc_t z, uint32 r, uint32 i)
125 {
126     mpfr_t x, y;
127     mpfr_init2(x, MPFR_PREC);
128     mpfr_init2(y, MPFR_PREC);
129     set_mpfr_f(x, r);
130     set_mpfr_f(y, i);
131     mpc_set_fr_fr(z, x, y, MPC_RNDNN);
132     mpfr_clear(x);
133     mpfr_clear(y);
134 }
135 static void get_mpfr_d(const mpfr_t x, uint32 *h, uint32 *l, uint32 *extra)
136 {
137     uint32_t sign, expfield, mantfield;
138     mpfr_t significand;
139     int exp;
140 
141     if (mpfr_nan_p(x)) {
142         *h = 0x7ff80000;
143         *l = 0;
144         *extra = 0;
145         return;
146     }
147 
148     sign = mpfr_signbit(x) ? 0x80000000U : 0;
149 
150     if (mpfr_inf_p(x)) {
151         *h = 0x7ff00000 | sign;
152         *l = 0;
153         *extra = 0;
154         return;
155     }
156 
157     if (mpfr_zero_p(x)) {
158         *h = 0x00000000 | sign;
159         *l = 0;
160         *extra = 0;
161         return;
162     }
163 
164     mpfr_init2(significand, MPFR_PREC);
165     mpfr_set(significand, x, GMP_RNDN);
166     exp = mpfr_get_exp(significand);
167     mpfr_set_exp(significand, 0);
168 
169     /* Now significand is in [1/2,1), and significand * 2^exp == x.
170      * So the IEEE exponent corresponding to exp==0 is 0x3fe. */
171     if (exp > 0x400) {
172         /* overflow to infinity anyway */
173         *h = 0x7ff00000 | sign;
174         *l = 0;
175         *extra = 0;
176         mpfr_clear(significand);
177         return;
178     }
179 
180     if (exp <= -0x3fe || mpfr_zero_p(x))
181         exp = -0x3fd;       /* denormalise */
182     expfield = exp + 0x3fd; /* offset to cancel leading mantissa bit */
183 
184     mpfr_div_2si(significand, x, exp - 21, GMP_RNDN);
185     mpfr_abs(significand, significand, GMP_RNDN);
186     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
187     *h = sign + ((uint64_t)expfield << 20) + mantfield;
188     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
189     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
190     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
191     *l = mantfield;
192     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
193     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
194     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
195     *extra = mantfield;
196 
197     mpfr_clear(significand);
198 }
199 static void get_mpfr_f(const mpfr_t x, uint32 *f, uint32 *extra)
200 {
201     uint32_t sign, expfield, mantfield;
202     mpfr_t significand;
203     int exp;
204 
205     if (mpfr_nan_p(x)) {
206         *f = 0x7fc00000;
207         *extra = 0;
208         return;
209     }
210 
211     sign = mpfr_signbit(x) ? 0x80000000U : 0;
212 
213     if (mpfr_inf_p(x)) {
214         *f = 0x7f800000 | sign;
215         *extra = 0;
216         return;
217     }
218 
219     if (mpfr_zero_p(x)) {
220         *f = 0x00000000 | sign;
221         *extra = 0;
222         return;
223     }
224 
225     mpfr_init2(significand, MPFR_PREC);
226     mpfr_set(significand, x, GMP_RNDN);
227     exp = mpfr_get_exp(significand);
228     mpfr_set_exp(significand, 0);
229 
230     /* Now significand is in [1/2,1), and significand * 2^exp == x.
231      * So the IEEE exponent corresponding to exp==0 is 0x7e. */
232     if (exp > 0x80) {
233         /* overflow to infinity anyway */
234         *f = 0x7f800000 | sign;
235         *extra = 0;
236         mpfr_clear(significand);
237         return;
238     }
239 
240     if (exp <= -0x7e || mpfr_zero_p(x))
241         exp = -0x7d;                   /* denormalise */
242     expfield = exp + 0x7d; /* offset to cancel leading mantissa bit */
243 
244     mpfr_div_2si(significand, x, exp - 24, GMP_RNDN);
245     mpfr_abs(significand, significand, GMP_RNDN);
246     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
247     *f = sign + ((uint64_t)expfield << 23) + mantfield;
248     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
249     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
250     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
251     *extra = mantfield;
252 
253     mpfr_clear(significand);
254 }
255 static void get_mpc_d(const mpc_t z,
256                       uint32 *rh, uint32 *rl, uint32 *rextra,
257                       uint32 *ih, uint32 *il, uint32 *iextra)
258 {
259     mpfr_t x, y;
260     mpfr_init2(x, MPFR_PREC);
261     mpfr_init2(y, MPFR_PREC);
262     mpc_real(x, z, GMP_RNDN);
263     mpc_imag(y, z, GMP_RNDN);
264     get_mpfr_d(x, rh, rl, rextra);
265     get_mpfr_d(y, ih, il, iextra);
266     mpfr_clear(x);
267     mpfr_clear(y);
268 }
269 static void get_mpc_f(const mpc_t z,
270                       uint32 *r, uint32 *rextra,
271                       uint32 *i, uint32 *iextra)
272 {
273     mpfr_t x, y;
274     mpfr_init2(x, MPFR_PREC);
275     mpfr_init2(y, MPFR_PREC);
276     mpc_real(x, z, GMP_RNDN);
277     mpc_imag(y, z, GMP_RNDN);
278     get_mpfr_f(x, r, rextra);
279     get_mpfr_f(y, i, iextra);
280     mpfr_clear(x);
281     mpfr_clear(y);
282 }
283 
284 /*
285  * Implementation of mathlib functions that aren't trivially
286  * implementable using an existing mpfr or mpc function.
287  */
288 int test_rred(mpfr_t ret, const mpfr_t x, int *quadrant)
289 {
290     mpfr_t halfpi;
291     long quo;
292     int status;
293 
294     /*
295      * In the worst case of range reduction, we get an input of size
296      * around 2^1024, and must find its remainder mod pi, which means
297      * we need 1024 bits of pi at least. Plus, the remainder might
298      * happen to come out very very small if we're unlucky. How
299      * unlucky can we be? Well, conveniently, I once went through and
300      * actually worked that out using Paxson's modular minimisation
301      * algorithm, and it turns out that the smallest exponent you can
302      * get out of a nontrivial[1] double precision range reduction is
303      * 0x3c2, i.e. of the order of 2^-61. So we need 1024 bits of pi
304      * to get us down to the units digit, another 61 or so bits (say
305      * 64) to get down to the highest set bit of the output, and then
306      * some bits to make the actual mantissa big enough.
307      *
308      *   [1] of course the output of range reduction can have an
309      *   arbitrarily small exponent in the trivial case, where the
310      *   input is so small that it's the identity function. That
311      *   doesn't count.
312      */
313     mpfr_init2(halfpi, MPFR_PREC + 1024 + 64);
314     mpfr_const_pi(halfpi, GMP_RNDN);
315     mpfr_div_ui(halfpi, halfpi, 2, GMP_RNDN);
316 
317     status = mpfr_remquo(ret, &quo, x, halfpi, GMP_RNDN);
318     *quadrant = quo & 3;
319 
320     mpfr_clear(halfpi);
321 
322     return status;
323 }
324 int test_lgamma(mpfr_t ret, const mpfr_t x, mpfr_rnd_t rnd)
325 {
326     /*
327      * mpfr_lgamma takes an extra int * parameter to hold the output
328      * sign. We don't bother testing that, so this wrapper throws away
329      * the sign and hence fits into the same function prototype as all
330      * the other real->real mpfr functions.
331      *
332      * There is also mpfr_lngamma which has no sign output and hence
333      * has the right prototype already, but unfortunately it returns
334      * NaN in cases where gamma(x) < 0, so it's no use to us.
335      */
336     int sign;
337     return mpfr_lgamma(ret, &sign, x, rnd);
338 }
339 int test_cpow(mpc_t ret, const mpc_t x, const mpc_t y, mpc_rnd_t rnd)
340 {
341     /*
342      * For complex pow, we must bump up the precision by a huge amount
343      * if we want it to get the really difficult cases right. (Not
344      * that we expect the library under test to be getting those cases
345      * right itself, but we'd at least like the test suite to report
346      * them as wrong for the _right reason_.)
347      *
348      * This works around a bug in mpc_pow(), fixed by r1455 in the MPC
349      * svn repository (2014-10-14) and expected to be in any MPC
350      * release after 1.0.2 (which was the latest release already made
351      * at the time of the fix). So as and when we update to an MPC
352      * with the fix in it, we could remove this workaround.
353      *
354      * For the reasons for choosing this amount of extra precision,
355      * see analysis in complex/cpownotes.txt for the rationale for the
356      * amount.
357      */
358     mpc_t xbig, ybig, retbig;
359     int status;
360 
361     mpc_init2(xbig, 1034 + 53 + 60 + MPFR_PREC);
362     mpc_init2(ybig, 1034 + 53 + 60 + MPFR_PREC);
363     mpc_init2(retbig, 1034 + 53 + 60 + MPFR_PREC);
364 
365     mpc_set(xbig, x, MPC_RNDNN);
366     mpc_set(ybig, y, MPC_RNDNN);
367     status = mpc_pow(retbig, xbig, ybig, rnd);
368     mpc_set(ret, retbig, rnd);
369 
370     mpc_clear(xbig);
371     mpc_clear(ybig);
372     mpc_clear(retbig);
373 
374     return status;
375 }
376 
377 /*
378  * Identify 'hard' values (NaN, Inf, nonzero denormal) for deciding
379  * whether microlib will decline to run a test.
380  */
381 #define is_shard(in) ( \
382     (((in)[0] & 0x7F800000) == 0x7F800000 || \
383      (((in)[0] & 0x7F800000) == 0 && ((in)[0]&0x7FFFFFFF) != 0)))
384 
385 #define is_dhard(in) ( \
386     (((in)[0] & 0x7FF00000) == 0x7FF00000 || \
387      (((in)[0] & 0x7FF00000) == 0 && (((in)[0] & 0xFFFFF) | (in)[1]) != 0)))
388 
389 /*
390  * Identify integers.
391  */
392 int is_dinteger(uint32 *in)
393 {
394     uint32 out[3];
395     if ((0x7FF00000 & ~in[0]) == 0)
396         return 0;                      /* not finite, hence not integer */
397     test_ceil(in, out);
398     return in[0] == out[0] && in[1] == out[1];
399 }
400 int is_sinteger(uint32 *in)
401 {
402     uint32 out[3];
403     if ((0x7F800000 & ~in[0]) == 0)
404         return 0;                      /* not finite, hence not integer */
405     test_ceilf(in, out);
406     return in[0] == out[0];
407 }
408 
409 /*
410  * Identify signalling NaNs.
411  */
412 int is_dsnan(const uint32 *in)
413 {
414     if ((in[0] & 0x7FF00000) != 0x7FF00000)
415         return 0;                      /* not the inf/nan exponent */
416     if ((in[0] << 12) == 0 && in[1] == 0)
417         return 0;                      /* inf */
418     if (in[0] & 0x00080000)
419         return 0;                      /* qnan */
420     return 1;
421 }
422 int is_ssnan(const uint32 *in)
423 {
424     if ((in[0] & 0x7F800000) != 0x7F800000)
425         return 0;                      /* not the inf/nan exponent */
426     if ((in[0] << 9) == 0)
427         return 0;                      /* inf */
428     if (in[0] & 0x00400000)
429         return 0;                      /* qnan */
430     return 1;
431 }
432 int is_snan(const uint32 *in, int size)
433 {
434     return size == 2 ? is_dsnan(in) : is_ssnan(in);
435 }
436 
437 /*
438  * Wrapper functions called to fix up unusual results after the main
439  * test function has run.
440  */
441 void universal_wrapper(wrapperctx *ctx)
442 {
443     /*
444      * Any SNaN input gives rise to a QNaN output.
445      */
446     int op;
447     for (op = 0; op < wrapper_get_nops(ctx); op++) {
448         int size = wrapper_get_size(ctx, op);
449 
450         if (!wrapper_is_complex(ctx, op) &&
451             is_snan(wrapper_get_ieee(ctx, op), size)) {
452             wrapper_set_nan(ctx);
453         }
454     }
455 }
456 
457 Testable functions[] = {
458     /*
459      * Trig functions: sin, cos, tan. We test the core function
460      * between -16 and +16: we assume that range reduction exists
461      * and will be used for larger arguments, and we'll test that
462      * separately. Also we only go down to 2^-27 in magnitude,
463      * because below that sin(x)=tan(x)=x and cos(x)=1 as far as
464      * double precision can tell, which is boring.
465      */
466     {"sin", (funcptr)mpfr_sin, args1, {NULL},
467         cases_uniform, 0x3e400000, 0x40300000},
468     {"sinf", (funcptr)mpfr_sin, args1f, {NULL},
469         cases_uniform_float, 0x39800000, 0x41800000},
470     {"cos", (funcptr)mpfr_cos, args1, {NULL},
471         cases_uniform, 0x3e400000, 0x40300000},
472     {"cosf", (funcptr)mpfr_cos, args1f, {NULL},
473         cases_uniform_float, 0x39800000, 0x41800000},
474     {"tan", (funcptr)mpfr_tan, args1, {NULL},
475         cases_uniform, 0x3e400000, 0x40300000},
476     {"tanf", (funcptr)mpfr_tan, args1f, {NULL},
477         cases_uniform_float, 0x39800000, 0x41800000},
478     {"sincosf_sinf", (funcptr)mpfr_sin, args1f, {NULL},
479         cases_uniform_float, 0x39800000, 0x41800000},
480     {"sincosf_cosf", (funcptr)mpfr_cos, args1f, {NULL},
481         cases_uniform_float, 0x39800000, 0x41800000},
482     /*
483      * Inverse trig: asin, acos. Between 1 and -1, of course. acos
484      * goes down to 2^-54, asin to 2^-27.
485      */
486     {"asin", (funcptr)mpfr_asin, args1, {NULL},
487         cases_uniform, 0x3e400000, 0x3fefffff},
488     {"asinf", (funcptr)mpfr_asin, args1f, {NULL},
489         cases_uniform_float, 0x39800000, 0x3f7fffff},
490     {"acos", (funcptr)mpfr_acos, args1, {NULL},
491         cases_uniform, 0x3c900000, 0x3fefffff},
492     {"acosf", (funcptr)mpfr_acos, args1f, {NULL},
493         cases_uniform_float, 0x33800000, 0x3f7fffff},
494     /*
495      * Inverse trig: atan. atan is stable (in double prec) with
496      * argument magnitude past 2^53, so we'll test up to there.
497      * atan(x) is boringly just x below 2^-27.
498      */
499     {"atan", (funcptr)mpfr_atan, args1, {NULL},
500         cases_uniform, 0x3e400000, 0x43400000},
501     {"atanf", (funcptr)mpfr_atan, args1f, {NULL},
502         cases_uniform_float, 0x39800000, 0x4b800000},
503     /*
504      * atan2. Interesting cases arise when the exponents of the
505      * arguments differ by at most about 50.
506      */
507     {"atan2", (funcptr)mpfr_atan2, args2, {NULL},
508         atan2_cases, 0},
509     {"atan2f", (funcptr)mpfr_atan2, args2f, {NULL},
510         atan2_cases_float, 0},
511     /*
512      * The exponentials: exp, sinh, cosh. They overflow at around
513      * 710. exp and sinh are boring below 2^-54, cosh below 2^-27.
514      */
515     {"exp", (funcptr)mpfr_exp, args1, {NULL},
516         cases_uniform, 0x3c900000, 0x40878000},
517     {"expf", (funcptr)mpfr_exp, args1f, {NULL},
518         cases_uniform_float, 0x33800000, 0x42dc0000},
519     {"sinh", (funcptr)mpfr_sinh, args1, {NULL},
520         cases_uniform, 0x3c900000, 0x40878000},
521     {"sinhf", (funcptr)mpfr_sinh, args1f, {NULL},
522         cases_uniform_float, 0x33800000, 0x42dc0000},
523     {"cosh", (funcptr)mpfr_cosh, args1, {NULL},
524         cases_uniform, 0x3e400000, 0x40878000},
525     {"coshf", (funcptr)mpfr_cosh, args1f, {NULL},
526         cases_uniform_float, 0x39800000, 0x42dc0000},
527     /*
528      * tanh is stable past around 20. It's boring below 2^-27.
529      */
530     {"tanh", (funcptr)mpfr_tanh, args1, {NULL},
531         cases_uniform, 0x3e400000, 0x40340000},
532     {"tanhf", (funcptr)mpfr_tanh, args1f, {NULL},
533         cases_uniform, 0x39800000, 0x41100000},
534     /*
535      * log must be tested only on positive numbers, but can cover
536      * the whole range of positive nonzero finite numbers. It never
537      * gets boring.
538      */
539     {"log", (funcptr)mpfr_log, args1, {NULL}, log_cases, 0},
540     {"logf", (funcptr)mpfr_log, args1f, {NULL}, log_cases_float, 0},
541     {"log10", (funcptr)mpfr_log10, args1, {NULL}, log_cases, 0},
542     {"log10f", (funcptr)mpfr_log10, args1f, {NULL}, log_cases_float, 0},
543     /*
544      * pow.
545      */
546     {"pow", (funcptr)mpfr_pow, args2, {NULL}, pow_cases, 0},
547     {"powf", (funcptr)mpfr_pow, args2f, {NULL}, pow_cases_float, 0},
548     /*
549      * Trig range reduction. We are able to test this for all
550      * finite values, but will only bother for things between 2^-3
551      * and 2^+52.
552      */
553     {"rred", (funcptr)test_rred, rred, {NULL}, rred_cases, 0},
554     {"rredf", (funcptr)test_rred, rredf, {NULL}, rred_cases_float, 0},
555     /*
556      * Square and cube root.
557      */
558     {"sqrt", (funcptr)mpfr_sqrt, args1, {NULL}, log_cases, 0},
559     {"sqrtf", (funcptr)mpfr_sqrt, args1f, {NULL}, log_cases_float, 0},
560     {"cbrt", (funcptr)mpfr_cbrt, args1, {NULL}, log_cases, 0},
561     {"cbrtf", (funcptr)mpfr_cbrt, args1f, {NULL}, log_cases_float, 0},
562     {"hypot", (funcptr)mpfr_hypot, args2, {NULL}, atan2_cases, 0},
563     {"hypotf", (funcptr)mpfr_hypot, args2f, {NULL}, atan2_cases_float, 0},
564     /*
565      * Seminumerical functions.
566      */
567     {"ceil", (funcptr)test_ceil, semi1, {NULL}, cases_semi1},
568     {"ceilf", (funcptr)test_ceilf, semi1f, {NULL}, cases_semi1_float},
569     {"floor", (funcptr)test_floor, semi1, {NULL}, cases_semi1},
570     {"floorf", (funcptr)test_floorf, semi1f, {NULL}, cases_semi1_float},
571     {"fmod", (funcptr)test_fmod, semi2, {NULL}, cases_semi2},
572     {"fmodf", (funcptr)test_fmodf, semi2f, {NULL}, cases_semi2_float},
573     {"ldexp", (funcptr)test_ldexp, t_ldexp, {NULL}, cases_ldexp},
574     {"ldexpf", (funcptr)test_ldexpf, t_ldexpf, {NULL}, cases_ldexp_float},
575     {"frexp", (funcptr)test_frexp, t_frexp, {NULL}, cases_semi1},
576     {"frexpf", (funcptr)test_frexpf, t_frexpf, {NULL}, cases_semi1_float},
577     {"modf", (funcptr)test_modf, t_modf, {NULL}, cases_semi1},
578     {"modff", (funcptr)test_modff, t_modff, {NULL}, cases_semi1_float},
579 
580     /*
581      * Classification and more semi-numericals
582      */
583     {"copysign", (funcptr)test_copysign, semi2, {NULL}, cases_semi2},
584     {"copysignf", (funcptr)test_copysignf, semi2f, {NULL}, cases_semi2_float},
585     {"isfinite", (funcptr)test_isfinite, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
586     {"isfinitef", (funcptr)test_isfinitef, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
587     {"isinf", (funcptr)test_isinf, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
588     {"isinff", (funcptr)test_isinff, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
589     {"isnan", (funcptr)test_isnan, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
590     {"isnanf", (funcptr)test_isnanf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
591     {"isnormal", (funcptr)test_isnormal, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
592     {"isnormalf", (funcptr)test_isnormalf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
593     {"signbit", (funcptr)test_signbit, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
594     {"signbitf", (funcptr)test_signbitf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
595     {"fpclassify", (funcptr)test_fpclassify, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
596     {"fpclassifyf", (funcptr)test_fpclassifyf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
597     /*
598      * Comparisons
599      */
600     {"isgreater", (funcptr)test_isgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
601     {"isgreaterequal", (funcptr)test_isgreaterequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
602     {"isless", (funcptr)test_isless, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
603     {"islessequal", (funcptr)test_islessequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
604     {"islessgreater", (funcptr)test_islessgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
605     {"isunordered", (funcptr)test_isunordered, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
606 
607     {"isgreaterf", (funcptr)test_isgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
608     {"isgreaterequalf", (funcptr)test_isgreaterequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
609     {"islessf", (funcptr)test_islessf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
610     {"islessequalf", (funcptr)test_islessequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
611     {"islessgreaterf", (funcptr)test_islessgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
612     {"isunorderedf", (funcptr)test_isunorderedf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
613 
614     /*
615      * Inverse Hyperbolic functions
616      */
617     {"atanh", (funcptr)mpfr_atanh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
618     {"asinh", (funcptr)mpfr_asinh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
619     {"acosh", (funcptr)mpfr_acosh, args1, {NULL}, cases_uniform_positive, 0x3ff00000, 0x7fefffff},
620 
621     {"atanhf", (funcptr)mpfr_atanh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
622     {"asinhf", (funcptr)mpfr_asinh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
623     {"acoshf", (funcptr)mpfr_acosh, args1f, {NULL}, cases_uniform_float_positive, 0x3f800000, 0x7f800000},
624 
625     /*
626      * Everything else (sitting in a section down here at the bottom
627      * because historically they were not tested because we didn't
628      * have reference implementations for them)
629      */
630     {"csin", (funcptr)mpc_sin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
631     {"csinf", (funcptr)mpc_sin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
632     {"ccos", (funcptr)mpc_cos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
633     {"ccosf", (funcptr)mpc_cos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
634     {"ctan", (funcptr)mpc_tan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
635     {"ctanf", (funcptr)mpc_tan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
636 
637     {"casin", (funcptr)mpc_asin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
638     {"casinf", (funcptr)mpc_asin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
639     {"cacos", (funcptr)mpc_acos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
640     {"cacosf", (funcptr)mpc_acos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
641     {"catan", (funcptr)mpc_atan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
642     {"catanf", (funcptr)mpc_atan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
643 
644     {"csinh", (funcptr)mpc_sinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
645     {"csinhf", (funcptr)mpc_sinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
646     {"ccosh", (funcptr)mpc_cosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
647     {"ccoshf", (funcptr)mpc_cosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
648     {"ctanh", (funcptr)mpc_tanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
649     {"ctanhf", (funcptr)mpc_tanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
650 
651     {"casinh", (funcptr)mpc_asinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
652     {"casinhf", (funcptr)mpc_asinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
653     {"cacosh", (funcptr)mpc_acosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
654     {"cacoshf", (funcptr)mpc_acosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
655     {"catanh", (funcptr)mpc_atanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
656     {"catanhf", (funcptr)mpc_atanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
657 
658     {"cexp", (funcptr)mpc_exp, args1c, {NULL}, complex_cases_uniform, 0x3c900000, 0x40862000},
659     {"cpow", (funcptr)test_cpow, args2c, {NULL}, complex_pow_cases, 0x3fc00000, 0x40000000},
660     {"clog", (funcptr)mpc_log, args1c, {NULL}, complex_log_cases, 0, 0},
661     {"csqrt", (funcptr)mpc_sqrt, args1c, {NULL}, complex_log_cases, 0, 0},
662 
663     {"cexpf", (funcptr)mpc_exp, args1fc, {NULL}, complex_cases_uniform_float, 0x24800000, 0x42b00000},
664     {"cpowf", (funcptr)test_cpow, args2fc, {NULL}, complex_pow_cases_float, 0x3e000000, 0x41000000},
665     {"clogf", (funcptr)mpc_log, args1fc, {NULL}, complex_log_cases_float, 0, 0},
666     {"csqrtf", (funcptr)mpc_sqrt, args1fc, {NULL}, complex_log_cases_float, 0, 0},
667 
668     {"cdiv", (funcptr)mpc_div, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
669     {"cmul", (funcptr)mpc_mul, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
670     {"cadd", (funcptr)mpc_add, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
671     {"csub", (funcptr)mpc_sub, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
672 
673     {"cdivf", (funcptr)mpc_div, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
674     {"cmulf", (funcptr)mpc_mul, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
675     {"caddf", (funcptr)mpc_add, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
676     {"csubf", (funcptr)mpc_sub, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
677 
678     {"cabsf", (funcptr)mpc_abs, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
679     {"cabs", (funcptr)mpc_abs, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
680     {"cargf", (funcptr)mpc_arg, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
681     {"carg", (funcptr)mpc_arg, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
682     {"cimagf", (funcptr)mpc_imag, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
683     {"cimag", (funcptr)mpc_imag, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
684     {"conjf", (funcptr)mpc_conj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
685     {"conj", (funcptr)mpc_conj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
686     {"cprojf", (funcptr)mpc_proj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
687     {"cproj", (funcptr)mpc_proj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
688     {"crealf", (funcptr)mpc_real, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
689     {"creal", (funcptr)mpc_real, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
690     {"erfcf", (funcptr)mpfr_erfc, args1f, {NULL}, cases_biased_float, 0x1e800000, 0x41000000},
691     {"erfc", (funcptr)mpfr_erfc, args1, {NULL}, cases_biased, 0x3bd00000, 0x403c0000},
692     {"erff", (funcptr)mpfr_erf, args1f, {NULL}, cases_biased_float, 0x03800000, 0x40700000},
693     {"erf", (funcptr)mpfr_erf, args1, {NULL}, cases_biased, 0x00800000, 0x40200000},
694     {"exp2f", (funcptr)mpfr_exp2, args1f, {NULL}, cases_uniform_float, 0x33800000, 0x43c00000},
695     {"exp2", (funcptr)mpfr_exp2, args1, {NULL}, cases_uniform, 0x3ca00000, 0x40a00000},
696     {"expm1f", (funcptr)mpfr_expm1, args1f, {NULL}, cases_uniform_float, 0x33000000, 0x43800000},
697     {"expm1", (funcptr)mpfr_expm1, args1, {NULL}, cases_uniform, 0x3c900000, 0x409c0000},
698     {"fmaxf", (funcptr)mpfr_max, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
699     {"fmax", (funcptr)mpfr_max, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
700     {"fminf", (funcptr)mpfr_min, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
701     {"fmin", (funcptr)mpfr_min, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
702     {"lgammaf", (funcptr)test_lgamma, args1f, {NULL}, cases_uniform_float, 0x01800000, 0x7f800000},
703     {"lgamma", (funcptr)test_lgamma, args1, {NULL}, cases_uniform, 0x00100000, 0x7ff00000},
704     {"log1pf", (funcptr)mpfr_log1p, args1f, {NULL}, log1p_cases_float, 0, 0},
705     {"log1p", (funcptr)mpfr_log1p, args1, {NULL}, log1p_cases, 0, 0},
706     {"log2f", (funcptr)mpfr_log2, args1f, {NULL}, log_cases_float, 0, 0},
707     {"log2", (funcptr)mpfr_log2, args1, {NULL}, log_cases, 0, 0},
708     {"tgammaf", (funcptr)mpfr_gamma, args1f, {NULL}, cases_uniform_float, 0x2f800000, 0x43000000},
709     {"tgamma", (funcptr)mpfr_gamma, args1, {NULL}, cases_uniform, 0x3c000000, 0x40800000},
710 };
711 
712 const int nfunctions = ( sizeof(functions)/sizeof(*functions) );
713 
714 #define random_sign ( random_upto(1) ? 0x80000000 : 0 )
715 
716 static int iszero(uint32 *x) {
717     return !((x[0] & 0x7FFFFFFF) || x[1]);
718 }
719 
720 
721 static void complex_log_cases(uint32 *out, uint32 param1,
722                               uint32 param2) {
723     cases_uniform(out,0x00100000,0x7fefffff);
724     cases_uniform(out+2,0x00100000,0x7fefffff);
725 }
726 
727 
728 static void complex_log_cases_float(uint32 *out, uint32 param1,
729                                     uint32 param2) {
730     cases_uniform_float(out,0x00800000,0x7f7fffff);
731     cases_uniform_float(out+2,0x00800000,0x7f7fffff);
732 }
733 
734 static void complex_cases_biased(uint32 *out, uint32 lowbound,
735                                  uint32 highbound) {
736     cases_biased(out,lowbound,highbound);
737     cases_biased(out+2,lowbound,highbound);
738 }
739 
740 static void complex_cases_biased_float(uint32 *out, uint32 lowbound,
741                                        uint32 highbound) {
742     cases_biased_float(out,lowbound,highbound);
743     cases_biased_float(out+2,lowbound,highbound);
744 }
745 
746 static void complex_cases_uniform(uint32 *out, uint32 lowbound,
747                                  uint32 highbound) {
748     cases_uniform(out,lowbound,highbound);
749     cases_uniform(out+2,lowbound,highbound);
750 }
751 
752 static void complex_cases_uniform_float(uint32 *out, uint32 lowbound,
753                                        uint32 highbound) {
754     cases_uniform_float(out,lowbound,highbound);
755     cases_uniform(out+2,lowbound,highbound);
756 }
757 
758 static void complex_pow_cases(uint32 *out, uint32 lowbound,
759                               uint32 highbound) {
760     /*
761      * Generating non-overflowing cases for complex pow:
762      *
763      * Our base has both parts within the range [1/2,2], and hence
764      * its magnitude is within [1/2,2*sqrt(2)]. The magnitude of its
765      * logarithm in base 2 is therefore at most the magnitude of
766      * (log2(2*sqrt(2)) + i*pi/log(2)), or in other words
767      * hypot(3/2,pi/log(2)) = 4.77. So the magnitude of the exponent
768      * input must be at most our output magnitude limit (as a power
769      * of two) divided by that.
770      *
771      * I also set the output magnitude limit a bit low, because we
772      * don't guarantee (and neither does glibc) to prevent internal
773      * overflow in cases where the output _magnitude_ overflows but
774      * scaling it back down by cos and sin of the argument brings it
775      * back in range.
776      */
777     cases_uniform(out,0x3fe00000, 0x40000000);
778     cases_uniform(out+2,0x3fe00000, 0x40000000);
779     cases_uniform(out+4,0x3f800000, 0x40600000);
780     cases_uniform(out+6,0x3f800000, 0x40600000);
781 }
782 
783 static void complex_pow_cases_float(uint32 *out, uint32 lowbound,
784                                     uint32 highbound) {
785     /*
786      * Reasoning as above, though of course the detailed numbers are
787      * all different.
788      */
789     cases_uniform_float(out,0x3f000000, 0x40000000);
790     cases_uniform_float(out+2,0x3f000000, 0x40000000);
791     cases_uniform_float(out+4,0x3d600000, 0x41900000);
792     cases_uniform_float(out+6,0x3d600000, 0x41900000);
793 }
794 
795 static void complex_arithmetic_cases(uint32 *out, uint32 lowbound,
796                                      uint32 highbound) {
797     cases_uniform(out,0,0x7fefffff);
798     cases_uniform(out+2,0,0x7fefffff);
799     cases_uniform(out+4,0,0x7fefffff);
800     cases_uniform(out+6,0,0x7fefffff);
801 }
802 
803 static void complex_arithmetic_cases_float(uint32 *out, uint32 lowbound,
804                                            uint32 highbound) {
805     cases_uniform_float(out,0,0x7f7fffff);
806     cases_uniform_float(out+2,0,0x7f7fffff);
807     cases_uniform_float(out+4,0,0x7f7fffff);
808     cases_uniform_float(out+6,0,0x7f7fffff);
809 }
810 
811 /*
812  * Included from fplib test suite, in a compact self-contained
813  * form.
814  */
815 
816 void float32_case(uint32 *ret) {
817     int n, bits;
818     uint32 f;
819     static int premax, preptr;
820     static uint32 *specifics = NULL;
821 
822     if (!ret) {
823         if (specifics)
824             free(specifics);
825         specifics = NULL;
826         premax = preptr = 0;
827         return;
828     }
829 
830     if (!specifics) {
831         int exps[] = {
832             -127, -126, -125, -24, -4, -3, -2, -1, 0, 1, 2, 3, 4,
833                 24, 29, 30, 31, 32, 61, 62, 63, 64, 126, 127, 128
834         };
835         int sign, eptr;
836         uint32 se, j;
837         /*
838          * We want a cross product of:
839          *  - each of two sign bits (2)
840          *  - each of the above (unbiased) exponents (25)
841          *  - the following list of fraction parts:
842          *    * zero (1)
843          *    * all bits (1)
844          *    * one-bit-set (23)
845          *    * one-bit-clear (23)
846          *    * one-bit-and-above (20: 3 are duplicates)
847          *    * one-bit-and-below (20: 3 are duplicates)
848          *    (total 88)
849          *  (total 4400)
850          */
851         specifics = malloc(4400 * sizeof(*specifics));
852         preptr = 0;
853         for (sign = 0; sign <= 1; sign++) {
854             for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
855                 se = (sign ? 0x80000000 : 0) | ((exps[eptr]+127) << 23);
856                 /*
857                  * Zero.
858                  */
859                 specifics[preptr++] = se | 0;
860                 /*
861                  * All bits.
862                  */
863                 specifics[preptr++] = se | 0x7FFFFF;
864                 /*
865                  * One-bit-set.
866                  */
867                 for (j = 1; j && j <= 0x400000; j <<= 1)
868                     specifics[preptr++] = se | j;
869                 /*
870                  * One-bit-clear.
871                  */
872                 for (j = 1; j && j <= 0x400000; j <<= 1)
873                     specifics[preptr++] = se | (0x7FFFFF ^ j);
874                 /*
875                  * One-bit-and-everything-below.
876                  */
877                 for (j = 2; j && j <= 0x100000; j <<= 1)
878                     specifics[preptr++] = se | (2*j-1);
879                 /*
880                  * One-bit-and-everything-above.
881                  */
882                 for (j = 4; j && j <= 0x200000; j <<= 1)
883                     specifics[preptr++] = se | (0x7FFFFF ^ (j-1));
884                 /*
885                  * Done.
886                  */
887             }
888         }
889         assert(preptr == 4400);
890         premax = preptr;
891     }
892 
893     /*
894      * Decide whether to return a pre or a random case.
895      */
896     n = random32() % (premax+1);
897     if (n < preptr) {
898         /*
899          * Return pre[n].
900          */
901         uint32 t;
902         t = specifics[n];
903         specifics[n] = specifics[preptr-1];
904         specifics[preptr-1] = t;        /* (not really needed) */
905         preptr--;
906         *ret = t;
907     } else {
908         /*
909          * Random case.
910          * Sign and exponent:
911          *  - FIXME
912          * Significand:
913          *  - with prob 1/5, a totally random bit pattern
914          *  - with prob 1/5, all 1s down to some point and then random
915          *  - with prob 1/5, all 1s up to some point and then random
916          *  - with prob 1/5, all 0s down to some point and then random
917          *  - with prob 1/5, all 0s up to some point and then random
918          */
919         n = random32() % 5;
920         f = random32();                /* some random bits */
921         bits = random32() % 22 + 1;    /* 1-22 */
922         switch (n) {
923           case 0:
924             break;                     /* leave f alone */
925           case 1:
926             f |= (1<<bits)-1;
927             break;
928           case 2:
929             f &= ~((1<<bits)-1);
930             break;
931           case 3:
932             f |= ~((1<<bits)-1);
933             break;
934           case 4:
935             f &= (1<<bits)-1;
936             break;
937         }
938         f &= 0x7FFFFF;
939         f |= (random32() & 0xFF800000);/* FIXME - do better */
940         *ret = f;
941     }
942 }
943 static void float64_case(uint32 *ret) {
944     int n, bits;
945     uint32 f, g;
946     static int premax, preptr;
947     static uint32 (*specifics)[2] = NULL;
948 
949     if (!ret) {
950         if (specifics)
951             free(specifics);
952         specifics = NULL;
953         premax = preptr = 0;
954         return;
955     }
956 
957     if (!specifics) {
958         int exps[] = {
959             -1023, -1022, -1021, -129, -128, -127, -126, -53, -4, -3, -2,
960             -1, 0, 1, 2, 3, 4, 29, 30, 31, 32, 53, 61, 62, 63, 64, 127,
961             128, 129, 1022, 1023, 1024
962         };
963         int sign, eptr;
964         uint32 se, j;
965         /*
966          * We want a cross product of:
967          *  - each of two sign bits (2)
968          *  - each of the above (unbiased) exponents (32)
969          *  - the following list of fraction parts:
970          *    * zero (1)
971          *    * all bits (1)
972          *    * one-bit-set (52)
973          *    * one-bit-clear (52)
974          *    * one-bit-and-above (49: 3 are duplicates)
975          *    * one-bit-and-below (49: 3 are duplicates)
976          *    (total 204)
977          *  (total 13056)
978          */
979         specifics = malloc(13056 * sizeof(*specifics));
980         preptr = 0;
981         for (sign = 0; sign <= 1; sign++) {
982             for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
983                 se = (sign ? 0x80000000 : 0) | ((exps[eptr]+1023) << 20);
984                 /*
985                  * Zero.
986                  */
987                 specifics[preptr][0] = 0;
988                 specifics[preptr][1] = 0;
989                 specifics[preptr++][0] |= se;
990                 /*
991                  * All bits.
992                  */
993                 specifics[preptr][0] = 0xFFFFF;
994                 specifics[preptr][1] = ~0;
995                 specifics[preptr++][0] |= se;
996                 /*
997                  * One-bit-set.
998                  */
999                 for (j = 1; j && j <= 0x80000000; j <<= 1) {
1000                     specifics[preptr][0] = 0;
1001                     specifics[preptr][1] = j;
1002                     specifics[preptr++][0] |= se;
1003                     if (j & 0xFFFFF) {
1004                         specifics[preptr][0] = j;
1005                         specifics[preptr][1] = 0;
1006                         specifics[preptr++][0] |= se;
1007                     }
1008                 }
1009                 /*
1010                  * One-bit-clear.
1011                  */
1012                 for (j = 1; j && j <= 0x80000000; j <<= 1) {
1013                     specifics[preptr][0] = 0xFFFFF;
1014                     specifics[preptr][1] = ~j;
1015                     specifics[preptr++][0] |= se;
1016                     if (j & 0xFFFFF) {
1017                         specifics[preptr][0] = 0xFFFFF ^ j;
1018                         specifics[preptr][1] = ~0;
1019                         specifics[preptr++][0] |= se;
1020                     }
1021                 }
1022                 /*
1023                  * One-bit-and-everything-below.
1024                  */
1025                 for (j = 2; j && j <= 0x80000000; j <<= 1) {
1026                     specifics[preptr][0] = 0;
1027                     specifics[preptr][1] = 2*j-1;
1028                     specifics[preptr++][0] |= se;
1029                 }
1030                 for (j = 1; j && j <= 0x20000; j <<= 1) {
1031                     specifics[preptr][0] = 2*j-1;
1032                     specifics[preptr][1] = ~0;
1033                     specifics[preptr++][0] |= se;
1034                 }
1035                 /*
1036                  * One-bit-and-everything-above.
1037                  */
1038                 for (j = 4; j && j <= 0x80000000; j <<= 1) {
1039                     specifics[preptr][0] = 0xFFFFF;
1040                     specifics[preptr][1] = ~(j-1);
1041                     specifics[preptr++][0] |= se;
1042                 }
1043                 for (j = 1; j && j <= 0x40000; j <<= 1) {
1044                     specifics[preptr][0] = 0xFFFFF ^ (j-1);
1045                     specifics[preptr][1] = 0;
1046                     specifics[preptr++][0] |= se;
1047                 }
1048                 /*
1049                  * Done.
1050                  */
1051             }
1052         }
1053         assert(preptr == 13056);
1054         premax = preptr;
1055     }
1056 
1057     /*
1058      * Decide whether to return a pre or a random case.
1059      */
1060     n = (uint32) random32() % (uint32) (premax+1);
1061     if (n < preptr) {
1062         /*
1063          * Return pre[n].
1064          */
1065         uint32 t;
1066         t = specifics[n][0];
1067         specifics[n][0] = specifics[preptr-1][0];
1068         specifics[preptr-1][0] = t;     /* (not really needed) */
1069         ret[0] = t;
1070         t = specifics[n][1];
1071         specifics[n][1] = specifics[preptr-1][1];
1072         specifics[preptr-1][1] = t;     /* (not really needed) */
1073         ret[1] = t;
1074         preptr--;
1075     } else {
1076         /*
1077          * Random case.
1078          * Sign and exponent:
1079          *  - FIXME
1080          * Significand:
1081          *  - with prob 1/5, a totally random bit pattern
1082          *  - with prob 1/5, all 1s down to some point and then random
1083          *  - with prob 1/5, all 1s up to some point and then random
1084          *  - with prob 1/5, all 0s down to some point and then random
1085          *  - with prob 1/5, all 0s up to some point and then random
1086          */
1087         n = random32() % 5;
1088         f = random32();                /* some random bits */
1089         g = random32();                /* some random bits */
1090         bits = random32() % 51 + 1;    /* 1-51 */
1091         switch (n) {
1092           case 0:
1093             break;                     /* leave f alone */
1094           case 1:
1095             if (bits <= 32)
1096                 f |= (1<<bits)-1;
1097             else {
1098                 bits -= 32;
1099                 g |= (1<<bits)-1;
1100                 f = ~0;
1101             }
1102             break;
1103           case 2:
1104             if (bits <= 32)
1105                 f &= ~((1<<bits)-1);
1106             else {
1107                 bits -= 32;
1108                 g &= ~((1<<bits)-1);
1109                 f = 0;
1110             }
1111             break;
1112           case 3:
1113             if (bits <= 32)
1114                 g &= (1<<bits)-1;
1115             else {
1116                 bits -= 32;
1117                 f &= (1<<bits)-1;
1118                 g = 0;
1119             }
1120             break;
1121           case 4:
1122             if (bits <= 32)
1123                 g |= ~((1<<bits)-1);
1124             else {
1125                 bits -= 32;
1126                 f |= ~((1<<bits)-1);
1127                 g = ~0;
1128             }
1129             break;
1130         }
1131         g &= 0xFFFFF;
1132         g |= (random32() & 0xFFF00000);/* FIXME - do better */
1133         ret[0] = g;
1134         ret[1] = f;
1135     }
1136 }
1137 
1138 static void cases_biased(uint32 *out, uint32 lowbound,
1139                           uint32 highbound) {
1140     do {
1141         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1142         out[1] = random_upto(0xFFFFFFFF);
1143         out[0] |= random_sign;
1144     } while (iszero(out));             /* rule out zero */
1145 }
1146 
1147 static void cases_biased_positive(uint32 *out, uint32 lowbound,
1148                                   uint32 highbound) {
1149     do {
1150         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1151         out[1] = random_upto(0xFFFFFFFF);
1152     } while (iszero(out));             /* rule out zero */
1153 }
1154 
1155 static void cases_biased_float(uint32 *out, uint32 lowbound,
1156                                uint32 highbound) {
1157     do {
1158         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1159         out[1] = 0;
1160         out[0] |= random_sign;
1161     } while (iszero(out));             /* rule out zero */
1162 }
1163 
1164 static void cases_semi1(uint32 *out, uint32 param1,
1165                         uint32 param2) {
1166     float64_case(out);
1167 }
1168 
1169 static void cases_semi1_float(uint32 *out, uint32 param1,
1170                               uint32 param2) {
1171     float32_case(out);
1172 }
1173 
1174 static void cases_semi2(uint32 *out, uint32 param1,
1175                         uint32 param2) {
1176     float64_case(out);
1177     float64_case(out+2);
1178 }
1179 
1180 static void cases_semi2_float(uint32 *out, uint32 param1,
1181                         uint32 param2) {
1182     float32_case(out);
1183     float32_case(out+2);
1184 }
1185 
1186 static void cases_ldexp(uint32 *out, uint32 param1,
1187                         uint32 param2) {
1188     float64_case(out);
1189     out[2] = random_upto(2048)-1024;
1190 }
1191 
1192 static void cases_ldexp_float(uint32 *out, uint32 param1,
1193                               uint32 param2) {
1194     float32_case(out);
1195     out[2] = random_upto(256)-128;
1196 }
1197 
1198 static void cases_uniform(uint32 *out, uint32 lowbound,
1199                           uint32 highbound) {
1200     do {
1201         out[0] = highbound - random_upto(highbound-lowbound);
1202         out[1] = random_upto(0xFFFFFFFF);
1203         out[0] |= random_sign;
1204     } while (iszero(out));             /* rule out zero */
1205 }
1206 static void cases_uniform_float(uint32 *out, uint32 lowbound,
1207                                 uint32 highbound) {
1208     do {
1209         out[0] = highbound - random_upto(highbound-lowbound);
1210         out[1] = 0;
1211         out[0] |= random_sign;
1212     } while (iszero(out));             /* rule out zero */
1213 }
1214 
1215 static void cases_uniform_positive(uint32 *out, uint32 lowbound,
1216                                    uint32 highbound) {
1217     do {
1218         out[0] = highbound - random_upto(highbound-lowbound);
1219         out[1] = random_upto(0xFFFFFFFF);
1220     } while (iszero(out));             /* rule out zero */
1221 }
1222 static void cases_uniform_float_positive(uint32 *out, uint32 lowbound,
1223                                          uint32 highbound) {
1224     do {
1225         out[0] = highbound - random_upto(highbound-lowbound);
1226         out[1] = 0;
1227     } while (iszero(out));             /* rule out zero */
1228 }
1229 
1230 
1231 static void log_cases(uint32 *out, uint32 param1,
1232                       uint32 param2) {
1233     do {
1234         out[0] = random_upto(0x7FEFFFFF);
1235         out[1] = random_upto(0xFFFFFFFF);
1236     } while (iszero(out));             /* rule out zero */
1237 }
1238 
1239 static void log_cases_float(uint32 *out, uint32 param1,
1240                             uint32 param2) {
1241     do {
1242         out[0] = random_upto(0x7F7FFFFF);
1243         out[1] = 0;
1244     } while (iszero(out));             /* rule out zero */
1245 }
1246 
1247 static void log1p_cases(uint32 *out, uint32 param1, uint32 param2)
1248 {
1249     uint32 sign = random_sign;
1250     if (sign == 0) {
1251         cases_uniform_positive(out, 0x3c700000, 0x43400000);
1252     } else {
1253         cases_uniform_positive(out, 0x3c000000, 0x3ff00000);
1254     }
1255     out[0] |= sign;
1256 }
1257 
1258 static void log1p_cases_float(uint32 *out, uint32 param1, uint32 param2)
1259 {
1260     uint32 sign = random_sign;
1261     if (sign == 0) {
1262         cases_uniform_float_positive(out, 0x32000000, 0x4c000000);
1263     } else {
1264         cases_uniform_float_positive(out, 0x30000000, 0x3f800000);
1265     }
1266     out[0] |= sign;
1267 }
1268 
1269 static void minmax_cases(uint32 *out, uint32 param1, uint32 param2)
1270 {
1271     do {
1272         out[0] = random_upto(0x7FEFFFFF);
1273         out[1] = random_upto(0xFFFFFFFF);
1274         out[0] |= random_sign;
1275         out[2] = random_upto(0x7FEFFFFF);
1276         out[3] = random_upto(0xFFFFFFFF);
1277         out[2] |= random_sign;
1278     } while (iszero(out));             /* rule out zero */
1279 }
1280 
1281 static void minmax_cases_float(uint32 *out, uint32 param1, uint32 param2)
1282 {
1283     do {
1284         out[0] = random_upto(0x7F7FFFFF);
1285         out[1] = 0;
1286         out[0] |= random_sign;
1287         out[2] = random_upto(0x7F7FFFFF);
1288         out[3] = 0;
1289         out[2] |= random_sign;
1290     } while (iszero(out));             /* rule out zero */
1291 }
1292 
1293 static void rred_cases(uint32 *out, uint32 param1,
1294                        uint32 param2) {
1295     do {
1296         out[0] = ((0x3fc00000 + random_upto(0x036fffff)) |
1297                   (random_upto(1) << 31));
1298         out[1] = random_upto(0xFFFFFFFF);
1299     } while (iszero(out));             /* rule out zero */
1300 }
1301 
1302 static void rred_cases_float(uint32 *out, uint32 param1,
1303                              uint32 param2) {
1304     do {
1305         out[0] = ((0x3e000000 + random_upto(0x0cffffff)) |
1306                   (random_upto(1) << 31));
1307         out[1] = 0;                    /* for iszero */
1308     } while (iszero(out));             /* rule out zero */
1309 }
1310 
1311 static void atan2_cases(uint32 *out, uint32 param1,
1312                         uint32 param2) {
1313     do {
1314         int expdiff = random_upto(101)-51;
1315         int swap;
1316         if (expdiff < 0) {
1317             expdiff = -expdiff;
1318             swap = 2;
1319         } else
1320             swap = 0;
1321         out[swap ^ 0] = random_upto(0x7FEFFFFF-((expdiff+1)<<20));
1322         out[swap ^ 2] = random_upto(((expdiff+1)<<20)-1) + out[swap ^ 0];
1323         out[1] = random_upto(0xFFFFFFFF);
1324         out[3] = random_upto(0xFFFFFFFF);
1325         out[0] |= random_sign;
1326         out[2] |= random_sign;
1327     } while (iszero(out) || iszero(out+2));/* rule out zero */
1328 }
1329 
1330 static void atan2_cases_float(uint32 *out, uint32 param1,
1331                               uint32 param2) {
1332     do {
1333         int expdiff = random_upto(44)-22;
1334         int swap;
1335         if (expdiff < 0) {
1336             expdiff = -expdiff;
1337             swap = 2;
1338         } else
1339             swap = 0;
1340         out[swap ^ 0] = random_upto(0x7F7FFFFF-((expdiff+1)<<23));
1341         out[swap ^ 2] = random_upto(((expdiff+1)<<23)-1) + out[swap ^ 0];
1342         out[0] |= random_sign;
1343         out[2] |= random_sign;
1344         out[1] = out[3] = 0;           /* for iszero */
1345     } while (iszero(out) || iszero(out+2));/* rule out zero */
1346 }
1347 
1348 static void pow_cases(uint32 *out, uint32 param1,
1349                       uint32 param2) {
1350     /*
1351      * Pick an exponent e (-0x33 to +0x7FE) for x, and here's the
1352      * range of numbers we can use as y:
1353      *
1354      * For e < 0x3FE, the range is [-0x400/(0x3FE-e),+0x432/(0x3FE-e)]
1355      * For e > 0x3FF, the range is [-0x432/(e-0x3FF),+0x400/(e-0x3FF)]
1356      *
1357      * For e == 0x3FE or e == 0x3FF, the range gets infinite at one
1358      * end or the other, so we have to be cleverer: pick a number n
1359      * of useful bits in the mantissa (1 thru 52, so 1 must imply
1360      * 0x3ff00000.00000001 whereas 52 is anything at least as big
1361      * as 0x3ff80000.00000000; for e == 0x3fe, 1 necessarily means
1362      * 0x3fefffff.ffffffff and 52 is anything at most as big as
1363      * 0x3fe80000.00000000). Then, as it happens, a sensible
1364      * maximum power is 2^(63-n) for e == 0x3fe, and 2^(62-n) for
1365      * e == 0x3ff.
1366      *
1367      * We inevitably get some overflows in approximating the log
1368      * curves by these nasty step functions, but that's all right -
1369      * we do want _some_ overflows to be tested.
1370      *
1371      * Having got that, then, it's just a matter of inventing a
1372      * probability distribution for all of this.
1373      */
1374     int e, n;
1375     uint32 dmin, dmax;
1376     const uint32 pmin = 0x3e100000;
1377 
1378     /*
1379      * Generate exponents in a slightly biased fashion.
1380      */
1381     e = (random_upto(1) ?              /* is exponent small or big? */
1382          0x3FE - random_upto_biased(0x431,2) :   /* small */
1383          0x3FF + random_upto_biased(0x3FF,2));   /* big */
1384 
1385     /*
1386      * Now split into cases.
1387      */
1388     if (e < 0x3FE || e > 0x3FF) {
1389         uint32 imin, imax;
1390         if (e < 0x3FE)
1391             imin = 0x40000 / (0x3FE - e), imax = 0x43200 / (0x3FE - e);
1392         else
1393             imin = 0x43200 / (e - 0x3FF), imax = 0x40000 / (e - 0x3FF);
1394         /* Power range runs from -imin to imax. Now convert to doubles */
1395         dmin = doubletop(imin, -8);
1396         dmax = doubletop(imax, -8);
1397         /* Compute the number of mantissa bits. */
1398         n = (e > 0 ? 53 : 52+e);
1399     } else {
1400         /* Critical exponents. Generate a top bit index. */
1401         n = 52 - random_upto_biased(51, 4);
1402         if (e == 0x3FE)
1403             dmax = 63 - n;
1404         else
1405             dmax = 62 - n;
1406         dmax = (dmax << 20) + 0x3FF00000;
1407         dmin = dmax;
1408     }
1409     /* Generate a mantissa. */
1410     if (n <= 32) {
1411         out[0] = 0;
1412         out[1] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
1413     } else if (n == 33) {
1414         out[0] = 1;
1415         out[1] = random_upto(0xFFFFFFFF);
1416     } else if (n > 33) {
1417         out[0] = random_upto((1 << (n-33)) - 1) + (1 << (n-33));
1418         out[1] = random_upto(0xFFFFFFFF);
1419     }
1420     /* Negate the mantissa if e == 0x3FE. */
1421     if (e == 0x3FE) {
1422         out[1] = -out[1];
1423         out[0] = -out[0];
1424         if (out[1]) out[0]--;
1425     }
1426     /* Put the exponent on. */
1427     out[0] &= 0xFFFFF;
1428     out[0] |= ((e > 0 ? e : 0) << 20);
1429     /* Generate a power. Powers don't go below 2^-30. */
1430     if (random_upto(1)) {
1431         /* Positive power */
1432         out[2] = dmax - random_upto_biased(dmax-pmin, 10);
1433     } else {
1434         /* Negative power */
1435         out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
1436     }
1437     out[3] = random_upto(0xFFFFFFFF);
1438 }
1439 static void pow_cases_float(uint32 *out, uint32 param1,
1440                             uint32 param2) {
1441     /*
1442      * Pick an exponent e (-0x16 to +0xFE) for x, and here's the
1443      * range of numbers we can use as y:
1444      *
1445      * For e < 0x7E, the range is [-0x80/(0x7E-e),+0x95/(0x7E-e)]
1446      * For e > 0x7F, the range is [-0x95/(e-0x7F),+0x80/(e-0x7F)]
1447      *
1448      * For e == 0x7E or e == 0x7F, the range gets infinite at one
1449      * end or the other, so we have to be cleverer: pick a number n
1450      * of useful bits in the mantissa (1 thru 23, so 1 must imply
1451      * 0x3f800001 whereas 23 is anything at least as big as
1452      * 0x3fc00000; for e == 0x7e, 1 necessarily means 0x3f7fffff
1453      * and 23 is anything at most as big as 0x3f400000). Then, as
1454      * it happens, a sensible maximum power is 2^(31-n) for e ==
1455      * 0x7e, and 2^(30-n) for e == 0x7f.
1456      *
1457      * We inevitably get some overflows in approximating the log
1458      * curves by these nasty step functions, but that's all right -
1459      * we do want _some_ overflows to be tested.
1460      *
1461      * Having got that, then, it's just a matter of inventing a
1462      * probability distribution for all of this.
1463      */
1464     int e, n;
1465     uint32 dmin, dmax;
1466     const uint32 pmin = 0x38000000;
1467 
1468     /*
1469      * Generate exponents in a slightly biased fashion.
1470      */
1471     e = (random_upto(1) ?              /* is exponent small or big? */
1472          0x7E - random_upto_biased(0x94,2) :   /* small */
1473          0x7F + random_upto_biased(0x7f,2));   /* big */
1474 
1475     /*
1476      * Now split into cases.
1477      */
1478     if (e < 0x7E || e > 0x7F) {
1479         uint32 imin, imax;
1480         if (e < 0x7E)
1481             imin = 0x8000 / (0x7e - e), imax = 0x9500 / (0x7e - e);
1482         else
1483             imin = 0x9500 / (e - 0x7f), imax = 0x8000 / (e - 0x7f);
1484         /* Power range runs from -imin to imax. Now convert to doubles */
1485         dmin = floatval(imin, -8);
1486         dmax = floatval(imax, -8);
1487         /* Compute the number of mantissa bits. */
1488         n = (e > 0 ? 24 : 23+e);
1489     } else {
1490         /* Critical exponents. Generate a top bit index. */
1491         n = 23 - random_upto_biased(22, 4);
1492         if (e == 0x7E)
1493             dmax = 31 - n;
1494         else
1495             dmax = 30 - n;
1496         dmax = (dmax << 23) + 0x3F800000;
1497         dmin = dmax;
1498     }
1499     /* Generate a mantissa. */
1500     out[0] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
1501     out[1] = 0;
1502     /* Negate the mantissa if e == 0x7E. */
1503     if (e == 0x7E) {
1504         out[0] = -out[0];
1505     }
1506     /* Put the exponent on. */
1507     out[0] &= 0x7FFFFF;
1508     out[0] |= ((e > 0 ? e : 0) << 23);
1509     /* Generate a power. Powers don't go below 2^-15. */
1510     if (random_upto(1)) {
1511         /* Positive power */
1512         out[2] = dmax - random_upto_biased(dmax-pmin, 10);
1513     } else {
1514         /* Negative power */
1515         out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
1516     }
1517     out[3] = 0;
1518 }
1519 
1520 void vet_for_decline(Testable *fn, uint32 *args, uint32 *result, int got_errno_in) {
1521     int declined = 0;
1522 
1523     switch (fn->type) {
1524       case args1:
1525       case rred:
1526       case semi1:
1527       case t_frexp:
1528       case t_modf:
1529       case classify:
1530       case t_ldexp:
1531         declined |= lib_fo && is_dhard(args+0);
1532         break;
1533       case args1f:
1534       case rredf:
1535       case semi1f:
1536       case t_frexpf:
1537       case t_modff:
1538       case classifyf:
1539         declined |= lib_fo && is_shard(args+0);
1540         break;
1541       case args2:
1542       case semi2:
1543       case args1c:
1544       case args1cr:
1545       case compare:
1546         declined |= lib_fo && is_dhard(args+0);
1547         declined |= lib_fo && is_dhard(args+2);
1548         break;
1549       case args2f:
1550       case semi2f:
1551       case t_ldexpf:
1552       case comparef:
1553       case args1fc:
1554       case args1fcr:
1555         declined |= lib_fo && is_shard(args+0);
1556         declined |= lib_fo && is_shard(args+2);
1557         break;
1558       case args2c:
1559         declined |= lib_fo && is_dhard(args+0);
1560         declined |= lib_fo && is_dhard(args+2);
1561         declined |= lib_fo && is_dhard(args+4);
1562         declined |= lib_fo && is_dhard(args+6);
1563         break;
1564       case args2fc:
1565         declined |= lib_fo && is_shard(args+0);
1566         declined |= lib_fo && is_shard(args+2);
1567         declined |= lib_fo && is_shard(args+4);
1568         declined |= lib_fo && is_shard(args+6);
1569         break;
1570     }
1571 
1572     switch (fn->type) {
1573       case args1:              /* return an extra-precise result */
1574       case args2:
1575       case rred:
1576       case semi1:              /* return a double result */
1577       case semi2:
1578       case t_ldexp:
1579       case t_frexp:            /* return double * int */
1580       case args1cr:
1581         declined |= lib_fo && is_dhard(result);
1582         break;
1583       case args1f:
1584       case args2f:
1585       case rredf:
1586       case semi1f:
1587       case semi2f:
1588       case t_ldexpf:
1589       case args1fcr:
1590         declined |= lib_fo && is_shard(result);
1591         break;
1592       case t_modf:             /* return double * double */
1593         declined |= lib_fo && is_dhard(result+0);
1594         declined |= lib_fo && is_dhard(result+2);
1595         break;
1596       case t_modff:                    /* return float * float */
1597         declined |= lib_fo && is_shard(result+2);
1598         /* fall through */
1599       case t_frexpf:                   /* return float * int */
1600         declined |= lib_fo && is_shard(result+0);
1601         break;
1602       case args1c:
1603       case args2c:
1604         declined |= lib_fo && is_dhard(result+0);
1605         declined |= lib_fo && is_dhard(result+4);
1606         break;
1607       case args1fc:
1608       case args2fc:
1609         declined |= lib_fo && is_shard(result+0);
1610         declined |= lib_fo && is_shard(result+4);
1611         break;
1612     }
1613 
1614     /* Expect basic arithmetic tests to be declined if the command
1615      * line said that would happen */
1616     declined |= (lib_no_arith && (fn->func == (funcptr)mpc_add ||
1617                                   fn->func == (funcptr)mpc_sub ||
1618                                   fn->func == (funcptr)mpc_mul ||
1619                                   fn->func == (funcptr)mpc_div));
1620 
1621     if (!declined) {
1622         if (got_errno_in)
1623             ntests++;
1624         else
1625             ntests += 3;
1626     }
1627 }
1628 
1629 void docase(Testable *fn, uint32 *args) {
1630     uint32 result[8];  /* real part in first 4, imaginary part in last 4 */
1631     char *errstr = NULL;
1632     mpfr_t a, b, r;
1633     mpc_t ac, bc, rc;
1634     int rejected, printextra;
1635     wrapperctx ctx;
1636 
1637     mpfr_init2(a, MPFR_PREC);
1638     mpfr_init2(b, MPFR_PREC);
1639     mpfr_init2(r, MPFR_PREC);
1640     mpc_init2(ac, MPFR_PREC);
1641     mpc_init2(bc, MPFR_PREC);
1642     mpc_init2(rc, MPFR_PREC);
1643 
1644     printf("func=%s", fn->name);
1645 
1646     rejected = 0; /* FIXME */
1647 
1648     switch (fn->type) {
1649       case args1:
1650       case rred:
1651       case semi1:
1652       case t_frexp:
1653       case t_modf:
1654       case classify:
1655         printf(" op1=%08x.%08x", args[0], args[1]);
1656         break;
1657       case args1f:
1658       case rredf:
1659       case semi1f:
1660       case t_frexpf:
1661       case t_modff:
1662       case classifyf:
1663         printf(" op1=%08x", args[0]);
1664         break;
1665       case args2:
1666       case semi2:
1667       case compare:
1668         printf(" op1=%08x.%08x", args[0], args[1]);
1669         printf(" op2=%08x.%08x", args[2], args[3]);
1670         break;
1671       case args2f:
1672       case semi2f:
1673       case t_ldexpf:
1674       case comparef:
1675         printf(" op1=%08x", args[0]);
1676         printf(" op2=%08x", args[2]);
1677         break;
1678       case t_ldexp:
1679         printf(" op1=%08x.%08x", args[0], args[1]);
1680         printf(" op2=%08x", args[2]);
1681         break;
1682       case args1c:
1683       case args1cr:
1684         printf(" op1r=%08x.%08x", args[0], args[1]);
1685         printf(" op1i=%08x.%08x", args[2], args[3]);
1686         break;
1687       case args2c:
1688         printf(" op1r=%08x.%08x", args[0], args[1]);
1689         printf(" op1i=%08x.%08x", args[2], args[3]);
1690         printf(" op2r=%08x.%08x", args[4], args[5]);
1691         printf(" op2i=%08x.%08x", args[6], args[7]);
1692         break;
1693       case args1fc:
1694       case args1fcr:
1695         printf(" op1r=%08x", args[0]);
1696         printf(" op1i=%08x", args[2]);
1697         break;
1698       case args2fc:
1699         printf(" op1r=%08x", args[0]);
1700         printf(" op1i=%08x", args[2]);
1701         printf(" op2r=%08x", args[4]);
1702         printf(" op2i=%08x", args[6]);
1703         break;
1704       default:
1705         fprintf(stderr, "internal inconsistency?!\n");
1706         abort();
1707     }
1708 
1709     if (rejected == 2) {
1710         printf(" - test case rejected\n");
1711         goto cleanup;
1712     }
1713 
1714     wrapper_init(&ctx);
1715 
1716     if (rejected == 0) {
1717         switch (fn->type) {
1718           case args1:
1719             set_mpfr_d(a, args[0], args[1]);
1720             wrapper_op_real(&ctx, a, 2, args);
1721             ((testfunc1)(fn->func))(r, a, GMP_RNDN);
1722             get_mpfr_d(r, &result[0], &result[1], &result[2]);
1723             wrapper_result_real(&ctx, r, 2, result);
1724             if (wrapper_run(&ctx, fn->wrappers))
1725                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
1726             break;
1727           case args1cr:
1728             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1729             wrapper_op_complex(&ctx, ac, 2, args);
1730             ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
1731             get_mpfr_d(r, &result[0], &result[1], &result[2]);
1732             wrapper_result_real(&ctx, r, 2, result);
1733             if (wrapper_run(&ctx, fn->wrappers))
1734                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
1735             break;
1736           case args1f:
1737             set_mpfr_f(a, args[0]);
1738             wrapper_op_real(&ctx, a, 1, args);
1739             ((testfunc1)(fn->func))(r, a, GMP_RNDN);
1740             get_mpfr_f(r, &result[0], &result[1]);
1741             wrapper_result_real(&ctx, r, 1, result);
1742             if (wrapper_run(&ctx, fn->wrappers))
1743                 get_mpfr_f(r, &result[0], &result[1]);
1744             break;
1745           case args1fcr:
1746             set_mpc_f(ac, args[0], args[2]);
1747             wrapper_op_complex(&ctx, ac, 1, args);
1748             ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
1749             get_mpfr_f(r, &result[0], &result[1]);
1750             wrapper_result_real(&ctx, r, 1, result);
1751             if (wrapper_run(&ctx, fn->wrappers))
1752                 get_mpfr_f(r, &result[0], &result[1]);
1753             break;
1754           case args2:
1755             set_mpfr_d(a, args[0], args[1]);
1756             wrapper_op_real(&ctx, a, 2, args);
1757             set_mpfr_d(b, args[2], args[3]);
1758             wrapper_op_real(&ctx, b, 2, args+2);
1759             ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
1760             get_mpfr_d(r, &result[0], &result[1], &result[2]);
1761             wrapper_result_real(&ctx, r, 2, result);
1762             if (wrapper_run(&ctx, fn->wrappers))
1763                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
1764             break;
1765           case args2f:
1766             set_mpfr_f(a, args[0]);
1767             wrapper_op_real(&ctx, a, 1, args);
1768             set_mpfr_f(b, args[2]);
1769             wrapper_op_real(&ctx, b, 1, args+2);
1770             ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
1771             get_mpfr_f(r, &result[0], &result[1]);
1772             wrapper_result_real(&ctx, r, 1, result);
1773             if (wrapper_run(&ctx, fn->wrappers))
1774                 get_mpfr_f(r, &result[0], &result[1]);
1775             break;
1776           case rred:
1777             set_mpfr_d(a, args[0], args[1]);
1778             wrapper_op_real(&ctx, a, 2, args);
1779             ((testrred)(fn->func))(r, a, (int *)&result[3]);
1780             get_mpfr_d(r, &result[0], &result[1], &result[2]);
1781             wrapper_result_real(&ctx, r, 2, result);
1782             /* We never need to mess about with the integer auxiliary
1783              * output. */
1784             if (wrapper_run(&ctx, fn->wrappers))
1785                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
1786             break;
1787           case rredf:
1788             set_mpfr_f(a, args[0]);
1789             wrapper_op_real(&ctx, a, 1, args);
1790             ((testrred)(fn->func))(r, a, (int *)&result[3]);
1791             get_mpfr_f(r, &result[0], &result[1]);
1792             wrapper_result_real(&ctx, r, 1, result);
1793             /* We never need to mess about with the integer auxiliary
1794              * output. */
1795             if (wrapper_run(&ctx, fn->wrappers))
1796                 get_mpfr_f(r, &result[0], &result[1]);
1797             break;
1798           case semi1:
1799           case semi1f:
1800             errstr = ((testsemi1)(fn->func))(args, result);
1801             break;
1802           case semi2:
1803           case compare:
1804             errstr = ((testsemi2)(fn->func))(args, args+2, result);
1805             break;
1806           case semi2f:
1807           case comparef:
1808           case t_ldexpf:
1809             errstr = ((testsemi2f)(fn->func))(args, args+2, result);
1810             break;
1811           case t_ldexp:
1812             errstr = ((testldexp)(fn->func))(args, args+2, result);
1813             break;
1814           case t_frexp:
1815             errstr = ((testfrexp)(fn->func))(args, result, result+2);
1816             break;
1817           case t_frexpf:
1818             errstr = ((testfrexp)(fn->func))(args, result, result+2);
1819             break;
1820           case t_modf:
1821             errstr = ((testmodf)(fn->func))(args, result, result+2);
1822             break;
1823           case t_modff:
1824             errstr = ((testmodf)(fn->func))(args, result, result+2);
1825             break;
1826           case classify:
1827             errstr = ((testclassify)(fn->func))(args, &result[0]);
1828             break;
1829           case classifyf:
1830             errstr = ((testclassifyf)(fn->func))(args, &result[0]);
1831             break;
1832           case args1c:
1833             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1834             wrapper_op_complex(&ctx, ac, 2, args);
1835             ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
1836             get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1837             wrapper_result_complex(&ctx, rc, 2, result);
1838             if (wrapper_run(&ctx, fn->wrappers))
1839                 get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1840             break;
1841           case args2c:
1842             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1843             wrapper_op_complex(&ctx, ac, 2, args);
1844             set_mpc_d(bc, args[4], args[5], args[6], args[7]);
1845             wrapper_op_complex(&ctx, bc, 2, args+4);
1846             ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
1847             get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1848             wrapper_result_complex(&ctx, rc, 2, result);
1849             if (wrapper_run(&ctx, fn->wrappers))
1850                 get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1851             break;
1852           case args1fc:
1853             set_mpc_f(ac, args[0], args[2]);
1854             wrapper_op_complex(&ctx, ac, 1, args);
1855             ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
1856             get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1857             wrapper_result_complex(&ctx, rc, 1, result);
1858             if (wrapper_run(&ctx, fn->wrappers))
1859                 get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1860             break;
1861           case args2fc:
1862             set_mpc_f(ac, args[0], args[2]);
1863             wrapper_op_complex(&ctx, ac, 1, args);
1864             set_mpc_f(bc, args[4], args[6]);
1865             wrapper_op_complex(&ctx, bc, 1, args+4);
1866             ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
1867             get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1868             wrapper_result_complex(&ctx, rc, 1, result);
1869             if (wrapper_run(&ctx, fn->wrappers))
1870                 get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1871             break;
1872           default:
1873             fprintf(stderr, "internal inconsistency?!\n");
1874             abort();
1875         }
1876     }
1877 
1878     switch (fn->type) {
1879       case args1:              /* return an extra-precise result */
1880       case args2:
1881       case args1cr:
1882       case rred:
1883         printextra = 1;
1884         if (rejected == 0) {
1885             errstr = NULL;
1886             if (!mpfr_zero_p(a)) {
1887                 if ((result[0] & 0x7FFFFFFF) == 0 && result[1] == 0) {
1888                     /*
1889                      * If the output is +0 or -0 apart from the extra
1890                      * precision in result[2], then there's a tricky
1891                      * judgment call about what we require in the
1892                      * output. If we output the extra bits and set
1893                      * errstr="?underflow" then mathtest will tolerate
1894                      * the function under test rounding down to zero
1895                      * _or_ up to the minimum denormal; whereas if we
1896                      * suppress the extra bits and set
1897                      * errstr="underflow", then mathtest will enforce
1898                      * that the function really does underflow to zero.
1899                      *
1900                      * But where to draw the line? It seems clear to
1901                      * me that numbers along the lines of
1902                      * 00000000.00000000.7ff should be treated
1903                      * similarly to 00000000.00000000.801, but on the
1904                      * other hand, we must surely be prepared to
1905                      * enforce a genuine underflow-to-zero in _some_
1906                      * case where the true mathematical output is
1907                      * nonzero but absurdly tiny.
1908                      *
1909                      * I think a reasonable place to draw the
1910                      * distinction is at 00000000.00000000.400, i.e.
1911                      * one quarter of the minimum positive denormal.
1912                      * If a value less than that rounds up to the
1913                      * minimum denormal, that must mean the function
1914                      * under test has managed to make an error of an
1915                      * entire factor of two, and that's something we
1916                      * should fix. Above that, you can misround within
1917                      * the limits of your accuracy bound if you have
1918                      * to.
1919                      */
1920                     if (result[2] < 0x40000000) {
1921                         /* Total underflow (ERANGE + UFL) is required,
1922                          * and we suppress the extra bits to make
1923                          * mathtest enforce that the output is really
1924                          * zero. */
1925                         errstr = "underflow";
1926                         printextra = 0;
1927                     } else {
1928                         /* Total underflow is not required, but if the
1929                          * function rounds down to zero anyway, then
1930                          * we should be prepared to tolerate it. */
1931                         errstr = "?underflow";
1932                     }
1933                 } else if (!(result[0] & 0x7ff00000)) {
1934                     /*
1935                      * If the output is denormal, we usually expect a
1936                      * UFL exception, warning the user of partial
1937                      * underflow. The exception is if the denormal
1938                      * being returned is just one of the input values,
1939                      * unchanged even in principle. I bodgily handle
1940                      * this by just special-casing the functions in
1941                      * question below.
1942                      */
1943                     if (!strcmp(fn->name, "fmax") ||
1944                         !strcmp(fn->name, "fmin") ||
1945                         !strcmp(fn->name, "creal") ||
1946                         !strcmp(fn->name, "cimag")) {
1947                         /* no error expected */
1948                     } else {
1949                         errstr = "u";
1950                     }
1951                 } else if ((result[0] & 0x7FFFFFFF) > 0x7FEFFFFF) {
1952                     /*
1953                      * Infinite results are usually due to overflow,
1954                      * but one exception is lgamma of a negative
1955                      * integer.
1956                      */
1957                     if (!strcmp(fn->name, "lgamma") &&
1958                         (args[0] & 0x80000000) != 0 && /* negative */
1959                         is_dinteger(args)) {
1960                         errstr = "ERANGE status=z";
1961                     } else {
1962                         errstr = "overflow";
1963                     }
1964                     printextra = 0;
1965                 }
1966             } else {
1967                 /* lgamma(0) is also a pole. */
1968                 if (!strcmp(fn->name, "lgamma")) {
1969                     errstr = "ERANGE status=z";
1970                     printextra = 0;
1971                 }
1972             }
1973         }
1974 
1975         if (!printextra || (rejected && !(rejected==1 && result[2]!=0))) {
1976             printf(" result=%08x.%08x",
1977                    result[0], result[1]);
1978         } else {
1979             printf(" result=%08x.%08x.%03x",
1980                    result[0], result[1], (result[2] >> 20) & 0xFFF);
1981         }
1982         if (fn->type == rred) {
1983             printf(" res2=%08x", result[3]);
1984         }
1985         break;
1986       case args1f:
1987       case args2f:
1988       case args1fcr:
1989       case rredf:
1990         printextra = 1;
1991         if (rejected == 0) {
1992             errstr = NULL;
1993             if (!mpfr_zero_p(a)) {
1994                 if ((result[0] & 0x7FFFFFFF) == 0) {
1995                     /*
1996                      * Decide whether to print the extra bits based on
1997                      * just how close to zero the number is. See the
1998                      * big comment in the double-precision case for
1999                      * discussion.
2000                      */
2001                     if (result[1] < 0x40000000) {
2002                         errstr = "underflow";
2003                         printextra = 0;
2004                     } else {
2005                         errstr = "?underflow";
2006                     }
2007                 } else if (!(result[0] & 0x7f800000)) {
2008                     /*
2009                      * Functions which do not report partial overflow
2010                      * are listed here as special cases. (See the
2011                      * corresponding double case above for a fuller
2012                      * comment.)
2013                      */
2014                     if (!strcmp(fn->name, "fmaxf") ||
2015                         !strcmp(fn->name, "fminf") ||
2016                         !strcmp(fn->name, "crealf") ||
2017                         !strcmp(fn->name, "cimagf")) {
2018                         /* no error expected */
2019                     } else {
2020                         errstr = "u";
2021                     }
2022                 } else if ((result[0] & 0x7FFFFFFF) > 0x7F7FFFFF) {
2023                     /*
2024                      * Infinite results are usually due to overflow,
2025                      * but one exception is lgamma of a negative
2026                      * integer.
2027                      */
2028                     if (!strcmp(fn->name, "lgammaf") &&
2029                         (args[0] & 0x80000000) != 0 && /* negative */
2030                         is_sinteger(args)) {
2031                         errstr = "ERANGE status=z";
2032                     } else {
2033                         errstr = "overflow";
2034                     }
2035                     printextra = 0;
2036                 }
2037             } else {
2038                 /* lgamma(0) is also a pole. */
2039                 if (!strcmp(fn->name, "lgammaf")) {
2040                     errstr = "ERANGE status=z";
2041                     printextra = 0;
2042                 }
2043             }
2044         }
2045 
2046         if (!printextra || (rejected && !(rejected==1 && result[1]!=0))) {
2047             printf(" result=%08x",
2048                    result[0]);
2049         } else {
2050             printf(" result=%08x.%03x",
2051                    result[0], (result[1] >> 20) & 0xFFF);
2052         }
2053         if (fn->type == rredf) {
2054             printf(" res2=%08x", result[3]);
2055         }
2056         break;
2057       case semi1:              /* return a double result */
2058       case semi2:
2059       case t_ldexp:
2060         printf(" result=%08x.%08x", result[0], result[1]);
2061         break;
2062       case semi1f:
2063       case semi2f:
2064       case t_ldexpf:
2065         printf(" result=%08x", result[0]);
2066         break;
2067       case t_frexp:            /* return double * int */
2068         printf(" result=%08x.%08x res2=%08x", result[0], result[1],
2069                result[2]);
2070         break;
2071       case t_modf:             /* return double * double */
2072         printf(" result=%08x.%08x res2=%08x.%08x",
2073                result[0], result[1], result[2], result[3]);
2074         break;
2075       case t_modff:                    /* return float * float */
2076         /* fall through */
2077       case t_frexpf:                   /* return float * int */
2078         printf(" result=%08x res2=%08x", result[0], result[2]);
2079         break;
2080       case classify:
2081       case classifyf:
2082       case compare:
2083       case comparef:
2084         printf(" result=%x", result[0]);
2085         break;
2086       case args1c:
2087       case args2c:
2088         if (0/* errstr */) {
2089             printf(" resultr=%08x.%08x", result[0], result[1]);
2090             printf(" resulti=%08x.%08x", result[4], result[5]);
2091         } else {
2092             printf(" resultr=%08x.%08x.%03x",
2093                    result[0], result[1], (result[2] >> 20) & 0xFFF);
2094             printf(" resulti=%08x.%08x.%03x",
2095                    result[4], result[5], (result[6] >> 20) & 0xFFF);
2096         }
2097         /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
2098         errstr = "?underflow";
2099         break;
2100       case args1fc:
2101       case args2fc:
2102         if (0/* errstr */) {
2103             printf(" resultr=%08x", result[0]);
2104             printf(" resulti=%08x", result[4]);
2105         } else {
2106             printf(" resultr=%08x.%03x",
2107                    result[0], (result[1] >> 20) & 0xFFF);
2108             printf(" resulti=%08x.%03x",
2109                    result[4], (result[5] >> 20) & 0xFFF);
2110         }
2111         /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
2112         errstr = "?underflow";
2113         break;
2114     }
2115 
2116     if (errstr && *(errstr+1) == '\0') {
2117         printf(" errno=0 status=%c",*errstr);
2118     } else if (errstr && *errstr == '?') {
2119         printf(" maybeerror=%s", errstr+1);
2120     } else if (errstr && errstr[0] == 'E') {
2121         printf(" errno=%s", errstr);
2122     } else {
2123         printf(" error=%s", errstr && *errstr ? errstr : "0");
2124     }
2125 
2126     printf("\n");
2127 
2128     vet_for_decline(fn, args, result, 0);
2129 
2130   cleanup:
2131     mpfr_clear(a);
2132     mpfr_clear(b);
2133     mpfr_clear(r);
2134     mpc_clear(ac);
2135     mpc_clear(bc);
2136     mpc_clear(rc);
2137 }
2138 
2139 void gencases(Testable *fn, int number) {
2140     int i;
2141     uint32 args[8];
2142 
2143     float32_case(NULL);
2144     float64_case(NULL);
2145 
2146     printf("random=on\n"); /* signal to runtests.pl that the following tests are randomly generated */
2147     for (i = 0; i < number; i++) {
2148         /* generate test point */
2149         fn->cases(args, fn->caseparam1, fn->caseparam2);
2150         docase(fn, args);
2151     }
2152     printf("random=off\n");
2153 }
2154 
2155 static uint32 doubletop(int x, int scale) {
2156     int e = 0x412 + scale;
2157     while (!(x & 0x100000))
2158         x <<= 1, e--;
2159     return (e << 20) + x;
2160 }
2161 
2162 static uint32 floatval(int x, int scale) {
2163     int e = 0x95 + scale;
2164     while (!(x & 0x800000))
2165         x <<= 1, e--;
2166     return (e << 23) + x;
2167 }
2168