xref: /freebsd/contrib/arm-optimized-routines/math/log10f.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Single-precision log10 function.
3  *
4  * Copyright (c) 2022-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 
11 #include "math_config.h"
12 #include "test_sig.h"
13 #include "test_defs.h"
14 
15 /* Data associated to logf:
16 
17    LOGF_TABLE_BITS = 4
18    LOGF_POLY_ORDER = 4
19 
20    ULP error: 0.818 (nearest rounding.)
21    Relative error: 1.957 * 2^-26 (before rounding.).  */
22 
23 #define T __logf_data.tab
24 #define A __logf_data.poly
25 #define Ln2 __logf_data.ln2
26 #define InvLn10 __logf_data.invln10
27 #define N (1 << LOGF_TABLE_BITS)
28 #define OFF 0x3f330000
29 
30 /* This naive implementation of log10f mimics that of log
31    then simply scales the result by 1/log(10) to switch from base e to
32    base 10. Hence, most computations are carried out in double precision.
33    Scaling before rounding to single precision is both faster and more
34    accurate.
35 
36    ULP error: 0.797 ulp (nearest rounding.).  */
37 float
38 log10f (float x)
39 {
40   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
41   double_t z, r, r2, y, y0, invc, logc;
42   uint32_t ix, iz, tmp;
43   int k, i;
44 
45   ix = asuint (x);
46 #if WANT_ROUNDING
47   /* Fix sign of zero with downward rounding when x==1.  */
48   if (unlikely (ix == 0x3f800000))
49     return 0;
50 #endif
51   if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
52     {
53       /* x < 0x1p-126 or inf or nan.  */
54       if (ix * 2 == 0)
55 	return __math_divzerof (1);
56       if (ix == 0x7f800000) /* log(inf) == inf.  */
57 	return x;
58       if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
59 	return __math_invalidf (x);
60       /* x is subnormal, normalize it.  */
61       ix = asuint (x * 0x1p23f);
62       ix -= 23 << 23;
63     }
64 
65   /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
66      The range is split into N subintervals.
67      The ith subinterval contains z and c is near its center.  */
68   tmp = ix - OFF;
69   i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
70   k = (int32_t) tmp >> 23; /* arithmetic shift.  */
71   iz = ix - (tmp & 0xff800000);
72   invc = T[i].invc;
73   logc = T[i].logc;
74   z = (double_t) asfloat (iz);
75 
76   /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
77   r = z * invc - 1;
78   y0 = logc + (double_t) k * Ln2;
79 
80   /* Pipelined polynomial evaluation to approximate log1p(r).  */
81   r2 = r * r;
82   y = A[1] * r + A[2];
83   y = A[0] * r2 + y;
84   y = y * r2 + (y0 + r);
85 
86   /* Multiply by 1/log(10).  */
87   y = y * InvLn10;
88 
89   return eval_as_float (y);
90 }
91 
92 TEST_SIG (S, F, 1, log10, 0.01, 11.1)
93 TEST_ULP (log10f, 0.30)
94 TEST_ULP_NONNEAREST (log10f, 0.5)
95 TEST_INTERVAL (log10f, 0, 0xffff0000, 10000)
96 TEST_INTERVAL (log10f, 0x1p-127, 0x1p-26, 50000)
97 TEST_INTERVAL (log10f, 0x1p-26, 0x1p3, 50000)
98 TEST_INTERVAL (log10f, 0x1p-4, 0x1p4, 50000)
99 TEST_INTERVAL (log10f, 0, inf, 50000)
100