xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/sve/expm1f.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Single-precision vector exp(x) - 1 function.
3  *
4  * Copyright (c) 2023-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "sv_math.h"
9 #include "test_sig.h"
10 #include "test_defs.h"
11 
12 /* Largest value of x for which expm1(x) should round to -1.  */
13 #define SpecialBound 0x1.5ebc4p+6f
14 
15 static const struct data
16 {
17   /* These 4 are grouped together so they can be loaded as one quadword, then
18      used with _lane forms of svmla/svmls.  */
19   float c2, c4, ln2_hi, ln2_lo;
20   float c0, inv_ln2, c1, c3, special_bound;
21 } data = {
22   /* Generated using fpminimax.  */
23   .c0 = 0x1.fffffep-2,		 .c1 = 0x1.5554aep-3,
24   .c2 = 0x1.555736p-5,		 .c3 = 0x1.12287cp-7,
25   .c4 = 0x1.6b55a2p-10,		 .inv_ln2 = 0x1.715476p+0f,
26   .special_bound = SpecialBound, .ln2_lo = 0x1.7f7d1cp-20f,
27   .ln2_hi = 0x1.62e4p-1f,
28 
29 };
30 
31 static svfloat32_t NOINLINE
32 special_case (svfloat32_t x, svbool_t pg)
33 {
34   return sv_call_f32 (expm1f, x, x, pg);
35 }
36 
37 /* Single-precision SVE exp(x) - 1. Maximum error is 1.52 ULP:
38    _ZGVsMxv_expm1f(0x1.8f4ebcp-2) got 0x1.e859dp-2
39 				 want 0x1.e859d4p-2.  */
40 svfloat32_t SV_NAME_F1 (expm1) (svfloat32_t x, svbool_t pg)
41 {
42   const struct data *d = ptr_barrier (&data);
43 
44   /* Large, NaN/Inf.  */
45   svbool_t special = svnot_z (pg, svaclt (pg, x, d->special_bound));
46 
47   if (unlikely (svptest_any (pg, special)))
48     return special_case (x, pg);
49 
50   /* This vector is reliant on layout of data - it contains constants
51      that can be used with _lane forms of svmla/svmls. Values are:
52      [ coeff_2, coeff_4, ln2_hi, ln2_lo ].  */
53   svfloat32_t lane_constants = svld1rq (svptrue_b32 (), &d->c2);
54 
55   /* Reduce argument to smaller range:
56      Let i = round(x / ln2)
57      and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
58      exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
59      where 2^i is exact because i is an integer.  */
60   svfloat32_t j = svmul_x (svptrue_b32 (), x, d->inv_ln2);
61   j = svrinta_x (pg, j);
62 
63   svfloat32_t f = svmls_lane (x, j, lane_constants, 2);
64   f = svmls_lane (f, j, lane_constants, 3);
65 
66   /* Approximate expm1(f) using polynomial.
67      Taylor expansion for expm1(x) has the form:
68 	 x + ax^2 + bx^3 + cx^4 ....
69      So we calculate the polynomial P(f) = a + bf + cf^2 + ...
70      and assemble the approximation expm1(f) ~= f + f^2 * P(f).  */
71   svfloat32_t p12 = svmla_lane (sv_f32 (d->c1), f, lane_constants, 0);
72   svfloat32_t p34 = svmla_lane (sv_f32 (d->c3), f, lane_constants, 1);
73   svfloat32_t f2 = svmul_x (svptrue_b32 (), f, f);
74   svfloat32_t p = svmla_x (pg, p12, f2, p34);
75 
76   p = svmla_x (pg, sv_f32 (d->c0), f, p);
77   p = svmla_x (pg, f, f2, p);
78 
79   /* Assemble the result.
80      expm1(x) ~= 2^i * (p + 1) - 1
81      Let t = 2^i.  */
82   svfloat32_t t = svscale_x (pg, sv_f32 (1.0f), svcvt_s32_x (pg, j));
83   return svmla_x (pg, svsub_x (pg, t, 1.0f), p, t);
84 }
85 
86 TEST_SIG (SV, F, 1, expm1, -9.9, 9.9)
87 TEST_ULP (SV_NAME_F1 (expm1), 1.02)
88 TEST_DISABLE_FENV (SV_NAME_F1 (expm1))
89 TEST_SYM_INTERVAL (SV_NAME_F1 (expm1), 0, SpecialBound, 100000)
90 TEST_SYM_INTERVAL (SV_NAME_F1 (expm1), SpecialBound, inf, 1000)
91 CLOSE_SVE_ATTR
92