1 /* 2 * Double-precision SVE tan(x) function. 3 * 4 * Copyright (c) 2023-2024, Arm Limited. 5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 6 */ 7 8 #include "sv_math.h" 9 #include "test_sig.h" 10 #include "test_defs.h" 11 12 static const struct data 13 { 14 double c2, c4, c6, c8; 15 double poly_1357[4]; 16 double c0, inv_half_pi; 17 double half_pi_hi, half_pi_lo, range_val; 18 } data = { 19 /* Polynomial generated with FPMinimax. */ 20 .c2 = 0x1.ba1ba1bb46414p-5, 21 .c4 = 0x1.226e5e5ecdfa3p-7, 22 .c6 = 0x1.7ea75d05b583ep-10, 23 .c8 = 0x1.4e4fd14147622p-12, 24 .poly_1357 = { 0x1.1111111110a63p-3, 0x1.664f47e5b5445p-6, 25 0x1.d6c7ddbf87047p-9, 0x1.289f22964a03cp-11 }, 26 .c0 = 0x1.5555555555556p-2, 27 .inv_half_pi = 0x1.45f306dc9c883p-1, 28 .half_pi_hi = 0x1.921fb54442d18p0, 29 .half_pi_lo = 0x1.1a62633145c07p-54, 30 .range_val = 0x1p23, 31 }; 32 33 static svfloat64_t NOINLINE 34 special_case (svfloat64_t x, svfloat64_t p, svfloat64_t q, svbool_t pg, 35 svbool_t special) 36 { 37 svbool_t use_recip = svcmpeq ( 38 pg, svand_x (pg, svreinterpret_u64 (svcvt_s64_x (pg, q)), 1), 0); 39 40 svfloat64_t n = svmad_x (pg, p, p, -1); 41 svfloat64_t d = svmul_x (svptrue_b64 (), p, 2); 42 svfloat64_t swap = n; 43 n = svneg_m (n, use_recip, d); 44 d = svsel (use_recip, swap, d); 45 svfloat64_t y = svdiv_x (svnot_z (pg, special), n, d); 46 return sv_call_f64 (tan, x, y, special); 47 } 48 49 /* Vector approximation for double-precision tan. 50 Maximum measured error is 3.48 ULP: 51 _ZGVsMxv_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37 52 want -0x1.f6ccd8ecf7deap+37. */ 53 svfloat64_t SV_NAME_D1 (tan) (svfloat64_t x, svbool_t pg) 54 { 55 const struct data *dat = ptr_barrier (&data); 56 svfloat64_t half_pi_c0 = svld1rq (svptrue_b64 (), &dat->c0); 57 /* q = nearest integer to 2 * x / pi. */ 58 svfloat64_t q = svmul_lane (x, half_pi_c0, 1); 59 q = svrinta_x (pg, q); 60 61 /* Use q to reduce x to r in [-pi/4, pi/4], by: 62 r = x - q * pi/2, in extended precision. */ 63 svfloat64_t r = x; 64 svfloat64_t half_pi = svld1rq (svptrue_b64 (), &dat->half_pi_hi); 65 r = svmls_lane (r, q, half_pi, 0); 66 r = svmls_lane (r, q, half_pi, 1); 67 /* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle 68 formula. */ 69 r = svmul_x (svptrue_b64 (), r, 0.5); 70 71 /* Approximate tan(r) using order 8 polynomial. 72 tan(x) is odd, so polynomial has the form: 73 tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ... 74 Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ... 75 Then compute the approximation by: 76 tan(r) ~= r + r^3 * (C0 + r^2 * P(r)). */ 77 78 svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r); 79 svfloat64_t r4 = svmul_x (svptrue_b64 (), r2, r2); 80 svfloat64_t r8 = svmul_x (svptrue_b64 (), r4, r4); 81 /* Use offset version coeff array by 1 to evaluate from C1 onwards. */ 82 svfloat64_t C_24 = svld1rq (svptrue_b64 (), &dat->c2); 83 svfloat64_t C_68 = svld1rq (svptrue_b64 (), &dat->c6); 84 85 /* Use offset version coeff array by 1 to evaluate from C1 onwards. */ 86 svfloat64_t p01 = svmla_lane (sv_f64 (dat->poly_1357[0]), r2, C_24, 0); 87 svfloat64_t p23 = svmla_lane_f64 (sv_f64 (dat->poly_1357[1]), r2, C_24, 1); 88 svfloat64_t p03 = svmla_x (pg, p01, p23, r4); 89 90 svfloat64_t p45 = svmla_lane (sv_f64 (dat->poly_1357[2]), r2, C_68, 0); 91 svfloat64_t p67 = svmla_lane (sv_f64 (dat->poly_1357[3]), r2, C_68, 1); 92 svfloat64_t p47 = svmla_x (pg, p45, p67, r4); 93 94 svfloat64_t p = svmla_x (pg, p03, p47, r8); 95 96 svfloat64_t z = svmul_x (svptrue_b64 (), p, r); 97 z = svmul_x (svptrue_b64 (), r2, z); 98 z = svmla_lane (z, r, half_pi_c0, 0); 99 p = svmla_x (pg, r, r2, z); 100 101 /* Recombination uses double-angle formula: 102 tan(2x) = 2 * tan(x) / (1 - (tan(x))^2) 103 and reciprocity around pi/2: 104 tan(x) = 1 / (tan(pi/2 - x)) 105 to assemble result using change-of-sign and conditional selection of 106 numerator/denominator dependent on odd/even-ness of q (quadrant). */ 107 108 /* Invert condition to catch NaNs and Infs as well as large values. */ 109 svbool_t special = svnot_z (pg, svaclt (pg, x, dat->range_val)); 110 111 if (unlikely (svptest_any (pg, special))) 112 { 113 return special_case (x, p, q, pg, special); 114 } 115 svbool_t use_recip = svcmpeq ( 116 pg, svand_x (pg, svreinterpret_u64 (svcvt_s64_x (pg, q)), 1), 0); 117 118 svfloat64_t n = svmad_x (pg, p, p, -1); 119 svfloat64_t d = svmul_x (svptrue_b64 (), p, 2); 120 svfloat64_t swap = n; 121 n = svneg_m (n, use_recip, d); 122 d = svsel (use_recip, swap, d); 123 return svdiv_x (pg, n, d); 124 } 125 126 TEST_SIG (SV, D, 1, tan, -3.1, 3.1) 127 TEST_ULP (SV_NAME_D1 (tan), 2.99) 128 TEST_DISABLE_FENV (SV_NAME_D1 (tan)) 129 TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0, 0x1p23, 500000) 130 TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0x1p23, inf, 5000) 131 CLOSE_SVE_ATTR 132