1*31914882SAlex Richardson /* 2*31914882SAlex Richardson * Header for sinf, cosf and sincosf. 3*31914882SAlex Richardson * 4*31914882SAlex Richardson * Copyright (c) 2018, Arm Limited. 5*31914882SAlex Richardson * SPDX-License-Identifier: MIT 6*31914882SAlex Richardson */ 7*31914882SAlex Richardson 8*31914882SAlex Richardson #include <stdint.h> 9*31914882SAlex Richardson #include <math.h> 10*31914882SAlex Richardson #include "math_config.h" 11*31914882SAlex Richardson 12*31914882SAlex Richardson /* 2PI * 2^-64. */ 13*31914882SAlex Richardson static const double pi63 = 0x1.921FB54442D18p-62; 14*31914882SAlex Richardson /* PI / 4. */ 15*31914882SAlex Richardson static const double pio4 = 0x1.921FB54442D18p-1; 16*31914882SAlex Richardson 17*31914882SAlex Richardson /* The constants and polynomials for sine and cosine. */ 18*31914882SAlex Richardson typedef struct 19*31914882SAlex Richardson { 20*31914882SAlex Richardson double sign[4]; /* Sign of sine in quadrants 0..3. */ 21*31914882SAlex Richardson double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */ 22*31914882SAlex Richardson double hpi; /* PI / 2. */ 23*31914882SAlex Richardson double c0, c1, c2, c3, c4; /* Cosine polynomial. */ 24*31914882SAlex Richardson double s1, s2, s3; /* Sine polynomial. */ 25*31914882SAlex Richardson } sincos_t; 26*31914882SAlex Richardson 27*31914882SAlex Richardson /* Polynomial data (the cosine polynomial is negated in the 2nd entry). */ 28*31914882SAlex Richardson extern const sincos_t __sincosf_table[2] HIDDEN; 29*31914882SAlex Richardson 30*31914882SAlex Richardson /* Table with 4/PI to 192 bit precision. */ 31*31914882SAlex Richardson extern const uint32_t __inv_pio4[] HIDDEN; 32*31914882SAlex Richardson 33*31914882SAlex Richardson /* Top 12 bits of the float representation with the sign bit cleared. */ 34*31914882SAlex Richardson static inline uint32_t 35*31914882SAlex Richardson abstop12 (float x) 36*31914882SAlex Richardson { 37*31914882SAlex Richardson return (asuint (x) >> 20) & 0x7ff; 38*31914882SAlex Richardson } 39*31914882SAlex Richardson 40*31914882SAlex Richardson /* Compute the sine and cosine of inputs X and X2 (X squared), using the 41*31914882SAlex Richardson polynomial P and store the results in SINP and COSP. N is the quadrant, 42*31914882SAlex Richardson if odd the cosine and sine polynomials are swapped. */ 43*31914882SAlex Richardson static inline void 44*31914882SAlex Richardson sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp, 45*31914882SAlex Richardson float *cosp) 46*31914882SAlex Richardson { 47*31914882SAlex Richardson double x3, x4, x5, x6, s, c, c1, c2, s1; 48*31914882SAlex Richardson 49*31914882SAlex Richardson x4 = x2 * x2; 50*31914882SAlex Richardson x3 = x2 * x; 51*31914882SAlex Richardson c2 = p->c3 + x2 * p->c4; 52*31914882SAlex Richardson s1 = p->s2 + x2 * p->s3; 53*31914882SAlex Richardson 54*31914882SAlex Richardson /* Swap sin/cos result based on quadrant. */ 55*31914882SAlex Richardson float *tmp = (n & 1 ? cosp : sinp); 56*31914882SAlex Richardson cosp = (n & 1 ? sinp : cosp); 57*31914882SAlex Richardson sinp = tmp; 58*31914882SAlex Richardson 59*31914882SAlex Richardson c1 = p->c0 + x2 * p->c1; 60*31914882SAlex Richardson x5 = x3 * x2; 61*31914882SAlex Richardson x6 = x4 * x2; 62*31914882SAlex Richardson 63*31914882SAlex Richardson s = x + x3 * p->s1; 64*31914882SAlex Richardson c = c1 + x4 * p->c2; 65*31914882SAlex Richardson 66*31914882SAlex Richardson *sinp = s + x5 * s1; 67*31914882SAlex Richardson *cosp = c + x6 * c2; 68*31914882SAlex Richardson } 69*31914882SAlex Richardson 70*31914882SAlex Richardson /* Return the sine of inputs X and X2 (X squared) using the polynomial P. 71*31914882SAlex Richardson N is the quadrant, and if odd the cosine polynomial is used. */ 72*31914882SAlex Richardson static inline float 73*31914882SAlex Richardson sinf_poly (double x, double x2, const sincos_t *p, int n) 74*31914882SAlex Richardson { 75*31914882SAlex Richardson double x3, x4, x6, x7, s, c, c1, c2, s1; 76*31914882SAlex Richardson 77*31914882SAlex Richardson if ((n & 1) == 0) 78*31914882SAlex Richardson { 79*31914882SAlex Richardson x3 = x * x2; 80*31914882SAlex Richardson s1 = p->s2 + x2 * p->s3; 81*31914882SAlex Richardson 82*31914882SAlex Richardson x7 = x3 * x2; 83*31914882SAlex Richardson s = x + x3 * p->s1; 84*31914882SAlex Richardson 85*31914882SAlex Richardson return s + x7 * s1; 86*31914882SAlex Richardson } 87*31914882SAlex Richardson else 88*31914882SAlex Richardson { 89*31914882SAlex Richardson x4 = x2 * x2; 90*31914882SAlex Richardson c2 = p->c3 + x2 * p->c4; 91*31914882SAlex Richardson c1 = p->c0 + x2 * p->c1; 92*31914882SAlex Richardson 93*31914882SAlex Richardson x6 = x4 * x2; 94*31914882SAlex Richardson c = c1 + x4 * p->c2; 95*31914882SAlex Richardson 96*31914882SAlex Richardson return c + x6 * c2; 97*31914882SAlex Richardson } 98*31914882SAlex Richardson } 99*31914882SAlex Richardson 100*31914882SAlex Richardson /* Fast range reduction using single multiply-subtract. Return the modulo of 101*31914882SAlex Richardson X as a value between -PI/4 and PI/4 and store the quadrant in NP. 102*31914882SAlex Richardson The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double 103*31914882SAlex Richardson is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4, 104*31914882SAlex Richardson the result is accurate for |X| <= 120.0. */ 105*31914882SAlex Richardson static inline double 106*31914882SAlex Richardson reduce_fast (double x, const sincos_t *p, int *np) 107*31914882SAlex Richardson { 108*31914882SAlex Richardson double r; 109*31914882SAlex Richardson #if TOINT_INTRINSICS 110*31914882SAlex Richardson /* Use fast round and lround instructions when available. */ 111*31914882SAlex Richardson r = x * p->hpi_inv; 112*31914882SAlex Richardson *np = converttoint (r); 113*31914882SAlex Richardson return x - roundtoint (r) * p->hpi; 114*31914882SAlex Richardson #else 115*31914882SAlex Richardson /* Use scaled float to int conversion with explicit rounding. 116*31914882SAlex Richardson hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31. 117*31914882SAlex Richardson This avoids inaccuracies introduced by truncating negative values. */ 118*31914882SAlex Richardson r = x * p->hpi_inv; 119*31914882SAlex Richardson int n = ((int32_t)r + 0x800000) >> 24; 120*31914882SAlex Richardson *np = n; 121*31914882SAlex Richardson return x - n * p->hpi; 122*31914882SAlex Richardson #endif 123*31914882SAlex Richardson } 124*31914882SAlex Richardson 125*31914882SAlex Richardson /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic. 126*31914882SAlex Richardson XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored). 127*31914882SAlex Richardson Return the modulo between -PI/4 and PI/4 and store the quadrant in NP. 128*31914882SAlex Richardson Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit 129*31914882SAlex Richardson multiply computes the exact 2.62-bit fixed-point modulo. Since the result 130*31914882SAlex Richardson can have at most 29 leading zeros after the binary point, the double 131*31914882SAlex Richardson precision result is accurate to 33 bits. */ 132*31914882SAlex Richardson static inline double 133*31914882SAlex Richardson reduce_large (uint32_t xi, int *np) 134*31914882SAlex Richardson { 135*31914882SAlex Richardson const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15]; 136*31914882SAlex Richardson int shift = (xi >> 23) & 7; 137*31914882SAlex Richardson uint64_t n, res0, res1, res2; 138*31914882SAlex Richardson 139*31914882SAlex Richardson xi = (xi & 0xffffff) | 0x800000; 140*31914882SAlex Richardson xi <<= shift; 141*31914882SAlex Richardson 142*31914882SAlex Richardson res0 = xi * arr[0]; 143*31914882SAlex Richardson res1 = (uint64_t)xi * arr[4]; 144*31914882SAlex Richardson res2 = (uint64_t)xi * arr[8]; 145*31914882SAlex Richardson res0 = (res2 >> 32) | (res0 << 32); 146*31914882SAlex Richardson res0 += res1; 147*31914882SAlex Richardson 148*31914882SAlex Richardson n = (res0 + (1ULL << 61)) >> 62; 149*31914882SAlex Richardson res0 -= n << 62; 150*31914882SAlex Richardson double x = (int64_t)res0; 151*31914882SAlex Richardson *np = n; 152*31914882SAlex Richardson return x * pi63; 153*31914882SAlex Richardson } 154